Sample records for predictive dynamic model

  1. Dynamic prediction in functional concurrent regression with an application to child growth.

    PubMed

    Leroux, Andrew; Xiao, Luo; Crainiceanu, Ciprian; Checkley, William

    2018-04-15

    In many studies, it is of interest to predict the future trajectory of subjects based on their historical data, referred to as dynamic prediction. Mixed effects models have traditionally been used for dynamic prediction. However, the commonly used random intercept and slope model is often not sufficiently flexible for modeling subject-specific trajectories. In addