Sample records for predictive dna tests

  1. The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation.

    PubMed

    Chaitanya, Lakshmi; Breslin, Krystal; Zuñiga, Sofia; Wirken, Laura; Pośpiech, Ewelina; Kukla-Bartoszek, Magdalena; Sijen, Titia; Knijff, Peter de; Liu, Fan; Branicki, Wojciech; Kayser, Manfred; Walsh, Susan

    2018-07-01

    Forensic DNA Phenotyping (FDP), i.e. the prediction of human externally visible traits from DNA, has become a fast growing subfield within forensic genetics due to the intelligence information it can provide from DNA traces. FDP outcomes can help focus police investigations in search of unknown perpetrators, who are generally unidentifiable with standard DNA profiling. Therefore, we previously developed and forensically validated the IrisPlex DNA test system for eye colour prediction and the HIrisPlex system for combined eye and hair colour prediction from DNA traces. Here we introduce and forensically validate the HIrisPlex-S DNA test system (S for skin) for the simultaneous prediction of eye, hair, and skin colour from trace DNA. This FDP system consists of two SNaPshot-based multiplex assays targeting a total of 41 SNPs via a novel multiplex assay for 17 skin colour predictive SNPs and the previous HIrisPlex assay for 24 eye and hair colour predictive SNPs, 19 of which also contribute to skin colour prediction. The HIrisPlex-S system further comprises three statistical prediction models, the previously developed IrisPlex model for eye colour prediction based on 6 SNPs, the previous HIrisPlex model for hair colour prediction based on 22 SNPs, and the recently introduced HIrisPlex-S model for skin colour prediction based on 36 SNPs. In the forensic developmental validation testing, the novel 17-plex assay performed in full agreement with the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines, as previously shown for the 24-plex assay. Sensitivity testing of the 17-plex assay revealed complete SNP profiles from as little as 63 pg of input DNA, equalling the previously demonstrated sensitivity threshold of the 24-plex HIrisPlex assay. Testing of simulated forensic casework samples such as blood, semen, saliva stains, of inhibited DNA samples, of low quantity touch (trace) DNA samples, and of artificially degraded DNA samples as well as concordance testing, demonstrated the robustness, efficiency, and forensic suitability of the new 17-plex assay, as previously shown for the 24-plex assay. Finally, we provide an update to the publically available HIrisPlex website https://hirisplex.erasmusmc.nl/, now allowing the estimation of individual probabilities for 3 eye, 4 hair, and 5 skin colour categories from HIrisPlex-S input genotypes. The HIrisPlex-S DNA test represents the first forensically validated tool for skin colour prediction, and reflects the first forensically validated tool for simultaneous eye, hair and skin colour prediction from DNA. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Logistics for Working Together to Facilitate Genomic/Quantitative Genetic Prediction

    USDA-ARS?s Scientific Manuscript database

    The incorporation of DNA tests into the national cattle evaluation system will require estimation of variances of and covariances among the additive genetic components of the DNA tests and the phenotypic traits they are intended to predict. Populations with both DNA test results and phenotypes will ...

  3. Assessment of HPV-mRNA test to predict recurrent disease in patients previously treated for CIN 2/3.

    PubMed

    Frega, Antonio; Sesti, Francesco; Lombardi, Danila; Votano, Sergio; Sopracordevole, Francesco; Catalano, Angelica; Milazzo, Giusi Natalia; Lombardo, Riccardo; Assorgi, Chiara; Olivola, Sara; Chiusuri, Valentina; Ricciardi, Enzo; French, Deborah; Moscarini, Massimo

    2014-05-01

    The use of HPV-mRNA test in the follow-up after LEEP is still matter of debate, with regard to its capacity of prediction relapse. The aim of the present study is to evaluate the reliability of HPV-mRNA test to predict the residual and recurrent disease, and its accuracy in the follow-up of patients treated for CIN 2/3. Multicenter prospective cohort study. Patients who underwent LEEP after a biopsy diagnosing CIN 2/3 were followed at 3, 6, 12, 24 and 36 months. Each check up included cytology, colposcopy, HPV-DNA test (LiPA) and HPV-mRNA test (PreTect HPV Proofer Kit NorChip). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), of HPV-DNA test and HPV-mRNA test to predict relapse, recurrent and residual disease. Using multiple logistic regression, the statistical significant variables as assessed in univariate analysis were entered and investigated as predictors of relapse disease. The mRNA-test in predicting a residual disease had a sensitivity of 52% and a NPV of 91%, whereas DNA-test had 100% and 100%, respectively. On the contrary in the prediction of recurrent disease mRNA-test had a sensitivity and a NPV of 73.5% and 97%, whereas DNA-test had 44% and 93%. On the multivariate analysis, age, cytology, HPV DNA and mRNA test achieved the role of independent predictors of relapse. HPV-mRNA test has a higher sensitivity and a higher NPV in predicting recurrent disease, for this reason it should be used in the follow-up of patients treated with LEEP for CIN 2/3 in order to individualize the timing of check up. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. HIV RNA testing in the context of nonoccupational postexposure prophylaxis.

    PubMed

    Roland, Michelle E; Elbeik, Tarek A; Kahn, James O; Bamberger, Joshua D; Coates, Thomas J; Krone, Melissa R; Katz, Mitchell H; Busch, Michael P; Martin, Jeffrey N

    2004-08-01

    The specificity and positive predictive value of human immunodeficiency virus (HIV) RNA assays have not been evaluated in the setting of postexposure prophylaxis (PEP). Plasma from subjects enrolled in a nonoccupational PEP study was tested with 2 branched-chain DNA (bDNA) assays, 2 polymerase chain reaction (PCR) assays, and a transcription-mediated amplification (TMA) assay. Assay specificity and positive predictive value were determined for subjects who remained negative for HIV antibody for >or=3 months. In 329 subjects examined, the lowest specificities (90.1%-93.7%) were seen for bDNA testing performed in real time. The highest specificities were seen with batched bDNA version 3.0 (99.1%), standard PCR (99.4%), ultrasensitive PCR (100%), and TMA (99.6%) testing. Only the 2 assays with the highest specificities had positive predictive values >40%. For the bDNA assays, increasing the cutoff point at which a test is called positive (e.g., from 50 copies/mL to 500 copies/mL for version 3.0) increased both specificity and positive predictive values to 100%. The positive predictive value of HIV RNA assays in individuals presenting for PEP is unacceptably low for bDNA-based testing and possibly acceptable for PCR- and TMA-based testing. Routine use of HIV RNA assays in such individuals is not recommended.

  5. Measuring Sperm DNA Fragmentation and Clinical Outcomes of Medically Assisted Reproduction: A Systematic Review and Meta-Analysis.

    PubMed

    Cissen, Maartje; Wely, Madelon van; Scholten, Irma; Mansell, Steven; Bruin, Jan Peter de; Mol, Ben Willem; Braat, Didi; Repping, Sjoerd; Hamer, Geert

    2016-01-01

    Sperm DNA fragmentation has been associated with reduced fertilization rates, embryo quality, pregnancy rates and increased miscarriage rates. Various methods exist to test sperm DNA fragmentation such as the sperm chromatin structure assay (SCSA), the sperm chromatin dispersion (SCD) test, the terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end labelling (TUNEL) assay and the single cell gel electrophoresis (Comet) assay. We performed a systematic review and meta-analysis to assess the value of measuring sperm DNA fragmentation in predicting chance of ongoing pregnancy with IVF or ICSI. Out of 658 unique studies, 30 had extractable data and were thus included in the meta-analysis. Overall, the sperm DNA fragmentation tests had a reasonable to good sensitivity. A wide variety of other factors may also affect the IVF/ICSI outcome, reflected by limited to very low specificity. The constructed hierarchical summary receiver operating characteristic (HSROC) curve indicated a fair discriminatory capacity of the TUNEL assay (area under the curve (AUC) of 0.71; 95% CI 0.66 to 0.74) and Comet assay (AUC of 0.73; 95% CI 0.19 to 0.97). The SCSA and the SCD test had poor predictive capacity. Importantly, for the TUNEL assay, SCD test and Comet assay, meta-regression showed no differences in predictive value between IVF and ICSI. For the SCSA meta-regression indicated the predictive values for IVF and ICSI were different. The present review suggests that current sperm DNA fragmentation tests have limited capacity to predict the chance of pregnancy in the context of MAR. Furthermore, sperm DNA fragmentation tests have little or no difference in predictive value between IVF and ICSI. At this moment, there is insufficient evidence to recommend the routine use of sperm DNA fragmentation tests in couples undergoing MAR both for the prediction of pregnancy and for the choice of treatment. Given the significant limitations of the evidence and the methodological weakness and design of the included studies, we do urge for further research on the predictive value of sperm DNA fragmentation for the chance of pregnancy after MAR, also in comparison with other predictors of pregnancy after MAR.

  6. Lay perceptions of predictive testing for diabetes based on DNA test results versus family history assessment: a focus group study.

    PubMed

    Wijdenes-Pijl, Miranda; Dondorp, Wybo J; Timmermans, Danielle Rm; Cornel, Martina C; Henneman, Lidewij

    2011-07-05

    This study assessed lay perceptions of issues related to predictive genetic testing for multifactorial diseases. These perceived issues may differ from the "classic" issues, e.g. autonomy, discrimination, and psychological harm that are considered important in predictive testing for monogenic disorders. In this study, type 2 diabetes was used as an example, and perceptions with regard to predictive testing based on DNA test results and family history assessment were compared. Eight focus group interviews were held with 45 individuals aged 35-70 years with (n = 3) and without (n = 1) a family history of diabetes, mixed groups of these two (n = 2), and diabetes patients (n = 2). All interviews were transcribed and analysed using Atlas-ti. Most participants believed in the ability of a predictive test to identify people at risk for diabetes and to motivate preventive behaviour. Different reasons underlying motivation were considered when comparing DNA test results and a family history risk assessment. A perceived drawback of DNA testing was that diabetes was considered not severe enough for this type of risk assessment. In addition, diabetes family history assessment was not considered useful by some participants, since there are also other risk factors involved, not everyone has a diabetes family history or knows their family history, and it might have a negative influence on family relations. Respect for autonomy of individuals was emphasized more with regard to DNA testing than family history assessment. Other issues such as psychological harm, discrimination, and privacy were only briefly mentioned for both tests. The results suggest that most participants believe a predictive genetic test could be used in the prevention of multifactorial disorders, such as diabetes, but indicate points to consider before both these tests are applied. These considerations differ with regard to the method of assessment (DNA test or obtaining family history) and also differ from monogenic disorders.

  7. Is it time to sound an alarm about false-positive cell-free DNA testing for fetal aneuploidy?

    PubMed

    Mennuti, Michael T; Cherry, Athena M; Morrissette, Jennifer J D; Dugoff, Lorraine

    2013-11-01

    Testing cell-free DNA (cfDNA) in maternal blood samples has been shown to have very high sensitivity for the detection of fetal aneuploidy with very low false-positive results in high-risk patients who undergo invasive prenatal diagnosis. Recent observation in clinical practice of several cases of positive cfDNA tests for trisomy 18 and trisomy 13, which were not confirmed by cytogenetic testing of the pregnancy, may reflect a limitation of the positive predictive value of this quantitative testing, particularly when it is used to detect rare aneuploidies. Analysis of a larger number of false-positive cases is needed to evaluate whether these observations reflect the positive predictive value that should be expected. Infrequently, mechanisms (such as low percentage mosaicism or confined placental mosaicism) might also lead to positive cfDNA testing that is not concordant with standard prenatal cytogenetic diagnosis. The need to explore these and other possible causes of false-positive cfDNA testing is exemplified by 2 of these cases. Additional evaluation of cfDNA testing in clinical practice and a mechanism for the systematic reporting of false-positive and false-negative cases will be important before this test is offered widely to the general population of low-risk obstetric patients. In the meantime, incorporating information about the positive predictive value in pretest counseling and in clinical laboratory reports is recommended. These experiences reinforce the importance of offering invasive testing to confirm cfDNA results before parental decision-making. Copyright © 2013 Mosby, Inc. All rights reserved.

  8. Routine DNA testing

    USDA-ARS?s Scientific Manuscript database

    Routine DNA testing. It’s done once you’ve Marker-Assisted Breeding Pipelined promising Qantitative Trait Loci within your own breeding program and thereby established the performance-predictive power of each DNA test for your germplasm under your conditions. By then you are ready to screen your par...

  9. Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage.

    PubMed

    Walsh, Susan; Chaitanya, Lakshmi; Clarisse, Lindy; Wirken, Laura; Draus-Barini, Jolanta; Kovatsi, Leda; Maeda, Hitoshi; Ishikawa, Takaki; Sijen, Titia; de Knijff, Peter; Branicki, Wojciech; Liu, Fan; Kayser, Manfred

    2014-03-01

    Forensic DNA Phenotyping or 'DNA intelligence' tools are expected to aid police investigations and find unknown individuals by providing information on externally visible characteristics of unknown suspects, perpetrators and missing persons from biological samples. This is especially useful in cases where conventional DNA profiling or other means remain non-informative. Recently, we introduced the HIrisPlex system, capable of predicting both eye and hair colour from DNA. In the present developmental validation study, we demonstrate that the HIrisPlex assay performs in full agreement with the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines providing an essential prerequisite for future HIrisPlex applications to forensic casework. The HIrisPlex assay produces complete profiles down to only 63 pg of DNA. Species testing revealed human specificity for a complete HIrisPlex profile, while only non-human primates showed the closest full profile at 20 out of the 24 DNA markers, in all animals tested. Rigorous testing of simulated forensic casework samples such as blood, semen, saliva stains, hairs with roots as well as extremely low quantity touch (trace) DNA samples, produced complete profiles in 88% of cases. Concordance testing performed between five independent forensic laboratories displayed consistent reproducible results on varying types of DNA samples. Due to its design, the assay caters for degraded samples, underlined here by results from artificially degraded DNA and from simulated casework samples of degraded DNA. This aspect was also demonstrated previously on DNA samples from human remains up to several hundreds of years old. With this paper, we also introduce enhanced eye and hair colour prediction models based on enlarged underlying databases of HIrisPlex genotypes and eye/hair colour phenotypes (eye colour: N = 9188 and hair colour: N = 1601). Furthermore, we present an online web-based system for individual eye and hair colour prediction from full and partial HIrisPlex DNA profiles. By demonstrating that the HIrisPlex assay is fully compatible with the SWGDAM guidelines, we provide the first forensically validated DNA test system for parallel eye and hair colour prediction now available to forensic laboratories for immediate casework application, including missing person cases. Given the robustness and sensitivity described here and in previous work, the HIrisPlex system is also suitable for analysing old and ancient DNA in anthropological and evolutionary studies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Impact of DNA twist accumulation on progressive helical wrapping of torsionally constrained DNA.

    PubMed

    Li, Wei; Wang, Peng-Ye; Yan, Jie; Li, Ming

    2012-11-21

    DNA wrapping is an important mechanism for chromosomal DNA packaging in cells and viruses. Previous studies of DNA wrapping have been performed mostly on torsionally unconstrained DNA, while in vivo DNA is often under torsional constraint. In this study, we extend a previously proposed theoretical model for wrapping of torsionally unconstrained DNA to a new model including the contribution of DNA twist energy, which influences DNA wrapping drastically. In particular, due to accumulation of twist energy during DNA wrapping, it predicts a finite amount of DNA that can be wrapped on a helical spool. The predictions of the new model are tested by single-molecule study of DNA wrapping under torsional constraint using magnetic tweezers. The theoretical predictions and the experimental results are consistent with each other and their implications are discussed.

  11. Early Adoption of a Multi-target Stool DNA Test for Colorectal Cancer Screening

    PubMed Central

    Finney Rutten, Lila J.; Jacobson, Robert M.; Wilson, Patrick M.; Jacobson, Debra J.; Fan, Chun; Kisiel, John B.; Sweetser, Seth R.; Tulledge-Scheitel, Sidna M.; St. Sauver, Jennifer L.

    2017-01-01

    Objective To characterize early adoption of a novelmulti-target stool deoxyribonucleic acid (MTsDNA) screening test for colorectal cancer (CRC) and test the hypothesis that adoption differs by demographic characteristics, prior CRC screening behavior, and proceeds predictably over time. Patients and Methods We used the Rochester Epidemiology Project infrastructure to assess MTsDNA screening test use among adults aged 50–75 years, and identified 27,147 individuals eligible/due for screening colonoscopy from November 1, 2014 through November 30, 2015, and living in Olmsted County, Minnesota in2014. We used electronic Current Procedure Terminology and Health Care Common Procedure codes to evaluate early adoption of MTsDNA screening test in this population and to test whether early adoption varies by age, sex, race, and prior screening behavior. Results Overall, 2,193 (8.1%) and 974 (3.6%) of individuals were screened by colonoscopy and MT-sDNA, respectively. Age, sex, race, and prior screening were significantly and independently associated with MT-sDNA screening use compared to colonoscopy use after adjustment for all other variables. Rates of adoption of MTsDNA screening increased over time and were highest among those aged 50–54 years, females, whites, and had a prior history of screening. MT-sDNA screening use varied predictably by insurance coverage. Rates of colonoscopy decreased over time, while overall CRC screening rates remained steady. Conclusion Our results are generally consistent with predictions derived from prior research and Diffusion of Innovation framework, pointing to increasing use of the new screening test over time, and early adoption by younger patients, females, whites and those with prior CRC screening. PMID:28473037

  12. Genetic determinants of freckle occurrence in the Spanish population: Towards ephelides prediction from human DNA samples.

    PubMed

    Hernando, Barbara; Ibañez, Maria Victoria; Deserio-Cuesta, Julio Alberto; Soria-Navarro, Raquel; Vilar-Sastre, Inca; Martinez-Cadenas, Conrado

    2018-03-01

    Prediction of human pigmentation traits, one of the most differentiable externally visible characteristics among individuals, from biological samples represents a useful tool in the field of forensic DNA phenotyping. In spite of freckling being a relatively common pigmentation characteristic in Europeans, little is known about the genetic basis of this largely genetically determined phenotype in southern European populations. In this work, we explored the predictive capacity of eight freckle and sunlight sensitivity-related genes in 458 individuals (266 non-freckled controls and 192 freckled cases) from Spain. Four loci were associated with freckling (MC1R, IRF4, ASIP and BNC2), and female sex was also found to be a predictive factor for having a freckling phenotype in our population. After identifying the most informative genetic variants responsible for human ephelides occurrence in our sample set, we developed a DNA-based freckle prediction model using a multivariate regression approach. Once developed, the capabilities of the prediction model were tested by a repeated 10-fold cross-validation approach. The proportion of correctly predicted individuals using the DNA-based freckle prediction model was 74.13%. The implementation of sex into the DNA-based freckle prediction model slightly improved the overall prediction accuracy by 2.19% (76.32%). Further evaluation of the newly-generated prediction model was performed by assessing the model's performance in a new cohort of 212 Spanish individuals, reaching a classification success rate of 74.61%. Validation of this prediction model may be carried out in larger populations, including samples from different European populations. Further research to validate and improve this newly-generated freckle prediction model will be needed before its forensic application. Together with DNA tests already validated for eye and hair colour prediction, this freckle prediction model may lead to a substantially more detailed physical description of unknown individuals from DNA found at the crime scene. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Early Adoption of a Multitarget Stool DNA Test for Colorectal Cancer Screening.

    PubMed

    Finney Rutten, Lila J; Jacobson, Robert M; Wilson, Patrick M; Jacobson, Debra J; Fan, Chun; Kisiel, John B; Sweetser, Seth; Tulledge-Scheitel, Sidna M; St Sauver, Jennifer L

    2017-05-01

    To characterize early adoption of a novel multitarget stool DNA (MT-sDNA) screening test for colorectal cancer (CRC) screening and to test the hypothesis that adoption differs by demographic characteristics and prior CRC screening behavior and proceeds predictably over time. We used the Rochester Epidemiology Project research infrastructure to assess the use of the MT-sDNA screening test in adults aged 50 to 75 years living in Olmsted County, Minnesota, in 2014 and identified 27,147 individuals eligible or due for screening colonoscopy from November 1, 2014, through November 30, 2015. We used electronic Current Procedure Terminology and Health Care Common Procedure codes to evaluate early adoption of the MT-sDNA screening test in this population and to test whether early adoption varies by age, sex, race, and prior CRC screening behavior. Overall, 2193 (8.1%) and 974 (3.6%) individuals were screened by colonoscopy and MT-sDNA, respectively. Age, sex, race, and prior CRC screening behavior were significantly and independently associated with MT-sDNA screening use compared with colonoscopy use after adjustment for all other variables (P<.05 for all). The rates of adoption of MT-sDNA screening increased over time and were highest in those aged 50 to 54 years, women, whites, and those who had a history of screening. The use of the MT-sDNA screening test varied predictably by insurance coverage. The rates of colonoscopy decreased over time, whereas overall CRC screening rates remained steady. The results of the present study are generally consistent with predictions derived from prior research and the diffusion of innovation framework, pointing to increasing use of the new screening test over time and early adoption by younger patients, women, whites, and those with prior CRC screening. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  14. Human papillomavirus DNA testing as an adjunct to cytology in cervical screening programs.

    PubMed

    Lörincz, Attila T; Richart, Ralph M

    2003-08-01

    Our objective was to review current large studies of human papillomavirus (HPV) DNA testing as an adjunct to the Papanicolaou test for cervical cancer screening programs. We analyzed 10 large screening studies that used the Hybrid Capture 2 test and 3 studies that used the polymerase chain reaction test in a manner that enabled reliable estimates of accuracy for detecting or predicting high-grade cervical intraepithelial neoplasia (CIN). Most studies allowed comparison of HPV DNA and Papanicolaou testing and estimates of the performance of Papanicolaou and HPV DNA as combined tests. The studies were selected on the basis of a sufficient number of cases of high-grade CIN and cancer to provide meaningful statistical values. Investigators had to demonstrate the ability to generate reasonably reliable Hybrid Capture 2 or polymerase chain reaction data that were either minimally biased by nature of study design or that permitted analytical techniques for addressing issues of study bias to be applied. Studies had to provide data for the calculation of test sensitivity, specificity, predictive values, odds ratios, relative risks, confidence intervals, and other relevant measures. Final data were abstracted directly from published articles or estimated from descriptive statistics presented in the articles. In some studies, new analyses were performed from raw data supplied by the principal investigators. We concluded that HPV DNA testing was a more sensitive indicator for prevalent high-grade CIN than either conventional or liquid cytology. A combination of HPV DNA and Papanicolaou testing had almost 100% sensitivity and negative predictive value. The specificity of the combined tests was slightly lower than the specificity of the Papanicolaou test alone, but this decrease could potentially be offset by greater protection from neoplastic progression and cost savings available from extended screening intervals. One "double-negative" HPV DNA and Papanicolaou test indicated better prognostic assurance against risk of future CIN 3 than 3 subsequent negative conventional Papanicolaou tests and may safely allow 3-year screening intervals for such low-risk women.

  15. Attitudes to predictive DNA testing in familial adenomatous polyposis.

    PubMed Central

    Whitelaw, S; Northover, J M; Hodgson, S V

    1996-01-01

    Attitudes to predictive DNA testing for familial adenomatous polyposis were documented in 62 affected adults. Patient views on prenatal testing and termination of pregnancy for this disorder were sought, as were opinions on the most suitable age to offer predictive testing for at risk children and the most appropriate age to begin screening. While 15 (24%) of those questioned stated that they would proceed to termination of pregnancy if a prenatal test indicated that the unborn baby was affected, in clinical practice no one has yet requested this option. Six (10%) people who had refrained from having children for fear of passing on the polyposis gene felt that the arrival of prenatal testing would enable them to consider planning a family. The majority of patients (93%) said they would like their children tested by DNA analysis at birth or in infancy, but felt that 10 to 12 years was the most appropriate time to discuss the diagnosis with the child. PMID:8818937

  16. A Novel Strategy to Predict Carcinogenicity of Antiparasitics Based on a Combination of DNA Lesions and Bacterial Mutagenicity Tests

    PubMed Central

    Liu, Qianying; Lei, Zhixin; Zhu, Feng; Ihsan, Awais; Wang, Xu; Yuan, Zonghui

    2017-01-01

    Genotoxicity and carcinogenicity testing of pharmaceuticals prior to commercialization is requested by regulatory agencies. The bacterial mutagenicity test was considered having the highest accuracy of carcinogenic prediction. However, some evidences suggest that it always results in false-positive responses when the bacterial mutagenicity test is used to predict carcinogenicity. Along with major changes made to the International Committee on Harmonization guidance on genotoxicity testing [S2 (R1)], the old data (especially the cytotgenetic data) may not meet current guidelines. This review provides a compendium of retrievable results of genotoxicity and animal carcinogenicity of 136 antiparasitics. Neither genotoxicity nor carcinogenicity data is available for 84 (61.8%), while 52 (38.2%) have been evaluated in at least one genotoxicity or carcinogenicity study, and only 20 (14.7%) in both genotoxicity and carcinogenicity studies. Among 33 antiparasitics with at least one old result in in vitro genotoxicity, 15 (45.5%) are in agreement with the current ICH S2 (R1) guidance for data acceptance. Compared with other genotoxicity assays, the DNA lesions can significantly increase the accuracy of prediction of carcinogenicity. Together, a combination of DNA lesion and bacterial tests is a more accurate way to predict carcinogenicity. PMID:29170735

  17. Incorporating thyroid markers in Down syndrome screening protocols.

    PubMed

    Dhaifalah, Ishraq; Salek, Tomas; Langova, Dagmar; Cuckle, Howard

    2017-05-01

    The article aimed to assess the benefit of incorporating maternal serum thyroid disease marker levels (thyroid-stimulating hormone and free thyroxine) into first trimester Down syndrome screening protocols. Statistical modelling was used to predict performance with and without the thyroid markers. Two protocols were considered: the combined test and the contingent cell-free DNA (cfDNA) test, where 15-40% women are selected for cfDNA because of increased risk based on combined test results. Published parameters were used for the combined test, cfDNA and the Down syndrome means for thyroid-stimulating hormone and free thyroxine; other parameters were derived from a series of 5230 women screened for both thyroid disease and Down syndrome. Combined test: For a fixed 85% detection rate, the predicted false positive rate was reduced from 5.3% to 3.6% with the addition of the thyroid markers. Contingent cfDNA test: For a fixed 95% detection rate, the proportion of women selected for cfDNA was reduced from 25.6% to 20.2%. When screening simultaneously for maternal thyroid disease and Down syndrome, thyroid marker levels should be used in the calculation of Down syndrome risk. The benefit is modest but can be achieved with no additional cost. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.

  18. A Prospective Blinded Evaluation of Urine-DNA Testing for Detection of Urothelial Bladder Carcinoma in Patients with Gross Hematuria.

    PubMed

    Dahmcke, Christina M; Steven, Kenneth E; Larsen, Louise K; Poulsen, Asger L; Abdul-Al, Ahmad; Dahl, Christina; Guldberg, Per

    2016-12-01

    Retrospective studies have provided proof of principle that bladder cancer can be detected by testing for the presence of tumor DNA in urine. We have conducted a prospective blinded study to determine whether a urine-based DNA test can replace flexible cystoscopy in the initial assessment of gross hematuria. A total of 475 consecutive patients underwent standard urological examination including flexible cystoscopy and computed tomography urography, and provided urine samples immediately before (n=461) and after (n=444) cystoscopy. Urine cells were collected using a filtration device and tested for eight DNA mutation and methylation biomarkers. Clinical evaluation identified 99 (20.8%) patients with urothelial bladder tumors. With this result as a reference and based on the analysis of all urine samples, the DNA test had a sensitivity of 97.0%, a specificity of 76.9%, a positive predictive value of 52.5%, and a negative predictive value of 99.0%. In three patients with a positive urine-DNA test without clinical evidence of cancer, a tumor was detected at repeat cystoscopy within 16 mo. Our results suggest that urine-DNA testing can be used to identify a large subgroup of patients with gross hematuria in whom cystoscopy is not required. We tested the possibility of using a urine-based DNA test to check for bladder cancer in patients with visible blood in the urine. Our results show that the test efficiently detects bladder cancer and therefore may be used to greatly reduce the number of patients who would need to undergo cystoscopy. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  19. ctDNA Determination of EGFR Mutation Status in European and Japanese Patients with Advanced NSCLC: The ASSESS Study.

    PubMed

    Reck, Martin; Hagiwara, Koichi; Han, Baohui; Tjulandin, Sergei; Grohé, Christian; Yokoi, Takashi; Morabito, Alessandro; Novello, Silvia; Arriola, Edurne; Molinier, Olivier; McCormack, Rose; Ratcliffe, Marianne; Normanno, Nicola

    2016-10-01

    To offer patients with EGFR mutation-positive advanced NSCLC appropriate EGFR tyrosine kinase inhibitor treatment, mutation testing of tumor samples is required. However, tissue/cytologic samples are not always available or evaluable. The large, noninterventional diagnostic ASSESS study (NCT01785888) evaluated the utility of circulating free tumor-derived DNA (ctDNA) from plasma for EGFR mutation testing. ASSESS was conducted in 56 centers (in Europe and Japan). Eligible patients (with newly diagnosed locally advanced/metastatic treatment-naive advanced NSCLC) provided diagnostic tissue/cytologic and plasma samples. DNA extracted from tissue/cytologic samples was subjected to EGFR mutation testing using local practices; designated laboratories performed DNA extraction/mutation testing of blood samples. The primary end point was level of concordance of EGFR mutation status between matched tissue/cytologic and plasma samples. Of 1311 patients enrolled, 1288 were eligible. Concordance of mutation status in 1162 matched samples was 89% (sensitivity 46%, specificity 97%, positive predictive value 78%, and negative predictive value 90%). A group of 25 patients with apparent false-positive plasma results was overrepresented for cytologic samples, use of less sensitive tissue testing methodologies, and smoking habits associated with high EGFR mutation frequency, indicative of false-negative tumor results. In cases in which plasma and tumor samples were tested with identical highly sensitive methods, positive predictive value/sensitivity were generally improved. These real-world data suggest that ctDNA is a feasible sample for EGFR mutation analysis. It is important to conduct mutation testing of both tumor and plasma samples in specialized laboratories, using robust/sensitive methods to ensure that patients receive appropriate treatments that target the molecular features of their disease. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  20. Forensic individual age estimation with DNA: From initial approaches to methylation tests.

    PubMed

    Freire-Aradas, A; Phillips, C; Lareu, M V

    2017-07-01

    Individual age estimation is a key factor in forensic science analysis that can provide very useful information applicable to criminal, legal, and anthropological investigations. Forensic age inference was initially based on morphological inspection or radiography and only later began to adopt molecular approaches. However, a lack of accuracy or technical problems hampered the introduction of these DNA-based methodologies in casework analysis. A turning point occurred when the epigenetic signature of DNA methylation was observed to gradually change during an individual´s lifespan. In the last four years, the number of publications reporting DNA methylation age-correlated changes has gradually risen and the forensic community now has a range of age methylation tests applicable to forensic casework. Most forensic age predictor models have been developed based on blood DNA samples, but additional tissues are now also being explored. This review assesses the most widely adopted genes harboring methylation sites, detection technologies, statistical age-predictive analyses, and potential causes of variation in age estimates. Despite the need for further work to improve predictive accuracy and establishing a broader range of tissues for which tests can analyze the most appropriate methylation sites, several forensic age predictors have now been reported that provide consistency in their prediction accuracies (predictive error of ±4 years); this makes them compelling tools with the potential to contribute key information to help guide criminal investigations. Copyright © 2017 Central Police University.

  1. Mutations altering the cleavage specificity of a homing endonuclease

    PubMed Central

    Seligman, Lenny M.; Chisholm, Karen M.; Chevalier, Brett S.; Chadsey, Meggen S.; Edwards, Samuel T.; Savage, Jeremiah H.; Veillet, Adeline L.

    2002-01-01

    The homing endonuclease I-CreI recognizes and cleaves a particular 22 bp DNA sequence. The crystal structure of I-CreI bound to homing site DNA has previously been determined, leading to a number of predictions about specific protein–DNA contacts. We test these predictions by analyzing a set of endonuclease mutants and a complementary set of homing site mutants. We find evidence that all structurally predicted I-CreI/DNA contacts contribute to DNA recognition and show that these contacts differ greatly in terms of their relative importance. We also describe the isolation of a collection of altered specificity I-CreI derivatives. The in vitro DNA-binding and cleavage properties of two such endonucleases demonstrate that our genetic approach is effective in identifying homing endonucleases that recognize and cleave novel target sequences. PMID:12202772

  2. Blind Predictions of DNA and RNA Tweezers Experiments with Force and Torque

    PubMed Central

    Chou, Fang-Chieh; Lipfert, Jan; Das, Rhiju

    2014-01-01

    Single-molecule tweezers measurements of double-stranded nucleic acids (dsDNA and dsRNA) provide unprecedented opportunities to dissect how these fundamental molecules respond to forces and torques analogous to those applied by topoisomerases, viral capsids, and other biological partners. However, tweezers data are still most commonly interpreted post facto in the framework of simple analytical models. Testing falsifiable predictions of state-of-the-art nucleic acid models would be more illuminating but has not been performed. Here we describe a blind challenge in which numerical predictions of nucleic acid mechanical properties were compared to experimental data obtained recently for dsRNA under applied force and torque. The predictions were enabled by the HelixMC package, first presented in this paper. HelixMC advances crystallography-derived base-pair level models (BPLMs) to simulate kilobase-length dsDNAs and dsRNAs under external forces and torques, including their global linking numbers. These calculations recovered the experimental bending persistence length of dsRNA within the error of the simulations and accurately predicted that dsRNA's “spring-like” conformation would give a two-fold decrease of stretch modulus relative to dsDNA. Further blind predictions of helix torsional properties, however, exposed inaccuracies in current BPLM theory, including three-fold discrepancies in torsional persistence length at the high force limit and the incorrect sign of dsRNA link-extension (twist-stretch) coupling. Beyond these experiments, HelixMC predicted that ‘nucleosome-excluding’ poly(A)/poly(T) is at least two-fold stiffer than random-sequence dsDNA in bending, stretching, and torsional behaviors; Z-DNA to be at least three-fold stiffer than random-sequence dsDNA, with a near-zero link-extension coupling; and non-negligible effects from base pair step correlations. We propose that experimentally testing these predictions should be powerful next steps for understanding the flexibility of dsDNA and dsRNA in sequence contexts and under mechanical stresses relevant to their biology. PMID:25102226

  3. How single nucleotide polymorphism chips will advance our knowledge of factors controlling puberty and aid in selecting replacement beef females

    USDA-ARS?s Scientific Manuscript database

    The promise of genomic selection is accurate prediction of animals' genetic potential from their genotypes. Simple DNA tests might replace low accuracy predictions for expensive or lowly heritable measures of puberty and fertility based on performance and pedigree. Knowing which DNA variants affec...

  4. Isolation and characterization of new highly polymorphic DNA markers from the Huntington disease region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, B.; Hedrick, A.; Andrew, S.

    1992-02-01

    The defect causing Huntington disease (HD) has been mapped to 4p16.3, distal to the DNA marker D4S10. Subsequently, additional polymorphic markers closer to the HD gene have been isolated, which has led to the establishment of predictive testing programs for individuals at risk for HD. Approximately 17% of persons presenting to the Canadian collaborative study for predictive testing for HD have not received any modification of risk, in part because of limited informativeness of currently available DNA markers. Therefore, more highly polymorphic DNA markers are needed, which well further increase the accuracy and availability of predictive testing, specifically for familiesmore » with complex or incomplete pedigree structures. In addition, new markers are urgently needed in order to refine the breakpoints in the few known recombinant HD chromosomes, which could allow a more accurate localization of the HD gene within 4p16.3 and, therefore, accelerate the cloning of the disease gene. In this study, the authors present the identification and characterization of nine new polymorphic DNA markers, including three markers which detect highly informative multiallelic VNTR-like polymorphisms with PIC values of up to .84. These markers have been isolated from a cloned region of DNA which has been previously mapped approximately 1,000 kb from the 4p telomere.« less

  5. Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.

    PubMed

    Park, Byungkyu; Im, Jinyong; Tuvshinjargal, Narankhuu; Lee, Wook; Han, Kyungsook

    2014-11-01

    As many structures of protein-DNA complexes have been known in the past years, several computational methods have been developed to predict DNA-binding sites in proteins. However, its inverse problem (i.e., predicting protein-binding sites in DNA) has received much less attention. One of the reasons is that the differences between the interaction propensities of nucleotides are much smaller than those between amino acids. Another reason is that DNA exhibits less diverse sequence patterns than protein. Therefore, predicting protein-binding DNA nucleotides is much harder than predicting DNA-binding amino acids. We computed the interaction propensity (IP) of nucleotide triplets with amino acids using an extensive dataset of protein-DNA complexes, and developed two support vector machine (SVM) models that predict protein-binding nucleotides from sequence data alone. One SVM model predicts protein-binding nucleotides using DNA sequence data alone, and the other SVM model predicts protein-binding nucleotides using both DNA and protein sequences. In a 10-fold cross-validation with 1519 DNA sequences, the SVM model that uses DNA sequence data only predicted protein-binding nucleotides with an accuracy of 67.0%, an F-measure of 67.1%, and a Matthews correlation coefficient (MCC) of 0.340. With an independent dataset of 181 DNAs that were not used in training, it achieved an accuracy of 66.2%, an F-measure 66.3% and a MCC of 0.324. Another SVM model that uses both DNA and protein sequences achieved an accuracy of 69.6%, an F-measure of 69.6%, and a MCC of 0.383 in a 10-fold cross-validation with 1519 DNA sequences and 859 protein sequences. With an independent dataset of 181 DNAs and 143 proteins, it showed an accuracy of 67.3%, an F-measure of 66.5% and a MCC of 0.329. Both in cross-validation and independent testing, the second SVM model that used both DNA and protein sequence data showed better performance than the first model that used DNA sequence data. To the best of our knowledge, this is the first attempt to predict protein-binding nucleotides in a given DNA sequence from the sequence data alone. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Assessment of the predictive capacity of the optimized in vitro comet assay using HepG2 cells.

    PubMed

    Hong, Yoon-Hee; Jeon, Hye Lyun; Ko, Kyung Yuk; Kim, Joohwan; Yi, Jung-Sun; Ahn, Ilyoung; Kim, Tae Sung; Lee, Jong Kwon

    2018-03-01

    Evaluation of DNA damage is critical during the development of new drugs because it is closely associated with genotoxicity and carcinogenicity. The in vivo comet assay to assess DNA damage is globally harmonized as OECD TG 489. However, a comet test guideline that evaluates DNA damage without sacrificing animals does not yet exist. The goal of this study was to select an appropriate cell line for optimization of the in vitro comet assay to assess DNA damage. We then evaluated the predictivity of the in vitro comet assay using the selected cell line. In addition, the effect of adding S9 was evaluated using 12 test chemicals. For cell line selection, HepG2, Chinese hamster lung (CHL/IU), and TK6 cell lines were evaluated. We employed a method for the in vitro comet assay based on that for the in vivo comet assay. The most appropriate cell line was determined by% tail DNA increase after performing in vitro comet assays with 6 test chemicals. The predictivity of the in vitro comet assay using the selected cell line was measured with 10 test chemicals (8 genotoxins and 2 non-genotoxic chemicals). The HepG2 cell line was found to be the most appropriate, and in vitro comet assays using HepG2 cells exhibited a high accuracy of 90% (9/10). This study suggests that HepG2 is an optimal cell line for the in vitro comet assay to assess DNA damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. HIV-1 tropism: a comparison between RNA and proviral DNA in routine clinical samples from Chilean patients

    PubMed Central

    2013-01-01

    Background HIV in Chile has a notification rate of 0.01%. Coreceptor antagonists are a family of antiretroviral drugs that are used with the prior knowledge of patients HIV-1 tropism. Viral RNA-based tropism detection requires a plasma viral load ≥1000 copies/mL, while proviral DNA-based detection can be performed regardless of plasma viral load. This test is useful in patients with low or undetectable viral loads and would benefit with a proper therapy. The aim of this study was to determine the correlation between HIV RNA and proviral genotypic DNA tropism tests. Findings Forty three Chilean patients were examined using population-based V3 sequencing, and a geno2pheno false-positive rate (FPR) cutoff values of 5, 5.75, 10 and 20%. With cutoff 5.75% a concordance of 88.4% in tropism prediction was found after a simultaneous comparison between HIV tropism assessment by RNA and DNA. In total, five discrepancies (11.6%) were found, 3 patients were RNA-R5/DNA-X4 and two were RNA-X4/DNA-R5. Proviral DNA enabled the prediction of tropism in patients with a low or undetectable viral load. For cutoff 5 and 5.75% genotypic testing using proviral DNA showed a similar sensitivity for X4 as RNA. We found that the highest sensitivity for detecting the X4 strain occurred with proviral DNA and cutoff of 10 and 20%. Viral loads were higher among X4 strain carriers than among R5 strain carriers (p < 0.05). Conclusions A high degree of concordance was found between tropism testing with RNA and testing with proviral DNA. Our results suggest that proviral DNA-based genotypic tropism testing is a useful option for patients with low or undetectable viral load who require a different therapy. PMID:24165156

  8. Positive predictive value estimates for cell-free noninvasive prenatal screening from data of a large referral genetic diagnostic laboratory.

    PubMed

    Petersen, Andrea K; Cheung, Sau Wai; Smith, Janice L; Bi, Weimin; Ward, Patricia A; Peacock, Sandra; Braxton, Alicia; Van Den Veyver, Ignatia B; Breman, Amy M

    2017-12-01

    Since its debut in 2011, cell-free fetal DNA screening has undergone rapid expansion with respect to both utilization and coverage. However, conclusive data regarding the clinical validity and utility of this screening tool, both for the originally included common autosomal and sex-chromosomal aneuploidies as well as the more recently added chromosomal microdeletion syndromes, have lagged behind. Thus, there is a continued need to educate clinicians and patients about the current benefits and limitations of this screening tool to inform pre- and posttest counseling, pre/perinatal decision making, and medical risk assessment/management. The objective of this study was to determine the positive predictive value and false-positive rates for different chromosomal abnormalities identified by cell-free fetal DNA screening using a large data set of diagnostic testing results on invasive samples submitted to the laboratory for confirmatory studies. We tested 712 patient samples sent to our laboratory to confirm a cell-free fetal DNA screening result, indicating high risk for a chromosome abnormality. We compiled data from all cases in which the indication for confirmatory testing was a positive cell-free fetal DNA screen, including the common trisomies, sex chromosomal aneuploidies, microdeletion syndromes, and other large genome-wide copy number abnormalities. Testing modalities included fluorescence in situ hybridization, G-banded karyotype, and/or chromosomal microarray analysis performed on chorionic villus samples, amniotic fluid, or postnatally obtained blood samples. Positive predictive values and false-positive rates were calculated from tabulated data. The positive predictive values for trisomy 13, 18, and 21 were consistent with previous reports at 45%, 76%, and 84%, respectively. For the microdeletion syndrome regions, positive predictive values ranged from 0% for detection of Cri-du-Chat syndrome and Prader-Willi/Angelman syndrome to 14% for 1p36 deletion syndrome and 21% for 22q11.2 deletion syndrome. Detection of sex chromosomal aneuploidies had positive predictive values of 26% for monosomy X, 50% for 47,XXX, and 86% for 47,XXY. The positive predictive values for detection of common autosomal and sex chromosomal aneuploidies by cell-free fetal DNA screening were comparable with other studies. Identification of microdeletions was associated with lower positive predictive values and higher false-positive rates, likely because of the low prevalence of the individual targeted microdeletion syndromes in the general population. Although the obtained positive predictive values compare favorably with those seen in traditional screening approaches for common aneuploidies, they highlight the importance of educating clinicians and patients on the limitations of cell-free fetal DNA screening tests. Improvement of the cell-free fetal DNA screening technology and continued monitoring of its performance after introduction into clinical practice will be important to fully establish its clinical utility. Nonetheless, our data provide valuable information that may aid result interpretation, patient counseling, and clinical decision making/management. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features.

    PubMed

    Zaman, Rianon; Chowdhury, Shahana Yasmin; Rashid, Mahmood A; Sharma, Alok; Dehzangi, Abdollah; Shatabda, Swakkhar

    2017-01-01

    DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.

  10. Value of Different Assays for Detection of Human Cytomegalovirus (HCMV) in Predicting the Development of HCMV Disease in Human Immunodeficiency Virus-Infected Patients

    PubMed Central

    Blank, Brian S. N.; Meenhorst, Pieter L.; Mulder, Jan Willem; Weverling, Gerrit Jan; Putter, Hein; Pauw, Wouter; van Dijk, Willemien C.; Smits, Paul; Lie-A-Ling, Sonja; Reiss, Peter; Lange, Joep M. A.

    2000-01-01

    In the present prospective study, five blood tests for detection of human cytomegalovirus (HCMV), nucleic acid sequence-based amplification (NASBA) for detection of early (immediate-early antigen) and late (pp67) mRNA, PCR for detection of HCMV DNA (DNA PCR), culture, and pp65 antigenemia assay, and culture and DNA PCR of urine and throat swab specimens were compared for their abilities to predict the development of disease caused by HCMV (HCMV disease). Of 101 human immunodeficiency virus (HIV)-infected patients with ≤100 CD4+ lymphocytes per mm3, 25 patients developed HCMV disease. The pp65 antigenemia assay (sensitivity, 50%; specificity, 89%) and DNA PCR of blood (sensitivity, 69%; specificity, 75%) were most accurate in predicting the development of HCMV disease within the next 12 months. Both blood culture and late pp67 mRNA NASBA had high specificities (91 and 90%, respectively) but low sensitivities (25 and 13%, respectively). The sensitivities of urine culture, DNA PCR, throat swab specimen culture, DNA PCR, and NASBA of blood for detection of the immediate-early antigen were 73, 87, 53, 67, and 63%, respectively, and the specificities were 58, 46, 76, 60, and 72%, respectively. The positive predictive values of all tests however, were low and did not exceed 50%. In conclusion, virological screening by these qualitative assays for detection of HCMV is of limited value for prediction of the development of HCMV disease in HIV-infected patients. PMID:10655346

  11. A High-Throughput Arabidopsis Reverse Genetics System

    PubMed Central

    Sessions, Allen; Burke, Ellen; Presting, Gernot; Aux, George; McElver, John; Patton, David; Dietrich, Bob; Ho, Patrick; Bacwaden, Johana; Ko, Cynthia; Clarke, Joseph D.; Cotton, David; Bullis, David; Snell, Jennifer; Miguel, Trini; Hutchison, Don; Kimmerly, Bill; Mitzel, Theresa; Katagiri, Fumiaki; Glazebrook, Jane; Law, Marc; Goff, Stephen A.

    2002-01-01

    A collection of Arabidopsis lines with T-DNA insertions in known sites was generated to increase the efficiency of functional genomics. A high-throughput modified thermal asymetric interlaced (TAIL)-PCR protocol was developed and used to amplify DNA fragments flanking the T-DNA left borders from ∼100,000 transformed lines. A total of 85,108 TAIL-PCR products from 52,964 T-DNA lines were sequenced and compared with the Arabidopsis genome to determine the positions of T-DNAs in each line. Predicted T-DNA insertion sites, when mapped, showed a bias against predicted coding sequences. Predicted insertion mutations in genes of interest can be identified using Arabidopsis Gene Index name searches or by BLAST (Basic Local Alignment Search Tool) search. Insertions can be confirmed by simple PCR assays on individual lines. Predicted insertions were confirmed in 257 of 340 lines tested (76%). This resource has been named SAIL (Syngenta Arabidopsis Insertion Library) and is available to the scientific community at www.tmri.org. PMID:12468722

  12. Dose-dependent DNA adduct formation by cinnamaldehyde and other food-borne α,β-unsaturated aldehydes predicted by physiologically based in silico modelling.

    PubMed

    Kiwamoto, R; Ploeg, D; Rietjens, I M C M; Punt, A

    2016-03-01

    Genotoxicity of α,β-unsaturated aldehydes shown in vitro raises a concern for the use of the aldehydes as food flavourings, while at low dose exposures the formation of DNA adducts may be prevented by detoxification. Unlike many α,β-unsaturated aldehydes for which in vivo data are absent, cinnamaldehyde was shown to be not genotoxic or carcinogenic in vivo. The present study aimed at comparing dose-dependent DNA adduct formation by cinnamaldehyde and 18 acyclic food-borne α,β-unsaturated aldehydes using physiologically based kinetic/dynamic (PBK/D) modelling. In rats, cinnamaldehyde was predicted to induce higher DNA adducts levels than 6 out of the 18 α,β-unsaturated aldehydes, indicating that these 6 aldehydes may also test negative in vivo. At the highest cinnamaldehyde dose that tested negative in vivo, cinnamaldehyde was predicted to form at least three orders of magnitude higher levels of DNA adducts than the 18 aldehydes at their respective estimated daily intake. These results suggest that for all the 18 α,β-unsaturated aldehydes DNA adduct formation at doses relevant for human dietary exposure may not raise a concern. The present study illustrates a possible use of physiologically based in silico modelling to facilitate a science-based comparison and read-across on the possible risks posed by DNA reactive agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Cytology and human papillomavirus testing 6 to 12 months after ASCUS or LSIL cytology in organized screening to predict high-grade cervical neoplasia between screening rounds.

    PubMed

    Tropé, Ameli; Sjøborg, Katrine D; Nygård, Mari; Røysland, Kjetil; Campbell, Suzanne; Alfsen, G Cecilie; Jonassen, Christine M

    2012-06-01

    We carried out a prospective study comparing the performance of human papillomavirus (HPV) E6/E7 mRNA (PreTect HPV-Proofer; NorChip, Klokkarstua, Norway) and DNA (Amplicor HPV test; Roche Diagnostics, Basel, Switzerland) triage testing of women 6 to 12 months after atypical-squamous-cells-of-undetermined-significance (ASCUS) or low-grade-squamous-intraepithelial-lesion (LSIL) cytology in organized screening to predict high-grade cervical intraepithelial neoplasia of grade 2 or worse (CIN2+) between screening rounds. Between January 2005 and April 2008, 692 study women with screening-detected ASCUS/LSIL cytology 6 to 12 months earlier returned for HPV mRNA and DNA testing and repeat cytology. The median follow-up time was 3 years, using existing health care facilities. Follow-up test results were available for 625 women. Of the 145 CIN2+ cases detected during the study period, 95 (65.5%) were HPV mRNA positive 6 to 12 months after screening-detected ASCUS/LSIL, 44 (30.4%) were HPV mRNA negative, and 6 (4.1%) were invalid. The corresponding HPV DNA results were 139 (95.9%), 5 (3.4%), and 1 (0.7%), respectively. The cumulative incidences of CIN2+ 3 years after a negative HPV mRNA and DNA test were 10.3% (95% confidence interval [CI], 7.2 to 13.3%) and 1.8% (95% CI, 0.0 to 3.6%), respectively. The cumulative incidences of CIN2+ 3 years after positive HPV mRNA and DNA tests were 52.8% (95% CI, 40.1 to 60.1%) and 41.3% (95% CI, 35.5 to 46.6%), respectively. In conclusion, both positive HPV mRNA and DNA test results have a high enough long-term prediction of CIN2+ risk to consider referral to colposcopy as good practice when performed in delayed triage of women with ASCUS/LSIL cytology. In addition, the low CIN2+ risk among women with a negative Amplicor HPV test in our study confirms its safe use in a clinical setting.

  14. Cytology and Human Papillomavirus Testing 6 to 12 Months after ASCUS or LSIL Cytology in Organized Screening To Predict High-Grade Cervical Neoplasia between Screening Rounds

    PubMed Central

    Sjøborg, Katrine D.; Nygård, Mari; Røysland, Kjetil; Campbell, Suzanne; Alfsen, G. Cecilie; Jonassen, Christine M.

    2012-01-01

    We carried out a prospective study comparing the performance of human papillomavirus (HPV) E6/E7 mRNA (PreTect HPV-Proofer; NorChip, Klokkarstua, Norway) and DNA (Amplicor HPV test; Roche Diagnostics, Basel, Switzerland) triage testing of women 6 to 12 months after atypical-squamous-cells-of-undetermined-significance (ASCUS) or low-grade-squamous-intraepithelial-lesion (LSIL) cytology in organized screening to predict high-grade cervical intraepithelial neoplasia of grade 2 or worse (CIN2+) between screening rounds. Between January 2005 and April 2008, 692 study women with screening-detected ASCUS/LSIL cytology 6 to 12 months earlier returned for HPV mRNA and DNA testing and repeat cytology. The median follow-up time was 3 years, using existing health care facilities. Follow-up test results were available for 625 women. Of the 145 CIN2+ cases detected during the study period, 95 (65.5%) were HPV mRNA positive 6 to 12 months after screening-detected ASCUS/LSIL, 44 (30.4%) were HPV mRNA negative, and 6 (4.1%) were invalid. The corresponding HPV DNA results were 139 (95.9%), 5 (3.4%), and 1 (0.7%), respectively. The cumulative incidences of CIN2+ 3 years after a negative HPV mRNA and DNA test were 10.3% (95% confidence interval [CI], 7.2 to 13.3%) and 1.8% (95% CI, 0.0 to 3.6%), respectively. The cumulative incidences of CIN2+ 3 years after positive HPV mRNA and DNA tests were 52.8% (95% CI, 40.1 to 60.1%) and 41.3% (95% CI, 35.5 to 46.6%), respectively. In conclusion, both positive HPV mRNA and DNA test results have a high enough long-term prediction of CIN2+ risk to consider referral to colposcopy as good practice when performed in delayed triage of women with ASCUS/LSIL cytology. In addition, the low CIN2+ risk among women with a negative Amplicor HPV test in our study confirms its safe use in a clinical setting. PMID:22518869

  15. Were inefficient mitochondrial haplogroups selected during migrations of modern humans? A test using modular kinetic analysis of coupling in mitochondria from cybrid cell lines.

    PubMed

    Amo, Taku; Brand, Martin D

    2007-06-01

    We introduce a general test of the bioenergetic importance of mtDNA (mitochondrial DNA) variants: modular kinetic analysis of oxidative phosphorylation in mitochondria from cybrid cells with constant nuclear DNA but different mtDNA. We have applied this test to the hypothesis [Ruiz-Pesini, Mishmar, Brandon, Procaccio and Wallace (2004) Science 303, 223-226] that particular mtDNA haplogroups (specific combinations of polymorphisms) that cause lowered coupling efficiency, leading to generation of less ATP and more heat, were positively selected during radiations of modern humans into colder climates. Contrary to the predictions of this hypothesis, mitochondria from Arctic haplogroups had similar or even greater coupling efficiency than mitochondria from tropical haplogroups.

  16. Developmental validation of the IrisPlex system: determination of blue and brown iris colour for forensic intelligence.

    PubMed

    Walsh, Susan; Lindenbergh, Alexander; Zuniga, Sofia B; Sijen, Titia; de Knijff, Peter; Kayser, Manfred; Ballantyne, Kaye N

    2011-11-01

    The IrisPlex system consists of a highly sensitive multiplex genotyping assay together with a statistical prediction model, providing users with the ability to predict blue and brown human eye colour from DNA samples with over 90% precision. This 'DNA intelligence' system is expected to aid police investigations by providing phenotypic information on unknown individuals when conventional DNA profiling is not informative. Falling within the new area of forensic DNA phenotyping, this paper describes the developmental validation of the IrisPlex assay following the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines for the application of DNA-based eye colour prediction to forensic casework. The IrisPlex assay produces complete SNP genotypes with only 31pg of DNA, approximately six human diploid cell equivalents, and is therefore more sensitive than commercial STR kits currently used in forensics. Species testing revealed human and primate specificity for a complete SNP profile. The assay is capable of producing accurate results from simulated casework samples such as blood, semen, saliva, hair, and trace DNA samples, including extremely low quantity samples. Due to its design, it can also produce full profiles with highly degraded samples often found in forensic casework. Concordance testing between three independent laboratories displayed reproducible results of consistent levels on varying types of simulated casework samples. With such high levels of sensitivity, specificity, consistency and reliability, this genotyping assay, as a core part of the IrisPlex system, operates in accordance with SWGDAM guidelines. Furthermore, as we demonstrated previously, the IrisPlex eye colour prediction system provides reliable results without the need for knowledge on the bio-geographic ancestry of the sample donor. Hence, the IrisPlex system, with its model-based prediction probability estimation of blue and brown human eye colour, represents a useful tool for immediate application in accredited forensic laboratories, to be used for forensic intelligence in tracing unknown individuals from crime scene samples. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Phylogeography of mitochondrial DNA variation in brown bears and polar bears

    USGS Publications Warehouse

    Shields, Gerald F.; Adams, Deborah; Garner, Gerald W.; Labelle, Martine; Pietsch, Jacy; Ramsay, Malcolm; Schwartz, Charles; Titus, Kimberly; Williamson, Scott

    2000-01-01

    We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples.

  18. Paternity testing that involves a DNA mixture.

    PubMed

    Mortera, Julia; Vecchiotti, Carla; Zoppis, Silvia; Merigioli, Sara

    2016-07-01

    Here we analyse a complex disputed paternity case, where the DNA of the putative father was extracted from his corpse that had been inhumed for over 20 years. This DNA was contaminated and appears to be a mixture of at least two individuals. Furthermore, the mother's DNA was not available. The DNA mixture was analysed so as to predict the most probable genotypes of each contributor. The major contributor's profile was then used to compute the likelihood ratio for paternity. We also show how to take into account a dropout allele and the possibility of mutation in paternity testing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation

    PubMed Central

    Boedicker, James Q.; Garcia, Hernan G.; Johnson, Stephanie; Phillips, Rob

    2014-01-01

    As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution. PMID:24231252

  20. Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study.

    PubMed

    Gianaroli, Luca; Magli, M Cristina; Pomante, Alessandra; Crivello, Anna M; Cafueri, Giulia; Valerio, Marzia; Ferraretti, Anna P

    2014-12-01

    To investigate the presence of DNA in blastocyst fluids (BFs) and to estimate whether the chromosomal status predicted by its analysis corresponds with the ploidy condition in trophectoderm (TE) cells, the whole embryo, and that predicted by polar bodies (PBs) or blastomeres. Prospective study. In vitro fertilization unit. Seventeen couples undergoing preimplantation genetic screening with the use of array comparative genomic hybridization on PBs (n = 12) or blastomeres (n = 5). BFs and TE cells were retrieved from 51 blastocysts for separate chromosomal analysis. Presence of DNA in BFs and assessment of the corresponding chromosome condition; correlation with the results in TE cells and those predicted by the analysis done at earlier stages. DNA was detected in 39 BFs (76.5%). In 38 of 39 cases (97.4%) the ploidy condition of BFs was confirmed in TE cells, and the rate of concordance per single chromosome was 96.6% (904/936). In relation to the whole embryo, the ploidy condition corresponded in all cases with a per-chromosome concordance of 98.1%. The testing of PBs and blastomeres had 93.3% and 100% prediction of BF ploidy condition with a concordance per chromosome of 93.5% and 94%, respectively. Blastocentesis could represent an alternative source of material for chromosomal testing, because the BF is highly predictive of the embryo ploidy condition and chromosome content. Our data confirm the relevance of the oocyte and of the early-cleavage embryo in determining the ploidy condition of the resulting blastocyst. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Pre-Analytical Conditions in Non-Invasive Prenatal Testing of Cell-Free Fetal RHD

    PubMed Central

    Rieneck, Klaus; Krog, Grethe Risum; Nielsen, Leif Kofoed; Tabor, Ann; Dziegiel, Morten Hanefeld

    2013-01-01

    Background Non-invasive prenatal testing of cell-free fetal DNA (cffDNA) in maternal plasma can predict the fetal RhD type in D negative pregnant women. In Denmark, routine antenatal screening for the fetal RhD gene (RHD) directs the administration of antenatal anti-D prophylaxis only to women who carry an RhD positive fetus. Prophylaxis reduces the risk of immunization that may lead to hemolytic disease of the fetus and the newborn. The reliability of predicting the fetal RhD type depends on pre-analytical factors and assay sensitivity. We evaluated the testing setup in the Capital Region of Denmark, based on data from routine antenatal RHD screening. Methods Blood samples were drawn at gestational age 25 weeks. DNA extracted from 1 mL of plasma was analyzed for fetal RHD using a duplex method for exon 7/10. We investigated the effect of blood sample transportation time (n = 110) and ambient outdoor temperatures (n = 1539) on the levels of cffDNA and total DNA. We compared two different quantification methods, the delta Ct method and a universal standard curve. PCR pipetting was compared on two systems (n = 104). Results The cffDNA level was unaffected by blood sample transportation for up to 9 days and by ambient outdoor temperatures ranging from -10°C to 28°C during transport. The universal standard curve was applicable for cffDNA quantification. Identical levels of cffDNA were observed using the two automated PCR pipetting systems. We detected a mean of 100 fetal DNA copies/mL at a median gestational age of 25 weeks (range 10–39, n = 1317). Conclusion The setup for real-time PCR-based, non-invasive prenatal testing of cffDNA in the Capital Region of Denmark is very robust. Our findings regarding the transportation of blood samples demonstrate the high stability of cffDNA. The applicability of a universal standard curve facilitates easy cffDNA quantification. PMID:24204719

  2. Pre-analytical conditions in non-invasive prenatal testing of cell-free fetal RHD.

    PubMed

    Clausen, Frederik Banch; Jakobsen, Tanja Roien; Rieneck, Klaus; Krog, Grethe Risum; Nielsen, Leif Kofoed; Tabor, Ann; Dziegiel, Morten Hanefeld

    2013-01-01

    Non-invasive prenatal testing of cell-free fetal DNA (cffDNA) in maternal plasma can predict the fetal RhD type in D negative pregnant women. In Denmark, routine antenatal screening for the fetal RhD gene (RHD) directs the administration of antenatal anti-D prophylaxis only to women who carry an RhD positive fetus. Prophylaxis reduces the risk of immunization that may lead to hemolytic disease of the fetus and the newborn. The reliability of predicting the fetal RhD type depends on pre-analytical factors and assay sensitivity. We evaluated the testing setup in the Capital Region of Denmark, based on data from routine antenatal RHD screening. Blood samples were drawn at gestational age 25 weeks. DNA extracted from 1 mL of plasma was analyzed for fetal RHD using a duplex method for exon 7/10. We investigated the effect of blood sample transportation time (n = 110) and ambient outdoor temperatures (n = 1539) on the levels of cffDNA and total DNA. We compared two different quantification methods, the delta Ct method and a universal standard curve. PCR pipetting was compared on two systems (n = 104). The cffDNA level was unaffected by blood sample transportation for up to 9 days and by ambient outdoor temperatures ranging from -10 °C to 28 °C during transport. The universal standard curve was applicable for cffDNA quantification. Identical levels of cffDNA were observed using the two automated PCR pipetting systems. We detected a mean of 100 fetal DNA copies/mL at a median gestational age of 25 weeks (range 10-39, n = 1317). The setup for real-time PCR-based, non-invasive prenatal testing of cffDNA in the Capital Region of Denmark is very robust. Our findings regarding the transportation of blood samples demonstrate the high stability of cffDNA. The applicability of a universal standard curve facilitates easy cffDNA quantification.

  3. Cell-free DNA screening in clinical practice: abnormal autosomal aneuploidy and microdeletion results.

    PubMed

    Valderramos, Stephanie G; Rao, Rashmi R; Scibetta, Emily W; Silverman, Neil S; Han, Christina S; Platt, Lawrence D

    2016-11-01

    Since its commercial release in 2011 cell-free DNA screening has been rapidly adopted as a routine prenatal genetic test. However, little is known about its performance in actual clinical practice. We sought to investigate factors associated with the accuracy of abnormal autosomal cell-free DNA results. We conducted a retrospective cohort study of 121 patients with abnormal cell-free DNA results from a referral maternal-fetal medicine practice from March 2013 through July 2015. Patients were included if cell-free DNA results for trisomy 21, trisomy 18, trisomy 13, or microdeletions (if reported by the laboratory) were positive or nonreportable. The primary outcome was confirmed aneuploidy or microarray abnormality on either prenatal or postnatal karyotype or microarray. Secondary outcomes were identifiable associations with in vitro fertilization, twins, ultrasound findings, testing platform, and testing laboratory. Kruskal-Wallis or Fisher exact tests were used as appropriate. A total of 121 patients had abnormal cell-free DNA results for trisomy 21, trisomy 18, trisomy 13, and/or microdeletions. In all, 105 patients had abnormal cell-free DNA results for trisomy 21, trisomy 18, and trisomy 13. Of these, 92 (87.6%) were positive and 13 (12.4%) were nonreportable. The results of the 92 positive cell-free DNA were for trisomy 21 (48, 52.2%), trisomy 18 (22, 23.9%), trisomy 13 (17, 18.5%), triploidy (2, 2.2%), and positive for >1 parameter (3, 3.3%). Overall, the positive predictive value of cell-free DNA was 73.5% (61/83; 95% confidence interval, 63-82%) for all trisomies (by chromosome: trisomy 21, 83.0% [39/47; 95% confidence interval, 69-92%], trisomy 18, 65.0% [13/20; 95% confidence interval, 41-84%], and trisomy 13, 43.8% [7/16; 95% confidence interval, 21-70%]). Abnormal cell-free DNA results were associated with positive serum screening (by group: trisomy 21 [17/48, 70.8%]; trisomy 18 [7/22, 77.8%]; trisomy 13 [3/17, 37.5%]; nonreportable [2/13, 16.7%]; P = .004), and abnormal first-trimester ultrasound (trisomy 21 [25/45, 55.6%]; trisomy 18 [13/20, 65%]; trisomy 13 [6/14, 42.9%]; nonreportable [1/13, 7.7%]; P = .003). There was no association between false-positive rates and testing platform, but there was a difference between the 4 laboratories (P = .018). In all, 26 patients had positive (n = 9) or nonreportable (n = 17) microdeletion results. Seven of 9 screens positive for microdeletions underwent confirmatory testing; all were false positives. The positive predictive value of 73.5% for cell-free DNA screening for autosomal aneuploidy is lower than reported. The positive predictive value for microdeletion testing was 0%. Diagnostic testing is needed to confirm abnormal cell-free DNA results for aneuploidy and microdeletions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The psychological complexity of predictive testing for late onset neurogenetic diseases and hereditary cancers: implications for multidisciplinary counselling and for genetic education.

    PubMed

    Evers-Kiebooms, G; Welkenhuysen, M; Claes, E; Decruyenaere, M; Denayer, L

    2000-09-01

    Increasing knowledge about the human genome has resulted in the availability of a steadily increasing number of predictive DNA-tests for two major categories of diseases: neurogenetic diseases and hereditary cancers. The psychological complexity of predictive testing for these late onset diseases requires careful consideration. It is the main aim of the present paper to describe this psychological complexity, which necessitates an adequate and systematic multidisciplinary approach, including psychological counselling, as well as ongoing education of professionals and of the general public. Predictive testing for neurogenetic diseases--in an adequate counselling context--so far elicits optimism regarding the short- and mid-term impact of the predictive test result. The psychosocial impact has been most widely studied for Huntington's disease. Longitudinal studies are of the utmost importance in evaluating the long-term impact of predictive testing for neurogenetic diseases on the tested person and his/her family. Given the more recent experience with predictive DNA-testing for hereditary cancers, fewer published scientific data are available. Longitudinal research on the mid- and long-term psychological impact of the predictive test result is essential. Decision making regarding health surveillance or preventive surgery after being detected as a carrier of one of the relevant mutations should receive special attention. Tailoring the professional approach--inside and outside genetic centres--to the families' needs is a continuous challenge. Even if a continuous effort is made, several important questions remain unanswered, last but not least the question regarding the best strategy to guarantee that the availability of predictive genetic testing results in a reduction of suffering caused by genetic disease and in an improvement of the quality of life of families confronted with genetic disease.

  5. Were inefficient mitochondrial haplogroups selected during migrations of modern humans? A test using modular kinetic analysis of coupling in mitochondria from cybrid cell lines

    PubMed Central

    Amo, Taku; Brand, Martin D.

    2007-01-01

    We introduce a general test of the bioenergetic importance of mtDNA (mitochondrial DNA) variants: modular kinetic analysis of oxidative phosphorylation in mitochondria from cybrid cells with constant nuclear DNA but different mtDNA. We have applied this test to the hypothesis [Ruiz-Pesini, Mishmar, Brandon, Procaccio and Wallace (2004) Science 303, 223–226] that particular mtDNA haplogroups (specific combinations of polymorphisms) that cause lowered coupling efficiency, leading to generation of less ATP and more heat, were positively selected during radiations of modern humans into colder climates. Contrary to the predictions of this hypothesis, mitochondria from Arctic haplogroups had similar or even greater coupling efficiency than mitochondria from tropical haplogroups. PMID:17355224

  6. Sequence Based Prediction of DNA-Binding Proteins Based on Hybrid Feature Selection Using Random Forest and Gaussian Naïve Bayes

    PubMed Central

    Lou, Wangchao; Wang, Xiaoqing; Chen, Fan; Chen, Yixiao; Jiang, Bo; Zhang, Hua

    2014-01-01

    Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is becoming highly desired since it would be invaluable to advance our understanding of protein functions. In this study, we proposed a new method for the prediction of the DNA-binding proteins, by performing the feature rank using random forest and the wrapper-based feature selection using forward best-first search strategy. The features comprise information from primary sequence, predicted secondary structure, predicted relative solvent accessibility, and position specific scoring matrix. The proposed method, called DBPPred, used Gaussian naïve Bayes as the underlying classifier since it outperformed five other classifiers, including decision tree, logistic regression, k-nearest neighbor, support vector machine with polynomial kernel, and support vector machine with radial basis function. As a result, the proposed DBPPred yields the highest average accuracy of 0.791 and average MCC of 0.583 according to the five-fold cross validation with ten runs on the training benchmark dataset PDB594. Subsequently, blind tests on the independent dataset PDB186 by the proposed model trained on the entire PDB594 dataset and by other five existing methods (including iDNA-Prot, DNA-Prot, DNAbinder, DNABIND and DBD-Threader) were performed, resulting in that the proposed DBPPred yielded the highest accuracy of 0.769, MCC of 0.538, and AUC of 0.790. The independent tests performed by the proposed DBPPred on completely a large non-DNA binding protein dataset and two RNA binding protein datasets also showed improved or comparable quality when compared with the relevant prediction methods. Moreover, we observed that majority of the selected features by the proposed method are statistically significantly different between the mean feature values of the DNA-binding and the non DNA-binding proteins. All of the experimental results indicate that the proposed DBPPred can be an alternative perspective predictor for large-scale determination of DNA-binding proteins. PMID:24475169

  7. Experimental identification of specificity determinants in the domain linker of a LacI/GalR protein: bioinformatics-based predictions generate true positives and false negatives.

    PubMed

    Meinhardt, Sarah; Swint-Kruse, Liskin

    2008-12-01

    In protein families, conserved residues often contribute to a common general function, such as DNA-binding. However, unique attributes for each homolog (e.g. recognition of alternative DNA sequences) must arise from variation in other functionally-important positions. The locations of these "specificity determinant" positions are obscured amongst the background of varied residues that do not make significant contributions to either structure or function. To isolate specificity determinants, a number of bioinformatics algorithms have been developed. When applied to the LacI/GalR family of transcription regulators, several specificity determinants are predicted in the 18 amino acids that link the DNA-binding and regulatory domains. However, results from alternative algorithms are only in partial agreement with each other. Here, we experimentally evaluate these predictions using an engineered repressor comprising the LacI DNA-binding domain, the LacI linker, and the GalR regulatory domain (LLhG). "Wild-type" LLhG has altered DNA specificity and weaker lacO(1) repression compared to LacI or a similar LacI:PurR chimera. Next, predictions of linker specificity determinants were tested, using amino acid substitution and in vivo repression assays to assess functional change. In LLhG, all predicted sites are specificity determinants, as well as three sites not predicted by any algorithm. Strategies are suggested for diminishing the number of false negative predictions. Finally, individual substitutions at LLhG specificity determinants exhibited a broad range of functional changes that are not predicted by bioinformatics algorithms. Results suggest that some variants have altered affinity for DNA, some have altered allosteric response, and some appear to have changed specificity for alternative DNA ligands.

  8. All-atom molecular dynamics simulations of spin labelled double and single-strand DNA for EPR studies.

    PubMed

    Prior, C; Danilāne, L; Oganesyan, V S

    2018-05-16

    We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of electron paramagnetic resonance (EPR) spectra of spin labelled DNA. Models for two structurally different DNA spin probes with either the rigid or flexible position of the nitroxide group in the base pair, employed in experimental studies previously, have been developed. By the application of the combined MD-EPR simulation methodology we aimed at the following. Firstly, to provide a test bed against a sensitive spectroscopic technique for the recently developed improved version of the parmbsc1 force field for MD modelling of DNA. The predicted EPR spectra show good agreement with the experimental ones available from the literature, thus confirming the accuracy of the currently employed DNA force fields. Secondly, to provide a quantitative interpretation of the motional contributions into the dynamics of spin probes in both duplex and single-strand DNA fragments and to analyse their perturbing effects on the local DNA structure. Finally, a combination of MD and EPR allowed us to test the validity of the application of the Model-Free (M-F) approach coupled with the partial averaging of magnetic tensors to the simulation of EPR spectra of DNA systems by comparing the resultant EPR spectra with those simulated directly from MD trajectories. The advantage of the M-F based EPR simulation approach over the direct propagation techniques is that it requires motional and order parameters that can be calculated from shorter MD trajectories. The reported MD-EPR methodology is transferable to the prediction and interpretation of EPR spectra of higher order DNA structures with novel types of spin labels.

  9. Final Report: The DNA Files: Unraveling the mysteries of genetics, January 1, 1998-March 31, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Bari

    1999-05-01

    The DNA Files is an award-winning radio documentary series on genetics created by SoundVision Productions. The DNA Files was hosted by John Hockenberry and was presented in documentary and discussion format. The programs covered a range of topics from prenatal and predictive gene testing, gene therapy, and commercialization of genetic information to new evolutionary genetic evidence, transgenic vegetables and use of DNA in forensics.

  10. Phylogeography of mitochondrial DNA variation in brown bears and polar bears.

    PubMed

    Shields, G F; Adams, D; Garner, G; Labelle, M; Pietsch, J; Ramsay, M; Schwartz, C; Titus, K; Williamson, S

    2000-05-01

    We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples. Copyright 2000 Academic Press.

  11. Detection of human papillomavirus DNA in patients referred to a family practice colposcopy clinic.

    PubMed

    Holman, J R

    1996-01-01

    Human papillomavirus (HPV) is strongly implicated in the pathogenesis of cervical neoplasia. The ability of a commercially available kit (Virapap/Viratype) to detect evidence of HPV is compared with cervical cytology, colposcopy, and directed biopsies. During a period of 16 months, cervical samples from 241 consecutive new patients referred for a colposcopy examination were obtained for HPV-DNA hybridization typing according to the kit instructions. Samples were sent to a reference laboratory for testing. The results were compared with results of the colposcopy examination, cervical cytology, and directed cervical biopsy samples processed and evaluated by our hospital laboratory. HPV DNA was detected in 27 of 107 patients who had abnormal colposcopy findings for a sensitivity of 25 +/- 7.5 percent at the 90 percent confidence interval. One of 134 patients with normal findings was positive for a specificity of 99 +/- 5 percent at the 95 percent confidence interval. Based on a 75 percent probability of HPV in the population, the positive predictive value was 99 percent and the negative predictive value 30 percent. With the low negative predictive value and sensitivity, HPV-DNA testing by this commercial kit is not an adequate tool for screening HPV in this population.

  12. Improved detection of DNA-binding proteins via compression technology on PSSM information.

    PubMed

    Wang, Yubo; Ding, Yijie; Guo, Fei; Wei, Leyi; Tang, Jijun

    2017-01-01

    Since the importance of DNA-binding proteins in multiple biomolecular functions has been recognized, an increasing number of researchers are attempting to identify DNA-binding proteins. In recent years, the machine learning methods have become more and more compelling in the case of protein sequence data soaring, because of their favorable speed and accuracy. In this paper, we extract three features from the protein sequence, namely NMBAC (Normalized Moreau-Broto Autocorrelation), PSSM-DWT (Position-specific scoring matrix-Discrete Wavelet Transform), and PSSM-DCT (Position-specific scoring matrix-Discrete Cosine Transform). We also employ feature selection algorithm on these feature vectors. Then, these features are fed into the training SVM (support vector machine) model as classifier to predict DNA-binding proteins. Our method applys three datasets, namely PDB1075, PDB594 and PDB186, to evaluate the performance of our approach. The PDB1075 and PDB594 datasets are employed for Jackknife test and the PDB186 dataset is used for the independent test. Our method achieves the best accuracy in the Jacknife test, from 79.20% to 86.23% and 80.5% to 86.20% on PDB1075 and PDB594 datasets, respectively. In the independent test, the accuracy of our method comes to 76.3%. The performance of independent test also shows that our method has a certain ability to be effectively used for DNA-binding protein prediction. The data and source code are at https://doi.org/10.6084/m9.figshare.5104084.

  13. Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination.

    PubMed

    Surtees, Jennifer A; Alani, Eric

    2006-07-14

    Genetic studies in Saccharomyces cerevisiae predict that the mismatch repair (MMR) factor MSH2-MSH3 binds and stabilizes branched recombination intermediates that form during single strand annealing and gene conversion. To test this model, we constructed a series of DNA substrates that are predicted to form during these recombination events. We show in an electrophoretic mobility shift assay that S. cerevisiae MSH2-MSH3 specifically binds branched DNA substrates containing 3' single-stranded DNA and that ATP stimulates its release from these substrates. Chemical footprinting analyses indicate that MSH2-MSH3 specifically binds at the double-strand/single-strand junction of branched substrates, alters its conformation and opens up the junction. Therefore, MSH2-MSH3 binding to its substrates creates a unique nucleoprotein structure that may signal downstream steps in repair that include interactions with MMR and nucleotide excision repair factors.

  14. Clinical experience of laboratory follow-up with noninvasive prenatal testing using cell-free DNA and positive microdeletion results in 349 cases.

    PubMed

    Schwartz, S; Kohan, M; Pasion, R; Papenhausen, P R; Platt, L D

    2018-02-01

    Screening via noninvasive prenatal testing (NIPT) involving the analysis of cell-free DNA (cfDNA) from plasma has become readily available to screen for chromosomal and DNA aberrations through maternal blood. This report reviews a laboratory's experience with follow-up of positive NIPT screens for microdeletions. Patients that were screened positive by NIPT for a microdeletion involving 1p, 4p, 5p, 15q, or 22q who underwent diagnostic studies by either chorionic villus sampling or amniocentesis were evaluated. The overall positive predictive value for 349 patients was 9.2%. When a microdeletion was confirmed, 39.3% of the cases had additional abnormal microarray findings. Unrelated abnormal microarray findings were detected in 11.8% of the patients in whom the screen positive microdeletion was not confirmed. Stretches of homozygosity in the microdeletion were frequently associated with a false positive cfDNA microdeletion result. Overall, this report reveals that while cfDNA analysis will screen for microdeletions, the positive predictive value is low; in our series it is 9.2%. Therefore, the patient should be counseled accordingly. Confirmatory diagnostic microarray studies are imperative because of the high percentage of false positives and the frequent additional abnormalities not delineated by cfDNA analysis. © 2018 John Wiley & Sons, Ltd.

  15. Novel design strategy for checkpoint kinase 2 inhibitors using pharmacophore modeling, combinatorial fusion, and virtual screening.

    PubMed

    Lin, Chun-Yuan; Wang, Yen-Ling

    2014-01-01

    Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion into PhModels and virtual screening techniques is a novel design strategy for drug design. We used combinatorial fusion to analyze the prediction results and then obtained the best correlation coefficient of the testing set (r test) with the value 0.816 by combining the Best(train)Best(test) and Fast(train)Fast(test) prediction results. The potential inhibitors were selected from NCI database by screening according to Best(train)Best(test) + Fast(train)Fast(test) prediction results and molecular docking with CDOCKER docking program. Finally, the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential inhibitors for Chk2 are retrieved for further study.

  16. Clinical evaluation of cobas core anti-dsDNA EIA quant.

    PubMed

    González, Concepción; Guevara, Paloma; García-Berrocal, Belén; Alejandro Navajo, José; Manuel González-Buitrago, José

    2004-01-01

    The measurement of antibodies to double-stranded DNA (anti-dsDNA) is a useful tool for the diagnosis and monitoring of patients with connective tissue diseases, particularly systemic lupus erythematosus (SLE). The aim of the present study was to compare a new enzyme-linked immunosorbent assay (ELISA) for the measurement of anti-dsDNA antibodies, which uses purified double-stranded plasmid DNA as the antigen (anti-dsDNA EIA Quant; Roche Diagnostics, Mannheim, Germany), with an established ELISA. The clinical usefulness of this new ELISA was also assessed. We measured anti-dsDNA antibodies in 398 serum samples that were divided into four groups: 1). routine samples sent to our laboratory for an antinuclear antibody (ANA) test (n=229), 2). samples from blood donors (n=74), 3). samples from patients with SLE (n=48), and 4) samples from patients with other autoimmune diseases (n=47). The methods used were the Cobas Core Anti-dsDNA EIA Quant (Roche Diagnostics, Mannheim, Germany) and the Anti-dsDNA test (Gull Diagnostics, Bois d'Arcy, France). We obtained a kappa index and Spearman correlation coefficient in the comparative study, and sensitivity, specificity, predictive values, and likelihood ratios in the clinical study. The results obtained show a good agreement between the two methods in both the qualitative results (kappa=0.91) and the quantitative data (r=0.854). The best accuracy, predictive values, likelihood ratios, and correlation with active disease were obtained with the Roche anti-dsDNA assay. Copyright 2004 Wiley-Liss, Inc.

  17. Is HPV DNA testing specificity comparable to that of cytological testing in primary cervical cancer screening? Results of a meta-analysis of randomized controlled trials.

    PubMed

    Pileggi, Claudia; Flotta, Domenico; Bianco, Aida; Nobile, Carmelo G A; Pavia, Maria

    2014-07-01

    Human-papillomavirus (HPV) DNA testing has been proposed as an alternative to primary cervical cancer screening using cytological testing. Review of the evidence shows that available data are conflicting for some aspects. The overall goal of the study is to update the performance of HPV DNA as stand-alone testing in primary cervical cancer screening, focusing particularly on the aspects related to the specificity profile of the HPV DNA testing in respect to cytology. We performed a meta-analysis of randomized controlled clinical trials. Eight articles were included in the meta-analysis. Three outcomes have been investigated: relative detection, relative specificity, and relative positive predictive value (PPV) of HPV DNA testing versus cytology. Overall evaluation of relative detection showed a significantly higher detection of CIN2+ and CIN3+ for HPV DNA testing versus cytology. Meta-analyses that considered all age groups showed a relative specificity that favored the cytology in detecting both CIN2+ and CIN3+ lesions whereas, in the ≥30 years' group, specificity of HPV DNA and cytology tests was similar in detecting both CIN2+ and CIN3+ lesions. Results of the pooled analysis on relative PPV showed a not significantly lower PPV of HPV DNA test over cytology. A main key finding of the study is that in women aged ≥30, has been found an almost overlapping specificity between the two screening tests in detecting CIN2 and above-grade lesions. Therefore, primary screening of cervical cancer by HPV DNA testing appears to offer the right balance between maximum detection of CIN2+ and adequate specificity, if performed in the age group ≥30 years. © 2013 UICC.

  18. Prenatal detection of fetal triploidy from cell-free DNA testing in maternal blood.

    PubMed

    Nicolaides, Kypros H; Syngelaki, Argyro; del Mar Gil, Maria; Quezada, Maria Soledad; Zinevich, Yana

    2014-01-01

    To investigate potential performance of cell-free DNA (cfDNA) testing in maternal blood in detecting fetal triploidy. Plasma and buffy coat samples obtained at 11-13 weeks' gestation from singleton pregnancies with diandric triploidy (n=4), digynic triploidy (n=4), euploid fetuses (n=48) were sent to Natera, Inc. (San Carlos, Calif., USA) for cfDNA testing. Multiplex polymerase chain reaction amplification of cfDNA followed by sequencing of single nucleotide polymorphic loci covering chromosomes 13, 18, 21, X, and Y was performed. Sequencing data were analyzed using the NATUS algorithm which identifies copy number for each of the five chromosomes. cfDNA testing provided a result in 44 (91.7%) of the 48 euploid cases and correctly predicted the fetal sex and the presence of two copies each of chromosome 21, 18 and 13. In diandric triploidy, cfDNA testing identified multiple paternal haplotypes (indicating fetal trisomy 21, trisomy 18 and trisomy 13) suggesting the presence of either triploidy or dizygotic twins. In digynic triploidy the fetal fraction corrected for maternal weight and gestational age was below the 0.5th percentile. cfDNA testing by targeted sequencing and allelic ratio analysis of single nucleotide polymorphisms covering chromosomes 21, 18, 13, X, and Y can detect diandric triploidy and raise the suspicion of digynic triploidy. © 2013 S. Karger AG, Basel.

  19. Clinical perspective of cell-free DNA testing for fetal aneuploidies.

    PubMed

    Gratacós, Eduard; Nicolaides, Kypros

    2014-01-01

    Cell-free DNA testing in maternal blood provides the most effective method of screening for trisomy 21, with a reported detection rate of 99% and a false positive rate of less than 0.1%. After many years of research, this method is now commercially available and is carried out in an increasing number of patients, and there is an expanding number of conditions that can be screened for. However, the application of these methods in clinical practice requires a careful analysis. Current first-trimester screening strategies are based on a complex combination of tests, aiming at detecting fetal defects and predicting the risk of main pregnancy complications. It is therefore necessary to define the optimal way of combining cell-free DNA testing with current first-trimester screening methods. In this concise review we describe the basis of cell-free DNA testing and discuss the potential approaches for its implementation in combination with current tests in the first trimester. © 2014 S. Karger AG, Basel.

  20. High performance of a new PCR-based urine assay for HPV-DNA detection and genotyping.

    PubMed

    Tanzi, Elisabetta; Bianchi, Silvia; Fasolo, Maria Michela; Frati, Elena R; Mazza, Francesca; Martinelli, Marianna; Colzani, Daniela; Beretta, Rosangela; Zappa, Alessandra; Orlando, Giovanna

    2013-01-01

    Human papillomavirus (HPV) testing has been proposed as a means of replacing or supporting conventional cervical screening (Pap test). However, both methods require the collection of cervical samples. Urine sample is easier and more acceptable to collect and could be helpful in facilitating cervical cancer screening. The aim of this study was to evaluate the sensitivity and specificity of urine testing compared to conventional cervical smear testing using a PCR-based method with a new, designed specifically primer set. Paired cervical and first voided urine samples collected from 107 women infected with HIV were subjected to HPV-DNA detection and genotyping using a PCR-based assay and a restriction fragment length polymorphism method. Sensitivity, specificity, Positive Predictive Value (PPV), and Negative Predictive Value (NPV) were calculated using the McNemar's test for differences. Concordance between tests was assessed using the Cohen's unweighted Kappa (k). HPV DNA was detected in 64.5% (95% CI: 55.1-73.1%) of both cytobrush and urine samples. High concordance rates of HPV-DNA detection (k = 0.96; 95% CI: 0.90-1.0) and of high risk-clade and low-risk genotyping in paired samples (k = 0.80; 95% CI: 0.67-0.92 and k = 0.74; 95% CI: 0.60-0.88, respectively) were observed. HPV-DNA detection in urine versus cervix testing revealed a sensitivity of 98.6% (95% CI: 93.1-99.9%) and a specificity of 97.4% (95% CI: 87.7-99.9%), with a very high NPV (97.4%; 95% CI: 87.7-99.9%). The PCR-based assay utilized in this study proved highly sensitive and specific for HPV-DNA detection and genotyping in urine samples. These data suggest that a urine-based assay would be a suitable and effective tool for epidemiological surveillance and, most of all, screening programs. Copyright © 2012 Wiley Periodicals, Inc.

  1. iDBPs: a web server for the identification of DNA binding proteins.

    PubMed

    Nimrod, Guy; Schushan, Maya; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir

    2010-03-01

    The iDBPs server uses the three-dimensional (3D) structure of a query protein to predict whether it binds DNA. First, the algorithm predicts the functional region of the protein based on its evolutionary profile; the assumption is that large clusters of conserved residues are good markers of functional regions. Next, various characteristics of the predicted functional region as well as global features of the protein are calculated, such as the average surface electrostatic potential, the dipole moment and cluster-based amino acid conservation patterns. Finally, a random forests classifier is used to predict whether the query protein is likely to bind DNA and to estimate the prediction confidence. We have trained and tested the classifier on various datasets and shown that it outperformed related methods. On a dataset that reflects the fraction of DNA binding proteins (DBPs) in a proteome, the area under the ROC curve was 0.90. The application of the server to an updated version of the N-Func database, which contains proteins of unknown function with solved 3D-structure, suggested new putative DBPs for experimental studies. http://idbps.tau.ac.il/

  2. Prognostic value of DNA repair based stratification of hepatocellular carcinoma

    PubMed Central

    Lin, Zhuo; Xu, Shi-Hao; Wang, Hai-Qing; Cai, Yi-Jing; Ying, Li; Song, Mei; Wang, Yu-Qun; Du, Shan-Jie; Shi, Ke-Qing; Zhou, Meng-Tao

    2016-01-01

    Aberrant activation of DNA repair is frequently associated with tumor progression and response to therapy in hepatocellular carcinoma (HCC). Bioinformatics analyses of HCC data in the Cancer Genome Atlas (TCGA) were performed to define DNA repair based molecular classification that could predict the prognosis of patients with HCC. Furthermore, we tested its predictive performance in 120 independent cases. Four molecular subgroups were identified on the basis of coordinate DNA repair cluster (CDRC) comprising 15 genes in TCGA dataset. Increasing expression of CDRC genes were significantly associated with TP53 mutation. High CDRC was significantly correlated with advanced tumor grades, advanced pathological stage and increased vascular invasion rate. Multivariate Cox regression analysis indicated that the molecular subgrouping was an independent prognostic parameter for both overall survival (p = 0.004, hazard ratio (HR): 2.989) and tumor-free survival (p = 0.049, HR: 3.366) in TCGA dataset. Similar results were also obtained by analyzing the independent cohort. These data suggest that distinct dysregulation of DNA repair constituents based molecular classes in HCC would be useful for predicting prognosis and designing clinical trials for targeted therapy. PMID:27174663

  3. Predicting DNA binding proteins using support vector machine with hybrid fractal features.

    PubMed

    Niu, Xiao-Hui; Hu, Xue-Hai; Shi, Feng; Xia, Jing-Bo

    2014-02-21

    DNA-binding proteins play a vitally important role in many biological processes. Prediction of DNA-binding proteins from amino acid sequence is a significant but not fairly resolved scientific problem. Chaos game representation (CGR) investigates the patterns hidden in protein sequences, and visually reveals previously unknown structure. Fractal dimensions (FD) are good tools to measure sizes of complex, highly irregular geometric objects. In order to extract the intrinsic correlation with DNA-binding property from protein sequences, CGR algorithm, fractal dimension and amino acid composition are applied to formulate the numerical features of protein samples in this paper. Seven groups of features are extracted, which can be computed directly from the primary sequence, and each group is evaluated by the 10-fold cross-validation test and Jackknife test. Comparing the results of numerical experiments, the group of amino acid composition and fractal dimension (21-dimension vector) gets the best result, the average accuracy is 81.82% and average Matthew's correlation coefficient (MCC) is 0.6017. This resulting predictor is also compared with existing method DNA-Prot and shows better performances. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.

  4. Feline Genetics: Clinical Applications and Genetic Testing

    PubMed Central

    Lyons, Leslie A.

    2010-01-01

    DNA testing for domestic cat diseases and appearance traits is a rapidly growing asset for veterinary medicine. Approximately thirty-three genes contain fifty mutations that cause feline health problems or alterations in the cat’s appearance. A variety of commercial laboratories can now perform cat genetic diagnostics, allowing both the veterinary clinician and the private owner to obtain DNA test results. DNA is easily obtained from a cat via a buccal swab using a standard cotton bud or cytological brush, allowing DNA samples to be easily sent to any laboratory in the world. The DNA test results identify carriers of the traits, predict the incidence of traits from breeding programs, and influence medical prognoses and treatments. An overall goal of identifying these genetic mutations is the correction of the defect via gene therapies and designer drug therapies. Thus, genetic testing is an effective preventative medicine and a potential ultimate cure. However, genetic diagnostic tests may still be novel for many veterinary practitioners and their application in the clinical setting needs to have the same scrutiny as any other diagnostic procedure. This article will review the genetic tests for the domestic cat, potential sources of error for genetic testing, and the pros and cons of DNA results in veterinary medicine. Highlighted are genetic tests specific to the individual cat, which are a part of the cat’s internal genome. PMID:21147473

  5. Feline genetics: clinical applications and genetic testing.

    PubMed

    Lyons, Leslie A

    2010-11-01

    DNA testing for domestic cat diseases and appearance traits is a rapidly growing asset for veterinary medicine. Approximately 33 genes contain 50 mutations that cause feline health problems or alterations in the cat's appearance. A variety of commercial laboratories can now perform cat genetic diagnostics, allowing both the veterinary clinician and the private owner to obtain DNA test results. DNA is easily obtained from a cat via a buccal swab with a standard cotton bud or cytological brush, allowing DNA samples to be easily sent to any laboratory in the world. The DNA test results identify carriers of the traits, predict the incidence of traits from breeding programs, and influence medical prognoses and treatments. An overall goal of identifying these genetic mutations is the correction of the defect via gene therapies and designer drug therapies. Thus, genetic testing is an effective preventative medicine and a potential ultimate cure. However, genetic diagnostic tests may still be novel for many veterinary practitioners and their application in the clinical setting needs to have the same scrutiny as any other diagnostic procedure. This article will review the genetic tests for the domestic cat, potential sources of error for genetic testing, and the pros and cons of DNA results in veterinary medicine. Highlighted are genetic tests specific to the individual cat, which are a part of the cat's internal genome. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Detection and interrogation of biomolecules via nanoscale probes: From fundamental physics to DNA sequencing

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael

    2013-03-01

    A rapid and low-cost method to sequence DNA would revolutionize personalized medicine, where genetic information is used to diagnose, treat, and prevent diseases. There is a longstanding interest in nanopores as a platform for rapid interrogation of single DNA molecules. I will discuss a sequencing protocol based on the measurement of transverse electronic currents during the translocation of single-stranded DNA through nanopores. Using molecular dynamics simulations coupled to quantum mechanical calculations of the tunneling current, I will show that the DNA nucleotides are predicted to have distinguishable electronic signatures in experimentally realizable systems. Several recent experiments support our theoretical predictions. In addition to their possible impact in medicine and biology, the above methods offer ideal test beds to study open scientific issues in the relatively unexplored area at the interface between solids, liquids, and biomolecules at the nanometer length scale. http://mike.zwolak.org

  7. Triage of HR-HPV positive women with minor cytological abnormalities: a comparison of mRNA testing, HPV DNA testing, and repeat cytology using a 4-year follow-up of a population-based study.

    PubMed

    Persson, Maria; Elfström, K Miriam; Brismar Wendel, Sophia; Weiderpass, Elisabete; Andersson, Sonia

    2014-01-01

    Expression of the viral E6/E7 oncogenes of high-risk human papillomaviruses (HR-HPV) is necessary for malignant conversion and maintenance in cervical tissue. In order to determine whether HR-HPV E6/E7 mRNA testing more effectively predicts precancerous lesions and invasive cervical cancer than HR-HPV DNA testing, we aimed to compare triage using HR-HPV E6/E7 mRNA testing by APTIMA HPV Assay (APTIMA) to HPV16 DNA testing, HPV16/18 DNA testing, and repeat cytology. Liquid-based (PreservCyt) cell samples were obtained from HR-HPV-positive women diagnosed with atypical squamous cells of undetermined significance (ASCUS) and low-grade squamous intraepithelial lesions (LSIL) within the framework of the population-based cervical cancer screening program in Stockholm, Sweden. Samples were tested for HR-HPV E6/E7 mRNA by APTIMA (Gene-Probe Inc., San Diego, CA, USA). Women were followed up for 4 years after the index cytology via medical and laboratory records, and the Stockholm Oncology Center. Nine of 25 (36%) women in the ASCUS group, and 64 of 180 (36%) women in the LSIL group developed cervical intraepithelial neoplasia (CIN) grade 2 or worse during 4 years of follow-up. 162 (74%) women were APTIMA-positive, and APTIMA had the highest sensitivity to predict CIN2 or worse and CIN3 or worse in the ASCUS (77.8% and 100%) and LSIL (78.1 and 75.8%) groups, although specificity was insufficient (<50%). HPV16 DNA testing and repeat cytology were more specific than APTIMA. The results of this population-based study with comprehensive follow-up support the use of APTIMA as a triage test for women with ASCUS. More focused investigation is required for women with LSIL.

  8. Triage of HR-HPV Positive Women with Minor Cytological Abnormalities: A Comparison of mRNA Testing, HPV DNA Testing, and Repeat Cytology Using a 4-Year Follow-Up of a Population-Based Study

    PubMed Central

    Persson, Maria; Elfström, K. Miriam; Brismar Wendel, Sophia; Weiderpass, Elisabete; Andersson, Sonia

    2014-01-01

    Objective Expression of the viral E6/E7 oncogenes of high-risk human papillomaviruses (HR-HPV) is necessary for malignant conversion and maintenance in cervical tissue. In order to determine whether HR-HPV E6/E7 mRNA testing more effectively predicts precancerous lesions and invasive cervical cancer than HR-HPV DNA testing, we aimed to compare triage using HR-HPV E6/E7 mRNA testing by APTIMA HPV Assay (APTIMA) to HPV16 DNA testing, HPV16/18 DNA testing, and repeat cytology. Methods Liquid-based (PreservCyt) cell samples were obtained from HR-HPV-positive women diagnosed with atypical squamous cells of undetermined significance (ASCUS) and low-grade squamous intraepithelial lesions (LSIL) within the framework of the population-based cervical cancer screening program in Stockholm, Sweden. Samples were tested for HR-HPV E6/E7 mRNA by APTIMA (Gene-Probe Inc., San Diego, CA, USA). Women were followed up for 4 years after the index cytology via medical and laboratory records, and the Stockholm Oncology Center. Results Nine of 25 (36%) women in the ASCUS group, and 64 of 180 (36%) women in the LSIL group developed cervical intraepithelial neoplasia (CIN) grade 2 or worse during 4 years of follow-up. 162 (74%) women were APTIMA-positive, and APTIMA had the highest sensitivity to predict CIN2 or worse and CIN3 or worse in the ASCUS (77.8% and 100%) and LSIL (78.1 and 75.8%) groups, although specificity was insufficient (<50%). HPV16 DNA testing and repeat cytology were more specific than APTIMA. Conclusion The results of this population-based study with comprehensive follow-up support the use of APTIMA as a triage test for women with ASCUS. More focused investigation is required for women with LSIL. PMID:24587193

  9. Can early host responses to mycobacterial infection predict eventual disease outcomes?

    PubMed

    de Silva, Kumudika; Begg, Douglas J; Plain, Karren M; Purdie, Auriol C; Kawaji, Satoko; Dhand, Navneet K; Whittington, Richard J

    2013-11-01

    Diagnostic tests used for Johne's disease in sheep either have poor sensitivity and specificity or only detect disease in later stages of infection. Predicting which of the infected sheep are likely to become infectious later in life is currently not feasible and continues to be a major hindrance in disease control. We conducted this longitudinal study to investigate if a suite of diagnostic tests conducted in Mycobacterium avium subspecies paratuberculosis (MAP) exposed lambs at 4 months post infection can accurately predict their clinical status at 12 months post infection. We tracked cellular and humoral responses and quantity of MAP shedding for up to 12 months post challenge in 20 controls and 37 exposed sheep. Infection was defined at necropsy by tissue culture and disease spectrum by lesion type. Data were analysed using univariable and multivariable logistic regression models and a subset of variables from the earliest period post inoculation (4 months) was selected for predicting disease outcomes later on (12 months). Sensitivity and specificity of tests and their combinations in series and parallel were determined. Early elevation in faecal MAP DNA quantity and a lower interferon gamma (IFNγ) response were significantly associated with sheep becoming infectious as well as progressing to severe disease. Conversely, early low faecal MAP DNA and higher interleukin-10 responses were significantly associated with an exposed animal developing protective immunity. Combination of early elevated faecal MAP DNA or lower IFNγ response had the highest sensitivity (75%) and specificity (81%) for identifying sheep that would become infectious. Collectively, these results highlight the potential for combined test interpretation to aid in the early prediction of sheep susceptibility to MAP infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Predictive Medicine: Recombinant DNA Technology and Adult-Onset Genetic Disorders

    PubMed Central

    Hayden, Michael

    1988-01-01

    Genetic factors are of great importance in common adult-onset disorders such as atherosclerosis, cancer, and neuro-degenerative diseases. Advances in DNA technology now allow identification of persons at high-risk of developing some of these diseases. This advance is leading to predictive medicine. In some genetic disorders, such as those leading to atherosclerosis and cancer, identification of high-risk individuals allows intervention which alters the natural history of the disorder. In other diseases, for which there is no treatment, such as Huntington's disease, the application of this technology provides information that relieves uncertainty and may affect quality of life, but does not alter the course of the illness. General implementation of predictive testing programs awaits the results of pilot projects, which will demonstrate the needs, appropriate levels of support, and guidelines for delivery of such testing. PMID:21253100

  11. Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains

    PubMed Central

    2013-01-01

    Background DNA analysis of ancient skeletal remains is invaluable in evolutionary biology for exploring the history of species, including humans. Contemporary human bones and teeth, however, are relevant in forensic DNA analyses that deal with the identification of perpetrators, missing persons, disaster victims or family relationships. They may also provide useful information towards unravelling controversies that surround famous historical individuals. Retrieving information about a deceased person’s externally visible characteristics can be informative in both types of DNA analyses. Recently, we demonstrated that human eye and hair colour can be reliably predicted from DNA using the HIrisPlex system. Here we test the feasibility of the novel HIrisPlex system at establishing eye and hair colour of deceased individuals from skeletal remains of various post-mortem time ranges and storage conditions. Methods Twenty-one teeth between 1 and approximately 800 years of age and 5 contemporary bones were subjected to DNA extraction using standard organic protocol followed by analysis using the HIrisPlex system. Results Twenty-three out of 26 bone DNA extracts yielded the full 24 SNP HIrisPlex profile, therefore successfully allowing model-based eye and hair colour prediction. HIrisPlex analysis of a tooth from the Polish general Władysław Sikorski (1881 to 1943) revealed blue eye colour and blond hair colour, which was positively verified from reliable documentation. The partial profiles collected in the remaining three cases (two contemporary samples and a 14th century sample) were sufficient for eye colour prediction. Conclusions Overall, we demonstrate that the HIrisPlex system is suitable, sufficiently sensitive and robust to successfully predict eye and hair colour from ancient and contemporary skeletal remains. Our findings, therefore, highlight the HIrisPlex system as a promising tool in future routine forensic casework involving skeletal remains, including ancient DNA studies, for the prediction of eye and hair colour of deceased individuals. PMID:23317428

  12. Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains.

    PubMed

    Draus-Barini, Jolanta; Walsh, Susan; Pośpiech, Ewelina; Kupiec, Tomasz; Głąb, Henryk; Branicki, Wojciech; Kayser, Manfred

    2013-01-14

    DNA analysis of ancient skeletal remains is invaluable in evolutionary biology for exploring the history of species, including humans. Contemporary human bones and teeth, however, are relevant in forensic DNA analyses that deal with the identification of perpetrators, missing persons, disaster victims or family relationships. They may also provide useful information towards unravelling controversies that surround famous historical individuals. Retrieving information about a deceased person's externally visible characteristics can be informative in both types of DNA analyses. Recently, we demonstrated that human eye and hair colour can be reliably predicted from DNA using the HIrisPlex system. Here we test the feasibility of the novel HIrisPlex system at establishing eye and hair colour of deceased individuals from skeletal remains of various post-mortem time ranges and storage conditions. Twenty-one teeth between 1 and approximately 800 years of age and 5 contemporary bones were subjected to DNA extraction using standard organic protocol followed by analysis using the HIrisPlex system. Twenty-three out of 26 bone DNA extracts yielded the full 24 SNP HIrisPlex profile, therefore successfully allowing model-based eye and hair colour prediction. HIrisPlex analysis of a tooth from the Polish general Władysław Sikorski (1881 to 1943) revealed blue eye colour and blond hair colour, which was positively verified from reliable documentation. The partial profiles collected in the remaining three cases (two contemporary samples and a 14th century sample) were sufficient for eye colour prediction. Overall, we demonstrate that the HIrisPlex system is suitable, sufficiently sensitive and robust to successfully predict eye and hair colour from ancient and contemporary skeletal remains. Our findings, therefore, highlight the HIrisPlex system as a promising tool in future routine forensic casework involving skeletal remains, including ancient DNA studies, for the prediction of eye and hair colour of deceased individuals.

  13. High flexibility of DNA on short length scales probed by atomic force microscopy.

    PubMed

    Wiggins, Paul A; van der Heijden, Thijn; Moreno-Herrero, Fernando; Spakowitz, Andrew; Phillips, Rob; Widom, Jonathan; Dekker, Cees; Nelson, Philip C

    2006-11-01

    The mechanics of DNA bending on intermediate length scales (5-100 nm) plays a key role in many cellular processes, and is also important in the fabrication of artificial DNA structures, but previous experimental studies of DNA mechanics have focused on longer length scales than these. We use high-resolution atomic force microscopy on individual DNA molecules to obtain a direct measurement of the bending energy function appropriate for scales down to 5 nm. Our measurements imply that the elastic energy of highly bent DNA conformations is lower than predicted by classical elasticity models such as the worm-like chain (WLC) model. For example, we found that on short length scales, spontaneous large-angle bends are many times more prevalent than predicted by the WLC model. We test our data and model with an interlocking set of consistency checks. Our analysis also shows how our model is compatible with previous experiments, which have sometimes been viewed as confirming the WLC.

  14. Forgotten evidence: A mixed methods study of why sexual assault kits (SAKs) are not submitted for DNA forensic testing.

    PubMed

    Campbell, Rebecca; Fehler-Cabral, Giannina; Bybee, Deborah; Shaw, Jessica

    2017-10-01

    Throughout the United States, hundreds of thousands of sexual assault kits (SAKs) (also termed "rape kits") have not been submitted by the police for forensic DNA testing. DNA evidence can help sexual assault investigations and prosecutions by identifying offenders, revealing serial offenders through DNA matches across cases, and exonerating those who have been wrongly accused. In this article, we describe a 5-year action research project conducted with 1 city that had large numbers of untested SAKs-Detroit, Michigan-and our examination into why thousands of rape kits in this city were never submitted for forensic DNA testing. This mixed methods study combined ethnographic observations and qualitative interviews to identify stakeholders' perspectives as to why rape kits were not routinely submitted for testing. Then, we quantitatively examined whether these factors may have affected police practices regarding SAK testing, as evidenced by predictable changes in SAK submission rates over time. Chronic resource scarcity only partially explained why the organizations that serve rape victims-the police, crime lab, prosecution, and victim advocacy-could not test all rape kits, investigate all reported sexual assaults, and support all rape survivors. SAK submission rates significantly increased once criminal justice professionals in this city had full access to the FBI DNA forensic database Combined DNA Index System (CODIS), but even then, most SAKs were still not submitted for DNA testing. Building crime laboratories' capacities for DNA testing and training police on the utility of forensic evidence and best practices in sexual assault investigations can help remedy, and possibly prevent, the problem of untested rape kits. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Comprehensive analysis of sperm DNA fragmentation by five different assays: TUNEL assay, SCSA, SCD test and alkaline and neutral Comet assay.

    PubMed

    Ribas-Maynou, J; García-Peiró, A; Fernández-Encinas, A; Abad, C; Amengual, M J; Prada, E; Navarro, J; Benet, J

    2013-09-01

    Sperm DNA fragmentation (SDF) is becoming an important test to assess male infertility. Several different tests are available, but no consensus has yet been reached as to which tests are most predictive of infertility. Few publications have reported a comprehensive analysis comparing these methods within the same population. The objective of this study was to analyze the differences between the five most common methodologies, to study their correlations and to establish their cut-off values, sensitivity and specificity in predicting male infertility. We found differences in SDF between fertile donors and infertile patients in TUNEL, SCSA, SCD and alkaline Comet assays, but none with the neutral Comet assay. The alkaline COMET assay was the best in predicting male infertility followed by TUNEL, SCD and SCSA, whereas the neutral COMET assay had no predictive power. For our patient population, threshold values for infertility were 20.05% for TUNEL assay, 18.90% for SCSA, 22.75% for the SCD test, 45.37% for alkaline Comet and 34.37% for neutral Comet. This work establishes in a comprehensive study that the all techniques except neutral Comet are useful to distinguish fertile and infertile men. © 2013 American Society of Andrology and European Academy of Andrology.

  16. Prediction of gestational age based on genome-wide differentially methylated regions.

    PubMed

    Bohlin, J; Håberg, S E; Magnus, P; Reese, S E; Gjessing, H K; Magnus, M C; Parr, C L; Page, C M; London, S J; Nystad, W

    2016-10-07

    We explored the association between gestational age and cord blood DNA methylation at birth and whether DNA methylation could be effective in predicting gestational age due to limitations with the presently used methods. We used data from the Norwegian Mother and Child Birth Cohort study (MoBa) with Illumina HumanMethylation450 data measured for 1753 newborns in two batches: MoBa 1, n = 1068; and MoBa 2, n = 685. Gestational age was computed using both ultrasound and the last menstrual period. We evaluated associations between DNA methylation and gestational age and developed a statistical model for predicting gestational age using MoBa 1 for training and MoBa 2 for predictions. The prediction model was additionally used to compare ultrasound and last menstrual period-based gestational age predictions. Furthermore, both CpGs and associated genes detected in the training models were compared to those detected in a published prediction model for chronological age. There were 5474 CpGs associated with ultrasound gestational age after adjustment for a set of covariates, including estimated cell type proportions, and Bonferroni-correction for multiple testing. Our model predicted ultrasound gestational age more accurately than it predicted last menstrual period gestational age. DNA methylation at birth appears to be a good predictor of gestational age. Ultrasound gestational age is more strongly associated with methylation than last menstrual period gestational age. The CpGs linked with our gestational age prediction model, and their associated genes, differed substantially from the corresponding CpGs and genes associated with a chronological age prediction model.

  17. Cell-free fetal DNA versus maternal serum screening for trisomy 21 in pregnant women with and without assisted reproduction technology: a prospective interventional study.

    PubMed

    Costa, Jean-Marc; Letourneau, Alexandra; Favre, Romain; Bidat, Laurent; Belaisch-Allart, Joelle; Jouannic, Jean-Marie; Quarello, Edwin; Senat, Marie-Victoire; Broussin, Bernard; Tsatsaris, Vassilis; Demain, Adèle; Kleinfinger, Pascale; Lohmann, Laurence; Agostini, Hélène; Bouyer, Jean; Benachi, Alexandra

    2018-03-01

    PurposeCell-free DNA (cfDNA) as a primary screening test has been available for years but few studies have addressed this option in a prospective manner. The question is of interest after reports that maternal serum screening (MSS) is less accurate for pregnancies resulting from assisted reproduction technologies (ART) than for spontaneous pregnancies (SP).MethodsA prospective interventional study was designed to address the performances of cfDNA compared with MSS in pregnancies with or without ART. Each patient was offered both MSS and cfDNA testing. The primary analysis cohort ultimately included 794 patients with a spontaneous pregnancy (SP) (n = 472) or pregnancy obtained after ART (n = 322).ResultsOverall, the false-positive rate and positive predictive value were 6.6% and 8.8% for MSS but 0% and 100% for cfDNA. MSS false-positive rate and positive predictive values were clearly poorer in the ART group (11.7% and 2.6%) than in the SP group (3.2% and 21.1%). The global rates of invasive procedures were 1.9% (15/794) with cfDNA but 8.4% (65/794) if MSS alone was proposed.ConclusioncfDNA achieved better performance than MSS in both spontaneous and ART pregnancies, thus decreasing the number of invasive procedures. Our findings suggest that cfDNA should be considered for primary screening, especially in pregnancies obtained after ART.GENETICS in MEDICINE advance online publication, 1 March 2018; doi:10.1038/gim.2018.4.

  18. Predicting nuclear gene coalescence from mitochondrial data: the three-times rule.

    PubMed

    Palumbi, S R; Cipriano, F; Hare, M P

    2001-05-01

    Coalescence theory predicts when genetic drift at nuclear loci will result in fixation of sequence differences to produce monophyletic gene trees. However, the theory is difficult to apply to particular taxa because it hinges on genetically effective population size, which is generally unknown. Neutral theory also predicts that evolution of monophyly will be four times slower in nuclear than in mitochondrial genes primarily because genetic drift is slower at nuclear loci. Variation in mitochondrial DNA (mtDNA) within and between species has been studied extensively, but can these mtDNA data be used to predict coalescence in nuclear loci? Comparison of neutral theories of coalescence of mitochondrial and nuclear loci suggests a simple rule of thumb. The "three-times rule" states that, on average, most nuclear loci will be monophyletic when the branch length leading to the mtDNA sequences of a species is three times longer than the average mtDNA sequence diversity observed within that species. A test using mitochondrial and nuclear intron data from seven species of whales and dolphins suggests general agreement with predictions of the three-times rule. We define the coalescence ratio as the mitochondrial branch length for a species divided by intraspecific mtDNA diversity. We show that species with high coalescence ratios show nuclear monophyly, whereas species with low ratios have polyphyletic nuclear gene trees. As expected, species with intermediate coalescence ratios show a variety of patterns. Especially at very high or low coalescence ratios, the three-times rule predicts nuclear gene patterns that can help detect the action of selection. The three-times rule may be useful as an empirical benchmark for evaluating evolutionary processes occurring at multiple loci.

  19. iDBPs: a web server for the identification of DNA binding proteins

    PubMed Central

    Nimrod, Guy; Schushan, Maya; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir

    2010-01-01

    Summary: The iDBPs server uses the three-dimensional (3D) structure of a query protein to predict whether it binds DNA. First, the algorithm predicts the functional region of the protein based on its evolutionary profile; the assumption is that large clusters of conserved residues are good markers of functional regions. Next, various characteristics of the predicted functional region as well as global features of the protein are calculated, such as the average surface electrostatic potential, the dipole moment and cluster-based amino acid conservation patterns. Finally, a random forests classifier is used to predict whether the query protein is likely to bind DNA and to estimate the prediction confidence. We have trained and tested the classifier on various datasets and shown that it outperformed related methods. On a dataset that reflects the fraction of DNA binding proteins (DBPs) in a proteome, the area under the ROC curve was 0.90. The application of the server to an updated version of the N-Func database, which contains proteins of unknown function with solved 3D-structure, suggested new putative DBPs for experimental studies. Availability: http://idbps.tau.ac.il/ Contact: NirB@tauex.tau.ac.il Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20089514

  20. Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides.

    PubMed

    Martín-Navarro, Antonio; Gaudioso-Simón, Andrés; Álvarez-Jarreta, Jorge; Montoya, Julio; Mayordomo, Elvira; Ruiz-Pesini, Eduardo

    2017-03-07

    Several methods have been developed to predict the pathogenicity of missense mutations but none has been specifically designed for classification of variants in mtDNA-encoded polypeptides. Moreover, there is not available curated dataset of neutral and damaging mtDNA missense variants to test the accuracy of predictors. Because mtDNA sequencing of patients suffering mitochondrial diseases is revealing many missense mutations, it is needed to prioritize candidate substitutions for further confirmation. Predictors can be useful as screening tools but their performance must be improved. We have developed a SVM classifier (Mitoclass.1) specific for mtDNA missense variants. Training and validation of the model was executed with 2,835 mtDNA damaging and neutral amino acid substitutions, previously curated by a set of rigorous pathogenicity criteria with high specificity. Each instance is described by a set of three attributes based on evolutionary conservation in Eukaryota of wildtype and mutant amino acids as well as coevolution and a novel evolutionary analysis of specific substitutions belonging to the same domain of mitochondrial polypeptides. Our classifier has performed better than other web-available tested predictors. We checked performance of three broadly used predictors with the total mutations of our curated dataset. PolyPhen-2 showed the best results for a screening proposal with a good sensitivity. Nevertheless, the number of false positive predictions was too high. Our method has an improved sensitivity and better specificity in relation to PolyPhen-2. We also publish predictions for the complete set of 24,201 possible missense variants in the 13 human mtDNA-encoded polypeptides. Mitoclass.1 allows a better selection of candidate damaging missense variants from mtDNA. A careful search of discriminatory attributes and a training step based on a curated dataset of amino acid substitutions belonging exclusively to human mtDNA genes allows an improved performance. Mitoclass.1 accuracy could be improved in the future when more mtDNA missense substitutions will be available for updating the attributes and retraining the model.

  1. Semen molecular and cellular features: these parameters can reliably predict subsequent ART outcome in a goat model

    PubMed Central

    Berlinguer, Fiammetta; Madeddu, Manuela; Pasciu, Valeria; Succu, Sara; Spezzigu, Antonio; Satta, Valentina; Mereu, Paolo; Leoni, Giovanni G; Naitana, Salvatore

    2009-01-01

    Currently, the assessment of sperm function in a raw or processed semen sample is not able to reliably predict sperm ability to withstand freezing and thawing procedures and in vivo fertility and/or assisted reproductive biotechnologies (ART) outcome. The aim of the present study was to investigate which parameters among a battery of analyses could predict subsequent spermatozoa in vitro fertilization ability and hence blastocyst output in a goat model. Ejaculates were obtained by artificial vagina from 3 adult goats (Capra hircus) aged 2 years (A, B and C). In order to assess the predictive value of viability, computer assisted sperm analyzer (CASA) motility parameters and ATP intracellular concentration before and after thawing and of DNA integrity after thawing on subsequent embryo output after an in vitro fertility test, a logistic regression analysis was used. Individual differences in semen parameters were evident for semen viability after thawing and DNA integrity. Results of IVF test showed that spermatozoa collected from A and B lead to higher cleavage rates (0 < 0.01) and blastocysts output (p < 0.05) compared with C. Logistic regression analysis model explained a deviance of 72% (p < 0.0001), directly related with the mean percentage of rapid spermatozoa in fresh semen (p < 0.01), semen viability after thawing (p < 0.01), and with two of the three comet parameters considered, i.e tail DNA percentage and comet length (p < 0.0001). DNA integrity alone had a high predictive value on IVF outcome with frozen/thawed semen (deviance explained: 57%). The model proposed here represents one of the many possible ways to explain differences found in embryo output following IVF with different semen donors and may represent a useful tool to select the most suitable donors for semen cryopreservation. PMID:19900288

  2. Cost-effectiveness of quantitative hepatitis B virus surface antigen testing in pregnancy in predicting vertical transmission risk.

    PubMed

    Samadi Kochaksaraei, Golasa; Congly, Stephen E; Matwiy, Trudy; Castillo, Eliana; Martin, Steven R; Charlton, Carmen L; Coffin, Carla S

    2016-11-01

    Vertical transmission of hepatitis B virus (HBV) can occur despite immunoprophylaxis in mothers with high HBV DNA levels (>5-7 log 10 IU/ml). Quantitative hepatitis B surface antigen (qHBsAg) testing could be used as a surrogate marker to identify high viral load carriers, but there is limited data in pregnancy. We conducted a prospective observational study to determine the cost-effectiveness and utility of qHBsAg as a valid surrogate marker of HBV DNA. Pregnant patients with chronic hepatitis B were recruited from a tertiary referral centre. HBV DNA levels and qHBsAg were assessed in the second to third trimester. Statistical analysis was performed by Spearman's rank correlation and student's t-test. The cost-effectiveness of qHBsAg as compared to HBV DNA testing was calculated. Ninety nine women with 103 pregnancies, median age 32 years, 65% Asian, 23% African and 12% other [Hispanic, Caucasian] were enrolled. Overall, 23% (23/99) were HBV e Ag (HBeAg)-positive. A significant correlation between qHBsAg and HBV DNA levels was noted in HBeAg-positive patients (r = 0.79, P < 0.05) but not in HBeAg-negative patients (r = 0.17, P = 0.06). In receiver operating characteristic analysis, the optimal qHBsAg cut-off values for predicting maternal viraemia associated with immunoprophylaxis failure (i.e., HBV DNA ≥7 log 10 IU/ml) was 4.3 log 10 IU/ml (accuracy 98.7%, sensitivity 94.7%, specificity 94.4%) (95% CI, 97-100%, P < 0.05). Use of HBV DNA as compared to qHBsAg costs approximately $20 000 more per infection prevented. In resource poor regions, qHBsAg could be used as a more cost-effective marker for high maternal viraemia, and indicate when anti-HBV nucleos/tide analogue therapy should be used to prevent HBV immunoprophylaxis failure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Evaluation of the 8th TNM classification on p16-positive oropharyngeal squamous cell carcinomas in the Netherlands, and the importance of additional HPV DNA-testing.

    PubMed

    Nauta, I H; Rietbergen, M M; van Bokhoven, A A J D; Bloemena, E; Witte, B I; Heideman, D A M; Baatenburg de Jong, R J; Brakenhoff, R H; Leemans, C R

    2018-02-09

    Oropharyngeal squamous cell carcinomas (OPSCCs) are traditionally caused by smoking and excessive alcohol consumption. However, in the last decades high-risk human papillomavirus (HR-HPV) infections play an increasingly important role in tumorigenesis. HPV-driven OPSCCs are known to have a more favorable prognosis, which has led to important and marked changes in the recently released TNM-8. In this edition, OPSCCs are divided based on p16-immunostaining, with p16-overexpression as surrogate marker for the presence of HPV. The aims of this study are to evaluate TNM-8 on a Dutch consecutive cohort of patients with p16-positive OPSCC and to determine the relevance of additional HPV DNA-testing. All OPSCC patients without distant metastases at diagnosis and treated with curative intent at VU University Medical Center (2000-2015) and Erasmus Medical Center (2000-2006) were included (N = 1,204). HPV-status was established by p16-immunostaining followed by HPV DNA-PCR on the p16-immunopositive cases. We compared TNM-7 and TNM-8 using the Harrell's C index. In total, 388 of 1,204 (32.2%) patients were p16-immunopositive. In these patients, TNM-8 had a markedly better predictive prognostic power than TNM-7 (Harrell's C index 0.63 versus 0.53). Of the 388 p16-positive OPSCCs, 48 tumors (12.4%) were HPV DNA-negative. This subgroup had distinct demographic, clinical and morphologic characteristics and showed a significantly worse five-year overall survival compared to the HPV DNA-positive tumors (P < 0.001). TNM-8 has a better predictive prognostic power than TNM-7 in patients with p16-positive OPSCC. However, within p16-positive OPSCCs there is an HPV DNA-negative subgroup with distinct features and a worse overall survival, indicating the importance to perform additional HPV DNA-testing when predicting prognosis and particularly for selecting patients for de-intensified treatment regimens. © The Author 2018. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks

    NASA Astrophysics Data System (ADS)

    Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng

    2016-01-01

    The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named “DeepMethyl” to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/.

  5. Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks.

    PubMed

    Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng

    2016-01-22

    The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named "DeepMethyl" to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/.

  6. Blood DNA methylation biomarkers predict clinical reactivity in food-sensitized infants.

    PubMed

    Martino, David; Dang, Thanh; Sexton-Oates, Alexandra; Prescott, Susan; Tang, Mimi L K; Dharmage, Shyamali; Gurrin, Lyle; Koplin, Jennifer; Ponsonby, Anne-Louise; Allen, Katrina J; Saffery, Richard

    2015-05-01

    The diagnosis of food allergy (FA) can be challenging because approximately half of food-sensitized patients are asymptomatic. Current diagnostic tests are excellent makers of sensitization but poor predictors of clinical reactivity. Thus oral food challenges (OFCs) are required to determine a patient's risk of reactivity. We sought to discover genomic biomarkers of clinical FA with utility for predicting food challenge outcomes. Genome-wide DNA methylation (DNAm) profiling was performed on blood mononuclear cells from volunteers who had undergone objective OFCs, concurrent skin prick tests, and specific IgE tests. Fifty-eight food-sensitized patients (aged 11-15 months) were assessed, half of whom were clinically reactive. Thirteen nonallergic control subjects were also assessed. Reproducibility was assessed in an additional 48 samples by using methylation data from an independent population of patients with clinical FA. Using a supervised learning approach, we discovered a DNAm signature of 96 CpG sites that predict clinical outcomes. Diagnostic scores were derived from these 96 methylation sites, and cutoffs were determined in a sensitivity analysis. Methylation biomarkers outperformed allergen-specific IgE and skin prick tests for predicting OFC outcomes. FA status was correctly predicted in the replication cohort with an accuracy of 79.2%. DNAm biomarkers with clinical utility for predicting food challenge outcomes are readily detectable in blood. The development of this technology in detailed follow-up studies will yield highly innovative diagnostic assays. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Using synthetic bacterial enhancers to reveal a looping-based mechanism for quenching-like repression

    PubMed Central

    Brunwasser-Meirom, Michal; Pollak, Yaroslav; Goldberg, Sarah; Levy, Lior; Atar, Orna; Amit, Roee

    2016-01-01

    We explore a model for ‘quenching-like' repression by studying synthetic bacterial enhancers, each characterized by a different binding site architecture. To do so, we take a three-pronged approach: first, we compute the probability that a protein-bound dsDNA molecule will loop. Second, we use hundreds of synthetic enhancers to test the model's predictions in bacteria. Finally, we verify the mechanism bioinformatically in native genomes. Here we show that excluded volume effects generated by DNA-bound proteins can generate substantial quenching. Moreover, the type and extent of the regulatory effect depend strongly on the relative arrangement of the binding sites. The implications of these results are that enhancers should be insensitive to 10–11 bp insertions or deletions (INDELs) and sensitive to 5–6 bp INDELs. We test this prediction on 61 σ54-regulated qrr genes from the Vibrio genus and confirm the tolerance of these enhancers' sequences to the DNA's helical repeat. PMID:26832446

  8. Using synthetic bacterial enhancers to reveal a looping-based mechanism for quenching-like repression.

    PubMed

    Brunwasser-Meirom, Michal; Pollak, Yaroslav; Goldberg, Sarah; Levy, Lior; Atar, Orna; Amit, Roee

    2016-02-02

    We explore a model for 'quenching-like' repression by studying synthetic bacterial enhancers, each characterized by a different binding site architecture. To do so, we take a three-pronged approach: first, we compute the probability that a protein-bound dsDNA molecule will loop. Second, we use hundreds of synthetic enhancers to test the model's predictions in bacteria. Finally, we verify the mechanism bioinformatically in native genomes. Here we show that excluded volume effects generated by DNA-bound proteins can generate substantial quenching. Moreover, the type and extent of the regulatory effect depend strongly on the relative arrangement of the binding sites. The implications of these results are that enhancers should be insensitive to 10-11 bp insertions or deletions (INDELs) and sensitive to 5-6 bp INDELs. We test this prediction on 61 σ(54)-regulated qrr genes from the Vibrio genus and confirm the tolerance of these enhancers' sequences to the DNA's helical repeat.

  9. PCR Inhibition of a Quantitative PCR for Detection of Mycobacterium avium Subspecies Paratuberculosis DNA in Feces: Diagnostic Implications and Potential Solutions

    PubMed Central

    Acharya, Kamal R.; Dhand, Navneet K.; Whittington, Richard J.; Plain, Karren M.

    2017-01-01

    Molecular tests such as polymerase chain reaction (PCR) are increasingly being applied for the diagnosis of Johne’s disease, a chronic intestinal infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Feces, as the primary test sample, presents challenges in terms of effective DNA isolation, with potential for PCR inhibition and ultimately for reduced analytical and diagnostic sensitivity. However, limited evidence is available regarding the magnitude and diagnostic implications of PCR inhibition for the detection of MAP in feces. This study aimed to investigate the presence and diagnostic implications of PCR inhibition in a quantitative PCR assay for MAP (High-throughput Johne’s test) to investigate the characteristics of samples prone to inhibition and to identify measures that can be taken to overcome this. In a study of fecal samples derived from a high prevalence, endemically infected cattle herd, 19.94% of fecal DNA extracts showed some evidence of inhibition. Relief of inhibition by a five-fold dilution of the DNA extract led to an average increase in quantification of DNA by 3.3-fold that consequently increased test sensitivity of the qPCR from 55 to 80% compared to fecal culture. DNA extracts with higher DNA and protein content had 19.33 and 10.94 times higher odds of showing inhibition, respectively. The results suggest that the current test protocol is sensitive for herd level diagnosis of Johne’s disease but that test sensitivity and individual level diagnosis could be enhanced by relief of PCR inhibition, achieved by five-fold dilution of the DNA extract. Furthermore, qualitative and quantitative parameters derived from absorbance measures of DNA extracts could be useful for prediction of inhibitory fecal samples. PMID:28210245

  10. Microdose-induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice

    PubMed Central

    Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong; Lin, Tzu-yin; Malfatti, Michael; Haack, Kurt; Ognibene, Ted; Yang, Hongyuan; Airhart, Susan; Turteltaub, Kenneth W.; Cimino, George D.; Tepper, Clifford G.; Drakaki, Alexandra; Chamie, Karim; de Vere White, Ralph; Pan, Chong-xian; Henderson, Paul T.

    2017-01-01

    We report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [14C]carboplatin (1% of the therapeutic dose). Carboplatin-DNA adducts were quantified by accelerator mass spectrometry (AMS) in blood and tumor samples collected within 24 hours, and compared to subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice were dosed with [14C]carboplatin or [14C]gemcitabine and the resulting drug-DNA adduct levels were compared to tumor response to chemotherapy. At least one of the drugs had to induce high drug-DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug-DNA adducts as predictive biomarkers. PMID:27903751

  11. MeDIP-seq and nCpG analyses illuminate sexually dimorphic methylation of gonadal development genes with high historic methylation in turtle hatchlings with temperature-dependent sex determination.

    PubMed

    Radhakrishnan, Srihari; Literman, Robert; Mizoguchi, Beatriz; Valenzuela, Nicole

    2017-01-01

    DNA methylation alters gene expression but not DNA sequence and mediates some cases of phenotypic plasticity. Temperature-dependent sex determination (TSD) epitomizes phenotypic plasticity where environmental temperature drives embryonic sexual fate, as occurs commonly in turtles. Importantly, the temperature-specific transcription of two genes underlying gonadal differentiation is known to be induced by differential methylation in TSD fish, turtle and alligator. Yet, how extensive is the link between DNA methylation and TSD remains unclear. Here we test for broad differences in genome-wide DNA methylation between male and female hatchling gonads of the TSD painted turtle Chrysemys picta using methyl DNA immunoprecipitation sequencing, to identify differentially methylated candidates for future study. We also examine the genome-wide nCpG distribution (which affects DNA methylation) in painted turtles and test for historic methylation in genes regulating vertebrate gonadogenesis. Turtle global methylation was consistent with other vertebrates (57% of the genome, 78% of all CpG dinucleotides). Numerous genes predicted to regulate turtle gonadogenesis exhibited sex-specific methylation and were proximal to methylated repeats. nCpG distribution predicted actual turtle DNA methylation and was bimodal in gene promoters (as other vertebrates) and introns (unlike other vertebrates). Differentially methylated genes, including regulators of sexual development, had lower nCpG content indicative of higher historic methylation. Ours is the first evidence suggesting that sexually dimorphic DNA methylation is pervasive in turtle gonads (perhaps mediated by repeat methylation) and that it targets numerous regulators of gonadal development, consistent with the hypothesis that it may regulate thermosensitive transcription in TSD vertebrates. However, further research during embryogenesis will help test this hypothesis and the alternative that instead, most differential methylation observed in hatchlings is the by-product of sexual differentiation and not its cause.

  12. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties

    PubMed Central

    2011-01-01

    Background Existing methods of predicting DNA-binding proteins used valuable features of physicochemical properties to design support vector machine (SVM) based classifiers. Generally, selection of physicochemical properties and determination of their corresponding feature vectors rely mainly on known properties of binding mechanism and experience of designers. However, there exists a troublesome problem for designers that some different physicochemical properties have similar vectors of representing 20 amino acids and some closely related physicochemical properties have dissimilar vectors. Results This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of physicochemical and biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-binding domains/proteins. Auto-IDPCPs consists of 1) clustering 531 amino acid indices in AAindex into 20 clusters using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm based optimization method IBCGA to select an informative feature set of size m to represent sequences, and 3) analyzing the selected features to identify related physicochemical properties which may affect the binding mechanism of DNA-binding domains/proteins. The proposed Auto-IDPCPs identified m=22 features of properties belonging to five clusters for predicting DNA-binding domains with a five-fold cross-validation accuracy of 87.12%, which is promising compared with the accuracy of 86.62% of the existing method PSSM-400. For predicting DNA-binding sequences, the accuracy of 75.50% was obtained using m=28 features, where PSSM-400 has an accuracy of 74.22%. Auto-IDPCPs and PSSM-400 have accuracies of 80.73% and 82.81%, respectively, applied to an independent test data set of DNA-binding domains. Some typical physicochemical properties discovered are hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der Waals volume, pK (pK-C, pK-N, pK-COOH and pK-a(RCOOH)), etc. Conclusions The proposed approach Auto-IDPCPs would help designers to investigate informative physicochemical and biochemical properties by considering both prediction accuracy and analysis of binding mechanism simultaneously. The approach Auto-IDPCPs can be also applicable to predict and analyze other protein functions from sequences. PMID:21342579

  13. New phthalimide-appended Schiff bases: Studies of DNA binding, molecular docking and antioxidant activities.

    PubMed

    Nayab, Pattan Sirajuddin; Akrema; Ansari, Istikhar A; Shahid, Mohammad; Rahisuddin

    2017-08-01

    Herein, we investigated new phthalimide-based Schiff base molecules as promising DNA-binding and free radical scavenging agents. Physicochemical properties of these molecules were demonstrated on the basis of elemental analysis, ultraviolet-visible (UV-Vis), infra-red (IR), 1 H and 13 C nuclear magnetic resonance (NMR) spectroscopy. All spectral data are agreed well with the proposed Schiff base framework. The DNA-binding potential of synthesized compounds were investigated by means of UV-visible, fluorescence, iodide quenching, circular dichroism, viscosity and thermal denaturation studies. The intrinsic binding constants (K b ) were calculated from absorption studies were found to be 1.1 × 10 4 and 1.0 × 10 4  M -1 for compounds 2a and 2b suggesting that compound 2a binding abilities with DNA were stronger than the compound 2b. Our studies showed that the presented compounds interact with DNA through groove binding. Molecular docking studies were carried out to predict the binding between Ct-DNA and test compounds. Interestingly, in silico predictions were corroborated with in vitro DNA-binding conclusions. Furthermore, the title compounds displayed remarkable antioxidant activity compared with reference standard. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Application of a random walk model to geographic distributions of animal mitochondrial DNA variation.

    PubMed

    Neigel, J E; Avise, J C

    1993-12-01

    In rapidly evolving molecules, such as animal mitochondrial DNA, mutations that delineate specific lineages may not be dispersed at sufficient rates to attain an equilibrium between genetic drift and gene flow. Here we predict conditions that lead to nonequilibrium geographic distributions of mtDNA lineages, test the robustness of these predictions and examine mtDNA data sets for consistency with our model. Under a simple isolation by distance model, the variance of an mtDNA lineage's geographic distribution is expected be proportional to its age. Simulation results indicated that this relationship is fairly robust. Analysis of mtDNA data from natural populations revealed three qualitative distributional patterns: (1) significant departure of lineage structure from equilibrium geographic distributions, a pattern exhibited in three rodent species with limited dispersal; (2) nonsignificant departure from equilibrium expectations, exhibited by two avian and two marine fish species with potentials for relatively long-distance dispersal; and (3) a progression from nonequilibrium distributions for younger lineages to equilibrium distributions for older lineages, a condition displayed by one surveyed avian species. These results demonstrate the advantages of considering mutation and genealogy in the interpretation of mtDNA geographic variation.

  15. Experience of Combined Liquid Based Cervical Cytology and High-Risk HPV mRNA for Cervical Cancer Screening in Thammasat University Hospital.

    PubMed

    Muangto, Teerapat; Chanthasenanont, Athita; Lertvutivivat, Supapen; Nanthakomon, Tongta; Pongrojpaw, Densak; Bhamarapravatana, Kornkarn; Suwannarurk, Komsun

    2016-01-01

    Cervical cancer is the second most common of malignancy found in Thai women. Human papillomavirus (HPV) infection is a major cause. The objective of the present study was to evaluate the prevalence of HPV infection and association with abnormal cervical cytology in Thai women. This study was conducted at the Gynecologic Clinic, Thammasat University, Pathum Thani, Thailand. A total of 2,144 cases who underwent annual cervical cancer screening by co-testing (liquid based cytology and HPV testing, DNA versus mRNA) during the priod from July 2013 to June 2016 were recruited in this study. Prevalence of positive high risk (HR) HPV DNA and mRNA test were 19.7 and 8.4%, respectively with a statistically significant difference. Majority of cases of abnormal cytology in this study were atypical squamous cells of undetermined significance (ASC-US). In patients with ASC-US, positive HR HPV DNA was greater than in the mRNA group (10.1 and 4.5%, p<0.001). Nonetheless, there was no significant difference in participants with cervical intraepithelial neoplasia (CIN). HPV mRNA test had slightly lower sensitivity but higher negative predictive value (NPV) than the DNA test to detect abnormal cytology during cervical cancer screening (p<0.001). Both HPV test (DNA and mRNA) had equally efficacy to detect high grade precancerous lesion or higher (CIN 2+). Prevalence of HR HPV DNA and mRNA were 19.7 and 8.4 percent, respectively. NPV of HPV mRNA was higher than DNA test. Both tests had equal efficacy to detect CIN 2+ with sensitivity and specificity of 63% vs 55.7% and 83% vs 92%, respectively.

  16. Optimization of cDNA-AFLP experiments using genomic sequence data.

    PubMed

    Kivioja, Teemu; Arvas, Mikko; Saloheimo, Markku; Penttilä, Merja; Ukkonen, Esko

    2005-06-01

    cDNA amplified fragment length polymorphism (cDNA-AFLP) is one of the few genome-wide level expression profiling methods capable of finding genes that have not yet been cloned or even predicted from sequence but have interesting expression patterns under the studied conditions. In cDNA-AFLP, a complex cDNA mixture is divided into small subsets using restriction enzymes and selective PCR. A large cDNA-AFLP experiment can require a substantial amount of resources, such as hundreds of PCR amplifications and gel electrophoresis runs, followed by manual cutting of a large number of bands from the gels. Our aim was to test whether this workload can be reduced by rational design of the experiment. We used the available genomic sequence information to optimize cDNA-AFLP experiments beforehand so that as many transcripts as possible could be profiled with a given amount of resources. Optimization of the selection of both restriction enzymes and selective primers for cDNA-AFLP experiments has not been performed previously. The in silico tests performed suggest that substantial amounts of resources can be saved by the optimization of cDNA-AFLP experiments.

  17. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment.

    PubMed

    Lewis, Sheena E M; John Aitken, R; Conner, Sarah J; Iuliis, Geoffry De; Evenson, Donald P; Henkel, Ralph; Giwercman, Aleksander; Gharagozloo, Parviz

    2013-10-01

    Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the strengths, weaknesses and clinical applicability of current sperm DNA tests. Next, the biological significance of DNA damage in the male germ line is considered. Finally, as sperm DNA damage is often the result of oxidative stress in the male reproductive tract, the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. DNA damage in human spermatozoa is an important attribute of semen quality. It should be part of the clinical work up and properly controlled trials addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency. Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. With all of these fertility check points, it shows more promise than conventional semen parameters from a diagnostic perspective. Despite this, few infertility clinics use it routinely. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the strengths and weaknesses and clinical applicability of current sperm DNA fragmentation tests. Next, the biological significance of DNA damage in the male germ line is considered. Finally, as sperm DNA damage is often the result of increased oxidative stress in the male reproductive tract, the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. As those working in this field of clinical research, we conclude that DNA damage in human spermatozoa is an important attribute of semen quality which should be carefully assessed in the clinical work up of infertile couples and that properly controlled trials addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  18. The ties that bind: genetic relatedness predicts the fission and fusion of social groups in wild African elephants.

    PubMed

    Archie, Elizabeth A; Moss, Cynthia J; Alberts, Susan C

    2006-03-07

    Many social animals live in stable groups. In contrast, African savannah elephants (Loxodonta africana) live in unusually fluid, fission-fusion societies. That is, 'core' social groups are composed of predictable sets of individuals; however, over the course of hours or days, these groups may temporarily divide and reunite, or they may fuse with other social groups to form much larger social units. Here, we test the hypothesis that genetic relatedness predicts patterns of group fission and fusion among wild, female African elephants. Our study of a single Kenyan population spans 236 individuals in 45 core social groups, genotyped at 11 microsatellite and one mitochondrial DNA (mtDNA) locus. We found that genetic relatedness predicted group fission; adult females remained with their first order maternal relatives when core groups fissioned temporarily. Relatedness also predicted temporary fusion between social groups; core groups were more likely to fuse with each other when the oldest females in each group were genetic relatives. Groups that shared mtDNA haplotypes were also significantly more likely to fuse than groups that did not share mtDNA. Our results suggest that associations between core social groups persist for decades after the original maternal kin have died. We discuss these results in the context of kin selection and its possible role in the evolution of elephant sociality.

  19. CRITICA: coding region identification tool invoking comparative analysis

    NASA Technical Reports Server (NTRS)

    Badger, J. H.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1999-01-01

    Gene recognition is essential to understanding existing and future DNA sequence data. CRITICA (Coding Region Identification Tool Invoking Comparative Analysis) is a suite of programs for identifying likely protein-coding sequences in DNA by combining comparative analysis of DNA sequences with more common noncomparative methods. In the comparative component of the analysis, regions of DNA are aligned with related sequences from the DNA databases; if the translation of the aligned sequences has greater amino acid identity than expected for the observed percentage nucleotide identity, this is interpreted as evidence for coding. CRITICA also incorporates noncomparative information derived from the relative frequencies of hexanucleotides in coding frames versus other contexts (i.e., dicodon bias). The dicodon usage information is derived by iterative analysis of the data, such that CRITICA is not dependent on the existence or accuracy of coding sequence annotations in the databases. This independence makes the method particularly well suited for the analysis of novel genomes. CRITICA was tested by analyzing the available Salmonella typhimurium DNA sequences. Its predictions were compared with the DNA sequence annotations and with the predictions of GenMark. CRITICA proved to be more accurate than GenMark, and moreover, many of its predictions that would seem to be errors instead reflect problems in the sequence databases. The source code of CRITICA is freely available by anonymous FTP (rdp.life.uiuc.edu in/pub/critica) and on the World Wide Web (http:/(/)rdpwww.life.uiuc.edu).

  20. Detection of EGFR Variants in Plasma: A Multilaboratory Comparison of the cobas EGFR Mutation Test v2 in Europe.

    PubMed

    Keppens, Cleo; Palma, John F; Das, Partha M; Scudder, Sidney; Wen, Wei; Normanno, Nicola; Van Krieken, J Han; Sacco, Alessandra; Fenizia, Francesca; de Castro, David Gonzalez; Hönigschnabl, Selma; Kern, Izidor; Lopez-Rios, Fernando; Lozano, Maria D; Marchetti, Antonio; Halfon, Philippe; Schuuring, Ed; Setinek, Ulrike; Sorensen, Boe; Taniere, Phillipe; Tiemann, Markus; Vosmikova, Hana; Dequeker, Elisabeth M C

    2018-04-25

    Molecular testing of EGFR is required to predict the response likelihood to targeted therapy in non-small-cell lung cancer. Analysis of circulating tumor DNA in plasma may complement limitations of tumor tissue. This study evaluated the interlaboratory performance and reproducibility of the cobas EGFR Mutation Test v2 to detect EGFR variants in plasma. Fourteen laboratories received two identical panels of 27 single-blinded plasma samples. Samples were wild-type or spiked with plasmid DNA to contain seven common EGFR variants at six predefined concentrations from 50 to 5000 copies per mL. The circulating tumor DNA was extracted by the cobas cfDNA Sample Preparation kit, followed by duplicate analysis with the EGFRv2 kit (Roche Molecular Systems, Pleasanton, CA). Lowest sensitivities were obtained for the c.2156G>C p.(Gly719Ala) and c.2573T>G p.(Leu858Arg) variants for the lowest target copies. For all other variants, sensitivities varied between 96.3% and 100.0%. Specificities were all 98.8% to 100.0%. Coefficients of variation indicated good intra and interlaboratory repeatability and reproducibility, but increased for decreasing concentrations. Prediction models revealed a significant correlation for all variants between the pre-defined copy number and the observed semiquantitative index values which reflects the samples' plasma mutation load. This study demonstrates an overall robust performance of the EGFRv2 kit in plasma. Prediction models may be applied to estimate the plasma mutation load for diagnostic or research purposes. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  1. Feasibility of cell-free circulating tumor DNA testing for lung cancer.

    PubMed

    Santarpia, Mariacarmela; Karachaliou, Niki; González-Cao, Maria; Altavilla, Giuseppe; Giovannetti, Elisa; Rosell, Rafael

    2016-01-01

    Tumor tissue genotyping is used routinely for lung cancer to identify specific targetable oncogenic alterations, including EGFR mutations and ALK rearrangements. However, tumor tissue from a single biopsy is often insufficient for molecular testing, may offer a limited evaluation because of tumor heterogeneity and can be difficult to obtain. Cell-free circulating tumor DNA has been widely investigated as a potential surrogate for tissue biopsy for noninvasive assessment of tumor-related genomic alterations. New techniques have improved EGFR mutations detection in ctDNA, thus supporting the use of this liquid biopsy for predicting response to EGFR tyrosine kinase inhibitors (TKIs) and monitoring the emergence of resistance. The serial evaluation of ctDNA during treatment is feasible and can be used to track tumor changes in real time and for a wide range of clinically useful applications.

  2. How SNP chips will advance our knowledge of factors controlling puberty and aid in selecting replacement females

    USDA-ARS?s Scientific Manuscript database

    The promise of genomic selection is that genetic potential can be accurately predicted from genotypes. Simple deoxyribonucleic acid (DNA) tests might replace low accuracy predictions based on performance and pedigree for expensive or lowly heritable measures of puberty and fertility. The promise i...

  3. Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction

    PubMed Central

    Cruz-Cano, Raul; Chew, David S.H.; Kwok-Pui, Choi; Ming-Ying, Leung

    2010-01-01

    Replication of their DNA genomes is a central step in the reproduction of many viruses. Procedures to find replication origins, which are initiation sites of the DNA replication process, are therefore of great importance for controlling the growth and spread of such viruses. Existing computational methods for viral replication origin prediction have mostly been tested within the family of herpesviruses. This paper proposes a new approach by least-squares support vector machines (LS-SVMs) and tests its performance not only on the herpes family but also on a collection of caudoviruses coming from three viral families under the order of caudovirales. The LS-SVM approach provides sensitivities and positive predictive values superior or comparable to those given by the previous methods. When suitably combined with previous methods, the LS-SVM approach further improves the prediction accuracy for the herpesvirus replication origins. Furthermore, by recursive feature elimination, the LS-SVM has also helped find the most significant features of the data sets. The results suggest that the LS-SVMs will be a highly useful addition to the set of computational tools for viral replication origin prediction and illustrate the value of optimization-based computing techniques in biomedical applications. PMID:20729987

  4. Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction.

    PubMed

    Cruz-Cano, Raul; Chew, David S H; Kwok-Pui, Choi; Ming-Ying, Leung

    2010-06-01

    Replication of their DNA genomes is a central step in the reproduction of many viruses. Procedures to find replication origins, which are initiation sites of the DNA replication process, are therefore of great importance for controlling the growth and spread of such viruses. Existing computational methods for viral replication origin prediction have mostly been tested within the family of herpesviruses. This paper proposes a new approach by least-squares support vector machines (LS-SVMs) and tests its performance not only on the herpes family but also on a collection of caudoviruses coming from three viral families under the order of caudovirales. The LS-SVM approach provides sensitivities and positive predictive values superior or comparable to those given by the previous methods. When suitably combined with previous methods, the LS-SVM approach further improves the prediction accuracy for the herpesvirus replication origins. Furthermore, by recursive feature elimination, the LS-SVM has also helped find the most significant features of the data sets. The results suggest that the LS-SVMs will be a highly useful addition to the set of computational tools for viral replication origin prediction and illustrate the value of optimization-based computing techniques in biomedical applications.

  5. Barcode extension for analysis and reconstruction of structures

    NASA Astrophysics Data System (ADS)

    Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L.; Gootenberg, Jonathan S.; Yin, Peng

    2017-03-01

    Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures.

  6. Barcode extension for analysis and reconstruction of structures.

    PubMed

    Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L; Gootenberg, Jonathan S; Yin, Peng

    2017-03-13

    Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures.

  7. Barcode extension for analysis and reconstruction of structures

    PubMed Central

    Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L; Gootenberg, Jonathan S; Yin, Peng

    2017-01-01

    Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures. PMID:28287117

  8. Novel Design Strategy for Checkpoint Kinase 2 Inhibitors Using Pharmacophore Modeling, Combinatorial Fusion, and Virtual Screening

    PubMed Central

    Wang, Yen-Ling

    2014-01-01

    Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion into PhModels and virtual screening techniques is a novel design strategy for drug design. We used combinatorial fusion to analyze the prediction results and then obtained the best correlation coefficient of the testing set (r test) with the value 0.816 by combining the BesttrainBesttest and FasttrainFasttest prediction results. The potential inhibitors were selected from NCI database by screening according to BesttrainBesttest + FasttrainFasttest prediction results and molecular docking with CDOCKER docking program. Finally, the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential inhibitors for Chk2 are retrieved for further study. PMID:24864236

  9. The first liquid biopsy test approved. Is it a new era of mutation testing for non-small cell lung cancer?

    PubMed Central

    2017-01-01

    Specific mutations in epidermal growth factor receptor (EGFR) gene are predictive for response to the EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer patients (NSCLC). According to international guidelines, the molecular testing in patients with advanced NSCLC of a non-squamous subtype is recommended. However, obtain a tissue sample could be challenging. Liquid biopsy allows to determine patients suitable for EGFR-targeted therapy by analysis of circulating-free tumor DNA (cfDNA) in peripheral blood samples and might replace tissue biopsy. It allows to acquire a material in convenient minimally invasive manner, is easily repeatable, could be used for molecular identification and molecular changes monitoring. Many studies show a high concordance rate between tissue and plasma samples testing. When U.S. Food and Drug Administration (FDA) approved the first liquid biopsy test, analysis of driver gene mutation from cfDNA becomes a reality in clinical practice for patients with NSCLC. PMID:28251125

  10. [The joint applications of DNA chips and single nucleotide polymorphisms in forensic science].

    PubMed

    Bai, Peng; Tian, Li; Zhou, Xue-ping

    2005-05-01

    DNA chip technology, being a new high-technology, shows its vigorous life and rapid growth. Single Nucleotide Polymorphisms (SNPs) is the most common diversity in the human genome. It provides suitable genetic markers which play a key role in disease linkage study, pharmacogenomics, forensic medicine, population evolution and immigration study. Their advantage such as being analyzed with DNA chips technology, is predicted to play an important role in the field of forensic medicine, especially in paternity test and individual identification. This report mainly reviews the characteristics of DNA chip and SNPs, and their joint applications in the practice of forensic medicine.

  11. Parallel In Vivo DNA Assembly by Recombination: Experimental Demonstration and Theoretical Approaches

    PubMed Central

    Shi, Zhenyu; Wedd, Anthony G.; Gras, Sally L.

    2013-01-01

    The development of synthetic biology requires rapid batch construction of large gene networks from combinations of smaller units. Despite the availability of computational predictions for well-characterized enzymes, the optimization of most synthetic biology projects requires combinational constructions and tests. A new building-brick-style parallel DNA assembly framework for simple and flexible batch construction is presented here. It is based on robust recombination steps and allows a variety of DNA assembly techniques to be organized for complex constructions (with or without scars). The assembly of five DNA fragments into a host genome was performed as an experimental demonstration. PMID:23468883

  12. DNA-Based Methods in the Immunohematology Reference Laboratory

    PubMed Central

    Denomme, Gregory A

    2010-01-01

    Although hemagglutination serves the immunohematology reference laboratory well, when used alone, it has limited capability to resolve complex problems. This overview discusses how molecular approaches can be used in the immunohematology reference laboratory. In order to apply molecular approaches to immunohematology, knowledge of genes, DNA-based methods, and the molecular bases of blood groups are required. When applied correctly, DNA-based methods can predict blood groups to resolve ABO/Rh discrepancies, identify variant alleles, and screen donors for antigen-negative units. DNA-based testing in immunohematology is a valuable tool used to resolve blood group incompatibilities and to support patients in their transfusion needs. PMID:21257350

  13. Sperm DNA damage or progressive motility: which one is the better predictor of fertilization in vitro?

    PubMed

    Simon, Luke; Lewis, Sheena E M

    2011-06-01

    Sperm progressive motility has been reported to be one of the key factors influencing in vitro fertilization rates. However, recent studies have shown that sperm DNA fragmentation is a more robust predictor of assisted reproductive outcomes including reduced fertilization rates, embryo quality, and pregnancy rates. This study aimed to compare the usefulness of sperm progressive motility and DNA damage as predictive tools of in vitro fertilization rates. Here, 136 couples provided 1,767 eggs with an overall fertilization rate of 64.2%. The fertilization rate in vitro correlated with both sperm progressive motility (r² = 0.236; P = 0.002) and DNA fragmentation (r² = -0.318; P < 0.001). The relative risk of a poor fertilization rate was 9.5 times higher in sperm of men with high DNA fragmentation (>40%) compared with 2.6 times in sperm with poor motility (<40%). Further, sperm DNA fragmentation gave a higher specificity (93.3%) in predicting the fertilization rate than progressive motility (77.8%). Finally, the odds ratio to determine fertilization rate (>70%) was 4.81 (1.89-12.65) using progressive motility compared with 24.18 (5.21-154.51) using DNA fragmentation. This study shows that fertilization rates are directly dependent upon both sperm progressive motility and DNA fragmentation, but sperm DNA fragmentation is a much stronger test.

  14. Microdose-Induced Drug–DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice

    DOE PAGES

    Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong; ...

    2016-11-30

    Here, we report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [ 14C]carboplatin (1% of the therapeutic dose). Carboplatin–DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice weremore » dosed with [ 14C]carboplatin or [ 14C]gemcitabine and the resulting drug–DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug–DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug–DNA adducts as predictive biomarkers.« less

  15. Microdose-Induced Drug–DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong

    Here, we report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [ 14C]carboplatin (1% of the therapeutic dose). Carboplatin–DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice weremore » dosed with [ 14C]carboplatin or [ 14C]gemcitabine and the resulting drug–DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug–DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug–DNA adducts as predictive biomarkers.« less

  16. Microdose-Induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice.

    PubMed

    Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong; Lin, Tzu-Yin; Malfatti, Michael; Haack, Kurt; Ognibene, Ted; Yang, Hongyuan; Airhart, Susan; Turteltaub, Kenneth W; Cimino, George D; Tepper, Clifford G; Drakaki, Alexandra; Chamie, Karim; de Vere White, Ralph; Pan, Chong-Xian; Henderson, Paul T

    2017-02-01

    We report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [ 14 C]carboplatin (1% of the therapeutic dose). Carboplatin-DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice were dosed with [ 14 C]carboplatin or [ 14 C]gemcitabine and the resulting drug-DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug-DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug-DNA adducts as predictive biomarkers. Mol Cancer Ther; 16(2); 376-87. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Testing a structural model for viral DNA packaging motor function by optical tweezers measurements, site directed mutagenesis, and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Keller, Nicholas A.; Migliori, Amy D.; Arya, Gaurav; Rao, Venigalla B.; Smith, Douglas E.

    2013-09-01

    Many double-stranded DNA viruses employ a molecular motor to package DNA into preformed capsid shells. Based on structures of phage T4 motor proteins determined by X-ray crystallography and cryo-electron microscopy, Rao, Rossmann and coworkers recently proposed a structural model for motor function. They proposed that DNA is ratcheted by a large conformational change driven by electrostatic interactions between charged residues at an interface between two globular domains of the motor protein. We have conducted experiments to test this model by studying the effect on packaging under applied load of site-directed changes altering these residues. We observe significant impairment of packaging activity including reductions in packaging rate, percent time packaging, and time active under high load. We show that these measured impairments correlate well with alterations in free energies associated with the conformational change predicted by molecular dynamics simulations.

  18. Assessment of cellularity, genomic DNA yields, and technical platforms for BRAF mutational testing in thyroid fine-needle aspirate samples.

    PubMed

    Dyhdalo, Kathryn; Macnamara, Stephen; Brainard, Jennifer; Underwood, Dawn; Tubbs, Raymond; Yang, Bin

    2014-02-01

    BRAF mutation V600E (substitution Val600Glu) is a molecular signature for papillary thyroid carcinoma (PTC). Testing for BRAF mutation is clinically useful in providing prognostic prediction and facilitating accurate diagnosis of PTC in thyroid fine-needle aspirate (FNA) samples. This study assessed the correlation of cellularity with DNA yield and compared 2 technical platforms with different sensitivities in detection of BRAF mutation in cytologic specimens. Cellularity was evaluated based on groups of 10+ cells on a ThinPrep slide: 1+ (1-5 groups), 2+ (6-10 groups), 3+ (11-20 groups), and 4+ (> 20 groups). Genomic DNA was extracted from residual materials of thyroid FNAs after cytologic diagnosis. Approximately 49% of thyroid FNA samples had low cellularity (1-2+). DNA yield is proportionate with increased cellularity and increased nearly 4-fold from 1+ to 4+ cellularity in cytologic samples. When applied to BRAF mutational assay, using a cutoff of 6 groups of follicular cells with 10+ cells per group, 96.7% of cases yielded enough DNA for at least one testing for BRAF mutation. Five specimens (11.6%) with lower cellularity did not yield sufficient DNA for duplicate testing. Comparison of Sanger sequencing to allele-specific polymerase chain reaction methods shows the latter confers better sensitivity in detection of BRAF mutation, especially in limited cytologic specimens with a lower percentage of malignant cells. This study demonstrates that by using 6 groups of 10+ follicular cells as a cutoff, nearly 97% of thyroid FNA samples contain enough DNA for BRAF mutational assay. Careful selection of a molecular testing system with high sensitivity facilitates the successful conduction of molecular testing in limited cytologic specimens. Cancer (Cancer Cytopathol) 2014;122:114-22 © 2013 American Cancer Society. © 2013 American Cancer Society.

  19. Comparison between three quantitative assays in patients with chronic hepatitis C and their relevance in the prediction of response to therapy.

    PubMed

    Pradat, P; Chossegros, P; Bailly, F; Pontisso, P; Saracco, G; Sauleda, S; Thursz, M; Tillmann, H; Vlassopoulou, H; Alberti, A; Braconier, J H; Esteban, J I; Hadziyannis, S; Manns, M; Rizzetto, M; Thomas, H C; Trépo, C

    2000-05-01

    To compare three quantitative assays measuring viral load in patients with chronic hepatitis C and to determine their value in predicting response to interferon (IFN) therapy, we analysed serum from 896 patients from eight European Centres using QUANTIPLEXtrade mark bDNA, MONITOR AMPLICORtrade mark and SUPERQUANTtrade mark assays. Analyses were performed on the same sample. Viral genotype was assessed using INNO-LiPA HCV II kits. Intercentre variations were observed that were related to the handling of specimens not processed and stored within 6 h of blood sampling. Among sera with optimal handling, a stronger correlation was observed between bDNA and SUPERQUANT (0.806) than between bDNA and MONITOR (0.677) and between MONITOR and SUPERQUANT (0.632). These discrepancies were greatest with genotype 2 (bDNA/SUPERQUANT= 0.772; bDNA/MONITOR=0. 456; SUPERQUANT/MONITOR= 0.299). This correlation was influenced by viraemia level and was better at lower viral loads. The proportion of sera with undetectable viral load was 15% with bDNA, 9.7% with MONITOR and 7.7% with SUPERQUANT. For the three measurements, the best cut-offs of sustained response to IFN treatment were located at their detection threshold. Among patients with viral load below the detection level, a sustained response was observed in 35% tested with bDNA, 38% with MONITOR and 80% with SUPERQUANT. Hence a stronger correlation was observed between bDNA and SUPERQUANT than between either of these assays and MONITOR. SUPERQUANT was the most sensitive assay and this greater sensitivity was associated with a better predictive value of treatment response.

  20. Anti-dsDNA antibodies in systemic lupus erythematosus: A combination of two quantitative methods and the ANA pattern is the most efficient strategy of detection.

    PubMed

    Almeida González, Delia; Roces Varela, Alfredo; Marcelino Rodríguez, Itahisa; González Vera, Alexander; Delgado Sánchez, Mónica; Aznar Esquivel, Antonio; Casañas Rodríguez, Carlos; Cabrera de León, Antonio

    2015-12-01

    Several methods have been used to measure anti-double-stranded DNA auto-antibody (anti-dsDNA). Our aim was to determine the most efficient strategy to test anti-dsDNA in systemic lupus erythematosus (SLE). In this study, anti-dsDNA and anti-nuclear antibody (ANA) tests were requested for 644 patients. Anti-dsDNA was tested by RIA, ELISA and CLIA in all patients. The results indicated that 78 patients had a positive anti-dsDNA test according to at least one of the methods. After a 3-year follow-up period only 26 patients were diagnosed with SLE. We evaluated each method and combination of methods. Specificity and positive predictive value (PPV) increased with the number of assay methods used (p=0.002 for trend), and PPV was 100% in patients whose results were positive by all three anti-dsDNA assay methods. The proportion of anti-dsDNA-positive patients who had SLE was highest (82%; p b 0.001) among those with a homogeneous pattern of ANA staining, followed by those with a speckled pattern. In ANA positive patients, when only RIA was considered, 59% of anti-dsDNA-positive patients had SLE, but when RIA and CLIA were both considered, all patients with positive results on both tests had SLE. The combination of RIA+CLIA in patients with homogeneous and speckled ANA staining showed a similar cost and higher sensitivity than RIA alone in ANA positive patients (p b 0.001). We conclude that the most efficient strategy was to combine simultaneously two quantitative and sensitive methods but only in patients with a homogeneous or speckled pattern of ANA staining. This approach maximized specificity and PPV, and reduced costs. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cross-platform comparison for the detection of RAS mutations in cfDNA (ddPCR Biorad detection assay, BEAMing assay, and NGS strategy).

    PubMed

    Garcia, Jessica; Forestier, Julien; Dusserre, Eric; Wozny, Anne-Sophie; Geiguer, Florence; Merle, Patrick; Tissot, Claire; Ferraro-Peyret, Carole; Jones, Frederick S; Edelstein, Daniel L; Cheynet, Valérie; Bardel, Claire; Vilchez, Gaelle; Xu, Zhenyu; Bringuier, Pierre Paul; Barritault, Marc; Brengle-Pesce, Karen; Guillet, Marielle; Chauvenet, Marion; Manship, Brigitte; Brevet, Marie; Rodriguez-Lafrasse, Claire; Hervieu, Valérie; Couraud, Sébastien; Walter, Thomas; Payen, Léa

    2018-04-20

    CfDNA samples from colon (mCRC) and non-small cell lung cancers (NSCLC) (CIRCAN cohort) were compared using three platforms: droplet digital PCR (ddPCR, Biorad); BEAMing/OncoBEAM™-RAS-CRC (Sysmex Inostics); next-generation sequencing (NGS, Illumina), utilizing the 56G oncology panel (Swift Biosciences). Tissue biopsy and time matched cfDNA samples were collected at diagnosis in the mCRC cohort and during 1st progression in the NSCLC cohort. Excellent matches between cfDNA/FFPE mutation profiles were observed. Detection thresholds were between 0.5-1% for cfDNA samples examined using ddPCR and NGS, and 0.03% with BEAMing. This high level of sensitivity enabled the detection of KRAS mutations in 5/19 CRC patients with negative FFPE profiles. In the mCRC cohort, comparison of mutation results obtained by testing FFPE to those obtained by testing cfDNA by ddPCR resulted in 47% sensitivity, 77% specificity, 70% positive predictive value (PPV) and 55% negative predictive value (NPV). For BEAMing, we observed 93% sensitivity, 69% specificity, 78% PPV and 90% NPV. Finally, sensitivity of NGS was 73%, specificity was 77%, PPV 79% and NPV 71%. Our study highlights the complementarity of different diagnostic approaches and variability of results between OncoBEAM™-RAS-CRC and NGS assays. While the NGS assay provided a larger breadth of coverage of the major targetable alterations of 56 genes in one run, its performance for specific alterations was frequently confirmed by ddPCR results.

  2. Cross-platform comparison for the detection of RAS mutations in cfDNA (ddPCR Biorad detection assay, BEAMing assay, and NGS strategy)

    PubMed Central

    Garcia, Jessica; Forestier, Julien; Dusserre, Eric; Wozny, Anne-Sophie; Geiguer, Florence; Merle, Patrick; Tissot, Claire; Ferraro-Peyret, Carole; Jones, Frederick S.; Edelstein, Daniel L.; Cheynet, Valérie; Bardel, Claire; Vilchez, Gaelle; Xu, Zhenyu; Bringuier, Pierre Paul; Barritault, Marc; Brengle-Pesce, Karen; Guillet, Marielle; Chauvenet, Marion; Manship, Brigitte; Brevet, Marie; Rodriguez-Lafrasse, Claire; Hervieu, Valérie; Couraud, Sébastien; Walter, Thomas; Payen, Léa

    2018-01-01

    CfDNA samples from colon (mCRC) and non-small cell lung cancers (NSCLC) (CIRCAN cohort) were compared using three platforms: droplet digital PCR (ddPCR, Biorad); BEAMing/OncoBEAM™-RAS-CRC (Sysmex Inostics); next-generation sequencing (NGS, Illumina), utilizing the 56G oncology panel (Swift Biosciences). Tissue biopsy and time matched cfDNA samples were collected at diagnosis in the mCRC cohort and during 1st progression in the NSCLC cohort. Excellent matches between cfDNA/FFPE mutation profiles were observed. Detection thresholds were between 0.5–1% for cfDNA samples examined using ddPCR and NGS, and 0.03% with BEAMing. This high level of sensitivity enabled the detection of KRAS mutations in 5/19 CRC patients with negative FFPE profiles. In the mCRC cohort, comparison of mutation results obtained by testing FFPE to those obtained by testing cfDNA by ddPCR resulted in 47% sensitivity, 77% specificity, 70% positive predictive value (PPV) and 55% negative predictive value (NPV). For BEAMing, we observed 93% sensitivity, 69% specificity, 78% PPV and 90% NPV. Finally, sensitivity of NGS was 73%, specificity was 77%, PPV 79% and NPV 71%. Our study highlights the complementarity of different diagnostic approaches and variability of results between OncoBEAM™-RAS-CRC and NGS assays. While the NGS assay provided a larger breadth of coverage of the major targetable alterations of 56 genes in one run, its performance for specific alterations was frequently confirmed by ddPCR results. PMID:29765524

  3. Development of a molecular method for testing the effectiveness of UV systems on-site.

    PubMed

    Nizri, Limor; Vaizel-Ohayon, Dalit; Ben-Amram, Hila; Sharaby, Yehonatan; Halpern, Malka; Mamane, Hadas

    2017-12-15

    We established a molecular method for quantifying ultraviolet (UV) disinfection efficacy using total bacterial DNA in a water sample. To evaluate UV damage to the DNA, we developed the "DNA damage" factor, which is a novel cultivation-independent approach that reveals UV-exposure efficiency by applying a simple PCR amplification method. The study's goal was to prove the feasibility of this method for demonstrating the efficiency of UV systems in the field using flow-through UV reactors. In laboratory-based experiments using seeded bacteria, the DNA damage tests demonstrated a good correlation between PCR products and UV dose. In the field, natural groundwater sampled before and after being subjected to the full-scale UV reactors was filtered, and the DNA extracted from the filtrate was subjected to PCR amplification for a 900-bp fragment of the 16S rRNA gene with initial DNA concentrations of 0.1 and 1 ng/μL. In both cases, the UV dose predicted and explained a significant proportion of the variance in the log inactivation ratio and DNA damage factor. Log inactivation ratio was very low, as expected in groundwater due to low initial bacterial counts, whereas the DNA damage factor was within the range of values obtained in the laboratory-based experiments. Consequently, the DNA damage factor reflected the true performance of the full-scale UV system during operational water flow by using the indigenous bacterial array present in a water sample. By applying this method, we were able to predict with high confidence, the UV reactor inactivation potential. For method validation, laboratory and field iterations are required to create a practical field calibration curve that can be used to determine the expected efficiency of the full-scale UV system in the field under actual operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. HPV E6/E7 mRNA versus HPV DNA biomarker in cervical cancer screening of a group of Macedonian women.

    PubMed

    Duvlis, Sotirija; Popovska-Jankovic, Katerina; Arsova, Zorica Sarafinovska; Memeti, Shaban; Popeska, Zaneta; Plaseska-Karanfilska, Dijana

    2015-09-01

    High risk types of human papillomaviruses E6/E7 oncogenes and their association with tumor suppressor genes products are the key factors of cervical carcinogenesis. This study proposed them as specific markers for cervical dysplasia screening. The aim of the study is to compare the clinical and prognostic significance of HPV E6/E7 mRNA as an early biomarker versus HPV DNA detection and cytology in triage of woman for cervical cancer. The study group consists of 413 women: 258 NILM, 26 ASC-US, 81 LSIL, 41 HSIL, and 7 unsatisfactory cytology. HPV4AACE screening, real-time multiplex PCR and MY09/11 consensus PCR primers methods were used for the HPV DNA detection. The real-time multiplex nucleic acid sequence-based assay (NucliSENS EasyQ HPV assay) was used for HPV E6/E7 mRNA detection of the five most common high risk HPV types in cervical cancer (16, 18, 31, 33, and 45). The results show that HPV E6/E7 mRNA testing had a higher specificity 50% (95% CI 32-67) and positive predictive value (PPV) 62% (95% CI 46-76) for CIN2+ compared to HPV DNA testing that had specificity of 18% (95% CI 7-37) and PPV 52% (95% CI 39-76) respectively. The higher specificity and PPV of HPV E6/E7 mRNA testing are valuable in predicting insignificant HPV DNA infection among cases with borderline cytological finding. It can help in avoiding aggressive procedures (biopsies and over-referral of transient HPV infections) as well as lowering patient's anxiety and follow up period. © 2015 Wiley Periodicals, Inc.

  5. Newborn screening for cystic fibrosis in Wisconsin: comparison of biochemical and molecular methods.

    PubMed

    Gregg, R G; Simantel, A; Farrell, P M; Koscik, R; Kosorok, M R; Laxova, A; Laessig, R; Hoffman, G; Hassemer, D; Mischler, E H; Splaingard, M

    1997-06-01

    To evaluate neonatal screening for cystic fibrosis (CF), including study of the screening procedures and characteristics of false-positive infants, over the past 10 years in Wisconsin. An important objective evolving from the original design has been to compare use of a single-tier immunoreactive trypsinogen (IRT) screening method with that of a two-tier method using IRT and analyses of samples for the most common cystic fibrosis transmembrane regulator (CFTR) (DeltaF508) mutation. We also examined the benefit of including up to 10 additional CFTR mutations in the screening protocol. From 1985 to 1994, using either the IRT or IRT/DNA protocol, 220 862 and 104 308 neonates, respectively, were screened for CF. For the IRT protocol, neonates with an IRT >/=180 ng/mL were considered positive, and the standard sweat chloride test was administered to determine CF status. For the IRT/DNA protocol, samples from the original dried-blood specimen on the Guthrie card of neonates with an IRT >/=110 ng/mL were tested for the presence of the DeltaF508 CFTR allele, and if the DNA test revealed one or two DeltaF508 alleles, a sweat test was obtained. Both screening procedures had very high specificity. The sensitivity tended to be higher with the IRT/DNA protocol, but the differences were not statistically significant. The positive predictive value of the IRT/DNA screening protocol was 15.2% compared with 6.4% if the same samples had been screened by the IRT method. Assessment of the false-positive IRT/DNA population revealed that the two-tier method eliminates the disproportionate number of infants with low Apgar scores and also the high prevalence of African-Americans identified previously in our study of newborns with high IRT levels. We found that 55% of DNA-positive CF infants were homozygous for DeltaF508 and 40% had one DeltaF508 allele. Adding analyses for 10 more CFTR mutations has only a small effect on the sensitivity but is likely to add significantly to the cost of screening. Advantages of the IRT/DNA protocol over IRT analysis include improved positive predictive value, reduction of false-positive infants, and more rapid diagnosis with elimination of recall specimens.

  6. Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes.

    PubMed

    Kayser, Manfred

    2015-09-01

    Forensic DNA Phenotyping refers to the prediction of appearance traits of unknown sample donors, or unknown deceased (missing) persons, directly from biological materials found at the scene. "Biological witness" outcomes of Forensic DNA Phenotyping can provide investigative leads to trace unknown persons, who are unidentifiable with current comparative DNA profiling. This intelligence application of DNA marks a substantially different forensic use of genetic material rather than that of current DNA profiling presented in the courtroom. Currently, group-specific pigmentation traits are already predictable from DNA with reasonably high accuracies, while several other externally visible characteristics are under genetic investigation. Until individual-specific appearance becomes accurately predictable from DNA, conventional DNA profiling needs to be performed subsequent to appearance DNA prediction. Notably, and where Forensic DNA Phenotyping shows great promise, this is on a (much) smaller group of potential suspects, who match the appearance characteristics DNA-predicted from the crime scene stain or from the deceased person's remains. Provided sufficient funding being made available, future research to better understand the genetic basis of human appearance will expectedly lead to a substantially more detailed description of an unknown person's appearance from DNA, delivering increased value for police investigations in criminal and missing person cases involving unknowns. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. footprintDB: a database of transcription factors with annotated cis elements and binding interfaces.

    PubMed

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2014-01-15

    Traditional and high-throughput techniques for determining transcription factor (TF) binding specificities are generating large volumes of data of uneven quality, which are scattered across individual databases. FootprintDB integrates some of the most comprehensive freely available libraries of curated DNA binding sites and systematically annotates the binding interfaces of the corresponding TFs. The first release contains 2422 unique TF sequences, 10 112 DNA binding sites and 3662 DNA motifs. A survey of the included data sources, organisms and TF families was performed together with proprietary database TRANSFAC, finding that footprintDB has a similar coverage of multicellular organisms, while also containing bacterial regulatory data. A search engine has been designed that drives the prediction of DNA motifs for input TFs, or conversely of TF sequences that might recognize input regulatory sequences, by comparison with database entries. Such predictions can also be extended to a single proteome chosen by the user, and results are ranked in terms of interface similarity. Benchmark experiments with bacterial, plant and human data were performed to measure the predictive power of footprintDB searches, which were able to correctly recover 10, 55 and 90% of the tested sequences, respectively. Correctly predicted TFs had a higher interface similarity than the average, confirming its diagnostic value. Web site implemented in PHP,Perl, MySQL and Apache. Freely available from http://floresta.eead.csic.es/footprintdb.

  8. 76 FR 61566 - Significant New Use Rules on Certain Chemical Substances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ... foam control agents. Based on EcoSAR analysis of test data on analogous epoxides, EPA predicts toxicity... control; and an unscheduled DNA synthesis in mammalian cells in culture (OPPTS Test Guideline 870.5550) in...) under section 5(a)(2) of the Toxic Substances Control Act (TSCA) for 36 chemical substances which were...

  9. Studying epigenetic DNA modifications in undergraduate laboratories using complementary bioinformatic and molecular approaches.

    PubMed

    Militello, Kevin T

    2013-01-01

    Epigenetic inheritance is the inheritance of genetic information that is not based on DNA sequence alone. One type of epigenetic information that has come to the forefront in the last few years is modified DNA bases. The most common modified DNA base in nature is 5-methylcytosine. Herein, we describe a laboratory experiment that combines bioinformatic and molecular approaches to study the presence and abundance of 5-methylcytosine in different organisms. Students were originally provided with the protein sequence of the Xenopus laevis DNMT1 cytosine-5 DNA methyltransferase and used BLASTP searches to detect the presence of protein orthologs in the genomes of several organisms including Homo sapiens, Mus musculus, Plasmodium falciparum, Drosophila melanogaster, Saccharomyces cerevisiae, Arabidopsis thaliana, and Caenorhabditis elegans. Students generated hypotheses regarding the presence and abundance of 5-methylcytosine in these organisms based on their bioinformatics data, and directly tested their predictions on a subset of DNAs using restriction enzyme isoschizomer assays. A southern blotting assay to answer the same question is also presented. In addition to exposure to the field of epigenetics, the strengths of the laboratory are students are able to make predictions using bioinformatic tools and quickly test them in the laboratory. In addition, students are exposed to two potential misinterpretations of bioinformatic search data. The laboratory is easily modified to incorporate outside research interests in epigenetics. © 2013 by The International Union of Biochemistry and Molecular Biology.

  10. Bringing colour back after 70 years: Predicting eye and hair colour from skeletal remains of World War II victims using the HIrisPlex system.

    PubMed

    Chaitanya, Lakshmi; Pajnič, Irena Zupanič; Walsh, Susan; Balažic, Jože; Zupanc, Tomaž; Kayser, Manfred

    2017-01-01

    Retrieving information about externally visible characteristics from DNA can provide investigative leads to find unknown perpetrators, and can also help in disaster victim and other missing person identification cases. Aiming for the application to both types of forensic casework, we previously developed and forensically validated the HIrisPlex test system enabling parallel DNA prediction of eye and hair colour. Although a recent proof-of-principle study demonstrated the general suitability of the HIrisPlex system for successfully analysing DNA from bones and teeth of various storage times and conditions, practical case applications to human remains are scarce. In this study, we applied the HIrisPlex system to 49 DNA samples obtained from bones or teeth of World War II victims excavated at six sites, mostly mass graves, in Slovenia. PCR-based DNA quantification ranged from 4pg/μl to 313pg/μl and on an average was 41pg/μl across all samples. All 49 samples generated complete HIrisPlex profiles with the exception of one MC1R DNA marker (N29insA) missing in 83.7% of the samples. In 44 of the 49 samples (89.8%) complete 15-loci autosomal STR (plus amelogenin) profiles were obtained. Of 5 pairs of skeletal remains for which STR profiling suggested an origin in the same individuals, respectively, 4 showed the same HIrisPlex profiles and predicted eye and hair colours, respectively, while discrepancies in one pair (sample 26 and 43) are likely to be explained by DNA quantity and quality issues observed in sample 43. Sample 43 had the lowest DNA concentration of only 4pg/μl, producing least reliable STR results and could be misleading in concluding that samples 43 and 26 originate from the same individual. The HIrisPlex-predicted eye and hair colours from two skeletal samples, suggested to derive from two brothers via STR profiling together with a living sister, were confirmed by the living sister's report. Overall, we demonstrate that after more than 70 years, HIrisPlex-based eye and hair colour prediction from skeletal remains is feasible with high success rate. Our results further encourage the use of the HIrisPlex system in missing person/disaster victim identification to aid the identification process in cases where ante-mortem samples or putative relatives are not directly available, and DNA predicted eye and hair colour information provides leads for locating them, allowing STRbased individual identification. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Microsphere-Based Multiplex Analysis of DNA Methylation in Acute Myeloid Leukemia

    PubMed Central

    Wertheim, Gerald B.W.; Smith, Catherine; Figueroa, Maria E.; Kalos, Michael; Bagg, Adam; Carroll, Martin; Master, Stephen R.

    2015-01-01

    Aberrant regulation of DNA methylation is characteristic of cancer cells and clearly influences phenotypes of various malignancies. Despite clear correlations between DNA methylation and patient outcome, tests that directly measure multiple-locus DNA methylation are typically expensive and technically challenging. Previous studies have demonstrated that the prognosis of patients with acute myeloid leukemia can be predicted by the DNA methylation pattern of 18 loci. We have developed a novel strategy, termed microsphere HpaII tiny fragment enrichment by ligation-mediated PCR (MELP), to simultaneously analyze the DNA methylation pattern at these loci using methylation-specific DNA digestion, fluorescently labeled microspheres, and branched DNA hybridization. The method uses techniques that are inexpensive and easily performed in a molecular laboratory. MELP accurately reflects the methylation levels at each locus analyzed and segregates patients with acute myeloid leukemia into prognostic subgroups. Our results demonstrate the usefulness of MELP as a platform for simultaneous evaluation of DNA methylation of multiple loci. PMID:24373919

  12. DNA methylation-based age prediction from various tissues and body fluids

    PubMed Central

    Jung, Sang-Eun; Shin, Kyoung-Jin; Lee, Hwan Young

    2017-01-01

    Aging is a natural and gradual process in human life. It is influenced by heredity, environment, lifestyle, and disease. DNA methylation varies with age, and the ability to predict the age of donor using DNA from evidence materials at a crime scene is of considerable value in forensic investigations. Recently, many studies have reported age prediction models based on DNA methylation from various tissues and body fluids. Those models seem to be very promising because of their high prediction accuracies. In this review, the changes of age-associated DNA methylation and the age prediction models for various tissues and body fluids were examined, and then the applicability of the DNA methylation-based age prediction method to the forensic investigations was discussed. This will improve the understandings about DNA methylation markers and their potential to be used as biomarkers in the forensic field, as well as the clinical field. PMID:28946940

  13. Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence.

    PubMed

    Lee, Jia-Ying Joey; Miller, James Alastair; Basu, Sreetama; Kee, Ting-Zhen Vanessa; Loo, Lit-Hsin

    2018-06-01

    Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide variety of chemicals is not currently available. Here, we report a study that uses high-throughput imaging and artificial intelligence to build an in vitro pulmonotoxicity assay by automatically comparing and selecting human lung-cell lines and their associated quantitative phenotypic features most predictive of in vivo pulmonotoxicity. This approach is called "High-throughput In vitro Phenotypic Profiling for Toxicity Prediction" (HIPPTox). We found that the resulting assay based on two phenotypic features of a human bronchial epithelial cell line, BEAS-2B, can accurately classify 33 reference chemicals with human pulmonotoxicity information (88.8% balance accuracy, 84.6% sensitivity, and 93.0% specificity). In comparison, the predictivity of a standard cell-viability assay on the same set of chemicals is much lower (77.1% balanced accuracy, 84.6% sensitivity, and 69.5% specificity). We also used the assay to evaluate 17 additional test chemicals with unknown/unclear human pulmonotoxicity, and experimentally confirmed that many of the pulmonotoxic reference and predicted-positive test chemicals induce DNA strand breaks and/or activation of the DNA-damage response (DDR) pathway. Therefore, HIPPTox helps us to uncover these common modes-of-action of pulmonotoxic chemicals. HIPPTox may also be applied to other cell types or models, and accelerate the development of predictive in vitro assays for other cell-type- or organ-specific toxicities.

  14. Behavioral vs. molecular sources of conflict between nuclear and mitochondrial DNA: The role of male-biased dispersal in a Holarctic sea duck

    USGS Publications Warehouse

    Peters, Jeffrey L.; Bolender, Kimberly A.; Pearce, John M.

    2012-01-01

    Genetic studies of waterfowl (Anatidae) have observed the full spectrum of mitochondrial (mt) DNA population divergence, from apparent panmixia to deep, reciprocally monophyletic lineages. Yet, these studies often found weak or no nuclear (nu) DNA structure, which was often attributed to male-biased gene flow, a common behaviour within this family. An alternative explanation for this ‘conflict’ is that the smaller effective population size and faster sorting rate of mtDNA relative to nuDNA lead to different signals of population structure. We tested these alternatives by sequencing 12 nuDNA introns for a Holarctic pair of waterfowl subspecies, the European goosander (Mergus merganser merganser) and the North American common merganser (M. m. americanus), which exhibit strong population structure in mtDNA. We inferred effective population sizes, gene flow and divergence times from published mtDNA sequences and simulated expected differentiation for nuDNA based on those histories. Between Europe and North America, nuDNA ФST was 3.4-fold lower than mtDNA ФST, a result consistent with differences in sorting rates. However, despite geographically structured and monophyletic mtDNA lineages within continents, nuDNA ФST values were generally zero and significantly lower than predicted. This between- and within-continent contrast held when comparing mtDNA and nuDNA among published studies of ducks. Thus, male-mediated gene flow is a better explanation than slower sorting rates for limited nuDNA differentiation within continents, which is also supported by nonmolecular data. This study illustrates the value of quantitatively testing discrepancies between mtDNA and nuDNA to reject the null hypothesis that conflict simply reflects different sorting rates.

  15. Image-based modeling of radiation-induced foci

    NASA Astrophysics Data System (ADS)

    Costes, Sylvain; Cucinotta, Francis A.; Ponomarev, Artem; Barcellos-Hoff, Mary Helen; Chen, James; Chou, William; Gascard, Philippe

    Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage occurs. To test this assumption, we used Monte Carlo simulations to predict the spatial distribution of DSB in human nuclei exposed to high or low-LET radiation. We then compared these predictions to the distribution patterns of three DNA damage sensing proteins, i.e. 53BP1, phosphorylated ATM and γH2AX in human mammary epithelial. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We first used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. Simulations showed a very good agreement for high-LET, predicting 0.7 foci/µm along the path of a 1 GeV/amu Fe particle against measurement of 0.69 to 0.82 foci/µm for various RIF 5 min following exposure (LET 150 keV/µm). On the other hand, discrepancies were shown in foci frequency for low-LET, with measurements 20One drawback using a theoretical model for the nucleus is that it assumes a simplistic and static pattern for DNA densities. However DNA damage pattern is highly correlated to DNA density pattern (i.e. the more DNA, the more likely to have a break). Therefore, we generalized our Monte Carlo approach to real microscope images, assuming pixel intensity of DAPI in the nucleus was directly proportional to the amount of DNA in that pixel. With such approach we could predict DNA damage pattern in real images on a per nucleus basis. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. As expected, simulations produced DNA-weighted random (Poisson) distributions. In contrast, the distributions of RIF obtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) were non-random. This deviation from the expected DNA-weighted random pattern was further characterized by "relative DNA image measurements". This novel imaging approach showed that RIF were located preferentially at the interface between high and low DNA density regions, and were more frequent than predicted in regions with lower DNA density. The same preferential nuclear location was also measured for RIF induced by 1 Gy of low-LET radiation. This deviation from random behavior was evident only 5 min after irradiation for phosphorylated ATM RIF, while γH2AX and 53BP1 RIF showed pronounced deviations up to 30 min after exposure. These data suggest that RIF within a few minutes following exposure to radiation cluster into open regions of the nucleus (i.e. euchromatin). It is possible that DNA lesions are collected in these nuclear sub-domains for more efficient repair. If so, this would imply that DSB are actively transported within the nucleus, a phenomenon that has not yet been considered in modeling DNA misrepair following exposure to radiation. These results are thus critical for more accurate risk models of radiation and we are actively working on characterizing further RIF movement in human nuclei using live cell imaging.

  16. Peripheral neuropathy predicts nuclear gene defect in patients with mitochondrial ophthalmoplegia.

    PubMed

    Horga, Alejandro; Pitceathly, Robert D S; Blake, Julian C; Woodward, Catherine E; Zapater, Pedro; Fratter, Carl; Mudanohwo, Ese E; Plant, Gordon T; Houlden, Henry; Sweeney, Mary G; Hanna, Michael G; Reilly, Mary M

    2014-12-01

    Progressive external ophthalmoplegia is a common clinical feature in mitochondrial disease caused by nuclear DNA defects and single, large-scale mitochondrial DNA deletions and is less frequently associated with point mutations of mitochondrial DNA. Peripheral neuropathy is also a frequent manifestation of mitochondrial disease, although its prevalence and characteristics varies considerably among the different syndromes and genetic aetiologies. Based on clinical observations, we systematically investigated whether the presence of peripheral neuropathy could predict the underlying genetic defect in patients with progressive external ophthalmoplegia. We analysed detailed demographic, clinical and neurophysiological data from 116 patients with genetically-defined mitochondrial disease and progressive external ophthalmoplegia. Seventy-eight patients (67%) had a single mitochondrial DNA deletion, 12 (10%) had a point mutation of mitochondrial DNA and 26 (22%) had mutations in either POLG, C10orf2 or RRM2B, or had multiple mitochondrial DNA deletions in muscle without an identified nuclear gene defect. Seventy-seven patients had neurophysiological studies; of these, 16 patients (21%) had a large-fibre peripheral neuropathy. The prevalence of peripheral neuropathy was significantly lower in patients with a single mitochondrial DNA deletion (2%) as compared to those with a point mutation of mitochondrial DNA or with a nuclear DNA defect (44% and 52%, respectively; P<0.001). Univariate analyses revealed significant differences in the distribution of other clinical features between genotypes, including age at disease onset, gender, family history, progressive external ophthalmoplegia at clinical presentation, hearing loss, pigmentary retinopathy and extrapyramidal features. However, binomial logistic regression analysis identified peripheral neuropathy as the only independent predictor associated with a nuclear DNA defect (P=0.002; odds ratio 8.43, 95% confidence interval 2.24-31.76). Multinomial logistic regression analysis identified peripheral neuropathy, family history and hearing loss as significant predictors of the genotype, and the same three variables showed the highest performance in genotype classification in a decision tree analysis. Of these variables, peripheral neuropathy had the highest specificity (91%), negative predictive value (83%) and positive likelihood ratio (5.87) for the diagnosis of a nuclear DNA defect. These results indicate that peripheral neuropathy is a rare finding in patients with single mitochondrial DNA deletions but that it is highly predictive of an underlying nuclear DNA defect. This observation may facilitate the development of diagnostic algorithms. We suggest that nuclear gene testing may enable a more rapid diagnosis and avoid muscle biopsy in patients with progressive external ophthalmoplegia and peripheral neuropathy. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.

  17. Peripheral neuropathy predicts nuclear gene defect in patients with mitochondrial ophthalmoplegia

    PubMed Central

    Pitceathly, Robert D. S.; Blake, Julian C.; Woodward, Catherine E.; Zapater, Pedro; Fratter, Carl; Mudanohwo, Ese E.; Plant, Gordon T.; Houlden, Henry; Sweeney, Mary G.; Hanna, Michael G.; Reilly, Mary M.

    2014-01-01

    Progressive external ophthalmoplegia is a common clinical feature in mitochondrial disease caused by nuclear DNA defects and single, large-scale mitochondrial DNA deletions and is less frequently associated with point mutations of mitochondrial DNA. Peripheral neuropathy is also a frequent manifestation of mitochondrial disease, although its prevalence and characteristics varies considerably among the different syndromes and genetic aetiologies. Based on clinical observations, we systematically investigated whether the presence of peripheral neuropathy could predict the underlying genetic defect in patients with progressive external ophthalmoplegia. We analysed detailed demographic, clinical and neurophysiological data from 116 patients with genetically-defined mitochondrial disease and progressive external ophthalmoplegia. Seventy-eight patients (67%) had a single mitochondrial DNA deletion, 12 (10%) had a point mutation of mitochondrial DNA and 26 (22%) had mutations in either POLG, C10orf2 or RRM2B, or had multiple mitochondrial DNA deletions in muscle without an identified nuclear gene defect. Seventy-seven patients had neurophysiological studies; of these, 16 patients (21%) had a large-fibre peripheral neuropathy. The prevalence of peripheral neuropathy was significantly lower in patients with a single mitochondrial DNA deletion (2%) as compared to those with a point mutation of mitochondrial DNA or with a nuclear DNA defect (44% and 52%, respectively; P < 0.001). Univariate analyses revealed significant differences in the distribution of other clinical features between genotypes, including age at disease onset, gender, family history, progressive external ophthalmoplegia at clinical presentation, hearing loss, pigmentary retinopathy and extrapyramidal features. However, binomial logistic regression analysis identified peripheral neuropathy as the only independent predictor associated with a nuclear DNA defect (P = 0.002; odds ratio 8.43, 95% confidence interval 2.24–31.76). Multinomial logistic regression analysis identified peripheral neuropathy, family history and hearing loss as significant predictors of the genotype, and the same three variables showed the highest performance in genotype classification in a decision tree analysis. Of these variables, peripheral neuropathy had the highest specificity (91%), negative predictive value (83%) and positive likelihood ratio (5.87) for the diagnosis of a nuclear DNA defect. These results indicate that peripheral neuropathy is a rare finding in patients with single mitochondrial DNA deletions but that it is highly predictive of an underlying nuclear DNA defect. This observation may facilitate the development of diagnostic algorithms. We suggest that nuclear gene testing may enable a more rapid diagnosis and avoid muscle biopsy in patients with progressive external ophthalmoplegia and peripheral neuropathy. PMID:25281868

  18. Induction and repair of DNA damage measured by the comet assay in human T lymphocytes separated by immunomagnetic cell sorting.

    PubMed

    Bausinger, Julia; Speit, Günter

    2014-11-01

    The comet assay is widely used in human biomonitoring to measure DNA damage in whole blood or isolated peripheral blood mononuclear cells (PBMC) as a marker of exposure to genotoxic agents. Cytogenetic assays with phytohemagglutinin (PHA)-stimulated cultured T lymphocytes are also frequently performed in human biomonitoring. Cytogenetic effects (micronuclei, chromosome aberrations, sister chromatid exchanges) may be induced in vivo but also occur ex vivo during the cultivation of lymphocytes as a consequence of DNA damage present in lymphocytes at the time of sampling. To better understand whether DNA damage measured by the comet assay in PBMC is representative for DNA damage in T cells, we comparatively investigated DNA damage and its repair in PBMC and T cells obtained by immunomagnetic cell sorting. PBMC cultures and T cell cultures were exposed to mutagens with different modes of genotoxic action and DNA damage was measured by the comet assay after the end of a 2h exposure and after 18h post-incubation. The mutagens tested were methyl methanesulfonate (MMS), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), 4-nitroquinoline-1-oxide (4NQO), styrene oxide and potassium bromate. MMS and potassium bromate were also tested by the modified comet assay with formamido pyrimidine glycosylase (FPG) protein. The results indicate that the mutagens tested induce DNA damage in PBMC and T cells in the same range of concentrations and removal of induced DNA lesions occurs to a comparable extent. Based on these results, we conclude that the comet assay with PBMC is suited to predict DNA damage and its removal in T cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Next-generation sequencing of circulating tumor DNA to predict recurrence in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy.

    PubMed

    Chen, Yu-Hsiang; Hancock, Bradley A; Solzak, Jeffrey P; Brinza, Dumitru; Scafe, Charles; Miller, Kathy D; Radovich, Milan

    2017-01-01

    Next-generation sequencing to detect circulating tumor DNA is a minimally invasive method for tumor genotyping and monitoring therapeutic response. The majority of studies have focused on detecting circulating tumor DNA from patients with metastatic disease. Herein, we tested whether circulating tumor DNA could be used as a biomarker to predict relapse in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy. In this study, we analyzed samples from 38 early-stage triple-negative breast cancer patients with matched tumor, blood, and plasma. Extracted DNA underwent library preparation and amplification using the Oncomine Research Panel consisting of 134 cancer genes, followed by high-coverage sequencing and bioinformatics. We detected high-quality somatic mutations from primary tumors in 33 of 38 patients. TP53 mutations were the most prevalent (82%) followed by PIK3CA (16%). Of the 33 patients who had a mutation identified in their primary tumor, we were able to detect circulating tumor DNA mutations in the plasma of four patients (three TP53 mutations, one AKT1 mutation, one CDKN2A mutation). All four patients had recurrence of their disease (100% specificity), but sensitivity was limited to detecting only 4 of 13 patients who clinically relapsed (31% sensitivity). Notably, all four patients had a rapid recurrence (0.3, 4.0, 5.3, and 8.9 months). Patients with detectable circulating tumor DNA had an inferior disease free survival ( p  < 0.0001; median disease-free survival: 4.6 mos. vs. not reached; hazard ratio = 12.6, 95% confidence interval: 3.06-52.2). Our study shows that next-generation circulating tumor DNA sequencing of triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy can predict recurrence with high specificity, but moderate sensitivity. For those patients where circulating tumor DNA is detected, recurrence is rapid.

  20. Predictive genomics DNA profiling for athletic performance.

    PubMed

    Kambouris, Marios; Ntalouka, Foteini; Ziogas, Georgios; Maffulli, Nicola

    2012-12-01

    Genes control biological processes such as muscle, cartilage and bone formation, muscle energy production and metabolism (mitochondriogenesis, lactic acid removal), blood and tissue oxygenation (erythropoiesis, angiogenesis, vasodilatation), all essential in sport and athletic performance. DNA sequence variations in such genes confer genetic advantages that can be exploited, or genetic 'barriers' that could be overcome to achieve optimal athletic performance. Predictive Genomic DNA Profiling for athletic performance reveals genetic variations that may be associated with better suitability for endurance, strength and speed sports, vulnerability to sports-related injuries and individualized nutritional requirements. Knowledge of genetic 'suitability' in respect to endurance capacity or strength and speed would lead to appropriate sport and athletic activity selection. Knowledge of genetic advantages and barriers would 'direct' an individualized training program, nutritional plan and nutritional supplementation to achieving optimal performance, overcoming 'barriers' that results from intense exercise and pressure under competition with minimum waste of time and energy and avoidance of health risks (hypertension, cardiovascular disease, inflammation, and musculoskeletal injuries) related to exercise, training and competition. Predictive Genomics DNA profiling for Athletics and Sports performance is developing into a tool for athletic activity and sport selection and for the formulation of individualized and personalized training and nutritional programs to optimize health and performance for the athlete. Human DNA sequences are patentable in some countries, while in others DNA testing methodologies [unless proprietary], are non patentable. On the other hand, gene and variant selection, genotype interpretation and the risk and suitability assigning algorithms based on the specific Genomic variants used are amenable to patent protection.

  1. Economic Evaluation of Screening Strategies Combined with HPV Vaccination of Preadolescent Girls for the Prevention of Cervical Cancer in Vientiane, Lao PDR

    PubMed Central

    2016-01-01

    Background Several approaches to reduce the incidence of invasive cervical cancers exist. The approach adopted should take into account contextual factors that influence the cost-effectiveness of the available options. Objective To determine the cost-effectiveness of screening strategies combined with a vaccination program for 10-year old girls for cervical cancer prevention in Vientiane, Lao PDR. Methods A population-based dynamic compartment model was constructed. The interventions consisted of a 10-year old girl vaccination program only, or this program combined with screening strategies, i.e., visual inspection with acetic acid (VIA), cytology-based screening, rapid human papillomavirus (HPV) DNA testing, or combined VIA and cytology testing. Simulations were run over 100 years. In base-case scenario analyses, we assumed a 70% vaccination coverage with lifelong protection and a 50% screening coverage. The outcome of interest was the incremental cost per Disability-Adjusted Life Year (DALY) averted. Results In base-case scenarios, compared to the next best strategy, the model predicted that VIA screening of women aged 30–65 years old every three years, combined with vaccination, was the most attractive option, costing 2 544 international dollars (I$) per DALY averted. Meanwhile, rapid HPV DNA testing was predicted to be more attractive than cytology-based screening or its combination with VIA. Among cytology-based screening options, combined VIA with conventional cytology testing was predicted to be the most attractive option. Multi-way sensitivity analyses did not change the results. Compared to rapid HPV DNA testing, VIA had a probability of cost-effectiveness of 73%. Compared to the vaccination only option, the probability that a program consisting of screening women every five years would be cost-effective was around 60% and 80% if the willingness-to-pay threshold is fixed at one and three GDP per capita, respectively. Conclusions A VIA screening program in addition to a girl vaccination program was predicted to be the most attractive option in the health care context of Lao PDR. When compared with other screening methods, VIA was the primary recommended method for combination with vaccination in Lao PDR. PMID:27631732

  2. Economic Evaluation of Screening Strategies Combined with HPV Vaccination of Preadolescent Girls for the Prevention of Cervical Cancer in Vientiane, Lao PDR.

    PubMed

    Chanthavilay, Phetsavanh; Reinharz, Daniel; Mayxay, Mayfong; Phongsavan, Keokedthong; Marsden, Donald E; Moore, Lynne; White, Lisa J

    2016-01-01

    Several approaches to reduce the incidence of invasive cervical cancers exist. The approach adopted should take into account contextual factors that influence the cost-effectiveness of the available options. To determine the cost-effectiveness of screening strategies combined with a vaccination program for 10-year old girls for cervical cancer prevention in Vientiane, Lao PDR. A population-based dynamic compartment model was constructed. The interventions consisted of a 10-year old girl vaccination program only, or this program combined with screening strategies, i.e., visual inspection with acetic acid (VIA), cytology-based screening, rapid human papillomavirus (HPV) DNA testing, or combined VIA and cytology testing. Simulations were run over 100 years. In base-case scenario analyses, we assumed a 70% vaccination coverage with lifelong protection and a 50% screening coverage. The outcome of interest was the incremental cost per Disability-Adjusted Life Year (DALY) averted. In base-case scenarios, compared to the next best strategy, the model predicted that VIA screening of women aged 30-65 years old every three years, combined with vaccination, was the most attractive option, costing 2 544 international dollars (I$) per DALY averted. Meanwhile, rapid HPV DNA testing was predicted to be more attractive than cytology-based screening or its combination with VIA. Among cytology-based screening options, combined VIA with conventional cytology testing was predicted to be the most attractive option. Multi-way sensitivity analyses did not change the results. Compared to rapid HPV DNA testing, VIA had a probability of cost-effectiveness of 73%. Compared to the vaccination only option, the probability that a program consisting of screening women every five years would be cost-effective was around 60% and 80% if the willingness-to-pay threshold is fixed at one and three GDP per capita, respectively. A VIA screening program in addition to a girl vaccination program was predicted to be the most attractive option in the health care context of Lao PDR. When compared with other screening methods, VIA was the primary recommended method for combination with vaccination in Lao PDR.

  3. DNA content analysis of colorectal cancer defines a distinct ‘microsatellite and chromosome stable’ group but does not predict response to radiotherapy

    PubMed Central

    Fadhil, Wakkas; Kindle, Karin; Jackson, Darryl; Zaitoun, Abed; Lane, Nina; Robins, Adrian; Ilyas, Mohammad

    2014-01-01

    Colorectal cancers (CRC) are thought to have genetic instability in the form of either microsatellite instability (MSI) or chromosomal instability (CIN). Recently, tumours have been described without either MSI or CIN, that is, microsatellite and chromosome stable (MACS) CRCs. We investigated the (i) frequency of the MACS-CRCs and (ii) whether this genotype predicted responsiveness to neoadjuvant chemoradiotherapy. To examine the frequency of MACS-CRCs, DNA content (ploidy) was examined in 89 sporadic microsatellite-stable CRCs using flow cytometry. The tumours were also screened for mutations in KRAS/BRAF/TP53/PIK3CA by QMC-PCR. To examine the value of tumour ploidy in predicting response to chemoradiotherapy, DNA content was tested in a separate group of 62 rectal cancers treated with neoadjuvant chemoradiotherapy. Fifty-one of 89 CRCs (57%) were aneuploid and 38 (43%) were diploid. There was no significant association between mutations in TP53/KRAS/BRAF/PIK3CA and ploidy. Testing of association between mutations revealed only mutual exclusivity of KRAS/BRAF mutation (P < 0.001). Of the 62 rectal cancers treated with neoadjuvant chemoradiotherapy, 22 had responded (Mandard tumour regression grade 1/2) and 40 failed to respond (Grade 3–5). Twenty-five of 62 (40%) tumours were diploid, but there was no association between ploidy and response to therapy. We conclude that MACS-CRCs form a significant proportion of microsatellite-stable CRCs with a mutation profile overlapping that of CRCs with CIN. A diploid genotype does not, however, predict the responsiveness to radiotherapy. PMID:24456329

  4. Detection of Strand Cleavage And Oxidation Damage Using Model DNA Molecules Captured in a Nanoscale Pore

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Solbrig, A.; DeGuzman, V.; Deamer, D.; Akeson, M.

    2003-01-01

    We use a biological nano-scale pore to distinguish among individual DNA hairpins that differ by a single site of oxidation or a nick in the sugar-phosphate backbone. In earlier work we showed that the protein ion channel alpha-hemolysin can be used as a detector to distinguish single-stranded from double-stranded DNA, single base pair and single nucleotide differences. This resolution is in part a result of sensitivity to structural changes that influence the molecular dynamics of nucleotides within DNA. The strand cleavage products we examined here included a 5-base-pair (5-bp) hairpin with a 5-prime five-nucleotide overhang, and a complementary five-nucleotide oligomer. These produced predictable shoulder-spike and rapid near-full blockade signatures, respectively. When combined, strand annealing was monitored in real time. The residual current level dropped to a lower discrete level in the shoulder-spike blockade signatures, and the duration lengthened. However, these blockade signatures had a shorter duration than the unmodified l0bp hairpin. To test the pore sensitivity to nucleotide oxidation, we examined a 9-bp hairpin with a terminal 8-oxo-deoxyguanosine (8-oxo-dG), or a penultimate 8-oxo-dG. Each produced blockade signatures that differed from the otherwise identical control 9bp hairpins. This study showed that DNA structure is modified sufficiently by strand cleavage or oxidation damage at a single site to alter in a predictable manner the ionic current blockade signatures produced. This technique improves the ability to assess damage to DNA, and can provide a simple means to help characterize the risks of radiation exposure. It may also provide a method to test radiation protection.

  5. The nucleic acid revolution continues - will forensic biology become forensic molecular biology?

    PubMed

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to "forensic molecular biology." Aside from DNA's established role in identifying the "who" in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about "when" a crime took place and "what" took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future.

  6. Development and validation of InnoQuant™, a sensitive human DNA quantitation and degradation assessment method for forensic samples using high copy number mobile elements Alu and SVA.

    PubMed

    Pineda, Gina M; Montgomery, Anne H; Thompson, Robyn; Indest, Brooke; Carroll, Marion; Sinha, Sudhir K

    2014-11-01

    There is a constant need in forensic casework laboratories for an improved way to increase the first-pass success rate of forensic samples. The recent advances in mini STR analysis, SNP, and Alu marker systems have now made it possible to analyze highly compromised samples, yet few tools are available that can simultaneously provide an assessment of quantity, inhibition, and degradation in a sample prior to genotyping. Currently there are several different approaches used for fluorescence-based quantification assays which provide a measure of quantity and inhibition. However, a system which can also assess the extent of degradation in a forensic sample will be a useful tool for DNA analysts. Possessing this information prior to genotyping will allow an analyst to more informatively make downstream decisions for the successful typing of a forensic sample without unnecessarily consuming DNA extract. Real-time PCR provides a reliable method for determining the amount and quality of amplifiable DNA in a biological sample. Alu are Short Interspersed Elements (SINE), approximately 300bp insertions which are distributed throughout the human genome in large copy number. The use of an internal primer to amplify a segment of an Alu element allows for human specificity as well as high sensitivity when compared to a single copy target. The advantage of an Alu system is the presence of a large number (>1000) of fixed insertions in every human genome, which minimizes the individual specific variation possible when using a multi-copy target quantification system. This study utilizes two independent retrotransposon genomic targets to obtain quantification of an 80bp "short" DNA fragment and a 207bp "long" DNA fragment in a degraded DNA sample in the multiplex system InnoQuant™. The ratio of the two quantitation values provides a "Degradation Index", or a qualitative measure of a sample's extent of degradation. The Degradation Index was found to be predictive of the observed loss of STR markers and alleles as degradation increases. Use of a synthetic target as an internal positive control (IPC) provides an additional assessment for the presence of PCR inhibitors in the test sample. In conclusion, a DNA based qualitative/quantitative/inhibition assessment system that accurately predicts the status of a biological sample, will be a valuable tool for deciding which DNA test kit to utilize and how much target DNA to use, when processing compromised forensic samples for DNA testing. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Detection of IL28B SNP DNA from Buccal Epithelial Cells, Small Amounts of Serum, and Dried Blood Spots

    PubMed Central

    Halfon, Philippe; Ouzan, Denis; Khiri, Hacène; Pénaranda, Guillaume; Castellani, Paul; Oulès, Valerie; Kahloun, Asma; Amrani, Nolwenn; Fanteria, Lise; Martineau, Agnès; Naldi, Lou; Bourlière, Marc

    2012-01-01

    Background & Aims Point mutations in the coding region of the interleukin 28 gene (rs12979860) have recently been identified for predicting the outcome of treatment of hepatitis C virus infection. This polymorphism detection was based on whole blood DNA extraction. Alternatively, DNA for genetic diagnosis has been derived from buccal epithelial cells (BEC), dried blood spots (DBS), and genomic DNA from serum. The aim of the study was to investigate the reliability and accuracy of alternative routes of testing for single nucleotide polymorphism allele rs12979860CC. Methods Blood, plasma, and sera samples from 200 patients were extracted (400 µL). Buccal smears were tested using an FTA card. To simulate postal delay, we tested the influence of storage at ambient temperature on the different sources of DNA at five time points (baseline, 48 h, 6 days, 9 days, and 12 days) Results There was 100% concordance between blood, plasma, sera, and BEC, validating the use of DNA extracted from BEC collected on cytology brushes for genetic testing. Genetic variations in HPTR1 gene were detected using smear technique in blood smear (3620 copies) as well as in buccal smears (5870 copies). These results are similar to those for whole blood diluted at 1/10. A minimum of 0.04 µL, 4 µL, and 40 µL was necessary to obtain exploitable results respectively for whole blood, sera, and plasma. No significant variation between each time point was observed for the different sources of DNA. IL28B SNPs analysis at these different time points showed the same results using the four sources of DNA. Conclusion We demonstrated that genomic DNA extraction from buccal cells, small amounts of serum, and dried blood spots is an alternative to DNA extracted from peripheral blood cells and is helpful in retrospective and prospective studies for multiple genetic markers, specifically in hard-to-reach individuals. PMID:22412970

  8. Synthetic oligonucleotide antigens modified with locked nucleic acids detect disease specific antibodies

    NASA Astrophysics Data System (ADS)

    Samuelsen, Simone V.; Solov'Yov, Ilia A.; Balboni, Imelda M.; Mellins, Elizabeth; Nielsen, Christoffer Tandrup; Heegaard, Niels H. H.; Astakhova, Kira

    2016-10-01

    New techniques to detect and quantify antibodies to nucleic acids would provide a significant advance over current methods, which often lack specificity. We investigate the potential of novel antigens containing locked nucleic acids (LNAs) as targets for antibodies. Particularly, employing molecular dynamics we predict optimal nucleotide composition for targeting DNA-binding antibodies. As a proof of concept, we address a problem of detecting anti-DNA antibodies that are characteristic of systemic lupus erythematosus, a chronic autoimmune disease with multiple manifestations. We test the best oligonucleotide binders in surface plasmon resonance studies to analyze binding and kinetic aspects of interactions between antigens and target DNA. These DNA and LNA/DNA sequences showed improved binding in enzyme-linked immunosorbent assay using human samples of pediatric lupus patients. Our results suggest that the novel method is a promising tool to create antigens for research and point-of-care monitoring of anti-DNA antibodies.

  9. Combination Testing Using a Single MSH5 Variant alongside HLA Haplotypes Improves the Sensitivity of Predicting Coeliac Disease Risk in the Polish Population.

    PubMed

    Paziewska, Agnieszka; Cukrowska, Bozena; Dabrowska, Michalina; Goryca, Krzysztof; Piatkowska, Magdalena; Kluska, Anna; Mikula, Michal; Karczmarski, Jakub; Oralewska, Beata; Rybak, Anna; Socha, Jerzy; Balabas, Aneta; Zeber-Lubecka, Natalia; Ambrozkiewicz, Filip; Konopka, Ewa; Trojanowska, Ilona; Zagroba, Malgorzata; Szperl, Malgorzata; Ostrowski, Jerzy

    2015-01-01

    Assessment of non-HLA variants alongside standard HLA testing was previously shown to improve the identification of potential coeliac disease (CD) patients. We intended to identify new genetic variants associated with CD in the Polish population that would improve CD risk prediction when used alongside HLA haplotype analysis. DNA samples of 336 CD and 264 unrelated healthy controls were used to create DNA pools for a genome wide association study (GWAS). GWAS findings were validated with individual HLA tag single nucleotide polymorphism (SNP) typing of 473 patients and 714 healthy controls. Association analysis using four HLA-tagging SNPs showed that, as was found in other populations, positive predicting genotypes (HLA-DQ2.5/DQ2.5, HLA-DQ2.5/DQ2.2, and HLA-DQ2.5/DQ8) were found at higher frequencies in CD patients than in healthy control individuals in the Polish population. Both CD-associated SNPs discovered by GWAS were found in the CD susceptibility region, confirming the previously-determined association of the major histocompatibility (MHC) region with CD pathogenesis. The two most significant SNPs from the GWAS were rs9272346 (HLA-dependent; localized within 1 Kb of DQA1) and rs3130484 (HLA-independent; mapped to MSH5). Specificity of CD prediction using the four HLA-tagging SNPs achieved 92.9%, but sensitivity was only 45.5%. However, when a testing combination of the HLA-tagging SNPs and the MSH5 SNP was used, specificity decreased to 80%, and sensitivity increased to 74%. This study confirmed that improvement of CD risk prediction sensitivity could be achieved by including non-HLA SNPs alongside HLA SNPs in genetic testing.

  10. DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing.

    PubMed

    Vidaki, Athina; Ballard, David; Aliferi, Anastasia; Miller, Thomas H; Barron, Leon P; Syndercombe Court, Denise

    2017-05-01

    The ability to estimate the age of the donor from recovered biological material at a crime scene can be of substantial value in forensic investigations. Aging can be complex and is associated with various molecular modifications in cells that accumulate over a person's lifetime including epigenetic patterns. The aim of this study was to use age-specific DNA methylation patterns to generate an accurate model for the prediction of chronological age using data from whole blood. In total, 45 age-associated CpG sites were selected based on their reported age coefficients in a previous extensive study and investigated using publicly available methylation data obtained from 1156 whole blood samples (aged 2-90 years) analysed with Illumina's genome-wide methylation platforms (27K/450K). Applying stepwise regression for variable selection, 23 of these CpG sites were identified that could significantly contribute to age prediction modelling and multiple regression analysis carried out with these markers provided an accurate prediction of age (R 2 =0.92, mean absolute error (MAE)=4.6 years). However, applying machine learning, and more specifically a generalised regression neural network model, the age prediction significantly improved (R 2 =0.96) with a MAE=3.3 years for the training set and 4.4 years for a blind test set of 231 cases. The machine learning approach used 16 CpG sites, located in 16 different genomic regions, with the top 3 predictors of age belonged to the genes NHLRC1, SCGN and CSNK1D. The proposed model was further tested using independent cohorts of 53 monozygotic twins (MAE=7.1 years) and a cohort of 1011 disease state individuals (MAE=7.2 years). Furthermore, we highlighted the age markers' potential applicability in samples other than blood by predicting age with similar accuracy in 265 saliva samples (R 2 =0.96) with a MAE=3.2 years (training set) and 4.0 years (blind test). In an attempt to create a sensitive and accurate age prediction test, a next generation sequencing (NGS)-based method able to quantify the methylation status of the selected 16 CpG sites was developed using the Illumina MiSeq ® platform. The method was validated using DNA standards of known methylation levels and the age prediction accuracy has been initially assessed in a set of 46 whole blood samples. Although the resulted prediction accuracy using the NGS data was lower compared to the original model (MAE=7.5years), it is expected that future optimization of our strategy to account for technical variation as well as increasing the sample size will improve both the prediction accuracy and reproducibility. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Quantitative DNA Methylation Analysis Identifies a Single CpG Dinucleotide Important for ZAP-70 Expression and Predictive of Prognosis in Chronic Lymphocytic Leukemia

    PubMed Central

    Claus, Rainer; Lucas, David M.; Stilgenbauer, Stephan; Ruppert, Amy S.; Yu, Lianbo; Zucknick, Manuela; Mertens, Daniel; Bühler, Andreas; Oakes, Christopher C.; Larson, Richard A.; Kay, Neil E.; Jelinek, Diane F.; Kipps, Thomas J.; Rassenti, Laura Z.; Gribben, John G.; Döhner, Hartmut; Heerema, Nyla A.; Marcucci, Guido; Plass, Christoph; Byrd, John C.

    2012-01-01

    Purpose Increased ZAP-70 expression predicts poor prognosis in chronic lymphocytic leukemia (CLL). Current methods for accurately measuring ZAP-70 expression are problematic, preventing widespread application of these tests in clinical decision making. We therefore used comprehensive DNA methylation profiling of the ZAP-70 regulatory region to identify sites important for transcriptional control. Patients and Methods High-resolution quantitative DNA methylation analysis of the entire ZAP-70 gene regulatory regions was conducted on 247 samples from patients with CLL from four independent clinical studies. Results Through this comprehensive analysis, we identified a small area in the 5′ regulatory region of ZAP-70 that showed large variability in methylation in CLL samples but was universally methylated in normal B cells. High correlation with mRNA and protein expression, as well as activity in promoter reporter assays, revealed that within this differentially methylated region, a single CpG dinucleotide and neighboring nucleotides are particularly important in ZAP-70 transcriptional regulation. Furthermore, by using clustering approaches, we identified a prognostic role for this site in four independent data sets of patients with CLL using time to treatment, progression-free survival, and overall survival as clinical end points. Conclusion Comprehensive quantitative DNA methylation analysis of the ZAP-70 gene in CLL identified important regions responsible for transcriptional regulation. In addition, loss of methylation at a specific single CpG dinucleotide in the ZAP-70 5′ regulatory sequence is a highly predictive and reproducible biomarker of poor prognosis in this disease. This work demonstrates the feasibility of using quantitative specific ZAP-70 methylation analysis as a relevant clinically applicable prognostic test in CLL. PMID:22564988

  12. Dissecting DNA repair in adult high grade gliomas for patient stratification in the post-genomic era

    PubMed Central

    Perry, Christina; Agarwal, Devika; Abdel-Fatah, Tarek M.A.; Lourdusamy, Anbarasu; Grundy, Richard; Auer, Dorothee T.; Walker, David; Lakhani, Ravi; Scott, Ian S.; Chan, Stephen; Ball, Graham; Madhusudan, Srinivasan

    2014-01-01

    Deregulation of multiple DNA repair pathways may contribute to aggressive biology and therapy resistance in gliomas. We evaluated transcript levels of 157 genes involved in DNA repair in an adult glioblastoma Test set (n=191) and validated in ‘The Cancer Genome Atlas’ (TCGA) cohort (n=508). A DNA repair prognostic index model was generated. Artificial neural network analysis (ANN) was conducted to investigate global gene interactions. Protein expression by immunohistochemistry was conducted in 61 tumours. A fourteen DNA repair gene expression panel was associated with poor survival in Test and TCGA cohorts. A Cox multivariate model revealed APE1, NBN, PMS2, MGMT and PTEN as independently associated with poor prognosis. A DNA repair prognostic index incorporating APE1, NBN, PMS2, MGMT and PTEN stratified patients in to three prognostic sub-groups with worsening survival. APE1, NBN, PMS2, MGMT and PTEN also have predictive significance in patients who received chemotherapy and/or radiotherapy. ANN analysis of APE1, NBN, PMS2, MGMT and PTEN revealed interactions with genes involved in transcription, hypoxia and metabolic regulation. At the protein level, low APE1 and low PTEN remain associated with poor prognosis. In conclusion, multiple DNA repair pathways operate to influence biology and clinical outcomes in adult high grade gliomas. PMID:25026297

  13. Early hepatitis B viral DNA clearance predicts treatment response at week 96

    PubMed Central

    Fu, Xiao-Yu; Tan, De-Ming; Liu, Cui-Mei; Gu, Bin; Hu, Li-Hua; Peng, Zhong-Tian; Chen, Bin; Xie, Yuan-Lin; Gong, Huan-Yu; Hu, Xiao-Xuan; Yao, Lian-Hui; Xu, Xiao-Ping; Fu, Zheng-Yuan; He, Lang-Qiu; Li, Si-Hai; Long, Yun-Zhu; Li, De-Hui; Gu, Ji-Long; Peng, Shi-Fang

    2017-01-01

    AIM To investigate whether hepatitis viral DNA load at 24 wk of treatment predicts response at 96 wk in patients with chronic hepatitis B. METHODS A total of 172 hepatitis B envelope antigen (HBeAg)-positive chronic hepatitis B patients who received initial treatment at 16 tertiary hospitals in Hunan Province, China were enrolled in this study. All patients received conventional doses of lamivudine and adefovir dipivoxil, telbivudine, entecavir dispersible tablets, or entecavir tablets for 96 wk. Patients who used other antiviral drugs or antitumor and immune regulation therapy were excluded. Patients were stratified into three groups according to their viral DNA load at 24 wk: < 10 IU/mL (group 1), 10-103 IU/mL (group 2), and > 103 IU/mL (group 3). Correlations of 24-wk DNA load with HBeAg negative status and HBeAg seroconversion at 96 wk were analyzed. Receiver operating characteristic curve analysis was used to test the predictive value of the HBV DNA load at 24 wk for long-term response. RESULTS The rates of conversion to HBeAg negative status and HBeAg seroconversion rates were 53.7% and 51.9%, respectively, in group 1; 35.21% and 32.39% in group 2; and 6.38% and 6.38% in group 3. The receiver operating characteristic curves for the three subgroups revealed that the lowest DNA load (< 10 IU/mL) was better correlated with response at 96 wk than a higher DNA load (10-103 IU/mL). Nested PCR was used for amplifying and sequencing viral DNA in patients with a viral DNA load > 200 IU/mL at 96 wk; resistance mutations involving different loci were present in 26 patients, and three of these patients had a viral DNA load 10-103 IU/mL at 96 wk. CONCLUSION Hepatitis B viral DNA load at 24 wk of antiviral treatment in patients with chronic hepatitis B is a predictor of the viral load and response rate at 96 wk. PMID:28522916

  14. Reflex high-risk human papilloma virus DNA test is useful in the triage of women with atypical squamous cells cannot exclude high-grade squamous intraepithelial lesion.

    PubMed

    Wu, Howard Her-Juing; Allen, Susan L; Kirkpatrick, Joseph L; Elsheikh, Tarik M

    2006-10-01

    This study is aimed to investigate the role of reflex high-risk human papilloma virus (HPV) DNA testing as an alternative triage method to colposcopy for women with atypical squamous cells cannot exclude high-grade squamous intraepithelial lesion (ASC-H) on Papanicolaou (Pap) tests. Reflex HPV DNA testing using Hybrid Capture II method was carried out on 88 women with ASC-H diagnosed by Thin Prep Pap test. Correlation with follow-up biopsies was available on 42 of these patients. The reflex HPV DNA test showed an overall positive rate of 67% and negative rate of 33% in 88 patients with ASC-H. Using age 30 as the cut off point, the positive rate had increased to 83.3% (35/42) in patients 30 yr or younger, while the positive rate for patients older than 30 yr had decreased to 52.2% (24/46). Follow-up colposcopic biopsy results were available in 35 of 59 HPV-positive women, which revealed 15 (43%) high-grade squamous intraepithelial lesions (HSIL), 12 low-grade squamous intraepithelial lesions (LSIL), and 8 negative for dysplasia. In 7 HPV-negative patients, the follow-up biopsies showed no evidence of HSIL or LSIL. Correlation between clinical risk factors and the HPV results demonstrated no significant differences in HPV positivity between the high-risk and low-risk patients. The high sensitivity (100%) and negative predictive rate (100%) in detecting HSIL in our study provide strong evidence that, instead of automatic referral to colposcopy, reflex HPV DNA testing may be used as an alternative triage method for women diagnosed with ASC-H on Thin Prep Pap test, especially for women older than 30 yr of age.

  15. cgDNA: a software package for the prediction of sequence-dependent coarse-grain free energies of B-form DNA.

    PubMed

    Petkevičiūtė, D; Pasi, M; Gonzalez, O; Maddocks, J H

    2014-11-10

    cgDNA is a package for the prediction of sequence-dependent configuration-space free energies for B-form DNA at the coarse-grain level of rigid bases. For a fragment of any given length and sequence, cgDNA calculates the configuration of the associated free energy minimizer, i.e. the relative positions and orientations of each base, along with a stiffness matrix, which together govern differences in free energies. The model predicts non-local (i.e. beyond base-pair step) sequence dependence of the free energy minimizer. Configurations can be input or output in either the Curves+ definition of the usual helical DNA structural variables, or as a PDB file of coordinates of base atoms. We illustrate the cgDNA package by comparing predictions of free energy minimizers from (a) the cgDNA model, (b) time-averaged atomistic molecular dynamics (or MD) simulations, and (c) NMR or X-ray experimental observation, for (i) the Dickerson-Drew dodecamer and (ii) three oligomers containing A-tracts. The cgDNA predictions are rather close to those of the MD simulations, but many orders of magnitude faster to compute. Both the cgDNA and MD predictions are in reasonable agreement with the available experimental data. Our conclusion is that cgDNA can serve as a highly efficient tool for studying structural variations in B-form DNA over a wide range of sequences. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. The Society for Translational Medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility

    PubMed Central

    Cho, Chak-Lam; Majzoub, Ahmad; Esteves, Sandro C.

    2017-01-01

    Sperm DNA fragmentation (SDF) testing has been emerging as a valuable tool for male fertility evaluation. While the essential role of sperm DNA integrity in human reproduction was extensively studied, the clinical indication of SDF testing is less clear. This clinical practice guideline provides recommendations of clinical utility of the test supported by evidence. It is intended to serve as a reference for fertility specialists in identifying the circumstances in which SDF testing should be of greatest clinical value. SDF testing is recommended in patients with clinical varicocele and borderline to normal semen parameters as it can better select varicocelectomy candidates. Outcomes of natural pregnancy and assisted reproductive techniques (ART) can be predicted by result of SDF tests. High SDF is also linked with recurrent pregnancy loss (RPL) and failure of ART. Result of SDF testing may change the management decision by selecting the most appropriate ART with the highest success rate for infertile couples. Several studies have demonstrated the benefit in using testicular instead of ejaculated sperm in men with high SDF, oligozoospermia or recurrent in vitro fertilization (IVF) failure. Infertile men with modifiable lifestyle factor may benefit from SDF testing by reinforcing risk factor modification and monitoring patient’s progress to intervention. PMID:29082206

  17. Targeted Sequencing for Discovery and Validation of DNA Methylation Markers of Colon Cancer Metastasis — EDRN Public Portal

    Cancer.gov

    Colon cancer is the second leading cause of cancer death in the United States. A key issue in treating colon cancer patients is inability to accurately predict tumors that have metastatic potential and require adjuvant chemotherapy. This project will test the model that tumor metastases arise from intra-tumor heterogeneity generated by DNA methylation events, and that detecting these events can provide a predictve signature of tumors with poor outcome

  18. Improving promoter prediction for the NNPP2.2 algorithm: a case study using Escherichia coli DNA sequences.

    PubMed

    Burden, S; Lin, Y-X; Zhang, R

    2005-03-01

    Although a great deal of research has been undertaken in the area of promoter prediction, prediction techniques are still not fully developed. Many algorithms tend to exhibit poor specificity, generating many false positives, or poor sensitivity. The neural network prediction program NNPP2.2 is one such example. To improve the NNPP2.2 prediction technique, the distance between the transcription start site (TSS) associated with the promoter and the translation start site (TLS) of the subsequent gene coding region has been studied for Escherichia coli K12 bacteria. An empirical probability distribution that is consistent for all E.coli promoters has been established. This information is combined with the results from NNPP2.2 to create a new technique called TLS-NNPP, which improves the specificity of promoter prediction. The technique is shown to be effective using E.coli DNA sequences, however, it is applicable to any organism for which a set of promoters has been experimentally defined. The data used in this project and the prediction results for the tested sequences can be obtained from http://www.uow.edu.au/~yanxia/E_Coli_paper/SBurden_Results.xls alh98@uow.edu.au.

  19. Automated design of genomic Southern blot probes

    PubMed Central

    2010-01-01

    Background Sothern blotting is a DNA analysis technique that has found widespread application in molecular biology. It has been used for gene discovery and mapping and has diagnostic and forensic applications, including mutation detection in patient samples and DNA fingerprinting in criminal investigations. Southern blotting has been employed as the definitive method for detecting transgene integration, and successful homologous recombination in gene targeting experiments. The technique employs a labeled DNA probe to detect a specific DNA sequence in a complex DNA sample that has been separated by restriction-digest and gel electrophoresis. Critically for the technique to succeed the probe must be unique to the target locus so as not to cross-hybridize to other endogenous DNA within the sample. Investigators routinely employ a manual approach to probe design. A genome browser is used to extract DNA sequence from the locus of interest, which is searched against the target genome using a BLAST-like tool. Ideally a single perfect match is obtained to the target, with little cross-reactivity caused by homologous DNA sequence present in the genome and/or repetitive and low-complexity elements in the candidate probe. This is a labor intensive process often requiring several attempts to find a suitable probe for laboratory testing. Results We have written an informatic pipeline to automatically design genomic Sothern blot probes that specifically attempts to optimize the resultant probe, employing a brute-force strategy of generating many candidate probes of acceptable length in the user-specified design window, searching all against the target genome, then scoring and ranking the candidates by uniqueness and repetitive DNA element content. Using these in silico measures we can automatically design probes that we predict to perform as well, or better, than our previous manual designs, while considerably reducing design time. We went on to experimentally validate a number of these automated designs by Southern blotting. The majority of probes we tested performed well confirming our in silico prediction methodology and the general usefulness of the software for automated genomic Southern probe design. Conclusions Software and supplementary information are freely available at: http://www.genes2cognition.org/software/southern_blot PMID:20113467

  20. Screening for Sex Chromosome Aneuploidy by Cell-Free DNA Testing: Patient Choice and Performance.

    PubMed

    Bevilacqua, Elisa; Ordóñez, Elena; Hurtado, Ivan; Rueda, Laura; Mazzone, Eléonora; Cirigliano, Vincenzo; Jani, Jacques C

    2017-08-23

    To study patient choice regarding testing for sex chromosome aneuploidy (SCA) and the performance of cell-free DNA (cfDNA) screening for SCA. Patient choice regarding screening for SCA and factors influencing this choice were evaluated in a single center. In a subsequent two-center study, cases that screened positive for SCA were analyzed to determine the positive predictive value (PPV) for each SCA. In all, 1,957 (61.9%) of the 3,162 patients undergoing cfDNA testing opted for SCA screening. Regression analysis demonstrated that independent predictors of a patient's decision for SCA were earlier gestational age, spontaneous conception, and cfDNA chosen as a primary method of screening. A total of 161 cases screened positive for SCA and follow-up data were available for 118 (73.3%). Forty-six of the 61 cases of 45,X were false-positive results and 15 were concordant with the fetal karyotype (PPV = 24.6%). Seventeen of the 22 cases of 47,XXX were false positive and 5 concordant (PPV = 22.7%). Eleven of the 30 cases of 47,XXY were false positive and 19 concordant (PPV = 63.3%). All 5 cases of 47,XYY were correctly identified, thus yielding a PPV of 100%. More than half of the patients undergoing cfDNA aneuploidy screening also opted for SCA testing, but they were less likely to do so in the presence of an increased risk of trisomy. SCAs involving the X chromosome had a lower PPV than those involving the Y chromosome. © 2017 S. Karger AG, Basel.

  1. Chromosome Model reveals Dynamic Redistribution of DNA Damage into Nuclear Sub-domains

    NASA Technical Reports Server (NTRS)

    Costes, Sylvain V.; Ponomarev, Artem; Chen, James L.; Cucinotta, Francis A.; Barcellos-Hoff, Helen

    2007-01-01

    Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage is induced. To test this assumption, we analyzed the spatial distribution of 53BP1, phosphorylated ATM and gammaH2AX RIF in cells irradiated with high linear energy transfer (LET) radiation. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. As expected, simulations produced DNA-weighted random (Poisson) distributions. In contrast, the distributions of RIF obtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) were non-random. This deviation from the expected DNA-weighted random pattern can be further characterized by relative DNA image measurements. This novel imaging approach shows that RIF were located preferentially at the interface between high and low DNA density regions, and were more frequent in regions with lower density DNA than predicted. This deviation from random behavior was more pronounced within the first 5 min following irradiation for phosphorylated ATM RIF, while gammaH2AX and 53BP1 RIF showed very pronounced deviation up to 30 min after exposure. These data suggest the existence of repair centers in mammalian epithelial cells. These centers would be nuclear sub-domains where DNA lesions would be collected for more efficient repair.

  2. Evaluation of four commercial quantitative real-time PCR kits with inhibited and degraded samples.

    PubMed

    Holmes, Amy S; Houston, Rachel; Elwick, Kyleen; Gangitano, David; Hughes-Stamm, Sheree

    2018-05-01

    DNA quantification is a vital step in forensic DNA analysis to determine the optimal input amount for DNA typing. A quantitative real-time polymerase chain reaction (qPCR) assay that can predict DNA degradation or inhibitors present in the sample prior to DNA amplification could aid forensic laboratories in creating a more streamlined and efficient workflow. This study compares the results from four commercial qPCR kits: (1) Investigator® Quantiplex® Pro Kit, (2) Quantifiler® Trio DNA Quantification Kit, (3) PowerQuant® System, and (4) InnoQuant® HY with high molecular weight DNA, low template samples, degraded samples, and DNA spiked with various inhibitors.The results of this study indicate that all kits were comparable in accurately predicting quantities of high quality DNA down to the sub-picogram level. However, the InnoQuant(R) HY kit showed the highest precision across the DNA concentration range tested in this study. In addition, all kits performed similarly with low concentrations of forensically relevant PCR inhibitors. However, in general, the Investigator® Quantiplex® Pro Kit was the most tolerant kit to inhibitors and provided the most accurate quantification results with higher concentrations of inhibitors (except with salt). PowerQuant® and InnoQuant® HY were the most sensitive to inhibitors, but they did indicate significant levels of PCR inhibition. When quantifying degraded samples, each kit provided different degradation indices (DI), with Investigator® Quantiplex® Pro indicating the largest DI and Quantifiler® Trio indicating the smallest DI. When the qPCR kits were paired with their respective STR kit to genotype highly degraded samples, the Investigator® 24plex QS and GlobalFiler® kits generated more complete profiles when the small target concentrations were used for calculating input amount.

  3. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment.

    PubMed

    Simon, L; Liu, L; Murphy, K; Ge, S; Hotaling, J; Aston, K I; Emery, B; Carrell, D T

    2014-05-01

    Is there an association between sperm DNA damage, measured by three different assays, sperm nuclear protein content and clinical outcomes in assisted reproduction treatment (ART)? Sperm DNA damage measured by terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling (TUNEL) and the Comet assay were significantly associated with ART outcomes in our single institution study. Abnormal protamine expression is known to be associated with sperm DNA damage and male infertility. A number of studies have shown a significant relationship between sperm DNA damage and ART outcomes. To date, there are no large studies providing direct comparisons of DNA damage tests within the same study population. Thus, the prognostic value for each method remains unknown. Cross-sectional study of 238 men from infertile couples undergoing ART at the University Center for Reproductive Medicine, Utah, USA, between April 2011 and March 2013. Sperm from men undergoing ART were tested for DNA damage using the alkaline Comet assay, TUNEL and flow cytometric chromatin evaluation (FCCE) assays. Histone retention was analysed using the aniline blue staining method, whereas protamine content (proteins P1 and P2) and ratio were analysed using acid urea gel electrophoresis. The prognostic value of each sperm DNA test to predict clinical pregnancy was calculated. Histone retention was associated with sperm DNA damage (P < 0.001), reduced embryo quality (P = 0.005) and clinical pregnancies (P < 0.001). The mean percentage of sperm with DNA damage was significantly higher in sperm from non-pregnant couples compared with that from pregnant couples, as measured by TUNEL assay (15.04 ± 1.16% versus 8.79 ± 0.56%; P < 0.001) and alkaline Comet assay (72.79 ± 2.49% versus 55.86 ± 2.29%; P < 0.001). There was no association between clinical pregnancies and DNA fragmentation index measured by FCCE (12.97 ± 1.46 versus 14.93 ± 1.65; P = 0.379). Of the protamine parameters analysed, only the P1/P2 ratio was associated with sperm count (P = 0.013), men's age (P = 0.037), maturity (P = 0.049) and blastocyst quality (P = 0.012). Histone retention and sperm DNA damage measured by Comet and TUNEL assays were associated with fertilization rate (P < 0.05), embryo quality (P < 0.05) and implantation rate (P < 0.05). A potential drawback of this study is that it is cross-sectional. Generally in such studies there is more than one variable that could cause the effect. Analysing sperm is one part of the equation; there are also a number of female factors that have the potential to influence ART outcomes. Therefore, given the large and well-established role of female factors in infertility, normal sperm DNA integrity and protamination do not necessarily ensure clinical pregnancy in ART. Thus, female factors can reduce the prognostic value of sperm DNA tests. Further, our use of native semen instead of prepared sperm may have iatrogenically increased the DNA damage. Alteration in sperm nuclear protein affects sperm DNA integrity. Further, with the current dataset, TUNEL and Comet assays appeared more predictive of ART success than FCCE. No personal or direct financial support has been received for any of this work. The authors declare no competing interests. N/A.

  4. Motivations for Undertaking DNA Sequencing-Based Non-Invasive Prenatal Testing for Fetal Aneuploidy: A Qualitative Study with Early Adopter Patients in Hong Kong

    PubMed Central

    Yi, Huso; Hallowell, Nina; Griffiths, Sian; Yeung Leung, Tak

    2013-01-01

    Background A newly introduced cell-free fetal DNA sequencing based non-invasive prenatal testing (DNA-NIPT) detects Down syndrome with sensitivity of 99% at early gestational stage without risk of miscarriage. Attention has been given to its public health implications; little is known from consumer perspectives. This qualitative study aimed to explore women’s motivations for using, and perceptions of, DNA-NIPT in Hong Kong. Methods and Findings In-depth interviews were conducted with 45 women who had undertaken DNA-NIPT recruited by purposive sampling based on socio-demographic and clinical characteristics. The sample included 31 women identified as high-risk from serum and ultrasound based Down syndrome screening (SU-DSS). Thematic narrative analysis examined informed-decision making of the test and identified the benefits and needs. Women outlined a number of reasons for accessing DNA-NIPT: reducing the uncertainty associated with risk probability-based results from SU-DSS, undertaking DNA-NIPT as a comprehensive measure to counteract risk from childbearing especially at advanced age, perceived predictive accuracy and absence of risk of harm to fetus. Accounts of women deemed high-risk or not high-risk are distinctive in a number of respects. High-risk women accessed DNA-NIPT to get a clearer idea of their risk. This group perceived SU-DSS as an unnecessary and confusing procedure because of its varying, protocol-dependent detection rates. Those women not deemed high-risk, in contrast, undertook DNA-NIPT for psychological assurance and to reduce anxiety even after receiving the negative result from SU-DSS. Conclusions DNA-NIPT was regarded positively by women who chose this method of screening over the routine, less expensive testing options. Given its perceived utility, health providers need to consider whether DNA-NIPT should be offered as part of universal routine care to women at high-risk for fetal aneuploidy. If this is the case, then further development of guidelines and quality assurance will be needed to provide a service suited to patients’ needs. PMID:24312358

  5. Structure analysis of FAAP24 reveals single-stranded DNA-binding activity and domain functions in DNA damage response

    PubMed Central

    Wang, Yucai; Han, Xiao; Wu, Fangming; Leung, Justin W; Lowery, Megan G; Do, Huong; Chen, Junjie; Shi, Chaowei; Tian, Changlin; Li, Lei; Gong, Weimin

    2013-01-01

    The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation. PMID:23999858

  6. HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy

    PubMed Central

    Yan, Yumeng; Zhang, Di; Zhou, Pei; Li, Botong

    2017-01-01

    Abstract Protein–protein and protein–DNA/RNA interactions play a fundamental role in a variety of biological processes. Determining the complex structures of these interactions is valuable, in which molecular docking has played an important role. To automatically make use of the binding information from the PDB in docking, here we have presented HDOCK, a novel web server of our hybrid docking algorithm of template-based modeling and free docking, in which cases with misleading templates can be rescued by the free docking protocol. The server supports protein–protein and protein–DNA/RNA docking and accepts both sequence and structure inputs for proteins. The docking process is fast and consumes about 10–20 min for a docking run. Tested on the cases with weakly homologous complexes of <30% sequence identity from five docking benchmarks, the HDOCK pipeline tied with template-based modeling on the protein–protein and protein–DNA benchmarks and performed better than template-based modeling on the three protein–RNA benchmarks when the top 10 predictions were considered. The performance of HDOCK became better when more predictions were considered. Combining the results of HDOCK and template-based modeling by ranking first of the template-based model further improved the predictive power of the server. The HDOCK web server is available at http://hdock.phys.hust.edu.cn/. PMID:28521030

  7. Antibodies to native DNA and serum complement (C3) levels. Application to diagnosis and classification of systemic lupus erythematosus.

    PubMed

    Weinstein, A; Bordwell, B; Stone, B; Tibbetts, C; Rothfield, N F

    1983-02-01

    The sensitivity and specificity of the presence of antibodies to native DNA and low serum C3 levels were investigated in a prospective study in 98 patients with systemic lupus erythematosus who were followed for a mean of 38.4 months. Hospitalized patients, patients with other connective tissue diseases, and subjects without any disease served as the control group. Seventy-two percent of the patients with systemic lupus erythematosus had a high DNA-binding value (more than 33 percent) initially, and an additional 20 percent had a high DNA-binding value later in the course of the illness. Similarly, C3 levels were low (less than 81 mg/100 ml) in 38 percent of the patients with systemic lupus erythematosus initially and in 66 percent of the patients at any time during the study. High DNA-binding and low C3 levels each showed extremely high predictive value (94 percent) for the diagnosis of systemic lupus erythematosus when applied in a patient population in which that diagnosis was considered. The presence of both abnormalities was 100 percent correct in predicting the diagnosis os systemic lupus erythematosus. Both tests should be included in future criteria for the diagnosis and classification of systemic lupus erythematosus.

  8. Low diagnostic and predictive value of anti-dsDNA antibodies in unselected patients with recent onset of rheumatic symptoms: results from a long-term follow-up Scandinavian multicentre study.

    PubMed

    Compagno, M; Jacobsen, S; Rekvig, O P; Truedsson, L; Heegaard, N H; Nossent, J; Jönsen, A; Jacobsen, R S; Eilertsen, G Ø; Sturfelt, G; Bengtsson, A A

    2013-01-01

    To verify the diagnostic accuracy of anti-double-stranded DNA (anti-dsDNA) antibodies detected by the Crithidia luciliae immunofluorescence test (CLIFT) in a cohort of unselected patients, referred to a rheumatologist due to recent onset of rheumatic symptoms. A total of 1073 consecutive patients were screened for anti-nuclear antibodies (ANAs). Serum samples from 292 ANA-positive and 292 matching ANA-negative patients were tested three times for anti-dsDNA antibodies, using two different CLIFT kits (ImmunoConcepts(®) and Euroimmun(®)). An initial clinical diagnosis was made by rheumatologists unaware of the results. The diagnoses were updated after a median follow-up of 4.8 years. CLIFT was positive at least once in 60 patients but only 23 patients were CLIFT positive in all of the assays. Diagnosis of systemic lupus erythematosus (SLE) was made initially in 65 patients, of whom 24 (37%) were CLIFT positive. Many other diagnoses were observed among the CLIFT-positive patients. Overall, 16 (5.5%) ANA-negative patients were CLIFT positive. After approximately 5 years, the diagnosis of SLE remained unchanged in 63 patients (23 CLIFT positive) and altered in only two (one CLIFT positive). Among the 36 CLIFT-positive patients who were not diagnosed with SLE at study entry, only one developed SLE during the follow-up period. CLIFT was not reliable as a diagnostic tool in unselected patients with rheumatic symptoms. ANAs were of little value as a screening test before the CLIFT analysis. CLIFT had surprisingly low positive predictive value (PPV) for the diagnosis of SLE despite its high specificity. For non-SLE patients, being CLIFT positive poses little risk of developing SLE within 5 years.

  9. DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk.

    PubMed

    Dayeh, Tasnim; Tuomi, Tiinamaija; Almgren, Peter; Perfilyev, Alexander; Jansson, Per-Anders; de Mello, Vanessa D; Pihlajamäki, Jussi; Vaag, Allan; Groop, Leif; Nilsson, Emma; Ling, Charlotte

    2016-07-02

    Identification of subjects with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention of the disease. Consequently, it is essential to search for new biomarkers that can improve the prediction of T2D. The aim of this study was to examine whether 5 DNA methylation loci in blood DNA (ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP), recently reported to be associated with T2D, might predict future T2D in subjects from the Botnia prospective study. We also tested if these CpG sites exhibit altered DNA methylation in human pancreatic islets, liver, adipose tissue, and skeletal muscle from diabetic vs. non-diabetic subjects. DNA methylation at the ABCG1 locus cg06500161 in blood DNA was associated with an increased risk for future T2D (OR = 1.09, 95% CI = 1.02-1.16, P-value = 0.007, Q-value = 0.018), while DNA methylation at the PHOSPHO1 locus cg02650017 in blood DNA was associated with a decreased risk for future T2D (OR = 0.85, 95% CI = 0.75-0.95, P-value = 0.006, Q-value = 0.018) after adjustment for age, gender, fasting glucose, and family relation. Furthermore, the level of DNA methylation at the ABCG1 locus cg06500161 in blood DNA correlated positively with BMI, HbA1c, fasting insulin, and triglyceride levels, and was increased in adipose tissue and blood from the diabetic twin among monozygotic twin pairs discordant for T2D. DNA methylation at the PHOSPHO1 locus cg02650017 in blood correlated positively with HDL levels, and was decreased in skeletal muscle from diabetic vs. non-diabetic monozygotic twins. DNA methylation of cg18181703 (SOCS3), cg11024682 (SREBF1), and cg19693031 (TXNIP) was not associated with future T2D risk in subjects from the Botnia prospective study.

  10. Effective Design of Multifunctional Peptides by Combining Compatible Functions

    PubMed Central

    Diener, Christian; Garza Ramos Martínez, Georgina; Moreno Blas, Daniel; Castillo González, David A.; Corzo, Gerardo; Castro-Obregon, Susana; Del Rio, Gabriel

    2016-01-01

    Multifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor. Based on this finding, we expected that designing peptides for CPP activity may render AMP and DNA-binding activities. To test this prediction, we designed peptides that embedded two independent functional domains (nuclear localization and yeast pheromone activity), linked by optimizing their composition to fit the rules characterizing cell-penetrating peptides. These peptides presented effective cell penetration, DNA-binding, pheromone and antimicrobial activities, thus confirming the effectiveness of our computational approach to design multifunctional peptides with potential therapeutic uses. Our computational implementation is available at http://bis.ifc.unam.mx/en/software/dcf. PMID:27096600

  11. Footprint traversal by adenosine-triphosphate-dependent chromatin remodeler motor.

    PubMed

    Garai, Ashok; Mani, Jesrael; Chowdhury, Debashish

    2012-04-01

    Adenosine-triphosphate (ATP)-dependent chromatin remodeling enzymes (CREs) are biomolecular motors in eukaryotic cells. These are driven by a chemical fuel, namely, ATP. CREs actively participate in many cellular processes that require accessibility of specific segments of DNA which are packaged as chromatin. The basic unit of chromatin is a nucleosome where 146 bp ∼ 50 nm of a double-stranded DNA (dsDNA) is wrapped around a spool formed by histone proteins. The helical path of histone-DNA contact on a nucleosome is also called "footprint." We investigate the mechanism of footprint traversal by a CRE that translocates along the dsDNA. Our two-state model of a CRE captures effectively two distinct chemical (or conformational) states in the mechanochemical cycle of each ATP-dependent CRE. We calculate the mean time of traversal. Our predictions on the ATP dependence of the mean traversal time can be tested by carrying out in vitro experiments on mononucleosomes.

  12. Quantification of HIV-1 DNA using real-time recombinase polymerase amplification.

    PubMed

    Crannell, Zachary Austin; Rohrman, Brittany; Richards-Kortum, Rebecca

    2014-06-17

    Although recombinase polymerase amplification (RPA) has many advantages for the detection of pathogenic nucleic acids in point-of-care applications, RPA has not yet been implemented to quantify sample concentration using a standard curve. Here, we describe a real-time RPA assay with an internal positive control and an algorithm that analyzes real-time fluorescence data to quantify HIV-1 DNA. We show that DNA concentration and the onset of detectable amplification are correlated by an exponential standard curve. In a set of experiments in which the standard curve and algorithm were used to analyze and quantify additional DNA samples, the algorithm predicted an average concentration within 1 order of magnitude of the correct concentration for all HIV-1 DNA concentrations tested. These results suggest that quantitative RPA (qRPA) may serve as a powerful tool for quantifying nucleic acids and may be adapted for use in single-sample point-of-care diagnostic systems.

  13. Identification of DNA-Binding Proteins Using Mixed Feature Representation Methods.

    PubMed

    Qu, Kaiyang; Han, Ke; Wu, Song; Wang, Guohua; Wei, Leyi

    2017-09-22

    DNA-binding proteins play vital roles in cellular processes, such as DNA packaging, replication, transcription, regulation, and other DNA-associated activities. The current main prediction method is based on machine learning, and its accuracy mainly depends on the features extraction method. Therefore, using an efficient feature representation method is important to enhance the classification accuracy. However, existing feature representation methods cannot efficiently distinguish DNA-binding proteins from non-DNA-binding proteins. In this paper, a multi-feature representation method, which combines three feature representation methods, namely, K-Skip-N-Grams, Information theory, and Sequential and structural features (SSF), is used to represent the protein sequences and improve feature representation ability. In addition, the classifier is a support vector machine. The mixed-feature representation method is evaluated using 10-fold cross-validation and a test set. Feature vectors, which are obtained from a combination of three feature extractions, show the best performance in 10-fold cross-validation both under non-dimensional reduction and dimensional reduction by max-relevance-max-distance. Moreover, the reduced mixed feature method performs better than the non-reduced mixed feature technique. The feature vectors, which are a combination of SSF and K-Skip-N-Grams, show the best performance in the test set. Among these methods, mixed features exhibit superiority over the single features.

  14. Clinical significance of hepatitis B virion and SVP productivity: relationships between intrahepatic and serum markers in chronic hepatitis B patients

    PubMed Central

    Jackson, Kathy; Lim, Seng Gee; Sulaiman, Ali; Pakasi, Levina S; Gani, Rino A; Hasan, Irsan; Sulaiman, Andri Sanityoso; Lesmana, Laurentius A; Hammond, Rachel; Revill, Peter; Locarnini, Stephen; Bowden, Scott David

    2014-01-01

    Background Clinical use of hepatitis B viral (HBV) quantitative seromarker\\s remains questionable since it is not precisely known whether they represent intrahepatic viral replication. Covalently closed circular DNA (cccDNA), relaxed circular DNA (rcDNA), and pregenomic RNA (pgRNA) are more likely to represent active HBV replication and their measurement can be used to derive virion productivity (VP; rcDNA/cccDNA), subviral particle (SVP) productivity (quantitative HBsAg/cccDNA), and replicative activity (RA; pgRNA/cccDNA). These can be used to compare relative HBV replication between HBeAg-negative and -positive patients. Objective To study the clinical significance of intrahepatic HBV replication phenomenon between HBeAg-negative and -positive patients and its correlation with quantitative HBV seromarkers. Method This was a prospective study between January 2010 and December 2011. Study subjects were naive chronic hepatitis B patients from Cipto Mangunkusumo and Medistra Hospitals. All patient samples underwent liver biochemistry and HBV seromarkers testing (HBeAg, quantitative HBsAg and HBV DNA levels), and patients underwent liver biopsy. Stored liver specimens were analysed for intrahepatic rcDNA, cccDNA, and pgRNA with quantification performed by real-time PCR. Comparison of HBV markers between HBsAg-positive and -negative patients was carried out using the Mann–Whitney U-test. Pearson’s correlation test was performed among HBV intrahepatic and seromarkers using their log-transformed values. Results A total of 104 patients were enrolled in this study; 54 (51.9%) were male. Patients’ mean age was 41.9 ± 11.63 years (range 19–70 years). Sixty-one patients (58.7%) were HBeAg-negative. All HBV markers were significantly higher in HBeAg-positive than HBeAg-negative patients, except for SVP productivity and RA. Serum HBV DNA was strongly correlated with intrahepatic total HBV DNA (r = 0.771), cccDNA (r = 0.774), and rcDNA (r = 0.780) while serum quantitative HBsAg showed only moderate correlation with intrahepatic total DNA (r = 0.671), cccDNA (r = 0.632), rcDNA (r = 0.675), and SVP productivity (r = 0.557). Conclusions Serum HBV DNA concentration and quantitative HBsAg might not accurately predict intrahepatic viral activity. Virion and SVP production do not occur in parallel with replicative activity. PMID:24918014

  15. Prediction of Marginal Mass Required for Successful Islet Transplantation

    PubMed Central

    Papas, Klearchos K.; Colton, Clark K.; Qipo, Andi; Wu, Haiyan; Nelson, Rebecca A.; Hering, Bernhard J.; Weir, Gordon C.; Koulmanda, Maria

    2013-01-01

    Islet quality assessment methods for predicting diabetes reversal (DR) following transplantation are needed. We investigated two islet parameters, oxygen consumption rate (OCR) and OCR per DNA content, to predict transplantation outcome and explored the impact of islet quality on marginal islet mass for DR. Outcomes in immunosuppressed diabetic mice were evaluated by transplanting mixtures of healthy and purposely damaged rat islets for systematic variation of OCR/DNA over a wide range. The probability of DR increased with increasing transplanted OCR and OCR/DNA. On coordinates of OCR versus OCR/DNA, data fell into regions in which DR occurred in all, some, or none of the animals with a sharp threshold of around 150-nmol/min mg DNA. A model incorporating both parameters predicted transplantation outcome with sensitivity and specificity of 93% and 94%, respectively. Marginal mass was not constant, depended on OCR/DNA, and increased from 2,800 to over 100,000 islet equivalents/kg body weight as OCR/DNA decreased. We conclude that measurements of OCR and OCR/DNA are useful for predicting transplantation outcome in this model system, and OCR/DNA can be used to estimate the marginal mass required for reversing diabetes. Because human clinical islet preparations in a previous study had OCR/DNA values in the range of 100–150-nmol/min mg DNA, our findings suggest that substantial improvement in transplantation outcome may accompany increasedOCR/DNAin clinical islet preparations. PMID:20233002

  16. Detection of an ALK Fusion in Colorectal Carcinoma by Hybrid Capture-Based Assay of Circulating Tumor DNA.

    PubMed

    Lai, Andrea Z; Schrock, Alexa B; Erlich, Rachel L; Ross, Jeffrey S; Miller, Vincent A; Yakirevich, Evgeny; Ali, Siraj M; Braiteh, Fadi

    2017-07-01

    ALK rearrangements have been observed in 0.05%-2.5% of patients with colorectal cancers (CRCs) and are predicted to be oncogenic drivers largely mutually exclusive of KRAS, NRAS, or BRAF alterations. Here we present the case of a patient with metastatic CRC who was treatment naïve at the time of molecular testing. Initial ALK immunohistochemistry (IHC) staining was negative, but parallel genomic profiling of both circulating tumor DNA (ctDNA) and tissue using similar hybrid capture-based assays each identified an identical STRN-ALK fusion. Subsequent ALK IHC staining of the same specimens was positive, suggesting that the initial result was a false negative. This report is the first instance of an ALK fusion in CRC detected using a ctDNA assay. Current guidelines for colorectal cancer (CRC) only recommend genomic assessment of KRAS, NRAS, BRAF, and microsatellite instability (MSI) status. ALK rearrangements are rare in CRC, but patients with activating ALK fusions have responded to targeted therapies ALK rearrangements can be detected by genomic profiling of ctDNA from blood or tissue, and this methodology may be informative in cases where immunohistochemistry (IHC) or other standard testing is negative. © AlphaMed Press 2017.

  17. Current Status of Testing for Microdeletion Syndromes and Rare Autosomal Trisomies Using Cell-Free DNA Technology.

    PubMed

    Yaron, Yuval; Jani, Jacques; Schmid, Maximilian; Oepkes, Dick

    2015-11-01

    Noninvasive prenatal testing using cell-free DNA in maternal blood for trisomy 21 was introduced in 2011. This technology has continuously evolved with the addition of screening for trisomy 18 and trisomy 13 followed by the inclusion of sex chromosome aneuploidies. Expanded noninvasive prenatal test panels have recently become available, which enable screening for microdeletion syndromes such as the 22q11.2 deletion (associated with the velocardiofacial syndrome) and others. However, the performance data for these microdeletion syndromes are derived from a small number of samples, mostly generated in vitro. Rigorous performance evaluation, as was done at least for trisomy 21 testing using cell-free DNA analysis, is difficult to perform given the rarity of each condition. In addition, detection rates may vary considerably depending on deletion size. Importantly, positive predictive values (PPVs), strongly influenced by the low prevalence, are expected to be significantly lower than 10% for most conditions. Thus, screening in an average-risk population is likely to have many more false-positives than affected cases detected. Conversely, testing in a high-risk population such as fetuses with cardiac anomalies may have higher PPVs, but a negative result needs to be considered carefully as a result of uncertain information about detection rates and a significant residual risk for other copy number variants and single gene disorders. This article integrates current knowledge on cell-free DNA testing for microdeletions with the aim to assist clinicians and policymakers in designing optimal programs for screening in pregnancy.

  18. Enabling multiplexed testing of pooled donor cells through whole-genome sequencing.

    PubMed

    Chan, Yingleong; Chan, Ying Kai; Goodman, Daniel B; Guo, Xiaoge; Chavez, Alejandro; Lim, Elaine T; Church, George M

    2018-04-19

    We describe a method that enables the multiplex screening of a pool of many different donor cell lines. Our method accurately predicts each donor proportion from the pool without requiring the use of unique DNA barcodes as markers of donor identity. Instead, we take advantage of common single nucleotide polymorphisms, whole-genome sequencing, and an algorithm to calculate the proportions from the sequencing data. By testing using simulated and real data, we showed that our method robustly predicts the individual proportions from a mixed-pool of numerous donors, thus enabling the multiplexed testing of diverse donor cells en masse.More information is available at https://pgpresearch.med.harvard.edu/poolseq/.

  19. Testing the effect of paraquat exposure on genomic recombination rates in queens of the western honey bee, Apis mellifera.

    PubMed

    Langberg, Kurt; Phillips, Matthew; Rueppell, Olav

    2018-04-01

    The rate of genomic recombination displays evolutionary plasticity and can even vary in response to environmental factors. The western honey bee (Apis mellifera L.) has an extremely high genomic recombination rate but the mechanistic basis for this genome-wide upregulation is not understood. Based on the hypothesis that meiotic recombination and DNA damage repair share common mechanisms in honey bees as in other organisms, we predicted that oxidative stress leads to an increase in recombination rate in honey bees. To test this prediction, we subjected honey bee queens to oxidative stress by paraquat injection and measured the rates of genomic recombination in select genome intervals of offspring produced before and after injection. The evaluation of 26 genome intervals in a total of over 1750 offspring of 11 queens by microsatellite genotyping revealed several significant effects but no overall evidence for a mechanistic link between oxidative stress and increased recombination was found. The results weaken the notion that DNA repair enzymes have a regulatory function in the high rate of meiotic recombination of honey bees, but they do not provide evidence against functional overlap between meiotic recombination and DNA damage repair in honey bees and more mechanistic studies are needed.

  20. Circulating human papillomavirus DNA as a surveillance tool in head and neck squamous cell carcinoma: a systematic review and meta-analysis.

    PubMed

    Jensen, Kristina Kvist; Grønhøj, Christian; Jensen, David H; von Buchwald, Christian

    2018-05-15

    The incidence of human papillomavirus-induced (HPV+) head and neck squamous cell carcinoma (HNSCC) i.e. especially oropharyngeal cancers (OPSCC) is increasing and a significant proportion of patients encounter disease progression. A simple and sensitive test to identify patients with progression is an unmet need. To systematically review the literature and carry out a meta-analysis of studies, investigated circulating HPV-DNA as a biomarker for disease progression in patients with HNSCC. A systematic review and meta-analysis. PubMed, Embase and the Cochrane Library were systematically searched for articles published in English from January 1980 to November 2017. Search terms used were related to HPV, cancer sites, blood-based biomarkers and terms for specific use settings. Articles reviewed and selected by authors and data on study design, demographic variables, location, HPV status, number of pre treatment blood tests, number of post treatment blood tests, blood HPV status and number of recurrences and length of follow-up was extracted. A meta-analysis of HPV-DNA as a diagnostic test for recurrence by means of a hierarchical summary receiver operating curve (HSROC) model was performed. We identified five studies (n=600 subjects) examining circulating HPV-DNA in patients with HNSCC. In these five studies (n=411) patients had both pre and post treatment blood samples. The pooled sensitivity, in detecting a recurrence was estimated to be 54% (95% CI: 32%-74%), while the pooled specificity was 98% (95% CI: 93-99.4%). The pooled false-positive rate is 2% (95% CI: 0.6%-7%). The area under the curve (AUC) of the summary HSROC was 0.93. Positive predictive value was estimated to 93% and the negative predictive value to 94%. Plasma HPV-DNA is a promising tool for surveillance in patients with HPV-related HNSCC i.e. OPSCC and has a high specificity. By recent technical advances and by increasing follow-up blood samples the sensitivity could likely be improved. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. The value of using DNA markers for beef bull selection in the seedstock sector.

    PubMed

    Van Eenennaam, A L; van der Werf, J H J; Goddard, M E

    2011-02-01

    The objective of this study was to estimate the value derived from using DNA information to increase the accuracy of beef sire selection in a closed seedstock herd. Breeding objectives for commercial production systems targeting 2 diverse markets were examined using multiple-trait selection indexes developed for the Australian cattle industry. Indexes included those for both maternal (self-replacing) and terminal herds targeting either a domestic market, where steers are finished on pasture, or the export market, where steers are finished on concentrate rations in feedlots and marbling has a large value. Selection index theory was used to predict the response to conventional selection based on phenotypic performance records, and this was compared with including information from 2 hypothetical marker panels. In 1 case the marker panel explained a percentage of additive genetic variance equal to the heritability for all traits in the breeding objective and selection criteria, and in the other case to one-half of this amount. Discounted gene flow methodology was used to calculate the value derived from the use of superior bulls selected using DNA test information and performance recording over that derived from conventional selection using performance recording alone. Results were ultimately calculated as discounted returns per DNA test purchased by the seedstock operator. The DNA testing using these hypothetical marker panels increased the selection response between 29 to 158%. The value of this improvement above that obtained using traditional performance recording ranged from $89 to 565 per commercial bull, and $5,332 to 27,910 per stud bull. Assuming that the entire bull calf crop was tested to achieve these gains, the value of the genetic gain derived from DNA testing ranged from $204 to 1,119 per test. All values assumed that the benefits derived from using superior bulls were efficiently transferred along the production chain to the seedstock producer incurring the costs of genotyping. These results suggest that the development of greater-accuracy DNA tests for beef cattle selection could be beneficial from an industry-wide perspective, but the commercial viability will strongly depend on price signaling throughout the production chain.

  2. Pregnancy prediction by free sperm DNA and sperm DNA fragmentation in semen specimens of IVF/ICSI-ET patients.

    PubMed

    Bounartzi, Theofania; Dafopoulos, Konstantinos; Anifandis, George; Messini, Christina I; Koutsonikou, Chrysoula; Kouris, Spyros; Satra, Maria; Sotiriou, Sotirios; Vamvakopoulos, Nicholas; Messinis, Ioannis E

    2016-04-01

    The purpose of this study was to evaluate the predictive value of free sperm plasma DNA (f-spDNA) and sperm DNA fragmentation (SDF), in semen specimens from men undergoing in vitro fertilization/intracytoplasmic sperm injection-embryo transfer (IVF/ICSI-ET) treatments. Fifty-five semen samples were evaluated during 55 consecutive IVF/ICSI-ET cycles. F-spDNA was determined by conventional quantitative real-time PCR-Sybr green detection approach, while evaluation of sperm DNA damage was performed using the sperm chromatin dispersion (SCD) assay. While f-spDNA only correlated with total sperm count, SDF correlated with many semen parameters (including sperm concentration, total sperm count and the per cent of non-progressive sperm). Neither SDF nor the proportion of sperm with small or no halos correlated with f-spDNA. Interestingly, smoking status correlated with f-spDNA but not with SDF. Although these two factors seem to interact for the prediction of pregnancy, receiver-operating characteristics (ROC) analysis revealed that SDF had a stronger predictive value (AUC = 0.7, p < 0.05) than f-spDNA (AUC = 0.6, p > 0.05). SDF and f-spDNA may not be associated together but they interact at a significant level in order to exert their actions on pregnancy outcome. Among the two markers, SDF appears to have stronger and significantly predictive value for pregnancy success.

  3. Emerging metrology for high-throughput nanomaterial genotoxicology.

    PubMed

    Nelson, Bryant C; Wright, Christa W; Ibuki, Yuko; Moreno-Villanueva, Maria; Karlsson, Hanna L; Hendriks, Giel; Sims, Christopher M; Singh, Neenu; Doak, Shareen H

    2017-01-01

    The rapid development of the engineered nanomaterial (ENM) manufacturing industry has accelerated the incorporation of ENMs into a wide variety of consumer products across the globe. Unintentionally or not, some of these ENMs may be introduced into the environment or come into contact with humans or other organisms resulting in unexpected biological effects. It is thus prudent to have rapid and robust analytical metrology in place that can be used to critically assess and/or predict the cytotoxicity, as well as the potential genotoxicity of these ENMs. Many of the traditional genotoxicity test methods [e.g. unscheduled DNA synthesis assay, bacterial reverse mutation (Ames) test, etc.,] for determining the DNA damaging potential of chemical and biological compounds are not suitable for the evaluation of ENMs, due to a variety of methodological issues ranging from potential assay interferences to problems centered on low sample throughput. Recently, a number of sensitive, high-throughput genotoxicity assays/platforms (CometChip assay, flow cytometry/micronucleus assay, flow cytometry/γ-H2AX assay, automated 'Fluorimetric Detection of Alkaline DNA Unwinding' (FADU) assay, ToxTracker reporter assay) have been developed, based on substantial modifications and enhancements of traditional genotoxicity assays. These new assays have been used for the rapid measurement of DNA damage (strand breaks), chromosomal damage (micronuclei) and for detecting upregulated DNA damage signalling pathways resulting from ENM exposures. In this critical review, we describe and discuss the fundamental measurement principles and measurement endpoints of these new assays, as well as the modes of operation, analytical metrics and potential interferences, as applicable to ENM exposures. An unbiased discussion of the major technical advantages and limitations of each assay for evaluating and predicting the genotoxic potential of ENMs is also provided. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society 2016.

  4. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles.

    PubMed

    Dominguez-Salas, Paula; Moore, Sophie E; Baker, Maria S; Bergen, Andrew W; Cox, Sharon E; Dyer, Roger A; Fulford, Anthony J; Guan, Yongtao; Laritsky, Eleonora; Silver, Matt J; Swan, Gary E; Zeisel, Steven H; Innis, Sheila M; Waterland, Robert A; Prentice, Andrew M; Hennig, Branwen J

    2014-04-29

    In experimental animals, maternal diet during the periconceptional period influences the establishment of DNA methylation at metastable epialleles in the offspring, with permanent phenotypic consequences. Pronounced naturally occurring seasonal differences in the diet of rural Gambian women allowed us to test this in humans. We show that significant seasonal variations in methyl-donor nutrient intake of mothers around the time of conception influence 13 relevant plasma biomarkers. The level of several of these maternal biomarkers predicts increased/decreased methylation at metastable epialleles in DNA extracted from lymphocytes and hair follicles in infants postnatally. Our results demonstrate that maternal nutritional status during early pregnancy causes persistent and systemic epigenetic changes at human metastable epialleles.

  5. Predicting adaptation to presymptomatic DNA testing for late onset disorders: who will experience distress? Rotterdam Leiden Genetics Workgroup.

    PubMed Central

    DudokdeWit, A C; Tibben, A; Duivenvoorden, H J; Niermeijer, M F; Passchier, J

    1998-01-01

    The first comparative study on predicting post-test distress (conceptualised by intrusion and avoidance, measured with the Impact of Event Scale) after presymptomatic genetic testing for Huntington's disease (HD, n=25), cancer syndromes (familial adenomatous polyposis (FAP, n=23)), and hereditary breast and ovarian cancer (HBOC, n=10) is reported. The variables with the highest predictive potential of post-test distress are presented. Participants who were depressed before the test were more distressed after testing, but we found that those who were anxious before the test were less distressed, that is, had less intrusive thoughts post-test. Other factors associated with a higher level of post-test intrusion were gender (being a woman), having children, and pre-test intrusion. Religion and being at risk for HBOC were associated with less post-test intrusion. Participants who showed avoidance behaviour before the test and those who had many people available for support showed more avoidance behaviour post-test. The test result did not additionally contribute to post-test distress. The prima facie simple notion that the test result, as such, determines the distress experienced seems to be a misrepresentation of the complex reality. PMID:9733033

  6. O6-Methylguanine DNA Methyltransferase Status Does Not Predict Response or Resistance to Alkylating Agents in Well-Differentiated Pancreatic Neuroendocrine Tumors.

    PubMed

    Raj, Nitya; Klimstra, David S; Horvat, Natally; Zhang, Liying; Chou, Joanne F; Capanu, Marinela; Basturk, Olca; Do, Richard Kinh Gian; Allen, Peter J; Reidy-Lagunes, Diane

    2017-07-01

    Alkylating agents have activity in well-differentiated pancreatic neuroendocrine tumors (WD panNETs). In glioblastoma multiforme, decreased activity of O-methylguanine DNA methyltransferase (MGMT) predicts response; in panNETs, MGMT relevance is unknown. We identified patients with WD panNETs treated with alkylating agents, determined best overall response by Response Evaluation Criteria In Solid Tumors (RECIST) 1.1, and performed MGMT activity testing. Fifty-six patients were identified; 26 (46%) of the 56 patients experienced partial response, 24 (43%) of 56 experienced stable disease, and 6 (11%) of 56 experienced progression of disease. O-methylguanine DNA methyltransferase status was available for 36 tumors. For tumors with partial response, 10 (67%) of 15 were MGMT deficient, and 5 (33%) of 15 were MGMT intact. For tumors with stable disease, 7 (47%) of 15 were MGMT deficient, and 8 (53%) of 15 were MGMT intact. For tumors with progression of disease, 3 (50%) of 6 were MGMT deficient, and 3 (50%) of 6 were MGMT intact. We observed response and resistance to alkylating agents in MGMT-deficient and MGMT-intact tumors. O-methylguanine DNA methyltransferase status should not guide alkylating agent therapy in WD panNETs.

  7. An Automated Pipeline for Engineering Many-Enzyme Pathways: Computational Sequence Design, Pathway Expression-Flux Mapping, and Scalable Pathway Optimization.

    PubMed

    Halper, Sean M; Cetnar, Daniel P; Salis, Howard M

    2018-01-01

    Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.

  8. Molecular determinants of the interactions between proteins and ssDNA.

    PubMed

    Mishra, Garima; Levy, Yaakov

    2015-04-21

    ssDNA binding proteins (SSBs) protect ssDNA from chemical and enzymatic assault that can derail DNA processing machinery. Complexes between SSBs and ssDNA are often highly stable, but predicting their structures is challenging, mostly because of the inherent flexibility of ssDNA and the geometric and energetic complexity of the interfaces that it forms. Here, we report a newly developed coarse-grained model to predict the structure of SSB-ssDNA complexes. The model is successfully applied to predict the binding modes of six SSBs with ssDNA strands of lengths of 6-65 nt. In addition to charge-charge interactions (which are often central to governing protein interactions with nucleic acids by means of electrostatic complementarity), an essential energetic term to predict SSB-ssDNA complexes is the interactions between aromatic residues and DNA bases. For some systems, flexibility is required from not only the ssDNA but also, the SSB to allow it to undergo conformational changes and the penetration of the ssDNA into its binding pocket. The association mechanisms can be quite varied, and in several cases, they involve the ssDNA sliding along the protein surface. The binding mechanism suggests that coarse-grained models are appropriate to study the motion of SSBs along ssDNA, which is expected to be central to the function carried out by the SSBs.

  9. Changing practice: red blood cell typing by molecular methods for patients with sickle cell disease.

    PubMed

    Casas, Jessica; Friedman, David F; Jackson, Tannoa; Vege, Sunitha; Westhoff, Connie M; Chou, Stella T

    2015-06-01

    Extended red blood cell (RBC) antigen matching is recommended to limit alloimmunization in patients with sickle cell disease (SCD). DNA-based testing to predict blood group phenotypes has enhanced availability of antigen-negative donor units and improved typing of transfused patients, but replacement of routine serologic typing for non-ABO antigens with molecular typing for patients has not been reported. This study compared the historical RBC antigen phenotypes obtained by hemagglutination methods with genotype predictions in 494 patients with SCD. For discrepant results, repeat serologic testing was performed and/or investigated by gene sequencing for silent or variant alleles. Seventy-one typing discrepancies were identified among 6360 antigen comparisons (1.1%). New specimens for repeat serologic testing were obtained for 66 discrepancies and retyping agreed with the genotype in 64 cases. One repeat Jk(b-) serologic phenotype, predicted Jk(b+) by genotype, was found by direct sequencing of JK to be a silenced allele, and one N typing discrepancy remains under investigation. Fifteen false-negative serologic results were associated with alleles encoding weak antigens or single-dose Fy(b) expression. DNA-based RBC typing provided improved accuracy and expanded information on RBC antigens compared to hemagglutination methods, leading to its implementation as the primary method for extended RBC typing for patients with SCD at our institution. © 2015 AABB.

  10. Relationship of plasma cell-free DNA level with mortality and prognosis in patients with Crimean-Congo hemorrhagic fever.

    PubMed

    Bakir, Mehmet; Engin, Aynur; Kuskucu, Mert Ahmet; Bakir, Sevtap; Gündag, Omür; Midilli, Kenan

    2016-07-01

    Crimean-Congo hemorrhagic fever (CCHF) is a viral infection. Circulating plasma cell-free DNA (pcf-DNA) is a novel marker indicating cellular damage. So far, the role of pcf-DNA did not investigate in CCHF patients. In the current study, pcf-DNA levels were investigated in CCHF patients with different clinical severity grades to explore the relationship between circulating pcf-DNA level, virus load, and disease severity. Seventy-two patients were categorized as mild, intermediate, and severe based on severity grading scores. The pcf-DNA level was obtained from all participants on admission and from the survivors on the day of the discharge. The controls consisted of 31 healthy. Although the pcf-DNA level at admission was higher in patients than in the controls, the difference was not statistically significant (P = 0.291). However, at admission and in the convalescent period, the difference between pcf-DNA levels in mild, intermediate, and severe patient groups was significant. The pcf-DNA level in severe patients was higher than in the others. Furthermore, compared to survivors, non-survivors had higher pcf-DNA levels at admission (P = 0.001). A direct relationship was found between the pcf-DNA level and the viral load on the day of discharge in surviving patients. ROC curve analysis identified a pcf-DNA level of 0.42 as the optimal cut-off for prediction of mortality. The positive predictive value, negative predictive value, specificity, and sensitivity for predicting mortality was 100%, 72%, 100%, and 79%, respectively. In summary, our findings revealed that pcf-DNA levels may be used as a biomarker in predicting CHHF prognosis. © 2015 Wiley Periodicals, Inc.

  11. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    PubMed

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  12. Mutation Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing.

    PubMed

    Mandelker, Diana; Zhang, Liying; Kemel, Yelena; Stadler, Zsofia K; Joseph, Vijai; Zehir, Ahmet; Pradhan, Nisha; Arnold, Angela; Walsh, Michael F; Li, Yirong; Balakrishnan, Anoop R; Syed, Aijazuddin; Prasad, Meera; Nafa, Khedoudja; Carlo, Maria I; Cadoo, Karen A; Sheehan, Meg; Fleischut, Megan H; Salo-Mullen, Erin; Trottier, Magan; Lipkin, Steven M; Lincoln, Anne; Mukherjee, Semanti; Ravichandran, Vignesh; Cambria, Roy; Galle, Jesse; Abida, Wassim; Arcila, Marcia E; Benayed, Ryma; Shah, Ronak; Yu, Kenneth; Bajorin, Dean F; Coleman, Jonathan A; Leach, Steven D; Lowery, Maeve A; Garcia-Aguilar, Julio; Kantoff, Philip W; Sawyers, Charles L; Dickler, Maura N; Saltz, Leonard; Motzer, Robert J; O'Reilly, Eileen M; Scher, Howard I; Baselga, Jose; Klimstra, David S; Solit, David B; Hyman, David M; Berger, Michael F; Ladanyi, Marc; Robson, Mark E; Offit, Kenneth

    2017-09-05

    Guidelines for cancer genetic testing based on family history may miss clinically actionable genetic changes with established implications for cancer screening or prevention. To determine the proportion and potential clinical implications of inherited variants detected using simultaneous sequencing of the tumor and normal tissue ("tumor-normal sequencing") compared with genetic test results based on current guidelines. From January 2014 until May 2016 at Memorial Sloan Kettering Cancer Center, 10 336 patients consented to tumor DNA sequencing. Since May 2015, 1040 of these patients with advanced cancer were referred by their oncologists for germline analysis of 76 cancer predisposition genes. Patients with clinically actionable inherited mutations whose genetic test results would not have been predicted by published decision rules were identified. Follow-up for potential clinical implications of mutation detection was through May 2017. Tumor and germline sequencing compared with the predicted yield of targeted germline sequencing based on clinical guidelines. Proportion of clinically actionable germline mutations detected by universal tumor-normal sequencing that would not have been detected by guideline-directed testing. Of 1040 patients, the median age was 58 years (interquartile range, 50.5-66 years), 65.3% were male, and 81.3% had stage IV disease at the time of genomic analysis, with prostate, renal, pancreatic, breast, and colon cancer as the most common diagnoses. Of the 1040 patients, 182 (17.5%; 95% CI, 15.3%-19.9%) had clinically actionable mutations conferring cancer susceptibility, including 149 with moderate- to high-penetrance mutations; 101 patients tested (9.7%; 95% CI, 8.1%-11.7%) would not have had these mutations detected using clinical guidelines, including 65 with moderate- to high-penetrance mutations. Frequency of inherited mutations was related to case mix, stage, and founder mutations. Germline findings led to discussion or initiation of change to targeted therapy in 38 patients tested (3.7%) and predictive testing in the families of 13 individuals (1.3%), including 6 for whom genetic evaluation would not have been initiated by guideline-based testing. In this referral population with selected advanced cancers, universal sequencing of a broad panel of cancer-related genes in paired germline and tumor DNA samples was associated with increased detection of individuals with potentially clinically significant heritable mutations over the predicted yield of targeted germline testing based on current clinical guidelines. Knowledge of these additional mutations can help guide therapeutic and preventive interventions, but whether all of these interventions would improve outcomes for patients with cancer or their family members requires further study. clinicaltrials.gov Identifier: NCT01775072.

  13. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection

    NASA Astrophysics Data System (ADS)

    Keller, Nicholas; Berndsen, Zachary T.; Jardine, Paul J.; Smith, Douglas E.

    2017-05-01

    We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0 % to 80 % filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation. Force resisting DNA packaging from ˜80 % to 100 % filling inferred from optical tweezers studies is also consistent with the predictions of this model. The striking agreement with these two different measurements suggests that the overall energetics of DNA packaging is well described by the model. However, since electron microscopy studies of phi29 do not reveal a spool conformation, our findings suggest that the spool model overestimates the role of bending rigidity and underestimates the role of intrastrand repulsion. Below ˜80 % filling the inferred forces resisting packaging are unexpectedly lower than the inferred ejection forces, suggesting that in this filling range the forces are less accurately determined or strongly temperature dependent.

  14. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection.

    PubMed

    Keller, Nicholas; Berndsen, Zachary T; Jardine, Paul J; Smith, Douglas E

    2017-05-01

    We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0% to 80% filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation. Force resisting DNA packaging from ∼80% to 100% filling inferred from optical tweezers studies is also consistent with the predictions of this model. The striking agreement with these two different measurements suggests that the overall energetics of DNA packaging is well described by the model. However, since electron microscopy studies of phi29 do not reveal a spool conformation, our findings suggest that the spool model overestimates the role of bending rigidity and underestimates the role of intrastrand repulsion. Below ∼80% filling the inferred forces resisting packaging are unexpectedly lower than the inferred ejection forces, suggesting that in this filling range the forces are less accurately determined or strongly temperature dependent.

  15. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis.

    PubMed

    Sakkas, Denny; Alvarez, Juan G

    2010-03-01

    To review the mechanisms responsible for DNA fragmentation in human sperm, including those occurring during spermatogenesis and transport through the reproductive tract. The mechanisms examined include: apoptosis in the seminiferous tubule epithelium, defects in chromatin remodeling during the process of spermiogenesis, oxygen radical-induced DNA damage during sperm migration from the seminiferous tubules to the epididymis, the activation of sperm caspases and endonucleases, damage induced by chemotherapy and radiotherapy, and the effect of environmental toxicants. The different tests currently used for sperm DNA fragmentation analysis and the factors that determine the predictive value of sperm DNA fragmentation testing and their implications in the diagnosis and treatment of infertility are also discussed. Finally, we also scrutinize how the presence in the embryonic genome of DNA strand breaks or modifications of DNA nucleotides inherited from the paternal genome could impact the embryo and offspring. In particular we discuss how abnormal sperm could be dealt with by the oocyte and how sperm DNA abnormalities, which have not been satisfactorily repaired by the oocyte after fertilization, may interfere with normal embryo and fetal development. Sperm DNA can be modified through various mechanisms. The integrity of the paternal genome is therefore of paramount importance in the initiation and maintenance of a viable pregnancy both in a natural conception and in assisted reproduction. The need to diagnose sperm at a nuclear level is an area that needs further understanding so that we can improve treatment of the infertile couple. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Computational Identification of Diverse Mechanisms Underlying Transcription Factor-DNA Occupancy

    PubMed Central

    Cheng, Qiong; Kazemian, Majid; Pham, Hannah; Blatti, Charles; Celniker, Susan E.; Wolfe, Scot A.; Brodsky, Michael H.; Sinha, Saurabh

    2013-01-01

    ChIP-based genome-wide assays of transcription factor (TF) occupancy have emerged as a powerful, high-throughput method to understand transcriptional regulation, especially on a global scale. This has led to great interest in the underlying biochemical mechanisms that direct TF-DNA binding, with the ultimate goal of computationally predicting a TF's occupancy profile in any cellular condition. In this study, we examined the influence of various potential determinants of TF-DNA binding on a much larger scale than previously undertaken. We used a thermodynamics-based model of TF-DNA binding, called “STAP,” to analyze 45 TF-ChIP data sets from Drosophila embryonic development. We built a cross-validation framework that compares a baseline model, based on the ChIP'ed (“primary”) TF's motif, to more complex models where binding by secondary TFs is hypothesized to influence the primary TF's occupancy. Candidates interacting TFs were chosen based on RNA-SEQ expression data from the time point of the ChIP experiment. We found widespread evidence of both cooperative and antagonistic effects by secondary TFs, and explicitly quantified these effects. We were able to identify multiple classes of interactions, including (1) long-range interactions between primary and secondary motifs (separated by ≤150 bp), suggestive of indirect effects such as chromatin remodeling, (2) short-range interactions with specific inter-site spacing biases, suggestive of direct physical interactions, and (3) overlapping binding sites suggesting competitive binding. Furthermore, by factoring out the previously reported strong correlation between TF occupancy and DNA accessibility, we were able to categorize the effects into those that are likely to be mediated by the secondary TF's effect on local accessibility and those that utilize accessibility-independent mechanisms. Finally, we conducted in vitro pull-down assays to test model-based predictions of short-range cooperative interactions, and found that seven of the eight TF pairs tested physically interact and that some of these interactions mediate cooperative binding to DNA. PMID:23935523

  17. Interaction between polymer constituents and the structure of biopolymers

    NASA Technical Reports Server (NTRS)

    Rein, R.

    1974-01-01

    The paper reviews the current status of methods for calculating intermolecular interactions between biopolymer units. The nature of forces contributing to the various domains of intermolecular separations is investigated, and various approximations applicable in the respective regions are examined. The predictive value of current theory is tested by establishing a connection with macroscopic properties and comparing the theoretical predicted values with those derived from experimental data. This has led to the introduction of a statistical model describing DNA.

  18. High performance transcription factor-DNA docking with GPU computing

    PubMed Central

    2012-01-01

    Background Protein-DNA docking is a very challenging problem in structural bioinformatics and has important implications in a number of applications, such as structure-based prediction of transcription factor binding sites and rational drug design. Protein-DNA docking is very computational demanding due to the high cost of energy calculation and the statistical nature of conformational sampling algorithms. More importantly, experiments show that the docking quality depends on the coverage of the conformational sampling space. It is therefore desirable to accelerate the computation of the docking algorithm, not only to reduce computing time, but also to improve docking quality. Methods In an attempt to accelerate the sampling process and to improve the docking performance, we developed a graphics processing unit (GPU)-based protein-DNA docking algorithm. The algorithm employs a potential-based energy function to describe the binding affinity of a protein-DNA pair, and integrates Monte-Carlo simulation and a simulated annealing method to search through the conformational space. Algorithmic techniques were developed to improve the computation efficiency and scalability on GPU-based high performance computing systems. Results The effectiveness of our approach is tested on a non-redundant set of 75 TF-DNA complexes and a newly developed TF-DNA docking benchmark. We demonstrated that the GPU-based docking algorithm can significantly accelerate the simulation process and thereby improving the chance of finding near-native TF-DNA complex structures. This study also suggests that further improvement in protein-DNA docking research would require efforts from two integral aspects: improvement in computation efficiency and energy function design. Conclusions We present a high performance computing approach for improving the prediction accuracy of protein-DNA docking. The GPU-based docking algorithm accelerates the search of the conformational space and thus increases the chance of finding more near-native structures. To the best of our knowledge, this is the first ad hoc effort of applying GPU or GPU clusters to the protein-DNA docking problem. PMID:22759575

  19. Image-Based Modeling Reveals Dynamic Redistribution of DNA Damage into Nuclear Sub-Domains

    PubMed Central

    Costes, Sylvain V; Ponomarev, Artem; Chen, James L; Nguyen, David; Cucinotta, Francis A; Barcellos-Hoff, Mary Helen

    2007-01-01

    Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage occurs. To test this assumption, we analyzed the spatial distribution of 53BP1, phosphorylated ATM, and γH2AX RIF in cells irradiated with high linear energy transfer (LET) radiation and low LET. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. As expected, simulations produced DNA-weighted random (Poisson) distributions. In contrast, the distributions of RIF obtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) were non-random. This deviation from the expected DNA-weighted random pattern can be further characterized by “relative DNA image measurements.” This novel imaging approach shows that RIF were located preferentially at the interface between high and low DNA density regions, and were more frequent than predicted in regions with lower DNA density. The same preferential nuclear location was also measured for RIF induced by 1 Gy of low-LET radiation. This deviation from random behavior was evident only 5 min after irradiation for phosphorylated ATM RIF, while γH2AX and 53BP1 RIF showed pronounced deviations up to 30 min after exposure. These data suggest that DNA damage–induced foci are restricted to certain regions of the nucleus of human epithelial cells. It is possible that DNA lesions are collected in these nuclear sub-domains for more efficient repair. PMID:17676951

  20. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios

    PubMed Central

    Majzoub, Ahmad; Esteves, Sandro C.; Ko, Edmund; Ramasamy, Ranjith; Zini, Armand

    2016-01-01

    Sperm DNA fragmentation (SDF) has been generally acknowledged as a valuable tool for male fertility evaluation. While its detrimental implications on sperm function were extensively investigated, little is known about the actual indications for performing SDF analysis. This review delivers practice based recommendations on commonly encountered scenarios in the clinic. An illustrative description of the different SDF measurement techniques is presented. SDF testing is recommended in patients with clinical varicocele and borderline to normal semen parameters as it can better select varicocelectomy candidates. High SDF is also linked with recurrent spontaneous abortion (RSA) and can influence outcomes of different assisted reproductive techniques. Several studies have shown some benefit in using testicular sperm rather than ejaculated sperm in men with high SDF, oligozoospermia or recurrent in vitro fertilization (IVF) failure. Infertile men with evidence of exposure to pollutants can benefit from sperm DNA testing as it can help reinforce the importance of lifestyle modification (e.g., cessation of cigarette smoking, antioxidant therapy), predict fertility and monitor the patient’s response to intervention. PMID:28078226

  1. Ethical issues in the use of genetic testing of patients with schizophrenia and their families.

    PubMed

    DeLisi, Lynn E

    2014-05-01

    This review outlines the positive and negative aspects of DNA testing and provides an account of the issues particularly relevant to schizophrenia. Modern technology has changed the field of medicine so rapidly that patients and their families have become much more independent in their healthcare decisions than in the previous decade. Simply by finding information on the Internet, they gain knowledge about disease diagnosis, treatment options and their side-effects. No medical field likely has been more affected and more controversial than that of genetics. It is now possible to sequence the individual human genome and detect single nucleotide variations, microdeletions and duplications within it. Commercial companies have sprung up in a similar manner to the software or electronic industries and have begun to market direct-to-consumer DNA testing. Much of this may be performed to satisfy curiosity about one's ancestry; but commercially available results that appear incidentally can also be distributed to the consumer. Ethicists, genetics researchers, clinicians and government agencies are currently in discussion about concerns raised about commercially available DNA testing, while at the same time recognizing its value in some instances to be able to predict very serious disabilities.

  2. Comparison of DNA decatenation by Escherichia coli topoisomerase IV and topoisomerase III: implications for non-equilibrium topology simplification

    PubMed Central

    Seol, Yeonee; Hardin, Ashley H.; Strub, Marie-Paule; Charvin, Gilles; Neuman, Keir C.

    2013-01-01

    Type II topoisomerases are essential enzymes that regulate DNA topology through a strand-passage mechanism. Some type II topoisomerases relax supercoils, unknot and decatenate DNA to below thermodynamic equilibrium. Several models of this non-equilibrium topology simplification phenomenon have been proposed. The kinetic proofreading (KPR) model postulates that strand passage requires a DNA-bound topoisomerase to collide twice in rapid succession with a second DNA segment, implying a quadratic relationship between DNA collision frequency and relaxation rate. To test this model, we used a single-molecule assay to measure the unlinking rate as a function of DNA collision frequency for Escherichia coli topoisomerase IV (topo IV) that displays efficient non-equilibrium topology simplification activity, and for E. coli topoisomerase III (topo III), a type IA topoisomerase that unlinks and unknots DNA to equilibrium levels. Contrary to the predictions of the KPR model, topo IV and topo III unlinking rates were linearly related to the DNA collision frequency. Furthermore, topo III exhibited decatenation activity comparable with that of topo IV, supporting proposed roles for topo III in DNA segregation. This study enables us to rule out the KPR model for non-equilibrium topology simplification. More generally, we establish an experimental approach to systematically control DNA collision frequency. PMID:23460205

  3. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer.

    PubMed

    O'Leary, Ben; Hrebien, Sarah; Morden, James P; Beaney, Matthew; Fribbens, Charlotte; Huang, Xin; Liu, Yuan; Bartlett, Cynthia Huang; Koehler, Maria; Cristofanilli, Massimo; Garcia-Murillas, Isaac; Bliss, Judith M; Turner, Nicholas C

    2018-03-01

    CDK4/6 inhibition substantially improves progression-free survival (PFS) for women with advanced estrogen receptor-positive breast cancer, although there are no predictive biomarkers. Early changes in circulating tumor DNA (ctDNA) level may provide early response prediction, but the impact of tumor heterogeneity is unknown. Here we use plasma samples from patients in the randomized phase III PALOMA-3 study of CDK4/6 inhibitor palbociclib and fulvestrant for women with advanced breast cancer and show that relative change in PIK3CA ctDNA level after 15 days treatment strongly predicts PFS on palbociclib and fulvestrant (hazard ratio 3.94, log-rank p = 0.0013). ESR1 mutations selected by prior hormone therapy are shown to be frequently sub clonal, with ESR1 ctDNA dynamics offering limited prediction of clinical outcome. These results suggest that early ctDNA dynamics may provide a robust biomarker for CDK4/6 inhibitors, with early ctDNA dynamics demonstrating divergent response of tumor sub clones to treatment.

  4. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy.

    PubMed

    Yan, Yumeng; Zhang, Di; Zhou, Pei; Li, Botong; Huang, Sheng-You

    2017-07-03

    Protein-protein and protein-DNA/RNA interactions play a fundamental role in a variety of biological processes. Determining the complex structures of these interactions is valuable, in which molecular docking has played an important role. To automatically make use of the binding information from the PDB in docking, here we have presented HDOCK, a novel web server of our hybrid docking algorithm of template-based modeling and free docking, in which cases with misleading templates can be rescued by the free docking protocol. The server supports protein-protein and protein-DNA/RNA docking and accepts both sequence and structure inputs for proteins. The docking process is fast and consumes about 10-20 min for a docking run. Tested on the cases with weakly homologous complexes of <30% sequence identity from five docking benchmarks, the HDOCK pipeline tied with template-based modeling on the protein-protein and protein-DNA benchmarks and performed better than template-based modeling on the three protein-RNA benchmarks when the top 10 predictions were considered. The performance of HDOCK became better when more predictions were considered. Combining the results of HDOCK and template-based modeling by ranking first of the template-based model further improved the predictive power of the server. The HDOCK web server is available at http://hdock.phys.hust.edu.cn/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Representation of DNA sequences in genetic codon context with applications in exon and intron prediction.

    PubMed

    Yin, Changchuan

    2015-04-01

    To apply digital signal processing (DSP) methods to analyze DNA sequences, the sequences first must be specially mapped into numerical sequences. Thus, effective numerical mappings of DNA sequences play key roles in the effectiveness of DSP-based methods such as exon prediction. Despite numerous mappings of symbolic DNA sequences to numerical series, the existing mapping methods do not include the genetic coding features of DNA sequences. We present a novel numerical representation of DNA sequences using genetic codon context (GCC) in which the numerical values are optimized by simulation annealing to maximize the 3-periodicity signal to noise ratio (SNR). The optimized GCC representation is then applied in exon and intron prediction by Short-Time Fourier Transform (STFT) approach. The results show the GCC method enhances the SNR values of exon sequences and thus increases the accuracy of predicting protein coding regions in genomes compared with the commonly used 4D binary representation. In addition, this study offers a novel way to reveal specific features of DNA sequences by optimizing numerical mappings of symbolic DNA sequences.

  6. The Degree of Radiation-Induced DNA Strand Breaks Is Altered by Acute Sleep Deprivation and Psychological Stress and Is Associated with Cognitive Performance in Humans.

    PubMed

    Moreno-Villanueva, Maria; von Scheven, Gudrun; Feiveson, Alan; Bürkle, Alexander; Wu, Honglu; Goel, Namni

    2018-03-27

    Sleep deprivation is associated with impaired immune responses, cancer, and morbidity and mortality, and can degrade cognitive performance, although individual differences exist in such responses. Sleep deprivation induces DNA strand breaks and DNA base oxidation in animals, and psychological stress is associated with increased DNA damage in humans. It remains unknown whether sleep deprivation or psychological stress in humans affects DNA damage response from environmental stressors, and whether these responses predict cognitive performance during sleep deprivation. Sixteen healthy adults (ages 29-52;mean age±SD, 36.4±7.1 years;7 women) participated in a 5-day experiment involving two 8 hour time-in-bed [TIB] baseline nights, followed by 39 hours total sleep deprivation (TSD), and two 8-10 hour TIB recovery nights. A modified Trier Social Stress Test was conducted on the day after TSD. Psychomotor Vigilance Tests measured behavioral attention. DNA damage was assessed in blood cells collected at 5 time points, and blood cells were irradiated ex-vivo. TSD, alone or in combination with psychological stress, did not induce significant increases in DNA damage. By contrast, radiation-induced DNA damage decreased significantly in response to TSD, but increased back to baseline when combined with psychological stress. Cognitively-vulnerable individuals had more radiation-induced DNA strand breaks before TSD, indicating their greater sensitivity to DNA damage from environmental stressors. Our results provide novel insights into the molecular consequences of sleep deprivation, psychological stress, and performance vulnerability. They are important for situations involving sleep loss, radiation exposure and cognitive deficits, including cancer therapy, environmental toxicology, and space medicine.

  7. DNA Copy Number Signature to Predict Recurrence in Early Stage Ovarian Cancer

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-14-1-0194 TITLE: DNA Copy Number Signature to Predict Recurrence in Early-Stage Ovarian Cancer PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER DNA Copy Number Signature to Predict Recurrence in Early-Stage Ovarian Cancer 5b. GRANT NUMBER W81XWH-14-1-0194 5c. PROGRAM...determine the copy number gain and loss for early stage high grade ovarian cancers through IlluminaHumanOmniExpress-FFPE BeadChip system • Subtask 1 DNA

  8. Comparison of the Predictive Accuracy of DNA Array-Based Multigene Classifiers across cDNA Arrays and Affymetrix GeneChips

    PubMed Central

    Stec, James; Wang, Jing; Coombes, Kevin; Ayers, Mark; Hoersch, Sebastian; Gold, David L.; Ross, Jeffrey S; Hess, Kenneth R.; Tirrell, Stephen; Linette, Gerald; Hortobagyi, Gabriel N.; Symmans, W. Fraser; Pusztai, Lajos

    2005-01-01

    We examined how well differentially expressed genes and multigene outcome classifiers retain their class-discriminating values when tested on data generated by different transcriptional profiling platforms. RNA from 33 stage I-III breast cancers was hybridized to both Affymetrix GeneChip and Millennium Pharmaceuticals cDNA arrays. Only 30% of all corresponding gene expression measurements on the two platforms had Pearson correlation coefficient r ≥ 0.7 when UniGene was used to match probes. There was substantial variation in correlation between different Affymetrix probe sets matched to the same cDNA probe. When cDNA and Affymetrix probes were matched by basic local alignment tool (BLAST) sequence identity, the correlation increased substantially. We identified 182 genes in the Affymetrix and 45 in the cDNA data (including 17 common genes) that accurately separated 91% of cases in supervised hierarchical clustering in each data set. Cross-platform testing of these informative genes resulted in lower clustering accuracy of 45 and 79%, respectively. Several sets of accurate five-gene classifiers were developed on each platform using linear discriminant analysis. The best 100 classifiers showed average misclassification error rate of 2% on the original data that rose to 19.5% when tested on data from the other platform. Random five-gene classifiers showed misclassification error rate of 33%. We conclude that multigene predictors optimized for one platform lose accuracy when applied to data from another platform due to missing genes and sequence differences in probes that result in differing measurements for the same gene. PMID:16049308

  9. Geant4-DNA simulation of DNA damage caused by direct and indirect radiation effects and comparison with biological data.

    NASA Astrophysics Data System (ADS)

    Villagrasa, Carmen; Meylan, Sylvain; Gonon, Geraldine; Gruel, Gaëtan; Giesen, Ulrich; Bueno, Marta; Rabus, Hans

    2017-09-01

    In this work we present results obtained in the frame of the BioQuaRT project. The objective of the study was the correlation between the number of radiation-induced double strand breaks (DSB) of the DNA molecule and the probability of detecting nuclear foci after targeted microbeam irradiation of cells with protons and alpha particles of different LET. The former were obtained by simulation with new methods integrated into Geant4-DNA that permit calculating the number of DSB in a DNA target model induced by direct and indirect radiation effects. A particular focus was laid in this work on evaluating the influence of different criteria applied to the simulated results for predicting the formation of a direct SSB. Indeed, these criteria have an important impact on the predicted number of DSB per particle track and its dependence with LET. Among the criteria tested in this work, the case that a direct radiation interaction leads to a strand break if the cumulative energy deposited in the backbone part of one nucleotide exceeds a threshold of 17.5 eV leads to the best agreement with the relative LET dependence of number of radiation induced foci. Further calculations and experimental data are nevertheless needed in order to fix the simulation parameters and to help interpreting the biological experimental data observed by immunofluorescence in terms of the DSB complexity.

  10. Prediction of psychological functioning one year after the predictive test for Huntington's disease and impact of the test result on reproductive decision making.

    PubMed Central

    Decruyenaere, M; Evers-Kiebooms, G; Boogaerts, A; Cassiman, J J; Cloostermans, T; Demyttenaere, K; Dom, R; Fryns, J P; Van den Berghe, H

    1996-01-01

    For people at risk for Huntington's disease, the anxiety and uncertainty about the future may be very burdensome and may be an obstacle to personal decision making about important life issues, for example, procreation. For some at risk persons, this situation is the reason for requesting predictive DNA testing. The aim of this paper is two-fold. First, we want to evaluate whether knowing one's carrier status reduces anxiety and uncertainty and whether it facilitates decision making about procreation. Second, we endeavour to identify pretest predictors of psychological adaptation one year after the predictive test (psychometric evaluation of general anxiety, depression level, and ego strength). The impact of the predictive test result was assessed in 53 subjects tested, using pre- and post-test psychometric measurement and self-report data of follow up interviews. Mean anxiety and depression levels were significantly decreased one year after a good test result; there was no significant change in the case of a bad test result. The mean personality profile, including ego strength, remained unchanged one year after the test. The study further shows that the test result had a definite impact on reproductive decision making. Stepwise multiple regression analyses were used to select the best predictors of the subject's post-test reactions. The results indicate that a careful evaluation of pretest ego strength, depression level, and coping strategies may be helpful in predicting post-test reactions, independently of the carrier status. Test result (carrier/ non-carrier), gender, and age did not significantly contribute to the prediction. About one third of the variance of post-test anxiety and depression level and more than half of the variance of ego strength was explained, implying that other psychological or social aspects should also be taken into account when predicting individual post-test reactions. PMID:8880572

  11. Performance of the cobas Hepatitis B virus (HBV) test using the cobas 4800 system and comparison of HBV DNA quantification ability between the COBAS AmpliPrep/COBAS TaqMan HBV test version 2.0 and cobas HBV test.

    PubMed

    Shin, Kyung-Hwa; Lee, Hyun-Ji; Chang, Chulhun L; Kim, Hyung-Hoi

    2018-04-01

    Hepatitis B virus (HBV) DNA levels are used to predict the response to therapy, determine therapy initiation, monitor resistance to therapy, and establish treatment success. To verify the performance of the cobas HBV test using the cobas 4800 system for HBV DNA quantification and to compare the HBV DNA quantification ability between the cobas HBV test and COBAS AmpliPrep/COBAS TaqMan HBV version 2.0 (CAP/CTM v2.0). The precision, linearity, and limit of detection of the cobas HBV test were evaluated using the 4th World Health Organization International Standard material and plasma samples. Clinical samples that yielded quantitative results using the CAP/CTM v2.0 and cobas HBV tests were subjected to correlational analysis. Three hundred forty-nine samples were subjected to correlational analysis, among which 114 samples showed results above the lower limit of quantification. Comparable results were obtained ([cobas HBV test] = 1.038 × [CAP/CTM v2.0]-0.173, r = 0.914) in 114 samples, which yielded values above the lower limit of quantification. The results for 86.8% of the samples obtained using the cobas HBV test were within 0.5 log 10 IU/mL of the CAP/CTM v2.0 results. The total precision values against the low and high positive controls were 1.4% (mean level: 2.25 log 10 IU/mL) and 3.2% (mean level: 6.23 log 10 IU/mL), respectively. The cobas HBV test demonstrated linearity (1.15-6.75 log 10 IU/mL, y = 0.95 × 6 + 0.17, r 2  = 0.994). The cobas HBV test showed good correlation with CAP/CTM v2.0, and had good precision and an acceptable limit of detection. The cobas HBV test using the cobas 4800 is a reliable method for quantifying HBV DNA levels in the clinical setting. Copyright © 2018. Published by Elsevier B.V.

  12. A Glimpse into the Satellite DNA Library in Characidae Fish (Teleostei, Characiformes)

    PubMed Central

    Utsunomia, Ricardo; Ruiz-Ruano, Francisco J.; Silva, Duílio M. Z. A.; Serrano, Érica A.; Rosa, Ivana F.; Scudeler, Patrícia E. S.; Hashimoto, Diogo T.; Oliveira, Claudio; Camacho, Juan Pedro M.; Foresti, Fausto

    2017-01-01

    Satellite DNA (satDNA) is an abundant fraction of repetitive DNA in eukaryotic genomes and plays an important role in genome organization and evolution. In general, satDNA sequences follow a concerted evolutionary pattern through the intragenomic homogenization of different repeat units. In addition, the satDNA library hypothesis predicts that related species share a series of satDNA variants descended from a common ancestor species, with differential amplification of different satDNA variants. The finding of a same satDNA family in species belonging to different genera within Characidae fish provided the opportunity to test both concerted evolution and library hypotheses. For this purpose, we analyzed here sequence variation and abundance of this satDNA family in ten species, by a combination of next generation sequencing (NGS), PCR and Sanger sequencing, and fluorescence in situ hybridization (FISH). We found extensive between-species variation for the number and size of pericentromeric FISH signals. At genomic level, the analysis of 1000s of DNA sequences obtained by Illumina sequencing and PCR amplification allowed defining 150 haplotypes which were linked in a common minimum spanning tree, where different patterns of concerted evolution were apparent. This also provided a glimpse into the satDNA library of this group of species. In consistency with the library hypothesis, different variants for this satDNA showed high differences in abundance between species, from highly abundant to simply relictual variants. PMID:28855916

  13. Comparison of Versant HBV DNA 3.0 and COBAS AmpliPrep-COBAS TaqMan assays for hepatitis B DNA quantitation: Possible clinical implications.

    PubMed

    Garbuglia, A R; Angeletti, C; Lauria, F N; Zaccaro, P; Cocca, A M; Pisciotta, M; Solmone, M; Capobianchi, M R

    2007-12-01

    We compared two commercial assays for HBV DNA quantitation, Versant HBV 3.0, System 340 (bDNA; Bayer Diagnostics) and COBAS AmpliPrep-COBAS TaqMan HBV Test (TaqMan; Roche Diagnostics). Analytical sensitivity, calculated on WHO International Standard, predicted 95% detection rate at 11.4 and 520.2IU/ml for TaqMan and bDNA, respectively. Specificity, established on 50 blood donor samples, was 100% and 84% for TaqMan and bDNA, respectively. When using clinical samples, HBV DNA was detected by TaqMan in 21/55 samples negative to bDNA. Mean values of HBV DNA obtained with bDNA were higher than those obtained with TaqMan (4.09log(10)+/-1.90 versus 3.39log(10)+/-2.41, p<0.001), and 24.4% of samples showed differences in viral load values >0.5log(10), without association with HBV genotype. There was a good correlation for HBV DNA concentrations measured by the two assays (r=0.94; p<0.001) within the overlapping range, and the distribution of results with respect to relevant clinical threshold recently confirmed (20,000 and 2000IU/ml) was similar. Approximately 50% of samples with low HBV DNA, appreciated by TaqMan but not by bDNA, were successfully sequenced in pol region, where drug resistance mutations are located.

  14. Predicting conformational ensembles and genome-wide transcription factor binding sites from DNA sequences.

    PubMed

    Andrabi, Munazah; Hutchins, Andrew Paul; Miranda-Saavedra, Diego; Kono, Hidetoshi; Nussinov, Ruth; Mizuguchi, Kenji; Ahmad, Shandar

    2017-06-22

    DNA shape is emerging as an important determinant of transcription factor binding beyond just the DNA sequence. The only tool for large scale DNA shape estimates, DNAshape was derived from Monte-Carlo simulations and predicts four broad and static DNA shape features, Propeller twist, Helical twist, Minor groove width and Roll. The contributions of other shape features e.g. Shift, Slide and Opening cannot be evaluated using DNAshape. Here, we report a novel method DynaSeq, which predicts molecular dynamics-derived ensembles of a more exhaustive set of DNA shape features. We compared the DNAshape and DynaSeq predictions for the common features and applied both to predict the genome-wide binding sites of 1312 TFs available from protein interaction quantification (PIQ) data. The results indicate a good agreement between the two methods for the common shape features and point to advantages in using DynaSeq. Predictive models employing ensembles from individual conformational parameters revealed that base-pair opening - known to be important in strand separation - was the best predictor of transcription factor-binding sites (TFBS) followed by features employed by DNAshape. Of note, TFBS could be predicted not only from the features at the target motif sites, but also from those as far as 200 nucleotides away from the motif.

  15. [Influence of Different Therapies on EGFR Mutants by Circulating Cell-free DNA of Lung Adenocarcinoma and Prognosis].

    PubMed

    Su, Fei; Zheng, Ke; Fu, Yiyun; Wu, Qian; Tang, Yuan; Wang, Weiya; Jiang, Lili

    2018-05-20

    Epidermal growth factor receptor (EGFR) gene mutation is closely related to the EGFR-TKI target treatment and prognosis of lung adenocarcinoma patients. The mutation status of EGFR is limited by tissue detection. The purpose of this study was to investigate the difference of EGFR mutants in plasmacirculating cell-free DNA (cfDNA) obtained from patients with non-small cell lung cancer (NSCLC) in three groups: pre-therapy, after traditional chemotherapy and targeted therapy. The aim of this study was to analyze whether the plasma cfDNA could effectively determine the EGFR mutations and monitor the drug resistant gene T790M, as well as its prognostic prediction value in patients with targeted therapy. ARMS (amplification refractory mutation system)-PCR was used to detect EGFR mutations in 107 (50 of pre-therapy, 29 after traditional chemotherapy and 28 after targeted therapy) cases of paired plasma and tumor tissue specimens, followed by comparing their concordance. The sensitivity, specificity and the prognostic value of plasma cfDNA detection were also observed. The total rate of EGFR mutation was 56% (60/107) in all plasma samples and 77.6% (83/107) in corresponding tumor tissues. Completely the same mutants and wild-type EGFR were found in 68.2% cases of paired specimens. The sensitivity of plasma cfDNA detection was 72.3% and the specificity was up to 100%. Patients were sub-categorized according to therapy. The results showed that the highest consistent rate of cfDNA and tumor tissues was found in the group of pre-therapy (74%, 37/50). Whereas, the lowest consistent rate was observed in the targeted therapy group (57.1%, 16/28). It indicated that the targeted treatment could change the EGFR status in plasma cfDNA. Further analyses on inconsistent cases in this group revealed that 50% of them were compound EGFR mutations with T790M. Thereby, it suggested that targeted therapy might induce the emergence of drug resistance gene T790M. This speculation was confirmed by survival analyses. Based on plasma cfDNA results, patients with T790M mutant had significantly worse progression-free survival (PFS) and overall survival (OS). For EGFR testing, ARMS-PCR on plasma cfDNA is a promising methodology with the highest specificity and effective sensitivity. It is useful for EGFR testing in patients before treatment, especially the late-stage patients. Simultaneously, plasma cfDNA could be used to monitor the drug resistant mutation, T790M status and predict prognosis after targeted therapy.

  16. Identification of DNA-binding proteins using multi-features fusion and binary firefly optimization algorithm.

    PubMed

    Zhang, Jian; Gao, Bo; Chai, Haiting; Ma, Zhiqiang; Yang, Guifu

    2016-08-26

    DNA-binding proteins (DBPs) play fundamental roles in many biological processes. Therefore, the developing of effective computational tools for identifying DBPs is becoming highly desirable. In this study, we proposed an accurate method for the prediction of DBPs. Firstly, we focused on the challenge of improving DBP prediction accuracy with information solely from the sequence. Secondly, we used multiple informative features to encode the protein. These features included evolutionary conservation profile, secondary structure motifs, and physicochemical properties. Thirdly, we introduced a novel improved Binary Firefly Algorithm (BFA) to remove redundant or noisy features as well as select optimal parameters for the classifier. The experimental results of our predictor on two benchmark datasets outperformed many state-of-the-art predictors, which revealed the effectiveness of our method. The promising prediction performance on a new-compiled independent testing dataset from PDB and a large-scale dataset from UniProt proved the good generalization ability of our method. In addition, the BFA forged in this research would be of great potential in practical applications in optimization fields, especially in feature selection problems. A highly accurate method was proposed for the identification of DBPs. A user-friendly web-server named iDbP (identification of DNA-binding Proteins) was constructed and provided for academic use.

  17. Simulations Meet Experiment to Reveal New Insights into DNA Intrinsic Mechanics

    PubMed Central

    Ben Imeddourene, Akli; Elbahnsi, Ahmad; Guéroult, Marc; Oguey, Christophe; Foloppe, Nicolas; Hartmann, Brigitte

    2015-01-01

    The accurate prediction of the structure and dynamics of DNA remains a major challenge in computational biology due to the dearth of precise experimental information on DNA free in solution and limitations in the DNA force-fields underpinning the simulations. A new generation of force-fields has been developed to better represent the sequence-dependent B-DNA intrinsic mechanics, in particular with respect to the BI ↔ BII backbone equilibrium, which is essential to understand the B-DNA properties. Here, the performance of MD simulations with the newly updated force-fields Parmbsc0εζOLI and CHARMM36 was tested against a large ensemble of recent NMR data collected on four DNA dodecamers involved in nucleosome positioning. We find impressive progress towards a coherent, realistic representation of B-DNA in solution, despite residual shortcomings. This improved representation allows new and deeper interpretation of the experimental observables, including regarding the behavior of facing phosphate groups in complementary dinucleotides, and their modulation by the sequence. It also provides the opportunity to extensively revisit and refine the coupling between backbone states and inter base pair parameters, which emerges as a common theme across all the complementary dinucleotides. In sum, the global agreement between simulations and experiment reveals new aspects of intrinsic DNA mechanics, a key component of DNA-protein recognition. PMID:26657165

  18. Statistical mechanics of ribbons under bending and twisting torques.

    PubMed

    Sinha, Supurna; Samuel, Joseph

    2013-11-20

    We present an analytical study of ribbons subjected to an external torque. We first describe the elastic response of a ribbon within a purely mechanical framework. We then study the role of thermal fluctuations in modifying its elastic response. We predict the moment-angle relation of bent and twisted ribbons. Such a study is expected to shed light on the role of twist in DNA looping and on bending elasticity of twisted graphene ribbons. Our quantitative predictions can be tested against future single molecule experiments.

  19. Immunoserological parameters in SLE: high-avidity anti-dsDNA detected by ELISA are the most closely associated with the disease activity.

    PubMed

    Andrejevic, Sladjana; Jeremic, Ivica; Sefik-Bukilica, Mirjana; Nikolic, Milos; Stojimirovic, Biljana; Bonaci-Nikolic, Branka

    2013-11-01

    We assessed the relationship between the serum levels of antibodies against double-stranded DNA (dsDNA), C1q, nucleosomes, histones, C3 and C4 complement components with one another, with organ involvement and overall disease activity in patients with systemic lupus erythematosus (SLE). One hundred seventy-five sera from 99 patients with SLE, 31 sera of patients with other connective tissue diseases, and 20 sera from healthy blood donors were tested. SLE disease activity was assessed by modified SLEDAI-2K (M-SLEDAI-2K), not including complement and anti-dsDNA descriptors. Anti-dsDNA antibodies were measured by indirect immunofluorescence on Crithidia luciliae (CLIFT), standard enzyme-linked immunosorbent assay (ELISA) and ELISA for high-avidity antibodies. The most significant risk factor for renal involvement were anti-C1q antibodies (OR = 3.88, p < 0.05), high-avidity anti-dsDNA antibodies for polyserositis (OR = 7.99, p < 0.01), anti-histone antibodies for joint involvement (OR = 2.75, p < 0.05), and low C3 for cytopenia (OR = 11.96, p < 0.001) and mucocutaneous lesions (OR = 3.32, p < 0.01). Multiple linear regression analysis showed that disease activity in SLE could be predicted by the levels of antibodies against dsDNA determined by standard (p < 0.05) and high-avidity (p < 0.001) ELISA, and inversely associated with concentration of C3 (p < 0.001). Using stepwise method, high-avidity anti-dsDNA antibodies were found to be in the closest association to M-SLEDAI-2K. Moreover, positive test for high-avidity anti-dsDNA antibodies appeared as an independent risk factor for moderately to severely active disease (M-SLEDAI-2K>5) (OR = 5.5, p < 0.01). The presence of high-avidity anti-dsDNA antibodies represented a risk for renal, joint, and most importantly for serosal involvement. Our results suggest that simple and reliable ELISA for high-avidity anti-dsDNA antibodies is the test of good clinical utility for the assessment of global SLE activity.

  20. Whole blood and tissue fungal DNA quantification in the diagnosis of canine sino-nasal aspergillosis.

    PubMed

    Peeters, Dominique; Peters, Iain R; Helps, Chris R; Dehard, Sandrine; Day, Michael J; Clercx, Cécile

    2008-04-01

    Various combinations of tests are used to confirm the diagnosis of canine sino-nasal aspergillosis (SNA) because false-positive and false-negative results can occur with each test. Therefore, the aim of this study was to evaluate whether detection of fungal DNA in blood and nasal tissue samples was of value in the clinical diagnosis of this disease. Four groups were included in the study (dogs with SNA, lymphoplasmacytic rhinitis or nasal neoplasia, and control animals). Real-time PCR assays detecting DNA from all Penicillium and Aspergillus species (PenAsp assay) or species-specific DNA from A. fumigatus, A. terreus, A. flavus and A. niger were applied to whole blood and nasal tissue samples. Results obtained by PCR were compared between the groups. Sensitivity, specificity, positive and negative predictive values (PPV and NPV) for fungal DNA detection were compared with those for alternative diagnostic procedures including histopathology, serology and fungal culture. Significantly more fungal DNA was detected by the PenAsp assay in tissue biopsies from dogs with SNA than in the three other groups. Sensitivity, specificity, PPV and NPV for this method were 1.00, 0.06, 0.32 and 1.00. A. fumigatus DNA was detected in seven tissue biopsies from dogs with SNA and in one biopsy from a dog with a nasal tumour. Sensitivity, specificity, PPV and NPV for this diagnostic test were 0.50, 0.97, 0.87 and 0.82. No significant difference was found between the groups with respect to the amount of DNA detected in blood by the PenAsp assay. Sensitivity, specificity, PPV and NPV for this method were 0.71, 0.24, 0.31 and 0.64. A. fumigatus DNA was detected in the blood of three dogs with SNA and sixteen dogs without SNA. Sensitivity, specificity, PPV and NPV for this diagnostic tool were 0.21, 0.45, 0.15 and 0.54. Detection of A. fumigatus DNA in nasal tissue had the highest specificity, PPV and NPV but sensitivity of this method was low. Detection of fungal DNA in whole blood was of no value in the diagnosis of SNA.

  1. Scratching the surface of tomorrow's diagnostics: the Editor-in-Chief's opinion at the 15th year of Expert Review of Molecular Diagnostics.

    PubMed

    Lorincz, Attila; Raison, Claire

    2015-01-01

    Interview with Attila Lorincz by Claire Raison (Commissioning Editor) To mark the beginning of the 15th year of Expert Review of Molecular Diagnostics, the journal's Editor-in-Chief shares his expert knowledge on translational diagnostics, his opinion on recent controversies and his predictions for molecular diagnostics in 2015 and beyond. Attila Lorincz received his doctorate from Trinity College, Dublin, Republic of Ireland, and went on to become a research fellow at the University of California, Santa Barbara, CA, USA. During Professor Lorincz's research on human papillomavirus (HPV), he found several important and novel carcinogenic HPV types and pioneered the use of HPV DNA testing for clinical diagnostics. In 1988, Professor Lorincz's team produced the first HPV test to be FDA-approved for patients and in 2003, for general population cervical precancer screening. Now Professor of Molecular Epidemiology at the Centre for Cancer Prevention, Queen Mary University of London, UK, he and his team are furthering translational research into DNA methylation assays for cancer risk prediction.

  2. Unraveling Selection in the Mitochondrial Genome of Drosophila

    PubMed Central

    Ballard, JWO.; Kreitman, M.

    1994-01-01

    We examine mitochondrial DNA variation at the cytochrome b locus within and between three species of Drosophila to determine whether patterns of variation conform to the predictions of neutral molecular evolution. The entire 1137-bp cytochrome b locus was sequenced in 16 lines of Drosophila melanogaster, 18 lines of Drosophila simulans and 13 lines of Drosophila yakuba. Patterns of variation depart from neutrality by several test criteria. Analysis of the evolutionary clock hypothesis shows unequal rates of change along D. simulans lineages. A comparison within and between species of the ratio of amino acid replacement change to synonymous change reveals a relative excess of amino acid replacement polymorphism compared to the neutral prediction, suggestive of slightly deleterious or diversifying selection. There is evidence for excess homozygosity in our world wide sample of D. melanogaster and D. simulans alleles, as well as a reduction in the number of segregating sites in D. simulans, indicative of selective sweeps. Furthermore, a test of neutrality for codon usage shows the direction of mutations at third positions differs among different topological regions of the gene tree. The analyses indicate that molecular variation and evolution of mtDNA are governed by many of the same selective forces that have been shown to govern nuclear genome evolution and suggest caution be taken in the use of mtDNA as a ``neutral'' molecular marker. PMID:7851772

  3. Disparities in the diagnostic process of Duchenne and Becker muscular dystrophy.

    PubMed

    Holtzer, Caleb; Meaney, F John; Andrews, Jennifer; Ciafaloni, Emma; Fox, Deborah J; James, Katherine A; Lu, Zhenqiang; Miller, Lisa; Pandya, Shree; Ouyang, Lijing; Cunniff, Christopher

    2011-11-01

    To determine whether sociodemographic factors are associated with delays at specific steps in the diagnostic process of Duchenne and Becker muscular dystrophy. We examined abstracted medical records for 540 males from population-based surveillance sites in Arizona, Colorado, Georgia, Iowa, and western New York. We used linear regressions to model the association of three sociodemographic characteristics with age at initial medical evaluation, first creatine kinase measurement, and earliest DNA analysis while controlling for changes in the diagnostic process over time. The analytical dataset included 375 males with information on family history of Duchenne and Becker muscular dystrophy, neighborhood poverty levels, and race/ethnicity. Black and Hispanic race/ethnicity predicted older ages at initial evaluation, creatine kinase measurement, and DNA testing (P < 0.05). A positive family history of Duchenne and Becker muscular dystrophy predicted younger ages at initial evaluation, creatine kinase measurement and DNA testing (P < 0.001). Higher neighborhood poverty was associated with earlier ages of evaluation (P < 0.05). Racial and ethnic disparities in the diagnostic process for Duchenne and Becker muscular dystrophy are evident even after adjustment for family history of Duchenne and Becker muscular dystrophy and changes in the diagnostic process over time. Black and Hispanic children are initially evaluated at older ages than white children, and the gap widens at later steps in the diagnostic process.

  4. DNA Methylation and Sex Allocation in the Parasitoid Wasp Nasonia vitripennis.

    PubMed

    Cook, Nicola; Pannebakker, Bart A; Tauber, Eran; Shuker, David M

    2015-10-01

    The role of epigenetics in the control and evolution of behavior is being increasingly recognized. Here we test whether DNA methylation influences patterns of adaptive sex allocation in the parasitoid wasp Nasonia vitripennis. Female N. vitripennis allocate offspring sex broadly in line with local mate competition (LMC) theory. However, recent theory has highlighted how genomic conflict may influence sex allocation under LMC, conflict that requires parent-of-origin information to be retained by alleles through some form of epigenetic signal. We manipulated whole-genome DNA methylation in N. vitripennis females using the hypomethylating agent 5-aza-2'-deoxycytidine. Across two replicated experiments, we show that disruption of DNA methylation does not ablate the facultative sex allocation response of females, as sex ratios still vary with cofoundress number as in the classical theory. However, sex ratios are generally shifted upward when DNA methylation is disrupted. Our data are consistent with predictions from genomic conflict over sex allocation theory and suggest that sex ratios may be closer to the optimum for maternally inherited alleles.

  5. Evolution of DNA Methylation across Insects

    PubMed Central

    Vogel, Kevin J.; Moore, Allen J.; Schmitz, Robert J.

    2017-01-01

    DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. PMID:28025279

  6. Current controversies in prenatal diagnosis 2: Cell-free DNA prenatal screening should be used to identify all chromosome abnormalities.

    PubMed

    Chitty, Lyn S; Hudgins, Louanne; Norton, Mary E

    2018-02-01

    Noninvasive prenatal testing (NIPT) using cell-free DNA (cfDNA) from maternal serum has been clinically available since 2011. This technology has revolutionized our ability to screen for the common aneuploidies trisomy 21 (Down syndrome), trisomy 18, and trisomy 13. More recently, clinical laboratories have offered screening for other chromosome abnormalities including sex chromosome abnormalities and copy number variants (CNV) without little published data on the sensitivity, specificity, and positive predictive value. In this debate, the pros and cons of performing prenatal screening via cfDNA for all chromosome abnormalities is discussed. At the time of the debate in 2017, the general consensus was that the literature does not yet support using this technology to screen for all chromosome abnormalities and that education is key for both providers and the patients so that the decision-making process is as informed as possible. © 2018 John Wiley & Sons, Ltd.

  7. Cell-free fetal nucleic acid testing: a review of the technology and its applications.

    PubMed

    Sayres, Lauren C; Cho, Mildred K

    2011-07-01

    Cell-free fetal nucleic acids circulating in the blood of pregnant women afford the opportunity for early, noninvasive prenatal genetic testing. The predominance of admixed maternal genetic material in circulation demands innovative means for identification and analysis of cell-free fetal DNA and RNA. Techniques using polymerase chain reaction, mass spectrometry, and sequencing have been developed for the purposes of detecting fetal-specific sequences, such as paternally inherited or de novo mutations, or determining allelic balance or chromosome dosage. Clinical applications of these methods include fetal sex determination and blood group typing, which are currently available commercially although not offered routinely in the United States. Other uses of cell-free fetal DNA and RNA being explored are the detection of single-gene disorders, chromosomal abnormalities, and inheritance of parental polymorphisms across the whole fetal genome. The concentration of cell-free fetal DNA may also provide predictive capabilities for pregnancy-associated complications. The roles that cell-free fetal nucleic acid testing assume in the existing framework of prenatal screening and invasive diagnostic testing will depend on factors such as costs, clinical validity and utility, and perceived benefit-risk ratios for different applications. As cell-free fetal DNA and RNA testing continues to be developed and translated, significant ethical, legal, and social questions will arise that will need to be addressed by those with a stake in the use of this technology. Obstetricians & Gynecologists and Family Physicians Learning Objectives: After participating in this activity, physicians should be better able to evaluate techniques and tools for analyzing cell-free fetal nucleic acids, assess clinical applications of prenatal testing, using cell-free fetal nucleic acids and barriers to implementation, and distinguish between relevant clinical features of cell-free fetal nucleic acid testing and existing prenatal genetic screening and diagnostic procedures.

  8. Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer.

    PubMed

    Barault, L; Amatu, A; Bleeker, F E; Moutinho, C; Falcomatà, C; Fiano, V; Cassingena, A; Siravegna, G; Milione, M; Cassoni, P; De Braud, F; Rudà, R; Soffietti, R; Venesio, T; Bardelli, A; Wesseling, P; de Witt Hamer, P; Pietrantonio, F; Siena, S; Esteller, M; Sartore-Bianchi, A; Di Nicolantonio, F

    2015-09-01

    O(6)-methyl-guanine-methyl-transferase (MGMT) silencing by promoter methylation may identify cancer patients responding to the alkylating agents dacarbazine or temozolomide. We evaluated the prognostic and predictive value of MGMT methylation testing both in tumor and cell-free circulating DNA (cfDNA) from plasma samples using an ultra-sensitive two-step digital PCR technique (methyl-BEAMing). Results were compared with two established techniques, methylation-specific PCR (MSP) and Bs-pyrosequencing. Thresholds for MGMT methylated status for each technique were established in a training set of 98 glioblastoma (GBM) patients. The prognostic and the predictive value of MGMT methylated status was validated in a second cohort of 66 GBM patients treated with temozolomide in which methyl-BEAMing displayed a better specificity than the other techniques. Cutoff values of MGMT methylation specific for metastatic colorectal cancer (mCRC) tissue samples were established in a cohort of 60 patients treated with dacarbazine. In mCRC, both quantitative assays methyl-BEAMing and Bs-pyrosequencing outperformed MSP, providing better prediction of treatment response and improvement in progression-free survival (PFS) (P < 0.001). Ability of methyl-BEAMing to identify responding patients was validated in a cohort of 23 mCRC patients treated with temozolomide and preselected for MGMT methylated status according to MSP. In mCRC patients treated with dacarbazine, exploratory analysis of cfDNA by methyl-BEAMing showed that MGMT methylation was associated with better response and improved median PFS (P = 0.008). Methyl-BEAMing showed high reproducibility, specificity and sensitivity and was applicable to formalin-fixed paraffin-embedded tissues and cfDNA. This study supports the quantitative assessment of MGMT methylation for clinical purposes since it could refine prediction of response to alkylating agents. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Genetic identification of missing persons: DNA analysis of human remains and compromised samples.

    PubMed

    Alvarez-Cubero, M J; Saiz, M; Martinez-Gonzalez, L J; Alvarez, J C; Eisenberg, A J; Budowle, B; Lorente, J A

    2012-01-01

    Human identification has made great strides over the past 2 decades due to the advent of DNA typing. Forensic DNA typing provides genetic data from a variety of materials and individuals, and is applied to many important issues that confront society. Part of the success of DNA typing is the generation of DNA databases to help identify missing persons and to develop investigative leads to assist law enforcement. DNA databases house DNA profiles from convicted felons (and in some jurisdictions arrestees), forensic evidence, human remains, and direct and family reference samples of missing persons. These databases are essential tools, which are becoming quite large (for example the US Database contains 10 million profiles). The scientific, governmental and private communities continue to work together to standardize genetic markers for more effective worldwide data sharing, to develop and validate robust DNA typing kits that contain the reagents necessary to type core identity genetic markers, to develop technologies that facilitate a number of analytical processes and to develop policies to make human identity testing more effective. Indeed, DNA typing is integral to resolving a number of serious criminal and civil concerns, such as solving missing person cases and identifying victims of mass disasters and children who may have been victims of human trafficking, and provides information for historical studies. As more refined capabilities are still required, novel approaches are being sought, such as genetic testing by next-generation sequencing, mass spectrometry, chip arrays and pyrosequencing. Single nucleotide polymorphisms offer the potential to analyze severely compromised biological samples, to determine the facial phenotype of decomposed human remains and to predict the bioancestry of individuals, a new focus in analyzing this type of markers. Copyright © 2012 S. Karger AG, Basel.

  10. Dynamics of cellular HIV-1 DNA levels over 144 weeks of darunavir/ritonavir monotherapy versus triple therapy in the MONET trial.

    PubMed

    Geretti, Anna Maria; Arribas, Jose R; Lathouwers, Erkki; Foster, Geraldine M; Yakoob, Rabia; Kinloch, Sabine; Hill, Andrew; van Delft, Yvon; Moecklinghoff, Christiane

    2013-01-01

    In patients receiving combination antiretroviral therapy (ART), switching to monotherapy with ritonavir-boosted darunavir (DRV/r) can maintain plasma HIV-1 RNA suppression with no treatment-emergent drug resistance; effects on cellular HIV-1 DNA burden are less well characterized. In MONET, patients on stable combination ART for at least 6 months with plasma HIV-1 RNA <50 copies/mL and no history of virologic failure switched to DRV/r 800/100 mg once daily, either alone (n = 127) or with 2 nucleos(t)ide reverse transcriptase inhibitors (NRTIs) (n = 129). In a representative subset of 146 patients, total HIV-1 DNA load in peripheral blood mononuclear cells (PBMC) was tested retrospectively at baseline, week 48, week 96, and week 144. Mean HIV-1 DNA levels at baseline vs week 144 were 2.50 vs 2.49 log10 copies/106 PBMC in the monotherapy arm and 2.59 vs 2.61 log10 copies/106 PBMC in the triple therapy arm, with mean (median) changes of -0.05 (-0.03) and +0.03 (+0.01) log10 copies/106 PBMC in the 2 arms, respectively. Overall baseline HIV-1 DNA levels were higher in patients with nadir CD4 counts <200 cell/µL (P<.05) and in patients who over 144 weeks experienced at least 1 HIV-1 RNA measurement >50 copies/mL (P < .05). In this substudy of the MONET trial, HIV-1 DNA levels remained stable during 144 weeks of either DRV/r monotherapy or triple therapy with DRV/r + 2 NRTIs. In both treatment arms, baseline HIV-1 DNA levels were predicted by the nadir CD4 cell count and predictive of plasma HIV-1 RNA detection during follow-up.

  11. The nucleic acid revolution continues – will forensic biology become forensic molecular biology?

    PubMed Central

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to “forensic molecular biology.” Aside from DNA’s established role in identifying the “who” in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about “when” a crime took place and “what” took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future. PMID:24634675

  12. Combined Screening for Early Detection of Pre-Eclampsia

    PubMed Central

    Park, Hee Jin; Shim, Sung Shin; Cha, Dong Hyun

    2015-01-01

    Although the precise pathophysiology of pre-eclampsia remains unknown, this condition continues to be a major cause of maternal and fetal mortality. Early prediction of pre-eclampsia would allow for timely initiation of preventive therapy. A combination of biophysical and biochemical markers are superior to other tests for early prediction of the development of pre-eclampsia. Apart from the use of parameters in first-trimester aneuploidy screening, cell-free fetal DNA quantification is emerging as a promising marker for prediction of pre-eclampsia. This article reviews the current research of the most important strategies for prediction of pre-eclampsia, including the use of maternal risk factors, mean maternal arterial pressure, ultrasound parameters, and biomarkers. PMID:26247944

  13. Development and validation of a D-loop mtDNA SNP assay for the screening of specimens in forensic casework.

    PubMed

    Chemale, Gustavo; Paneto, Greiciane Gaburro; Menezes, Meiga Aurea Mendes; de Freitas, Jorge Marcelo; Jacques, Guilherme Silveira; Cicarelli, Regina Maria Barretto; Fagundes, Paulo Roberto

    2013-05-01

    Mitochondrial DNA (mtDNA) analysis is usually a last resort in routine forensic DNA casework. However, it has become a powerful tool for the analysis of highly degraded samples or samples containing too little or no nuclear DNA, such as old bones and hair shafts. The gold standard methodology still constitutes the direct sequencing of polymerase chain reaction (PCR) products or cloned amplicons from the HVS-1 and HVS-2 (hypervariable segment) control region segments. Identifications using mtDNA are time consuming, expensive and can be very complex, depending on the amount and nature of the material being tested. The main goal of this work is to develop a less labour-intensive and less expensive screening method for mtDNA analysis, in order to aid in the exclusion of non-matching samples and as a presumptive test prior to final confirmatory DNA sequencing. We have selected 14 highly discriminatory single nucleotide polymorphisms (SNPs) based on simulations performed by Salas and Amigo (2010) to be typed using SNaPShot(TM) (Applied Biosystems, Foster City, CA, USA). The assay was validated by typing more than 100 HVS-1/HVS-2 sequenced samples. No differences were observed between the SNP typing and DNA sequencing when results were compared, with the exception of allelic dropouts observed in a few haplotypes. Haplotype diversity simulations were performed using 172 mtDNA sequences representative of the Brazilian population and a score of 0.9794 was obtained when the 14 SNPs were used, showing that the theoretical prediction approach for the selection of highly discriminatory SNPs suggested by Salas and Amigo (2010) was confirmed in the population studied. As the main goal of the work is to develop a screening assay to skip the sequencing of all samples in a particular case, a pair-wise comparison of the sequences was done using the selected SNPs. When both HVS-1/HVS-2 SNPs were used for simulations, at least two differences were observed in 93.2% of the comparisons performed. The assay was validated with casework samples. Results show that the method is straightforward and can be used for exclusionary purposes, saving time and laboratory resources. The assay confirms the theoretic prediction suggested by Salas and Amigo (2010). All forensic advantages, such as high sensitivity and power of discrimination, as also the disadvantages, such as the occurrence of allele dropouts, are discussed throughout the article. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Predictive cytogenetic biomarkers for colorectal neoplasia in medium risk patients.

    PubMed

    Ionescu, E M; Nicolaie, T; Ionescu, M A; Becheanu, G; Andrei, F; Diculescu, M; Ciocirlan, M

    2015-01-01

    DNA damage and chromosomal alterations in peripheral lymphocytes parallels DNA mutations in tumor tissues. The aim of our study was to predict the presence of neoplastic colorectal lesions by specific biomarkers in "medium risk" individuals (age 50 to 75, with no personal or family of any colorectal neoplasia). We designed a prospective cohort observational study including patients undergoing diagnostic or opportunistic screening colonoscopy. Specific biomarkers were analyzed for each patient in peripheral lymphocytes - presence of micronuclei (MN), nucleoplasmic bridges (NPB) and the Nuclear Division Index (NDI) by the cytokinesis-blocked micronucleus assay (CBMN). Of 98 patients included, 57 were "medium risk" individuals. MN frequency and NPB presence were not significantly different in patients with neoplastic lesions compared to controls. In "medium risk" individuals, mean NDI was significantly lower for patients with any neoplastic lesions (adenomas and adenocarcinomas, AUROC 0.668, p 00.5), for patients with advanced neoplasia (advanced adenoma and adenocarcinoma, AUROC 0.636 p 0.029) as well as for patients with adenocarcinoma (AUROC 0.650, p 0.048), for each comparison with the rest of the population. For a cut-off of 1.8, in "medium risk" individuals, an NDI inferior to that value may predict any neoplastic lesion with a sensitivity of 97.7%, an advanced neoplastic lesion with a sensitivity of 97% and adenocarcinoma with a sensitivity of 94.4%. NDI score may have a role as a colorectal cancer-screening test in "medium risk" individuals. DNA = deoxyribonucleic acid; CRC = colorectal cancer; EU = European Union; WHO = World Health Organization; FOBT = fecal occult blood test; CBMN = cytokinesis-blocked micronucleus assay; MN = micronuclei; NPB = nucleoplasmic bridges; NDI = Nuclear Division Index; FAP = familial adenomatous polyposis; HNPCC = hereditary non-polypoid colorectal cancer; IBD = inflammatory bowel diseases; ROC = receiver operating characteristics; AUROC = area under the receiver operating characteristics curve.

  15. Multitarget stool DNA tests increases colorectal cancer screening among previously noncompliant Medicare patients

    PubMed Central

    Prince, Mark; Lester, Lynn; Chiniwala, Rupal; Berger, Barry

    2017-01-01

    AIM To determine the uptake of noninvasive multitarget stool DNA (mt-sDNA) in a cohort of colorectal cancer (CRC) screening non-compliant average-risk Medicare patients. METHODS This cross sectional primary care office-based study examined mt-sDNA uptake in routine clinical practice among 393 colorectal cancer screening non-compliant Medicare patients ages 50-85 ordered by 77 physicians in a multispecialty group practice (USMD Physician Services, Dallas, TX) from October, 2014-September, 2015. Investigators performed a Health Insurance Portability and Accountability Act compliant retrospective review of electronic health records to identify mt-sDNA use in patients who were either > 10 years since last colonoscopy and/or > 1 year since last fecal occult blood test. Test positive patients were advised to get diagnostic colonoscopy and thereafter patients were characterized by the most clinically significant lesion documented on histopathology of biopsies or excisional tissue. Descriptive statistics were employed. Key outcome measures included mt-sDNA compliance and diagnostic colonoscopy compliance on positive cases. RESULTS Over 12 mo, 77 providers ordered 393 mt-sDNA studies with 347 completed (88.3% compliance). Patient mean age was 69.8 (50-85) and patients were 64% female. Mt-sDNA was negative in 85.3% (296/347) and positive in 14.7% (51/347). Follow-up colonoscopy was performed in 49 positive patients (96.1% colonoscopy compliance) with two patients lost to follow up. Index findings included: colon cancer (4/49, 8.2%), advanced adenomas (21/49, 42.9%), non-advanced adenomas (15/49, 30.6%), and negative results (9/49, 18.4%). The positive predictive value for advanced colorectal lesions was 51.0% and for any colorectal neoplasia was 81.6%. The mean age of patients with colorectal cancer was 70.3 and all CRC's were localized Stage I (2) and Stage II (2), three were located in the proximal colon and one was located in the distal colon. CONCLUSION Mt-sDNA provided medical benefit to screening noncompliant Medicare population. High compliance with mt-sDNA and subsequent follow-up diagnostic colonoscopy identified patients with clinically critical advanced colorectal neoplasia. PMID:28210082

  16. Multitarget stool DNA tests increases colorectal cancer screening among previously noncompliant Medicare patients.

    PubMed

    Prince, Mark; Lester, Lynn; Chiniwala, Rupal; Berger, Barry

    2017-01-21

    To determine the uptake of noninvasive multitarget stool DNA (mt-sDNA) in a cohort of colorectal cancer (CRC) screening non-compliant average-risk Medicare patients. This cross sectional primary care office-based study examined mt-sDNA uptake in routine clinical practice among 393 colorectal cancer screening non-compliant Medicare patients ages 50-85 ordered by 77 physicians in a multispecialty group practice (USMD Physician Services, Dallas, TX) from October, 2014-September, 2015. Investigators performed a Health Insurance Portability and Accountability Act compliant retrospective review of electronic health records to identify mt-sDNA use in patients who were either > 10 years since last colonoscopy and/or > 1 year since last fecal occult blood test. Test positive patients were advised to get diagnostic colonoscopy and thereafter patients were characterized by the most clinically significant lesion documented on histopathology of biopsies or excisional tissue. Descriptive statistics were employed. Key outcome measures included mt-sDNA compliance and diagnostic colonoscopy compliance on positive cases. Over 12 mo, 77 providers ordered 393 mt-sDNA studies with 347 completed (88.3% compliance). Patient mean age was 69.8 (50-85) and patients were 64% female. Mt-sDNA was negative in 85.3% (296/347) and positive in 14.7% (51/347). Follow-up colonoscopy was performed in 49 positive patients (96.1% colonoscopy compliance) with two patients lost to follow up. Index findings included: colon cancer (4/49, 8.2%), advanced adenomas (21/49, 42.9%), non-advanced adenomas (15/49, 30.6%), and negative results (9/49, 18.4%). The positive predictive value for advanced colorectal lesions was 51.0% and for any colorectal neoplasia was 81.6%. The mean age of patients with colorectal cancer was 70.3 and all CRC's were localized Stage I (2) and Stage II (2), three were located in the proximal colon and one was located in the distal colon. Mt-sDNA provided medical benefit to screening noncompliant Medicare population. High compliance with mt-sDNA and subsequent follow-up diagnostic colonoscopy identified patients with clinically critical advanced colorectal neoplasia.

  17. Testing the Role of Meander Cutoff in Promoting Gene Flow across a Riverine Barrier in Ground Skinks (Scincella lateralis)

    PubMed Central

    Jackson, Nathan D.; Austin, Christopher C.

    2013-01-01

    Despite considerable attention, the long-term impact of rivers on species diversification remains uncertain. Meander loop cutoff (MLC) is one river phenomenon that may compromise a river’s diversifying effects by passively transferring organisms from one side of the river to the other. However, the ability of MLC to promote gene flow across rivers has not been demonstrated empirically. Here, we test several predictions of MLC-mediated gene flow in populations of North American ground skinks (Scincella lateralis) separated by a well-established riverine barrier, the Mississippi River: 1) individuals collected from within meander cutoffs should be more closely related to individuals across the river than on the same side, 2) individuals within meander cutoffs should contain more immigrants than individuals away from meander cutoffs, 3) immigration rates estimated across the river should be highest in the direction of the cutoff event, and 4) the distribution of alleles native to one side of the river should be better predicted by the historical rather than current path of the river. To test these predictions we sampled 13 microsatellite loci and mitochondrial DNA from ground skinks collected near three ancient meander loops. These predictions were generally supported by genetic data, although support was stronger for mtDNA than for microsatellite data. Partial support for genetic divergence of samples within ancient meander loops also provides evidence for the MLC hypothesis. Although a role for MLC-mediated gene flow was supported here for ground skinks, the transient nature of river channels and morphologies may limit the long-term importance of MLC in stemming population divergence across major rivers. PMID:23658778

  18. DEEP: a general computational framework for predicting enhancers

    PubMed Central

    Kleftogiannis, Dimitrios; Kalnis, Panos; Bajic, Vladimir B.

    2015-01-01

    Transcription regulation in multicellular eukaryotes is orchestrated by a number of DNA functional elements located at gene regulatory regions. Some regulatory regions (e.g. enhancers) are located far away from the gene they affect. Identification of distal regulatory elements is a challenge for the bioinformatics research. Although existing methodologies increased the number of computationally predicted enhancers, performance inconsistency of computational models across different cell-lines, class imbalance within the learning sets and ad hoc rules for selecting enhancer candidates for supervised learning, are some key questions that require further examination. In this study we developed DEEP, a novel ensemble prediction framework. DEEP integrates three components with diverse characteristics that streamline the analysis of enhancer's properties in a great variety of cellular conditions. In our method we train many individual classification models that we combine to classify DNA regions as enhancers or non-enhancers. DEEP uses features derived from histone modification marks or attributes coming from sequence characteristics. Experimental results indicate that DEEP performs better than four state-of-the-art methods on the ENCODE data. We report the first computational enhancer prediction results on FANTOM5 data where DEEP achieves 90.2% accuracy and 90% geometric mean (GM) of specificity and sensitivity across 36 different tissues. We further present results derived using in vivo-derived enhancer data from VISTA database. DEEP-VISTA, when tested on an independent test set, achieved GM of 80.1% and accuracy of 89.64%. DEEP framework is publicly available at http://cbrc.kaust.edu.sa/deep/. PMID:25378307

  19. Context influences on TALE–DNA binding revealed by quantitative profiling

    PubMed Central

    Rogers, Julia M.; Barrera, Luis A.; Reyon, Deepak; Sander, Jeffry D.; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L.

    2015-01-01

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE–DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000–20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE–DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design. PMID:26067805

  20. Context influences on TALE-DNA binding revealed by quantitative profiling.

    PubMed

    Rogers, Julia M; Barrera, Luis A; Reyon, Deepak; Sander, Jeffry D; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L

    2015-06-11

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000-20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE-DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design.

  1. Week 4 viral load predicts long-term suppression of hepatitis B virus DNA during antiviral therapy: improving hepatitis B treatment in the real world.

    PubMed

    Truong, J; Shadbolt, B; Ooi, M; Chitturi, S; Kaye, G; Farrell, G C; Teoh, N C

    2017-01-01

    Entecavir and tenofovir potently suppress hepatitis B virus (HBV) replication so that serum HBV DNA levels <20 IU/mL can be achieved after 2 years. Despite this, inadequate suppression is reported in >20% of cases for unclear reasons. We tested whether 4-week viral load (VL) assessment could improve 96-week treatment outcome. Data on all chronic hepatitis B patients treated with entecavir or tenofovir between 2005 and 2014 were entered prospectively. Full data capture included pre-treatment, weeks 4, 24, 48 and 96 HBV DNA titre, HBeAg, age, gender, antiviral agent and dose escalation. Compliance data were compiled from pharmacy records, doctors' letters and clinic bookings/attendance. Time to achieve complete viral suppression (HBV DNA < 20 IU/mL) was graphed using Kaplan-Meier curves. Factors affecting this were examined using a multivariate Cox Proportional Hazard model. Among 156 patients treated, 72 received entecavir and 84 tenofovir. Pre-treatment HBV DNA titre, 4-week assessment and compliance impacted significantly on time to complete viral suppression. At 96 weeks, 90% of those assessed as compliant by 4-week HBV DNA had complete viral suppression versus 50% followed by 6-month VL estimation. Continuing care by the same physician was related to 4-week VL testing and optimal compliance. Medium-term outcomes of HBV antiviral therapy are improved by early on-treatment VL testing, facilitating patient engagement and improved compliance. The observation that 90% complete viral suppression after 2 years monotherapy is achievable in a routine clinic setting questions the need for combination therapy in HBV cases with suboptimal response. © 2016 Royal Australasian College of Physicians.

  2. Anosmia predicts hypogonadotropic hypogonadism in CHARGE syndrome.

    PubMed

    Bergman, Jorieke E H; Bocca, Gianni; Hoefsloot, Lies H; Meiners, Linda C; van Ravenswaaij-Arts, Conny M A

    2011-03-01

    To test the hypothesis that a smell test could predict the occurrence of hypogonadotropic hypogonadism (HH) in patients with CHARGE syndrome, which is a variable combination of ocular coloboma, heart defects, choanal atresia, retardation of growth/development, genital hypoplasia, and ear anomalies or hearing loss caused by mutations in the CHD7 (chromodomain helicase DNA binding protein 7) gene. We performed endocrine studies and smell testing (University of Pennsylvania Smell Identification Test) in 35 adolescent patients with molecularly confirmed CHARGE syndrome. Complete data on smell and puberty were available for 15 patients; 11 patients had both anosmia and HH, whereas 4 patients had normosmia/hyposmia and spontaneous puberty. In addition, 7 boys were highly suspected of having HH (they were too young for definite HH diagnosis, but all had cryptorchidism, micropenis, or both) and had anosmia. The type of CHD7 mutation could not predict HH because a father and daughter with the same CHD7 mutation were discordant for HH and anosmia. Anosmia and HH were highly correlated in our cohort, and therefore smell testing seems to be an attractive method for predicting the occurrence of HH in patients with CHARGE syndrome. The use of this test could prevent delay of hormonal pubertal induction, resulting in an age-appropriate puberty. Copyright © 2011 Mosby, Inc. All rights reserved.

  3. DNA methylation mediates the impact of exposure to prenatal maternal stress on BMI and central adiposity in children at age 13½ years: Project Ice Storm

    PubMed Central

    Cao-Lei, Lei; Dancause, Kelsey N; Elgbeili, Guillaume; Massart, Renaud; Szyf, Moshe; Liu, Aihua; Laplante, David P; King, Suzanne

    2015-01-01

    Prenatal maternal stress (PNMS) in animals and humans predicts obesity and metabolic dysfunction in the offspring. Epigenetic modification of gene function is considered one possible mechanism by which PNMS results in poor outcomes in offspring. Our goal was to determine the role of maternal objective exposure and subjective distress on child BMI and central adiposity at 13½ years of age, and to test the hypothesis that DNA methylation mediates the effect of PNMS on growth. Mothers were pregnant during the January 1998 Quebec ice storm. We assessed their objective exposure and subjective distress in June 1998. At age 13½ their children were weighed and measured (n = 66); a subsample provided blood samples for epigenetic studies (n = 31). Objective and subjective PNMS correlated with central adiposity (waist-to-height ratio); only objective PNMS predicted body mass index (BMI). Bootstrapping analyses showed that the methylation level of genes from established Type-1 and -2 diabetes mellitus pathways showed significant mediation of the effect of objective PNMS on both central adiposity and BMI. However, the negative mediating effects indicate that, although greater objective PNMS predicts greater BMI and adiposity, this effect is dampened by the effects of objective PNMS on DNA methylation, suggesting a protective role of the selected genes from Type-1 and -2 diabetes mellitus pathways. We provide data supporting that DNA methylation is a potential mechanism involved in the long-term adaptation and programming of the genome in response to early adverse environmental factors. PMID:26098974

  4. The common occurrence of epistasis in the determination of human pigmentation and its impact on DNA-based pigmentation phenotype prediction.

    PubMed

    Pośpiech, Ewelina; Wojas-Pelc, Anna; Walsh, Susan; Liu, Fan; Maeda, Hitoshi; Ishikawa, Takaki; Skowron, Małgorzata; Kayser, Manfred; Branicki, Wojciech

    2014-07-01

    The role of epistatic effects in the determination of complex traits is often underlined but its significance in the prediction of pigmentation phenotypes has not been evaluated so far. The prediction of pigmentation from genetic data can be useful in forensic science to describe the physical appearance of an unknown offender, victim, or missing person who cannot be identified via conventional DNA profiling. Available forensic DNA prediction systems enable the reliable prediction of several eye and hair colour categories. However, there is still space for improvement. Here we verified the association of 38 candidate DNA polymorphisms from 13 genes and explored the extent to which interactions between them may be involved in human pigmentation and their impact on forensic DNA prediction in particular. The model-building set included 718 Polish samples and the model-verification set included 307 independent Polish samples and additional 72 samples from Japan. In total, 29 significant SNP-SNP interactions were found with 5 of them showing an effect on phenotype prediction. For predicting green eye colour, interactions between HERC2 rs12913832 and OCA2 rs1800407 as well as TYRP1 rs1408799 raised the prediction accuracy expressed by AUC from 0.667 to 0.697 and increased the prediction sensitivity by >3%. Interaction between MC1R 'R' variants and VDR rs731236 increased the sensitivity for light skin by >1% and by almost 3% for dark skin colour prediction. Interactions between VDR rs1544410 and TYR rs1042602 as well as between MC1R 'R' variants and HERC2 rs12913832 provided an increase in red/non-red hair prediction accuracy from an AUC of 0.902-0.930. Our results thus underline epistasis as a common phenomenon in human pigmentation genetics and demonstrate that considering SNP-SNP interactions in forensic DNA phenotyping has little impact on eye, hair and skin colour prediction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. A deformation energy-based model for predicting nucleosome dyads and occupancy

    PubMed Central

    Liu, Guoqing; Xing, Yongqiang; Zhao, Hongyu; Wang, Jianying; Shang, Yu; Cai, Lu

    2016-01-01

    Nucleosome plays an essential role in various cellular processes, such as DNA replication, recombination, and transcription. Hence, it is important to decode the mechanism of nucleosome positioning and identify nucleosome positions in the genome. In this paper, we present a model for predicting nucleosome positioning based on DNA deformation, in which both bending and shearing of the nucleosomal DNA are considered. The model successfully predicted the dyad positions of nucleosomes assembled in vitro and the in vitro map of nucleosomes in Saccharomyces cerevisiae. Applying the model to Caenorhabditis elegans and Drosophila melanogaster, we achieved satisfactory results. Our data also show that shearing energy of nucleosomal DNA outperforms bending energy in nucleosome occupancy prediction and the ability to predict nucleosome dyad positions is attributed to bending energy that is associated with rotational positioning of nucleosomes. PMID:27053067

  6. Cell-free DNA as a molecular tool for monitoring disease progression and response to therapy in breast cancer patients.

    PubMed

    Liang, Diana H; Ensor, Joe E; Liu, Zhe-Bin; Patel, Asmita; Patel, Tejal A; Chang, Jenny C; Rodriguez, Angel A

    2016-01-01

    Due to the spatial and temporal genomic heterogeneity of breast cancer, genomic sequencing obtained from a single biopsy may not capture the complete genomic profile of tumors. Thus, we propose that cell-free DNA (cfDNA) in plasma may be an alternate source of genomic information to provide comprehensive data throughout a patient's clinical course. We performed a retrospective chart review of 100 patients with stage 4 or high-risk stage 3 breast cancer. The degree of agreement between genomic alterations found in tumor DNA (tDNA) and cfDNA was determined by Cohen's Kappa. Clinical disease progression was compared to mutant allele frequency using a two-sided Fisher's exact test. The presence of mutations and mutant allele frequency was correlated with progression-free survival (PFS) using a Cox proportional hazards model and a log-rank test. The most commonly found genomic alterations were mutations in TP53 and PIK3CA, and amplification of EGFR and ERBB2. PIK3CA mutation and ERBB2 amplification demonstrated robust agreement between tDNA and cfDNA (Cohen's kappa = 0.64 and 0.77, respectively). TP53 mutation and EGFR amplification demonstrated poor agreement between tDNA and cfDNA (Cohen's kappa = 0.18 and 0.33, respectively). The directional changes of TP53 and PIK3CA mutant allele frequency were closely associated with response to therapy (p = 0.002). The presence of TP53 mutation (p = 0.0004) and PIK3CA mutant allele frequency [p = 0.01, HR 1.074 (95 % CI 1.018-1.134)] was excellent predictors of PFS. Identification of selected cancer-specific genomic alterations from cfDNA may be a noninvasive way to monitor disease progression, predict PFS, and offer targeted therapy.

  7. Automated design of genetic toggle switches with predetermined bistability.

    PubMed

    Chen, Shuobing; Zhang, Haoqian; Shi, Handuo; Ji, Weiyue; Feng, Jingchen; Gong, Yan; Yang, Zhenglin; Ouyang, Qi

    2012-07-20

    Synthetic biology aims to rationally construct biological devices with required functionalities. Methods that automate the design of genetic devices without post-hoc adjustment are therefore highly desired. Here we provide a method to predictably design genetic toggle switches with predetermined bistability. To accomplish this task, a biophysical model that links ribosome binding site (RBS) DNA sequence to toggle switch bistability was first developed by integrating a stochastic model with RBS design method. Then, to parametrize the model, a library of genetic toggle switch mutants was experimentally built, followed by establishing the equivalence between RBS DNA sequences and switch bistability. To test this equivalence, RBS nucleotide sequences for different specified bistabilities were in silico designed and experimentally verified. Results show that the deciphered equivalence is highly predictive for the toggle switch design with predetermined bistability. This method can be generalized to quantitative design of other probabilistic genetic devices in synthetic biology.

  8. Evaluation of a new in-clinic test system to detect feline immunodeficiency virus and feline leukemia virus infection.

    PubMed

    Sand, Christina; Englert, Theresa; Egberink, Herman; Lutz, Hans; Hartmann, Katrin

    2010-06-01

    Many in-house tests for the diagnosis of feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) infection are licensed for use in veterinary practice. A new test with unknown performance has recently appeared on the market. The aims of this study were to define the efficacy of a new in-clinic test system, the Anigen Rapid FIV Ab/FeLV Ag Test, and to compare it with the current leading in-clinic test, the SNAP Kombi Plus FeLV Antigen/FIB Antibody Test. Three-hundred serum samples from randomly selected healthy and diseased cats presented to the Clinic of Small Animal Medicine at Ludwig Maximilian University were tested using both the Anigen Rapid Test and the SNAP Kombi Plus Test. Diagnostic sensitivity, specificity, and positive and negative predictive values were calculated for both tests using Western blot as the gold standard for verification of FIV infection and PCR as the gold standard for FeLV infection. The presence of antibodies against FIV was confirmed by Western blot in 9/300 samples (prevalence 3%). FeLV DNA was detected by PCR in 15/300 samples (prevalence 5%). For FIV infection the Anigen Rapid Test had a sensitivity of 88.9%, specificity of 99.7%, positive predictive value of 88.9%, and negative predictive value of 99.7%. For FeLV infection, the Anigen Rapid Test had a sensitivity of 40.0%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 96.9%. Diagnostic accuracy was similar to that of the SNAP Kombi Plus Test. The new Anigen Rapid FIV Ab/FeLV Ag Test performed very well and can be recommended for use in veterinary practice.

  9. Exact method for numerically analyzing a model of local denaturation in superhelically stressed DNA

    NASA Astrophysics Data System (ADS)

    Fye, Richard M.; Benham, Craig J.

    1999-03-01

    Local denaturation, the separation at specific sites of the two strands comprising the DNA double helix, is one of the most fundamental processes in biology, required to allow the base sequence to be read both in DNA transcription and in replication. In living organisms this process can be mediated by enzymes which regulate the amount of superhelical stress imposed on the DNA. We present a numerically exact technique for analyzing a model of denaturation in superhelically stressed DNA. This approach is capable of predicting the locations and extents of transition in circular superhelical DNA molecules of kilobase lengths and specified base pair sequences. It can also be used for closed loops of DNA which are typically found in vivo to be kilobases long. The analytic method consists of an integration over the DNA twist degrees of freedom followed by the introduction of auxiliary variables to decouple the remaining degrees of freedom, which allows the use of the transfer matrix method. The algorithm implementing our technique requires O(N2) operations and O(N) memory to analyze a DNA domain containing N base pairs. However, to analyze kilobase length DNA molecules it must be implemented in high precision floating point arithmetic. An accelerated algorithm is constructed by imposing an upper bound M on the number of base pairs that can simultaneously denature in a state. This accelerated algorithm requires O(MN) operations, and has an analytically bounded error. Sample calculations show that it achieves high accuracy (greater than 15 decimal digits) with relatively small values of M (M<0.05N) for kilobase length molecules under physiologically relevant conditions. Calculations are performed on the superhelical pBR322 DNA sequence to test the accuracy of the method. With no free parameters in the model, the locations and extents of local denaturation predicted by this analysis are in quantitatively precise agreement with in vitro experimental measurements. Calculations performed on the fructose-1,6-bisphosphatase gene sequence from yeast show that this approach can also accurately treat in vivo denaturation.

  10. Analysis of DNA Methylation in Young People: Limited Evidence for an Association Between Victimization Stress and Epigenetic Variation in Blood.

    PubMed

    Marzi, Sarah J; Sugden, Karen; Arseneault, Louise; Belsky, Daniel W; Burrage, Joe; Corcoran, David L; Danese, Andrea; Fisher, Helen L; Hannon, Eilis; Moffitt, Terrie E; Odgers, Candice L; Pariante, Carmine; Poulton, Richie; Williams, Benjamin S; Wong, Chloe C Y; Mill, Jonathan; Caspi, Avshalom

    2018-06-01

    DNA methylation has been proposed as an epigenetic mechanism by which early-life experiences become "embedded" in the genome and alter transcriptional processes to compromise health. The authors sought to investigate whether early-life victimization stress is associated with genome-wide DNA methylation. The authors tested the hypothesis that victimization is associated with DNA methylation in the Environmental Risk (E-Risk) Longitudinal Study, a nationally representative 1994-1995 birth cohort of 2,232 twins born in England and Wales and assessed at ages 5, 7, 10, 12, and 18 years. Multiple forms of victimization were ascertained in childhood and adolescence (including physical, sexual, and emotional abuse; neglect; exposure to intimate-partner violence; bullying; cyber-victimization; and crime). Epigenome-wide analyses of polyvictimization across childhood and adolescence revealed few significant associations with DNA methylation in peripheral blood at age 18, but these analyses were confounded by tobacco smoking and/or did not survive co-twin control tests. Secondary analyses of specific forms of victimization revealed sparse associations with DNA methylation that did not replicate across different operationalizations of the same putative victimization experience. Hypothesis-driven analyses of six candidate genes in the stress response (NR3C1, FKBP5, BDNF, AVP, CRHR1, SLC6A4) did not reveal predicted associations with DNA methylation in probes annotated to these genes. Findings from this epidemiological analysis of the epigenetic effects of early-life stress do not support the hypothesis of robust changes in DNA methylation in victimized young people. We need to come to terms with the possibility that epigenetic epidemiology is not yet well matched to experimental, nonhuman models in uncovering the biological embedding of stress.

  11. Detecting DNA methylation of the BCL2, CDKN2A and NID2 genes in urine using a nested methylation specific polymerase chain reaction assay to predict bladder cancer.

    PubMed

    Scher, Michael B; Elbaum, Michael B; Mogilevkin, Yakov; Hilbert, David W; Mydlo, Jack H; Sidi, A Ami; Adelson, Martin E; Mordechai, Eli; Trama, Jason P

    2012-12-01

    Detection of methylated DNA has been shown to be a good biomarker for bladder cancer. Bladder cancer has the highest recurrence rate of any cancer and, as such, patients are regularly monitored using invasive diagnostic techniques. As urine is easily attainable, bladder cancer is an optimal cancer to detect using DNA methylation. DNA methylation is highly specific in cancer detection. However, it is difficult to detect because of the limited amount of DNA present in the urine of patients with bladder cancer. Therefore, an improved, sensitive and noninvasive diagnostic test is needed. We developed a highly specific and sensitive nested methylation specific polymerase chain reaction assay to detect the presence of bladder cancer in small volumes of patient urine. The genes assayed for DNA methylation are BCL2, CDKN2A and NID2. The regions surrounding the DNA methylation sites were amplified in a methylation independent first round polymerase chain reaction and the amplification product from the first polymerase chain reaction was used in a real-time methylation specific polymerase chain reaction. Urine samples were collected from patients receiving treatment at Wolfson Medical Center in Holon, Israel. In a pilot clinical study using patient urine samples we were able to differentiate bladder cancer from other urogenital malignancies and nonmalignant conditions with a sensitivity of 80.9% and a specificity of 86.4%. We developed a novel methylation specific polymerase chain reaction assay for the detection and monitoring of bladder cancer using DNA extracted from patient urine. The assay may also be combined with other diagnostic tests to improve accuracy. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Genome size evolution in relation to leaf strategy and metabolic rates revisited.

    PubMed

    Beaulieu, Jeremy M; Leitch, Ilia J; Knight, Charles A

    2007-03-01

    It has been proposed that having too much DNA may carry physiological consequences for plants. The strong correlation between DNA content, cell size and cell division rate could lead to predictable morphological variation in plants, including a negative relationship with leaf mass per unit area (LMA). In addition, the possible increased demand for resources in species with high DNA content may have downstream effects on maximal metabolic efficiency, including decreased metabolic rates. Tests were made for genome size-dependent variation in LMA and metabolic rates (mass-based photosynthetic rate and dark respiration rate) using our own measurements and data from a plant functional trait database (Glopnet). These associations were tested using two metrics of genome size: bulk DNA amount (2C DNA) and monoploid genome size (1Cx DNA). The data were analysed using an evolutionary framework that included a regression analysis and independent contrasts using a phylogenetic tree with estimates of molecular diversification times. A contribution index for the LMA data set was also calculated to determine which divergences have the greatest influence on the relationship between genome size and LMA. A significant negative association was found between bulk DNA amount and LMA in angiosperms. This was primarily a result of influential divergences that may represent early shifts in growth form. However, divergences in bulk DNA amount were positively associated with divergences in LMA, suggesting that the relationship may be indirect and mediated through other traits directly related to genome size. There was a significant negative association between genome size and metabolic rates that was driven by a basal divergence between angiosperms and gymnosperms; no significant independent contrast results were found. Therefore, it is concluded that genome size-dependent constraints acting on metabolic efficiency may not exist within seed plants.

  13. Evolution of DNA Methylation across Insects.

    PubMed

    Bewick, Adam J; Vogel, Kevin J; Moore, Allen J; Schmitz, Robert J

    2017-03-01

    DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling.

    PubMed

    Punt, Ans; Paini, Alicia; Spenkelink, Albertus; Scholz, Gabriele; Schilter, Benoit; van Bladeren, Peter J; Rietjens, Ivonne M C M

    2016-04-18

    Estragole is a known hepatocarcinogen in rodents at high doses following metabolic conversion to the DNA-reactive metabolite 1'-sulfooxyestragole. The aim of the present study was to model possible levels of DNA adduct formation in (individual) humans upon exposure to estragole. This was done by extending a previously defined PBK model for estragole in humans to include (i) new data on interindividual variation in the kinetics for the major PBK model parameters influencing the formation of 1'-sulfooxyestragole, (ii) an equation describing the relationship between 1'-sulfooxyestragole and DNA adduct formation, (iii) Monte Carlo modeling to simulate interindividual human variation in DNA adduct formation in the population, and (iv) a comparison of the predictions made to human data on DNA adduct formation for the related alkenylbenzene methyleugenol. Adequate model predictions could be made, with the predicted DNA adduct levels at the estimated daily intake of estragole of 0.01 mg/kg bw ranging between 1.6 and 8.8 adducts in 10(8) nucleotides (nts) (50th and 99th percentiles, respectively). This is somewhat lower than values reported in the literature for the related alkenylbenzene methyleugenol in surgical human liver samples. The predicted levels seem to be below DNA adduct levels that are linked with tumor formation by alkenylbenzenes in rodents, which were estimated to amount to 188-500 adducts per 10(8) nts at the BMD10 values of estragole and methyleugenol. Although this does not seem to point to a significant health concern for human dietary exposure, drawing firm conclusions may have to await further validation of the model's predictions.

  15. Nonrenal and renal activity of systemic lupus erythematosus: a comparison of two anti-C1q and five anti-dsDNA assays and complement C3 and C4.

    PubMed

    Julkunen, Heikki; Ekblom-Kullberg, Susanne; Miettinen, Aaro

    2012-08-01

    Associations of different assays for antibodies to C1q (anti-C1q) and to dsDNA (anti-dsDNA) and of complements C3 and C4 with disease activity in patients with systemic lupus erythematosus (SLE) were studied. The clinical manifestations of 223 SLE patients were recorded, and the disease activity was assessed by the SLEDAI score. Anti-C1q were determined by two enzyme-linked immunosorbent assays (ELISA) and anti-dsDNA by a radioimmunoassay (RIA), a Crithidia immunofluorescence (IF) assay and three ELISA assays using human telomere DNA, plasmid DNA circles, or calf thymus DNA as antigens, respectively. Complement C3 and C4 were determined by nephelometry. Control sera were obtained from 98 blood donors. In patients with SLE, the prevalence of anti-C1q was 17-18% and that of anti-dsDNA was 36-69%. Anti-C1q, anti-dsDNA, and complement C3 and C4 correlated well with the overall activity of SLE (r = 0.323-0.351, 0.353-0.566, and -0.372-0.444, respectively; P < 0.001). Sensitivity, specificity, positive predictive value, and negative predictive value for active lupus nephritis among SLE patients were 40-44, 92, 29, and 91-92% for anti-C1q and 48-68, 29-66, 11-16, and 86-91% for anti-dsDNA, respectively. Patients with active nephritis had higher levels of anti-C1q and lower levels of C3 and C4 than patients with inactive nephritis (P = 0.003-0.018). The corresponding associations of anti-dsDNA were somewhat weaker (P = 0.023-0.198). Hematological parameters reflecting disease activity correlated clearly better with anti-dsDNA and complement C3 and C4 than with anti-C1q. Anti-C1q is inferior to anti-dsDNA as a diagnostic test in SLE and in the evaluation of overall clinical activity of the disease. Anti-C1q together with complement C3 and C4 may offer useful additional information to monitor lupus nephritis activity. There are no practical differences between different assays for anti-C1q and anti-dsDNA.

  16. Correlation of MFOLD-predicted DNA secondary structures with separation patterns obtained by capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis.

    PubMed

    Glavac, Damjan; Potocnik, Uros; Podpecnik, Darja; Zizek, Teofil; Smerkolj, Sava; Ravnik-Glavac, Metka

    2002-04-01

    We have studied 57 different mutations within three beta-globin gene promoter fragments with sizes 52 bp, 77 bp, and 193 bp by fluorescent capillary electrophoresis CE-SSCP analysis. For each mutation and wild type, energetically most-favorable predicted secondary structures were calculated for sense and antisense strands using the MFOLD DNA-folding algorithm in order to investigate if any correlation exists between predicted DNA structures and actual CE migration time shifts. The overall CE-SSCP detection rate was 100% for all mutations in three studied DNA fragments. For shorter 52 bp and 77 bp DNA fragments we obtained a positive correlation between the migration time shifts and difference in free energy values of predicted secondary structures at all temperatures. For longer 193 bp beta-globin gene fragments with 46 mutations MFOLD predicted different secondary structures for 89% of mutated strands at 25 degrees C and 40 degrees C. However, the magnitude of the mobility shifts did not necessarily correlate with their secondary structures and free energy values except for the sense strand at 40 degrees C where this correlation was statistically significant (r = 0.312, p = 0.033). Results of this study provided more direct insight into the mechanism of CE-SSCP and showed that MFOLD prediction could be helpful in making decisions about the running temperatures and in prediction of CE-SSCP data patterns, especially for shorter (50-100 bp) DNA fragments. Copyright 2002 Wiley-Liss, Inc.

  17. Mitochondrial DNA association study of type 2 diabetes with or without ischemic stroke in Taiwan

    PubMed Central

    2014-01-01

    Background The importance of mitochondrial DNA (mtDNA) polymorphism in the prediction of type 2 diabetes (T2D) in men and women is not well understood. We questioned whether mtDNA polymorphism, mitochondrial functions, age and gender influenced the occurrence of T2D with or without ischemic stroke (IS). Methods We first designed a matched case–control study of 373 T2D patients and 327 healthy unrelated individuals without history of IS. MtDNA haplogroups were determined on all participants using sequencing of the control region and relevant SNPs from the coding region. Mitochondria functional tests, systemic biochemical measurements and complete genomic mtDNA sequencing were further determined on 239 participants (73 healthy controls, 33 T2D with IS, 70 T2D only and 63 IS patients without T2D). Results MtDNA haplogroups B4a1a, and E2b1 showed significant association with T2D (P <0.05), and haplogroup D4 indicated resistance (P <0.05). Mitochondrial and systemic functional tests showed significantly less variance within groups bearing the same mtDNA haplotypes. There was a pronounced male excess among all T2D patients and prevalence of IS was seen only in the older population. Finally, nucleotide variant np 15746, a determinant of haplogroup G3 seen in Japanese and of B4a1a prevalent in Taiwanese was associated with T2D in both populations. Conclusions Men appeared more susceptible to T2D than women. Although the significant association of B4a1a and E2b1 with T2D ceased when corrected for multiple testings, these haplogroups are seen only among Taiwan Aborigines, Southeast Asian and the Pacific Ocean islanders where T2D is predominant. The data further suggested that physiological and biochemical measurements were influenced by the mtDNA genetic profile of the individual. More understanding of the function of the mitochondrion in the development of T2D might indicate ways of influencing the early course of the disease. PMID:24713204

  18. Improved Prediction of Non-methylated Islands in Vertebrates Highlights Different Characteristic Sequence Patterns

    PubMed Central

    Vingron, Martin

    2016-01-01

    Non-methylated islands (NMIs) of DNA are genomic regions that are important for gene regulation and development. A recent study of genome-wide non-methylation data in vertebrates by Long et al. (eLife 2013;2:e00348) has shown that many experimentally identified non-methylated regions do not overlap with classically defined CpG islands which are computationally predicted using simple DNA sequence features. This is especially true in cold-blooded vertebrates such as Danio rerio (zebrafish). In order to investigate how predictive DNA sequence is of a region’s methylation status, we applied a supervised learning approach using a spectrum kernel support vector machine, to see if a more complex model and supervised learning can be used to improve non-methylated island prediction and to understand the sequence properties of these regions. We demonstrate that DNA sequence is highly predictive of methylation status, and that in contrast to existing CpG island prediction methods our method is able to provide more useful predictions of NMIs genome-wide in all vertebrate organisms that were studied. Our results also show that in cold-blooded vertebrates (Anolis carolinensis, Xenopus tropicalis and Danio rerio) where genome-wide classical CpG island predictions consist primarily of false positives, longer primarily AT-rich DNA sequence features are able to identify these regions much more accurately. PMID:27984582

  19. Determination of Ion Atmosphere Effects on the Nucleic Acid Electrostatic Potential and Ligand Association Using AH+·C Wobble Formation in Double-Stranded DNA

    PubMed Central

    2017-01-01

    The high charge density of nucleic acids and resulting ion atmosphere profoundly influence the conformational landscape of RNA and DNA and their association with small molecules and proteins. Electrostatic theories have been applied to quantitatively model the electrostatic potential surrounding nucleic acids and the effects of the surrounding ion atmosphere, but experimental measures of the potential and tests of these models have often been complicated by conformational changes and multisite binding equilibria, among other factors. We sought a simple system to further test the basic predictions from electrostatics theory and to measure the energetic consequences of the nucleic acid electrostatic field. We turned to a DNA system developed by Bevilacqua and co-workers that involves a proton as a ligand whose binding is accompanied by formation of an internal AH+·C wobble pair [Siegfried, N. A., et al. Biochemistry, 2010, 49, 3225]. Consistent with predictions from polyelectrolyte models, we observed logarithmic dependences of proton affinity versus salt concentration of −0.96 ± 0.03 and −0.52 ± 0.01 with monovalent and divalent cations, respectively, and these results help clarify prior results that appeared to conflict with these fundamental models. Strikingly, quantitation of the ion atmosphere content indicates that divalent cations are preferentially lost over monovalent cations upon A·C protonation, providing experimental indication of the preferential localization of more highly charged cations to the inner shell of the ion atmosphere. The internal AH+·C wobble system further allowed us to parse energetic contributions and extract estimates for the electrostatic potential at the position of protonation. The results give a potential near the DNA surface at 20 mM Mg2+ that is much less substantial than at 20 mM K+ (−120 mV vs −210 mV). These values and difference are similar to predictions from theory, and the potential is substantially reduced at higher salt, also as predicted; however, even at 1 M K+ the potential remains substantial, counter to common assumptions. The A·C protonation module allows extraction of new properties of the ion atmosphere and provides an electrostatic meter that will allow local electrostatic potential and energetics to be measured within nucleic acids and their complexes with proteins. PMID:28489947

  20. An automated quantitative DNA image cytometry system detects abnormal cells in cervical cytology with high sensitivity.

    PubMed

    Wong, O G; Ho, M W; Tsun, O K; Ng, A K; Tsui, E Y; Chow, J N; Ip, P P; Cheung, A N

    2018-03-26

    To evaluate the performance of an automated DNA-image-cytometry system as a tool to detect cervical carcinoma. Of 384 liquid-based cervical cytology samples with available biopsy follow-up were analyzed by both the Imager System and a high-risk HPV test (Cobas). The sensitivity and specificity of Imager System for detecting biopsy proven high-grade squamous intraepithelial lesion (HSIL, cervical intraepithelial neoplasia [CIN]2-3) and carcinoma were 89.58% and 56.25%, respectively, compared to 97.22% and 23.33% of HPV test but additional HPV 16/18 genotyping increased the specificity to 69.58%. The sensitivity and specificity of the Imager System for predicting HSIL+ (CIN2-3+) lesions among atypical squamous cells of undetermined significance samples were 80.00% and 70.53%, respectively, compared to 100% and 11.58% of HPV test whilst the HPV 16/18 genotyping increased the specificity to 77.89%. Among atypical squamous cells-cannot exclude HSIL, the sensitivity and specificity of Imager System for predicting HSIL+ (CIN2-3+) lesions upon follow up were 82.86% and 33.33%%, respectively, compared to 97.14% and 4.76% of HPV test and the HPV 16/18 genotyping increased the specificity to 19.05%. Among low-grade squamous intraepithelial lesion cases, the sensitivity and specificity of the Imager System for predicting HSIL+ (CIN2-3+) lesions were 66.67% and 35.71%%, respectively, compared to 66.67% and 29.76% of HPV test while HPV 16/18 genotyping increased the specificity to 79.76%. The overall results of imager and high-risk HPV test agreed in 69.43% (268) of all samples. The automated imager system and HPV 16/18 genotyping can enhance the specificity of detecting HSIL+ (CIN2-3+) lesions. © 2018 John Wiley & Sons Ltd.

  1. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Xu, Rui-Hua; Wei, Wei; Krawczyk, Michal; Wang, Wenqiu; Luo, Huiyan; Flagg, Ken; Yi, Shaohua; Shi, William; Quan, Qingli; Li, Kang; Zheng, Lianghong; Zhang, Heng; Caughey, Bennett A.; Zhao, Qi; Hou, Jiayi; Zhang, Runze; Xu, Yanxin; Cai, Huimin; Li, Gen; Hou, Rui; Zhong, Zheng; Lin, Danni; Fu, Xin; Zhu, Jie; Duan, Yaou; Yu, Meixing; Ying, Binwu; Zhang, Wengeng; Wang, Juan; Zhang, Edward; Zhang, Charlotte; Li, Oulan; Guo, Rongping; Carter, Hannah; Zhu, Jian-Kang; Hao, Xiaoke; Zhang, Kang

    2017-11-01

    An effective blood-based method for the diagnosis and prognosis of hepatocellular carcinoma (HCC) has not yet been developed. Circulating tumour DNA (ctDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive `liquid biopsy' for diagnosis and monitoring of cancer. Here, we identified an HCC-specific methylation marker panel by comparing HCC tissue and normal blood leukocytes and showed that methylation profiles of HCC tumour DNA and matched plasma ctDNA are highly correlated. Using cfDNA samples from a large cohort of 1,098 HCC patients and 835 normal controls, we constructed a diagnostic prediction model that showed high diagnostic specificity and sensitivity (P < 0.001) and was highly correlated with tumour burden, treatment response, and stage. Additionally, we constructed a prognostic prediction model that effectively predicted prognosis and survival (P < 0.001). Together, these findings demonstrate in a large clinical cohort the utility of ctDNA methylation markers in the diagnosis, surveillance, and prognosis of HCC.

  2. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.

    PubMed

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.

  3. Modeling Reactivity to Biological Macromolecules with a Deep Multitask Network

    PubMed Central

    2016-01-01

    Most small-molecule drug candidates fail before entering the market, frequently because of unexpected toxicity. Often, toxicity is detected only late in drug development, because many types of toxicities, especially idiosyncratic adverse drug reactions (IADRs), are particularly hard to predict and detect. Moreover, drug-induced liver injury (DILI) is the most frequent reason drugs are withdrawn from the market and causes 50% of acute liver failure cases in the United States. A common mechanism often underlies many types of drug toxicities, including both DILI and IADRs. Drugs are bioactivated by drug-metabolizing enzymes into reactive metabolites, which then conjugate to sites in proteins or DNA to form adducts. DNA adducts are often mutagenic and may alter the reading and copying of genes and their regulatory elements, causing gene dysregulation and even triggering cancer. Similarly, protein adducts can disrupt their normal biological functions and induce harmful immune responses. Unfortunately, reactive metabolites are not reliably detected by experiments, and it is also expensive to test drug candidates for potential to form DNA or protein adducts during the early stages of drug development. In contrast, computational methods have the potential to quickly screen for covalent binding potential, thereby flagging problematic molecules and reducing the total number of necessary experiments. Here, we train a deep convolution neural network—the XenoSite reactivity model—using literature data to accurately predict both sites and probability of reactivity for molecules with glutathione, cyanide, protein, and DNA. On the site level, cross-validated predictions had area under the curve (AUC) performances of 89.8% for DNA and 94.4% for protein. Furthermore, the model separated molecules electrophilically reactive with DNA and protein from nonreactive molecules with cross-validated AUC performances of 78.7% and 79.8%, respectively. On both the site- and molecule-level, the model’s performances significantly outperformed reactivity indices derived from quantum simulations that are reported in the literature. Moreover, we developed and applied a selectivity score to assess preferential reactions with the macromolecules as opposed to the common screening traps. For the entire data set of 2803 molecules, this approach yielded totals of 257 (9.2%) and 227 (8.1%) molecules predicted to be reactive only with DNA and protein, respectively, and hence those that would be missed by standard reactivity screening experiments. Site of reactivity data is an underutilized resource that can be used to not only predict if molecules are reactive, but also show where they might be modified to reduce toxicity while retaining efficacy. The XenoSite reactivity model is available at http://swami.wustl.edu/xenosite/p/reactivity. PMID:27610414

  4. A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paini, Alicia, E-mail: alicia.paini@rdls.nestle.co; Nestle Research Center, PO Box 44, Lausanne; Punt, Ans

    2010-05-15

    Estragole has been shown to be hepatocarcinogenic in rodent species at high-dose levels. Translation of these results into the likelihood of formation of DNA adducts, mutation, and ultimately cancer upon more realistic low-dose exposures remains a challenge. Recently we have developed physiologically based biokinetic (PBBK) models for rat and human predicting bioactivation of estragole. These PBBK models, however, predict only kinetic characteristics. The present study describes the extension of the PBBK model to a so-called physiologically based biodynamic (PBBD) model predicting in vivo DNA adduct formation of estragole in rat liver. This PBBD model was developed using in vitro datamore » on DNA adduct formation in rat primary hepatocytes exposed to 1'-hydroxyestragole. The model was extended by linking the area under the curve for 1'-hydroxyestragole formation predicted by the PBBK model to the area under the curve for 1'-hydroxyestragole in the in vitro experiments. The outcome of the PBBD model revealed a linear increase in DNA adduct formation with increasing estragole doses up to 100 mg/kg bw. Although DNA adduct formation of genotoxic carcinogens is generally seen as a biomarker of exposure rather than a biomarker of response, the PBBD model now developed is one step closer to the ultimate toxic effect of estragole than the PBBK model described previously. Comparison of the PBBD model outcome to available data showed that the model adequately predicts the dose-dependent level of DNA adduct formation. The PBBD model predicts DNA adduct formation at low levels of exposure up to a dose level showing to cause cancer in rodent bioassays, providing a proof of principle for modeling a toxicodynamic in vivo endpoint on the basis of solely in vitro experimental data.« less

  5. Effectiveness of VIA, Pap, and HPV DNA Testing in a Cervical Cancer Screening Program in a Peri-Urban Community in Andhra Pradesh, India

    PubMed Central

    Gravitt, Patti E.; Paul, Proma; Katki, Hormuzd A.; Vendantham, Haripriya; Ramakrishna, Gayatri; Sudula, Mrudula; Kalpana, Basany; Ronnett, Brigitte M.; Vijayaraghavan, K.; Shah, Keerti V.

    2010-01-01

    Background While many studies have compared the efficacy of Pap cytology, visual inspection with acetic acid (VIA) and human papillomavirus (HPV) DNA assays for the detection cervical intraepithelial neoplasia and cancer, few have evaluated the program effectiveness. Methods and Findings A population-based sample of 5603 women from Medchal Mandal in Andhra Pradesh, India were invited to participate in a study comparing Pap cytology, VIA, and HPV DNA screening for the detection of CIN3+. Participation in primary screening and all subsequent follow-up visits was rigorously tracked. A 20% random sample of all women screened, in addition to all women with a positive screening test result underwent colposcopy with directed biopsy for final diagnosis. Sensitivity, specificity, positive and negative predictive values were adjusted for verification bias. HPV testing had a higher sensitivity (100%) and specificity (90.6%) compared to Pap cytology (sensitivity  =  78.2%; specificity = 86.0%) and VIA (sensitivity = 31.6%; specificity = 87.5%). Since 58% of the sample refused involvement and another 28% refused colposcopy or biopsy, we estimated that potentially 87.6% of the total underlying cases of CIN3 and cancer may have been missed due to program failures. Conclusions We conclude that despite our use of available resources, infrastructure, and guidelines for cervical cancer screening implementation in resource limited areas, community participation and non-compliance remain the major obstacles to successful reduction in cervical cancer mortality in this Indian population. HPV DNA testing was both more sensitive and specific than Pap cytology and VIA. The use of a less invasive and more user-friendly primary screening strategy (such as self-collected swabs for HPV DNA testing) may be required to achieve the coverage necessary for effective reduction in cervical cancer mortality. PMID:21060889

  6. Evaluation of a new automated enzyme fluoroimmunoassay using recombinant plasmid dsDNA for the detection of anti-dsDNA antibodies in SLE.

    PubMed

    Villalta, D; Bizzaro, N; Corazza, D; Tozzoli, R; Tonutti, E

    2002-01-01

    ELISA methods to detect anti-double-stranded DNA (anti-dsDNA) antibodies are highly sensitive, but are less specific for the diagnosis of SLE than the immunofluorescence test on Crithidia luciliae (CLIFT) and the Farr assay because they also detect low-avidity antibodies. This study evaluated the specificity, sensitivity, positive predictive value (PPV), and negative predictive value (NPV) of a new automated fluoroimmunoassay (EliA dsDNA; Pharmacia, Freiburg, Germany). We compared the results with those obtained using a commercial CLIFT and an in-house anti-dsDNA IgG ELISA method, and verified its putative ability to detect only high-avidity anti-dsDNA antibodies. Sera from 100 SLE patients and 120 controls were studied. The control group included 20 healthy donors, 70 patients with other rheumatic diseases (32 systemic sclerosis (SSc); 18 primary Sjögren syndrome (pSS), 20 rheumatoid arthritis (RA)), and 30 patients with various infectious diseases (ID). Anti-dsDNA avidity was estimated using an ELISA method based upon the law of mass action, and a simplified Scatchard plot analysis for data elaboration; the apparent affinity constant (Kaa) was calculated and expressed as arbitrary units (L/U). Sensitivity, specificity, PPV, and NPV for SLE were 64%, 95.8%, 93.8% and 72.7%, respectively, for the EliA anti-dsDNA assay; 55%, 99.2%, 98.5%, and 68.8%, respectively, for the CLIFT; and 64%, 93.3%, 90.6%, and 72.3%, respectively, for the in-house ELISA. Although EliA anti-dsDNA was positive mainly in SLE patients with high- (Kaa>80 L/U) and intermediate- (Kaa 30-80 L/U) avidity antibodies (45.3% and 49.9%, respectively), it was also positive in five (7.8%) SLE patients with low-avidity anti-dsDNA antibodies, and five controls (three SSc, one pSS, and one ID) (mean Kaa = 16.4 +/- 9.04 L/U). In conclusion, EliA anti-dsDNA assay showed a higher sensitivity than the CLIFT, and a good specificity and PPV for SLE. Its putative ability to detect only high-avidity anti-dsDNA antibodies remains questionable. Copyright 2002 Wiley-Liss, Inc.

  7. Human papillomavirus mRNA and DNA testing in women with atypical squamous cells of undetermined significance: A prospective cohort study.

    PubMed

    Thomsen, Louise T; Dehlendorff, Christian; Junge, Jette; Waldstrøm, Marianne; Schledermann, Doris; Frederiksen, Kirsten; Kjaer, Susanne K

    2016-10-15

    In this prospective cohort study, we compared the performance of human papillomavirus (HPV) mRNA and DNA testing of women with atypical squamous cells of undetermined significance (ASC-US) during cervical cancer screening. Using a nationwide Danish pathology register, we identified women aged 30-65 years with ASC-US during 2005-2011 who were tested for HPV16/18/31/33/45 mRNA using PreTect HPV-Proofer (n = 3,226) or for high-risk HPV (hrHPV) DNA using Hybrid Capture 2 (HC2) (n = 9,405) or Linear Array HPV-Genotyping test (LA) (n = 1,533). Women with ≥1 subsequent examination in the register (n = 13,729) were followed for up to 9.5 years for high-grade cervical intraepithelial neoplasia (CIN) or cancer. After 3 years' follow-up, mRNA testing had higher specificity for CIN3 or worse (CIN3+) than HC2 testing (88.1% [95% confidence interval (CI): 86.8-89.6%] versus 59.3% [95% CI: 58.1-60.4%]) and higher positive predictive value (PPV) (38.2% [95% CI: 33.8%-43.1%] versus 19.5% [95% CI: 17.8-20.9%]). However, the sensitivity of mRNA testing was lower than that of HC2 testing (66.7% [95% CI: 59.3-74.5%] versus 97.0% [95% CI: 95.5-98.4%]), and women testing mRNA negative had higher 3-year risk for CIN3+ than those testing HC2 negative (3.2% [95% CI: 2.2-4.2%] versus 0.5% [95% CI: 0.3-0.7%]). Patterns were similar after 18 months and 5 years'; follow-up; for CIN2+ and cancer as outcomes; across all age groups; and when comparing mRNA testing to hrHPV DNA testing using LA. In conclusion, the HPV16/18/31/33/45 mRNA test is not optimal for ASC-US triage due to its low sensitivity and the substantial risk for precancer following a negative test. © 2016 UICC.

  8. Cytomegalovirus (CMV) DNA Quantitation in Bronchoalveolar Lavage Fluid From Hematopoietic Stem Cell Transplant Recipients With CMV Pneumonia.

    PubMed

    Boeckh, Michael; Stevens-Ayers, Terry; Travi, Giovanna; Huang, Meei-Li; Cheng, Guang-Shing; Xie, Hu; Leisenring, Wendy; Erard, Veronique; Seo, Sachiko; Kimball, Louise; Corey, Lawrence; Pergam, Steven A; Jerome, Keith R

    2017-05-15

    Quantitative cytomegalovirus (CMV) DNA-specific polymerase chain reaction (PCR) analysis is widely used as a surveillance method for hematopoietic stem cell transplant (HCT) recipients. However, no CMV DNA threshold exists in bronchoalveolar lavage (BAL) to differentiate pneumonia from pulmonary shedding. We tested archived BAL fluid samples from 132 HCT recipients with CMV pneumonia and 139 controls (100 patients with non-CMV pneumonia, 18 with idiopathic pneumonia syndrome [IPS], and 21 who were asymptomatic) by quantitative CMV and β-globin DNA-specific PCR. Patients with CMV pneumonia had higher median viral loads (3.9 log10 IU/mL; interquartile range [IQR], 2.6-6.0 log10 IU/mL) than controls (0 log10 IU/mL [IQR, 0-1.6 log10 IU/mL] for patients with non-CMV pneumonia, 0 log10 IU/mL [IQR, 0-1.6 log10 IU/mL] for patients with IPS, and 1.63 log10 IU/mL [IQR, 0-2.5 log10 IU/mL] for patients who were asymptomatic; P < .001 for all comparisons to patients with CMV pneumonia). Receiver operating characteristic curve analyses and predictive models identified a cutoff CMV DNA level of 500 IU/mL to differentiate between CMV pneumonia and pulmonary shedding, using current CMV pneumonia prevalence figures. However, different levels may be appropriate in settings of very high or low CMV pneumonia prevalence. The presence of pulmonary copathogens, radiographic presentation, or pulmonary hemorrhage did not alter predictive values. CMV DNA load in BAL can be used to differentiate CMV pneumonia from pulmonary shedding. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  9. Prediction of minimal residual viremia in HCV type 1 infected patients receiving interferon-based therapy.

    PubMed

    Knop, Viola; Teuber, Gerlinde; Klinker, Hartwig; Möller, Bernd; Rasenack, Jens; Hinrichsen, Holger; Gerlach, Tilman; Spengler, Ulrich; Buggisch, Peter; Neumann, Konrad; Sarrazin, Christoph; Zeuzem, Stefan; Berg, Thomas

    2013-01-01

    Complete suppression of viral replication is crucial in chronic HCV treatment in order to prevent relapse and resistance development. We wanted to find out which factors influence the period from being already HCV RNA negative by bDNA assay (< 615 IU/mL) to become undetectable by the more sensitive TMA test (< 5.3 IU/mL). Evaluated were 433 HCV type 1-infected patients. All of them received 1.5 ug/kg Peg-IFNα-2b plus ribavirin for 18-48 weeks. bDNA was performed weekly during the first 8 weeks and thereafter at weeks 12, 24, and 48. Patients who became bDNA undetectable were additionally analysed by TMA. Of the 309 patients with on-treatment response (< 615 IU/mL), 289 also reached undetectable HCV RNA levels by TMA. Multivariate analysis revealed that viremia ≤ 400,000 IU/mL (p = 0.001), fast initial virologic decline (p = 0.004) and absence of fibrosis (p = 0.035) were independent predictors of an accelerated on-treatment response by TMA assay in already bDNA negative patients. bDNA negative patients becoming HCV RNA undetectable by TMA within the following 3 weeks had a frequency of relapse of 21%, whereas those showing TMA negativity after 3 weeks relapsed in 38% (p = 0.001). In RVR patients (bDNA < 615 IU/mL at week 4) the corresponding relapse rates were 15.3% vs. 37.5%, respectively (p = 0.003). Early viral kinetics, baseline viremia and fibrosis stage are important tools to predict persistent minimal viremia during interferon-based therapy. The data have implications for designing a more refined treatment strategy in HCV infection, even in the setting of protease inhibitor-based triple treatment.

  10. A prospective study of women with ASCUS or LSIL pap smears at baseline and HPV E6/E7 mRNA positive: a 3-year follow-up.

    PubMed

    Bruno, M T; Ferrara, M; Fava, V; Barrasso, G; Panella, M M

    2018-04-01

    Human papillomavirus (HPV) testing is used in the triage of women with a borderline smear result. The efficiency of testing women with a low-grade squamous intraepithelial lesion (LSIL) and atypical squamous cells of undetermined significance (ASCUS) is less clear. For this reason we used a new HPV test that detects E6/E7 messenger RNA (mRNA), which might have a higher specificity. The objective of this prospective study was to assess whether HPV E6/E7 mRNA positivity in women with ASCUS and LSIL at baseline, is able to predict those women who have a high risk of developing a histological cervical intraepithelial neoplasia (CIN2) or worse lesion. We took into consideration the women's age and HPV DNA genotype and followed them up for 3 years. Cervical samples from women with high-risk HPV (HR-HPV) DNA-positive ASCUS (n = 90) or LSIL (n = 222) were tested for the presence of HR-HPV E6/E7 mRNA and the women were monitored for the development of histopathologically verified CIN2+. Thirteen patients with ASCUS and 17 with LSIL did not complete follow-up. All patients with LSIL and ASCUS, enrolled in this study, had confirmed lesions at the colposcopic examination. Follow-up was available for 312 women, 193 were positive in the HR-HPV DNA test and 93 had a HPV E6/E7 mRNA positive test. Finally, 22 women positive in the HPV DNA test for high-risk genotypes and with positive E6/E7 mRNA had a histologically confirmed CIN2+. Only two cases with negative HPV E6/E7 mRNA had CIN2+. The study shows that women positive in the HPV E6/E7 mRNA test have a greater risk of malignant progression of cervical lesions and therefore deserve greater attention and earlier check-ups.

  11. Comparison of cross-platform technologies for EGFR T790M testing in patients with non-small cell lung cancer

    PubMed Central

    Li, Xuefei; Zhou, Caicun

    2017-01-01

    Somatic mutations in the gene encoding epidermal growth factor receptor (EGFR) play an important role in determining targeted treatment modalities in non-small cell lung cancer (NSCLC). The EGFR T790M mutation emerges in approximately 50% of cases who acquire resistance to tyrosine kinase inhibitors. Detecting EGFR T790M mutation in tumor tissue is challenging due to heterogeneity of the tumor, low abundance of the mutation and difficulty for re-biopsy in patients with advanced disease. Alternatively, circulating tumor DNA (ctDNA) has been proposed as a non-invasive method for mutational analysis. The presence of EGFR mutations in ctDNA predicts response to the EGFR TKIs in the first-line setting. Molecular testing is now considered a standard care for NSCLC. The advent of standard commercially available kits and targeted mutational analysis has revolutionized the accuracy of mutation detection platforms for detection of EGFR mutations. Our review provides an overview of various commonly used platforms for detecting EGFR T790M mutation in tumor tissue and plasma. PMID:29246024

  12. The Emergent Landscape of Detecting EGFR Mutations Using Circulating Tumor DNA in Lung Cancer

    PubMed Central

    Wei, Fang; Wong, David T.; Su, Wu-Chou

    2015-01-01

    The advances in targeted therapies for lung cancer are based on the evaluation of specific gene mutations especially the epidermal growth factor receptor (EGFR). The assays largely depend on the acquisition of tumor tissue via biopsy before the initiation of therapy or after the onset of acquired resistance. However, the limitations of tissue biopsy including tumor heterogeneity and insufficient tissues for molecular testing are impotent clinical obstacles for mutation analysis and lung cancer treatment. Due to the invasive procedure of tissue biopsy and the progressive development of drug-resistant EGFR mutations, the effective initial detection and continuous monitoring of EGFR mutations are still unmet requirements. Circulating tumor DNA (ctDNA) detection is a promising biomarker for noninvasive assessment of cancer burden. Recent advancement of sensitive techniques in detecting EGFR mutations using ctDNA enables a broad range of clinical applications, including early detection of disease, prediction of treatment responses, and disease progression. This review not only introduces the biology and clinical implementations of ctDNA but also includes the updating information of recent advancement of techniques for detecting EGFR mutation using ctDNA in lung cancer. PMID:26448936

  13. More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other Conifers.

    PubMed

    Du, Fang K; Petit, Rémy J; Liu, Jian Quan

    2009-04-01

    Recent work has suggested that rates of introgression should be inversely related to levels of gene flow because introgressed populations cannot be 'rescued' by intraspecific gene flow if it is too low. Mitochondrial and chloroplast DNA (mtDNA and cpDNA) experience very different levels of gene flow in conifers due to their contrasted maternal and paternal modes of transmission, hence the prediction that mtDNA should introgress more readily than cpDNA in this group. Here, we use sequence data from both mtDNA and cpDNA to test this hypothesis in a group of closely related spruces species, the Picea asperata complex from China. Nine mitochondrial and nine chloroplast haplotypes were recovered from 459 individuals in 46 natural populations belonging to five species of the Picea asperata complex. Low variation was found in the two mtDNA introns along with a high level of differentiation among populations (G(ST) = 0.90). In contrast, we detected higher variation and lower differentiation among populations at cpDNA markers (G(ST) = 0.56), a trend shared by most conifer species studied so far. We found that cpDNA variation, although far from being fully diagnostic, is more species-specific than mtDNA variation: four groups of populations were identified using cpDNA markers, all of them related to species or groups of species, whereas for mtDNA, geographical variation prevails over species differentiation. The literature suggests that mtDNA haplotypes are often shared among related conifer species, whereas cpDNA haplotypes are more species-specific. Hence, increased intraspecific gene flow appears to decrease differentiation within species but not among species.

  14. Meta-analysis of the predictive value of DNA aneuploidy in malignant transformation of oral potentially malignant disorders.

    PubMed

    Alaizari, Nader A; Sperandio, Marcelo; Odell, Edward W; Peruzzo, Daiane; Al-Maweri, Sadeq A

    2018-02-01

    DNA aneuploidy is an imbalance of chromosomal DNA content that has been highlighted as a predictor of biological behavior and risk of malignant transformation. To date, DNA aneuploidy in oral potentially malignant diseases (OPMD) has been shown to correlate strongly with severe dysplasia and high-risk lesions that appeared non-dysplastic can be identified by ploidy analysis. Nevertheless, the prognostic value of DNA aneuploidy in predicting malignant transformation of OPMD remains to be validated. The aim of this meta-analysis was to assess the role of DNA aneuploidy in predicting malignant transformation in OPMD. The questions addressed were (i) Is DNA aneuploidy a useful marker to predict malignant transformation in OPMD? (ii) Is DNA diploidy a useful negative marker of malignant transformation in OPMD? These questions were addressed using the PECO method. Five studies assessing aneuploidy as a risk marker of malignant change were pooled into the meta-analysis. Aneuploidy was found to be associated with a 3.12-fold increased risk to progress into cancer (RR=3.12, 95% CI 1.86-5.24). Based on the five studies meta-analyzed, "no malignant progression" was more likely to occur in DNA diploid OPMD by 82% when compared to aneuploidy (RR=0.18, 95% CI 0.08-0.41). In conclusion, aneuploidy is a useful marker of malignant transformation in OPMD, although a diploid result should be interpreted with caution. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. HIV-1 DNA predicts disease progression and post-treatment virological control

    PubMed Central

    Williams, James P; Hurst, Jacob; Stöhr, Wolfgang; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Cooper, David; Schechter, Mauro; Tambussi, Giuseppe; Fidler, Sarah; Carrington, Mary; Babiker, Abdel; Weber, Jonathan

    2014-01-01

    In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials. Clinical trial registration: ISRCTN76742797 and EudraCT2004-000446-20 DOI: http://dx.doi.org/10.7554/eLife.03821.001 PMID:25217531

  16. Computationally expanding infinium HumanMethylation450 BeadChip array data to reveal distinct DNA methylation patterns of rheumatoid arthritis

    PubMed Central

    Li, Chengzhe; Ai, Rizi; Wang, Mengchi; Firestein, Gary S.; Wang, Wei

    2016-01-01

    Motivation: DNA methylation signatures in rheumatoid arthritis (RA) have been identified in fibroblast-like synoviocytes (FLS) with Illumina HumanMethylation450 array. Since <2% of CpG sites are covered by the Illumina 450K array and whole genome bisulfite sequencing is still too expensive for many samples, computationally predicting DNA methylation levels based on 450K data would be valuable to discover more RA-related genes. Results: We developed a computational model that is trained on 14 tissues with both whole genome bisulfite sequencing and 450K array data. This model integrates information derived from the similarity of local methylation pattern between tissues, the methylation information of flanking CpG sites and the methylation tendency of flanking DNA sequences. The predicted and measured methylation values were highly correlated with a Pearson correlation coefficient of 0.9 in leave-one-tissue-out cross-validations. Importantly, the majority (76%) of the top 10% differentially methylated loci among the 14 tissues was correctly detected using the predicted methylation values. Applying this model to 450K data of RA, osteoarthritis and normal FLS, we successfully expanded the coverage of CpG sites 18.5-fold and accounts for about 30% of all the CpGs in the human genome. By integrative omics study, we identified genes and pathways tightly related to RA pathogenesis, among which 12 genes were supported by triple evidences, including 6 genes already known to perform specific roles in RA and 6 genes as new potential therapeutic targets. Availability and implementation: The source code, required data for prediction, and demo data for test are freely available at: http://wanglab.ucsd.edu/star/LR450K/. Contact: wei-wang@ucsd.edu or gfirestein@ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26883487

  17. Do Circulating Tumor Cells, Exosomes, and Circulating Tumor Nucleic Acids Have Clinical Utility?

    PubMed Central

    Gold, Bert; Cankovic, Milena; Furtado, Larissa V.; Meier, Frederick; Gocke, Christopher D.

    2016-01-01

    Diagnosing and screening for tumors through noninvasive means represent an important paradigm shift in precision medicine. In contrast to tissue biopsy, detection of circulating tumor cells (CTCs) and circulating tumor nucleic acids provides a minimally invasive method for predictive and prognostic marker detection. This allows early and serial assessment of metastatic disease, including follow-up during remission, characterization of treatment effects, and clonal evolution. Isolation and characterization of CTCs and circulating tumor DNA (ctDNA) are likely to improve cancer diagnosis, treatment, and minimal residual disease monitoring. However, more trials are required to validate the clinical utility of precise molecular markers for a variety of tumor types. This review focuses on the clinical utility of CTCs and ctDNA testing in patients with solid tumors, including somatic and epigenetic alterations that can be detected. A comparison of methods used to isolate and detect CTCs and some of the intricacies of the characterization of the ctDNA are also provided. PMID:25908243

  18. Sexual reproduction as a response to H sub 2 O sub 2 damage in Schizosaccharomyces pombe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, C.; Johns, V.

    1989-04-01

    Although sexual reproduction is widespread, its adaptive advantage over asexual reproduction is unclear. One major advantage of sex may be its promotion of recombinational repair of DNA damage during meiosis. This idea predicts that treatment of the asexual form of a facultatively sexual-asexual eucaryote with a DNA-damaging agent may cause it to enter the sexual cycle more frequently. Endogenous hydrogen peroxide is a major natural source of DNA damage. Thus, the authors treated vegetative cells of Schizosaccharomyces pombe with hydrogen peroxide to test if sexual reproduction increases. Among untreated stationary-phase S. pombe populations the sexual spores produced by meiosis representedmore » about 1% of the total cells. However, treatment of late-exponential-phase vegetative cells with hydrogen peroxide increased the percentage of meiotic spores in the stationary phase by 4- to 18-fold. Oxidative damage therefore induces sexual reproduction in a facultatively sexual organism, a result expected by the hypothesis that sex promotes DNA repair.« less

  19. Predictive and Prognostic Factors in Definition of Risk Groups in Endometrial Carcinoma

    PubMed Central

    Sorbe, Bengt

    2012-01-01

    Background. The aim was to evaluate predictive and prognostic factors in a large consecutive series of endometrial carcinomas and to discuss pre- and postoperative risk groups based on these factors. Material and Methods. In a consecutive series of 4,543 endometrial carcinomas predictive and prognostic factors were analyzed with regard to recurrence rate and survival. The patients were treated with primary surgery and adjuvant radiotherapy. Two preoperative and three postoperative risk groups were defined. DNA ploidy was included in the definitions. Eight predictive or prognostic factors were used in multivariate analyses. Results. The overall recurrence rate of the complete series was 11.4%. Median time to relapse was 19.7 months. In a multivariate logistic regression analysis, FIGO grade, myometrial infiltration, and DNA ploidy were independent and statistically predictive factors with regard to recurrence rate. The 5-year overall survival rate was 73%. Tumor stage was the single most important factor with FIGO grade on the second place. DNA ploidy was also a significant prognostic factor. In the preoperative risk group definitions three factors were used: histology, FIGO grade, and DNA ploidy. Conclusions. DNA ploidy was an important and significant predictive and prognostic factor and should be used both in preoperative and postoperative risk group definitions. PMID:23209924

  20. Tumor mismatch repair immunohistochemistry and DNA MLH1 methylation testing of patients with endometrial cancer diagnosed at age younger than 60 years optimizes triage for population-level germline mismatch repair gene mutation testing.

    PubMed

    Buchanan, Daniel D; Tan, Yen Y; Walsh, Michael D; Clendenning, Mark; Metcalf, Alexander M; Ferguson, Kaltin; Arnold, Sven T; Thompson, Bryony A; Lose, Felicity A; Parsons, Michael T; Walters, Rhiannon J; Pearson, Sally-Ann; Cummings, Margaret; Oehler, Martin K; Blomfield, Penelope B; Quinn, Michael A; Kirk, Judy A; Stewart, Colin J; Obermair, Andreas; Young, Joanne P; Webb, Penelope M; Spurdle, Amanda B

    2014-01-10

    Clinicopathologic data from a population-based endometrial cancer cohort, unselected for age or family history, were analyzed to determine the optimal scheme for identification of patients with germline mismatch repair (MMR) gene mutations. Endometrial cancers from 702 patients recruited into the Australian National Endometrial Cancer Study (ANECS) were tested for MMR protein expression using immunohistochemistry (IHC) and for MLH1 gene promoter methylation in MLH1-deficient cases. MMR mutation testing was performed on germline DNA of patients with MMR-protein deficient tumors. Prediction of germline mutation status was compared for combinations of tumor characteristics, age at diagnosis, and various clinical criteria (Amsterdam, Bethesda, Society of Gynecologic Oncology, ANECS). Tumor MMR-protein deficiency was detected in 170 (24%) of 702 cases. Germline testing of 158 MMR-deficient cases identified 22 truncating mutations (3% of all cases) and four unclassified variants. Tumor MLH1 methylation was detected in 99 (89%) of 111 cases demonstrating MLH1/PMS2 IHC loss; all were germline MLH1 mutation negative. A combination of MMR IHC plus MLH1 methylation testing in women younger than 60 years of age at diagnosis provided the highest positive predictive value for the identification of mutation carriers at 46% versus ≤ 41% for any other criteria considered. Population-level identification of patients with MMR mutation-positive endometrial cancer is optimized by stepwise testing for tumor MMR IHC loss in patients younger than 60 years, tumor MLH1 methylation in individuals with MLH1 IHC loss, and germline mutations in patients exhibiting loss of MSH6, MSH2, or PMS2 or loss of MLH1/PMS2 with absence of MLH1 methylation.

  1. Threading dynamics of a polymer through parallel pores: Potential applications to DNA size separation

    NASA Astrophysics Data System (ADS)

    Åkerman, Björn

    1997-04-01

    DNA orientation measurements by linear dichroism (LD) spectroscopy and single molecule imaging by fluorescence microscopy are used to investigate the effect of DNA size (71-740 kilo base pairs) and field strength E (1-5.9 V/cm) on the conformation dynamics during the field-driven threading of DNA molecules through a set of parallel pores in agarose gels, with average pore radii between 380 Å and 1400 Å. Locally relaxed but globally oriented DNA molecules are subjected to a perpendicular field, and the observed LD time profile is compared with a recent theory for the threading [D. Long and J.-L. Viovy, Phys. Rev. E 53, 803 (1996)] which assumes the same initial state. As predicted the DNA is driven by the ends into a U-form, leading to an overshoot in the LD. The overshoot-time scales as E-(1.2-1.4) as predicted, but grows more slowly with DNA size than the predicted linear dependence. For long molecules loops form initially in the threading process but are finally consumed by the ends, and the process of transfer of DNA segments, from the loops to the arms of the U, leads to a shoulder in the LD as predicted. The critical size below which loops do not form (as indicated by the LD shoulder being absent) is between 71 and 105 kbp (0.5% agarose, 5.9 V/cm), and considerably larger than predicted because in the initial state the DNA molecules are housed in gel cavities with effective pore sizes about four times larger than the average pore size. From the data, the separation of DNA by exploiting the threading dynamics in pulsed fields [D. Long et al., CR Acad. Sci. Paris, Ser. IIb 321, 239 (1995)] is shown to be feasible in principle in an agarose-based system.

  2. Individualization of radiotherapy in breast cancer patients: possible usefulness of a DNA damage assay to measure normal cell radiosensitivity.

    PubMed

    Ruiz de Almodóvar, José Mariano; Guirado, Damian; Isabel Núñez, María; López, Escarlata; Guerrero, Rosario; Valenzuela, María Teresa; Villalobos, Mercedes; del Moral, Rosario

    2002-03-01

    The purpose of this study was to determine whether the distribution of sensitivities in breast cancer patients, measured using a DNA damage assay on lymphocytes, is likely to provide sufficient discrimination to enable the reliable identification of patients with abnormal sensitivities. Radiosensitivity (x) was assessed in 226 samples of lymphocytes from unselected women with breast cancer and was quantified as the initial number of DNA double-strand breaks (dsb) induced per Gy and per DNA unit (200 Mbp). The existence of an inter-individual variation in the parameter (x) is described through the range (0.40-4.72 dsb/Gy/DNA unit) of values found, which have been fitted to the mathematical model defined by the log-normal distribution (mu = 0.42+/-0.03; sigma = 0.52+/-0.03; R(2)=0.9475). A total of 189 patients received radiotherapy after surgical treatment. Among them, we have detected 15 patients who developed severe skin reactions and we have compared their radiosensitivity values with the rest of patients treated. Our results suggest that DNA initial damage measured on lymphocytes offers an approach to predict the acute response of human normal tissues prior to radiotherapy. Values of x higher than 3.20 dsb/Gy/DNA unit theoretically should correspond to the highly radio-sensitive patients. Using the experimental results, we have calculated the strength of the test by means of the area under the receiver operator characteristic curves (A(Z)) to determine whether the radiosensitivity assay can discriminate between patients according to their radiation response. The value found (A(Z)=0.675+/-0.072) is indicative of a fair-poor discriminating capacity of the test to identify the patients with higher risk of developing a severe acute reaction during the radiotherapy treatment.

  3. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation.

    PubMed

    Stigliani, S; Anserini, P; Venturini, P L; Scaruffi, P

    2013-10-01

    Is the amount of cell-free DNA released by human embryos into culture medium correlated with embryo morphological features? The mitochondrial DNA (mtDNA) content of culture medium is significantly associated with the fragmentation rate on Days 2 and 3 of embryo development, whether the oocyte came from women ≤ 35 or >35 years old. Cellular fragmentation is often utilized as one of the morphological parameters for embryo quality assessment. The amount of cellular fragments is considered to be an important morphological parameter for embryo implantation potential. It has been hypothesized that fragments are apoptotic bodies or anuclear cytoplasmatic pieces of blastomeres, although no definitive conclusion has been drawn about their pathogenesis. Human fertilized oocytes were individually cultured from Day 1 to Days 2 and 3. A total of 800 samples (166 spent media from Day 2 and 634 from Day 3) were enrolled into the present study. Double-stranded DNA (dsDNA) was quantified in 800 spent embryo culture media by Pico Green dye fluorescence assay. After DNA purification, genomic DNA (gDNA) and mtDNA were profiled by specific quantitative PCR. Statistical analyses defined correlations among DNA contents, embryo morphology and maternal age. Different independent tests confirmed the presence of DNA into embryo culture medium and, for the first time, we demonstrate that both gDNA and mtDNA are detectable in the secretome. The amount of DNA is larger in embryos with bad quality cleavage compared with high-grade embryos, suggesting that the DNA profile of culture medium is an objective marker for embryo quality assessment. In particular, DNA profiles are significantly associated with fragmentation feature (total dsDNA: P = 0.0010; mtDNA; P = 0.0247) and advanced maternal age. It is necessary to establish whether DNA profiling of spent embryo culture medium is a robust onsite test that can improve the prediction of blastulation, implantation and/or pregnancy rate. The approach we are proposing may provide a novel, non-invasive, objective tool for embryo quality grading. The correlation between a high mtDNA concentration and the fragmentation rate of embryos is suggestive that fragments are mainly anuclear cytoplasmatic debris arising during cleavage. Therefore, blastomere shaping as an early event during in vitro development may play a homeostatic role and be related to embryo competence. This project was funded by Merck Serono (Grant for Fertility Innovation 2011). The sponsor had no role in study design, data collection, data analysis, data interpretation and writing of the paper. Authors declare no conflicts of interest. ClinicalTrials.gov Identifier: NCT01397136.

  4. Development of a novel forensic STR multiplex for ancestry analysis and extended identity testing.

    PubMed

    Phillips, Chris; Fernandez-Formoso, Luis; Gelabert-Besada, Miguel; Garcia-Magariños, Manuel; Santos, Carla; Fondevila, Manuel; Carracedo, Angel; Lareu, Maria Victoria

    2013-04-01

    There is growing interest in developing additional DNA typing techniques to provide better investigative leads in forensic analysis. These include inference of genetic ancestry and prediction of common physical characteristics of DNA donors. To date, forensic ancestry analysis has centered on population-divergent SNPs but these binary loci cannot reliably detect DNA mixtures, common in forensic samples. Furthermore, STR genotypes, forming the principal DNA profiling system, are not routinely combined with forensic SNPs to strengthen frequency data available for ancestry inference. We report development of a 12-STR multiplex composed of ancestry informative marker STRs (AIM-STRs) selected from 434 tetranucleotide repeat loci. We adapted our online Bayesian classifier for AIM-SNPs: Snipper, to handle multiallele STR data using frequency-based training sets. We assessed the ability of the 12-plex AIM-STRs to differentiate CEPH Human Genome Diversity Panel populations, plus their informativeness combined with established forensic STRs and AIM-SNPs. We found combining STRs and SNPs improves the success rate of ancestry assignments while providing a reliable mixture detection system lacking from SNP analysis alone. As the 12 STRs generally show a broad range of alleles in all populations, they provide highly informative supplementary STRs for extended relationship testing and identification of missing persons with incomplete reference pedigrees. Lastly, mixed marker approaches (combining STRs with binary loci) for simple ancestry inference tests beyond forensic analysis bring advantages and we discuss the genotyping options available. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops

    PubMed Central

    Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron

    2016-01-01

    Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453

  6. Implementing genomic medicine in pathology.

    PubMed

    Williams, Eli S; Hegde, Madhuri

    2013-07-01

    The finished sequence of the Human Genome Project, published 50 years after Watson and Crick's seminal paper on the structure of DNA, pushed human genetics into the public eye and ushered in the genomic era. A significant, if overlooked, aspect of the race to complete the genome was the technology that propelled scientists to the finish line. DNA sequencing technologies have become more standardized, automated, and capable of higher throughput. This technology has continued to grow at an astounding rate in the decade since the Human Genome Project was completed. Today, massively parallel sequencing, or next-generation sequencing (NGS), allows the detection of genetic variants across the entire genome. This ability has led to the identification of new causes of disease and is changing the way we categorize, treat, and manage disease. NGS approaches such as whole-exome sequencing and whole-genome sequencing are rapidly becoming an affordable genetic testing strategy for the clinical laboratory. One test can now provide vast amounts of health information pertaining not only to the disease of interest, but information that may also predict adult-onset disease, reveal carrier status for a rare disease and predict drug responsiveness. The issue of what to do with these incidental findings, along with questions pertaining to NGS testing strategies, data interpretation and storage, and applying genetic testing results into patient care, remains without a clear answer. This review will explore these issues and others relevant to the implementation of NGS in the clinical laboratory.

  7. Paleoclimatic modeling and phylogeography of least killifish, Heterandria formosa: insights into Pleistocene expansion-contraction dynamics and evolutionary history of North American Coastal Plain freshwater biota.

    PubMed

    Bagley, Justin C; Sandel, Michael; Travis, Joseph; Lozano-Vilano, María de Lourdes; Johnson, Jerald B

    2013-10-09

    Climatic and sea-level fluctuations throughout the last Pleistocene glacial cycle (~130-0 ka) profoundly influenced present-day distributions and genetic diversity of Northern Hemisphere biotas by forcing range contractions in many species during the glacial advance and allowing expansion following glacial retreat ('expansion-contraction' model). Evidence for such range dynamics and refugia in the unglaciated Gulf-Atlantic Coastal Plain stems largely from terrestrial species, and aquatic species Pleistocene responses remain relatively uninvestigated. Heterandria formosa, a wide-ranging regional endemic, presents an ideal system to test the expansion-contraction model within this biota. By integrating ecological niche modeling and phylogeography, we infer the Pleistocene history of this livebearing fish (Poeciliidae) and test for several predicted distributional and genetic effects of the last glaciation. Paleoclimatic models predicted range contraction to a single southwest Florida peninsula refugium during the Last Glacial Maximum, followed by northward expansion. We inferred spatial-population subdivision into four groups that reflect genetic barriers outside this refuge. Several other features of the genetic data were consistent with predictions derived from an expansion-contraction model: limited intraspecific divergence (e.g. mean mtDNA p-distance = 0.66%); a pattern of mtDNA diversity (mean Hd = 0.934; mean π = 0.007) consistent with rapid, recent population expansion; a lack of mtDNA isolation-by-distance; and clinal variation in allozyme diversity with higher diversity at lower latitudes near the predicted refugium. Statistical tests of mismatch distributions and coalescent simulations of the gene tree lent greater support to a scenario of post-glacial expansion and diversification from a single refugium than to any other model examined (e.g. multiple-refugia scenarios). Congruent results from diverse data indicate H. formosa fits the classic Pleistocene expansion-contraction model, even as the genetic data suggest additional ecological influences on population structure. While evidence for Plio-Pleistocene Gulf Coast vicariance is well described for many freshwater species presently codistributed with H. formosa, this species demography and diversification departs notably from this pattern. Species-specific expansion-contraction dynamics may therefore have figured more prominently in shaping Coastal Plain evolutionary history than previously thought. Our findings bolster growing appreciation for the complexity of phylogeographical structuring within North America's southern refugia, including responses of Coastal Plain freshwater biota to Pleistocene climatic fluctuations.

  8. Estimating HPV DNA Deposition Between Sexual Partners Using HPV Concordance, Y Chromosome DNA Detection, and Self-reported Sexual Behaviors.

    PubMed

    Malagón, Talía; Burchell, Ann N; El-Zein, Mariam; Guénoun, Julie; Tellier, Pierre-Paul; Coutlée, François; Franco, Eduardo L

    2017-12-05

    Detection of human papillomavirus (HPV) DNA in genital samples may not always represent true infections but may be depositions from infected sexual partners. We examined whether sexual risk factors and a biomarker (Y chromosome DNA) were associated with genital HPV partner concordance and estimated the fraction of HPV detections potentially attributable to partner deposition. The HITCH study enrolled young women attending a university or college in Montréal, Canada, and their male partners, from 2005 to 2010. We tested baseline genital samples for Y chromosome DNA and HPV DNA using polymerase chain reaction. Type-specific HPV concordance was 42.4% in partnerships where at least one partner was HPV DNA positive. Y chromosome DNA predicted type-specific HPV concordance in univariate analyses, but in multivariable models the independent predictors of concordance were days since last vaginal sex (26.5% higher concordance 0-1 vs 8-14 days after last vaginal sex) and condom use (22.6% higher concordance in never vs always users). We estimated that 14.1% (95% confidence interval [CI], 6.3-21.9%) of HPV DNA detections in genital samples were attributable to vaginal sex in the past week. A substantial proportion of HPV DNA detections may be depositions due to recent unprotected vaginal sex. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  9. EGFR mutation detection in circulating cell-free DNA of lung adenocarcinoma patients: analysis of LUX-Lung 3 and 6

    PubMed Central

    Wu, Yi-Long; Sequist, Lecia V; Hu, Cheng-Ping; Feng, Jifeng; Lu, Shun; Huang, Yunchao; Li, Wei; Hou, Mei; Schuler, Martin; Mok, Tony; Yamamoto, Nobuyuki; O'Byrne, Kenneth; Hirsh, Vera; Gibson, Neil; Massey, Dan; Kim, Miyoung; Yang, James Chih-Hsin

    2017-01-01

    Background: In the Phase III LUX-Lung 3/6 (LL3/LL6) trials in epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinoma patients, we evaluated feasibility of EGFR mutation detection using circulating cell-free DNA (cfDNA) and prognostic and predictive utility of cfDNA positivity (cfDNA+). Methods: Paired tumour and blood samples were prospectively collected from randomised patients. Mutations were detected using cfDNA from serum (LL3) or plasma (LL6) by a validated allele-specific quantitative real-time PCR kit. Results: EGFR mutation detection rates in cfDNA were 28.6% (serum) and 60.5% (plasma). Mutation detection in blood was associated with advanced disease characteristics, including higher performance score, number of metastatic sites and bone/liver metastases, and poorer prognosis. In patients with common EGFR mutations, afatinib improved progression-free survival vs chemotherapy in cfDNA+ (LL3: HR, 0.35; P=0.0009; LL6: HR, 0.25; P<0.0001) and cfDNA− (LL3: HR, 0.46; P<0.0001; LL6: HR, 0.12; P<0.0001) cohorts. A trend towards overall survival benefit with afatinib was observed in cfDNA+ patients. Conclusions: Plasma cfDNA is a promising alternative to biopsy for EGFR testing. Detectable mutation in blood was associated with more advanced disease and poorer prognosis. Afatinib improved outcomes in EGFR mutation-positive patients regardless of blood mutation status. PMID:28006816

  10. Validation of the 3D Skin Comet assay using full thickness skin models: Transferability and reproducibility.

    PubMed

    Reisinger, Kerstin; Blatz, Veronika; Brinkmann, Joep; Downs, Thomas R; Fischer, Anja; Henkler, Frank; Hoffmann, Sebastian; Krul, Cyrille; Liebsch, Manfred; Luch, Andreas; Pirow, Ralph; Reus, Astrid A; Schulz, Markus; Pfuhler, Stefan

    2018-03-01

    Recently revised OECD Testing Guidelines highlight the importance of considering the first site-of-contact when investigating the genotoxic hazard. Thus far, only in vivo approaches are available to address the dermal route of exposure. The 3D Skin Comet and Reconstructed Skin Micronucleus (RSMN) assays intend to close this gap in the in vitro genotoxicity toolbox by investigating DNA damage after topical application. This represents the most relevant route of exposure for a variety of compounds found in household products, cosmetics, and industrial chemicals. The comet assay methodology is able to detect both chromosomal damage and DNA lesions that may give rise to gene mutations, thereby complementing the RSMN which detects only chromosomal damage. Here, the comet assay was adapted to two reconstructed full thickness human skin models: the EpiDerm™- and Phenion ® Full-Thickness Skin Models. First, tissue-specific protocols for the isolation of single cells and the general comet assay were transferred to European and US-American laboratories. After establishment of the assay, the protocol was then further optimized with appropriate cytotoxicity measurements and the use of aphidicolin, a DNA repair inhibitor, to improve the assay's sensitivity. In the first phase of an ongoing validation study eight chemicals were tested in three laboratories each using the Phenion ® Full-Thickness Skin Model, informing several validation modules. Ultimately, the 3D Skin Comet assay demonstrated a high predictive capacity and good intra- and inter-laboratory reproducibility with four laboratories reaching a 100% predictivity and the fifth yielding 70%. The data are intended to demonstrate the use of the 3D Skin Comet assay as a new in vitro tool for following up on positive findings from the standard in vitro genotoxicity test battery for dermally applied chemicals, ultimately helping to drive the regulatory acceptance of the assay. To expand the database, the validation will continue by testing an additional 22 chemicals. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Formulation of the Multi-Hit Model With a Non-Poisson Distribution of Hits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vassiliev, Oleg N., E-mail: Oleg.Vassiliev@albertahealthservices.ca

    2012-07-15

    Purpose: We proposed a formulation of the multi-hit single-target model in which the Poisson distribution of hits was replaced by a combination of two distributions: one for the number of particles entering the target and one for the number of hits a particle entering the target produces. Such an approach reflects the fact that radiation damage is a result of two different random processes: particle emission by a radiation source and interaction of particles with matter inside the target. Methods and Materials: Poisson distribution is well justified for the first of the two processes. The second distribution depends on howmore » a hit is defined. To test our approach, we assumed that the second distribution was also a Poisson distribution. The two distributions combined resulted in a non-Poisson distribution. We tested the proposed model by comparing it with previously reported data for DNA single- and double-strand breaks induced by protons and electrons, for survival of a range of cell lines, and variation of the initial slopes of survival curves with radiation quality for heavy-ion beams. Results: Analysis of cell survival equations for this new model showed that they had realistic properties overall, such as the initial and high-dose slopes of survival curves, the shoulder, and relative biological effectiveness (RBE) In most cases tested, a better fit of survival curves was achieved with the new model than with the linear-quadratic model. The results also suggested that the proposed approach may extend the multi-hit model beyond its traditional role in analysis of survival curves to predicting effects of radiation quality and analysis of DNA strand breaks. Conclusions: Our model, although conceptually simple, performed well in all tests. The model was able to consistently fit data for both cell survival and DNA single- and double-strand breaks. It correctly predicted the dependence of radiation effects on parameters of radiation quality.« less

  12. Comparison of the cobas Human Papillomavirus (HPV) Test with the Hybrid Capture 2 and Linear Array HPV DNA Tests

    PubMed Central

    Sadorra, Mark; LaMere, Brandon J.; Kail, Randi; Aldrich, Carrie; Kinney, Walter; Fetterman, Barbara; Lorey, Thomas; Schiffman, Mark; Castle, Philip E.

    2012-01-01

    The cobas human papillomavirus (HPV) test (cobas) was recently approved by the U.S. Food and Drug Administration (FDA) and identifies HPV16 and HPV18 separately as well as detecting a pool of 11 HR-HPV genotypes (HPV31, -33, -35, -39, -45, -51, -52, -56, -58, -59, -68) and also HPV66. We compared cobas, Linear Array (LA), and Hybrid Capture 2 (HC2) assays for detection of carcinogenic HPV DNA, and cobas and LA for detection of HPV16 and HPV18 DNA, among the first 1,852 women enrolled in the HPV Persistence and Progression Cohort (PaP Cohort) study. Specimens were tested by all 3 assays 1 year after an HC2-positive result. In 1,824 specimens with cobas results, cobas had an 85.9% agreement with HC2 and 91.0% agreement with LA for carcinogenic HPV detection. When results between cobas and HC2 disagreed, cobas tended to call more women HPV positive (P < 0.01). Categorizing cobas and LA results hierarchically according to cancer risk (HPV16, HPV18, other carcinogenic HPV genotypes, or carcinogen negative), there was a 90% agreement for all categories of HPV (n = 1,824). We found good agreement between the two U.S. FDA-approved HPV tests, with discrepancies between the two assays due to specific characteristics of the individual assays. Additional studies are needed to compare HC2 and cobas for detecting and predicting CIN3 to understand the clinical implications of the discrepant test results between the two tests. PMID:22075592

  13. Comparison of DNA aneuploidy, chromosome 1 abnormalities, MYCN amplification and CD44 expression as prognostic factors in neuroblastoma.

    PubMed

    Christiansen, H; Sahin, K; Berthold, F; Hero, B; Terpe, H J; Lampert, F

    1995-01-01

    A comparison of the prognostic impact of five molecular variables in a large series was made, including tests of their nonrandom association and multivariate analysis. Molecular data were available for 377 patients and MYCN amplification, cytogenetic chromosome 1p deletion, loss of chromosome 1p heterozygosity, DNA ploidy and CD44 expression were investigated. Their interdependence and influence on event-free survival was tested uni- and multivariately using Pearson's chi 2-test, Kaplan-Meier estimates, log rank tests and the Cox's regression model. MYCN amplification was present in 18% (58/322) of cases and predicted poorer prognosis in localised (P < 0.001), metastatic (P = 0.002) and even 4S (P = 0.040) disease. CD44 expression was found in 86% (127/148) of cases, and was a marker for favourable outcome in patients with neuroblastoma stages 1-3 (P = 0.003) and 4 (P = 0.017). Chromosome 1p deletion was cytogenetically detected in 51% (28/55), and indicated reduced event-free survival in localised neuroblastoma (P = 0.020). DNA ploidy and loss of heterozygosity on chromosome 1p were of less prognostic value. Most factors of prognostic significance were associated with each other. By multivariate analysis, MYCN was selected as the only relevant factor. Risk estimation of high discriminating power is, therefore, possible for patients with localised and metastatic neuroblastoma using stage and MYCN.

  14. An Improved Method for TAL Effectors DNA-Binding Sites Prediction Reveals Functional Convergence in TAL Repertoires of Xanthomonas oryzae Strains

    PubMed Central

    Pérez-Quintero, Alvaro L.; Rodriguez-R, Luis M.; Dereeper, Alexis; López, Camilo; Koebnik, Ralf; Szurek, Boris; Cunnac, Sebastien

    2013-01-01

    Transcription Activators-Like Effectors (TALEs) belong to a family of virulence proteins from the Xanthomonas genus of bacterial plant pathogens that are translocated into the plant cell. In the nucleus, TALEs act as transcription factors inducing the expression of susceptibility genes. A code for TALE-DNA binding specificity and high-resolution three-dimensional structures of TALE-DNA complexes were recently reported. Accurate prediction of TAL Effector Binding Elements (EBEs) is essential to elucidate the biological functions of the many sequenced TALEs as well as for robust design of artificial TALE DNA-binding domains in biotechnological applications. In this work a program with improved EBE prediction performances was developed using an updated specificity matrix and a position weight correction function to account for the matching pattern observed in a validation set of TALE-DNA interactions. To gain a systems perspective on the large TALE repertoires from X. oryzae strains, this program was used to predict rice gene targets for 99 sequenced family members. Integrating predictions and available expression data in a TALE-gene network revealed multiple candidate transcriptional targets for many TALEs as well as several possible instances of functional convergence among TALEs. PMID:23869221

  15. DNA methylation as a predictor of fetal alcohol spectrum disorder.

    PubMed

    Lussier, Alexandre A; Morin, Alexander M; MacIsaac, Julia L; Salmon, Jenny; Weinberg, Joanne; Reynolds, James N; Pavlidis, Paul; Chudley, Albert E; Kobor, Michael S

    2018-01-01

    Fetal alcohol spectrum disorder (FASD) is a developmental disorder that manifests through a range of cognitive, adaptive, physiological, and neurobiological deficits resulting from prenatal alcohol exposure. Although the North American prevalence is currently estimated at 2-5%, FASD has proven difficult to identify in the absence of the overt physical features characteristic of fetal alcohol syndrome. As interventions may have the greatest impact at an early age, accurate biomarkers are needed to identify children at risk for FASD. Building on our previous work identifying distinct DNA methylation patterns in children and adolescents with FASD, we have attempted to validate these associations in a different clinical cohort and to use our DNA methylation signature to develop a possible epigenetic predictor of FASD. Genome-wide DNA methylation patterns were analyzed using the Illumina HumanMethylation450 array in the buccal epithelial cells of a cohort of 48 individuals aged 3.5-18 (24 FASD cases, 24 controls). The DNA methylation predictor of FASD was built using a stochastic gradient boosting model on our previously published dataset FASD cases and controls (GSE80261). The predictor was tested on the current dataset and an independent dataset of 48 autism spectrum disorder cases and 48 controls (GSE50759). We validated findings from our previous study that identified a DNA methylation signature of FASD, replicating the altered DNA methylation levels of 161/648 CpGs in this independent cohort, which may represent a robust signature of FASD in the epigenome. We also generated a predictive model of FASD using machine learning in a subset of our previously published cohort of 179 samples (83 FASD cases, 96 controls), which was tested in this novel cohort of 48 samples and resulted in a moderately accurate predictor of FASD status. Upon testing the algorithm in an independent cohort of individuals with autism spectrum disorder, we did not detect any bias towards autism, sex, age, or ethnicity. These findings further support the association of FASD with distinct DNA methylation patterns, while providing a possible entry point towards the development of epigenetic biomarkers of FASD.

  16. Clinical validation of a highly sensitive assay to detect EGFR mutations in plasma cell-free DNA from patients with advanced lung adenocarcinoma.

    PubMed

    Li, Yuping; Xu, Hanyan; Su, Shanshan; Ye, Junru; Chen, Junjie; Jin, Xuru; Lin, Quan; Zhang, Dongqing; Ye, Caier; Chen, Chengshui

    2017-01-01

    Circulating tumor DNA (ctDNA) is a promising biomarker for noninvasive epidermal growth factor receptor (EGFR) mutations detection in lung cancer patients, but the existing methods have limitations in sensitivity or in availability. In this study, we evaluated the performance of a novel assay called ADx-SuperARMS in detecting EGFR mutations in plasma cell-free DNA from patients with advanced lung adenocarcinoma. A total of 109 patients with metastatic advanced adenocarcinoma were recruited who provided both blood samples and matched tumor tissue samples. EGFR mutation status in plasma samples were tested with ADx-SuperARMS EGFR assay and tumor tissue samples were tested with ADx-ARMS EGFR assay. The clinical sensitivity, specificity, positive prediction value (PPV), and negative prediction value (NPV) of ADx-SuperARMS EGFR assay were calculated by using EGFR mutation status in tumor tissue as standard reference. A receiver operating characteristic (ROC) analysis was implemented and an area under the curve (AUC) was calculated to evaluate sensitivity and specificity of exon 19 deletion (E19Del) and L858R mutation detection. The objective response rate (ORR) were calculated according to the EGFR mutation status determined by ADx-superARMS as well. 0.2% analytical sensitivity and 100% specificity of the ADx-SuperARMS EGFR assays for EGFR E19Del, L858R, and T790M mutants were confirmed by using a series of diluted cell line DNA. In the clinical study, EGFR mutations were detected in 45.9% (50/109) of the plasma samples and in 56.9% (62/109) of the matched tumor tissue samples. The sensitivity, specificity, PPV and NPV of the ADx-SuperARMS EGFR assay for plasma EGFR mutation detection were 82.0% (50/61), 100% (48/48), 100% (50/50), and 81.4% (48/59), respectively. In ROC analysis, ADx-SuperARMS achieved sensitivity and specificity of 88% and 99% in E19Dels as well as sensitivity and specificity of 89% and 100% in L858R, respectively. Among the 35 patients who were plasma EGFR mutation positive and treated with first generation of EGFR-tyrosine kinase inhibitors (TKIs), 23 (65.7%) achieved partial response, 11 (31.4%) sustained disease, and 1 (2.9%) progressive disease. The ORR and disease control rate (DCR) were 65.7% and 97.1%, respectively. ADx-SuperARMS EGFR assay is likely to be a highly sensitive and specific method to noninvasively detect plasma EGFR mutations of patients with advanced lung adenocarcinoma. The EGFR mutations detected by ADx-SuperARMS EGFR assay could predict the efficacy of the treatment with first generation of EGFR-TKIs. Hence, EGFR blood testing with ADx-SuperARMS could address the unmet clinical needs.

  17. Comparison between carcinogenicity and mutagenicity based on chemicals evaluated in the IARC monographs.

    PubMed Central

    Bartsch, H; Tomatis, L

    1983-01-01

    The qualitative relationship between carcinogenicity and mutagenicity (DNA-damaging activity), based on chemicals which are known to be or suspected of being carcinogenic to man and/or to experimental animals, is analyzed using 532 chemicals evaluated in Volumes 1-25 of the IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. About 40 compounds (industrial processes) were found to be either definitely or probably carcinogenic to man, and 130 chemicals have been adequately tested in rodents and most of them also in various short-term assays. For a comparison between the carcinogenicity of a chemical and its behavior in short-term tests, systems were selected that have a value for predicting carcinogenicity. These were divided into mutagenicity in (A) the S. typhimurium/microsome assay, (B) other submammalian systems and (C) cultured mammalian cells; (D) chromosomal abnormalities in mammalian cells; (E) DNA damage and repair; (F) cell transformation (or altered growth properties) in vitro. The following conclusions can be drawn. In the absence of studies in man, long-term animal tests are still today the only ones capable of providing evidence of the carcinogenic effect of a chemical. The development and application of an appropriate combination of short-term tests (despite current limitations) can significantly contribute to the prediction/confirmation of the carcinogenic effects of chemicals in animals/man. Confidence in positive tests results is increased when they are confirmed in multiple short-term tests using nonrepetitive end points and different activation systems. Assays to detect carcinogens which do not act via electrophiles (promoters) need to be developed. The results of a given short-term test should be interpreted in the context of other toxicological data. Increasing demand for quantitative carcinogenicity data requires further examination of whether or not there is a quantitative relationship between the potency of a carcinogen in experimental animals/man, and its genotoxic activity in short-term tests. At present, such a relationship is not sufficiently established for it to be used for the prediction of the carcinogenic potency of new compounds. PMID:6337827

  18. Epigenetic variability in cells of normal cytology is associated with the risk of future morphological transformation.

    PubMed

    Teschendorff, Andrew E; Jones, Allison; Fiegl, Heidi; Sargent, Alexandra; Zhuang, Joanna J; Kitchener, Henry C; Widschwendter, Martin

    2012-03-27

    Recently, it has been proposed that epigenetic variation may contribute to the risk of complex genetic diseases like cancer. We aimed to demonstrate that epigenetic changes in normal cells, collected years in advance of the first signs of morphological transformation, can predict the risk of such transformation. We analyzed DNA methylation (DNAm) profiles of over 27,000 CpGs in cytologically normal cells of the uterine cervix from 152 women in a prospective nested case-control study. We used statistics based on differential variability to identify CpGs associated with the risk of transformation and a novel statistical algorithm called EVORA (Epigenetic Variable Outliers for Risk prediction Analysis) to make predictions. We observed many CpGs that were differentially variable between women who developed a non-invasive cervical neoplasia within 3 years of sample collection and those that remained disease-free. These CpGs exhibited heterogeneous outlier methylation profiles and overlapped strongly with CpGs undergoing age-associated DNA methylation changes in normal tissue. Using EVORA, we demonstrate that the risk of cervical neoplasia can be predicted in blind test sets (AUC = 0.66 (0.58 to 0.75)), and that assessment of DNAm variability allows more reliable identification of risk-associated CpGs than statistics based on differences in mean methylation levels. In independent data, EVORA showed high sensitivity and specificity to detect pre-invasive neoplasia and cervical cancer (AUC = 0.93 (0.86 to 1) and AUC = 1, respectively). We demonstrate that the risk of neoplastic transformation can be predicted from DNA methylation profiles in the morphologically normal cell of origin of an epithelial cancer. Having profiled only 0.1% of CpGs in the human genome, studies of wider coverage are likely to yield improved predictive and diagnostic models with the accuracy needed for clinical application. The ARTISTIC trial is registered with the International Standard Randomised Controlled Trial Number ISRCTN25417821.

  19. Epigenetic variability in cells of normal cytology is associated with the risk of future morphological transformation

    PubMed Central

    2012-01-01

    Background Recently, it has been proposed that epigenetic variation may contribute to the risk of complex genetic diseases like cancer. We aimed to demonstrate that epigenetic changes in normal cells, collected years in advance of the first signs of morphological transformation, can predict the risk of such transformation. Methods We analyzed DNA methylation (DNAm) profiles of over 27,000 CpGs in cytologically normal cells of the uterine cervix from 152 women in a prospective nested case-control study. We used statistics based on differential variability to identify CpGs associated with the risk of transformation and a novel statistical algorithm called EVORA (Epigenetic Variable Outliers for Risk prediction Analysis) to make predictions. Results We observed many CpGs that were differentially variable between women who developed a non-invasive cervical neoplasia within 3 years of sample collection and those that remained disease-free. These CpGs exhibited heterogeneous outlier methylation profiles and overlapped strongly with CpGs undergoing age-associated DNA methylation changes in normal tissue. Using EVORA, we demonstrate that the risk of cervical neoplasia can be predicted in blind test sets (AUC = 0.66 (0.58 to 0.75)), and that assessment of DNAm variability allows more reliable identification of risk-associated CpGs than statistics based on differences in mean methylation levels. In independent data, EVORA showed high sensitivity and specificity to detect pre-invasive neoplasia and cervical cancer (AUC = 0.93 (0.86 to 1) and AUC = 1, respectively). Conclusions We demonstrate that the risk of neoplastic transformation can be predicted from DNA methylation profiles in the morphologically normal cell of origin of an epithelial cancer. Having profiled only 0.1% of CpGs in the human genome, studies of wider coverage are likely to yield improved predictive and diagnostic models with the accuracy needed for clinical application. Trial registration The ARTISTIC trial is registered with the International Standard Randomised Controlled Trial Number ISRCTN25417821. PMID:22453031

  20. The role of high-risk HPV-DNA testing in the male sexual partners of women with HPV-induced lesions.

    PubMed

    Giraldo, Paulo C; Eleutério, Jose; Cavalcante, Diane Isabelle M; Gonçalves, Ana Katherine S; Romão, Juliana A A; Eleutério, Renata M N

    2008-03-01

    The objectives were to assess the prevalence of high-risk HPV in the male sexual partners of women with HPV-induced lesions, and correlate it with biopsies guided by peniscopy. Fifty-four asymptomatic male sexual partners of women with low-grade squamous intra-epithelial lesions (LSIL) associated with high-risk HPV were examined between April 2003 and June 2005. The DNA-HPV was tested using a second-generation hybrid capture technique in scraped penile samples. Peniscopy identified acetowhite lesions leading to biopsy. High-risk HPV was present in 25.9% (14 out of 54) of the cases. Peniscopy led to 13 biopsies (24.07%), which resulted in two cases of condyloma, two cases of intra-epithelial neoplasia (PIN) I, one case of PIN II, and eight cases of normal tissue. The high-risk HPV test demonstrated 80% sensitivity, 100% specificity, 100% positive predictive value, and 88.9% negative predictive value for the identification of penile lesions. There was a greater chance of finding HPV lesions in the biopsy in the positive cases of high-risk HPV with abnormal peniscopy (p=0.007); OR=51 (CI 1.7-1527.1). Among asymptomatic male sexual partners of women with low-grade intra-epithelial squamous lesions, those infected by high-risk HPV have a higher chance of having abnormal penile tissue compared with male partners without that infection.

  1. Comparison of the Third Wave Invader Human Papillomavirus (HPV) Assay and the Digene HPV Hybrid Capture 2 Assay for Detection of High-Risk HPV DNA▿

    PubMed Central

    Ginocchio, C. C.; Barth, D.; Zhang, F.

    2008-01-01

    This study compared the clinical performance of the Digene Hybrid Capture 2 (HC2) assay to that of a prototype Third Wave Invader human papillomavirus (HPV) (IHPV) analyte-specific reagent-based assay for the detection of oncogenic or “high-risk” (HR) HPV DNA using liquid-based cytology specimens. In total, 821 ThinPrep vials were tested using both assays. In accordance with the type-specific probes contained within each test, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the IHPV assay were 95.9%, 97.6%, 97.5%, and 96.1%, respectively, and those for the HC2 assay were 98.1%, 86.2%, 87.1%, and 97.9%. Overall, the sensitivity and NPV were comparable between the assays, but the IHPV assay demonstrated a better specificity and PPV, since the IHPV assay had fewer false-positive HR HPV results. The incorporation of an internal control to evaluate the cellularity of the test material is an important feature of the IHPV assay and should reduce the risk of false-negative results due to insufficient sample collection rather than the lack of HR HPV DNA. An additional benefit of the IHPV assay was the smaller sample volume required (1 ml versus 4 ml for the HC2 assay). PMID:18367578

  2. DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine

    PubMed Central

    2016-01-01

    Biomarker-driven drug selection plays a central role in cancer drug discovery and development, and in diagnostic strategies to improve the use of traditional chemotherapeutic drugs. DNA-modifying anticancer drugs are still used as first line medication, but drawbacks such as resistance and side effects remain an issue. Monitoring the formation and level of DNA modifications induced by anticancer drugs is a potential strategy for stratifying patients and predicting drug efficacy. In this perspective, preclinical and clinical data concerning the relationship between drug-induced DNA adducts and biological response for platinum drugs and combination therapies, nitrogen mustards and half-mustards, hypoxia-activated drugs, reductase-activated drugs, and minor groove binding agents are presented and discussed. Aspects including measurement strategies, identification of adducts, and biological factors that influence the predictive relationship between DNA modification and biological response are addressed. A positive correlation between DNA adduct levels and response was observed for the majority of the studies, demonstrating the high potential of using DNA adducts from anticancer drugs as mechanism-based biomarkers of susceptibility, especially as bioanalysis approaches with higher sensitivity and throughput emerge. PMID:27936622

  3. HPV DNA test

    MedlinePlus

    ... HPV testing in women; Cervical cancer - HPV DNA test; Cancer of cervix - HPV DNA test ... The HPV DNA test may be done during a Pap smear . You lie on a table and place your feet in stirrups. The ...

  4. iDNA-Prot: Identification of DNA Binding Proteins Using Random Forest with Grey Model

    PubMed Central

    Lin, Wei-Zhong; Fang, Jian-An; Xiao, Xuan; Chou, Kuo-Chen

    2011-01-01

    DNA-binding proteins play crucial roles in various cellular processes. Developing high throughput tools for rapidly and effectively identifying DNA-binding proteins is one of the major challenges in the field of genome annotation. Although many efforts have been made in this regard, further effort is needed to enhance the prediction power. By incorporating the features into the general form of pseudo amino acid composition that were extracted from protein sequences via the “grey model” and by adopting the random forest operation engine, we proposed a new predictor, called iDNA-Prot, for identifying uncharacterized proteins as DNA-binding proteins or non-DNA binding proteins based on their amino acid sequences information alone. The overall success rate by iDNA-Prot was 83.96% that was obtained via jackknife tests on a newly constructed stringent benchmark dataset in which none of the proteins included has pairwise sequence identity to any other in a same subset. In addition to achieving high success rate, the computational time for iDNA-Prot is remarkably shorter in comparison with the relevant existing predictors. Hence it is anticipated that iDNA-Prot may become a useful high throughput tool for large-scale analysis of DNA-binding proteins. As a user-friendly web-server, iDNA-Prot is freely accessible to the public at the web-site on http://icpr.jci.edu.cn/bioinfo/iDNA-Prot or http://www.jci-bioinfo.cn/iDNA-Prot. Moreover, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results. PMID:21935457

  5. Robust detection of EGFR copy number changes and EGFR variant III: technical aspects and relevance for glioma diagnostics.

    PubMed

    Jeuken, Judith; Sijben, Angelique; Alenda, Cristina; Rijntjes, Jos; Dekkers, Marieke; Boots-Sprenger, Sandra; McLendon, Roger; Wesseling, Pieter

    2009-10-01

    Epidermal growth factor receptor (EGFR) is commonly affected in cancer, generally in the form of an increase in DNA copy number and/or as mutation variants [e.g., EGFR variant III (EGFRvIII), an in-frame deletion of exons 2-7]. While detection of EGFR aberrations can be expected to be relevant for glioma patients, such analysis has not yet been implemented in a routine setting, also because feasible and robust assays were lacking. We evaluated multiplex ligation-dependent probe amplification (MLPA) for detection of EGFR amplification and EGFRvIII in DNA of a spectrum of 216 diffuse gliomas. EGFRvIII detection was verified at the protein level by immunohistochemistry and at the RNA level using the conventionally used endpoint RT-PCR as well as a newly developed quantitative RT-PCR. Compared to these techniques, the DNA-based MLPA assay for EGFR/EGFRvIII analysis tested showed 100% sensitivity and specificity. We conclude that MLPA is a robust assay for detection of EGFR/EGFRvIII aberrations. While the exact diagnostic, prognostic and predictive value of such EGFR testing remains to be seen, MLPA has great potential as it can reliably and relatively easily be performed on routinely processed (formalin-fixed, paraffin-embedded) tumor tissue in combination with testing for other relevant glioma markers.

  6. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis

    PubMed Central

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. Availability http://www.cemb.edu.pk/sw.html Abbreviations RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language. PMID:23055611

  7. Age Estimation with DNA: From Forensic DNA Fingerprinting to Forensic (Epi)Genomics: A Mini-Review.

    PubMed

    Parson, Walther

    2018-01-01

    Forensic genetics developed from protein-based techniques a quarter of a century ago and became famous as "DNA fingerprinting," this being based on restriction fragment length polymorphisms (RFLPs) of high-molecular-weight DNA. The amplification of much smaller short tandem repeat (STR) sequences using the polymerase chain reaction soon replaced RFLP analysis and advanced to become the gold standard in genetic identification. Meanwhile, STR multiplexes have been developed and made commercially available which simultaneously amplify up to 30 STR loci from as little as 15 cells or fewer. The enormous information content that comes with the large variety of observed STR genotypes allows for genetic individualisation (with the exception of identical twins). Carefully selected core STR loci form the basis of intelligence-led DNA databases that provide investigative leads by linking unsolved crime scenes and criminals through their matched STR profiles. Nevertheless, the success of modern DNA fingerprinting depends on the availability of reference material from suspects. In order to provide new investigative leads in cases where such reference samples are absent, forensic scientists started to explore the prediction of phenotypic traits from the DNA of the evidentiary sample. This paradigm change now uses DNA and epigenetic markers to forecast characteristics that are useful to triage further investigative work. So far, the best investigated externally visible characteristics are eye, hair and skin colour, as well as geographic ancestry and age. Information on the chronological age of a stain donor (or any sample donor) is elemental for forensic investigations in a number of aspects and has, therefore, been explored by researchers in some detail. Among different methodological approaches tested to date, the methylation-sensitive analysis of carefully selected DNA markers (CpG sites) has brought the most promising results by providing prediction accuracies of ±3-4 years, which can be comparable to, or even surpass those from, eyewitness reports. This mini-review puts recent developments in age estimation via (epi)genetic methods in the context of the requirements and goals of forensic genetics and highlights paths to follow in the future of forensic genomics. © 2018 S. Karger AG, Basel.

  8. New restriction enzymes discovered from Escherichia coli clinical strains using a plasmid transformation method

    PubMed Central

    Kasarjian, Julie K. A.; Iida, Masatake; Ryu, Junichi

    2003-01-01

    The presence of restriction enzymes in bacterial cells has been predicted by either classical phage restriction-modification (R-M) tests, direct in vitro enzyme assays or more recently from bacterial genome sequence analysis. We have applied phage R-M test principles to the transformation of plasmid DNA and established a plasmid R-M test. To validate this test, six plasmids that contain BamHI fragments of phage lambda DNA were constructed and transformed into Escherichia coli strains containing known R-M systems including: type I (EcoBI, EcoAI, Eco124I), type II (HindIII) and type III (EcoP1I). Plasmid DNA with a single recognition site showed a reduction of relative efficiency of transformation (EOT = 10–1–10–2). When multiple recognition sites were present, greater reductions in EOT values were observed. Once established in the cell, the plasmids were subjected to modification (EOT = 1.0). We applied this test to screen E.coli clinical strains and detected the presence of restriction enzymes in 93% (14/15) of cells. Using additional subclones and the computer program, RM Search, we identified four new restriction enzymes, Eco377I, Eco585I, Eco646I and Eco777I, along with their recognition sequences, GGA(8N)ATGC, GCC(6N)TGCG, CCA(7N)CTTC, and GGA(6N)TATC, respectively. Eco1158I, an isoschizomer of EcoBI, was also found in this study. PMID:12595571

  9. Circulating tumor DNA evaluated by Next-Generation Sequencing is predictive of tumor response and prolonged clinical benefit with nivolumab in advanced non-small cell lung cancer.

    PubMed

    Giroux Leprieur, Etienne; Herbretau, Guillaume; Dumenil, Coraline; Julie, Catherine; Giraud, Violaine; Labrune, Sylvie; Dumoulin, Jennifer; Tisserand, Julie; Emile, Jean-François; Blons, Hélène; Chinet, Thierry

    2018-01-01

    Nivolumab is an anti-PD1 antibody, given in second-line or later treatment in advanced non-small cell lung cancer (NSCLC). The objective of this study was to describe the predictive value of circulating tumor DNA (ctDNA) on the efficacy of nivolumab in advanced NSCLC. We prospectively included all consecutive patients with advanced NSCLC treated with nivolumab in our Department between June 2015 and October 2016. Plasma samples were obtained before the first injection of nivolumab and at the first tumor evaluation with nivolumab. ctDNA was analyzed by Next-Generation Sequencing (NGS), and the predominant somatic mutation was followed for each patient and correlated with tumor response, clinical benefit (administration of nivolumab for more than 6 months), and progression-free survival (PFS). Of 23 patients, 15 had evaluable NGS results at both times of analysis. ctDNA concentration at the first tumor evaluation and ctDNA change correlated with tumor response, clinical benefit and PFS. ROC curve analyses showed good diagnostic performances for tumor response and clinical benefit, both for ctDNA concentration at the first tumor evaluation (tumor response: positive predictive value (PPV) at 100.0% and negative predictive value (NPV) at 71.0%; clinical benefit: PPV at 83.3% and NPV 77.8%) and the ctDNA change (tumor response: PPV 100.0% and NPV 62.5%; clinical benefit: PPV 100.0% and NPV 80.0%). Patients without ctDNA concentration increase >9% at 2 months had a long-term benefit of nivolumab. In conclusion, NGS analysis of ctDNA allows the early detection of tumor response and long-term clinical benefit with nivolumab in NSCLC.

  10. The Importance of Short- and Long-Range Exchange on Various Excited State Properties of DNA Monomers, Stacked Complexes, and Watson-Crick Pairs.

    PubMed

    Raeber, Alexandra E; Wong, Bryan M

    2015-05-12

    We present a detailed analysis of several time-dependent DFT (TD-DFT) methods, including conventional hybrid functionals and two types of nonempirically tuned range-separated functionals, for predicting a diverse set of electronic excitations in DNA nucleobase monomers and dimers. This large and extensive set of excitations comprises a total of 50 different transitions (for each tested DFT functional) that includes several n → π and π → π* valence excitations, long-range charge-transfer excitations, and extended Rydberg transitions (complete with benchmark calculations from high-level EOM-CCSD(T) methods). The presence of localized valence excitations as well as extreme long-range charge-transfer excitations in these systems poses a serious challenge for TD-DFT methods that allows us to assess the importance of both short- and long-range exchange contributions for simultaneously predicting all of these various transitions. In particular, we find that functionals that do not have both short- and full long-range exchange components are unable to predict the different types of nucleobase excitations with the same accuracy. Most importantly, the current study highlights the importance of both short-range exchange and a nonempirically tuned contribution of long-range exchange for accurately predicting the diverse excitations in these challenging nucleobase systems.

  11. Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses.

    PubMed

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y F; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie; Martin, Darren Patrick

    2014-02-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.

  12. Evidence of Pervasive Biologically Functional Secondary Structures within the Genomes of Eukaryotic Single-Stranded DNA Viruses

    PubMed Central

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y. F.; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie

    2014-01-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here. PMID:24284329

  13. A polycomb-mediated epigenetic field defect precedes invasive cervical carcinoma

    PubMed Central

    Wijetunga, Neil Ari; Ben-Dayan, Miriam; Tozour, Jessica; Burk, Robert D.; Schlecht, Nicolas F.; Einstein, Mark H.; Greally, John M.

    2016-01-01

    Human papillomavirus (HPV)-associated cervical carcinoma is preceded by stages of cervical intra-epithelial neoplasia (CIN) that can variably progress to malignancy. Understanding the different molecular processes involved in the progression of pre-malignant CIN is critical to the development of improved predictive and interventional capabilities. We tested the role of regulators of transcription in both the development and the progression of HPV-associated CIN, performing the most comprehensive genomic survey to date of DNA methylation in HPV-associated cervical neoplasia, testing ~2 million loci throughout the human genome in biopsies from 78 HPV+ women, identifying changes starting in early CIN and maintained through carcinogenesis. We identified loci at which DNA methylation is consistently altered, beginning early in the course of neoplastic disease and progressing with disease advancement. While the loss of DNA methylation occurs mostly at intergenic regions, acquisition of DNA methylation is at sites involved in transcriptional regulation, with strong enrichment for targets of polycomb repression. Using an independent cohort from The Cancer Genome Atlas, we validated the loci with increased DNA methylation and found that these regulatory changes were associated with locally decreased gene expression. Secondary validation using immunohistochemistry showed that the progression of neoplasia was associated with increasing polycomb protein expression specifically in the cervical epithelium. We find that perturbations of genomic regulatory processes occur early and persist in cervical carcinoma. The results indicate a polycomb-mediated epigenetic field defect in cervical neoplasia that may represent a target for early, topical interventions using polycomb inhibitors. PMID:27557505

  14. A polycomb-mediated epigenetic field defect precedes invasive cervical carcinoma.

    PubMed

    Wijetunga, Neil Ari; Ben-Dayan, Miriam; Tozour, Jessica; Burk, Robert D; Schlecht, Nicolas F; Einstein, Mark H; Greally, John M

    2016-09-20

    Human papillomavirus (HPV)-associated cervical carcinoma is preceded by stages of cervical intra-epithelial neoplasia (CIN) that can variably progress to malignancy. Understanding the different molecular processes involved in the progression of pre-malignant CIN is critical to the development of improved predictive and interventional capabilities. We tested the role of regulators of transcription in both the development and the progression of HPV-associated CIN, performing the most comprehensive genomic survey to date of DNA methylation in HPV-associated cervical neoplasia, testing ~2 million loci throughout the human genome in biopsies from 78 HPV+ women, identifying changes starting in early CIN and maintained through carcinogenesis. We identified loci at which DNA methylation is consistently altered, beginning early in the course of neoplastic disease and progressing with disease advancement. While the loss of DNA methylation occurs mostly at intergenic regions, acquisition of DNA methylation is at sites involved in transcriptional regulation, with strong enrichment for targets of polycomb repression. Using an independent cohort from The Cancer Genome Atlas, we validated the loci with increased DNA methylation and found that these regulatory changes were associated with locally decreased gene expression. Secondary validation using immunohistochemistry showed that the progression of neoplasia was associated with increasing polycomb protein expression specifically in the cervical epithelium. We find that perturbations of genomic regulatory processes occur early and persist in cervical carcinoma. The results indicate a polycomb-mediated epigenetic field defect in cervical neoplasia that may represent a target for early, topical interventions using polycomb inhibitors.

  15. Incorporating DNA Sequencing into Current Prenatal Screening Practice for Down's Syndrome

    PubMed Central

    Wald, Nicholas J.; Bestwick, Jonathan P.

    2013-01-01

    Background Prenatal screening for Down's syndrome is performed using biochemical and ultrasound markers measured in early pregnancy such as the Integrated test using first and second trimester markers. Recently, DNA sequencing methods have been introduced on free DNA in maternal plasma, yielding a high screening performance. These methods are expensive and there is a test failure rate. We determined the screening performance of merging the Integrated test with the newer DNA techniques in a protocol that substantially reduces the cost compared with universal DNA testing and still achieves high screening performance with no test failures. Methods Published data were used to model screening performance of a protocol in which all women receive the first stage of the Integrated test at about 11 weeks of pregnancy. On the basis of this higher risk women have reflex DNA testing and lower risk women as well as those with a failed DNA test complete the Integrated test at about 15 weeks. Results The overall detection rate was 95% with a 0.1% false-positive rate if 20% of women were selected to receive DNA testing. If all women had DNA testing the detection rate would be 3 to 4 percentage points higher with a false-positive rate 30 times greater if women with failed tests were treated as positive and offered a diagnostic amniocentesis, or 3 times greater if they had a second trimester screening test (Quadruple test) and treated as positive only if this were positive. The cost per women screened would be about one-fifth, compared with universal DNA testing, if the DNA test were 20 times the cost of the Integrated test. Conclusion The proposed screening protocol achieves a high screening performance without programme test failures and at a substantially lower cost than offering all women DNA testing. PMID:23527014

  16. Social and genetic structure of paper wasp cofoundress associations: tests of reproductive skew models.

    PubMed

    Field, J; Solís, C R; Queller, D C; Strassmann, J E

    1998-06-01

    Recent models postulate that the members of a social group assess their ecological and social environments and agree a "social contract" of reproductive partitioning (skew). We tested social contracts theory by using DNA microsatellites to measure skew in 24 cofoundress associations of paper wasps, Polistes bellicosus. In contrast to theoretical predictions, there was little variation in cofoundress relatedness, and relatedness either did not predict skew or was negatively correlated with it; the dominant/subordinate size ratio, assumed to reflect relative fighting ability, did not predict skew; and high skew was associated with decreased aggression by the rank 2 subordinate toward the dominant. High skew was associated with increased group size. A difficulty with measuring skew in real systems is the frequent changes in group composition that commonly occur in social animals. In P. bellicosus, 61% of egg layers and an unknown number of non-egg layers were absent by the time nests were collected. The social contracts models provide an attractive general framework linking genetics, ecology, and behavior, but there have been few direct tests of their predictions. We question assumptions underlying the models and suggest directions for future research.

  17. Role of DNA secondary structures in fragile site breakage along human chromosome 10

    PubMed Central

    Dillon, Laura W.; Pierce, Levi C. T.; Ng, Maggie C. Y.; Wang, Yuh-Hwa

    2013-01-01

    The formation of alternative DNA secondary structures can result in DNA breakage leading to cancer and other diseases. Chromosomal fragile sites, which are regions of the genome that exhibit chromosomal breakage under conditions of mild replication stress, are predicted to form stable DNA secondary structures. DNA breakage at fragile sites is associated with regions that are deleted, amplified or rearranged in cancer. Despite the correlation, unbiased examination of the ability to form secondary structures has not been evaluated in fragile sites. Here, using the Mfold program, we predict potential DNA secondary structure formation on the human chromosome 10 sequence, and utilize this analysis to compare fragile and non-fragile DNA. We found that aphidicolin (APH)-induced common fragile sites contain more sequence segments with potential high secondary structure-forming ability, and these segments clustered more densely than those in non-fragile DNA. Additionally, using a threshold of secondary structure-forming ability, we refined legitimate fragile sites within the cytogenetically defined boundaries, and identified potential fragile regions within non-fragile DNA. In vitro detection of alternative DNA structure formation and a DNA breakage cell assay were used to validate the computational predictions. Many of the regions identified by our analysis coincide with genes mutated in various diseases and regions of copy number alteration in cancer. This study supports the role of DNA secondary structures in common fragile site instability, provides a systematic method for their identification and suggests a mechanism by which DNA secondary structures can lead to human disease. PMID:23297364

  18. A Prospective Study on the Predictive Value of Plasma BK Virus-DNA Load for Hemorrhagic Cystitis in Pediatric Patients After Stem Cell Transplantation.

    PubMed

    Cesaro, Simone; Tridello, Gloria; Pillon, Marta; Calore, Elisabetta; Abate, Davide; Tumino, Manuela; Carucci, Nicolina; Varotto, Stefania; Cannata, Elisa; Pegoraro, Anna; Barzon, Luisa; Palù, Giorgio; Messina, Chiara

    2015-06-01

    In hematopoietic stem cell transplantation (HSCT), late hemorrhagic cystitis (HC) has been associated with BK virus (BKV) infection. We assessed the value of plasma BKV load in predicting HC. Plasma and urine BKV-DNA load were assessed prospectively in 107 pediatric patients. Twenty patients developed grade II and III HC, with 100-day cumulative incidence of 18.8%. At diagnosis of HC, the median load of BKV DNA was 2.3 × 10(3) copies/mL. A plasma BKV-DNA load of 10(3) copies/mL had a sensitivity of 100% and a specificity of 86% with a negative predictive value (NPV) of 100% and a positive predictive value (PPV) of 39% for HC. A urine BKV-DNA load of >10(7) copies/mL had a sensitivity of 86% and a specificity of 60% with a NPV of 98% and a PPV of 14% for HC. A BKV load of 10(3) copies/mL on plasma was significantly associated with HC in multivariate analysis (hazard ratio [HR], 6.1; P = .0006). Patients with HC had a significantly higher risk of mortality than patients who did not have HC (HR, 2.6; P = .018). The above values were used to monitor plasma BKV-DNA load, and they provided a better prediction of patients at risk of HC than urine BKV-DNA load. © The Author 2014. Published by Oxford University Press on behalf of the Pediatric Infectious Diseases Society. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Molecular diagnostics of lung cancer in the clinic.

    PubMed

    Sholl, Lynette

    2017-10-01

    According to current practice guidelines, all patients with advanced non-small cell lung cancer (NSCLC) should undergo predictive biomarker testing. For squamous cell carcinoma patients, PD-L1 immunohistochemistry is indicated to select patients for immunotherapy in the first line. For lung adenocarcinoma, all patients with advanced disease should undergo testing for epidermal growth factor receptor ( EGFR ) mutations, ALK and ROS1 rearrangements, and PD-L1 expression to predict response to EGFR, ALK, or ROS1 targeted inhibitors or immunotherapy, respectively. Besides these, a number of other biomarkers are under clinical investigation as predictors of response to targeted therapies, including BRAF , ERBB2 , MET splice mutations and amplification, and RET rearrangements. Successful testing for this complex array of molecular targets demands careful coordination between proceduralists, pathologists and molecular laboratories to ensure proper tumor tissue handling following biopsy as well as judicious use of diagnostic immunohistochemistry. Even so, sample failure rates due to inadequate tumor tissue are high in practice, particularly when using sequential testing methods. Use of next generation sequencing (NGS) in clinical practice can enable detection of multiple targets and multiple alteration types (mutation, gene copy change, and rearrangement) simultaneously even with small amounts of input nucleic acids, thus increasing molecular testing success rates. In patients with an established lung cancer diagnosis but with prohibitively limited amounts of tumor tissue or who are experiencing relapse, analyses of circulating tumor DNA (ctDNA) from the plasma can serve as an alternate testing substrate, however the more limited clinical sensitivity of this approach must be taken into account. This review will explore the indications for and pitfalls of routine NGS and plasma genotyping in the clinic, including the intersection of these technologies.

  20. Molecular diagnostics of lung cancer in the clinic

    PubMed Central

    2017-01-01

    According to current practice guidelines, all patients with advanced non-small cell lung cancer (NSCLC) should undergo predictive biomarker testing. For squamous cell carcinoma patients, PD-L1 immunohistochemistry is indicated to select patients for immunotherapy in the first line. For lung adenocarcinoma, all patients with advanced disease should undergo testing for epidermal growth factor receptor (EGFR) mutations, ALK and ROS1 rearrangements, and PD-L1 expression to predict response to EGFR, ALK, or ROS1 targeted inhibitors or immunotherapy, respectively. Besides these, a number of other biomarkers are under clinical investigation as predictors of response to targeted therapies, including BRAF, ERBB2, MET splice mutations and amplification, and RET rearrangements. Successful testing for this complex array of molecular targets demands careful coordination between proceduralists, pathologists and molecular laboratories to ensure proper tumor tissue handling following biopsy as well as judicious use of diagnostic immunohistochemistry. Even so, sample failure rates due to inadequate tumor tissue are high in practice, particularly when using sequential testing methods. Use of next generation sequencing (NGS) in clinical practice can enable detection of multiple targets and multiple alteration types (mutation, gene copy change, and rearrangement) simultaneously even with small amounts of input nucleic acids, thus increasing molecular testing success rates. In patients with an established lung cancer diagnosis but with prohibitively limited amounts of tumor tissue or who are experiencing relapse, analyses of circulating tumor DNA (ctDNA) from the plasma can serve as an alternate testing substrate, however the more limited clinical sensitivity of this approach must be taken into account. This review will explore the indications for and pitfalls of routine NGS and plasma genotyping in the clinic, including the intersection of these technologies. PMID:29114472

  1. Separate analysis of human papillomavirus E6 and E7 messenger RNAs to predict cervical neoplasia progression

    PubMed Central

    Liu, Shuling; Lachkar, Bouchra; Zhang, Shuang; Xu, Chenyang; Tenjimbayashi, Yuri; Shikama, Ayumi; Tasaka, Nobutaka; Akiyama, Azusa; Sakurai, Manabu; Nakao, Sari; Ochi, Hiroyuki; Onuki, Mamiko; Matsumoto, Koji; Yoshikawa, Hiroyuki; Satoh, Toyomi

    2018-01-01

    A few studies previously suggested that human papillomavirus (HPV) E6 messenger RNA (mRNA) may exist uniformly in all grades of cervical intraepithelial neoplasia (CIN), whereas the detection rate of E7 mRNA may increase with disease progression from low-grade CIN to invasive carcinoma. The aim of this study was to clarify the different roles of E6 and E7 mRNAs in cervical carcinogenesis. The presence of each E6 and E7 mRNA was analyzed in 171 patients with pathologically-diagnosed CIN or cervical carcinoma. We utilized a RT-PCR assay based on consensus primers which could detect E6 mRNA (full-length E6/E7 transcript) and E7 mRNAs (spliced E6*/E7 transcripts) separately for various HPV types. E7 mRNAs were detected in 6% of CIN1, 12% of CIN2, 24% of CIN3, and 54% of cervical carcinoma. The presence of E7 mRNAs was significantly associated with progression from low-grade CIN to invasive carcinoma in contrast with E6 mRNA or high-risk HPV (HR-HPV) DNA (p = 0.00011, 0.80 and 0.54). The presence of both E6 and E7 mRNAs was significantly associated with HPV16/18 DNA but not with HR-HPV DNA (p = 0.0079 and 0.21), while the presence of E6 mRNA was significantly associated with HR-HPV DNA but not with HPV16/18 DNA (p = 0.036 and 0.089). The presence of both E6 and E7 mRNAs showed high specificity and low sensitivity (100% and 19%) for detecting CIN2+ by contrast with the positivity for HR-HPV DNA showing low specificity and high sensitivity (19% and 89%). The positive predictive value for detecting CIN2+ was even higher by the presence of both E6 and E7 mRNAs than by the positivity for HR-HPV DNA (100% vs. 91%). In 31 patients followed up for CIN1-2, the presence of both E6 and E7 mRNAs showed significant association with the occurrence of upgraded abnormal cytology in contrast with E6 mRNA, HR-HPV DNA, or HPV16/18 DNA (p = 0.034, 0.73, 0.53, and 0.72). Our findings support previous studies according to which E7 mRNA is more closely involved in cervical carcinogenesis than E6 mRNA. Moreover, the separate analysis of E6 and E7 mRNAs may be more useful than HR-HPV DNA test for detecting CIN2+ precisely and predicting disease progression. Further accumulation of evidence is warranted to validate our findings. PMID:29466435

  2. Like-charge attraction and opposite-charge decomplexation between polymers and DNA molecules

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin

    2017-02-01

    We scrutinize the effect of polyvalent ions on polymer-DNA interactions. We extend a recently developed test-charge theory [S. Buyukdagli et al., Phys. Rev. E 94, 042502 (2016), 10.1103/PhysRevE.94.042502] to the case of a stiff polymer interacting with a DNA molecule in an electrolyte mixture. The theory accounts for one-loop level electrostatic correlation effects such as the ionic cloud deformation around the strongly charged DNA molecule as well as image-charge forces induced by the low DNA permittivity. Our model can reproduce and explain various characteristics of the experimental phase diagrams for polymer solutions. First, the addition of polyvalent cations to the electrolyte solution results in the attraction of the negatively charged polymer by the DNA molecule. The glue of the like-charge attraction is the enhanced shielding of the polymer charges by the dense counterion layer at the DNA surface. Second, through the shielding of the DNA-induced electrostatic potential, mono- and polyvalent cations of large concentration both suppress the like-charge attraction. Within the same formalism, we also predict a new opposite-charge repulsion effect between the DNA molecule and a positively charged polymer. In the presence of polyvalent anions such as sulfate or phosphate, their repulsion by the DNA charges leads to the charge screening deficiency of the region around the DNA molecule. This translates into a repulsive force that results in the decomplexation of the polymer from DNA. This opposite-charge repulsion phenomenon can be verified by current experiments and the underlying mechanism can be beneficial to gene therapeutic applications where the control over polymer-DNA interactions is the key factor.

  3. Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances.

    PubMed

    Dougherty, Matthew M; Larson, Eric R; Renshaw, Mark A; Gantz, Crysta A; Egan, Scott P; Erickson, Daniel M; Lodge, David M

    2016-06-01

    Early detection is invaluable for the cost-effective control and eradication of invasive species, yet many traditional sampling techniques are ineffective at the low population abundances found at the onset of the invasion process. Environmental DNA (eDNA) is a promising and sensitive tool for early detection of some invasive species, but its efficacy has not yet been evaluated for many taxonomic groups and habitat types.We evaluated the ability of eDNA to detect the invasive rusty crayfish Orconectes rusticus and to reflect patterns of its relative abundance, in upper Midwest, USA, inland lakes. We paired conventional baited trapping as a measure of crayfish relative abundance with water samples for eDNA, which were analysed in the laboratory with a qPCR assay. We modelled detection probability for O. rusticus eDNA using relative abundance and site characteristics as covariates and also tested the relationship between eDNA copy number and O. rusticus relative abundance.We detected O. rusticus eDNA in all lakes where this species was collected by trapping, down to low relative abundances, as well as in two lakes where trap catch was zero. Detection probability of O. rusticus eDNA was well predicted by relative abundance of this species and lake water clarity. However, there was poor correspondence between eDNA copy number and O. rusticus relative abundance estimated by trap catches. Synthesis and applications . Our study demonstrates a field and laboratory protocol for eDNA monitoring of crayfish invasions, with results of statistical models that provide guidance of sampling effort and detection probabilities for researchers in other regions and systems. We propose eDNA be included as a tool in surveillance for invasive or imperilled crayfishes and other benthic arthropods.

  4. Non-B-Form DNA Is Enriched at Centromeres

    PubMed Central

    Henikoff, Steven

    2018-01-01

    Abstract Animal and plant centromeres are embedded in repetitive “satellite” DNA, but are thought to be epigenetically specified. To define genetic characteristics of centromeres, we surveyed satellite DNA from diverse eukaryotes and identified variation in <10-bp dyad symmetries predicted to adopt non-B-form conformations. Organisms lacking centromeric dyad symmetries had binding sites for sequence-specific DNA-binding proteins with DNA-bending activity. For example, human and mouse centromeres are depleted for dyad symmetries, but are enriched for non-B-form DNA and are associated with binding sites for the conserved DNA-binding protein CENP-B, which is required for artificial centromere function but is paradoxically nonessential. We also detected dyad symmetries and predicted non-B-form DNA structures at neocentromeres, which form at ectopic loci. We propose that centromeres form at non-B-form DNA because of dyad symmetries or are strengthened by sequence-specific DNA binding proteins. This may resolve the CENP-B paradox and provide a general basis for centromere specification. PMID:29365169

  5. Comparison of the Bayer VERSANT HCV RNA 3.0 and the Roche COBAS Amplicor HCV Monitor, Version 2.0, assays in HCV genotype 4 infection.

    PubMed

    Jessner, W; Watkins-Riedel, T; Müller, C; Formann, E; Gschwantler, M; Ferenci, P

    2007-11-01

    Prediction of treatment response is clinically important in chronic hepatitis C virus (HCV) genotype 4 infection. Early viral kinetics is useful in this respect for genotype 1 but interpretation is dependent on assay linearity and reproducibility. The VERSANT HCV RNA 3.0 (bDNA-3.0) and the COBAS Amplicor HCV Monitor 2.0 (HCM-2.0) have been widely used quantitative assays. We wanted to comparatively evaluate the two tests in a large genotype 4 sample. Genotyping was performed by NS5b sequencing. Viral load was tested in parallel in 32 patients at least six times on antiviral therapy with interferon alpha (IFNalpha). Totally, 198 samples within a quantitative range from undetectable to about 7 x 10(6) IU/mL (bDNA-3.0) were obtained and compared. Twenty-two samples with viral load above 500 000 IU/mL tested by HCM-2.0 were 1:100 diluted and retested. Quantitative values were fitted to a third order polynomial (M = 0.118303 + 1.07503 x V+ 0.0112128 x V(2) - 0.0055504 x V(3); M...HCM-2.0, V...bDNA-3.0, both log IU/mL) showing progressive nonlinearity of HCM-2.0 above 100 000 IU/mL but better clinical sensitivity with respect to bDNA-3.0. Dilution lead to a gain of at least a factor of 2.7 and thus, overestimation compared with bDNA-3.0. Deviation from linearity and overestimation upon dilution by HCM-2.0 are similar with HCV genotype 4, compared with other HCV genotypes. Differences in test performance were not detected for subtypes but for individual patients possibly related to specific quasi-species patterns. The interpretation of viral kinetic data becomes difficult due to overestimation upon dilution of baseline values by HCM-2.0.

  6. Diagnostic accuracy and applicability of a PCR system for the detection of Schistosoma mansoni DNA in human urine samples from an endemic area.

    PubMed

    Enk, Martin Johannes; Oliveira e Silva, Guilherme; Rodrigues, Nilton Barnabé

    2012-01-01

    Schistosomiasis caused by Schistosoma mansoni, one of the most neglected human parasitoses in Latin America and Africa, is routinely confirmed by microscopic visualization of eggs in stool. The main limitation of this diagnostic approach is its lack of sensitivity in detecting individual low worm burdens and consequently data on infection rates in low transmission settings are little reliable. According to the scientific literature, PCR assays are characterized by high sensitivity and specificity in detecting parasite DNA in biological samples. A simple and cost effective extraction method for DNA of Schistosoma mansoni from urine samples in combination with a conventional PCR assay was developed and applied in an endemic area. This urine based PCR system was tested for diagnostic accuracy among a population of a small village in an endemic area, comparing it to a reference test composed of three different parasitological techniques. The diagnostic parameters revealed a sensitivity of 100%, a specificity of 91.20%, positive and negative predictive values of 86.25% and 100%, respectively, and a test accuracy of 94.33%. Further statistical analysis showed a k index of 0.8806, indicating an excellent agreement between the reference test and the PCR system. Data obtained from the mouse model indicate the infection can be detected one week after cercariae penetration, opening a new perspective for early detection and patient management during this stage of the disease. The data indicate that this innovative PCR system provides a simple to handle and robust diagnostic tool for the detection of S. mansoni DNA from urine samples and a promising approach to overcome the diagnostic obstacles in low transmission settings. Furthermore the principals of this molecular technique, based on the examination of human urine samples may be useful for the diagnosis of other neglected tropical diseases that can be detected by trans-renal DNA.

  7. Comet assay evaluation of six chemicals of known genotoxic potential in rats.

    PubMed

    Hobbs, Cheryl A; Recio, Leslie; Streicker, Michael; Boyle, Molly H; Tanaka, Jin; Shiga, Atsushi; Witt, Kristine L

    2015-07-01

    As a part of an international validation of the in vivo rat alkaline comet assay (comet assay) initiated by the Japanese Center for the Validation of Alternative Methods (JaCVAM) we examined six chemicals for potential to induce DNA damage: 2-acetylaminofluorene (2-AAF), N-nitrosodimethylamine (DMN), o-anisidine, 1,2-dimethylhydrazine dihydrochloride (1,2-DMH), sodium chloride, and sodium arsenite. DNA damage was evaluated in the liver and stomach of 7- to 9-week-old male Sprague Dawley rats. Of the five genotoxic carcinogens tested in our laboratory, DMN and 1,2-DMH were positive in the liver and negative in the stomach, 2-AAF and o-anisidine produced an equivocal result in liver and negative results in stomach, and sodium arsenite was negative in both liver and stomach. 1,2-DMH and DMN induced dose-related increases in hedgehogs in the same tissue (liver) that exhibited increased DNA migration. However, no cytotoxicity was indicated by the neutral diffusion assay (assessment of highly fragmented DNA) or histopathology in response to treatment with any of the tested chemicals. Therefore, the increased DNA damage resulting from exposure to DMN and 1,2-DMH was considered to represent a genotoxic response. Sodium chloride, a non-genotoxic non-carcinogen, was negative in both tissues as would be predicted. Although only two (1,2-DMH and DMN) out of five genotoxic carcinogens produced clearly positive results in the comet assay, the results obtained for o-anisidine and sodium arsenite in liver and stomach cells are consistent with the known mode of genotoxicity and tissue specificity exhibited by these carcinogens. In contrast, given the known genotoxic mode-of-action and target organ carcinogenicity of 2-AAF, it is unclear why this chemical failed to convincingly increase DNA migration in the liver. Thus, the results of the comet assay validation studies conducted in our laboratory were considered appropriate for five out of the six test chemicals. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Comet assay evaluation of six chemicals of known genotoxic potential in rats

    PubMed Central

    Hobbs, Cheryl A.; Recio, Leslie; Streicker, Michael; Boyle, Molly H.; Tanaka, Jin; Shiga, Atsushi; Witt, Kristine L.

    2015-01-01

    As a part of an International validation of the in vivo rat alkaline comet assay (comet assay) initiated by the Japanese Center for the Validation of Alternative Methods (JaCVAM) we examined six chemicals for potential to induce DNA damage: 2-acetylaminofluorene (2-AAF), N-nitrosodimethylamine (DMN), o-anisidine, 1,2-dimethylhydrazine dihydrochloride (1,2-DMH), sodium chloride, and sodium arsenite. DNA damage was evaluated in the liver and stomach of 7- to 9-week-old male Sprague Dawley rats. Of the five genotoxic carcinogens tested in our laboratory, DMN and 1,2-DMH were positive in the liver and negative in the stomach, 2-AAF and o-anisidine produced an equivocal result in liver and negative results in stomach, and sodium arsenite was negative in both liver and stomach. 1,2-DMH and DMN induced dose-related increases in hedgehogs in the same tissue (liver) that exhibited increased DNA migration. However, no cytotoxicity was indicated by the neutral diffusion assay (assessment of highly fragmented DNA) or histopathology in response to treatment with any of the tested chemicals. Therefore, the increased DNA damage resulting from exposure to DMN and 1,2-DMH was considered to represent a genotoxic response. Sodium chloride, a non-genotoxic non-carcinogen, was negative in both tissues as would be predicted. Although only two (1,2-DMH and DMN) out of five genotoxic carcinogens produced clearly positive results in the comet assay, the results obtained for o-anisidine and sodium arsenite in liver and stomach cells are consistent with the known mode of genotoxicity and tissue specificity exhibited by these carcinogens. In contrast, given the known genotoxic mode-of-action and target organ carcinogenicity of 2-AAF, it is unclear why this chemical failed to convincingly increase DNA migration in the liver. Thus, the results of the comet assay validation studies conducted in our laboratory were considered appropriate for five out of the six test chemicals. PMID:26212309

  9. Identification, isolation, and N-terminal sequencing of style glycoproteins associated with self-incompatibility in Nicotiana alata.

    PubMed

    Jahnen, W; Batterham, M P; Clarke, A E; Moritz, R L; Simpson, R J

    1989-05-01

    S-Gene-associated glycoproteins (S-glycoproteins) from styles of Nicotiana alata, identified by non-equilibrium two-dimensional electrophoresis, were purified by cation exchange fast protein liquid chromatography with yields of 0.5 to 8 micrograms of protein per style, depending on the S-genotype of the plant. The method relies on the highly basic nature of the S-glycoproteins. The elution profiles of the different S-glycoproteins from the fast protein liquid chromatography column were characteristic of each S-glycoprotein, and could be used to establish the S-genotype of plants in outbreeding populations. In all cases, the S-genotype predicted from the style protein profile corresponded to that predicted from DNA gel blot analysis using S-allele-specific DNA probes and to that established by conventional breeding tests. Amino-terminal sequences of five purified S-glycoproteins showed a high degree of homology with the previously published sequences of N. alata and Lycopersicon esculentum S-glycoproteins.

  10. Targeted Proteomics Approach for Precision Plant Breeding.

    PubMed

    Chawade, Aakash; Alexandersson, Erik; Bengtsson, Therese; Andreasson, Erik; Levander, Fredrik

    2016-02-05

    Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that enables precise quantitation of hundreds of peptides in a single run. This technique provides new opportunities for multiplexed protein biomarker measurements. For precision plant breeding, DNA-based markers have been used extensively, but the potential of protein biomarkers has not been exploited. In this work, we developed an SRM marker panel with assays for 104 potato (Solanum tuberosum) peptides selected using univariate and multivariate statistics. Thereafter, using random forest classification, the prediction markers were identified for Phytopthora infestans resistance in leaves, P. infestans resistance in tubers, and plant yield in potato leaf secretome samples. The results suggest that the marker panel has the predictive potential for three traits, two of which have no commercial DNA markers so far. Furthermore, the marker panel was also tested and found to be applicable to potato clones not used during the marker development. The proposed workflow is thus a proof-of-concept for targeted proteomics as an efficient readout in accelerated breeding for complex and agronomically important traits.

  11. Engineering nanometre-scale coherence in soft matter

    NASA Astrophysics Data System (ADS)

    Liu, Chaoren; Xiang, Limin; Zhang, Yuqi; Zhang, Peng; Beratan, David N.; Li, Yueqi; Tao, Nongjian

    2016-10-01

    Electronic delocalization in redox-active polymers may be disrupted by the heterogeneity of the environment that surrounds each monomer. When the differences in monomer redox-potential induced by the environment are small (as compared with the monomer-monomer electronic interactions), delocalization persists. Here we show that guanine (G) runs in double-stranded DNA support delocalization over 4-5 guanine bases. The weak interaction between delocalized G blocks on opposite DNA strands is known to support partially coherent long-range charge transport. The molecular-resolution model developed here finds that the coherence among these G blocks follows an even-odd orbital-symmetry rule and predicts that weakening the interaction between G blocks exaggerates the resistance oscillations. These findings indicate how sequence can be exploited to change the balance between coherent and incoherent transport. The predictions are tested and confirmed using break-junction experiments. Thus, tailored orbital symmetry and structural fluctuations may be used to produce coherent transport with a length scale of multiple nanometres in soft-matter assemblies, a length scale comparable to that of small proteins.

  12. Significance of the DNA-Histone Complex Level as a Predictor of Major Adverse Cardiovascular Events in Hemodialysis Patients: The Effect of Uremic Toxin on DNA-Histone Complex Formation.

    PubMed

    Jeong, Jong Cheol; Kim, Ji-Eun; Gu, Ja-Yoon; Yoo, Hyun Ju; Ryu, Ji Won; Kim, Dong Ki; Joo, Kwon Wook; Kim, Hyun Kyung

    2016-01-01

    Neutrophils can release the DNA-histone complex into circulation following exposure to inflammatory stimuli. This prospective study investigated whether the DNA-histone complex and other biomarkers could predict major cardiovascular adverse events (MACEs) in hemodialysis (HD) patients. The levels of circulating DNA-histone complexes, cell-free DNA, interleukin (IL)-6, and neutrophil elastase were measured in 60 HD patients and 28 healthy controls. MACE was assessed at 24 months. Uremic toxin-induced neutrophil released contents were measured in vitro. Compared with controls, HD patients showed higher levels of DNA-histone complexes and IL-6. The DNA-histone complex level was inversely associated with the Kt/V. In a multivariable Cox analysis, the high level of DNA-histone complexes was a significant independent predictor of MACE. The uremic toxins induced DNA-histone complex formation in normal neutrophils in vitro. The DNA-histone complex is a potentially useful marker to predict MACE in HD patients. Uremic toxins induced DNA-histone complex formation in vitro. © 2015 S. Karger AG, Basel.

  13. A new method for enhancer prediction based on deep belief network.

    PubMed

    Bu, Hongda; Gan, Yanglan; Wang, Yang; Zhou, Shuigeng; Guan, Jihong

    2017-10-16

    Studies have shown that enhancers are significant regulatory elements to play crucial roles in gene expression regulation. Since enhancers are unrelated to the orientation and distance to their target genes, it is a challenging mission for scholars and researchers to accurately predicting distal enhancers. In the past years, with the high-throughout ChiP-seq technologies development, several computational techniques emerge to predict enhancers using epigenetic or genomic features. Nevertheless, the inconsistency of computational models across different cell-lines and the unsatisfactory prediction performance call for further research in this area. Here, we propose a new Deep Belief Network (DBN) based computational method for enhancer prediction, which is called EnhancerDBN. This method combines diverse features, composed of DNA sequence compositional features, DNA methylation and histone modifications. Our computational results indicate that 1) EnhancerDBN outperforms 13 existing methods in prediction, and 2) GC content and DNA methylation can serve as relevant features for enhancer prediction. Deep learning is effective in boosting the performance of enhancer prediction.

  14. OligArch: A software tool to allow artificially expanded genetic information systems (AEGIS) to guide the autonomous self-assembly of long DNA constructs from multiple DNA single strands.

    PubMed

    Bradley, Kevin M; Benner, Steven A

    2014-01-01

    Synthetic biologists wishing to self-assemble large DNA (L-DNA) constructs from small DNA fragments made by automated synthesis need fragments that hybridize predictably. Such predictability is difficult to obtain with nucleotides built from just the four standard nucleotides. Natural DNA's peculiar combination of strong and weak G:C and A:T pairs, the context-dependence of the strengths of those pairs, unimolecular strand folding that competes with desired interstrand hybridization, and non-Watson-Crick interactions available to standard DNA, all contribute to this unpredictability. In principle, adding extra nucleotides to the genetic alphabet can improve the predictability and reliability of autonomous DNA self-assembly, simply by increasing the information density of oligonucleotide sequences. These extra nucleotides are now available as parts of artificially expanded genetic information systems (AEGIS), and tools are now available to generate entirely standard DNA from AEGIS DNA during PCR amplification. Here, we describe the OligArch (for "oligonucleotide architecting") software, an application that permits synthetic biologists to engineer optimally self-assembling DNA constructs from both six- and eight-letter AEGIS alphabets. This software has been used to design oligonucleotides that self-assemble to form complete genes from 20 or more single-stranded synthetic oligonucleotides. OligArch is therefore a key element of a scalable and integrated infrastructure for the rapid and designed engineering of biology.

  15. EL_PSSM-RT: DNA-binding residue prediction by integrating ensemble learning with PSSM Relation Transformation.

    PubMed

    Zhou, Jiyun; Lu, Qin; Xu, Ruifeng; He, Yulan; Wang, Hongpeng

    2017-08-29

    Prediction of DNA-binding residue is important for understanding the protein-DNA recognition mechanism. Many computational methods have been proposed for the prediction, but most of them do not consider the relationships of evolutionary information between residues. In this paper, we first propose a novel residue encoding method, referred to as the Position Specific Score Matrix (PSSM) Relation Transformation (PSSM-RT), to encode residues by utilizing the relationships of evolutionary information between residues. PDNA-62 and PDNA-224 are used to evaluate PSSM-RT and two existing PSSM encoding methods by five-fold cross-validation. Performance evaluations indicate that PSSM-RT is more effective than previous methods. This validates the point that the relationship of evolutionary information between residues is indeed useful in DNA-binding residue prediction. An ensemble learning classifier (EL_PSSM-RT) is also proposed by combining ensemble learning model and PSSM-RT to better handle the imbalance between binding and non-binding residues in datasets. EL_PSSM-RT is evaluated by five-fold cross-validation using PDNA-62 and PDNA-224 as well as two independent datasets TS-72 and TS-61. Performance comparisons with existing predictors on the four datasets demonstrate that EL_PSSM-RT is the best-performing method among all the predicting methods with improvement between 0.02-0.07 for MCC, 4.18-21.47% for ST and 0.013-0.131 for AUC. Furthermore, we analyze the importance of the pair-relationships extracted by PSSM-RT and the results validates the usefulness of PSSM-RT for encoding DNA-binding residues. We propose a novel prediction method for the prediction of DNA-binding residue with the inclusion of relationship of evolutionary information and ensemble learning. Performance evaluation shows that the relationship of evolutionary information between residues is indeed useful in DNA-binding residue prediction and ensemble learning can be used to address the data imbalance issue between binding and non-binding residues. A web service of EL_PSSM-RT ( http://hlt.hitsz.edu.cn:8080/PSSM-RT_SVM/ ) is provided for free access to the biological research community.

  16. Forensic DNA methylation profiling from evidence material for investigative leads

    PubMed Central

    Lee, Hwan Young; Lee, Soong Deok; Shin, Kyoung-Jin

    2016-01-01

    DNA methylation is emerging as an attractive marker providing investigative leads to solve crimes in forensic genetics. The identification of body fluids that utilizes tissue-specific DNA methylation can contribute to solving crimes by predicting activity related to the evidence material. The age estimation based on DNA methylation is expected to reduce the number of potential suspects, when the DNA profile from the evidence does not match with any known person, including those stored in the forensic database. Moreover, the variation in DNA implicates environmental exposure, such as cigarette smoking and alcohol consumption, thereby suggesting the possibility to be used as a marker for predicting the lifestyle of potential suspect. In this review, we describe recent advances in our understanding of DNA methylation variations and the utility of DNA methylation as a forensic marker for advanced investigative leads from evidence materials. [BMB Reports 2016; 49(7): 359-369] PMID:27099236

  17. Modeling hole transport in wet and dry DNA.

    PubMed

    Pavanello, Michele; Adamowicz, Ludwik; Volobuyev, Maksym; Mennucci, Benedetta

    2010-04-08

    We present a DFT/classical molecular dynamics model of DNA charge conductivity. The model involves a temperature-driven, hole-hopping charge transfer and includes the time-dependent nonequilibrium interaction of DNA with its molecular environment. We validate our method against a variety of hole transport experiments. The method predicts a significant hole-transfer slowdown of approximately 35% from dry to wet DNA with and without electric field bias. In addition, in agreement with experiments, it also predicts an insulating behavior of (GC)(N) oligomers for 40 < N < 1000, depending on the experimental setup.

  18. Clinical identification of bacteria in human chronic wound infections: culturing vs. 16S ribosomal DNA sequencing

    PubMed Central

    2012-01-01

    Background Chronic wounds affect millions of people and cost billions of dollars in the United States each year. These wounds harbor polymicrobial biofilm communities, which can be difficult to elucidate using culturing methods. Clinical molecular microbiological methods are increasingly being employed to investigate the microbiota of chronic infections, including wounds, as part of standard patient care. However, molecular testing is more sensitive than culturing, which results in markedly different results being reported to clinicians. This study compares the results of aerobic culturing and molecular testing (culture-free 16S ribosomal DNA sequencing), and it examines the relative abundance score that is generated by the molecular test and the usefulness of the relative abundance score in predicting the likelihood that the same organism would be detected by culture. Methods Parallel samples from 51 chronic wounds were studied using aerobic culturing and 16S DNA sequencing for the identification of bacteria. Results One hundred forty-five (145) unique genera were identified using molecular methods, and 68 of these genera were aerotolerant. Fourteen (14) unique genera were identified using aerobic culture methods. One-third (31/92) of the cultures were determined to be < 1% of the relative abundance of the wound microbiota using molecular testing. At the genus level, molecular testing identified 85% (78/92) of the bacteria that were identified by culture. Conversely, culturing detected 15.7% (78/497) of the aerotolerant bacteria and detected 54.9% of the collective aerotolerant relative abundance of the samples. Aerotolerant bacterial genera (and individual species including Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis) with higher relative abundance scores were more likely to be detected by culture as demonstrated with regression modeling. Conclusion Discordance between molecular and culture testing is often observed. However, culture-free 16S ribosomal DNA sequencing and its relative abundance score can provide clinicians with insight into which bacteria are most abundant in a sample and which are most likely to be detected by culture. PMID:23176603

  19. Predictive cytogenetic biomarkers for colorectal neoplasia in medium risk patients

    PubMed Central

    Ionescu, EM; Nicolaie, T; Ionescu, MA; Becheanu, G; Andrei, F; Diculescu, M; Ciocirlan, M

    2015-01-01

    Rationale: DNA damage and chromosomal alterations in peripheral lymphocytes parallels DNA mutations in tumor tissues. Objective: The aim of our study was to predict the presence of neoplastic colorectal lesions by specific biomarkers in “medium risk” individuals (age 50 to 75, with no personal or family of any colorectal neoplasia). Methods and Results: We designed a prospective cohort observational study including patients undergoing diagnostic or opportunistic screening colonoscopy. Specific biomarkers were analyzed for each patient in peripheral lymphocytes - presence of micronuclei (MN), nucleoplasmic bridges (NPB) and the Nuclear Division Index (NDI) by the cytokinesis-blocked micronucleus assay (CBMN). Of 98 patients included, 57 were “medium risk” individuals. MN frequency and NPB presence were not significantly different in patients with neoplastic lesions compared to controls. In “medium risk” individuals, mean NDI was significantly lower for patients with any neoplastic lesions (adenomas and adenocarcinomas, AUROC 0.668, p 00.5), for patients with advanced neoplasia (advanced adenoma and adenocarcinoma, AUROC 0.636 p 0.029) as well as for patients with adenocarcinoma (AUROC 0.650, p 0.048), for each comparison with the rest of the population. For a cut-off of 1.8, in “medium risk” individuals, an NDI inferior to that value may predict any neoplastic lesion with a sensitivity of 97.7%, an advanced neoplastic lesion with a sensitivity of 97% and adenocarcinoma with a sensitivity of 94.4%. Discussion: NDI score may have a role as a colorectal cancer-screening test in “medium risk” individuals. Abbreviations: DNA = deoxyribonucleic acid; CRC = colorectal cancer; EU = European Union; WHO = World Health Organization; FOBT = fecal occult blood test; CBMN = cytokinesis-blocked micronucleus assay; MN = micronuclei; NPB = nucleoplasmic bridges; NDI = Nuclear Division Index; FAP = familial adenomatous polyposis; HNPCC = hereditary non-polypoid colorectal cancer; IBD = inflammatory bowel diseases; ROC = receiver operating characteristics; AUROC = area under the receiver operating characteristics curve. PMID:26351547

  20. Integrating paleoecology and genetics of bird populations in two sky island archipelagos.

    PubMed

    McCormack, John E; Bowen, Bonnie S; Smith, Thomas B

    2008-06-27

    Genetic tests of paleoecological hypotheses have been rare, partly because recent genetic divergence is difficult to detect and time. According to fossil plant data, continuous woodland in the southwestern USA and northern Mexico became fragmented during the last 10,000 years, as warming caused cool-adapted species to retreat to high elevations. Most genetic studies of resulting 'sky islands' have either failed to detect recent divergence or have found discordant evidence for ancient divergence. We test this paleoecological hypothesis for the region with intraspecific mitochondrial DNA and microsatellite data from sky-island populations of a sedentary bird, the Mexican jay (Aphelocoma ultramarina). We predicted that populations on different sky islands would share common, ancestral alleles that existed during the last glaciation, but that populations on each sky island, owing to their isolation, would contain unique variants of postglacial origin. We also predicted that divergence times estimated from corrected genetic distance and a coalescence model would post-date the last glacial maximum. Our results provide multiple independent lines of support for postglacial divergence, with the predicted pattern of shared and unique mitochondrial DNA haplotypes appearing in two independent sky-island archipelagos, and most estimates of divergence time based on corrected genetic distance post-dating the last glacial maximum. Likewise, an isolation model based on multilocus gene coalescence indicated postglacial divergence of five pairs of sky islands. In contrast to their similar recent histories, the two archipelagos had dissimilar historical patterns in that sky islands in Arizona showed evidence for older divergence, suggesting different responses to the last glaciation. This study is one of the first to provide explicit support from genetic data for a postglacial divergence scenario predicted by one of the best paleoecological records in the world. Our results demonstrate that sky islands act as generators of genetic diversity at both recent and historical timescales and underscore the importance of thorough sampling and the use of loci with fast mutation rates to studies that test hypotheses concerning recent genetic divergence.

  1. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis.

    PubMed

    Sahm, Felix; Schrimpf, Daniel; Stichel, Damian; Jones, David T W; Hielscher, Thomas; Schefzyk, Sebastian; Okonechnikov, Konstantin; Koelsche, Christian; Reuss, David E; Capper, David; Sturm, Dominik; Wirsching, Hans-Georg; Berghoff, Anna Sophie; Baumgarten, Peter; Kratz, Annekathrin; Huang, Kristin; Wefers, Annika K; Hovestadt, Volker; Sill, Martin; Ellis, Hayley P; Kurian, Kathreena M; Okuducu, Ali Fuat; Jungk, Christine; Drueschler, Katharina; Schick, Matthias; Bewerunge-Hudler, Melanie; Mawrin, Christian; Seiz-Rosenhagen, Marcel; Ketter, Ralf; Simon, Matthias; Westphal, Manfred; Lamszus, Katrin; Becker, Albert; Koch, Arend; Schittenhelm, Jens; Rushing, Elisabeth J; Collins, V Peter; Brehmer, Stefanie; Chavez, Lukas; Platten, Michael; Hänggi, Daniel; Unterberg, Andreas; Paulus, Werner; Wick, Wolfgang; Pfister, Stefan M; Mittelbronn, Michel; Preusser, Matthias; Herold-Mende, Christel; Weller, Michael; von Deimling, Andreas

    2017-05-01

    The WHO classification of brain tumours describes 15 subtypes of meningioma. Nine of these subtypes are allotted to WHO grade I, and three each to grade II and grade III. Grading is based solely on histology, with an absence of molecular markers. Although the existing classification and grading approach is of prognostic value, it harbours shortcomings such as ill-defined parameters for subtypes and grading criteria prone to arbitrary judgment. In this study, we aimed for a comprehensive characterisation of the entire molecular genetic landscape of meningioma to identify biologically and clinically relevant subgroups. In this multicentre, retrospective analysis, we investigated genome-wide DNA methylation patterns of meningiomas from ten European academic neuro-oncology centres to identify distinct methylation classes of meningiomas. The methylation classes were further characterised by DNA copy number analysis, mutational profiling, and RNA sequencing. Methylation classes were analysed for progression-free survival outcomes by the Kaplan-Meier method. The DNA methylation-based and WHO classification schema were compared using the Brier prediction score, analysed in an independent cohort with WHO grading, progression-free survival, and disease-specific survival data available, collected at the Medical University Vienna (Vienna, Austria), assessing methylation patterns with an alternative methylation chip. We retrospectively collected 497 meningiomas along with 309 samples of other extra-axial skull tumours that might histologically mimic meningioma variants. Unsupervised clustering of DNA methylation data clearly segregated all meningiomas from other skull tumours. We generated genome-wide DNA methylation profiles from all 497 meningioma samples. DNA methylation profiling distinguished six distinct clinically relevant methylation classes associated with typical mutational, cytogenetic, and gene expression patterns. Compared with WHO grading, classification by individual and combined methylation classes more accurately identifies patients at high risk of disease progression in tumours with WHO grade I histology, and patients at lower risk of recurrence among WHO grade II tumours (p=0·0096) from the Brier prediction test). We validated this finding in our independent cohort of 140 patients with meningioma. DNA methylation-based meningioma classification captures clinically more homogenous groups and has a higher power for predicting tumour recurrence and prognosis than the WHO classification. The approach presented here is potentially very useful for stratifying meningioma patients to observation-only or adjuvant treatment groups. We consider methylation-based tumour classification highly relevant for the future diagnosis and treatment of meningioma. German Cancer Aid, Else Kröner-Fresenius Foundation, and DKFZ/Heidelberg Institute of Personalized Oncology/Precision Oncology Program. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A diagnostic method for herpes simplex keratitis by simultaneous measurement of viral DNA and virus-specific secretory IgA in tears: an evaluation.

    PubMed

    Shoji, Jun; Sakimoto, Tohru; Inada, Noriko; Kamei, Yuko; Matsubara, Masao; Takamura, Etsuko; Sawa, Mitsuru

    2016-07-01

    We performed simultaneous measurement of herpes simplex virus (HSV) DNA by real-time polymerase chain reaction (real-time PCR) and of HSV-specific secretory IgA antibody (HSV-sIgA) by enzyme-linked immunosorbent assay (ELISA) in tears obtained using Schirmer strips in order to investigate its diagnostic efficacy for herpes simplex keratitis (HSK). A total of 59 affected eyes from 59 patients with clinically suspected HSK (HSK group) and 23 eyes from 23 healthy volunteers (control group) were enrolled in this study. The HSK group was divided into five subgroups: dendritic/geographic keratitis, disciform keratitis, necrotizing keratitis, atypical keratitis, and others. The tear samples were taken using Schirmer strips to determine the HSV DNA and HSV-sIgA levels. The overall sensitivity and specificity were 55.8 and 100 % for HSV DNA and 49.2 and 82.6 % for HSV-sIgA. The HSV DNA levels in the disciform keratitis subgroup (median, 3.1 × 10(2) copies/sample) were significantly lower than those in the dendritic/geographic keratitis subgroup (median, 2.3 × 10(4) copies/sample) (P < 0.05, Mann-Whitney test). The HSV-sIgA levels in the disciform keratitis subgroup (median, 50.0 NU/ml) were significantly higher than those in the control group (median, 18.0 NU/ml) (P < 0.05, Steel test). The positive and negative predictive values obtained by simultaneous measurement of HSV DNA and sIgA were 90.9 and 61.3 %, respectively. The combination of laboratory detection of HSV DNA by real-time PCR and of HSV-sIgA by ELISA using tear samples enables higher reliability in diagnosing the subgroups of HSK, although the HSV DNA value is relatively lower in disciform HSK than in dendritic/geographic HSK.

  3. Draft versus finished sequence data for DNA and protein diagnostic signature development

    PubMed Central

    Gardner, Shea N.; Lam, Marisa W.; Smith, Jason R.; Torres, Clinton L.; Slezak, Tom R.

    2005-01-01

    Sequencing pathogen genomes is costly, demanding careful allocation of limited sequencing resources. We built a computational Sequencing Analysis Pipeline (SAP) to guide decisions regarding the amount of genomic sequencing necessary to develop high-quality diagnostic DNA and protein signatures. SAP uses simulations to estimate the number of target genomes and close phylogenetic relatives (near neighbors or NNs) to sequence. We use SAP to assess whether draft data are sufficient or finished sequencing is required using Marburg and variola virus sequences. Simulations indicate that intermediate to high-quality draft with error rates of 10−3–10−5 (∼8× coverage) of target organisms is suitable for DNA signature prediction. Low-quality draft with error rates of ∼1% (3× to 6× coverage) of target isolates is inadequate for DNA signature prediction, although low-quality draft of NNs is sufficient, as long as the target genomes are of high quality. For protein signature prediction, sequencing errors in target genomes substantially reduce the detection of amino acid sequence conservation, even if the draft is of high quality. In summary, high-quality draft of target and low-quality draft of NNs appears to be a cost-effective investment for DNA signature prediction, but may lead to underestimation of predicted protein signatures. PMID:16243783

  4. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray.

    PubMed

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Wong, Hau-San

    2016-01-01

    Transcription factor binding sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k = 8∼10). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build TFBS (also known as DNA motif) models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement if choosing di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  5. Profile of the Roche cobas® EGFR mutation test v2 for non-small cell lung cancer.

    PubMed

    Malapelle, Umberto; Sirera, Rafael; Jantus-Lewintre, Eloísa; Reclusa, Pablo; Calabuig-Fariñas, Silvia; Blasco, Ana; Pisapia, Pasquale; Rolfo, Christian; Camps, Carlos

    2017-03-01

    The discovery of driver mutations in non-small cell lung cancer (NSCLC) has led to the development of genome-based personalized medicine. Fifteen to 20% of adenocarcinomas harbor an epidermal growth factor receptor (EGFR) activating mutation associated with responses to EGFR tyrosine kinase inhibitors (TKIs). Individual laboratories' expertise and the availability of appropriate equipment are valuable assets in predictive molecular pathology, although the choice of methods should be determined by the nature of the samples to be tested and whether the detection of only well-characterized EGFR mutations or rather, of all detectable mutations, is required. Areas covered: The EGFR mutation testing landscape is manifold and includes both screening and targeted methods, each with their own pros and cons. Here we review one of these companion tests, the Roche cobas® EGFR mutation test v2, from a methodological point of view, also exploring its liquid-biopsy applications. Expert commentary: The Roche cobas® EGFR mutation test v2, based on real time RT-PCR, is a reliable option for testing EGFR mutations in clinical practice, either using tissue-derived DNA or plasma-derived cfDNA. This application will be valuable for laboratories with whose purpose is purely diagnostic and lacking high-throughput technologies.

  6. Two-Stage Dynamics of In Vivo Bacteriophage Genome Ejection

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ju; Wu, David; Gelbart, William; Knobler, Charles M.; Phillips, Rob; Kegel, Willem K.

    2018-04-01

    Biopolymer translocation is a key step in viral infection processes. The transfer of information-encoding genomes allows viruses to reprogram the cell fate of their hosts. Constituting 96% of all known bacterial viruses [A. Fokine and M. G. Rossmann, Molecular architecture of tailed double-stranded DNA phages, Bacteriophage 4, e28281 (2014)], the tailed bacteriophages deliver their DNA into host cells via an "ejection" process, leaving their protein shells outside of the bacteria; a similar scenario occurs for mammalian viruses like herpes, where the DNA genome is ejected into the nucleus of host cells, while the viral capsid remains bound outside to a nuclear-pore complex. In light of previous experimental measurements of in vivo bacteriophage λ ejection, we analyze here the physical processes that give rise to the observed dynamics. We propose that, after an initial phase driven by self-repulsion of DNA in the capsid, the ejection is driven by anomalous diffusion of phage DNA in the crowded bacterial cytoplasm. We expect that this two-step mechanism is general for phages that operate by pressure-driven ejection, and we discuss predictions of our theory to be tested in future experiments.

  7. DNA Methylation Biomarkers: Cancer and Beyond

    PubMed Central

    Mikeska, Thomas; Craig, Jeffrey M.

    2014-01-01

    Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient’s response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease. PMID:25229548

  8. Modular structural elements in the replication origin region of Tetrahymena rDNA.

    PubMed Central

    Du, C; Sanzgiri, R P; Shaiu, W L; Choi, J K; Hou, Z; Benbow, R M; Dobbs, D L

    1995-01-01

    Computer analyses of the DNA replication origin region in the amplified rRNA genes of Tetrahymena thermophila identified a potential initiation zone in the 5'NTS [Dobbs, Shaiu and Benbow (1994), Nucleic Acids Res. 22, 2479-2489]. This region consists of a putative DNA unwinding element (DUE) aligned with predicted bent DNA segments, nuclear matrix or scaffold associated region (MAR/SAR) consensus sequences, and other common modular sequence elements previously shown to be clustered in eukaryotic chromosomal origin regions. In this study, two mung bean nuclease-hypersensitive sites in super-coiled plasmid DNA were localized within the major DUE-like element predicted by thermodynamic analyses. Three restriction fragments of the 5'NTS region predicted to contain bent DNA segments exhibited anomalous migration characteristic of bent DNA during electrophoresis on polyacrylamide gels. Restriction fragments containing the 5'NTS region bound Tetrahymena nuclear matrices in an in vitro binding assay, consistent with an association of the replication origin region with the nuclear matrix in vivo. The direct demonstration in a protozoan origin region of elements previously identified in Drosophila, chick and mammalian origin regions suggests that clusters of modular structural elements may be a conserved feature of eukaryotic chromosomal origins of replication. Images PMID:7784181

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, J; Park, S; Jeong, J

    Purpose: In particle therapy and radiobiology, the investigation of mechanisms leading to the death of target cancer cells induced by ionising radiation is an active field of research. Recently, several studies based on Monte Carlo simulation codes have been initiated in order to simulate physical interactions of ionising particles at cellular scale and in DNA. Geant4-DNA is the one of them; it is an extension of the general purpose Geant4 Monte Carlo simulation toolkit for the simulation of physical interactions at sub-micrometre scale. In this study, we present Geant4-DNA Monte Carlo simulations for the prediction of DNA strand breakage usingmore » a geometrical modelling of DNA structure. Methods: For the simulation of DNA strand breakage, we developed a specific DNA geometrical structure. This structure consists of DNA components, such as the deoxynucleotide pairs, the DNA double helix, the nucleosomes and the chromatin fibre. Each component is made of water because the cross sections models currently available in Geant4-DNA for protons apply to liquid water only. Also, at the macroscopic-scale, protons were generated with various energies available for proton therapy at the National Cancer Center, obtained using validated proton beam simulations developed in previous studies. These multi-scale simulations were combined for the validation of Geant4-DNA in radiobiology. Results: In the double helix structure, the deposited energy in a strand allowed to determine direct DNA damage from physical interaction. In other words, the amount of dose and frequency of damage in microscopic geometries was related to direct radiobiological effect. Conclusion: In this report, we calculated the frequency of DNA strand breakage using Geant4- DNA physics processes for liquid water. This study is now on-going in order to develop geometries which use realistic DNA material, instead of liquid water. This will be tested as soon as cross sections for DNA material become available in Geant4-DNA.« less

  10. DNA nanotechnology: a future perspective

    PubMed Central

    2013-01-01

    In addition to its genetic function, DNA is one of the most distinct and smart self-assembling nanomaterials. DNA nanotechnology exploits the predictable self-assembly of DNA oligonucleotides to design and assemble innovative and highly discrete nanostructures. Highly ordered DNA motifs are capable of providing an ultra-fine framework for the next generation of nanofabrications. The majority of these applications are based upon the complementarity of DNA base pairing: adenine with thymine, and guanine with cytosine. DNA provides an intelligent route for the creation of nanoarchitectures with programmable and predictable patterns. DNA strands twist along one helix for a number of bases before switching to the other helix by passing through a crossover junction. The association of two crossovers keeps the helices parallel and holds them tightly together, allowing the assembly of bigger structures. Because of the DNA molecule's unique and novel characteristics, it can easily be applied in a vast variety of multidisciplinary research areas like biomedicine, computer science, nano/optoelectronics, and bionanotechnology. PMID:23497147

  11. Dynamics of genome size evolution in birds and mammals.

    PubMed

    Kapusta, Aurélie; Suh, Alexander; Feschotte, Cédric

    2017-02-21

    Genome size in mammals and birds shows remarkably little interspecific variation compared with other taxa. However, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been covariation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size equilibrium. To test this model, we develop computational methods to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 My in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extents across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified "accordion" model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives.

  12. Predicting the risk of Lyme borreliosis after a tick bite, using a structural equation model

    PubMed Central

    Sprong, Hein; van den Wijngaard, Cees C.; Harms, Margriet G.; Fonville, Manoj; Docters van Leeuwen, Arieke; Simões, Mariana; van Pelt, Wilfrid

    2017-01-01

    Background Understanding and quantification of the risk of Lyme borreliosis after a tick bite can aid development of prevention strategies against Lyme borreliosis. Methods We used 3,525 single tick bite reports from three large prospective studies on the transmission risk of tick-borne pathogens to humans, with 50 reports of Lyme borreliosis during the follow-up period, among 1,973 reports with known outcome. A structural equation model was applied to estimate the risk of Lyme borreliosis after a tick bite, and quantify the influence of: developmental stage of the tick, detection of Borrelia burgdorferi s.l. DNA in the tick by PCR, tick engorgement, patient-estimated duration of tick attachment, and patient age. Results The overall risk of developing Lyme borreliosis after a tick bite was 2.6% (95%CI 1.4–5.1). The risk increased with: - Tick engorgement: 1.4% (95%CI 0.7%-2.3%) for low engorgement to 5.5% (95%CI 2.8%-9.2%) for substantially engorged ticks; - Rising patient-estimated tick attachment duration: 2.0% (95%CI 1.3%-2.8%) after <12 hours, to 5.2% (95%CI 3.0%-8.9%) after ≥4 days; - Detection of Borrelia burgdorferi s.l. DNA in ticks: 6.7% (95%CI 3.6%-13.5%), versus 1.4% (95%CI 0.7%-2.9%) when ticks tested negative. The highest observed risk of Lyme borreliosis was 14.4% (95%CI 6.8%-24.6%) after one tick bite of a substantially engorged tick that tested positive for Borrelia burgdorferi s.l. DNA, which corresponds to one new case of Lyme borreliosis per 7 (95%CI 4–15) of such tick bites. Conclusions An individual's risk of Lyme borreliosis after a tick bite can be predicted with tick engorgement, patient-estimated duration of tick attachment, and detection of Borrelia burgdorferi s.l. DNA in the tick. PMID:28742149

  13. Specificity of the histopathological triad for the diagnosis of toxoplasmic lymphadenitis: polymerase chain reaction study.

    PubMed

    Lin, M H; Kuo, T T

    2001-08-01

    Toxoplasmosis is a common cause of lymphadenopathy, but toxoplasmic cysts are not usually found in histological sections used for establishing diagnosis, except on extremely rare occasions. The histopathological triad of florid reactive follicular hyperplasia, clusters of epithelioid histiocytes, and focal sinusoidal distention by monocytoid B cells has been considered to be diagnostic of toxoplasmic lymphadenitis, but the validity of the histopathological triad is based indirectly on serological correlation only. The demonstration of Toxoplasma gondii DNA in lymph nodes displaying the histopathological triad will indicate the validity of the histopathological triad as the criterion for the histopathological diagnosis of toxoplasmic lymphadenitis. We used frozen tissues of 12 lymph nodes with the histopathological triad and tissues of 27 lymph nodes from patients with various other conditions (including 13 cases of follicular lymphoid hyperplasia, FLH; three cases of dermatopathic lymphadenopathy, DPL; two cases of plasmacytosis; two cases of Castleman's disease; two cases of metastatic adenocarcinoma; and five cases of lymphoma) to detect T. gondii DNA by polymerase chain reaction. Ten out of 12 lymph nodes with the triad and six out of 27 lymph nodes without the triad were positive for T. gondii DNA. Thus, the sensitivity of the triad was 62.5% (10/16) and the specificity was 91.3% (21/23). The predictive value of positive tests was 83.3% (10/12) and the predictive value of negative tests was 77.7% (21/27). The six cases positive for T. gondii DNA without the triad were four cases of FLH, one case of DPL, and one case of plasmacytosis. None of the neoplastic diseases was positive. The false positive and negative cases could be due to sampling problems or past T. gondii infection. The results confirm that the histopathological triad is highly specific for the diagnosis of toxoplasmic lymphadenitis and can be used confidently.

  14. Predicting the risk of Lyme borreliosis after a tick bite, using a structural equation model.

    PubMed

    Hofhuis, Agnetha; van de Kassteele, Jan; Sprong, Hein; van den Wijngaard, Cees C; Harms, Margriet G; Fonville, Manoj; Docters van Leeuwen, Arieke; Simões, Mariana; van Pelt, Wilfrid

    2017-01-01

    Understanding and quantification of the risk of Lyme borreliosis after a tick bite can aid development of prevention strategies against Lyme borreliosis. We used 3,525 single tick bite reports from three large prospective studies on the transmission risk of tick-borne pathogens to humans, with 50 reports of Lyme borreliosis during the follow-up period, among 1,973 reports with known outcome. A structural equation model was applied to estimate the risk of Lyme borreliosis after a tick bite, and quantify the influence of: developmental stage of the tick, detection of Borrelia burgdorferi s.l. DNA in the tick by PCR, tick engorgement, patient-estimated duration of tick attachment, and patient age. The overall risk of developing Lyme borreliosis after a tick bite was 2.6% (95%CI 1.4-5.1). The risk increased with: - Tick engorgement: 1.4% (95%CI 0.7%-2.3%) for low engorgement to 5.5% (95%CI 2.8%-9.2%) for substantially engorged ticks;- Rising patient-estimated tick attachment duration: 2.0% (95%CI 1.3%-2.8%) after <12 hours, to 5.2% (95%CI 3.0%-8.9%) after ≥4 days;- Detection of Borrelia burgdorferi s.l. DNA in ticks: 6.7% (95%CI 3.6%-13.5%), versus 1.4% (95%CI 0.7%-2.9%) when ticks tested negative.The highest observed risk of Lyme borreliosis was 14.4% (95%CI 6.8%-24.6%) after one tick bite of a substantially engorged tick that tested positive for Borrelia burgdorferi s.l. DNA, which corresponds to one new case of Lyme borreliosis per 7 (95%CI 4-15) of such tick bites. An individual's risk of Lyme borreliosis after a tick bite can be predicted with tick engorgement, patient-estimated duration of tick attachment, and detection of Borrelia burgdorferi s.l. DNA in the tick.

  15. A Method for WD40 Repeat Detection and Secondary Structure Prediction

    PubMed Central

    Wang, Yang; Jiang, Fan; Zhuo, Zhu; Wu, Xian-Hui; Wu, Yun-Dong

    2013-01-01

    WD40-repeat proteins (WD40s), as one of the largest protein families in eukaryotes, play vital roles in assembling protein-protein/DNA/RNA complexes. WD40s fold into similar β-propeller structures despite diversified sequences. A program WDSP (WD40 repeat protein Structure Predictor) has been developed to accurately identify WD40 repeats and predict their secondary structures. The method is designed specifically for WD40 proteins by incorporating both local residue information and non-local family-specific structural features. It overcomes the problem of highly diversified protein sequences and variable loops. In addition, WDSP achieves a better prediction in identifying multiple WD40-domain proteins by taking the global combination of repeats into consideration. In secondary structure prediction, the average Q3 accuracy of WDSP in jack-knife test reaches 93.7%. A disease related protein LRRK2 was used as a representive example to demonstrate the structure prediction. PMID:23776530

  16. Human Papillomavirus DNA Detection in Menstrual Blood from Patients with Cervical Intraepithelial Neoplasia and Condyloma Acuminatum ▿

    PubMed Central

    Wong, Sze Chuen Cesar; Au, Thomas Chi Chuen; Chan, Sammy Chung Sum; Chan, Charles Ming Lok; Lam, Money Yan Yee; Zee, Benny Chung Ying; Pong, Wei Mei; Chan, Anthony Tak Cheung

    2010-01-01

    The Papanicolaou test generates pain and embarrassment, and cytology screening has limited sensitivity for detection of cervical neoplasia. These factors urge the use of another screening test that can overcome these limitations. We explore a completely noninvasive method using detection of human papillomavirus (HPV) DNA in women's menstrual blood (MB). The participants were divided into 3 cohorts: (i) 235 patients with cervical intraepithelial neoplasia 3 (CIN 3) (n = 48), CIN 2 (n = 60), CIN 1 (n = 58), or condyloma acuminatum (CAC) (n = 69) before treatment or remission; (ii) from the first cohort of patients, 108 CIN 3 or CIN 2 patients after treatment and 62 CIN 1 or CAC patients after remission; and (iii) 323 apparently normal subjects (ANS) without any cervical disease. The HPV genotypes of the infected patients were confirmed by direct sequencing. Quantitative real-time PCR (QRT-PCR) was used to measure the MB HPV16 load for 15 infected patients. Results showed that the sensitivity, specificity, and positive and negative predictive values for detection of MB HPV DNA in samples from patients with CIN or CAC were 82.8%, 93.1%, 90.0%, and 87.9%, respectively. Moreover, MB HPV DNA was found in samples from 22.2% of CIN 3 or CIN 2 patients after treatment, 0.0% of CIN 1 or CAC patients after remission, and 8.1% of ANS, 4 of whom were found to have CIN 1 or CAC. Furthermore, QRT-PCR showed that the normalized MB HPV16 DNA copy numbers in samples from patients with CIN 1 to CIN 3 were significantly increased. These preliminary results suggested that MB HPV DNA is a potential noninvasive marker for these premalignant cervical diseases. PMID:20089764

  17. Human papillomavirus DNA detection in menstrual blood from patients with cervical intraepithelial neoplasia and condyloma acuminatum.

    PubMed

    Wong, Sze Chuen Cesar; Au, Thomas Chi Chuen; Chan, Sammy Chung Sum; Chan, Charles Ming Lok; Lam, Money Yan Yee; Zee, Benny Chung Ying; Pong, Wei Mei; Chan, Anthony Tak Cheung

    2010-03-01

    The Papanicolaou test generates pain and embarrassment, and cytology screening has limited sensitivity for detection of cervical neoplasia. These factors urge the use of another screening test that can overcome these limitations. We explore a completely noninvasive method using detection of human papillomavirus (HPV) DNA in women's menstrual blood (MB). The participants were divided into 3 cohorts: (i) 235 patients with cervical intraepithelial neoplasia 3 (CIN 3) (n = 48), CIN 2 (n = 60), CIN 1 (n = 58), or condyloma acuminatum (CAC) (n = 69) before treatment or remission; (ii) from the first cohort of patients, 108 CIN 3 or CIN 2 patients after treatment and 62 CIN 1 or CAC patients after remission; and (iii) 323 apparently normal subjects (ANS) without any cervical disease. The HPV genotypes of the infected patients were confirmed by direct sequencing. Quantitative real-time PCR (QRT-PCR) was used to measure the MB HPV16 load for 15 infected patients. Results showed that the sensitivity, specificity, and positive and negative predictive values for detection of MB HPV DNA in samples from patients with CIN or CAC were 82.8%, 93.1%, 90.0%, and 87.9%, respectively. Moreover, MB HPV DNA was found in samples from 22.2% of CIN 3 or CIN 2 patients after treatment, 0.0% of CIN 1 or CAC patients after remission, and 8.1% of ANS, 4 of whom were found to have CIN 1 or CAC. Furthermore, QRT-PCR showed that the normalized MB HPV16 DNA copy numbers in samples from patients with CIN 1 to CIN 3 were significantly increased. These preliminary results suggested that MB HPV DNA is a potential noninvasive marker for these premalignant cervical diseases.

  18. Whole Gene Capture Analysis of 15 CRC Susceptibility Genes in Suspected Lynch Syndrome Patients.

    PubMed

    Jansen, Anne M L; Geilenkirchen, Marije A; van Wezel, Tom; Jagmohan-Changur, Shantie C; Ruano, Dina; van der Klift, Heleen M; van den Akker, Brendy E W M; Laros, Jeroen F J; van Galen, Michiel; Wagner, Anja; Letteboer, Tom G W; Gómez-García, Encarna B; Tops, Carli M J; Vasen, Hans F; Devilee, Peter; Hes, Frederik J; Morreau, Hans; Wijnen, Juul T

    2016-01-01

    Lynch Syndrome (LS) is caused by pathogenic germline variants in one of the mismatch repair (MMR) genes. However, up to 60% of MMR-deficient colorectal cancer cases are categorized as suspected Lynch Syndrome (sLS) because no pathogenic MMR germline variant can be identified, which leads to difficulties in clinical management. We therefore analyzed the genomic regions of 15 CRC susceptibility genes in leukocyte DNA of 34 unrelated sLS patients and 11 patients with MLH1 hypermethylated tumors with a clear family history. Using targeted next-generation sequencing, we analyzed the entire non-repetitive genomic sequence, including intronic and regulatory sequences, of 15 CRC susceptibility genes. In addition, tumor DNA from 28 sLS patients was analyzed for somatic MMR variants. Of 1979 germline variants found in the leukocyte DNA of 34 sLS patients, one was a pathogenic variant (MLH1 c.1667+1delG). Leukocyte DNA of 11 patients with MLH1 hypermethylated tumors was negative for pathogenic germline variants in the tested CRC susceptibility genes and for germline MLH1 hypermethylation. Somatic DNA analysis of 28 sLS tumors identified eight (29%) cases with two pathogenic somatic variants, one with a VUS predicted to pathogenic and LOH, and nine cases (32%) with one pathogenic somatic variant (n = 8) or one VUS predicted to be pathogenic (n = 1). This is the first study in sLS patients to include the entire genomic sequence of CRC susceptibility genes. An underlying somatic or germline MMR gene defect was identified in ten of 34 sLS patients (29%). In the remaining sLS patients, the underlying genetic defect explaining the MMRdeficiency in their tumors might be found outside the genomic regions harboring the MMR and other known CRC susceptibility genes.

  19. The recognition and modification sites for the bacterial type I restriction systems KpnAI, StySEAI, StySENI and StySGI

    PubMed Central

    Kasarjian, Julie K. A.; Hidaka, Masumi; Horiuchi, Takashi; Iida, Masatake; Ryu, Junichi

    2004-01-01

    Using an in vivo plasmid transformation method, we have determined the DNA sequences recognized by the KpnAI, StySEAI, StySENI and StySGI R-M systems from Klebsiella oxytoca strain M5a1, Salmonella eastbourne, Salmonella enteritidis and Salmonella gelsenkirchen, respectively. These type I restriction-modification systems were originally identified using traditional phage assay, and described here is the plasmid transformation test and computer program used to determine their DNA recognition sequences. For this test, we constructed two sets of plasmids, pL and pE, that contain phage lambda and Escherichia coli K-12 chromosomal DNA fragments, respectively. Further, using the methylation sensitivities of various known type II restriction enzymes, we identified the target adenines for methylation (listed in bold italics below as A or T in case of the complementary strand). The recognition sequence and methylation sites are GAA(6N)TGCC (KpnAI), ACA(6N)TYCA (StySEAI), CGA(6N)TACC (StySENI) and TAAC(7N)RTCG (StySGI). These DNA recognition sequences all have a typical type I bipartite pattern and represent three novel specificities and one isoschizomer (StySENI). For confirmation, oligonucleotides containing each of the predicted sequences were synthesized, cloned into plasmid pMECA and transformed into each strain, resulting in a large reduction in efficiency of transformation (EOT). PMID:15199175

  20. Accurate Prediction of Inducible Transcription Factor Binding Intensities In Vivo

    PubMed Central

    Siepel, Adam; Lis, John T.

    2012-01-01

    DNA sequence and local chromatin landscape act jointly to determine transcription factor (TF) binding intensity profiles. To disentangle these influences, we developed an experimental approach, called protein/DNA binding followed by high-throughput sequencing (PB–seq), that allows the binding energy landscape to be characterized genome-wide in the absence of chromatin. We applied our methods to the Drosophila Heat Shock Factor (HSF), which inducibly binds a target DNA sequence element (HSE) following heat shock stress. PB–seq involves incubating sheared naked genomic DNA with recombinant HSF, partitioning the HSF–bound and HSF–free DNA, and then detecting HSF–bound DNA by high-throughput sequencing. We compared PB–seq binding profiles with ones observed in vivo by ChIP–seq and developed statistical models to predict the observed departures from idealized binding patterns based on covariates describing the local chromatin environment. We found that DNase I hypersensitivity and tetra-acetylation of H4 were the most influential covariates in predicting changes in HSF binding affinity. We also investigated the extent to which DNA accessibility, as measured by digital DNase I footprinting data, could be predicted from MNase–seq data and the ChIP–chip profiles for many histone modifications and TFs, and found GAGA element associated factor (GAF), tetra-acetylation of H4, and H4K16 acetylation to be the most predictive covariates. Lastly, we generated an unbiased model of HSF binding sequences, which revealed distinct biophysical properties of the HSF/HSE interaction and a previously unrecognized substructure within the HSE. These findings provide new insights into the interplay between the genomic sequence and the chromatin landscape in determining transcription factor binding intensity. PMID:22479205

  1. Using DNA mechanics to predict in vitro nucleosome positions and formation energies

    PubMed Central

    Morozov, Alexandre V.; Fortney, Karissa; Gaykalova, Daria A.; Studitsky, Vasily M.; Widom, Jonathan; Siggia, Eric D.

    2009-01-01

    In eukaryotic genomes, nucleosomes function to compact DNA and to regulate access to it both by simple physical occlusion and by providing the substrate for numerous covalent epigenetic tags. While competition with other DNA-binding factors and action of chromatin remodeling enzymes significantly affect nucleosome formation in vivo, nucleosome positions in vitro are determined by steric exclusion and sequence alone. We have developed a biophysical model, DNABEND, for the sequence dependence of DNA bending energies, and validated it against a collection of in vitro free energies of nucleosome formation and a set of in vitro nucleosome positions mapped at high resolution. We have also made a first ab initio prediction of nucleosomal DNA geometries, and checked its accuracy against the nucleosome crystal structure. We have used DNABEND to design both strong and weak histone- binding sequences, and measured the corresponding free energies of nucleosome formation. We find that DNABEND can successfully predict in vitro nucleosome positions and free energies, providing a physical explanation for the intrinsic sequence dependence of histone–DNA interactions. PMID:19509309

  2. Frequency of Germline Mutations in 25 Cancer Susceptibility Genes in a Sequential Series of Patients With Breast Cancer

    PubMed Central

    Lin, Nancy U.; Kidd, John; Allen, Brian A.; Singh, Nanda; Wenstrup, Richard J.; Hartman, Anne-Renee; Winer, Eric P.; Garber, Judy E.

    2016-01-01

    Purpose Testing for germline mutations in BRCA1/2 is standard for select patients with breast cancer to guide clinical management. Next-generation sequencing (NGS) allows testing for mutations in additional breast cancer predisposition genes. The frequency of germline mutations detected by using NGS has been reported in patients with breast cancer who were referred for BRCA1/2 testing or with triple-negative breast cancer. We assessed the frequency and predictors of mutations in 25 cancer predisposition genes, including BRCA1/2, in a sequential series of patients with breast cancer at an academic institution to examine the utility of genetic testing in this population. Methods Patients with stages I to III breast cancer who were seen at a single cancer center between 2010 and 2012, and who agreed to participate in research DNA banking, were included (N = 488). Personal and family cancer histories were collected and germline DNA was sequenced with NGS to identify mutations. Results Deleterious mutations were identified in 10.7% of women, including 6.1% in BRCA1/2 (5.1% in non-Ashkenazi Jewish patients) and 4.6% in other breast/ovarian cancer predisposition genes including CHEK2 (n = 10), ATM (n = 4), BRIP1 (n = 4), and one each in PALB2, PTEN, NBN, RAD51C, RAD51D, MSH6, and PMS2. Whereas young age (P < .01), Ashkenazi Jewish ancestry (P < .01), triple-negative breast cancer (P = .01), and family history of breast/ovarian cancer (P = .01) predicted for BRCA1/2 mutations, no factors predicted for mutations in other breast cancer predisposition genes. Conclusion Among sequential patients with breast cancer, 10.7% were found to have a germline mutation in a gene that predisposes women to breast or ovarian cancer, using a panel of 25 predisposition genes. Factors that predict for BRCA1/2 mutations do not predict for mutations in other breast/ovarian cancer susceptibility genes when these genes are analyzed as a single group. Additional cohorts will be helpful to define individuals at higher risk of carrying mutations in genes other than BRCA1/2. PMID:26976419

  3. Detection of Cytomegalovirus (CMV) Infection in Wheezing Infants by Urine DNA and Serum IgG Testing.

    PubMed

    Zeng, Zhao-Cheng; Chang, Qing; Sun, Zhi-Wei; Song, Ming-Mei; Jin, Xin-Ling; Jiang, Shu-Ya; Yang, Xia

    2017-03-11

    BACKGROUND The aim of this study was to investigate the involvement of CMV infection in wheezing infants and the association between CMV-DNA and immunoglobulins (Igs). MATERIAL AND METHODS A total of 243 wheezing infants and 3,000 parturients were enrolled in this study. The infants were randomly grouped to receive blood HCMV-DNA tests (n=46) or urine HCMV-DNA tests (n=197). Furthermore, all participants had serum CMV-specific IgM and IgG testing. Afterwards, 10 HCMV-IgG positive infants were randomly selected for simultaneous blood and urine HCMV-DNA tests, and 25 HCMV-IgG positive puerperants were randomly selected for urine HCMV-DNA tests. RESULTS The detection rate of urine HCMV-DNA was significantly higher than that of blood HCMV-DNA (67.5% vs. 13.0%, p<0.001). Fifteen (6.2%) and 190 (80.0%) infants showed positive CMV-specific IgM and IgG results (p<0.001), respectively. Among the 10 HCMV-IgG positive infants tested further, only two infants had positive HCMV-DNA blood tests, while all of the 10 infants had positive HCMV-DNA urine tests. However, HCMV-DNA was not detected in the urine of the 25 randomly selected parturients positive for HCMV-IgG. CONCLUSIONS CMV infection may be one of the causes of wheezing in infants; CMV infection can be detected by urine-HCMV-DNA and serum HCMV-IgG testing. Infants were more susceptible to CMV infection than parturients.

  4. Wormlike Chain Theory and Bending of Short DNA

    NASA Astrophysics Data System (ADS)

    Mazur, Alexey K.

    2007-05-01

    The probability distributions for bending angles in double helical DNA obtained in all-atom molecular dynamics simulations are compared with theoretical predictions. The computed distributions remarkably agree with the wormlike chain theory and qualitatively differ from predictions of the subelastic chain model. The computed data exhibit only small anomalies in the apparent flexibility of short DNA and cannot account for the recently reported AFM data. It is possible that the current atomistic DNA models miss some essential mechanisms of DNA bending on intermediate length scales. Analysis of bent DNA structures reveal, however, that the bending motion is structurally heterogeneous and directionally anisotropic on the length scales where the experimental anomalies were detected. These effects are essential for interpretation of the experimental data and they also can be responsible for the apparent discrepancy.

  5. Exploring the read-write genome: mobile DNA and mammalian adaptation.

    PubMed

    Shapiro, James A

    2017-02-01

    The read-write genome idea predicts that mobile DNA elements will act in evolution to generate adaptive changes in organismal DNA. This prediction was examined in the context of mammalian adaptations involving regulatory non-coding RNAs, viviparous reproduction, early embryonic and stem cell development, the nervous system, and innate immunity. The evidence shows that mobile elements have played specific and sometimes major roles in mammalian adaptive evolution by generating regulatory sites in the DNA and providing interaction motifs in non-coding RNA. Endogenous retroviruses and retrotransposons have been the predominant mobile elements in mammalian adaptive evolution, with the notable exception of bats, where DNA transposons are the major agents of RW genome inscriptions. A few examples of independent but convergent exaptation of mobile DNA elements for similar regulatory rewiring functions are noted.

  6. Electrostatics of DNA-Functionalized Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hoffmann, Kyle; Krishnamoorthy, Kurinji; Kewalramani, Sumit; Bedzyk, Michael; Olvera de La Cruz, Monica

    DNA-functionalized nanoparticles have applications in directed self-assembly and targeted cellular delivery of therapeutic proteins. In order to design specific systems, it is necessary to understand their self-assembly properties, of which the long-range electrostatic interactions are a critical component. We iteratively solved equations derived from classical density functional theory in order to predict the distribution of ions around DNA-functionalized Cg Catalase. We then compared estimates of the resonant intensity to those from SAXS measurements to estimate key features of DNA-functionalized proteins, such as the size of the region linking the protein and DNA and the extension of the single-stranded DNA. Using classical density functional theory and coarse-grained simulations, we are able to predict and understand these fundamental properties in order to rationally design new biomaterials.

  7. Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science.

    PubMed

    Zbieć-Piekarska, Renata; Spólnicka, Magdalena; Kupiec, Tomasz; Makowska, Żanetta; Spas, Anna; Parys-Proszek, Agnieszka; Kucharczyk, Krzysztof; Płoski, Rafał; Branicki, Wojciech

    2015-01-01

    Age estimation in forensic investigations may complement the prediction of externally visible characteristics and the inference of biogeographical ancestry, thus allowing a better description of an unknown individual. Multiple CpG sites that show linear correlation between age and degree of DNA methylation have been identified in the human genome, providing a selection of candidates for age prediction. In this study, we optimized an assay based on bisulfite conversion and pyrosequencing of 7 CpG sites located in the ELOVL2 gene. Examination of 303 blood samples collected from individuals aged 2-75 years allowed selection of the most informative site, explaining 83% of variation in age. The final linear regression model included two CpG sites in ELOVL2 and enabled age prediction with R(2)=0.859, prediction error=6.85 and mean absolute deviation MAD=5.03. Examination of a testing set of 124 blood samples (MAD=5.75) showed that 68.5% of samples were correctly predicted, assuming that chronological and predicted ages matched ± 7 years. It was found that the ELOVL2 methylation status in bloodstains had not changed significantly after 4 weeks of storage in room temperature conditions. Analysis of 45 bloodstains deposited on tissue paper after 5, 10 and 15 years of storage in room conditions indicated that although a gradual decrease of positive PCR results was observed, the general age prediction success rate remained similar and equaled 60-78%. The obtained results show that the ELOVL2 locus provides a very good source of information about human chronological age based on analysis of blood, including bloodstains, and it may constitute a powerful and reliable predictor in future forensic age estimation models. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Prediction of pharmacokinetic and toxicological parameters of a 4-phenylcoumarin isolated from geopropolis: In silico and in vitro approaches.

    PubMed

    da Cunha, Marcos Guilherme; Franco, Gilson César Nobre; Franchin, Marcelo; Beutler, John A; de Alencar, Severino Matias; Ikegaki, Masaharu; Rosalen, Pedro Luiz

    2016-11-30

    In silico and in vitro methodologies have been used as important tools in the drug discovery process, including from natural sources. The aim of this study was to predict pharmacokinetic and toxicity (ADME/Tox) properties of a coumarin isolated from geopropolis using in silico and in vitro approaches. Cinnamoyloxy-mammeisin (CNM) isolated from Brazilian M. scutellaris geopropolis was evaluated for its pharmacokinetic parameters by in silico models (ACD/Percepta™ and MetaDrug™ software). Genotoxicity was assessed by in vitro DNA damage signaling PCR array. CNM did not pass all parameters of Lipinski's rule of five, with a predicted low oral bioavailability and high plasma protein binding, but with good predicted blood brain barrier penetration. CNM was predicted to show low affinity to cytochrome P450 family members. Furthermore, the predicted Ames test indicated potential mutagenicity of CNM. Also, the probability of toxicity for organs and tissues was classified as moderate and high for liver and kidney, and moderate and low for skin and eye irritation, respectively. The PCR array analysis showed that CNM significantly upregulated about 7% of all DNA damage-related genes. By exploring the biological function of these genes, it was found that the predicted CNM genotoxicity is likely to be mediated by apoptosis. The predicted ADME/Tox profile suggests that external use of CNM may be preferable to systemic exposure, while its genotoxicity was characterized by the upregulation of apoptosis-related genes after treatment. The combined use of in silico and in vitro approaches to evaluate these parameters generated useful hypotheses to guide further preclinical studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. A discriminatory function for prediction of protein-DNA interactions based on alpha shape modeling.

    PubMed

    Zhou, Weiqiang; Yan, Hong

    2010-10-15

    Protein-DNA interaction has significant importance in many biological processes. However, the underlying principle of the molecular recognition process is still largely unknown. As more high-resolution 3D structures of protein-DNA complex are becoming available, the surface characteristics of the complex become an important research topic. In our work, we apply an alpha shape model to represent the surface structure of the protein-DNA complex and developed an interface-atom curvature-dependent conditional probability discriminatory function for the prediction of protein-DNA interaction. The interface-atom curvature-dependent formalism captures atomic interaction details better than the atomic distance-based method. The proposed method provides good performance in discriminating the native structures from the docking decoy sets, and outperforms the distance-dependent formalism in terms of the z-score. Computer experiment results show that the curvature-dependent formalism with the optimal parameters can achieve a native z-score of -8.17 in discriminating the native structure from the highest surface-complementarity scored decoy set and a native z-score of -7.38 in discriminating the native structure from the lowest RMSD decoy set. The interface-atom curvature-dependent formalism can also be used to predict apo version of DNA-binding proteins. These results suggest that the interface-atom curvature-dependent formalism has a good prediction capability for protein-DNA interactions. The code and data sets are available for download on http://www.hy8.com/bioinformatics.htm kenandzhou@hotmail.com.

  10. Isolation and purification of recombinant proteins, antibodies and plasmid DNA with hydroxyapatite chromatography.

    PubMed

    Hilbrig, Frank; Freitag, Ruth

    2012-01-01

    Hydroxyapatite and related stationary phases increasingly play a role in the downstream processing of high-value biological materials, such as recombinant proteins, therapeutic antibodies and pharmaceutical-grade plasmid DNA. Chromatographic hydroxyapatite is an inorganic, ceramic material identical in composition, if not in structure, to calcium phosphate found in human bones and teeth. The interaction of hydroxyapatite with biomacromolecules is complex and highly dynamic, which can make predicting performance difficult, but also allows the design of very selective isolation processes. This review discusses the currently commercially available chromatographic materials, different retention mechanisms supported by these materials and differential exploitation for the design of highly specific isolation procedures. The state of the art of antibody purification by hydroxy- and fluoroapatite is reviewed together with tested routines for method development and implementation. Finally, the isolation of plasmid DNA is discussed, since the purification of DNA therapeutics at a sufficiently large scale is an emerging need in bioprocess development and perhaps the area in bioseparation where apatite chromatography can make its most important contribution to date. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Selfish Spermatogonial Selection: Evidence from an Immunohistochemical Screen in Testes of Elderly Men

    PubMed Central

    Turner, Gareth D. H.; Dudka-Ruszkowska, Wioleta; Taylor, Stephen; Meyts, Ewa Rajpert-De; Goriely, Anne; Wilkie, Andrew O. M.

    2012-01-01

    The dominant congenital disorders Apert syndrome, achondroplasia and multiple endocrine neoplasia–caused by specific missense mutations in the FGFR2, FGFR3 and RET proteins respectively–represent classical examples of paternal age-effect mutation, a class that arises at particularly high frequencies in the sperm of older men. Previous analyses of DNA from randomly selected cadaveric testes showed that the levels of the corresponding FGFR2, FGFR3 and RET mutations exhibit very uneven spatial distributions, with localised hotspots surrounded by large mutation-negative areas. These studies imply that normal testes are mosaic for clusters of mutant cells: these clusters are predicted to have altered growth and signalling properties leading to their clonal expansion (selfish spermatogonial selection), but DNA extraction eliminates the possibility to study such processes at a tissue level. Using a panel of antibodies optimised for the detection of spermatocytic seminoma, a rare tumour of spermatogonial origin, we demonstrate that putative clonal events are frequent within normal testes of elderly men (mean age: 73.3 yrs) and can be classed into two broad categories. We found numerous small (less than 200 cells) cellular aggregations with distinct immunohistochemical characteristics, localised to a portion of the seminiferous tubule, which are of uncertain significance. However more infrequently we identified additional regions where entire seminiferous tubules had a circumferentially altered immunohistochemical appearance that extended through multiple serial sections that were physically contiguous (up to 1 mm in length), and exhibited enhanced staining for antibodies both to FGFR3 and a marker of downstream signal activation, pAKT. These findings support the concept that populations of spermatogonia in individual seminiferous tubules in the testes of older men are clonal mosaics with regard to their signalling properties and activation, thus fulfilling one of the specific predictions of selfish spermatogonial selection. PMID:22879958

  12. From forensic epigenetics to forensic epigenomics: broadening DNA investigative intelligence.

    PubMed

    Vidaki, Athina; Kayser, Manfred

    2017-12-21

    Human genetic variation is a major resource in forensics, but does not allow all forensically relevant questions to be answered. Some questions may instead be addressable via epigenomics, as the epigenome acts as an interphase between the fixed genome and the dynamic environment. We envision future forensic applications of DNA methylation analysis that will broaden DNA-based forensic intelligence. Together with genetic prediction of appearance and biogeographic ancestry, epigenomic lifestyle prediction is expected to increase the ability of police to find unknown perpetrators of crime who are not identifiable using current forensic DNA profiling.

  13. DNA-PKcs Expression Is a Predictor of Biochemical Recurrence After Permanent Iodine 125 Interstitial Brachytherapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina, Sarah; Department of Radiation Oncology, CHU/Université de Poitiers, Poitiers; Guerif, Stéphane

    Purpose: Predictive factors for biochemical recurrence (BCR) in localized prostate cancer (PCa) after brachytherapy are insufficient to date. Cellular radiosensitivity depends on DNA double-strand breaks, mainly repaired by the nonhomologous end-joining (NHEJ) system. We analyzed whether the expression of NHEJ proteins can predict BCR in patients treated by brachytherapy for localized PCa. Methods and Materials: From 983 PCa cases treated by brachytherapy between March 2000 and March 2012, 167 patients with available biopsy material suitable for in situ analysis were included in the study. The median follow-up time was 47 months. Twenty-nine patients experienced BCR. All slides were reviewed to reassessmore » the Gleason score. Expression of the key NHEJ proteins DNA-PKcs, Ku70, and Ku80, and the proliferation marker Ki67, was studied by immunohistochemistry performed on tissue microarrays. Results: The Gleason scores after review (P=.06) tended to be associated with BCR when compared with the score initially reported (P=.74). Both the clinical stage (P=.02) and the pretreatment prostate-specific antigen level (P=.01) were associated with biochemical failure. Whereas the expression of Ku80 and Ki67 were not predictive of relapse, positive DNA-PKcs nuclear staining (P=.003) and higher Ku70 expression (P=.05) were associated with BCR. On multivariate analysis, among pretreatment variables, only DNA-PKcs (P=.03) and clinical stage (P=.02) remained predictive of recurrence. None of the patients without palpable PCa and negative DNA-PKcs expression experienced biochemical failure, compared with 32% of men with palpable and positive DNA-PKcs staining that recurred. Conclusions: Our results suggest that DNA-PKcs could be a predictive marker of BCR after brachytherapy, and this might be a useful tool for optimizing the choice of treatment in low-risk PCa patients.« less

  14. Determining the folding and binding free energy of DNA-based nanodevices and nanoswitches using urea titration curves

    PubMed Central

    Idili, Andrea

    2017-01-01

    Abstract DNA nanotechnology takes advantage of the predictability of DNA interactions to build complex DNA-based functional nanoscale structures. However, when DNA functional and responsive units that are based on non-canonical DNA interactions are employed it becomes quite challenging to predict, understand and control their thermodynamics. In response to this limitation, here we demonstrate the use of isothermal urea titration experiments to estimate the free energy involved in a set of DNA-based systems ranging from unimolecular DNA-based nanoswitches to more complex DNA folds (e.g. aptamers) and nanodevices. We propose here a set of fitting equations that allow to analyze the urea titration curves of these DNA responsive units based on Watson–Crick and non-canonical interactions (stem-loop, G-quadruplex, triplex structures) and to correctly estimate their relative folding and binding free energy values under different experimental conditions. The results described herein will pave the way toward the use of urea titration experiments in the field of DNA nanotechnology to achieve easier and more reliable thermodynamic characterization of DNA-based functional responsive units. More generally, our results will be of general utility to characterize other complex supramolecular systems based on different biopolymers. PMID:28605461

  15. Pharmacogenetic testing, informed consent and the problem of secondary information.

    PubMed

    Netzer, Christian; Biller-Andorno, Nikola

    2004-08-01

    Numerous benefits for patients have been predicted if prescribing decisions were routinely accompanied by pharmacogenetic testing. So far, little attention has been paid to the possibility that the routine application of this new technology could result in considerable harm to patients. This article emphasises that pharmacogenetic testing shares both the opportunities and the pitfalls with 'conventional' disease-genetic testing. It demonstrates that performing pharmacogenetic tests as well as interpreting the results are extraordinarily complex issues requiring a high level of expertise. It further argues that pharmacogenetic testing can have a huge impact on clinical decisions and may influence the therapeutic strategy as well as the clinical monitoring of a patient. This view challenges the predominant paradigm that pharmacogenetic testing will predict patients' responses to medicines, but that it will not provide any other significant disease-specific predictive information about the patient or family members. The article also questions published proposals to reduce the consent procedure for pharmacogenetic testing to a simple statement that the physician wishes to test a sample of the patient's DNA to see if a drug will be safe or whether it will work, and presents an alternative model that is better suited to protect patient's interests and to obtain meaningful informed consent. The paper concludes by outlining conditions for the application of pharmacogenetic testing in clinical practice in a way that can make full use of its potential benefits while minimising possible harm to patients and their families.

  16. Clinical evaluation of the COBAS Amplicor HBV monitor test for measuring serum HBV DNA and comparison with the Quantiplex branched DNA signal amplification assay in Taiwan.

    PubMed

    Dai, C-Y; Yu, M-L; Chen, S-C; Lin, Z-Y; Hsieh, M-Y; Wang, L-Y; Tsai, J-F; Chuang, W-L; Chang, W-Y

    2004-02-01

    To evaluate the performance characteristics and clinical usefulness of the COBAS Amplicor HBV monitor (COBAS-AM) test in Taiwan and to examine its correlation with the Quantiplex branched DNA signal amplification (bDNA) assay for measuring serum hepatitis B virus (HBV) DNA concentrations. HBV DNA was measured by the COBAS-AM test in 149 sera from chronic HBV infected patients that had previously been analysed by the bDNA assay. The COBAS-AM test showed good reproducibility, with acceptable intra-assay and interassay coefficients of variation (1.6% and 0.9%, respectively) and good linearity (r2=0.98). The overall sensitivity of the COBAS-AM test was significantly higher than that of the bDNA assay (95.3% v 83.2%): 69.6% of samples with HBV DNA below the detection limit of the bDNA assay could be measured by the COBAS-AM test. There was a significant correlation between the results of the two assays (r=0.901; p<0.0001). On average, the results derived from the COBAS-AM test were 0.55 log lower than those of the bDNA assay. HBV DNA concentrations were significantly higher among HBV e antigen (HBeAg) positive patients than negative ones, and higher among patients with abnormal alanine aminotransferase (ALT) concentrations than those with normal ALT concentrations (p=0.0003). The COBAS-AM assay, more sensitive in HBeAg negative samples than the bDNA assay, can effectively measure HBV DNA concentrations in Taiwanese patients. HBV DNA values measured by the COBAS-AM test and bDNA assay correlate significantly.

  17. Comparison of Model Predictions and Laboratory Observations of Transgene Frequencies in Continuously-Breeding Mosquito Populations

    PubMed Central

    Valerio, Laura; North, Ace; Collins, C. Matilda; Mumford, John D.; Facchinelli, Luca; Spaccapelo, Roberta; Benedict, Mark Q.

    2016-01-01

    The persistence of transgenes in the environment is a consideration in risk assessments of transgenic organisms. Combining mathematical models that predict the frequency of transgenes and experimental demonstrations can validate the model predictions, or can detect significant biological deviations that were neither apparent nor included as model parameters. In order to assess the correlation between predictions and observations, models were constructed to estimate the frequency of a transgene causing male sexual sterility in simulated populations of a malaria mosquito Anopheles gambiae that were seeded with transgenic females at various proportions. Concurrently, overlapping-generation laboratory populations similar to those being modeled were initialized with various starting transgene proportions, and the subsequent proportions of transgenic individuals in populations were determined weekly until the transgene disappeared. The specific transgene being tested contained a homing endonuclease gene expressed in testes, I-PpoI, that cleaves the ribosomal DNA and results in complete male sexual sterility with no effect on female fertility. The transgene was observed to disappear more rapidly than the model predicted in all cases. The period before ovipositions that contained no transgenic progeny ranged from as little as three weeks after cage initiation to as long as 11 weeks. PMID:27669312

  18. DNA methylation screening of primary prostate tumors identifies SRD5A2 and CYP11A1 as candidate markers for assessing risk of biochemical recurrence.

    PubMed

    Horning, Aaron M; Awe, Julius A; Wang, Chiou-Miin; Liu, Joseph; Lai, Zhao; Wang, Vickie Yao; Jadhav, Rohit R; Louie, Anna D; Lin, Chun-Lin; Kroczak, Tad; Chen, Yidong; Jin, Victor X; Abboud-Werner, Sherry L; Leach, Robin J; Hernandez, Javior; Thompson, Ian M; Saranchuk, Jeff; Drachenberg, Darrel; Chen, Chun-Liang; Mai, Sabine; Huang, Tim Hui-Ming

    2015-11-01

    Altered DNA methylation in CpG islands of gene promoters has been implicated in prostate cancer (PCa) progression and can be used to predict disease outcome. In this study, we determine whether methylation changes of androgen biosynthesis pathway (ABP)-related genes in patients' plasma cell-free DNA (cfDNA) can serve as prognostic markers for biochemical recurrence (BCR). Methyl-binding domain capture sequencing (MBDCap-seq) was used to identify differentially methylated regions (DMRs) in primary tumors of patients who subsequently developed BCR or not, respectively. Methylation pyrosequencing of candidate loci was validated in cfDNA samples of 86 PCa patients taken at and/or post-radical prostatectomy (RP) using univariate and multivariate prediction analyses. Putative DMRs in 13 of 30 ABP-related genes were found between tumors of BCR (n = 12) versus no evidence of disease (NED) (n = 15). In silico analysis of The Cancer Genome Atlas data confirmed increased DNA methylation of two loci-SRD5A2 and CYP11A1, which also correlated with their decreased expression, in tumors with subsequent BCR development. Their aberrant cfDNA methylation was also associated with detectable levels of PSA taken after patients' post-RP. Multivariate analysis of the change in cfDNA methylation at all of CpG sites measured along with patient's treatment history predicted if a patient will develop BCR with 77.5% overall accuracy. Overall, increased DNA methylation of SRD5A2 and CYP11A1 related to androgen biosynthesis functions may play a role in BCR after patients' RP. The correlation between aberrant cfDNA methylation and detectable PSA in post-RP further suggests their utility as predictive markers for PCa recurrence. . © 2015 Wiley Periodicals, Inc.

  19. Assessment of the Clinical Relevance of BRCA2 Missense Variants by Functional and Computational Approaches.

    PubMed

    Guidugli, Lucia; Shimelis, Hermela; Masica, David L; Pankratz, Vernon S; Lipton, Gary B; Singh, Namit; Hu, Chunling; Monteiro, Alvaro N A; Lindor, Noralane M; Goldgar, David E; Karchin, Rachel; Iversen, Edwin S; Couch, Fergus J

    2018-01-17

    Many variants of uncertain significance (VUS) have been identified in BRCA2 through clinical genetic testing. VUS pose a significant clinical challenge because the contribution of these variants to cancer risk has not been determined. We conducted a comprehensive assessment of VUS in the BRCA2 C-terminal DNA binding domain (DBD) by using a validated functional assay of BRCA2 homologous recombination (HR) DNA-repair activity and defined a classifier of variant pathogenicity. Among 139 variants evaluated, 54 had ≥99% probability of pathogenicity, and 73 had ≥95% probability of neutrality. Functional assay results were compared with predictions of variant pathogenicity from the Align-GVGD protein-sequence-based prediction algorithm, which has been used for variant classification. Relative to the HR assay, Align-GVGD significantly (p < 0.05) over-predicted pathogenic variants. We subsequently combined functional and Align-GVGD prediction results in a Bayesian hierarchical model (VarCall) to estimate the overall probability of pathogenicity for each VUS. In addition, to predict the effects of all other BRCA2 DBD variants and to prioritize variants for functional studies, we used the endoPhenotype-Optimized Sequence Ensemble (ePOSE) algorithm to train classifiers for BRCA2 variants by using data from the HR functional assay. Together, the results show that systematic functional assays in combination with in silico predictors of pathogenicity provide robust tools for clinical annotation of BRCA2 VUS. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. The utilization of circulating cell-free fetal DNA testing and decrease in invasive diagnostic procedures: an institutional experience.

    PubMed

    Pettit, K E; Hull, A D; Korty, L; Jones, M C; Pretorius, D H

    2014-10-01

    To characterize the patient population utilizing circulating cell-free fetal DNA (ccffDNA) testing at a large academic center and evaluate trends in the performance of invasive diagnostic procedures. A retrospective cohort study of all patients who underwent cell-free DNA testing from May to December 2012 was performed. During the study period, 206 patients had cell-free DNA testing. Of those, 75% (155/206) were of ages ⩾ 35 years. Of those undergoing ccffDNA testing, 41% had positive aneuploidy screening and 38% had abnormal ultrasound findings. Only 7% of the patients with negative ccffDNA testing opted for an invasive diagnostic procedure compared with 60% with positive testing (P<0.01). The rate of invasive procedures decreased from 5.9% of all visits to the center during a similar 8-month period in 2010 to 4.1% of all visits during the study period (P<0.01). Our data suggest that ccffDNA testing leads to reduced uptake of invasive procedures.

  1. Expression of proliferation marker Ki67 correlates to occurrence of metastasis and prognosis, histological subtypes and HPV DNA detection in penile carcinomas.

    PubMed

    Protzel, C; Knoedel, J; Zimmermann, U; Woenckhaus, C; Poetsch, M; Giebel, J

    2007-11-01

    Clinical outcome of penile squamous cell carcinoma (PSCC) largely depends on the presence of lymph node metastasis. In search of a valuable marker predicting the risk for metastasis, the expression of Ki67 was investigated immunohistochemically in primary tumors and compared to presence of inguinal lymph node metastasis. As human papilloma virus (HPV) is thought to affect Ki67 expression, we evaluated whether occurrence of HPV DNA correlates to Ki67 score or metastatic potential. Samples originated from patients subjected to resection of invasive SCC of penis. Immunohistochemistry was done on paraffin-embedded sections using a monoclonal antibody against Ki67. After DNA isolation from paraffin embedded tissue the presence of HPV 6/11, HPV 16 and HPV 18 DNA was analyzed by PCR. Statistical analysis was done using two tail unpaired t test and Chi-square test. Four of 28 patients showed a weak Ki67 expression, without displaying lymph node metastasis. Among 17 patients showing an intermediate Ki67 index, eight exhibited metastases while in all seven patients with a strong expression of Ki67 lymph node metastases were found. The median Ki67 expression in metastastic lesions was significantly different (50.3%) from tumors without lymph node metastasis (31.8%) (p=0.024). Furthermore, a correlation between presence of HPV DNA and strong Ki67 expression was determined (p=0.009). Since our study demonstrated a strong Ki67 labeling index significantly associated to positive lymph nodes, we suggest Ki67 expression as a prognostic marker for lymph node metastasis in penile squamous carcinoma.

  2. Improving the Sensitivity and Positive Predictive Value in a Cystic Fibrosis Newborn Screening Program Using a Repeat Immunoreactive Trypsinogen and Genetic Analysis.

    PubMed

    Sontag, Marci K; Lee, Rachel; Wright, Daniel; Freedenberg, Debra; Sagel, Scott D

    2016-08-01

    To evaluate the performance of a new cystic fibrosis (CF) newborn screening algorithm, comprised of immunoreactive trypsinogen (IRT) in first (24-48 hours of life) and second (7-14 days of life) dried blood spot plus DNA on second dried blood spot, over existing algorithms. A retrospective review of the IRT/IRT/DNA algorithm implemented in Colorado, Wyoming, and Texas. A total of 1 520 079 newborns were screened, 32 557 (2.1%) had abnormal first IRT; 8794 (0.54%) on second. Furthermore, 14 653 mutation analyses were performed; 1391 newborns were referred for diagnostic testing; 274 newborns were diagnosed; and 201/274 (73%) of newborns had 2 mutations on the newborn screening CFTR panel. Sensitivity was 96.2%, compared with sensitivity of 76.1% observed with IRT/IRT (105 ng/mL cut-offs, P < .0001). The ratio of newborns with CF to heterozygote carriers was 1:2.5, and newborns with CF to newborns with CFTR-related metabolic syndrome was 10.8:1. The overall positive predictive value was 20%. The median age of diagnosis was 28, 30, and 39.5 days in the 3 states. IRT/IRT/DNA is more sensitive than IRT/IRT because of lower cut-offs (∼97 percentile or 60 ng/mL); higher cut-offs in IRT/IRT programs (>99 percentile, 105 ng/mL) would not achieve sufficient sensitivity. Carrier identification and identification of newborns with CFTR-related metabolic syndrome is less common in IRT/IRT/DNA compared with IRT/DNA. The time to diagnosis is nominally longer, but diagnosis can be achieved in the neonatal period and opportunities to further improve timeliness have been enacted. IRT/IRT/DNA algorithm should be considered by programs with 2 routine screens. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. HPV-Testing in Follow-up of Patients Treated for CIN2+ Lesions

    PubMed Central

    Mariani, Luciano; Sandri, Maria Teresa; Preti, Mario; Origoni, Massimo; Costa, Silvano; Cristoforoni, Paolo; Bottari, Fabio; Sideri, Mario

    2016-01-01

    Persistent positivity of HPV-DNA testing is considered a prognostic index of recurrent disease in patients treated for CIN2+. HPV detection, and particularly genotyping, has an adequate high rate of sensitivity and specificity (along with an optimal reproducibility), for accurately predicting treatment failure, allowing for an intensified monitoring activity. Conversely, women with a negative HPV-test 6 months after therapy have a very low risk for residual/recurrent disease, which leads to a more individualized follow-up schedule, allowing for a gradual return to the normal screening scheme. HPV testing should be routinely included (with or without cytology) in post-treatment follow-up of CIN2+ patients for early detection of recurrence and cancer progression. HPV genotyping methods, as a biological indicator of persistent disease, could be more suitable for a predictive role and risk stratification (particularly in the case of HPV 16/18 persistence) than pooled HPV-based testing. However, it is necessary to be aware of the performance of the system, adhering to strict standardization of the process and quality assurance criteria. PMID:26722366

  4. Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA

    PubMed Central

    Oberstrass, Florian C.; Fernandes, Louis E.; Bryant, Zev

    2012-01-01

    B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)n sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. “Bubble” templates containing 50–100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand–strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context. PMID:22474350

  5. Genome-wide screening of DNA methylation associated with lymph node metastasis in esophageal squamous cell carcinoma.

    PubMed

    Nagata, Hiroaki; Kozaki, Ken-Ichi; Muramatsu, Tomoki; Hiramoto, Hidekazu; Tanimoto, Kousuke; Fujiwara, Naoto; Imoto, Seiya; Ichikawa, Daisuke; Otsuji, Eigo; Miyano, Satoru; Kawano, Tatsuyuki; Inazawa, Johji

    2017-06-06

    Lymph node metastasis (LNM) of esophageal squamous cell carcinoma (ESCC) is well-known to be an early event associated with poor prognosis in patients with ESCC. Recently, tumor-specific aberrant DNA methylation of CpG islands around the promoter regions of tumor-related genes has been investigated as a possible biomarker for use in early diagnosis and prediction of prognosis. However, there are few DNA methylation markers able to predict the presence of LNM in ESCC. To identify DNA methylation markers associated with LNM of ESCC, we performed a genome-wide screening of DNA methylation status in a discovery cohort of 67 primary ESCC tissues and their paired normal esophageal tissues using the Illumina Infinium HumanMethylation450 BeadChip. In this screening, we focused on differentially methylated regions (DMRs) that were associated with LNM of ESCC, as prime candidates for DNA methylation markers. We extracted three genes, HOXB2, SLC15A3, and SEPT9, as candidates predicting LNM of ESCC, using pyrosequencing and several statistical analyses in the discovery cohort. We confirmed that HOXB2 and SEPT9 were highly methylated in LNM-positive tumors in 59 ESCC validation samples. These results suggested that HOXB2 and SEPT9 may be useful epigenetic biomarkers for the prediction of the presence of LNM in ESCC.

  6. Genome-wide screening of DNA methylation associated with lymph node metastasis in esophageal squamous cell carcinoma

    PubMed Central

    Nagata, Hiroaki; Kozaki, Ken-Ichi; Muramatsu, Tomoki; Hiramoto, Hidekazu; Tanimoto, Kousuke; Fujiwara, Naoto; Imoto, Seiya; Ichikawa, Daisuke; Otsuji, Eigo; Miyano, Satoru; Kawano, Tatsuyuki; Inazawa, Johji

    2017-01-01

    Lymph node metastasis (LNM) of esophageal squamous cell carcinoma (ESCC) is well-known to be an early event associated with poor prognosis in patients with ESCC. Recently, tumor-specific aberrant DNA methylation of CpG islands around the promoter regions of tumor-related genes has been investigated as a possible biomarker for use in early diagnosis and prediction of prognosis. However, there are few DNA methylation markers able to predict the presence of LNM in ESCC. To identify DNA methylation markers associated with LNM of ESCC, we performed a genome-wide screening of DNA methylation status in a discovery cohort of 67 primary ESCC tissues and their paired normal esophageal tissues using the Illumina Infinium HumanMethylation450 BeadChip. In this screening, we focused on differentially methylated regions (DMRs) that were associated with LNM of ESCC, as prime candidates for DNA methylation markers. We extracted three genes, HOXB2, SLC15A3, and SEPT9, as candidates predicting LNM of ESCC, using pyrosequencing and several statistical analyses in the discovery cohort. We confirmed that HOXB2 and SEPT9 were highly methylated in LNM-positive tumors in 59 ESCC validation samples. These results suggested that HOXB2 and SEPT9 may be useful epigenetic biomarkers for the prediction of the presence of LNM in ESCC. PMID:28465481

  7. Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes.

    PubMed

    Cer, Regina Z; Bruce, Kevin H; Mudunuri, Uma S; Yi, Ming; Volfovsky, Natalia; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M

    2011-01-01

    Although the capability of DNA to form a variety of non-canonical (non-B) structures has long been recognized, the overall significance of these alternate conformations in biology has only recently become accepted en masse. In order to provide access to genome-wide locations of these classes of predicted structures, we have developed non-B DB, a database integrating annotations and analysis of non-B DNA-forming sequence motifs. The database provides the most complete list of alternative DNA structure predictions available, including Z-DNA motifs, quadruplex-forming motifs, inverted repeats, mirror repeats and direct repeats and their associated subsets of cruciforms, triplex and slipped structures, respectively. The database also contains motifs predicted to form static DNA bends, short tandem repeats and homo(purine•pyrimidine) tracts that have been associated with disease. The database has been built using the latest releases of the human, chimp, dog, macaque and mouse genomes, so that the results can be compared directly with other data sources. In order to make the data interpretable in a genomic context, features such as genes, single-nucleotide polymorphisms and repetitive elements (SINE, LINE, etc.) have also been incorporated. The database is accessed through query pages that produce results with links to the UCSC browser and a GBrowse-based genomic viewer. It is freely accessible at http://nonb.abcc.ncifcrf.gov.

  8. Prognostic importance of DNA ploidy in non-endometrioid, high-risk endometrial carcinomas.

    PubMed

    Sorbe, Bengt

    2016-03-01

    The present study investigated the predictive and prognostic impact of DNA ploidy together with other well-known prognostic factors in a series of non-endometrioid, high-risk endometrial carcinomas. From a complete consecutive series of 4,543 endometrial carcinomas of International Federation of Gynecology and Obstetrics (FIGO) stages I-IV, 94 serous carcinomas, 48 clear cell carcinomas and 231 carcinosarcomas were selected as a non-endometrioid, high-risk group for further studies regarding prognosis. The impact of DNA ploidy, as assessed by flow cytometry, was of particular focus. The age of the patients, FIGO stage, depth of myometrial infiltration and tumor expression of p53 were also included in the analyses (univariate and multivariate). In the complete series of cases, the recurrence rate was 37%, and the 5-year overall survival rate was 39% with no difference between the three histological subtypes. The primary cure rate (78%) was also similar for all tumor types studied. DNA ploidy was a significant predictive factor (on univariate analysis) for primary tumor cure rate, and a prognostic factor for survival rate (on univariate and multivariate analyses). The predictive and prognostic impact of DNA ploidy was higher in carcinosarcomas than in serous and clear cell carcinomas. In the majority of multivariate analyses, FIGO stage and depth of myometrial infiltration were the most important predictive (tumor recurrence) and prognostic (survival rate) factors. DNA ploidy status is a less important predictive and prognostic factor in non-endometrioid, high-risk endometrial carcinomas than in the common endometrioid carcinomas, in which FIGO and nuclear grade also are highly significant and important factors.

  9. kmer-SVM: a web server for identifying predictive regulatory sequence features in genomic data sets

    PubMed Central

    Fletez-Brant, Christopher; Lee, Dongwon; McCallion, Andrew S.; Beer, Michael A.

    2013-01-01

    Massively parallel sequencing technologies have made the generation of genomic data sets a routine component of many biological investigations. For example, Chromatin immunoprecipitation followed by sequence assays detect genomic regions bound (directly or indirectly) by specific factors, and DNase-seq identifies regions of open chromatin. A major bottleneck in the interpretation of these data is the identification of the underlying DNA sequence code that defines, and ultimately facilitates prediction of, these transcription factor (TF) bound or open chromatin regions. We have recently developed a novel computational methodology, which uses a support vector machine (SVM) with kmer sequence features (kmer-SVM) to identify predictive combinations of short transcription factor-binding sites, which determine the tissue specificity of these genomic assays (Lee, Karchin and Beer, Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res. 2011; 21:2167–80). This regulatory information can (i) give confidence in genomic experiments by recovering previously known binding sites, and (ii) reveal novel sequence features for subsequent experimental testing of cooperative mechanisms. Here, we describe the development and implementation of a web server to allow the broader research community to independently apply our kmer-SVM to analyze and interpret their genomic datasets. We analyze five recently published data sets and demonstrate how this tool identifies accessory factors and repressive sequence elements. kmer-SVM is available at http://kmersvm.beerlab.org. PMID:23771147

  10. kmer-SVM: a web server for identifying predictive regulatory sequence features in genomic data sets.

    PubMed

    Fletez-Brant, Christopher; Lee, Dongwon; McCallion, Andrew S; Beer, Michael A

    2013-07-01

    Massively parallel sequencing technologies have made the generation of genomic data sets a routine component of many biological investigations. For example, Chromatin immunoprecipitation followed by sequence assays detect genomic regions bound (directly or indirectly) by specific factors, and DNase-seq identifies regions of open chromatin. A major bottleneck in the interpretation of these data is the identification of the underlying DNA sequence code that defines, and ultimately facilitates prediction of, these transcription factor (TF) bound or open chromatin regions. We have recently developed a novel computational methodology, which uses a support vector machine (SVM) with kmer sequence features (kmer-SVM) to identify predictive combinations of short transcription factor-binding sites, which determine the tissue specificity of these genomic assays (Lee, Karchin and Beer, Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res. 2011; 21:2167-80). This regulatory information can (i) give confidence in genomic experiments by recovering previously known binding sites, and (ii) reveal novel sequence features for subsequent experimental testing of cooperative mechanisms. Here, we describe the development and implementation of a web server to allow the broader research community to independently apply our kmer-SVM to analyze and interpret their genomic datasets. We analyze five recently published data sets and demonstrate how this tool identifies accessory factors and repressive sequence elements. kmer-SVM is available at http://kmersvm.beerlab.org.

  11. Monitoring of Serum DNA Methylation as an Early Independent Marker of Response and Survival in Metastatic Breast Cancer: TBCRC 005 Prospective Biomarker Study

    PubMed Central

    Fackler, MaryJo S.; Zhang, Zhe; Lopez-Bujanda, Zoila A.; Jeter, Stacie C.; Sokoll, Lori J.; Garrett-Mayer, Elizabeth; Cope, Leslie M.; Umbricht, Christopher B.; Euhus, David M.; Forero, Andres; Storniolo, Anna M.; Nanda, Rita; Lin, Nancy U.; Carey, Lisa A.; Ingle, James N.; Sukumar, Saraswati; Wolff, Antonio C.

    2017-01-01

    Purpose Epigenetic alterations measured in blood may help guide breast cancer treatment. The multisite prospective study TBCRC 005 was conducted to examine the ability of a novel panel of cell-free DNA methylation markers to predict survival outcomes in metastatic breast cancer (MBC) using a new quantitative multiplex assay (cMethDNA). Patients and Methods Ten genes were tested in duplicate serum samples from 141 women at baseline, at week 4, and at first restaging. A cumulative methylation index (CMI) was generated on the basis of six of the 10 genes tested. Methylation cut points were selected to maximize the log-rank statistic, and cross-validation was used to obtain unbiased point estimates. Logistic regression or Cox proportional hazard models were used to test associations between the CMI and progression-free survival (PFS), overall survival (OS), and disease status at first restaging. The added value of the CMI in predicting survival outcomes was evaluated and compared with circulating tumor cells (CellSearch). Results Median PFS and OS were significantly shorter in women with a high CMI (PFS, 2.1 months; OS, 12.3 months) versus a low CMI (PFS, 5.8 months; OS, 21.7 months). In multivariable models, among women with MBC, a high versus low CMI at week 4 was independently associated with worse PFS (hazard ratio, 1.79; 95% CI, 1.23 to 2.60; P = .002) and OS (hazard ratio, 1.75; 95% CI, 1.21 to 2.54; P = .003). An increase in the CMI from baseline to week 4 was associated with worse PFS (P < .001) and progressive disease at first restaging (P < .001). Week 4 CMI was a strong predictor of PFS, even in the presence of circulating tumor cells (P = .004). Conclusion Methylation of this gene panel is a strong predictor of survival outcomes in MBC and may have clinical usefulness in risk stratification and disease monitoring. PMID:27870562

  12. Machine Learning–Based Differential Network Analysis: A Study of Stress-Responsive Transcriptomes in Arabidopsis[W

    PubMed Central

    Ma, Chuang; Xin, Mingming; Feldmann, Kenneth A.; Wang, Xiangfeng

    2014-01-01

    Machine learning (ML) is an intelligent data mining technique that builds a prediction model based on the learning of prior knowledge to recognize patterns in large-scale data sets. We present an ML-based methodology for transcriptome analysis via comparison of gene coexpression networks, implemented as an R package called machine learning–based differential network analysis (mlDNA) and apply this method to reanalyze a set of abiotic stress expression data in Arabidopsis thaliana. The mlDNA first used a ML-based filtering process to remove nonexpressed, constitutively expressed, or non-stress-responsive “noninformative” genes prior to network construction, through learning the patterns of 32 expression characteristics of known stress-related genes. The retained “informative” genes were subsequently analyzed by ML-based network comparison to predict candidate stress-related genes showing expression and network differences between control and stress networks, based on 33 network topological characteristics. Comparative evaluation of the network-centric and gene-centric analytic methods showed that mlDNA substantially outperformed traditional statistical testing–based differential expression analysis at identifying stress-related genes, with markedly improved prediction accuracy. To experimentally validate the mlDNA predictions, we selected 89 candidates out of the 1784 predicted salt stress–related genes with available SALK T-DNA mutagenesis lines for phenotypic screening and identified two previously unreported genes, mutants of which showed salt-sensitive phenotypes. PMID:24520154

  13. Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias.

    PubMed

    Clarke, Laurence J; Soubrier, Julien; Weyrich, Laura S; Cooper, Alan

    2014-11-01

    Studies of insect assemblages are suited to the simultaneous DNA-based identification of multiple taxa known as metabarcoding. To obtain accurate estimates of diversity, metabarcoding markers ideally possess appropriate taxonomic coverage to avoid PCR-amplification bias, as well as sufficient sequence divergence to resolve species. We used in silico PCR to compare the taxonomic coverage and resolution of newly designed insect metabarcodes (targeting 16S) with that of existing markers [16S and cytochrome oxidase c subunit I (COI)] and then compared their efficiency in vitro. Existing metabarcoding primers amplified in silico <75% of insect species with complete mitochondrial genomes available, whereas new primers targeting 16S provided >90% coverage. Furthermore, metabarcodes targeting COI appeared to introduce taxonomic PCR-amplification bias, typically amplifying a greater percentage of Lepidoptera and Diptera species, while failing to amplify certain orders in silico. To test whether bias predicted in silico was observed in vitro, we created an artificial DNA blend containing equal amounts of DNA from 14 species, representing 11 insect orders and one arachnid. We PCR-amplified the blend using five primer sets, targeting either COI or 16S, with high-throughput amplicon sequencing yielding more than 6 million reads. In vitro results typically corresponded to in silico PCR predictions, with newly designed 16S primers detecting 11 insect taxa present, thus providing equivalent or better taxonomic coverage than COI metabarcodes. Our results demonstrate that in silico PCR is a useful tool for predicting taxonomic bias in mixed template PCR and that researchers should be wary of potential bias when selecting metabarcoding markers. © 2014 John Wiley & Sons Ltd.

  14. Forensic DNA testing.

    PubMed

    Butler, John M

    2011-12-01

    Forensic DNA testing has a number of applications, including parentage testing, identifying human remains from natural or man-made disasters or terrorist attacks, and solving crimes. This article provides background information followed by an overview of the process of forensic DNA testing, including sample collection, DNA extraction, PCR amplification, short tandem repeat (STR) allele separation and sizing, typing and profile interpretation, statistical analysis, and quality assurance. The article concludes with discussions of possible problems with the data and other forensic DNA testing techniques.

  15. Diagnostic Dilemma for Low Viremia with Significant Fibrosis; Is HBV DNA Threshold Level a Good Indicator for Predicting Liver Damage?

    PubMed

    Yenilmez, Ercan; Çetinkaya, Rıza Aytaç; Tural, Ersin

    2018-05-04

    The most important difficulties about management of hepatitis B are still determining the liver damage and the right time to start antiviral therapy. To reveal the role of hepatitis B virus DNA threshold level for prediction of liver fibrosis and inflammation in young-aged hepatitis B e antigen negative chronic hepatitis B patients. Diagnostic accuracy study. A total of 273 hepatitis B e antigen negative young chronic hepatitis B patients with any hepatitis B virus DNA levels between 2008 and 2016, who had liver biopsy after at least 6 months follow up period, enrolled in this retrospective study. We created two groups as case and control, cases with hepatitis B virus DNA levels below 2.000 IU/mL and controls with hepatitis B virus DNA levels over 2.000 IU/mL. Having histological activity index ≥4 or/and fibrosis scores ≥2 were defined as significant histological abnormality. Then, we analyzed the relationship between these groups. We showed that significant fibrosis may occur in one third of young chronic hepatitis B patients with low viremia (30.2%, n=42/139 in cases, %55.2, n=74/134 in controls). Among the 42 cases with low viremia and significant fibrosis, 21.4% had alanine aminotransferase level between 40-59 U/L, 42.8% had alanine aminotransferase level between 60-79 U/L, and 35.7% had alanine aminotransferase level over 80 U/L. There was weak correlation between hepatitis B virus DNA threshold level and fibrosis score (p=0.000, rho=0.253). The optimum serum hepatitis B virus DNA threshold level in our study for predicting significant fibrosis was 1293 IU/mL (p=0.00, AUC: 0.657±0.034). The optimum alanine aminotransferase threshold level for predicting significant histological activity index and fibrosis was 64.5 and 59.5 U/L, respectively. The sensitivity and the specificity of 1293 vs 2000 IU/mL hepatitis B virus DNA threshold with 60 U/L alanine aminotransferase threshold level for predicting F≥2 fibrosis score were similar (sensitivity: 0.43 and 0.38, respectively; specificity: 0.76 and 0.77, respectively). Significant fibrosis may occur even in young cases with low viremia. It is not possible to define a single threshold hepatitis B virus DNA level for differentiating inactive carriers from patients with hepatitis B e antigen-negative chronic hepatitis. Diagnostic accuracy of hepatitis B virus DNA with alanine aminotransferase thresholds for the prediction of significant fibrosis is weak.

  16. Using circulating cell-free DNA to monitor personalized cancer therapy.

    PubMed

    Oellerich, Michael; Schütz, Ekkehard; Beck, Julia; Kanzow, Philipp; Plowman, Piers N; Weiss, Glen J; Walson, Philip D

    2017-05-01

    High-quality genomic analysis is critical for personalized pharmacotherapy in patients with cancer. Tumor-specific genomic alterations can be identified in cell-free DNA (cfDNA) from patient blood samples and can complement biopsies for real-time molecular monitoring of treatment, detection of recurrence, and tracking resistance. cfDNA can be especially useful when tumor tissue is unavailable or insufficient for testing. For blood-based genomic profiling, next-generation sequencing (NGS) and droplet digital PCR (ddPCR) have been successfully applied. The US Food and Drug Administration (FDA) recently approved the first such "liquid biopsy" test for EGFR mutations in patients with non-small cell lung cancer (NSCLC). Such non-invasive methods allow for the identification of specific resistance mutations selected by treatment, such as EGFR T790M, in patients with NSCLC treated with gefitinib. Chromosomal aberration pattern analysis by low coverage whole genome sequencing is a more universal approach based on genomic instability. Gains and losses of chromosomal regions have been detected in plasma tumor-specific cfDNA as copy number aberrations and can be used to compute a genomic copy number instability (CNI) score of cfDNA. A specific CNI index obtained by massive parallel sequencing discriminated those patients with prostate cancer from both healthy controls and men with benign prostatic disease. Furthermore, androgen receptor gene aberrations in cfDNA were associated with therapeutic resistance in metastatic castration resistant prostate cancer. Change in CNI score has been shown to serve as an early predictor of response to standard chemotherapy for various other cancer types (e.g. NSCLC, colorectal cancer, pancreatic ductal adenocarcinomas). CNI scores have also been shown to predict therapeutic responses to immunotherapy. Serial genomic profiling can detect resistance mutations up to 16 weeks before radiographic progression. There is a potential for cost savings when ineffective use of expensive new anticancer drugs is avoided or halted. Challenges for routine implementation of liquid biopsy tests include the necessity of specialized personnel, instrumentation, and software, as well as further development of quality management (e.g. external quality control). Validation of blood-based tumor genomic profiling in additional multicenter outcome studies is necessary; however, cfDNA monitoring can provide clinically important actionable information for precision oncology approaches.

  17. Cell-free total and fetal DNA in first trimester maternal serum and subsequent development of preeclampsia

    PubMed Central

    Silver, Robert; Clifton, Rebecca G.; Myatt, Leslie; Hauth, John C.; Leveno, Kenneth J.; Reddy, Uma M.; Peaceman, Alan M.; Ramin, Susan M.; Samuels, Philip; Saade, George; Sorokin, Yoram

    2017-01-01

    Objective To assess the relationship between first trimester cell-free total and fetal DNA in maternal plasma and the subsequent development of preeclampsia. Study Design Nested case-control study of patients enrolled in the Combined Antioxidant and Preeclampsia Prediction Studies (CAPPS) prediction study of 175 women who did and 175 women who did not develop preeclampsia. The predictive values of cell-free total and fetal DNA and the subsequent development of preeclampsia were measured using ROC curves. Results Cell-free total DNA was higher in African American (median; 25 – 75%; 6.15; 0.14 – 28.73; p = 0.02) and Hispanic (4.95; 0.20 – 26.82; p = 0.037) compared to white women (2.33; 0.03 – 13.10). Levels of cell-free total DNA was also associated with maternal BMI (p = 0.02). Cell-free total DNA levels were similar between women who later developed preeclampsia (3.52; 0.11 – 25.3) and controls (3.74; 0.12 – 21.14, p=0.96). Conclusions There is no significant difference in levels of cell-free total DNA in the first trimester in women who subsequently develop preeclampsia. Levels of cell-free total DNA in the first trimester are increased in African American and Hispanic compared to white women, and levels increase with increasing BMI. PMID:27398706

  18. The role of histologic subtype, p16(INK4a) expression, and presence of human papillomavirus DNA in penile squamous cell carcinoma.

    PubMed

    Steinestel, Julie; Al Ghazal, Andreas; Arndt, Annette; Schnoeller, Thomas J; Schrader, Andres J; Moeller, Peter; Steinestel, Konrad

    2015-04-03

    Up to 50% of penile squamous cell carcinomas (pSCC) develop in the context of high-risk human papillomavirus (HR-HPV) infection. Most of these tumours have been reported to show basaloid differentiation and overexpression of tumour suppressor protein p16(INK4a). Whether HPV-triggered carcinogenesis in pSCC has an impact on tumour aggressiveness, however, is still subject to research. In tissue specimens from 58 patients with surgically treated pSCC between 1995 and 2012, we performed p16(INK4a) immunohistochemistry and DNA extraction followed by HPV subtyping using a PCR-based approach. The results were correlated with histopathological and clinical parameters. 90.4% of tumours were of conventional (keratinizing) subtype. HR-HPV DNA was detected in 29.3%, and a variety of p16(INK4a) staining patterns was observed in 58.6% of samples regardless of histologic subtype. Sensitivity of basaloid subtype to predict HR-HPV positivity was poor (11.8%). In contrast, sensitivity and specificity of p16(INK4a) staining to predict presence of HR-HPV DNA was 100% and 57%, respectively. By focussing on those samples with intense nuclear staining pattern for p16(INK4a), specificity could be improved to 83%. Both expression of p16(INK4a) and presence of HR-HPV DNA, but not histologic grade, were inversely associated with pSCC tumour invasion (p = 0.01, p = 0.03, and p = 0.71). However, none of these correlated with nodal involvement or distant metastasis. In contrast to pathological tumour stage, the HR-HPV status, histologic grade, and p16(INK4a) positivity failed to predict cancer-specific survival. Our results confirm intense nuclear positivity for p16(INK4a), rather than histologic subtype, as a good predictor for presence of HR-HPV DNA in pSCC. HR-HPV / p16(INK4a) positivity, independent of histological tumour grade, indicates a less aggressive local behaviour; however, its value as an independent prognostic indicator remains to be determined. Since local invasion can be judged without p16(INK4a)/HPV-detection on microscopic evaluation, our study argues against routine testing in the setting of pSCC.

  19. Paleoclimatic modeling and phylogeography of least killifish, Heterandria formosa: insights into Pleistocene expansion-contraction dynamics and evolutionary history of North American Coastal Plain freshwater biota

    PubMed Central

    2013-01-01

    Background Climatic and sea-level fluctuations throughout the last Pleistocene glacial cycle (~130-0 ka) profoundly influenced present-day distributions and genetic diversity of Northern Hemisphere biotas by forcing range contractions in many species during the glacial advance and allowing expansion following glacial retreat ('expansion-contraction’ model). Evidence for such range dynamics and refugia in the unglaciated Gulf-Atlantic Coastal Plain stems largely from terrestrial species, and aquatic species Pleistocene responses remain relatively uninvestigated. Heterandria formosa, a wide-ranging regional endemic, presents an ideal system to test the expansion-contraction model within this biota. By integrating ecological niche modeling and phylogeography, we infer the Pleistocene history of this livebearing fish (Poeciliidae) and test for several predicted distributional and genetic effects of the last glaciation. Results Paleoclimatic models predicted range contraction to a single southwest Florida peninsula refugium during the Last Glacial Maximum, followed by northward expansion. We inferred spatial-population subdivision into four groups that reflect genetic barriers outside this refuge. Several other features of the genetic data were consistent with predictions derived from an expansion-contraction model: limited intraspecific divergence (e.g. mean mtDNA p-distance = 0.66%); a pattern of mtDNA diversity (mean Hd = 0.934; mean π = 0.007) consistent with rapid, recent population expansion; a lack of mtDNA isolation-by-distance; and clinal variation in allozyme diversity with higher diversity at lower latitudes near the predicted refugium. Statistical tests of mismatch distributions and coalescent simulations of the gene tree lent greater support to a scenario of post-glacial expansion and diversification from a single refugium than to any other model examined (e.g. multiple-refugia scenarios). Conclusions Congruent results from diverse data indicate H. formosa fits the classic Pleistocene expansion-contraction model, even as the genetic data suggest additional ecological influences on population structure. While evidence for Plio-Pleistocene Gulf Coast vicariance is well described for many freshwater species presently codistributed with H. formosa, this species demography and diversification departs notably from this pattern. Species-specific expansion-contraction dynamics may therefore have figured more prominently in shaping Coastal Plain evolutionary history than previously thought. Our findings bolster growing appreciation for the complexity of phylogeographical structuring within North America’s southern refugia, including responses of Coastal Plain freshwater biota to Pleistocene climatic fluctuations. PMID:24107245

  20. Optimizing Fungal DNA Extraction Methods from Aerosol Filters

    NASA Astrophysics Data System (ADS)

    Jimenez, G.; Mescioglu, E.; Paytan, A.

    2016-12-01

    Fungi and fungal spores can be picked up from terrestrial ecosystems, transported long distances, and deposited into marine ecosystems. It is important to study dust-borne fungal communities, because they can stay viable and effect the ambient microbial populations, which are key players in biogeochemical cycles. One of the challenges of studying dust-borne fungal populations is that aerosol samples contain low biomass, making extracting good quality DNA very difficult. The aim of this project was to increase DNA yield by optimizing DNA extraction methods. We tested aerosol samples collected from Haifa, Israel (polycarbonate filter), Monterey Bay, CA (quartz filter) and Bermuda (quartz filter). Using the Qiagen DNeasy Plant Kit, we tested the effect of altering bead beating times and incubation times, adding three freeze and thaw steps, initially washing the filters with buffers for various lengths of time before using the kit, and adding a step with 30 minutes of sonication in 65C water. Adding three freeze/thaw steps, adding a sonication step, washing with a phosphate buffered saline overnight, and increasing incubation time to two hours, in that order, resulted in the highest increase in DNA for samples from Israel (polycarbonate). DNA yield of samples from Monterey (quart filter) increased about 5 times when washing with buffers overnight (phosphate buffered saline and potassium phophate buffer), adding a sonication step, and adding three freeze and thaw steps. Samples collected in Bermuda (quartz filter) had the highest increase in DNA yield from increasing incubation to 2 hours, increasing bead beating time to 6 minutes, and washing with buffers overnight (phosphate buffered saline and potassium phophate buffer). Our results show that DNA yield can be increased by altering various steps of the Qiagen DNeasy Plant Kit protocol, but different types of filters collected at different sites respond differently to alterations. These results can be used as preliminary results to continue developing fungi DNA extraction methods. Developing these methods will be important as dust storms are predicted to increase due to increased draughts and anthropogenic activity, and the fungal communities of these dust-storms are currently relatively understudied.

  1. DNA damage induction and/or repair as mammalian cell biomarker for the prediction of cellular radiation response

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, C.

    DNA damage and its repair processes are key factors in cancer induction and also in the treatment of malignancies. Cancer prevention during extended space missions becomes a topic of great importance for space radiobiology. The knowledge of individual responsiveness would allow the protection strategy to be tailored optimally in each case. Radiobiological analysis of cultured cells derived from tissue explants from individuals has shown that measurement of the surviving fraction after 2 Gy (SF2) may be used to predict the individual responsiveness. However, clonogenic assays are timeconsuming, thus alternative assays for the determination of radiore-sponse are being sought. For that reason CHO cell strains having different repair capacities were used for examining whether DNA strand break repair is a suitable experimental design to allow predictive statements. Cellular survival (CFA assay) and DNA strand breaks (total DNA strand breaks: FADU technique; DSBs: non-denaturing elution) were determined in parallel immediately after irradiation as well as after a 24 hour recovery period according to dose. There were no correlations between the dose-response curves of the initial level of DNA strand breaks and parameters that describe clonogenic survival curves (SF2). A good correlation exists between intrinsic cellular radioresistance and the extent of residual DNA strand breaks.

  2. Sequence-dependent modelling of local DNA bending phenomena: curvature prediction and vibrational analysis.

    PubMed

    Vlahovicek, K; Munteanu, M G; Pongor, S

    1999-01-01

    Bending is a local conformational micropolymorphism of DNA in which the original B-DNA structure is only distorted but not extensively modified. Bending can be predicted by simple static geometry models as well as by a recently developed elastic model that incorporate sequence dependent anisotropic bendability (SDAB). The SDAB model qualitatively explains phenomena including affinity of protein binding, kinking, as well as sequence-dependent vibrational properties of DNA. The vibrational properties of DNA segments can be studied by finite element analysis of a model subjected to an initial bending moment. The frequency spectrum is obtained by applying Fourier analysis to the displacement values in the time domain. This analysis shows that the spectrum of the bending vibrations quite sensitively depends on the sequence, for example the spectrum of a curved sequence is characteristically different from the spectrum of straight sequence motifs of identical basepair composition. Curvature distributions are genome-specific, and pronounced differences are found between protein-coding and regulatory regions, respectively, that is, sites of extreme curvature and/or bendability are less frequent in protein-coding regions. A WWW server is set up for the prediction of curvature and generation of 3D models from DNA sequences (http:@www.icgeb.trieste.it/dna).

  3. Single nucleotide polymorphisms in the mitochondrial displacement loop and outcome of esophageal squamous cell carcinoma.

    PubMed

    Zhang, Ruixing; Wang, Rui; Zhang, Fengbin; Wu, Chensi; Fan, Haiyan; Li, Yan; Wang, Cuiju; Guo, Zhanjun

    2010-11-26

    Accumulation of single nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) has been described for different types of cancers and might be associated with cancer risk and disease outcome. We used a population-based series of esophageal squamous cell carcinoma (ESCC) patients for investigating the prediction power of SNPs in mitochondrial D-loop. The D-loop region of mtDNA was sequenced for 60 ESCC patients recorded in the Fourth Hospital of Hebei Medical University between 2003 and 2004. The 5 year survival curve were calculated with the Kaplan-Meier method and compared by the log-rank test at each SNP site, a multivariate survival analysis was also performed with the Cox proportional hazards method. The SNP sites of nucleotides 16274G/A, 16278C/T and 16399A/G were identified for prediction of post-operational survival by the log-rank test. In an overall multivariate analysis, the 16278 and 16399 alleles were identified as independent predictors of ESCC outcome. The length of survival of patients with the minor allele 16278T genotype was significantly shorter than that of patients with 16278C at the 16278 site (relative risk, 3.001; 95% CI, 1.029 - 8.756; p = 0.044). The length of survival of patients with the minor allele 16399G genotype was significantly shorter than that of patients with the more frequent allele 16399A at the 16399 site in ESCC patients (relative risk, 3.483; 95% CI, 1.068 - 11.359; p = 0.039). Genetic polymorphisms in the D-loop are independent prognostic markers for patients with ESCC. Accordingly, the analysis of genetic polymorphisms in the mitochondrial D-loop can help identify patient subgroups at high risk of a poor disease outcome.

  4. Mechanical characteriztion of single-stranded DNA and single-walled carbon nanotube hybrid structures

    NASA Astrophysics Data System (ADS)

    Rokadia, Husein Juzer

    Hybrid nanostructures of single-stranded DNA (ssDNA) and single-walled carbon nanotubes are being proposed as the basis for the next generation of biosensors. For such biosensors, mechanical properties such as the Young's modulus of the hybrid structures play a critical role, which to the best of the author's knowledge is still unknown. Thus, the determination of the Young's modulus of the ssDNA/swCNT hybrid structures was the primary objective of this study. Hybrid structures of 30mer polyT ssDNA and HiPCORTM swCNTs were conjugated using a well known non-covalent interaction protocol. Atomic force microscopy (AFM) was used to scan and generate topographic images and perform nanoindentation tests on the hybrid structures. Molecular dynamics (MD) simulations using a commercial MD program, Materials StudioRTM were performed to study the nature of non-covalent interactions between the ssDNA and the swCNT on the pico-second timescale. AFM topography scans of the bare control HiPCORTM swCNTs indicated an average diameter of about 1.0 nm and length of 800 nm. Similarly, the control 30mer polyT ssDNA was found to resemble a half-hemispherical domed structure with an average height of 2.1 nm. Nanoindentation tests yielded the transverse Young's modulus of the control swCNTs to be 78.0 GPa. The control ssDNA were found to have a Young's modulus of 3.3 GPa and 4.0 MPa in dry and wet environments, respectively. Topographic scans of the ssDNA/swCNT hybrid structures showed the slender swCNTs fully or partially coated along their lengths by ssDNA. The height of the hybrid structures ranged from 2.5 nm to 7.5 nm. Nanoindentation tests on the ssDNA coated portions of the hybrid structures indicated that, their Young's modulus exponentially decreased with increasing coating thickness. Thinly coated sections were found to have a Young's modulus of 100.0 GPa and 7.0 MPa in dry and wet conditions respectively. The thick walled hybrid sections were found to have an average Young's modulus of 4.5 GPa and 1.0 GPa in the dry and wet environments, respectively. MD results indicated that the wrapping of the ssDNA had a significant impact on the hybrid structures. The longitudinal Young's modulus of a hybrid structure was found to be approximately 50.0 GPa, compared to a bare nanotube whose Young's modulus was approximately 800 GPa. Overall, the experimental and numerical results displayed consistent trends. The experimental results reported the swCNTs to have the highest transverse Young's modulus followed by the hybrids and the ssDNA. Similarly, the numerical simulations predicted the highest longitudinal Young's modulus for the swCNTs, followed by the hybrids and the DNA.

  5. Development of a Test Method for the Evaluation of DNA Damage in Mouse Spermatogonial Stem Cells

    PubMed Central

    Jeon, Hye Lyun; Yi, Jung-Sun; Kim, Tae Sung; Oh, Youkyung; Lee, Hye Jeong; Lee, Minseong; Bang, Jin Seok; Ko, Kinarm; Ahn, Il Young; Ko, Kyungyuk; Kim, Joohwan; Park, Hye-Kyung; Lee, Jong Kwon; Sohn, Soo Jung

    2017-01-01

    Although alternative test methods based on the 3Rs (Replacement, Reduction, Refinement) are being developed to replace animal testing in reproductive and developmental toxicology, they are still in an early stage. Consequently, we aimed to develop alternative test methods in male animals using mouse spermatogonial stem cells (mSSCs). Here, we modified the OECD TG 489 and optimized the in vitro comet assay in our previous study. This study aimed to verify the validity of in vitro tests involving mSSCs by comparing their results with those of in vivo tests using C57BL/6 mice by gavage. We selected hydroxyurea (HU), which is known to chemically induce male reproductive toxicity. The 50% inhibitory concentration (IC50) value of HU was 0.9 mM, as determined by the MTT assay. In the in vitro comet assay, % tail DNA and Olive tail moment (OTM) after HU administration increased significantly, compared to the control. Annexin V, PI staining and TUNEL assays showed that HU caused apoptosis in mSSCs. In order to compare in vitro tests with in vivo tests, the same substances were administered to male C57BL/6 mice. Reproductive toxicity was observed at 25, 50, 100, and 200 mg/kg/day as measured by clinical measures of reduction in sperm motility and testicular weight. The comet assay, DCFH-DA assay, H&E staining, and TUNEL assay were also performed. The results of the test with C57BL/6 mice were similar to those with mSSCs for HU treatment. Finally, linear regression analysis showed a strong positive correlation between results of in vitro tests and those of in vivo. In conclusion, the present study is the first to demonstrate the effect of HU-induced DNA damage, ROS formation, and apoptosis in mSSCs. Further, the results of the current study suggest that mSSCs could be a useful model to predict male reproductive toxicity. PMID:28443181

  6. Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth

    PubMed Central

    Kiselinova, Maja; De Spiegelaere, Ward; Buzon, Maria Jose; Malatinkova, Eva; Lichterfeld, Mathias; Vandekerckhove, Linos

    2016-01-01

    The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4–2.6) between time point 1 and 2; and median of 31 days (IQR: 28–36) between time point 2 and 3. Patients were median of 6 years (IQR: 3–12) on ART, and plasma viral load (<50 copies/ml) was suppressed for median of 4 years (IQR: 2–8). Total HIV-1 DNA, unspliced (us) and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA) was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (p<0.001, R² = 0.85), us HIV-1 RNA (p = 0.029, R² = 0.40), and VOA (p = 0.041, R2 = 0.44). Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54). The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1). Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the replication-competent virus in ART suppressed patients. PMID:26938995

  7. Human Papillomavirus DNA Methylation Predicts Response to Treatment Using Cidofovir and Imiquimod in Vulval Intraepithelial Neoplasia 3.

    PubMed

    Jones, Sadie E F; Hibbitts, Samantha; Hurt, Christopher N; Bryant, Dean; Fiander, Alison N; Powell, Ned; Tristram, Amanda J

    2017-09-15

    Purpose: Response rates to treatment of vulval intraepithelial neoplasia (VIN) with imiquimod and cidofovir are approximately 57% and 61%, respectively. Treatment is associated with significant side effects and, if ineffective, risk of malignant progression. Treatment response is not predicted by clinical factors. Identification of a biomarker that could predict response is an attractive prospect. This work investigated HPV DNA methylation as a potential predictive biomarker in this setting. Experimental Design: DNA from 167 cases of VIN 3 from the RT3 VIN clinical trial was assessed. HPV-positive cases were identified using Greiner PapilloCheck and HPV 16 type-specific PCR. HPV DNA methylation status was assessed in three viral regions: E2, L1/L2, and the promoter, using pyrosequencing. Results: Methylation of the HPV E2 region was associated with response to treatment. For cidofovir ( n = 30), median E2 methylation was significantly higher in patients who responded ( P ≤ 0.0001); E2 methylation >4% predicted response with 88.2% sensitivity and 84.6% specificity. For imiquimod ( n = 33), median E2 methylation was lower in patients who responded to treatment ( P = 0.03; not significant after Bonferroni correction); E2 methylation <4% predicted response with 70.6% sensitivity and 62.5% specificity. Conclusions: These data indicate that cidofovir and imiquimod may be effective in two biologically defined groups. HPV E2 DNA methylation demonstrated potential as a predictive biomarker for the treatment of VIN with cidofovir and may warrant investigation in a biomarker-guided clinical trial. Clin Cancer Res; 23(18); 5460-8. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Gene features selection for three-class disease classification via multiple orthogonal partial least square discriminant analysis and S-plot using microarray data.

    PubMed

    Yang, Mingxing; Li, Xiumin; Li, Zhibin; Ou, Zhimin; Liu, Ming; Liu, Suhuan; Li, Xuejun; Yang, Shuyu

    2013-01-01

    DNA microarray analysis is characterized by obtaining a large number of gene variables from a small number of observations. Cluster analysis is widely used to analyze DNA microarray data to make classification and diagnosis of disease. Because there are so many irrelevant and insignificant genes in a dataset, a feature selection approach must be employed in data analysis. The performance of cluster analysis of this high-throughput data depends on whether the feature selection approach chooses the most relevant genes associated with disease classes. Here we proposed a new method using multiple Orthogonal Partial Least Squares-Discriminant Analysis (mOPLS-DA) models and S-plots to select the most relevant genes to conduct three-class disease classification and prediction. We tested our method using Golub's leukemia microarray data. For three classes with subtypes, we proposed hierarchical orthogonal partial least squares-discriminant analysis (OPLS-DA) models and S-plots to select features for two main classes and their subtypes. For three classes in parallel, we employed three OPLS-DA models and S-plots to choose marker genes for each class. The power of feature selection to classify and predict three-class disease was evaluated using cluster analysis. Further, the general performance of our method was tested using four public datasets and compared with those of four other feature selection methods. The results revealed that our method effectively selected the most relevant features for disease classification and prediction, and its performance was better than that of the other methods.

  9. Image-Based Modeling Reveals Dynamic Redistribution of DNA Damageinto Nuclear Sub-Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costes Sylvain V., Ponomarev Artem, Chen James L.; Nguyen, David; Cucinotta, Francis A.

    2007-08-03

    Several proteins involved in the response to DNA doublestrand breaks (DSB) f orm microscopically visible nuclear domains, orfoci, after exposure to ionizing radiation. Radiation-induced foci (RIF)are believed to be located where DNA damage occurs. To test thisassumption, we analyzed the spatial distribution of 53BP1, phosphorylatedATM, and gammaH2AX RIF in cells irradiated with high linear energytransfer (LET) radiation and low LET. Since energy is randomly depositedalong high-LET particle paths, RIF along these paths should also berandomly distributed. The probability to induce DSB can be derived fromDNA fragment data measured experimentally by pulsed-field gelelectrophoresis. We used this probability in Monte Carlo simulationsmore » topredict DSB locations in synthetic nuclei geometrically described by acomplete set of human chromosomes, taking into account microscope opticsfrom real experiments. As expected, simulations produced DNA-weightedrandom (Poisson) distributions. In contrast, the distributions of RIFobtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) werenon-random. This deviation from the expected DNA-weighted random patterncan be further characterized by "relative DNA image measurements." Thisnovel imaging approach shows that RIF were located preferentially at theinterface between high and low DNA density regions, and were morefrequent than predicted in regions with lower DNA density. The samepreferential nuclear location was also measured for RIF induced by 1 Gyof low-LET radiation. This deviation from random behavior was evidentonly 5 min after irradiation for phosphorylated ATM RIF, while gammaH2AXand 53BP1 RIF showed pronounced deviations up to 30 min after exposure.These data suggest that DNA damage induced foci are restricted to certainregions of the nucleus of human epithelial cells. It is possible that DNAlesions are collected in these nuclear sub-domains for more efficientrepair.« less

  10. DNA typing for personal identification of urine after long-term preservation for testing in doping control.

    PubMed

    Aoki, Kimiko; Tanaka, Hiroyuki; Ueki, Makoto

    2017-08-01

    When the tampering of a urine sample is suspected in doping control, personal identification of the sample needs to be determined by short tandem repeat (STR) analysis using DNA. We established a method for extracting DNA from urine samples stored at -20 °C without using any additives or procedures, which is consistent with how samples are required to be managed for doping control. The method, using the Puregene® Blood Core kit followed by NucleoSpin® gDNA Clean-up or NucleoSpin® gDNA Clean-up XS kit, does not need any special instrument and can provide a purified extract with high-quality DNA from up to 40 mL of urine suitable for STR analysis using an AmpFlSTR® Identifiler® PCR amplification kit. Storing urine at -20 °C is detrimental to the stability of DNA. The DNA concentration of preserved urine could not be predicted by specific gravity or creatinine level at the time of urine collection. The DNA concentration of a purified extract (10 μL) was required to be >0.06 ng/μL to ensure a successful STR analysis. Thus, the required extraction volumes of urine preserved for 3-7 years at -20 °C were estimated to be 30 mL and 20 mL to succeed in at least 86% of men and 91% of women, respectively. Considering the long half-life of DNA during long-term preservation, our extraction method is applicable to urine samples stored even for 10 years, which is currently the storage duration allowed (increased from 8 years) before re-examination in doping control. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Structural Confirmation of a Bent and Open Model for the Initiation Complex of T7 RNA Polymerase

    PubMed Central

    Turingan, Rosemary S.; Liu, Cuihua; Hawkins, Mary E.; Martin, Craig T.

    2008-01-01

    T7 RNA polymerase is known to induce bending of its promoter DNA upon binding, as evidenced by gel-shift assays and by recent end-to-end fluorescence energy transfer distance measurements. Crystal structures of promoter-bound and initially transcribing complexes, however, lack downstream DNA, providing no information on the overall path of the DNA through the protein. Crystal structures of the elongation complex do include downstream DNA and provide valuable guidance in the design of models for the complete melted bubble structure at initiation. In the current study, we test a specific structural model for the initiation complex, obtained by alignment of the C-terminal regions of the protein structures from both initiation and elongation and then simple transferal of the downstream DNA from the elongation complex onto the initiation complex. FRET measurement of distances from a point upstream on the promoter DNA to various points along the downstream helix reproduce the expected helical periodicity in the distances and support the model’s orientation and phasing of the downstream DNA. The model also makes predictions about the extent of melting downstream of the active site. By monitoring fluorescent base analogs incorporated at various positions in the DNA we have mapped the downstream edge of the bubble, confirming the model. The initially melted bubble, in the absence of substrate, encompasses 7–8 bases and is sufficient to allow synthesis of a 3 base transcript before further melting is required. The results demonstrate that despite massive changes in the N-terminal portion of the protein and in the DNA upstream of the active site, the DNA downstream of the active site is virtually identical in both initiation and elongation complexes. PMID:17253774

  12. Exploring mechanisms of transport and persistence of environmental DNA (eDNA)

    NASA Astrophysics Data System (ADS)

    Shogren, A.; Tank, J. L.; Riis, T.; Rosi, E. J.; Bolster, D.

    2017-12-01

    Sampling for eDNA is a non-intrusive method to detect species presence without direct observation, which allows for earlier detection and more rapid response than conventional sampling methods. However, our current understanding of how eDNA is transported and persists in flowing waters (e.g., streams and rivers) remains imprecise; in flowing waters, the target organism may be some distance away from where the eDNA in water is collected. It is uncertain how the unique transport properties of suspended eDNA or the inherent heterogeneity of natural flowing systems may impact the probability of downstream eDNA detection. To improve understanding of eDNA fate, we first conducted experimental releases and modeled the impact of benthic substrate heterogeneity and size on eDNA transport and retention in streams. We also used recirculating artificial streams to constrain estimates of eDNA degradation in systems with varying flow and microbial biofilm coverage. We found that eDNA retention in streams is substrate-specific, and that streambed hydraulics have significant influence on how far eDNA is transported downstream. Through the degradation experiments, we found that eDNA degradation is strongly context dependent, but even in systems with low velocity, eDNA can remain detectable in the water column >24hrs after introduction. This differential persistence of eDNA particles confirms that eDNA dynamics in flowing waters are not constant along a spatial continuum, which complicates interpretation of a positive detection in flowing waters, which presents a scaling problem for future modeling efforts to support transport predictions. To test our experimental results in a natural system, we compared our previous estimates for eDNA transport, retention, and degradation to field data collected during a longitudinal field survey for zebra mussel eDNA on the Gudena River in Silkeborg, Denmark. We found that though heterogeneity indeed complicates scaling efforts to extrapolate results from small experimental streams to larger natural systems, we can use the small-scale experiments to improve how we interpret spatial variation in eDNA signal in larger scale flowing systems.

  13. Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle

    PubMed Central

    Westhoff, Connie M.; Uy, Jon Michael; Aguad, Maria; Smeland‐Wagman, Robin; Kaufman, Richard M.; Rehm, Heidi L.; Green, Robert C.; Silberstein, Leslie E.

    2015-01-01

    BACKGROUND There are 346 serologically defined red blood cell (RBC) antigens and 33 serologically defined platelet (PLT) antigens, most of which have known genetic changes in 45 RBC or six PLT genes that correlate with antigen expression. Polymorphic sites associated with antigen expression in the primary literature and reference databases are annotated according to nucleotide positions in cDNA. This makes antigen prediction from next‐generation sequencing data challenging, since it uses genomic coordinates. STUDY DESIGN AND METHODS The conventional cDNA reference sequences for all known RBC and PLT genes that correlate with antigen expression were aligned to the human reference genome. The alignments allowed conversion of conventional cDNA nucleotide positions to the corresponding genomic coordinates. RBC and PLT antigen prediction was then performed using the human reference genome and whole genome sequencing (WGS) data with serologic confirmation. RESULTS Some major differences and alignment issues were found when attempting to convert the conventional cDNA to human reference genome sequences for the following genes: ABO, A4GALT, RHD, RHCE, FUT3, ACKR1 (previously DARC), ACHE, FUT2, CR1, GCNT2, and RHAG. However, it was possible to create usable alignments, which facilitated the prediction of all RBC and PLT antigens with a known molecular basis from WGS data. Traditional serologic typing for 18 RBC antigens were in agreement with the WGS‐based antigen predictions, providing proof of principle for this approach. CONCLUSION Detailed mapping of conventional cDNA annotated RBC and PLT alleles can enable accurate prediction of RBC and PLT antigens from whole genomic sequencing data. PMID:26634332

  14. Molecular Testing for miRNA, mRNA, and DNA on Fine-Needle Aspiration Improves the Preoperative Diagnosis of Thyroid Nodules With Indeterminate Cytology.

    PubMed

    Labourier, Emmanuel; Shifrin, Alexander; Busseniers, Anne E; Lupo, Mark A; Manganelli, Monique L; Andruss, Bernard; Wylie, Dennis; Beaudenon-Huibregtse, Sylvie

    2015-07-01

    Molecular testing for oncogenic mutations or gene expression in fine-needle aspirations (FNAs) from thyroid nodules with indeterminate cytology identifies a subset of benign or malignant lesions with high predictive value. This study aimed to evaluate a novel diagnostic algorithm combining mutation detection and miRNA expression to improve the diagnostic yield of molecular cytology. Surgical specimens and preoperative FNAs (n = 638) were tested for 17 validated gene alterations using the miRInform Thyroid test and with a 10-miRNA gene expression classifier generating positive (malignant) or negative (benign) results. Cross-sectional sampling of thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance (AUS/FLUS) or follicular neoplasm/suspicious for a follicular neoplasm (FN/SFN) cytology (n = 109) was conducted at 12 endocrinology centers across the United States. Qualitative molecular results were compared with surgical histopathology to determine diagnostic performance and model clinical effect. Mutations were detected in 69% of nodules with malignant outcome. Among mutation-negative specimens, miRNA testing correctly identified 64% of malignant cases and 98% of benign cases. The diagnostic sensitivity and specificity of the combined algorithm was 89% (95% confidence interval [CI], 73-97%) and 85% (95% CI, 75-92%), respectively. At 32% cancer prevalence, 61% of the molecular results were benign with a negative predictive value of 94% (95% CI, 85-98%). Independently of variations in cancer prevalence, the test increased the yield of true benign results by 65% relative to mRNA-based gene expression classification and decreased the rate of avoidable diagnostic surgeries by 69%. Multiplatform testing for DNA, mRNA, and miRNA can accurately classify benign and malignant thyroid nodules, increase the diagnostic yield of molecular cytology, and further improve the preoperative risk-based management of benign nodules with AUS/FLUS or FN/SFN cytology.

  15. Predicting normal tissue radiosensitivity

    NASA Astrophysics Data System (ADS)

    Dickson, Jeanette

    Two methods of predicting normal cell radiosensitivity were investigated in different patient groups. Plasma transforming growth factor beta one (TGFbeta1) levels were measured by ELISA, using a commercially available kit. Residual DNA double strand breaks were measured in normal epidermal fibroblasts following 150 Gy. After allowing 24 hours for repair, the DNA damage was assayed using pulsed field gel electrophoresis (PFGE). Pretreatment plasma TGFbeta1 levels were investigated retrospectively in patients with carcinoma of the cervix in relation to tumour control and late morbidity following radiotherapy. Plasma TGFbeta1 levels increased with increasing disease stage. They also correlated with two other known measures of tumour burden i.e. plasma levels of carcinoma antigen 125 (CA125) and tissue polypeptide antigen (TPA). Elevated pretreatment plasma TGFbeta1 levels predicted for a poor outcome both in terms of local control and overall survival. Plasma TGF?l levels did not predict for the development of radiotherapy morbidity of any grade. In conclusion pre-treatment plasma TGFbeta1 levels predict for tumour burden and tumour outcome in patients with carcinoma of the cervix. Changes in plasma TGFbeta1 levels measured prospectively may predict for radiation morbidity and should be investigated. A prospective study was undertaken in patients with carcinoma of the head and neck region. Changes in plasma TGFbeta1 levels between the start and the end of a course of radical radiotherapy were investigated in relation to the development of acute radiation toxicity. Patients were categorised according to the pattern of response of their TGFbeta1 levels over the course of their treatment. Those patients whose TGFbeta1 levels decreased, but did not normalise during radiotherapy were assigned to category 2. Category 2 predicted for a severe acute reaction, as measured using the LENT SOMA score, with a sensitivity of 33% and a specificity of 100%. The positive predictive value of was 100%. As part of the validation of the commercially available TGFbeta1 kit, samples were obtained from sixty-six normal volunteers with a wide age distribution. This large series demonstrated an unexpected age-related rise in TGFbeta1 levels that had not been previously demonstrated in the literature. In breast carcinoma patients, two assays were performed retrospectively. Both pre-treatment plasma TGFbeta1 levels and residual DNA double strand breaks (measured using PFGE) were correlated with clinical outcome. Outcome was in the form of a total LENT SOMA score and late radiation fibrosis score, as measured by clinical palpation. No relationship was demonstrated between either pretreatment TGFbeta1 levels or residual DNA double strand breaks and late radiotherapy outcome. This failed to validate a similar series of patients investigated in the same department using the same technique. This work has shown that measurement of residual DNA double strand breaks using PFGE is not sufficiently robust to be used clinically as a predictor of normal tissue radioresponse. In conclusion, changes in TGFbeta1 plasma levels occurring over time during a course of radical radiotherapy, hold promise for the development of a rapid test of intrinsic radiosensitivity.

  16. Global force-torque phase diagram for the DNA double helix: structural transitions, triple points and collapsed plectonemes

    PubMed Central

    Marko, John F.; Neukirch, Sébastien

    2014-01-01

    We present a free energy model for structural transitions of the DNA double helix driven by tensile and torsional stress. Our model is coarse grained, and is based on semiflexible polymer descriptions of B-DNA, underwound L-DNA, and highly overwound P-DNA. The statistical-mechanical model of plectonemic supercoiling previously developed for B-DNA is applied to semiflexible polymer models of P and L-DNA, to obtain a model of DNA structural transitions in quantitative accord with experiment. We identify two distinct plectonemic states, one “inflated” by electrostatic repulsion and thermal fluctuations, and the other “collapsed”, with the two double helices inside the supercoils driven to close contact. We find that supercoiled B and L are stable only in inflated form, while supercoiled P is always collapsed. We also predict the behavior and experimental signatures of highly underwound “Q”-DNA, the left-handed analog of P-DNA; as for P, supercoiled Q is always collapsed. Overstretched “S”-DNA and strand-separated “stress-melted” DNA are also included in our model, allowing prediction of a global phase diagram for forces up to 1000 pN and torques between ±60 pN nm, or in terms of linking number density, from σ = −5 to +3. PMID:24483501

  17. A synthetic lethal screen identifies ATR-inhibition as a novel therapeutic approach for POLD1-deficient cancers

    PubMed Central

    Hocke, Sandra; Guo, Yang; Job, Albert; Orth, Michael; Ziesch, Andreas; Lauber, Kirsten; De Toni, Enrico N; Gress, Thomas M.; Herbst, Andreas; Göke, Burkhard; Gallmeier, Eike

    2016-01-01

    The phosphoinositide 3-kinase-related kinase ATR represents a central checkpoint regulator and mediator of DNA-repair. Its inhibition selectively eliminates certain subsets of cancer cells in various tumor types, but the underlying genetic determinants remain enigmatic. Here, we applied a synthetic lethal screen directed against 288 DNA-repair genes using the well-defined ATR knock-in model of DLD1 colorectal cancer cells to identify potential DNA-repair defects mediating these effects. We identified a set of DNA-repair proteins, whose knockdown selectively killed ATR-deficient cancer cells. From this set, we further investigated the profound synthetic lethal interaction between ATR and POLD1. ATR-dependent POLD1 knockdown-induced cell killing was reproducible pharmacologically in POLD1-depleted DLD1 cells and a panel of other colorectal cancer cell lines by using chemical inhibitors of ATR or its major effector kinase CHK1. Mechanistically, POLD1 depletion in ATR-deficient cells caused caspase-dependent apoptosis without preceding cell cycle arrest and increased DNA-damage along with impaired DNA-repair. Our data could have clinical implications regarding tumor genotype-based cancer therapy, as inactivating POLD1 mutations have recently been identified in small subsets of colorectal and endometrial cancers. POLD1 deficiency might thus represent a predictive marker for treatment response towards ATR- or CHK1-inhibitors that are currently tested in clinical trials. PMID:26755646

  18. Sex differences in DNA methylation and expression in zebrafish brain: a test of an extended 'male sex drive' hypothesis.

    PubMed

    Chatterjee, Aniruddha; Lagisz, Malgorzata; Rodger, Euan J; Zhen, Li; Stockwell, Peter A; Duncan, Elizabeth J; Horsfield, Julia A; Jeyakani, Justin; Mathavan, Sinnakaruppan; Ozaki, Yuichi; Nakagawa, Shinichi

    2016-09-30

    The sex drive hypothesis predicts that stronger selection on male traits has resulted in masculinization of the genome. Here we test whether such masculinizing effects can be detected at the level of the transcriptome and methylome in the adult zebrafish brain. Although methylation is globally similar, we identified 914 specific differentially methylated CpGs (DMCs) between males and females (435 were hypermethylated and 479 were hypomethylated in males compared to females). These DMCs were prevalent in gene body, intergenic regions and CpG island shores. We also discovered 15 distinct CpG clusters with striking sex-specific DNA methylation differences. In contrast, at transcriptome level, more female-biased genes than male-biased genes were expressed, giving little support for the male sex drive hypothesis. Our study provides genome-wide methylome and transcriptome assessment and sheds light on sex-specific epigenetic patterns and in zebrafish for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study.

    PubMed

    Roschewski, Mark; Dunleavy, Kieron; Pittaluga, Stefania; Moorhead, Martin; Pepin, Francois; Kong, Katherine; Shovlin, Margaret; Jaffe, Elaine S; Staudt, Louis M; Lai, Catherine; Steinberg, Seth M; Chen, Clara C; Zheng, Jianbiao; Willis, Thomas D; Faham, Malek; Wilson, Wyndham H

    2015-05-01

    Diffuse large-B-cell lymphoma is curable, but when treatment fails, outcome is poor. Although imaging can help to identify patients at risk of treatment failure, they are often imprecise, and radiation exposure is a potential health risk. We aimed to assess whether circulating tumour DNA encoding the clonal immunoglobulin gene sequence could be detected in the serum of patients with diffuse large-B-cell lymphoma and used to predict clinical disease recurrence after frontline treatment. We used next-generation DNA sequencing to retrospectively analyse cell-free circulating tumour DNA in patients assigned to one of three treatment protocols between May 8, 1993, and June 6, 2013. Eligible patients had diffuse large-B-cell lymphoma, no evidence of indolent lymphoma, and were previously untreated. We obtained serial serum samples and concurrent CT scans at specified times during most treatment cycles and up to 5 years of follow-up. VDJ gene segments of the rearranged immunoglobulin receptor genes were amplified and sequenced from pretreatment specimens and serum circulating tumour DNA encoding the VDJ rearrangements was quantitated. Tumour clonotypes were identified in pretreatment specimens from 126 patients who were followed up for a median of 11 years (IQR 6·8-14·2). Interim monitoring of circulating tumour DNA at the end of two treatment cycles in 108 patients showed a 5-year time to progression of 41·7% (95% CI 22·2-60·1) in patients with detectable circulating tumour DNA and 80·2% (69·6-87·3) in those without detectable circulating tumour DNA (p<0·0001). Detectable interim circulating tumour DNA had a positive predictive value of 62·5% (95% CI 40·6-81·2) and a negative predictive value of 79·8% (69·6-87·8). Surveillance monitoring of circulating tumour DNA was done in 107 patients who achieved complete remission. A Cox proportional hazards model showed that the hazard ratio for clinical disease progression was 228 (95% CI 51-1022) for patients who developed detectable circulating tumour DNA during surveillance compared with patients with undetectable circulating tumour DNA (p<0·0001). Surveillance circulating tumour DNA had a positive predictive value of 88·2% (95% CI 63·6-98·5) and a negative predictive value of 97·8% (92·2-99·7) and identified risk of recurrence at a median of 3·5 months (range 0-200) before evidence of clinical disease. Surveillance circulating tumour DNA identifies patients at risk of recurrence before clinical evidence of disease in most patients and results in a reduced disease burden at relapse. Interim circulating tumour DNA is a promising biomarker to identify patients at high risk of treatment failure. National Cancer Institute and Adaptive Biotechnologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Probability of coding of a DNA sequence: an algorithm to predict translated reading frames from their thermodynamic characteristics.

    PubMed Central

    Tramontano, A; Macchiato, M F

    1986-01-01

    An algorithm to determine the probability that a reading frame codifies for a protein is presented. It is based on the results of our previous studies on the thermodynamic characteristics of a translated reading frame. We also develop a prediction procedure to distinguish between coding and non-coding reading frames. The procedure is based on the characteristics of the putative product of the DNA sequence and not on periodicity characteristics of the sequence, so the prediction is not biased by the presence of overlapping translated reading frames or by the presence of translated reading frames on the complementary DNA strand. PMID:3753761

  1. Speciation in Western Scrub-Jays, Haldane’s rule, and genetic clines in secondary contact

    PubMed Central

    2014-01-01

    Background Haldane’s Rule, the tendency for the heterogametic sex to show reduced fertility in hybrid crosses, can obscure the signal of gene flow in mtDNA between species where females are heterogametic. Therefore, it is important when studying speciation and species limits in female-heterogametic species like birds to assess the signature of gene flow in the nuclear genome as well. We studied introgression of microsatellites and mtDNA across a secondary contact zone between coastal and interior lineages of Western Scrub-Jays (Aphelocoma californica) to test for a signature of Haldane’s Rule: a narrower cline of introgression in mtDNA compared to nuclear markers. Results Our initial phylogeographic analysis revealed that there is only one major area of contact between coastal and interior lineages and identified five genetic clusters with strong spatial structuring: Pacific Slope, Interior US, Edwards Plateau (Texas), Northern Mexico, and Southern Mexico. Consistent with predictions from Haldane’s Rule, mtDNA showed a narrower cline than nuclear markers across a transect through the hybrid zone. This result is not being driven by female-biased dispersal because neutral diffusion analysis, which included estimates of sex-specific dispersal rates, also showed less diffusion of mtDNA. Lineage-specific plumage traits were associated with nuclear genetic profiles for individuals in the hybrid zone, indicating that these differences are under genetic control. Conclusions This study adds to a growing list of studies that support predictions of Haldane’s Rule using cline analysis of multiple loci of differing inheritance modes, although alternate hypotheses like selection on different mtDNA types cannot be ruled out. That Haldane’s Rule appears to be operating in this system suggests a measure of reproductive isolation between the Pacific Slope and interior lineages. Based on a variety of evidence from the phenotype, ecology, and genetics, we recommend elevating three lineages to species level: A. californica (Pacific Slope); A. woodhouseii (Interior US plus Edwards Plateau plus Northern Mexico); A. sumichrasti (Southern Mexico). The distinctive Edwards Plateau population in Texas, which was monophyletic in mtDNA except for one individual, should be studied in greater detail given habitat threat. PMID:24938753

  2. Dynamics of genome size evolution in birds and mammals

    PubMed Central

    Feschotte, Cédric

    2017-01-01

    Genome size in mammals and birds shows remarkably little interspecific variation compared with other taxa. However, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been covariation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size equilibrium. To test this model, we develop computational methods to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 My in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extents across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified “accordion” model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives. PMID:28179571

  3. The relationship between post-thaw sperm DNA integrity and non-return rate among Norwegian cross-bred rams.

    PubMed

    Nordstoga, A B; Krogenæs, A; Nødtvedt, A; Farstad, W; Waterhouse, K

    2013-04-01

    With the aim of investigating the relationship between sperm DNA integrity and non-return rate (NRR) among Norwegian cross-bred rams, semen from 15 individuals was examined by flow cytometry. Sperm Chromatin Structure Assay (SCSA) quantifies the proportion of spermatozoa with denatured DNA after in situ acid treatment, and the four parameters % DFI, % HDS, MEAN DFI and SD DFI are all different measures of DNA denaturation and maturation. Field fertility, reported as NRR 25 days after insemination was based on all inseminations from a large-scale breeding programme and supplied by the Norwegian Association of Sheep and Goat Farmers. From each ram, four straws from four different weeks of the breeding season were analysed, and the associations between 25-day NRR and the mean of the four SCSA parameters were tested using a logistic regression model. The results revealed no association between fertility and % DFI or % HDS, while SD DFI and MEAN DFI showed a significant negative association with NRR. Further, the SCSA values varied significantly between ejaculates within ram among some of the rams in the study. However, no significant association was seen between these intra-individual differences in sperm DNA integrity and NRR. In conclusion, this study suggests an association between sperm DNA integrity and NRR for rams. However, further research must be conducted to confirm these findings and determine whether sperm DNA assessments can be applied to predict ram fertility. © 2012 Blackwell Verlag GmbH.

  4. Identification of DNA-Binding Proteins Using Structural, Electrostatic and Evolutionary Features

    PubMed Central

    Nimrod, Guy; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir

    2009-01-01

    Summary DNA binding proteins (DBPs) often take part in various crucial processes of the cell's life cycle. Therefore, the identification and characterization of these proteins are of great importance. We present here a random forests classifier for identifying DBPs among proteins with known three-dimensional structures. First, clusters of evolutionarily conserved regions (patches) on the protein's surface are detected using the PatchFinder algorithm; previous studies showed that these regions are typically the proteins' functionally important regions. Next, we train a classifier using features like the electrostatic potential, cluster-based amino acid conservation patterns and the secondary structure content of the patches, as well as features of the whole protein including its dipole moment. Using 10-fold cross validation on a dataset of 138 DNA-binding proteins and 110 proteins which do not bind DNA, the classifier achieved a sensitivity and a specificity of 0.90, which is overall better than the performance of previously published methods. Furthermore, when we tested 5 different methods on 11 new DBPs which did not appear in the original dataset, only our method annotated all correctly. The resulting classifier was applied to a collection of 757 proteins of known structure and unknown function. Of these proteins, 218 were predicted to bind DNA, and we anticipate that some of them interact with DNA using new structural motifs. The use of complementary computational tools supports the notion that at least some of them do bind DNA. PMID:19233205

  5. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations.

    PubMed

    Owczarzy, Richard; Moreira, Bernardo G; You, Yong; Behlke, Mark A; Walder, Joseph A

    2008-05-13

    Accurate predictions of DNA stability in physiological and enzyme buffers are important for the design of many biological and biochemical assays. We therefore investigated the effects of magnesium, potassium, sodium, Tris ions, and deoxynucleoside triphosphates on melting profiles of duplex DNA oligomers and collected large melting data sets. An empirical correction function was developed that predicts melting temperatures, transition enthalpies, entropies, and free energies in buffers containing magnesium and monovalent cations. The new correction function significantly improves the accuracy of predictions and accounts for ion concentration, G-C base pair content, and length of the oligonucleotides. The competitive effects of potassium and magnesium ions were characterized. If the concentration ratio of [Mg (2+)] (0.5)/[Mon (+)] is less than 0.22 M (-1/2), monovalent ions (K (+), Na (+)) are dominant. Effects of magnesium ions dominate and determine duplex stability at higher ratios. Typical reaction conditions for PCR and DNA sequencing (1.5-5 mM magnesium and 20-100 mM monovalent cations) fall within this range. Conditions were identified where monovalent and divalent cations compete and their stability effects are more complex. When duplexes denature, some of the Mg (2+) ions associated with the DNA are released. The number of released magnesium ions per phosphate charge is sequence dependent and decreases surprisingly with increasing oligonucleotide length.

  6. [Genetic counseling and instruction of marriage for deaf young people: study of 115 cases].

    PubMed

    Han, Bing; Dai, Pu; Wang, Guo-Jian; Yuan, Yong-Yi; Li, Qi; Zhang, Xin; Kang, Dong-Yang; Han, Dong-Yi

    2009-03-17

    To invesigate the molecular pathogenesis of deafness among the youth by means of genetic testing so as to provide pre-marriage genetic counseling and instruction for the deaf youth. 217 deaf young people, 126 males and 91 females, aged 18.9 (16 - 26), from Yunnan and Guizhou provinces, underwent history taking, auditory testing, and collection of peripheral blood samples. Genomic DNA and mitochondrial DNA were extracted to undergo sequence analysis of the entire gene GJB2, common point mutation of SLC26A4 gene, and mutation of mtDNA A1555G. Genetic prediction and marriage instruction were provided to each subject based on these results. Twenty-three of the 117 persons (10.5%), 13 males and 10 females, were mtDNA A1555G mutation carriers and they were instructed that they, their maternal relatives, and the offspring of the female carriers, should they be born, should strictly avoid the administration of amino glycoside antibiotics. Twenty eight of the 115 persons (12.9%), were confirmed to carry homozygous or compound GJB2 mutations, 5 individuals (2.3%) carried heterozygous GJB2 mutation, 19 (8.8%) carried homozygous or compound SLC26A4 mutations, and one (0.5%) carried heterozygous SLC26A4 mutation. The suggestion for them was to avoid getting married with deaf partners caused by the same deaf gene or with individuals carrying mutations in the same deaf gene. Meanwhile, suggestions such as avoiding aggressive exercises and head injury were provided to the deaf young people with SLC26A4 mutations. Genetic testing can provide more accurate and useful genetic counseling and instruction to deaf young people for their partner selection and eugenics.

  7. High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions.

    PubMed

    Krebs, Arnaud R; Dessus-Babus, Sophie; Burger, Lukas; Schübeler, Dirk

    2014-09-26

    The majority of mammalian promoters are CpG islands; regions of high CG density that require protection from DNA methylation to be functional. Importantly, how sequence architecture mediates this unmethylated state remains unclear. To address this question in a comprehensive manner, we developed a method to interrogate methylation states of hundreds of sequence variants inserted at the same genomic site in mouse embryonic stem cells. Using this assay, we were able to quantify the contribution of various sequence motifs towards the resulting DNA methylation state. Modeling of this comprehensive dataset revealed that CG density alone is a minor determinant of their unmethylated state. Instead, these data argue for a principal role for transcription factor binding sites, a prediction confirmed by testing synthetic mutant libraries. Taken together, these findings establish the hierarchy between the two cis-encoded mechanisms that define the DNA methylation state and thus the transcriptional competence of CpG islands.

  8. Defiant: (DMRs: easy, fast, identification and ANnoTation) identifies differentially Methylated regions from iron-deficient rat hippocampus.

    PubMed

    Condon, David E; Tran, Phu V; Lien, Yu-Chin; Schug, Jonathan; Georgieff, Michael K; Simmons, Rebecca A; Won, Kyoung-Jae

    2018-02-05

    Identification of differentially methylated regions (DMRs) is the initial step towards the study of DNA methylation-mediated gene regulation. Previous approaches to call DMRs suffer from false prediction, use extreme resources, and/or require library installation and input conversion. We developed a new approach called Defiant to identify DMRs. Employing Weighted Welch Expansion (WWE), Defiant showed superior performance to other predictors in the series of benchmarking tests on artificial and real data. Defiant was subsequently used to investigate DNA methylation changes in iron-deficient rat hippocampus. Defiant identified DMRs close to genes associated with neuronal development and plasticity, which were not identified by its competitor. Importantly, Defiant runs between 5 to 479 times faster than currently available software packages. Also, Defiant accepts 10 different input formats widely used for DNA methylation data. Defiant effectively identifies DMRs for whole-genome bisulfite sequencing (WGBS), reduced-representation bisulfite sequencing (RRBS), Tet-assisted bisulfite sequencing (TAB-seq), and HpaII tiny fragment enrichment by ligation-mediated PCR-tag (HELP) assays.

  9. The crystal structure of sulfamethoxazole, interaction with DNA, DFT calculation, and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Das, Dipankar; Sahu, Nilima; Roy, Suman; Dutta, Paramita; Mondal, Sudipa; Torres, Elena L.; Sinha, Chittaranjan

    2015-02-01

    Sulfamethoxazole (SMX) [4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide] is structurally established by single crystal X-ray diffraction measurement. The crystal packing shows H-bonded 2D polymer through N(7)sbnd H(7A)---O(2), N(7)sbnd H(7B)---O(3), N(1)sbnd H(1)---N(2), C(5)sbnd H(5)---O(3)sbnd S(1) and N(7)sbnd (H7A)---O(2)sbnd S(1). Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) computations of optimized structure of SMX determine the electronic structure and has explained the electronic spectral transitions. The interaction of SMX with CT-DNA has been studied by absorption spectroscopy and the binding constant (Kb) is 4.37 × 104 M-1. The in silico test of SMX with DHPS from Escherichia coli and Streptococcus pneumoniae helps to understand drug metabolism and accounts the drug-molecule interactions. The molecular docking of SMX-DNA also helps to predict the interaction feature.

  10. Comparison of the Prognostic Utility of the Diverse Molecular Data among lncRNA, DNA Methylation, microRNA, and mRNA across Five Human Cancers

    PubMed Central

    Xu, Li; Fengji, Liang; Changning, Liu; Liangcai, Zhang; Yinghui, Li; Yu, Li; Shanguang, Chen; Jianghui, Xiong

    2015-01-01

    Introduction Advances in high-throughput technologies have generated diverse informative molecular markers for cancer outcome prediction. Long non-coding RNA (lncRNA) and DNA methylation as new classes of promising markers are emerging as key molecules in human cancers; however, the prognostic utility of such diverse molecular data remains to be explored. Materials and Methods We proposed a computational pipeline (IDFO) to predict patient survival by identifying prognosis-related biomarkers using multi-type molecular data (mRNA, microRNA, DNA methylation, and lncRNA) from 3198 samples of five cancer types. We assessed the predictive performance of both single molecular data and integrated multi-type molecular data in patient survival stratification, and compared their relative importance in each type of cancer, respectively. Survival analysis using multivariate Cox regression was performed to investigate the impact of the IDFO-identified markers and traditional variables on clinical outcome. Results Using the IDFO approach, we obtained good predictive performance of the molecular datasets (bootstrap accuracy: 0.71–0.97) in five cancer types. Impressively, lncRNA was identified as the best prognostic predictor in the validated cohorts of four cancer types, followed by DNA methylation, mRNA, and then microRNA. We found the incorporating of multi-type molecular data showed similar predictive power to single-type molecular data, but with the exception of the lncRNA + DNA methylation combinations in two cancers. Survival analysis of proportional hazard models confirmed a high robustness for lncRNA and DNA methylation as prognosis factors independent of traditional clinical variables. Conclusion Our study provides insight into systematically understanding the prognostic performance of diverse molecular data in both single and aggregate patterns, which may have specific reference to subsequent related studies. PMID:26606135

  11. Gel electrophoresis of linear and star-branched DNA

    NASA Astrophysics Data System (ADS)

    Lau, Henry W.; Archer, Lynden A.

    2011-12-01

    The electrophoretic mobility of double-stranded DNA in polyacrylamide gel is investigated using an activated hopping model for the transport of a charged object within a heterogeneous medium. The model is premised upon a representation of the DNA path through the gel matrix as a series of traps with alternating large and small cross sections. Calculations of the trap dimensions from gel data show that the path imposes varying degrees of confinement upon migrating analytes, which retard their forward motion in a size-dependent manner. An expression derived for DNA mobility is shown to provide accurate predictions for the dynamics of linear DNA (67-622 bp) in gels of multiple concentrations. For star-branched DNA, the incorporation within the model of a length scale previously proposed to account for analyte architecture [Yuan , Anal. Chem.ANCHAM0003-270010.1021/ac060414w 78, 6179 (2006)] leads to mobility predictions that compare well with experimental results for a wide range of DNA shapes and molecular weights.

  12. Use of FTA gene guard filter paper for the storage and transportation of tumor cells for molecular testing.

    PubMed

    Dobbs, Larry J; Madigan, Merle N; Carter, Alexis B; Earls, Lori

    2002-01-01

    Efficient methods of storing tumor specimens for molecular testing are needed in the modern surgical pathology laboratory. The FTA Gene Guard system is a novel method for the collection and room temperature storage of blood samples for DNA testing. The method uses index card-sized filter papers that provide an ideal medium on which to store tumor specimens for DNA testing. To determine whether FTA filter paper can be used in the surgical pathology laboratory to store tumor cells for DNA testing. Cell suspensions were prepared from 60 surgical specimens, and DNA was extracted either immediately or after storage on FTA paper. The DNA extracted by each method was tested by polymerase chain reaction (PCR) for the beta-globin and interferon gamma genes, and the results were compared. Fifteen lymph node specimens stored on FTA paper were then tested for immunoglobulin heavy chain (IgH) gene rearrangement by PCR, and these results were compared with those obtained for immediately extracted DNA. University medical center. The DNA extracted from cells stored on FTA paper performed as well in the PCR as the freshly extracted DNA in nearly all cases (>95%). The results of tests for IgH gene rearrangements showed 100% concordance between the 2 methods of DNA extraction.Conclusion.-Cells from surgical specimens can be stored on FTA paper for extended lengths of time, and DNA can be extracted from these cells for PCR-based testing. FTA filter paper is a reliable medium for the storage and/or transport of tumor cells for PCR-based DNA analysis.

  13. Mechanism for CCC DNA synthesis in hepadnaviruses.

    PubMed

    Sohn, Ji A; Litwin, Samuel; Seeger, Christoph

    2009-11-30

    Hepadnavirus replication requires the synthesis of a covalently closed circular (CCC) DNA from the relaxed circular (RC) viral genome by an unknown mechanism. CCC DNA formation could require enzymatic activities of the viral reverse transcriptase (RT), or cellular DNA repair enzymes, or both. Physical mapping of the 5' and 3' ends of RC DNA and sequence analysis of CCC DNA revealed that CCC DNA synthesis requires the removal of the RT and an RNA oligomer from the 5' ends of minus and plus strand DNA, respectively, removal of sequences from the terminally redundant minus strand, completion of the less than full-length plus strand, and ligation of the ends. Two models have been proposed that could explain CCC DNA formation. The first (model 1) invokes a role for the RT to catalyze a cleavage-ligation reaction leading to the formation of a unit length minus strand in CCC DNA and a DNA repair reaction for the completion and ligation of plus strand DNA; the second (model 2) predicts that CCC DNA formation depends entirely on cellular DNA repair enzymes. To determine which mechanism is utilized, we developed cell lines expressing duck hepatitis B virus genomes carrying mutations permitting us to follow the fate of viral DNA sequences during their conversion from RC to CCC DNA. Our results demonstrated that the oligomer at the 5' end of minus strand DNA is completely or at least partially removed prior to CCC DNA synthesis. The results indicated that both RC DNA strands undergo DNA repair reactions carried out by the cellular DNA repair machinery as predicted by model 2. Thus, our study provided the basis for the identification of the cellular components required for CCC DNA formation.

  14. Diffusion of isolated DNA molecules: dependence on length and topology.

    PubMed

    Robertson, Rae M; Laib, Stephan; Smith, Douglas E

    2006-05-09

    The conformation and dynamics of circular polymers is a subject of considerable theoretical and experimental interest. DNA is an important example because it occurs naturally in different topological states, including linear, relaxed circular, and supercoiled circular forms. A fundamental question is how the diffusion coefficients of isolated polymers scale with molecular length and how they vary for different topologies. Here, diffusion coefficients D for relaxed circular, supercoiled, and linear DNA molecules of length L ranging from approximately 6 to 290 kbp were measured by tracking the Brownian motion of single molecules. A topology-independent scaling law D approximately L(-nu) was observed with nu(L) = 0.571 +/- 0.014, nu(C) = 0.589 +/- 0.018, and nu(S) = 0.571 +/- 0.057 for linear, relaxed circular, and supercoiled DNA, respectively, in good agreement with the scaling exponent of nu congruent with 0.588 predicted by renormalization group theory for polymers with significant excluded volume interactions. Our findings thus provide evidence in support of several theories that predict an effective diameter of DNA much greater than the Debye screening length. In addition, the measured ratio D(Circular)/D(Linear) = 1.32 +/- 0.014 was closer to the value of 1.45 predicted by using renormalization group theory than the value of 1.18 predicted by classical Kirkwood hydrodynamic theory and agreed well with a value of 1.31 predicted when incorporating a recently proposed expression for the radius of gyration of circular polymers into the Zimm model.

  15. DNA-linked NanoParticle Lattices with Diamond Symmetry: Stability, Shape and Optical Properties

    NASA Astrophysics Data System (ADS)

    Emamy, Hamed; Tkachenko, Alexei; Gang, Oleg; Starr, Francis

    The linking of nanoparticles (NP) by DNA has been proven to be an effective means to create NP lattices with specific order. Lattices with diamond symmetry are predicted to offer novel photonic properties, but self-assembly of such lattices has proven to be challenging due to the low packing fraction, sensitivity to bond orientation, and local heterogeneity. Recently, we reported an approach to create diamond NP lattices based on the association between anisotropic particles with well-defined tetravalent DNA binding topology and isotropically functionalized NP. Here, we use molecular dynamics simulations to evaluate the Gibbs free energy of these lattices, and thereby determine the stability of these lattices as a function of NP size and DNA stiffness. We also predict the equilibrium shape for the cubic diamond crystallite using the Wulff construction method. Specifically, we predict the equilibrium shape using the surface energy for different crystallographic planes. We evaluate surface energy directly form molecular dynamics simulation, which we correlate with theoretical estimates from the expected number of broken DNA bonds along a facet. Furthermore we study the optical properties of this structure, e.g optical bandgap.

  16. [RHD variant in RhD/-/ mother with anti-D makes noninvasive fetal RHD genotyping impossible].

    PubMed

    Orzińska, Agnieszka; Engel, Karina; Łakomy, Magdalena; Smolarczyk-Wodzyńska, Justyna; Lipińska, Anna; Pelc-Kłopotowska, Monika; Brojer, Ewa

    2009-10-01

    Noninvasive fetal RHD genotyping from maternal plasma of RhD(/-) pregnant women of Caucasian race may be used for predicting the risk of hemolytic disease because the RHD gene is usually absent in such populations. If detected in plasma of such women, the RHD gene originates from the RhD(+) fetus. The number of fetal copies of the gene in maternal plasma is extremely small. In the presented case of the RhD(/-) pregnant woman with anti-D it was impossible to give a fetal RHD result due to mother's RHD(+) genotype. The fetal RHD was determined from amniocytes. to present the difficulties related to the interpretation of results of invasive and noninvasive procedures. whole blood, plasma and amniotic fluid of the RhD(-) woman with anti-D (14 week of pregnancy) as well as whole blood of the newborn. RHD and RHCE*c were genotyped by real-time PCR in DNA isolated from maternal plasma and amniocytes and the RHD and d-genotypes were tested by SSP methods in DNA isolated from whole blood and amniocytes. RHD and RHCE*c were detected in DNA isolated from plasma. The high level of RHD suggested its origin from the mother's DNA therefore it was impossible to determine the fetal RHD. The d-little test identified a RHD(IVS3+ 1G>A) variant in the mother's genome. A weak signal of real-time PCR for the RHD was obtained in amniocytes but the RHD was not detected by SSP. The RHCE*c was detected by both methods. Results were inconclusive; the fetal RHD status remained unknown. The child was RhD(-) with RHD in its DNA undetected by either method. 1/The RHD(IVS3+ 1G>A) variant in the RhD(-) mother precluded formal noninvasive fetal RHD genotyping. 2/Real-time PCR is too sensitive for amniocyte testing and may lead to false results as it detects trace maternal DNA in amniotic fluid. 3/The frequency of RHD(IVS3+1G>A) occurrence in Poland requires further studies.

  17. DNA methylation profiling for a confirmatory test for blood, saliva, semen, vaginal fluid and menstrual blood.

    PubMed

    Lee, Hwan Young; Jung, Sang-Eun; Lee, Eun Hee; Yang, Woo Ick; Shin, Kyoung-Jin

    2016-09-01

    The ability to predict the type of tissues or cells from molecular profiles of crime scene samples has important practical implications in forensics. A previously reported multiplex assay using DNA methylation markers could only discriminate between 4 types of body fluids: blood, saliva, semen, and the body fluid which originates from female reproductive organ. In the present study, we selected 15 menstrual blood-specific CpG marker candidates based on analysis of 12 genome-wide DNA methylation profiles of vaginal fluid and menstrual blood. The menstrual blood-specificity of the candidate markers was confirmed by comparison with HumanMethylation450 BeadChip array data obtained for 58 samples including 12 blood, 12 saliva, 12 semen, 3 vaginal fluid, and 19 skin epidermis samples. Among 15CpG marker candidates, 3 were located in the promoter region of the SLC26A10 gene, and 2 of them (cg09696411 and cg18069290) showed high menstrual blood specificity. DNA methylation at the 2CpG markers was further tested by targeted bisulfite sequencing of 461 additional samples including 49 blood, 52 saliva, 34 semen, 125 vaginal fluid, and 201 menstrual blood. Because the 2 markers showed menstrual blood-specific methylation patterns, we modified our previous multiplex methylation SNaPshot reaction to include these 2 markers. In addition, a blood marker cg01543184 with cross reactivity to semen was replaced with cg08792630, and a semen-specific unmethylation marker cg17621389 was removed. The resultant multiplex methylation SNaPshot allowed positive identification of blood, saliva, semen, vaginal fluid and menstrual blood using the 9CpG markers which show a methylation signal only in the target body fluids. Because of the complexity in cell composition, menstrual bloods produced DNA methylation profiles that vary with menstrual cycle and sample collection methods, which are expected to provide more insight into forensic menstrual blood test. Moreover, because the developed multiplex methylation SNaPshot reaction includes the 4CpG markers of which specificities have been confirmed by multiple studies, it will facilitate confirmatory tests for body fluids that are frequently observed in forensic casework. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Autoantibodies and their Judicious Use in Pediatric Rheumatology Practice.

    PubMed

    Saikia, Biman; Rawat, Amit; Vignesh, Pandiarajan

    2016-01-01

    Autoantibody testing forms an important part of diagnostic workup of patients in Pediatric rheumatology practice. However it is important to understand that the mere presence of autoantibodies does not necessarily mean the presence of an underlying autoimmune disease. Autoantibodies may be present decades before the development of clinical manifestations of an autoimmune disease and may be viewed as harbingers of Autoimmune disease. On the other hand, low-affinity autoantibodies may be present in normal healthy individuals; these natural autoantibodies serve an important function in immune regulation and tolerance. Autoantibody testing in pediatric practice mainly includes testing for anti-nuclear antibodies, anti-dsDNA antibodies, anti-neutrophil cytoplasmic autoantibodies and antiphospholipid antibodies. Rheumatoid factor and anti-CCP do not have much significance in the diagnostic schema in pediatric rheumatology, except perhaps for classification of juvenile idiopathic arthritis (JIA) and prognostication in late-onset polyarticular JIA. The positive predictive value (PPV) of any laboratory test depends on the prevalence of the disease in the population being tested. Hence, test ordering practices greatly impact the performance characteristics and positive predictive value of any laboratory test. A restricted test ordering only in patients with clinical signs and symptoms suggestive of autoimmune disease would thus greatly increase the PPV of tests such as antinuclear antibody used for diagnosing autoimmunity.

  19. Evaluation of FTA ® paper for storage of oral meta-genomic DNA.

    PubMed

    Foitzik, Magdalena; Stumpp, Sascha N; Grischke, Jasmin; Eberhard, Jörg; Stiesch, Meike

    2014-10-01

    The purpose of the present study was to evaluate the short-term storage of meta-genomic DNA from native oral biofilms on FTA(®) paper. Thirteen volunteers of both sexes received an acrylic splint for intraoral biofilm formation over a period of 48 hours. The biofilms were collected, resuspended in phosphate-buffered saline, and either stored on FTA(®) paper or directly processed by standard laboratory DNA extraction. The nucleic acid extraction efficiencies were evaluated by 16S rDNA targeted SSCP fingerprinting. The acquired banding pattern of FTA-derived meta-genomic DNA was compared to a standard DNA preparation protocol. Sensitivity and positive predictive values were calculated. The volunteers showed inter-individual differences in their bacterial species composition. A total of 200 bands were found for both methods and 85% of the banding patterns were equal, representing a sensitivity of 0.941 and a false-negative predictive value of 0.059. Meta-genomic DNA sampling, extraction, and adhesion using FTA(®) paper is a reliable method for storage of microbial DNA for a short period of time.

  20. TAL effector-DNA specificity.

    PubMed

    Scholze, Heidi; Boch, Jens

    2010-01-01

    TAL effectors are important virulence factors of bacterial plant pathogenic Xanthomonas, which infect a wide variety of plants including valuable crops like pepper, rice, and citrus. TAL proteins are translocated via the bacterial type III secretion system into host cells and induce transcription of plant genes by binding to target gene promoters. Members of the TAL effector family differ mainly in their central domain of tandemly arranged repeats of typically 34 amino acids each with hypervariable di-amino acids at positions 12 and 13. We recently showed that target DNA-recognition specificity of TAL effectors is encoded in a modular and clearly predictable mode. The repeats of TAL effectors feature a surprising one repeat-to-one-bp correlation with different repeat types exhibiting a different DNA base pair specificity. Accordingly, we predicted DNA specificities of TAL effectors and generated artificial TAL proteins with novel DNA recognition specificities. We describe here novel artificial TALs and discuss implications for the DNA recognition specificity. The unique TAL-DNA binding domain allows design of proteins with potentially any given DNA recognition specificity enabling many uses for biotechnology.

  1. CpG island mapping by epigenome prediction.

    PubMed

    Bock, Christoph; Walter, Jörn; Paulsen, Martina; Lengauer, Thomas

    2007-06-01

    CpG islands were originally identified by epigenetic and functional properties, namely, absence of DNA methylation and frequent promoter association. However, this concept was quickly replaced by simple DNA sequence criteria, which allowed for genome-wide annotation of CpG islands in the absence of large-scale epigenetic datasets. Although widely used, the current CpG island criteria incur significant disadvantages: (1) reliance on arbitrary threshold parameters that bear little biological justification, (2) failure to account for widespread heterogeneity among CpG islands, and (3) apparent lack of specificity when applied to the human genome. This study is driven by the idea that a quantitative score of "CpG island strength" that incorporates epigenetic and functional aspects can help resolve these issues. We construct an epigenome prediction pipeline that links the DNA sequence of CpG islands to their epigenetic states, including DNA methylation, histone modifications, and chromatin accessibility. By training support vector machines on epigenetic data for CpG islands on human Chromosomes 21 and 22, we identify informative DNA attributes that correlate with open versus compact chromatin structures. These DNA attributes are used to predict the epigenetic states of all CpG islands genome-wide. Combining predictions for multiple epigenetic features, we estimate the inherent CpG island strength for each CpG island in the human genome, i.e., its inherent tendency to exhibit an open and transcriptionally competent chromatin structure. We extensively validate our results on independent datasets, showing that the CpG island strength predictions are applicable and informative across different tissues and cell types, and we derive improved maps of predicted "bona fide" CpG islands. The mapping of CpG islands by epigenome prediction is conceptually superior to identifying CpG islands by widely used sequence criteria since it links CpG island detection to their characteristic epigenetic and functional states. And it is superior to purely experimental epigenome mapping for CpG island detection since it abstracts from specific properties that are limited to a single cell type or tissue. In addition, using computational epigenetics methods we could identify high correlation between the epigenome and characteristics of the DNA sequence, a finding which emphasizes the need for a better understanding of the mechanistic links between genome and epigenome.

  2. [Assessment of cervical intraepithelial neoplasia (CIN) lesions by DNA image cytometry].

    PubMed

    Sun, Xiao-rong; Che, Dong-yuan; Tu, Hong-zhang; Li, Dan; Wang, Jian

    2006-11-01

    To compare the value of conventional cytology and DNA image cytometry (DNA-ICM) assisted cytology in detection and prognostic assessment of cervical CIN lesions. 87 women were enrolled in this study. Cervical samples were collected employing cervix brushes which were then washed in Sedfix. After preparing single cell suspensions by mechanical procedure, cell monolayers were prepared by cyto-spinning the cells onto microscope slides. Two slides were prepared from each case: one slide was stained by Papanicolou staining for conventional cytology, another was stained by Feulgen-Thionin method for measurements of the amount of DNA in the cell nuclei using an automated DNA imaging cytometer. Biopsies from the cervical lesions were also taken for histopathology and Ki-67 immunohistochemistry. Of the total of 20 ASCUS cases called by conventional cytology, no CIN, nor greater lesions were found. Among the 20 cases, 7 cases did not show any cells with DNA amount greater than 5c, while CIN2 lesions were found in 11 of other 13 cases that had some aneuploid cells with DNA amount greater than 5c. Of 30 LSIL cases called by conventional cytology, CIN2 lesions were detected in 3 out of 7 cases that did not contain any aneuploid cells with DNA greater than 5c, but in 22 out of the other 23 cases that contained aneuploid cells with DNA amount greater than > 5c. Of the remaining 7 cases called HSIL by conventional cytology, all case contained aneuploid cells containing DNA greater than 5c. If cytology was used to refer all cases of LSIL and HSIL to colposcopy procedure to detect potential CIN2 or greater lesions, the sensitivity, specificity, positive predictive value and negative predictive value were 58.2%, 84.4%, 86.5% and 54.0%, respectively. If DNA-ICM were used and all cases having 3 or more cells with a DNA amount greater than 5c were assessed to be referred to pathology to detect potential CIN2 or greater lesions, the sensitivity, specificity, positive predictive value and negative predictive were 72.7% , 87.5%, 90.9% and 65.1%, respectively. We also compared Ki67 positive cells in these samples and found that DNA-ICM results were comparable to this biomarker method. The study demonstrated that DNA-ICM approach can be successfully used to detect significant (i.e. CIN2 or greater) lesions, and also provide a prognostic assessment of CIN lesions.

  3. A testing strategy to predict risk for drug-induced liver injury in humans using high-content screen assays and the 'rule-of-two' model.

    PubMed

    Chen, Minjun; Tung, Chun-Wei; Shi, Qiang; Guo, Lei; Shi, Leming; Fang, Hong; Borlak, Jürgen; Tong, Weida

    2014-07-01

    Drug-induced liver injury (DILI) is a major cause of drug failures in both the preclinical and clinical phase. Consequently, improving prediction of DILI at an early stage of drug discovery will reduce the potential failures in the subsequent drug development program. In this regard, high-content screening (HCS) assays are considered as a promising strategy for the study of DILI; however, the predictive performance of HCS assays is frequently insufficient. In the present study, a new testing strategy was developed to improve DILI prediction by employing in vitro assays that was combined with the RO2 model (i.e., 'rule-of-two' defined by daily dose ≥100 mg/day & logP ≥3). The RO2 model was derived from the observation that high daily doses and lipophilicity of an oral medication were associated with significant DILI risk in humans. In the developed testing strategy, the RO2 model was used for the rational selection of candidates for HCS assays, and only the negatives predicted by the RO2 model were further investigated by HCS. Subsequently, the effects of drug treatment on cell loss, nuclear size, DNA damage/fragmentation, apoptosis, lysosomal mass, mitochondrial membrane potential, and steatosis were studied in cultures of primary rat hepatocytes. Using a set of 70 drugs with clear evidence of clinically relevant DILI, the testing strategy improved the accuracies by 10 % and reduced the number of drugs requiring experimental assessment by approximately 20 %, as compared to the HCS assay alone. Moreover, the testing strategy was further validated by including published data (Cosgrove et al. in Toxicol Appl Pharmacol 237:317-330, 2009) on drug-cytokine-induced hepatotoxicity, which improved the accuracies by 7 %. Taken collectively, the proposed testing strategy can significantly improve the prediction of in vitro assays for detecting DILI liability in an early drug discovery phase.

  4. Molecular cloning and analysis of Schizosaccharomyces pombe Reb1p: sequence-specific recognition of two sites in the far upstream rDNA intergenic spacer.

    PubMed Central

    Zhao, A; Guo, A; Liu, Z; Pape, L

    1997-01-01

    The coding sequences for a Schizosaccharomyces pombe sequence-specific DNA binding protein, Reb1p, have been cloned. The predicted S. pombe Reb1p is 24-29% identical to mouse TTF-1 (transcription termination factor-1) and Saccharomyces cerevisiae REB1 protein, both of which direct termination of RNA polymerase I catalyzed transcripts. The S.pombe Reb1 cDNA encodes a predicted polypeptide of 504 amino acids with a predicted molecular weight of 58.4 kDa. The S. pombe Reb1p is unusual in that the bipartite DNA binding motif identified originally in S.cerevisiae and Klyveromyces lactis REB1 proteins is uninterrupted and thus S.pombe Reb1p may contain the smallest natural REB1 homologous DNA binding domain. Its genomic coding sequences were shown to be interrupted by two introns. A recombinant histidine-tagged Reb1 protein bearing the rDNA binding domain has two homologous, sequence-specific binding sites in the S. pomber DNA intergenic spacer, located between 289 and 480 nt downstream of the end of the approximately 25S rRNA coding sequences. Each binding site is 13-14 bp downstream of two of the three proposed in vivo termination sites. The core of this 17 bp site, AGGTAAGGGTAATGCAC, is specifically protected by Reb1p in footprinting analysis. PMID:9016645

  5. DNA testing in neurologic diseases.

    PubMed

    O'Brien, D P; Leeb, T

    2014-01-01

    DNA testing is available for a growing number of hereditary diseases in neurology and other specialties. In addition to guiding breeding decisions, DNA tests are important tools in the diagnosis of diseases, particularly in conditions for which clinical signs are relatively nonspecific. DNA testing also can provide valuable insight into the risk of hereditary disease when decisions about treating comorbidities are being made. Advances in technology and bioinformatics will make broad screening for potential disease-causing mutations available soon. As DNA tests come into more common use, it is critical that clinicians understand the proper application and interpretation of these test results. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  6. Tumor Cell-Free DNA Copy Number Instability Predicts Therapeutic Response to Immunotherapy.

    PubMed

    Weiss, Glen J; Beck, Julia; Braun, Donald P; Bornemann-Kolatzki, Kristen; Barilla, Heather; Cubello, Rhiannon; Quan, Walter; Sangal, Ashish; Khemka, Vivek; Waypa, Jordan; Mitchell, William M; Urnovitz, Howard; Schütz, Ekkehard

    2017-09-01

    Purpose: Chromosomal instability is a fundamental property of cancer, which can be quantified by next-generation sequencing (NGS) from plasma/serum-derived cell-free DNA (cfDNA). We hypothesized that cfDNA could be used as a real-time surrogate for imaging analysis of disease status as a function of response to immunotherapy and as a more reliable tool than tumor biomarkers. Experimental Design: Plasma cfDNA sequences from 56 patients with diverse advanced cancers were prospectively collected and analyzed in a single-blind study for copy number variations, expressed as a quantitative chromosomal number instability (CNI) score versus 126 noncancer controls in a training set of 23 and a blinded validation set of 33. Tumor biomarker concentrations and a surrogate marker for T regulatory cells (Tregs) were comparatively analyzed. Results: Elevated CNI scores were observed in 51 of 56 patients prior to therapy. The blinded validation cohort provided an overall prediction accuracy of 83% (25/30) and a positive predictive value of CNI score for progression of 92% (11/12). The combination of CNI score before cycle (Cy) 2 and 3 yielded a correct prediction for progression in all 13 patients. The CNI score also correctly identified cases of pseudo-tumor progression from hyperprogression. Before Cy2 and Cy3, there was no significant correlation for protein tumor markers, total cfDNA, or surrogate Tregs. Conclusions: Chromosomal instability quantification in plasma cfDNA can serve as an early indicator of response to immunotherapy. The method has the potential to reduce health care costs and disease burden for cancer patients following further validation. Clin Cancer Res; 23(17); 5074-81. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. A Novel Computational Method for Detecting DNA Methylation Sites with DNA Sequence Information and Physicochemical Properties.

    PubMed

    Pan, Gaofeng; Jiang, Limin; Tang, Jijun; Guo, Fei

    2018-02-08

    DNA methylation is an important biochemical process, and it has a close connection with many types of cancer. Research about DNA methylation can help us to understand the regulation mechanism and epigenetic reprogramming. Therefore, it becomes very important to recognize the methylation sites in the DNA sequence. In the past several decades, many computational methods-especially machine learning methods-have been developed since the high-throughout sequencing technology became widely used in research and industry. In order to accurately identify whether or not a nucleotide residue is methylated under the specific DNA sequence context, we propose a novel method that overcomes the shortcomings of previous methods for predicting methylation sites. We use k -gram, multivariate mutual information, discrete wavelet transform, and pseudo amino acid composition to extract features, and train a sparse Bayesian learning model to do DNA methylation prediction. Five criteria-area under the receiver operating characteristic curve (AUC), Matthew's correlation coefficient (MCC), accuracy (ACC), sensitivity (SN), and specificity-are used to evaluate the prediction results of our method. On the benchmark dataset, we could reach 0.8632 on AUC, 0.8017 on ACC, 0.5558 on MCC, and 0.7268 on SN. Additionally, the best results on two scBS-seq profiled mouse embryonic stem cells datasets were 0.8896 and 0.9511 by AUC, respectively. When compared with other outstanding methods, our method surpassed them on the accuracy of prediction. The improvement of AUC by our method compared to other methods was at least 0.0399 . For the convenience of other researchers, our code has been uploaded to a file hosting service, and can be downloaded from: https://figshare.com/s/0697b692d802861282d3.

  8. DNA-testing for BRCA1/2 prior to genetic counselling in patients with breast cancer: design of an intervention study, DNA-direct.

    PubMed

    Sie, Aisha S; Spruijt, Liesbeth; van Zelst-Stams, Wendy A G; Mensenkamp, Arjen R; Ligtenberg, Marjolijn J; Brunner, Han G; Prins, Judith B; Hoogerbrugge, Nicoline

    2012-05-08

    Current practice for patients with breast cancer referred for genetic counseling, includes face-to-face consultations with a genetic counselor prior to and following DNA-testing. This is based on guidelines regarding Huntington's disease in anticipation of high psychosocial impact of DNA-testing for mutations in BRCA1/2 genes. The initial consultation covers generic information regarding hereditary breast cancer and the (im)possibilities of DNA-testing, prior to such testing. Patients with breast cancer may see this information as irrelevant or unnecessary because individual genetic advice depends on DNA-test results. Also, verbal information is not always remembered well by patients. A different format for this information prior to DNA-testing is possible: replacing initial face-to-face genetic counseling (DNA-intake procedure) by telephone, written and digital information sent to patients' homes (DNA-direct procedure). In this intervention study, 150 patients with breast cancer referred to the department of Clinical Genetics of the Radboud University Nijmegen Medical Centre are given the choice between two procedures, DNA-direct (intervention group) or DNA-intake (usual care, control group). During a triage telephone call, patients are excluded if they have problems with Dutch text, family communication, or of psychological or psychiatric nature. Primary outcome measures are satisfaction and psychological distress. Secondary outcome measures are determinants for the participant's choice of procedure, waiting and processing times, and family characteristics. Data are collected by self-report questionnaires at baseline and following completion of genetic counseling. A minority of participants will receive an invitation for a 30 min semi-structured telephone interview, e.g. confirmed carriers of a BRCA1/2 mutation, and those who report problems with the procedure. This study compares current practice of an intake consultation (DNA-intake) to a home informational package of telephone, written and digital information (DNA-direct) prior to DNA-testing in patients with breast cancer. The aim is to determine whether DNA-direct is an acceptable procedure for BRCA1/2 testing, in order to provide customized care to patients with breast cancer, cutting down on the period of uncertainty during this diagnostic process.

  9. Multilocus Phylogeography of the Treefrog Scinax eurydice (Anura, Hylidae) Reveals a Plio-Pleistocene Diversification in the Atlantic Forest.

    PubMed

    Menezes, Lucas; Canedo, Clarissa; Batalha-Filho, Henrique; Garda, Adrian Antonio; Gehara, Marcelo; Napoli, Marcelo Felgueiras

    2016-01-01

    We aim to evaluate the genetic structure of an Atlantic Forest amphibian species, Scinax eurydice, testing the congruence among patterns identified and proposed by the literature for Pleistocene refugia, microrefugia, and geographic barriers to gene flow such as major rivers. Furthermore, we aim to evaluate predictions of such barriers and refugia on the genetic structure of the species, such as presence/absence of dispersal, timing since separation, and population expansions/contractions. We sequenced mitochondrial and nuclear genetic markers on 94 tissue samples from 41 localities. We inferred a gene tree and estimated genetic distances using mtDNA sequences. We then ran population clustering and assignment methods, AMOVA, and estimated migration rates among populations identified through mtDNA and nDNA analyses. We used a dated species tree, skyline plots, and summary statistics to evaluate concordance between population's distributions and geographic barriers and Pleistocene refugia. Scinax eurydice showed high mtDNA divergences and four clearly distinct mtDNA lineages. Species tree and population assignment tests supported the existence of two major clades corresponding to northeastern and southeastern Atlantic Forest in Brazil, each one composed of two other clades. Lineage splitting events occurred from late Pliocene to Pleistocene. We identified demographic expansions in two clades, and inexistent to low levels of migrations among different populations. Genetic patterns and demographic data support the existence of two northern Refuge and corroborate microrefugia south of the Doce/Jequitinhonha Rivers biogeographic divide. The results agree with a scenario of recent demographic expansion of lowland taxa. Scinax eurydice comprises a species complex, harboring undescribed taxa consistent with Pleistocene refugia. Two rivers lie at the boundaries among populations and endorse their role as secondary barriers to gene flow.

  10. Multilocus Phylogeography of the Treefrog Scinax eurydice (Anura, Hylidae) Reveals a Plio-Pleistocene Diversification in the Atlantic Forest

    PubMed Central

    Menezes, Lucas; Canedo, Clarissa; Batalha-Filho, Henrique; Garda, Adrian Antonio; Gehara, Marcelo; Napoli, Marcelo Felgueiras

    2016-01-01

    We aim to evaluate the genetic structure of an Atlantic Forest amphibian species, Scinax eurydice, testing the congruence among patterns identified and proposed by the literature for Pleistocene refugia, microrefugia, and geographic barriers to gene flow such as major rivers. Furthermore, we aim to evaluate predictions of such barriers and refugia on the genetic structure of the species, such as presence/absence of dispersal, timing since separation, and population expansions/contractions. We sequenced mitochondrial and nuclear genetic markers on 94 tissue samples from 41 localities. We inferred a gene tree and estimated genetic distances using mtDNA sequences. We then ran population clustering and assignment methods, AMOVA, and estimated migration rates among populations identified through mtDNA and nDNA analyses. We used a dated species tree, skyline plots, and summary statistics to evaluate concordance between population’s distributions and geographic barriers and Pleistocene refugia. Scinax eurydice showed high mtDNA divergences and four clearly distinct mtDNA lineages. Species tree and population assignment tests supported the existence of two major clades corresponding to northeastern and southeastern Atlantic Forest in Brazil, each one composed of two other clades. Lineage splitting events occurred from late Pliocene to Pleistocene. We identified demographic expansions in two clades, and inexistent to low levels of migrations among different populations. Genetic patterns and demographic data support the existence of two northern Refuge and corroborate microrefugia south of the Doce/Jequitinhonha Rivers biogeographic divide. The results agree with a scenario of recent demographic expansion of lowland taxa. Scinax eurydice comprises a species complex, harboring undescribed taxa consistent with Pleistocene refugia. Two rivers lie at the boundaries among populations and endorse their role as secondary barriers to gene flow. PMID:27248688

  11. Fluorescence-based recombination assay for sensitive and specific detection of genotoxic carcinogens in human cells.

    PubMed

    Ireno, Ivanildce C; Baumann, Cindy; Stöber, Regina; Hengstler, Jan G; Wiesmüller, Lisa

    2014-05-01

    In vitro genotoxicity tests are known to suffer from several shortcomings, mammalian cell-based assays, in particular, from low specificities. Following a novel concept of genotoxicity detection, we developed a fluorescence-based method in living human cells. The assay quantifies DNA recombination events triggered by DNA double-strand breaks and damage-induced replication fork stalling predicted to detect a broad spectrum of genotoxic modes of action. To maximize sensitivities, we engineered a DNA substrate encompassing a chemoresponsive element from the human genome. Using this substrate, we screened various human tumor and non-transformed cell types differing in the DNA damage response, which revealed that detection of genotoxic carcinogens was independent of the p53 status but abrogated by apoptosis. Cell types enabling robust and sensitive genotoxicity detection were selected for the generation of reporter clones with chromosomally integrated DNA recombination substrate. Reporter cell lines were scrutinized with 21 compounds, stratified into five sets according to the established categories for identification of carcinogenic compounds: genotoxic carcinogens ("true positives"), non-genotoxic carcinogens, compounds without genotoxic or carcinogenic effect ("true negatives") and non-carcinogenic compounds, which have been reported to induce chromosomal aberrations or mutations in mammalian cell-based assays ("false positives"). Our results document detection of genotoxic carcinogens in independent cell clones and at levels of cellular toxicities <60 % with a sensitivity of >85 %, specificity of ≥90 % and detection of false-positive compounds <17 %. Importantly, through testing cyclophosphamide in combination with primary hepatocyte cultures, we additionally provide proof-of-concept for the identification of carcinogens requiring metabolic activation using this novel assay system.

  12. How good are indirect tests at detecting recombination in human mtDNA?

    PubMed

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-07-08

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D' and r(2), Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ(2)) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7-70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed.

  13. How Good Are Indirect Tests at Detecting Recombination in Human mtDNA?

    PubMed Central

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-01-01

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D′ and r2, Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ2) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7−70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed. PMID:23665874

  14. Homology between DNA polymerases of poxviruses, herpesviruses, and adenoviruses: nucleotide sequence of the vaccinia virus DNA polymerase gene.

    PubMed Central

    Earl, P L; Jones, E V; Moss, B

    1986-01-01

    A 5400-base-pair segment of the vaccinia virus genome was sequenced and an open reading frame of 938 codons was found precisely where the DNA polymerase had been mapped by transfer of a phosphonoacetate-resistance marker. A single nucleotide substitution changing glycine at position 347 to aspartic acid accounts for the drug resistance of the mutant vaccinia virus. The 5' end of the DNA polymerase mRNA was located 80 base pairs before the methionine codon initiating the open reading frame. Correspondence between the predicted Mr 108,577 polypeptide and the 110,000 purified enzyme indicates that little or no proteolytic processing occurs. Extensive homology, extending over 435 amino acids, was found upon comparing the DNA polymerase of vaccinia virus and DNA polymerase of Epstein-Barr virus. A highly conserved sequence of 14 amino acids in the carboxyl-terminal regions of the above DNA polymerases is also present at a similar location in adenovirus DNA polymerase. This structure, which is predicted to form a turn flanked by beta-pleated sheets, may form part of an essential binding or catalytic site that accounts for its presence in DNA polymerases of poxviruses, herpesviruses, and adenoviruses. Images PMID:3012524

  15. Target Highlights in CASP9: Experimental Target Structures for the Critical Assessment of Techniques for Protein Structure Prediction

    PubMed Central

    Kryshtafovych, Andriy; Moult, John; Bartual, Sergio G.; Bazan, J. Fernando; Berman, Helen; Casteel, Darren E.; Christodoulou, Evangelos; Everett, John K.; Hausmann, Jens; Heidebrecht, Tatjana; Hills, Tanya; Hui, Raymond; Hunt, John F.; Jayaraman, Seetharaman; Joachimiak, Andrzej; Kennedy, Michael A.; Kim, Choel; Lingel, Andreas; Michalska, Karolina; Montelione, Gaetano T.; Otero, José M.; Perrakis, Anastassis; Pizarro, Juan C.; van Raaij, Mark J.; Ramelot, Theresa A.; Rousseau, Francois; Tong, Liang; Wernimont, Amy K.; Young, Jasmine; Schwede, Torsten

    2011-01-01

    One goal of the CASP Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction is to identify the current state of the art in protein structure prediction and modeling. A fundamental principle of CASP is blind prediction on a set of relevant protein targets, i.e. the participating computational methods are tested on a common set of experimental target proteins, for which the experimental structures are not known at the time of modeling. Therefore, the CASP experiment would not have been possible without broad support of the experimental protein structural biology community. In this manuscript, several experimental groups discuss the structures of the proteins which they provided as prediction targets for CASP9, highlighting structural and functional peculiarities of these structures: the long tail fibre protein gp37 from bacteriophage T4, the cyclic GMP-dependent protein kinase Iβ (PKGIβ) dimerization/docking domain, the ectodomain of the JTB (Jumping Translocation Breakpoint) transmembrane receptor, Autotaxin (ATX) in complex with an inhibitor, the DNA-Binding J-Binding Protein 1 (JBP1) domain essential for biosynthesis and maintenance of DNA base-J (β-D-glucosyl-hydroxymethyluracil) in Trypanosoma and Leishmania, an so far uncharacterized 73 residue domain from Ruminococcus gnavus with a fold typical for PDZ-like domains, a domain from the Phycobilisome (PBS) core-membrane linker (LCM) phycobiliprotein ApcE from Synechocystis, the Heat shock protein 90 (Hsp90) activators PFC0360w and PFC0270w from Plasmodium falciparum, and 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae. PMID:22020785

  16. Emerging Tools for Synthetic Genome Design

    PubMed Central

    Lee, Bo-Rahm; Cho, Suhyung; Song, Yoseb; Kim, Sun Chang; Cho, Byung-Kwan

    2013-01-01

    Synthetic biology is an emerging discipline for designing and synthesizing predictable, measurable, controllable, and transformable biological systems. These newly designed biological systems have great potential for the development of cheaper drugs, green fuels, biodegradable plastics, and targeted cancer therapies over the coming years. Fortunately, our ability to quickly and accurately engineer biological systems that behave predictably has been dramatically expanded by significant advances in DNA-sequencing, DNA-synthesis, and DNA-editing technologies. Here, we review emerging technologies and methodologies in the field of building designed biological systems, and we discuss their future perspectives. PMID:23708771

  17. 23andMe: a new two-sided data-banking market model.

    PubMed

    Stoeklé, Henri-Corto; Mamzer-Bruneel, Marie-France; Vogt, Guillaume; Hervé, Christian

    2016-03-31

    Since 2006, the genetic testing company 23andMe has collected biological samples, self-reported information, and consent documents for biobanking and research from more than 1,000,000 individuals (90% participating in research), through a direct-to-consumer (DTC) online genetic-testing service providing a genetic ancestry report and a genetic health report. However, on November 22, 2013, the Food and Drug Administration (FDA) halted the sale of genetic health testing, on the grounds that 23andMe was not acting in accordance with federal law, by selling tests of undemonstrated reliability as predictive tests for medical risk factors. Consumers could still obtain the genetic ancestry report, but they no longer had access to the genetic health report in the United States (US). However, this did not prevent the company from continuing its health research, with previously obtained and future samples, provided that consent had been obtained from the consumers concerned, or with health reports for individuals from other countries. Furthermore, 23andMe was granted FDA authorization on February 19, 2015, first to provide reports about Bloom syndrome carrier status, and, more recently, to provide consumers with "carrier status" information for 35 genes known (with high levels of confidence) to cause disease. In this Debate, we highlight the likelihood that the primary objective of the company was probably two-fold: promoting itself within the market for predictive testing for human genetic diseases and ancestry at a low cost to consumers, and establishing a high-value database/biobank for research (one of the largest biobanks of human deoxyribonucleic acid (DNA) and personal information). By dint of this marketing approach, a two-sided market has been established between the consumer and the research laboratories, involving the establishment of a database/DNA biobank for scientific and financial gain. We describe here the profound ethical issues raised by this setup.

  18. Islet Oxygen Consumption Rate (OCR) Dose Predicts Insulin Independence in Clinical Islet Autotransplantation.

    PubMed

    Papas, Klearchos K; Bellin, Melena D; Sutherland, David E R; Suszynski, Thomas M; Kitzmann, Jennifer P; Avgoustiniatos, Efstathios S; Gruessner, Angelika C; Mueller, Kathryn R; Beilman, Gregory J; Balamurugan, Appakalai N; Loganathan, Gopalakrishnan; Colton, Clark K; Koulmanda, Maria; Weir, Gordon C; Wilhelm, Josh J; Qian, Dajun; Niland, Joyce C; Hering, Bernhard J

    2015-01-01

    Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR) in predicting clinical islet autotransplant (IAT) insulin independence (II). IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity. Membrane integrity staining (FDA/PI), OCR normalized to DNA (OCR/DNA), islet equivalent (IE) and OCR (viable IE) normalized to recipient body weight (IE dose and OCR dose), and OCR/DNA normalized to islet size index (ISI) were used to characterize autoislet preparations (n = 35). Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis. Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001). These islet characterization methods were highly correlated with II at 6-12 months post-IAT (area-under-the-curve (AUC) = 0.94 for IE dose and 0.96 for OCR dose). FDA/PI (AUC = 0.49) and OCR/DNA (AUC = 0.58) did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72). Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations.

  19. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology.

    PubMed

    Gold, Bert; Cankovic, Milena; Furtado, Larissa V; Meier, Frederick; Gocke, Christopher D

    2015-05-01

    Diagnosing and screening for tumors through noninvasive means represent an important paradigm shift in precision medicine. In contrast to tissue biopsy, detection of circulating tumor cells (CTCs) and circulating tumor nucleic acids provides a minimally invasive method for predictive and prognostic marker detection. This allows early and serial assessment of metastatic disease, including follow-up during remission, characterization of treatment effects, and clonal evolution. Isolation and characterization of CTCs and circulating tumor DNA (ctDNA) are likely to improve cancer diagnosis, treatment, and minimal residual disease monitoring. However, more trials are required to validate the clinical utility of precise molecular markers for a variety of tumor types. This review focuses on the clinical utility of CTCs and ctDNA testing in patients with solid tumors, including somatic and epigenetic alterations that can be detected. A comparison of methods used to isolate and detect CTCs and some of the intricacies of the characterization of the ctDNA are also provided. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. Lethal cellular changes induced by near ultraviolet radiation.

    PubMed

    Tyrrell, R M

    1979-01-01

    There is clear evidence that significant quantities of lesions are induced in DNA by near-UV radiation and that these lesions, although susceptible to repair, may lead to cell death because of the simultaneous disruption of DNA repair systems by the same wavelengths. No particular DNA lesion can be linked to cell death in wild type strains. However, there are good grounds for speculating that a type of near-UV lesion exists which is rapidly "fixed" as a lethal event in cells as a result of the oxygen-dependent disruption of repair. There is a strong indication that the relative ability of various near-UV wavelengths to sensitize cells to heat, chemicals or other radiations is directly related to their efficiency in disrupting DNA repair systems in general. Some important specific questions remain. For example, it is important to ask why breaks formed at 365 nm and 405 nm, although apparently requiring a pol dependent pathway for their repair, do not produce the predicted lethal biological action in the strains tested. In general terms it is hoped to provide more comprehensive physico-chemical data in support of, or contradicting, the proposed model.

  1. The price of performance: a cost and performance analysis of the implementation of cell-free fetal DNA testing for Down syndrome in Ontario, Canada.

    PubMed

    Okun, N; Teitelbaum, M; Huang, T; Dewa, C S; Hoch, J S

    2014-04-01

    To examine the cost and performance implications of introducing cell-free fetal DNA (cffDNA) testing within modeled scenarios in a publicly funded Canadian provincial Down syndrome (DS) prenatal screening program. Two clinical algorithms were created: the first to represent the current screening program and the second to represent one that incorporates cffDNA testing. From these algorithms, eight distinct scenarios were modeled to examine: (1) the current program (no cffDNA), (2) the current program with first trimester screening (FTS) as the nuchal translucency-based primary screen (no cffDNA), (3) a program substituting current screening with primary cffDNA, (4) contingent cffDNA with current FTS performance, (5) contingent cffDNA at a fixed price to result in overall cost neutrality,(6) contingent cffDNA with an improved detection rate (DR) of FTS, (7) contingent cffDNA with higher uptake of FTS, and (8) contingent cffDNA with optimized FTS (higher uptake and improved DR). This modeling study demonstrates that introducing contingent cffDNA testing improves performance by increasing the number of cases of DS detected prenatally, and reducing the number of amniocenteses performed and concomitant iatrogenic pregnancy loss of pregnancies not affected by DS. Costs are modestly increased, although the cost per case of DS detected is decreased with contingent cffDNA testing. Contingent models of cffDNA testing can improve overall screening performance while maintaining the provision of an 11- to 13-week scan. Costs are modestly increased, but cost per prenatally detected case of DS is decreased. © 2013 John Wiley & Sons, Ltd.

  2. Particle integrity, sampling, and application of a DNA-tagged tracer for aerosol transport studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaeser, Cynthia Jeanne

    Aerosols are an ever-present part of our daily environment and have extensive effects on both human and environmental health. Particles in the inhalable range (1-10 μm diameter) are of particular concern because their deposition in the lung can lead to a variety of illnesses including allergic reactions, viral or bacterial infections, and cancer. Understanding the transport of inhalable aerosols across both short and long distances is necessary to predict human exposures to aerosols. To assess the transport of hazardous aerosols, surrogate tracer particles are required to measure their transport through occupied spaces. These tracer particles must not only possess similarmore » transport characteristics to those of interest but also be easily distinguished from the background at low levels and survive the environmental conditions of the testing environment. A previously-developed DNA-tagged particle (DNATrax), composed of food-grade sugar and a DNA oligonucleotide as a “barcode” label, shows promise as a new aerosol tracer. Herein, the use of DNATrax material is validated for use in both indoor and outdoor environments. Utilizing passive samplers made of materials commonly found in indoor environments followed by quantitative polymerase chain reaction (qPCR) assay for endpoint particle detection, particles detection was achieved up to 90 m from the aerosolization location and across shorter distances with high spatial resolution. The unique DNA label and PCR assay specificity were leveraged to perform multiple simultaneous experiments. This allowed the assessment of experimental reproducibility, a rare occurrence among aerosol field tests. To transition to outdoor testing, the solid material provides some protection of the DNA label when exposed to ultraviolet (UV) radiation, with 60% of the DNA remaining intact after 60 minutes under a germicidal lamp and the rate of degradation declining with irradiation time. Additionally, exposure of the DNATrax material using formulations of two different food-grade sugars (maltodextrin and erythritol) to humidity as high as 66% had no significant effect on the DNA label’s degradation or the particle’s aerodynamic diameter, confirming particle stability under such conditions. In summary, confirmation of the DNATrax particles’ size and label integrity under variable conditions combined with experiment multiplexing and high resolution sampling provides a powerful experimental design for modeling aerosol transport through occupied indoor and outdoor locations.« less

  3. Lattice-free prediction of three-dimensional structure of programmed DNA assemblies

    PubMed Central

    Pan, Keyao; Kim, Do-Nyun; Zhang, Fei; Adendorff, Matthew R.; Yan, Hao; Bathe, Mark

    2014-01-01

    DNA can be programmed to self-assemble into high molecular weight 3D assemblies with precise nanometer-scale structural features. Although numerous sequence design strategies exist to realize these assemblies in solution, there is currently no computational framework to predict their 3D structures on the basis of programmed underlying multi-way junction topologies constrained by DNA duplexes. Here, we introduce such an approach and apply it to assemblies designed using the canonical immobile four-way junction. The procedure is used to predict the 3D structure of high molecular weight planar and spherical ring-like origami objects, a tile-based sheet-like ribbon, and a 3D crystalline tensegrity motif, in quantitative agreement with experiments. Our framework provides a new approach to predict programmed nucleic acid 3D structure on the basis of prescribed secondary structure motifs, with possible application to the design of such assemblies for use in biomolecular and materials science. PMID:25470497

  4. Results from raw milk microbiological tests do not predict the shelf-life performance of commercially pasteurized fluid milk.

    PubMed

    Martin, N H; Ranieri, M L; Murphy, S C; Ralyea, R D; Wiedmann, M; Boor, K J

    2011-03-01

    Analytical tools that accurately predict the performance of raw milk following its manufacture into commercial food products are of economic interest to the dairy industry. To evaluate the ability of currently applied raw milk microbiological tests to predict the quality of commercially pasteurized fluid milk products, samples of raw milk and 2% fat pasteurized milk were obtained from 4 New York State fluid milk processors for a 1-yr period. Raw milk samples were examined using a variety of tests commonly applied to raw milk, including somatic cell count, standard plate count, psychrotrophic bacteria count, ropy milk test, coliform count, preliminary incubation count, laboratory pasteurization count, and spore pasteurization count. Differential and selective media were used to identify groups of bacteria present in raw milk. Pasteurized milk samples were held at 6°C for 21 d and evaluated for standard plate count, coliform count, and sensory quality throughout shelf-life. Bacterial isolates from select raw and pasteurized milk tests were identified using 16S ribosomal DNA sequencing. Linear regression analysis of raw milk test results versus results reflecting pasteurized milk quality consistently showed low R(2) values (<0.45); the majority of R(2) values were <0.25, indicating small relationship between the results from the raw milk tests and results from tests used to evaluate pasteurized milk quality. Our findings suggest the need for new raw milk tests that measure the specific biological barriers that limit shelf-life and quality of fluid milk products. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. [Evaluation of cytomegalovirus quantification in blood by the R-gene real-time PCR test].

    PubMed

    Marque-Juillet, S; Touzard, A; Monnier, S; Fernand-Laurent, C; Therby, A; Rigaudeau, S; Harzic, M

    2010-04-01

    Diagnosing the presence of cytomegalovirus (CMV) in the blood of immunodepressed patients is often done by quantitative polymerase chain reaction (Q-PCR) even though the reference method remains the antigenemia pp65 (Ag-pp65) test. To define the predictive value of the Q-PCR in the diagnosis of CMV disease and assess treatment efficacy using the CMV R-gene test. To compare the Q-PCR results and feasibility with those of the Ag-pp65 test. The Q-PCR was performed in 34 whole blood samples (frozen at -80 degrees C until use) from five patients diagnosed with CMV disease, defined as the presence of clinical signs and Ag-pp65 in the nuclei of more than two cells. After extraction, viral DNA was quantified in each sample using the Q-PCR CMV R-gene kit according to the manufacturer's instructions. Immediately after blood was drawn, the Ag-pp65 test had been performed in 32 samples using CINAkit (Argene). The 16 samples positive by the Ag-pp65 test were also positive by PCR; six samples negative by the Ag-pp65 test were positive by PCR; and the remaining 10 samples were negative by both techniques. During treatment, the two markers' kinetics were similar. The CMV R-gene test has a predictive value as good as that of the Ag-pp65 test but is fast and easier to use. A prospective study with a greater number of patients is needed to define the prediction threshold for CMV disease. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  6. Base-Position Error Rate Analysis of Next-Generation Sequencing Applied to Circulating Tumor DNA in Non-Small Cell Lung Cancer: A Prospective Study

    PubMed Central

    Zonta, Eleonora; Didelot, Audrey; Combe, Pierre; Thibault, Constance; Gibault, Laure; Lours, Camille; Taly, Valérie; Laurent-Puig, Pierre

    2016-01-01

    Background Circulating tumor DNA (ctDNA) is an approved noninvasive biomarker to test for the presence of EGFR mutations at diagnosis or recurrence of lung cancer. However, studies evaluating ctDNA as a noninvasive “real-time” biomarker to provide prognostic and predictive information in treatment monitoring have given inconsistent results, mainly due to methodological differences. We have recently validated a next-generation sequencing (NGS) approach to detect ctDNA. Using this new approach, we evaluated the clinical usefulness of ctDNA monitoring in a prospective observational series of patients with non-small cell lung cancer (NSCLC). Methods and Findings We recruited 124 patients with newly diagnosed advanced NSCLC for ctDNA monitoring. The primary objective was to analyze the prognostic value of baseline ctDNA on overall survival. ctDNA was assessed by ultra-deep targeted NGS using our dedicated variant caller algorithm. Common mutations were validated by digital PCR. Out of the 109 patients with at least one follow-up marker mutation, plasma samples were contributive at baseline (n = 105), at first evaluation (n = 85), and at tumor progression (n = 66). We found that the presence of ctDNA at baseline was an independent marker of poor prognosis, with a median overall survival of 13.6 versus 21.5 mo (adjusted hazard ratio [HR] 1.82, 95% CI 1.01–3.55, p = 0.045) and a median progression-free survival of 4.9 versus 10.4 mo (adjusted HR 2.14, 95% CI 1.30–3.67, p = 0.002). It was also related to the presence of bone and liver metastasis. At first evaluation (E1) after treatment initiation, residual ctDNA was an early predictor of treatment benefit as judged by best radiological response and progression-free survival. Finally, negative ctDNA at E1 was associated with overall survival independently of Response Evaluation Criteria in Solid Tumors (RECIST) (HR 3.27, 95% CI 1.66–6.40, p < 0.001). Study population heterogeneity, over-representation of EGFR-mutated patients, and heterogeneous treatment types might limit the conclusions of this study, which require future validation in independent populations. Conclusions In this study of patients with newly diagnosed NSCLC, we found that ctDNA detection using targeted NGS was associated with poor prognosis. The heterogeneity of lung cancer molecular alterations, particularly at time of progression, impairs the ability of individual gene testing to accurately detect ctDNA in unselected patients. Further investigations are needed to evaluate the clinical impact of earlier evaluation times at 1 or 2 wk. Supporting clinical decisions, such as early treatment switching based on ctDNA positivity at first evaluation, will require dedicated interventional studies. PMID:28027313

  7. Integrating paleoecology and genetics of bird populations in two sky island archipelagos

    PubMed Central

    McCormack, John E; Bowen, Bonnie S; Smith, Thomas B

    2008-01-01

    Background Genetic tests of paleoecological hypotheses have been rare, partly because recent genetic divergence is difficult to detect and time. According to fossil plant data, continuous woodland in the southwestern USA and northern Mexico became fragmented during the last 10,000 years, as warming caused cool-adapted species to retreat to high elevations. Most genetic studies of resulting 'sky islands' have either failed to detect recent divergence or have found discordant evidence for ancient divergence. We test this paleoecological hypothesis for the region with intraspecific mitochondrial DNA and microsatellite data from sky-island populations of a sedentary bird, the Mexican jay (Aphelocoma ultramarina). We predicted that populations on different sky islands would share common, ancestral alleles that existed during the last glaciation, but that populations on each sky island, owing to their isolation, would contain unique variants of postglacial origin. We also predicted that divergence times estimated from corrected genetic distance and a coalescence model would post-date the last glacial maximum. Results Our results provide multiple independent lines of support for postglacial divergence, with the predicted pattern of shared and unique mitochondrial DNA haplotypes appearing in two independent sky-island archipelagos, and most estimates of divergence time based on corrected genetic distance post-dating the last glacial maximum. Likewise, an isolation model based on multilocus gene coalescence indicated postglacial divergence of five pairs of sky islands. In contrast to their similar recent histories, the two archipelagos had dissimilar historical patterns in that sky islands in Arizona showed evidence for older divergence, suggesting different responses to the last glaciation. Conclusion This study is one of the first to provide explicit support from genetic data for a postglacial divergence scenario predicted by one of the best paleoecological records in the world. Our results demonstrate that sky islands act as generators of genetic diversity at both recent and historical timescales and underscore the importance of thorough sampling and the use of loci with fast mutation rates to studies that test hypotheses concerning recent genetic divergence. PMID:18588695

  8. Validity of combined cytology and human papillomavirus (HPV) genotyping with adjuvant DNA-cytometry in routine cervical screening: results from 31031 women from the Bonn-region in West Germany.

    PubMed

    Bollmann, Reinhard; Bankfalvi, Agnes; Griefingholt, Harald; Trosic, Ante; Speich, Norbert; Schmitt, Christoph; Bollmann, Magdolna

    2005-05-01

    Our aim was to improve the accuracy of routine cervical screening by a risk-adapted multimodal protocol with special focus on possible reduction and prognostic assessment of false positive results. A cohort of 31031 women from the Bonn-region in West Germany, median age 36 years, were screened by cytology (conventional or liquid-based), followed by PCR-based HVP detection with genotyping and adjuvant DNA image cytometry, if indicated, in a sequential manner. The true prevalence of high-grade cervical intraepithelial neoplasia and carcinoma (>/=CIN2) was 0.32% in the population as projected from cervical biopsies of 123 women (0.4%), of whom 100 showed >/=CIN2. Sensitivity of the cytology screening program at PapIIID/HSIL threshold for detecting histologically confirmed >/=CIN2 cases was 81%, with specificity, positive predictive value (PPV) and negative predictive value (NPV) of 99, 20.9 and 99.9%, respectively. Of 38 women receiving the complete screening protocol, all the 31 >/=CIN2 cases were correctly detected by cytology alone, 30 by positive high-risk HPV genotype and 30 by aneuploid DNA profile. The combination of the three methods resulted in an up to 6.9% increase in PPV for >/=CIN2 at practically unchanged detection rate with the additional benefit of being able to predict the probable outcome of CIN1 lesions detected as false positives with any single test. Multimodal cervical screening might permit identification of those women with low-grade squamous intraepithelial lesions likely to progress at an earlier and curable stage of disease and lengthen the screening interval in those with transient minor lesions caused by productive HPV infection.

  9. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects.

    PubMed

    Mager, D L; Haffajee, A D; Devlin, P M; Norris, C M; Posner, M R; Goodson, J M

    2005-07-07

    The purpose of the present investigation was to determine if the salivary counts of 40 common oral bacteria in subjects with an oral squamous cell carcinoma (OSCC) lesion would differ from those found in cancer-free (OSCC-free) controls. Unstimulated saliva samples were collected from 229 OSCC-free and 45 OSCC subjects and evaluated for their content of 40 common oral bacteria using checkerboard DNA-DNA hybridization. DNA counts per ml saliva were determined for each species, averaged across subjects in the 2 subject groups, and significance of differences between groups determined using the Mann-Whitney test and adjusted for multiple comparisons. Diagnostic sensitivity and specificity in detection of OSCC by levels of salivary organisms were computed and comparisons made separately between a non-matched group of 45 OSCC subjects and 229 controls and a group of 45 OSCC subjects and 45 controls matched by age, gender and smoking history. Counts of 3 of the 40 species tested, Capnocytophaga gingivalis, Prevotella melaninogenica and Streptococcus mitis, were elevated in the saliva of individuals with OSCC (p < 0.001). When tested as diagnostic markers the 3 species were found to predict 80% of cancer cases (sensitivity) while excluding 83% of controls (specificity) in the non-matched group. Diagnostic sensitivity and specificity in the matched group were 80% and 82% respectively. High salivary counts of C. gingivalis, P. melaninogenica and S. mitis may be diagnostic indicators of OSCC.

  10. Non-invasive prenatal testing using cell-free fetal DNA in maternal circulation.

    PubMed

    Liao, Gary J W; Gronowski, Ann M; Zhao, Zhen

    2014-01-20

    The identification of cell-free fetal DNA (cffDNA) in maternal circulation has made non-invasive prenatal testing (NIPT) possible. Maternal plasma cell free DNA is a mixture of maternal and fetal DNA, of which, fetal DNA represents a minor population in maternal plasma. Therefore, methods with high sensitivity and precision are required to detect and differentiate fetal DNA from the large background of maternal DNA. In recent years, technical advances in the molecular analysis of fetal DNA (e.g., digital PCR and massively parallel sequencing (MPS)) has enabled the successful implementation of noninvasive testing into clinical practice, such as fetal sex assessment, RhD genotyping, and fetal chromosomal aneuploidy detection.With the ability to decipher the entire fetal genome from maternal plasma DNA, we foresee that an increased number of non-invasive prenatal tests will be available for detecting many single-gene disorders in the near future. This review briefly summarizes the technical aspects of the NIPT and application of NIPT in clinical practice.

  11. Maternal cfDNA screening for Down syndrome--a cost sensitivity analysis.

    PubMed

    Cuckle, Howard; Benn, Peter; Pergament, Eugene

    2013-07-01

    This study aimed to determine the principal factors contributing to the cost of avoiding a birth with Down syndrome by using cell-free DNA (cfDNA) to replace conventional screening. A range of unit costs were assigned to each item in the screening process. Detection rates were estimated by meta-analysis and modeling. The marginal cost associated with the detection of additional cases using cfDNA was estimated from the difference in average costs divided by the difference in detection. The main factor was the unit cost of cfDNA testing. For example, replacing a combined test costing $150 with 3% false-positive rate and invasive testing at $1000, by cfDNA tests at $2000, $1500, $1000, and $500, the marginal cost is $8.0, $5.8, $3.6, and $1.4m, respectively. Costs were lower when replacing a quadruple test and higher for a 5% false-positive rate, but the relative importance of cfDNA unit cost was unchanged. A contingent policy whereby 10% to 20% women were selected for cfDNA testing by conventional screening was considerably more cost-efficient. Costs were sensitive to cfDNA uptake. Universal cfDNA screening for Down syndrome will only become affordable by public health purchasers if costs fall substantially. Until this happens, the contingent use of cfDNA is recommended. © 2013 John Wiley & Sons, Ltd.

  12. Stool DNA Test

    MedlinePlus

    ... in the United States. Why it's done Stool DNA testing is intended to screen for colon cancer or ... and poses no risks. How you prepare Stool DNA testing requires no preparation. You can eat and drink ...

  13. Clinical accuracy of abnormal cell-free fetal DNA results for the sex chromosomes.

    PubMed

    Scibetta, Emily W; Gaw, Stephanie L; Rao, Rashmi R; Silverman, Neil S; Han, Christina S; Platt, Lawrence D

    2017-12-01

    To investigate factors associated with abnormal cell-free DNA (cfDNA) results for sex chromosomes (SCs). This is a retrospective cohort study of abnormal cfDNA results for SC at a referral practice from March 2013 to July 2015. Cell-free DNA results were abnormal if they were positive for SC aneuploidy (SCA), inconclusive, or discordant with ultrasound (US) findings. Primary outcome was concordance with karyotype or postnatal evaluation. Of 50 abnormal cfDNA results for SC, 31 patients (62%) were positive for SCA, 13 (26%) were inconclusive, and 6 (12%) were sex discordant on US. Of SCA results, 19 (61%) were reported as 45,X and 12 (39%) were SC trisomy. Abnormal karyotypes were confirmed in 8/23 (35%) of SC aneuploidy and 1/5 (20%) of inconclusive results. Abnormal SC cfDNA results were associated with in vitro fertilization (P = .001) and twins (P < .001). Sex discordance between cfDNA and US was associated with twin gestation (P < .001). In our cohort, abnormal SC cfDNA results were associated with in vitro fertilization and twins. Our results indicate cfDNA for sex prediction in twins of limited utility. Positive predictive value and sensitivity for SC determination were lower than previously reported. © 2017 John Wiley & Sons, Ltd.

  14. An Analysis of Enzyme Kinetics Data for Mitochondrial DNA Strand Termination by Nucleoside Reverse Transcription Inhibitors

    PubMed Central

    Wendelsdorf, Katherine V.; Song, Zhuo; Cao, Yang; Samuels, David C.

    2009-01-01

    Nucleoside analogs used in antiretroviral treatment have been associated with mitochondrial toxicity. The polymerase-γ hypothesis states that this toxicity stems from the analogs' inhibition of the mitochondrial DNA polymerase (polymerase-γ) leading to mitochondrial DNA (mtDNA) depletion. We have constructed a computational model of the interaction of polymerase-γ with activated nucleoside and nucleotide analog drugs, based on experimentally measured reaction rates and base excision rates, together with the mtDNA genome size, the human mtDNA sequence, and mitochondrial dNTP concentrations. The model predicts an approximately 1000-fold difference in the activated drug concentration required for a 50% probability of mtDNA strand termination between the activated di-deoxy analogs d4T, ddC, and ddI (activated to ddA) and the activated forms of the analogs 3TC, TDF, AZT, FTC, and ABC. These predictions are supported by experimental and clinical data showing significantly greater mtDNA depletion in cell culture and patient samples caused by the di-deoxy analog drugs. For zidovudine (AZT) we calculated a very low mtDNA replication termination probability, in contrast to its reported mitochondrial toxicity in vitro and clinically. Therefore AZT mitochondrial toxicity is likely due to a mechanism that does not involve strand termination of mtDNA replication. PMID:19132079

  15. SIPSim: A Modeling Toolkit to Predict Accuracy and Aid Design of DNA-SIP Experiments.

    PubMed

    Youngblut, Nicholas D; Barnett, Samuel E; Buckley, Daniel H

    2018-01-01

    DNA Stable isotope probing (DNA-SIP) is a powerful method that links identity to function within microbial communities. The combination of DNA-SIP with multiplexed high throughput DNA sequencing enables simultaneous mapping of in situ assimilation dynamics for thousands of microbial taxonomic units. Hence, high throughput sequencing enabled SIP has enormous potential to reveal patterns of carbon and nitrogen exchange within microbial food webs. There are several different methods for analyzing DNA-SIP data and despite the power of SIP experiments, it remains difficult to comprehensively evaluate method accuracy across a wide range of experimental parameters. We have developed a toolset (SIPSim) that simulates DNA-SIP data, and we use this toolset to systematically evaluate different methods for analyzing DNA-SIP data. Specifically, we employ SIPSim to evaluate the effects that key experimental parameters (e.g., level of isotopic enrichment, number of labeled taxa, relative abundance of labeled taxa, community richness, community evenness, and beta-diversity) have on the specificity, sensitivity, and balanced accuracy (defined as the product of specificity and sensitivity) of DNA-SIP analyses. Furthermore, SIPSim can predict analytical accuracy and power as a function of experimental design and community characteristics, and thus should be of great use in the design and interpretation of DNA-SIP experiments.

  16. SIPSim: A Modeling Toolkit to Predict Accuracy and Aid Design of DNA-SIP Experiments

    PubMed Central

    Youngblut, Nicholas D.; Barnett, Samuel E.; Buckley, Daniel H.

    2018-01-01

    DNA Stable isotope probing (DNA-SIP) is a powerful method that links identity to function within microbial communities. The combination of DNA-SIP with multiplexed high throughput DNA sequencing enables simultaneous mapping of in situ assimilation dynamics for thousands of microbial taxonomic units. Hence, high throughput sequencing enabled SIP has enormous potential to reveal patterns of carbon and nitrogen exchange within microbial food webs. There are several different methods for analyzing DNA-SIP data and despite the power of SIP experiments, it remains difficult to comprehensively evaluate method accuracy across a wide range of experimental parameters. We have developed a toolset (SIPSim) that simulates DNA-SIP data, and we use this toolset to systematically evaluate different methods for analyzing DNA-SIP data. Specifically, we employ SIPSim to evaluate the effects that key experimental parameters (e.g., level of isotopic enrichment, number of labeled taxa, relative abundance of labeled taxa, community richness, community evenness, and beta-diversity) have on the specificity, sensitivity, and balanced accuracy (defined as the product of specificity and sensitivity) of DNA-SIP analyses. Furthermore, SIPSim can predict analytical accuracy and power as a function of experimental design and community characteristics, and thus should be of great use in the design and interpretation of DNA-SIP experiments. PMID:29643843

  17. A Review of Computational Intelligence Methods for Eukaryotic Promoter Prediction.

    PubMed

    Singh, Shailendra; Kaur, Sukhbir; Goel, Neelam

    2015-01-01

    In past decades, prediction of genes in DNA sequences has attracted the attention of many researchers but due to its complex structure it is extremely intricate to correctly locate its position. A large number of regulatory regions are present in DNA that helps in transcription of a gene. Promoter is one such region and to find its location is a challenging problem. Various computational methods for promoter prediction have been developed over the past few years. This paper reviews these promoter prediction methods. Several difficulties and pitfalls encountered by these methods are also detailed, along with future research directions.

  18. Cell-free DNA testing after combined test: factors affecting the uptake.

    PubMed

    Maiz, Nerea; Alzola, Irune; Murua, Emerson J; Rodríguez Santos, Javier

    2016-11-01

    First, to assess what was the uptake of cell free DNA (cfDNA) testing after a combined test and the maternal and fetal factors that influenced this decision, and second, to assess the uptake and factors that influence the choice of invasive testing. This observational retrospective study included 1083 singleton pregnancies who had a combined test for screening for Down syndrome between 11 (+) (0) and 13 (+) (6) weeks. Multivariate logistic regression analysis was used to determine which factors affected the uptake of cfDNA test and invasive testing among risk for trisomies 21, 18, and 13, maternal characteristics and fetal nuchal translucency (NT) thickness. Two-hundred fifty-seven (23.7%) women had a cfDNA test, 89 (8.2%) had an invasive test, and 737 (68.1%) had no further test. The uptake of cfDNA increased with the risk for trisomies (p < 0.001), maternal age (p = 0.013), and was higher in nulliparous women (p = 0.004). The uptake of invasive test increased with the risk for trisomies (p < 0.001) and NT thickness (p < 0.001). This study shows that the uptake of cfDNA testing increases with the risk for trisomies, maternal age, and is higher in nulliparous, whereas the uptake of invasive testing increases with the risk for trisomies and NT thickness.

  19. APPLICATIONS FOR DNA PROBES IN BIODEGRADATION RESEARCH

    EPA Science Inventory

    The use of DNA:DNA hybridization technology in biodegradation studies is investigated. The rate constants for sediments exposed to synthetic oils could be calculated from the NAH(1+) genotypes and this approach would be useful in predicting the kinetics of aromatic hydrocarbon de...

  20. Strategies for Implementing Cell-Free DNA Testing.

    PubMed

    Cuckle, Howard

    2016-06-01

    Maternal plasma cell-free (cf) DNA testing has higher discriminatory power for aneuploidy than any conventional multi-marker screening test. Several strategies have been suggested for introducing it into clinical practice. Secondary cfDNA, restricted only to women with positive conventional screening test, is generally cost saving and minimizes the need for invasive prenatal diagnosis but leads to a small loss in detection. Primary cfDNA, replacing conventional screening or retaining the nuchal translucency scan, is not currently cost-effective for third-party payers. Contingent cfDNA, testing about 20% of women with the highest risks based on a conventional test, is the preferred approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Forensic aspects of DNA-based human identity testing.

    PubMed

    Roper, Stephen M; Tatum, Owatha L

    2008-01-01

    The forensic applications of DNA-based human identity laboratory testing are often underappreciated. Molecular biology has seen an exponential improvement in the accuracy and statistical power provided by identity testing in the past decade. This technology, dependent upon an individual's unique DNA sequence, has cemented the use of DNA technology in the forensic laboratory. This paper will discuss the state of modern DNA-based identity testing, describe the technology used to perform this testing, and describe its use as it relates to forensic applications. We will also compare individual technologies, including polymerase chain reaction (PCR) and Southern Blotting, that are used to detect the molecular differences that make all individuals unique. An increasing reliance on DNA-based identity testing dictates that healthcare providers develop an understanding of the background, techniques, and guiding principles of this important forensic tool.

  2. Clinical Human Papillomavirus Detection Forecasts Cervical Cancer Risk in Women Over 18 Years of Follow-Up

    PubMed Central

    Castle, Philip E.; Glass, Andrew G.; Rush, Brenda B.; Scott, David R.; Wentzensen, Nicolas; Gage, Julia C.; Buckland, Julie; Rydzak, Greg; Lorincz, Attila T.; Wacholder, Sholom

    2012-01-01

    Purpose To describe the long-term (≥ 10 years) benefits of clinical human papillomavirus (HPV) DNA testing for cervical precancer and cancer risk prediction. Methods Cervicovaginal lavages collected from 19,512 women attending a health maintenance program were retrospectively tested for HPV using a clinical test. HPV positives were tested for HPV16 and HPV18 individually using a research test. A Papanicolaou (Pap) result classified as atypical squamous cells of undetermined significance (ASC-US) or more severe was considered abnormal. Women underwent follow-up prospectively with routine annual Pap testing up to 18 years. Cumulative incidence rates (CIRs) of ≥ grade 3 cervical intraepithelial neoplasia (CIN3+) or cancer for enrollment test results were calculated. Results A baseline negative HPV test provided greater reassurance against CIN3+ over the 18-year follow-up than a normal Pap (CIR, 0.90% v 1.27%). Although both baseline Pap and HPV tests predicted who would develop CIN3+ within the first 2 years of follow-up, only HPV testing predicted who would develop CIN3+ 10 to 18 years later (P = .004). HPV16- and HPV18-positive women with normal Pap were at elevated risk of CIN3+ compared with other HPV-positive women with normal Pap and were at similar risk of CIN3+ compared with women with a low-grade squamous intraepithelial Pap. Conclusion HPV testing to rule out cervical disease followed by Pap testing and possibly combined with the detection of HPV16 and HPV18 among HPV positives to identify those at immediate risk of CIN3+ would be an efficient algorithm for cervical cancer screening, especially in women age 30 years or older. PMID:22851570

  3. Prediction of TF target sites based on atomistic models of protein-DNA complexes

    PubMed Central

    Angarica, Vladimir Espinosa; Pérez, Abel González; Vasconcelos, Ana T; Collado-Vides, Julio; Contreras-Moreira, Bruno

    2008-01-01

    Background The specific recognition of genomic cis-regulatory elements by transcription factors (TFs) plays an essential role in the regulation of coordinated gene expression. Studying the mechanisms determining binding specificity in protein-DNA interactions is thus an important goal. Most current approaches for modeling TF specific recognition rely on the knowledge of large sets of cognate target sites and consider only the information contained in their primary sequence. Results Here we describe a structure-based methodology for predicting sequence motifs starting from the coordinates of a TF-DNA complex. Our algorithm combines information regarding the direct and indirect readout of DNA into an atomistic statistical model, which is used to estimate the interaction potential. We first measure the ability of our method to correctly estimate the binding specificities of eight prokaryotic and eukaryotic TFs that belong to different structural superfamilies. Secondly, the method is applied to two homology models, finding that sampling of interface side-chain rotamers remarkably improves the results. Thirdly, the algorithm is compared with a reference structural method based on contact counts, obtaining comparable predictions for the experimental complexes and more accurate sequence motifs for the homology models. Conclusion Our results demonstrate that atomic-detail structural information can be feasibly used to predict TF binding sites. The computational method presented here is universal and might be applied to other systems involving protein-DNA recognition. PMID:18922190

  4. P-Hint-Hunt: a deep parallelized whole genome DNA methylation detection tool.

    PubMed

    Peng, Shaoliang; Yang, Shunyun; Gao, Ming; Liao, Xiangke; Liu, Jie; Yang, Canqun; Wu, Chengkun; Yu, Wenqiang

    2017-03-14

    The increasing studies have been conducted using whole genome DNA methylation detection as one of the most important part of epigenetics research to find the significant relationships among DNA methylation and several typical diseases, such as cancers and diabetes. In many of those studies, mapping the bisulfite treated sequence to the whole genome has been the main method to study DNA cytosine methylation. However, today's relative tools almost suffer from inaccuracies and time-consuming problems. In our study, we designed a new DNA methylation prediction tool ("Hint-Hunt") to solve the problem. By having an optimal complex alignment computation and Smith-Waterman matrix dynamic programming, Hint-Hunt could analyze and predict the DNA methylation status. But when Hint-Hunt tried to predict DNA methylation status with large-scale dataset, there are still slow speed and low temporal-spatial efficiency problems. In order to solve the problems of Smith-Waterman dynamic programming and low temporal-spatial efficiency, we further design a deep parallelized whole genome DNA methylation detection tool ("P-Hint-Hunt") on Tianhe-2 (TH-2) supercomputer. To the best of our knowledge, P-Hint-Hunt is the first parallel DNA methylation detection tool with a high speed-up to process large-scale dataset, and could run both on CPU and Intel Xeon Phi coprocessors. Moreover, we deploy and evaluate Hint-Hunt and P-Hint-Hunt on TH-2 supercomputer in different scales. The experimental results illuminate our tools eliminate the deviation caused by bisulfite treatment in mapping procedure and the multi-level parallel program yields a 48 times speed-up with 64 threads. P-Hint-Hunt gain a deep acceleration on CPU and Intel Xeon Phi heterogeneous platform, which gives full play of the advantages of multi-cores (CPU) and many-cores (Phi).

  5. Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA.

    PubMed

    Iyer, Lakshminarayan M; Zhang, Dapeng; Burroughs, A Maxwell; Aravind, L

    2013-09-01

    Discovery of the TET/JBP family of dioxygenases that modify bases in DNA has sparked considerable interest in novel DNA base modifications and their biological roles. Using sensitive sequence and structure analyses combined with contextual information from comparative genomics, we computationally characterize over 12 novel biochemical systems for DNA modifications. We predict previously unidentified enzymes, such as the kinetoplastid J-base generating glycosyltransferase (and its homolog GREB1), the catalytic specificity of bacteriophage TET/JBP proteins and their role in complex DNA base modifications. We also predict the enzymes involved in synthesis of hypermodified bases such as alpha-glutamylthymine and alpha-putrescinylthymine that have remained enigmatic for several decades. Moreover, the current analysis suggests that bacteriophages and certain nucleo-cytoplasmic large DNA viruses contain an unexpectedly diverse range of DNA modification systems, in addition to those using previously characterized enzymes such as Dam, Dcm, TET/JBP, pyrimidine hydroxymethylases, Mom and glycosyltransferases. These include enzymes generating modified bases such as deazaguanines related to queuine and archaeosine, pyrimidines comparable with lysidine, those derived using modified S-adenosyl methionine derivatives and those using TET/JBP-generated hydroxymethyl pyrimidines as biosynthetic starting points. We present evidence that some of these modification systems are also widely dispersed across prokaryotes and certain eukaryotes such as basidiomycetes, chlorophyte and stramenopile alga, where they could serve as novel epigenetic marks for regulation or discrimination of self from non-self DNA. Our study extends the role of the PUA-like fold domains in recognition of modified nucleic acids and predicts versions of the ASCH and EVE domains to be novel 'readers' of modified bases in DNA. These results open opportunities for the investigation of the biology of these systems and their use in biotechnology.

  6. Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA

    PubMed Central

    Iyer, Lakshminarayan M.; Zhang, Dapeng; Maxwell Burroughs, A.; Aravind, L.

    2013-01-01

    Discovery of the TET/JBP family of dioxygenases that modify bases in DNA has sparked considerable interest in novel DNA base modifications and their biological roles. Using sensitive sequence and structure analyses combined with contextual information from comparative genomics, we computationally characterize over 12 novel biochemical systems for DNA modifications. We predict previously unidentified enzymes, such as the kinetoplastid J-base generating glycosyltransferase (and its homolog GREB1), the catalytic specificity of bacteriophage TET/JBP proteins and their role in complex DNA base modifications. We also predict the enzymes involved in synthesis of hypermodified bases such as alpha-glutamylthymine and alpha-putrescinylthymine that have remained enigmatic for several decades. Moreover, the current analysis suggests that bacteriophages and certain nucleo-cytoplasmic large DNA viruses contain an unexpectedly diverse range of DNA modification systems, in addition to those using previously characterized enzymes such as Dam, Dcm, TET/JBP, pyrimidine hydroxymethylases, Mom and glycosyltransferases. These include enzymes generating modified bases such as deazaguanines related to queuine and archaeosine, pyrimidines comparable with lysidine, those derived using modified S-adenosyl methionine derivatives and those using TET/JBP-generated hydroxymethyl pyrimidines as biosynthetic starting points. We present evidence that some of these modification systems are also widely dispersed across prokaryotes and certain eukaryotes such as basidiomycetes, chlorophyte and stramenopile alga, where they could serve as novel epigenetic marks for regulation or discrimination of self from non-self DNA. Our study extends the role of the PUA-like fold domains in recognition of modified nucleic acids and predicts versions of the ASCH and EVE domains to be novel ‘readers’ of modified bases in DNA. These results open opportunities for the investigation of the biology of these systems and their use in biotechnology. PMID:23814188

  7. Identifying sensitive windows for prenatal particulate air pollution exposure and mitochondrial DNA content in cord blood.

    PubMed

    Rosa, Maria José; Just, Allan C; Guerra, Marco Sánchez; Kloog, Itai; Hsu, Hsiao-Hsien Leon; Brennan, Kasey J; García, Adriana Mercado; Coull, Brent; Wright, Rosalind J; Téllez Rojo, Martha María; Baccarelli, Andrea A; Wright, Robert O

    2017-01-01

    Changes in mitochondrial DNA (mtDNA) can serve as a marker of cumulative oxidative stress (OS) due to the mitochondria's unique genome and relative lack of repair systems. In utero particulate matter ≤2.5μm (PM 2.5 ) exposure can enhance oxidative stress. Our objective was to identify sensitive windows to predict mtDNA damage experienced in the prenatal period due to PM 2.5 exposure using mtDNA content measured in cord blood. Women affiliated with the Mexican social security system were recruited during pregnancy in the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) study. Mothers with cord blood collected at delivery and complete covariate data were included (n=456). Mothers' prenatal daily exposure to PM 2.5 was estimated using a satellite-based spatio-temporally resolved prediction model and place of residence during pregnancy. DNA was extracted from umbilical cord leukocytes. Quantitative real-time polymerase chain reaction (qPCR) was used to determine mtDNA content. A distributive lag regression model (DLM) incorporating weekly averages of daily PM 2.5 predictions was constructed to plot the association between exposure and OS over the length of pregnancy. In models that included child's sex, mother's age at delivery, prenatal environmental tobacco smoke exposure, birth year, maternal education, and assay batch, we found significant associations between higher PM 2.5 exposure during late pregnancy (35-40weeks) and lower mtDNA content in cord blood. Increased PM 2.5 during a specific prenatal window in the third trimester was associated with decreased mtDNA content suggesting heightened sensitivity to PM-induced OS during this life stage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Informative priors on fetal fraction increase power of the noninvasive prenatal screen.

    PubMed

    Xu, Hanli; Wang, Shaowei; Ma, Lin-Lin; Huang, Shuai; Liang, Lin; Liu, Qian; Liu, Yang-Yang; Liu, Ke-Di; Tan, Ze-Min; Ban, Hao; Guan, Yongtao; Lu, Zuhong

    2017-11-09

    PurposeNoninvasive prenatal screening (NIPS) sequences a mixture of the maternal and fetal cell-free DNA. Fetal trisomy can be detected by examining chromosomal dosages estimated from sequencing reads. The traditional method uses the Z-test, which compares a subject against a set of euploid controls, where the information of fetal fraction is not fully utilized. Here we present a Bayesian method that leverages informative priors on the fetal fraction.MethodOur Bayesian method combines the Z-test likelihood and informative priors of the fetal fraction, which are learned from the sex chromosomes, to compute Bayes factors. Bayesian framework can account for nongenetic risk factors through the prior odds, and our method can report individual positive/negative predictive values.ResultsOur Bayesian method has more power than the Z-test method. We analyzed 3,405 NIPS samples and spotted at least 9 (of 51) possible Z-test false positives.ConclusionBayesian NIPS is more powerful than the Z-test method, is able to account for nongenetic risk factors through prior odds, and can report individual positive/negative predictive values.Genetics in Medicine advance online publication, 9 November 2017; doi:10.1038/gim.2017.186.

  9. Intercalation of XR5944 with the estrogen response element is modulated by the tri-nucleotide spacer sequence between half-sites

    PubMed Central

    Sidell, Neil; Mathad, Raveendra I.; Shu, Feng-jue; Zhang, Zhenjiang; Kallen, Caleb B.; Yang, Danzhou

    2011-01-01

    DNA-intercalating molecules can impair DNA replication, DNA repair, and gene transcription. We previously demonstrated that XR5944, a DNA bis-intercalator, specifically blocks binding of estrogen receptor-α (ERα) to the consensus estrogen response element (ERE). The consensus ERE sequence is AGGTCAnnnTGACCT, where nnn is known as the tri-nucleotide spacer. Recent work has shown that the tri-nucleotide spacer can modulate ERα-ERE binding affinity and ligand-mediated transcriptional responses. To further understand the mechanism by which XR5944 inhibits ERα-ERE binding, we tested its ability to interact with consensus EREs with variable tri-nucleotide spacer sequences and with natural but non-consensus ERE sequences using one dimensional nuclear magnetic resonance (1D 1H NMR) titration studies. We found that the tri-nucleotide spacer sequence significantly modulates the binding of XR5944 to EREs. Of the sequences that were tested, EREs with CGG and AGG spacers showed the best binding specificity with XR5944, while those spaced with TTT demonstrated the least specific binding. The binding stoichiometry of XR5944 with EREs was 2:1, which can explain why the spacer influences the drug-DNA interaction; each XR5944 spans four nucleotides (including portions of the spacer) when intercalating with DNA. To validate our NMR results, we conducted functional studies using reporter constructs containing consensus EREs with tri-nucleotide spacers CGG, CTG, and TTT. Results of reporter assays in MCF-7 cells indicated that XR5944 was significantly more potent in inhibiting the activity of CGG- than TTT-spaced EREs, consistent with our NMR results. Taken together, these findings predict that the anti-estrogenic effects of XR5944 will depend not only on ERE half-site composition but also on the tri-nucleotide spacer sequence of EREs located in the promoters of estrogen-responsive genes. PMID:21333738

  10. Plasma cell-free DNA and qSOFA score predict 7-day mortality in 481 emergency department bacteraemia patients.

    PubMed

    Rannikko, Juha; Seiskari, Tapio; Huttunen, Reetta; Tarkiainen, Iina; Jylhävä, Juulia; Hurme, Mikko; Syrjänen, Jaana; Aittoniemi, Janne

    2018-04-24

    A few studies have shown that both quick Sequential Organ Failure Assessment (qSOFA) score and cell-free DNA (cfDNA) have potential use as a prognostic marker in patients with infection. We studied these two markers alone and in combination to identify those emergency department (ED) patients with the highest risk of death. Plasma cfDNA level was studied on days 0 to 4 after admittance to the ED from 481 culture-positive bloodstream infection cases. The qSOFA score was evaluated retrospectively according to Sepsis-3 definitions. The primary outcome was death by day 7. CfDNA on day 0 was significantly higher in non-survivors than in survivors (2.02 μg/ml vs. 1.35 μg/ml, p<0.001). CfDNA level was high (>1.69 μg/ml) in 134 (28%) out of 481 cases and the qSOFA score was ≥2 in 128 (28%) out of 458 cases. High cfDNA and qSOFA score ≥2 had 70% and 77% sensitivity and 76% and 76% specificity in predicting death by day 7, respectively. High cfDNA alone had odds ratio (OR) of 7.7 (95% CI 3.9-15.3) and qSOFA score ≥2 OR of 11.6 (5.5-24.3), but their combination had OR of 20.3 (10.0-41.4) in predicting death by day 7 when compared with those with low cfDNA and qSOFA score <2. Among the five cases with the highest cfDNA levels, there were three patients with severe disseminated intravascular coagulation. CfDNA and qSOFA score can be used independently to identify those bacteraemia patients at high risk of death, and combining these two markers gives additional advantage. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Prediction of the efficacy of immunotherapy by measuring the integrity of cell-free DNA in plasma in colorectal cancer.

    PubMed

    Kitahara, Masahiro; Hazama, Shoichi; Tsunedomi, Ryouichi; Takenouchi, Hiroko; Kanekiyo, Shinsuke; Inoue, Yuka; Nakajima, Masao; Tomochika, Shinobu; Tokuhisa, Yoshihiro; Iida, Michihisa; Sakamoto, Kazuhiko; Suzuki, Nobuaki; Takeda, Shigeru; Ueno, Tomio; Yamamoto, Shigeru; Yoshino, Shigefumi; Nagano, Hiroaki

    2016-12-01

    We previously reported a phase II study of a cancer vaccine using five novel peptides recognized by HLA-A*2402-restricted CTL in combination with oxaliplatin-containing chemotherapy (FXV study) as first-line therapy for patients with metastatic colorectal cancer and demonstrated the safety and promising potential of our five-peptide cocktail. The objective of this analysis was to identify predictive biomarkers for identifying patients who are likely to receive a clinical benefit from immunochemotherapy. Circulating cell-free DNA (cfDNA) in plasma has been reported to be a candidate molecular biomarker for the efficacy of anticancer therapy. Unlike uniformly truncated small-sized DNA released from apoptotic normal cells, DNA released from necrotic cancer cells varies in size. The integrity of plasma cfDNA (i.e. the ratio of longer fragments [400 bp] to shorter fragments [100 bp] of cfDNA), may be clinically useful for detecting colorectal cancer progression. We assessed plasma samples collected from 93 patients prior to receiving immunochemotherapy. The cfDNA levels and integrity were analyzed by semi-quantitative real-time PCR. Progression-free survival was significantly better in patients with a low plasma cfDNA integrity value than in those with a high value (P = 0.0027). Surprisingly, in the HLA-A*2402-matched group, patients with a low plasma cfDNA integrity value had significantly better progression-free survival than those with a high value (P = 0.0015). This difference was not observed in the HLA-A*2402-unmatched group. In conclusion, the integrity of plasma cfDNA may provide important clinical information and may be a useful predictive biomarker of the outcome of immunotherapy in metastatic colorectal cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  12. Testing chemical carcinogenicity by using a transcriptomics HepaRG-based model?

    PubMed Central

    Doktorova, T. Y.; Yildirimman, Reha; Ceelen, Liesbeth; Vilardell, Mireia; Vanhaecke, Tamara; Vinken, Mathieu; Ates, Gamze; Heymans, Anja; Gmuender, Hans; Bort, Roque; Corvi, Raffaella; Phrakonkham, Pascal; Li, Ruoya; Mouchet, Nicolas; Chesne, Christophe; van Delft, Joost; Kleinjans, Jos; Castell, Jose; Herwig, Ralf; Rogiers, Vera

    2014-01-01

    The EU FP6 project carcinoGENOMICS explored the combination of toxicogenomics and in vitro cell culture models for identifying organotypical genotoxic- and non-genotoxic carcinogen-specific gene signatures. Here the performance of its gene classifier, derived from exposure of metabolically competent human HepaRG cells to prototypical non-carcinogens (10 compounds) and hepatocarcinogens (20 compounds), is reported. Analysis of the data at the gene and the pathway level by using independent biostatistical approaches showed a distinct separation of genotoxic from non-genotoxic hepatocarcinogens and non-carcinogens (up to 88 % correct prediction). The most characteristic pathway responding to genotoxic exposure was DNA damage. Interlaboratory reproducibility was assessed by blindly testing of three compounds, from the set of 30 compounds, by three independent laboratories. Subsequent classification of these compounds resulted in correct prediction of the genotoxicants. As expected, results on the non-genotoxic carcinogens and the non-carcinogens were less predictive. In conclusion, the combination of transcriptomics with the HepaRG in vitro cell model provides a potential weight of evidence approach for the evaluation of the genotoxic potential of chemical substances. PMID:26417288

  13. Molecular markers in bladder cancer: Novel research frontiers.

    PubMed

    Sanguedolce, Francesca; Cormio, Antonella; Bufo, Pantaleo; Carrieri, Giuseppe; Cormio, Luigi

    2015-01-01

    Bladder cancer (BC) is a heterogeneous disease encompassing distinct biologic features that lead to extremely different clinical behaviors. In the last 20 years, great efforts have been made to predict disease outcome and response to treatment by developing risk assessment calculators based on multiple standard clinical-pathological factors, as well as by testing several molecular markers. Unfortunately, risk assessment calculators alone fail to accurately assess a single patient's prognosis and response to different treatment options. Several molecular markers easily assessable by routine immunohistochemical techniques hold promise for becoming widely available and cost-effective tools for a more reliable risk assessment, but none have yet entered routine clinical practice. Current research is therefore moving towards (i) identifying novel molecular markers; (ii) testing old and new markers in homogeneous patients' populations receiving homogeneous treatments; (iii) generating a multimarker panel that could be easily, and thus routinely, used in clinical practice; (iv) developing novel risk assessment tools, possibly combining standard clinical-pathological factors with molecular markers. This review analyses the emerging body of literature concerning novel biomarkers, ranging from genetic changes to altered expression of a huge variety of molecules, potentially involved in BC outcome and response to treatment. Findings suggest that some of these indicators, such as serum circulating tumor cells and tissue mitochondrial DNA, seem to be easily assessable and provide reliable information. Other markers, such as the phosphoinositide-3-kinase (PI3K)/AKT (serine-threonine kinase)/mTOR (mammalian target of rapamycin) pathway and epigenetic changes in DNA methylation seem to not only have prognostic/predictive value but also, most importantly, represent valuable therapeutic targets. Finally, there is increasing evidence that the development of novel risk assessment tools combining standard clinical-pathological factors with molecular markers represents a major quest in managing this poorly predictable disease.

  14. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer.

    PubMed

    Gianni, Luca; Zambetti, Milvia; Clark, Kim; Baker, Joffre; Cronin, Maureen; Wu, Jenny; Mariani, Gabriella; Rodriguez, Jaime; Carcangiu, Marialuisa; Watson, Drew; Valagussa, Pinuccia; Rouzier, Roman; Symmans, W Fraser; Ross, Jeffrey S; Hortobagyi, Gabriel N; Pusztai, Lajos; Shak, Steven

    2005-10-10

    We sought to identify gene expression markers that predict the likelihood of chemotherapy response. We also tested whether chemotherapy response is correlated with the 21-gene Recurrence Score assay that quantifies recurrence risk. Patients with locally advanced breast cancer received neoadjuvant paclitaxel and doxorubicin. RNA was extracted from the pretreatment formalin-fixed paraffin-embedded core biopsies. The expression of 384 genes was quantified using reverse transcriptase polymerase chain reaction and correlated with pathologic complete response (pCR). The performance of genes predicting for pCR was tested in patients from an independent neoadjuvant study where gene expression was obtained using DNA microarrays. Of 89 assessable patients (mean age, 49.9 years; mean tumor size, 6.4 cm), 11 (12%) had a pCR. Eighty-six genes correlated with pCR (unadjusted P < .05); pCR was more likely with higher expression of proliferation-related genes and immune-related genes, and with lower expression of estrogen receptor (ER) -related genes. In 82 independent patients treated with neoadjuvant paclitaxel and doxorubicin, DNA microarray data were available for 79 of the 86 genes. In univariate analysis, 24 genes correlated with pCR with P < .05 (false discovery, four genes) and 32 genes showed correlation with P < .1 (false discovery, eight genes). The Recurrence Score was positively associated with the likelihood of pCR (P = .005), suggesting that the patients who are at greatest recurrence risk are more likely to have chemotherapy benefit. Quantitative expression of ER-related genes, proliferation genes, and immune-related genes are strong predictors of pCR in women with locally advanced breast cancer receiving neoadjuvant anthracyclines and paclitaxel.

  15. Accurate and sensitive quantification of protein-DNA binding affinity.

    PubMed

    Rastogi, Chaitanya; Rube, H Tomas; Kribelbauer, Judith F; Crocker, Justin; Loker, Ryan E; Martini, Gabriella D; Laptenko, Oleg; Freed-Pastor, William A; Prives, Carol; Stern, David L; Mann, Richard S; Bussemaker, Harmen J

    2018-04-17

    Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes. Copyright © 2018 the Author(s). Published by PNAS.

  16. Accurate and sensitive quantification of protein-DNA binding affinity

    PubMed Central

    Rastogi, Chaitanya; Rube, H. Tomas; Kribelbauer, Judith F.; Crocker, Justin; Loker, Ryan E.; Martini, Gabriella D.; Laptenko, Oleg; Freed-Pastor, William A.; Prives, Carol; Stern, David L.; Mann, Richard S.; Bussemaker, Harmen J.

    2018-01-01

    Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes. PMID:29610332

  17. Molecular Diagnostics in Colorectal Carcinoma: Advances and Applications for 2018.

    PubMed

    Bhalla, Amarpreet; Zulfiqar, Muhammad; Bluth, Martin H

    2018-06-01

    The molecular pathogenesis and classification of colorectal carcinoma are based on the traditional adenomaecarcinoma sequence, serrated polyp pathway, and microsatellite instability (MSI). The genetic basis for hereditary nonpolyposis colorectal cancer is the detection of mutations in the MLH1, MSH2, MSH6, PMS2, and EPCAM genes. Genetic testing for Lynch syndrome includes MSI testing, methylator phenotype testing, BRAF mutation testing, and molecular testing for germline mutations in MMR genes. Molecular makers with predictive and prognostic implications include quantitative multigene reverse transcriptase polymerase chain reaction assay and KRAS and BRAF mutation analysis. Mismatch repair-deficient tumors have higher rates of programmed death-ligand 1 expression. Cell-free DNA analysis in fluids are proving beneficial for diagnosis and prognosis in these disease states towards effective patient management. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. UK NHS pilot study on cell-free DNA testing in screening for fetal trisomies: factors affecting uptake.

    PubMed

    Gil, M M; Giunta, G; Macalli, E A; Poon, L C; Nicolaides, K H

    2015-01-01

    This study reports on the clinical implementation of cell-free DNA (cfDNA) testing, contingent on the results of the combined test, in screening for fetal trisomies 21, 18 and 13 in two UK National Health Service hospitals. Women with a combined-test risk of ≥ 1:100 (high risk) were offered the options of chorionic villus sampling (CVS), cfDNA testing or no further testing and those with a risk of 1:101 to 1:2500 (intermediate risk) were offered cfDNA or no further testing. The objective of the study was to examine the factors affecting patient decisions concerning their options. Combined screening was performed in 6651 singleton pregnancies in which the risk for trisomies was high in 260 (3.9%), intermediate in 2017 (30.3%) and low in 4374 (65.8%). Logistic regression analysis was used to determine which factors among maternal characteristics, fetal nuchal translucency thickness (NT) and risk for trisomies were significant predictors of opting for CVS in the high-risk group and opting for cfDNA testing in the intermediate-risk group. In the high-risk group, 104 (40.0%) women opted for CVS; predictors for CVS were increasing fetal NT and increasing risk for trisomies, while the predictor against CVS was being of Afro-Caribbean racial origin (r = 0.366). In the intermediate-risk group, 1850 (91.7%) women opted for cfDNA testing; predictors for cfDNA testing were increasing maternal age, increasing risk for trisomies and university education, while predictors against cfDNA testing were being of Afro-Caribbean racial origin, smoking and being parous (r = 0.105). This study has identified factors that can influence the decision of women undergoing combined screening in favor of or against CVS and in favor of or against cfDNA testing. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.

  19. Cytomegalovirus (CMV) DNA Quantitation in Bronchoalveolar Lavage Fluid From Hematopoietic Stem Cell Transplant Recipients With CMV Pneumonia

    PubMed Central

    Stevens-Ayers, Terry; Travi, Giovanna; Huang, Meei-Li; Cheng, Guang-Shing; Xie, Hu; Leisenring, Wendy; Erard, Veronique; Seo, Sachiko; Kimball, Louise; Corey, Lawrence; Pergam, Steven A; Jerome, Keith R.

    2017-01-01

    Abstract Background. Quantitative cytomegalovirus (CMV) DNA–specific polymerase chain reaction (PCR) analysis is widely used as a surveillance method for hematopoietic stem cell transplant (HCT) recipients. However, no CMV DNA threshold exists in bronchoalveolar lavage (BAL) to differentiate pneumonia from pulmonary shedding. Methods. We tested archived BAL fluid samples from 132 HCT recipients with CMV pneumonia and 139 controls (100 patients with non-CMV pneumonia, 18 with idiopathic pneumonia syndrome [IPS], and 21 who were asymptomatic) by quantitative CMV and β-globin DNA–specific PCR. Results. Patients with CMV pneumonia had higher median viral loads (3.9 log10 IU/mL; interquartile range [IQR], 2.6–6.0 log10 IU/mL) than controls (0 log10 IU/mL [IQR, 0–1.6 log10 IU/mL] for patients with non-CMV pneumonia, 0 log10 IU/mL [IQR, 0–1.6 log10 IU/mL] for patients with IPS, and 1.63 log10 IU/mL [IQR, 0–2.5 log10 IU/mL] for patients who were asymptomatic; P < .001 for all comparisons to patients with CMV pneumonia). Receiver operating characteristic curve analyses and predictive models identified a cutoff CMV DNA level of 500 IU/mL to differentiate between CMV pneumonia and pulmonary shedding, using current CMV pneumonia prevalence figures. However, different levels may be appropriate in settings of very high or low CMV pneumonia prevalence. The presence of pulmonary copathogens, radiographic presentation, or pulmonary hemorrhage did not alter predictive values. Conclusion. CMV DNA load in BAL can be used to differentiate CMV pneumonia from pulmonary shedding. PMID:28181657

  20. A troglomorphic spider from Java (Araneae, Ctenidae, Amauropelma)

    PubMed Central

    Miller, Jeremy; Rahmadi, Cahyo

    2012-01-01

    Abstract A new troglomorphic spider from caves in Central Java, Indonesia, is described and placed in the ctenid genus Amauropelma Raven, Stumkat & Gray, until now containing only species from Queensland, Australia. Only juveniles and mature females of the new species are known. We give our reasons for placing the new species in Amauropelma, discuss conflicting characters, and make predictions about the morphology of the as yet undiscovered male that will test our taxonomic hypothesis. The description includes DNA barcode sequence data. PMID:22303127

Top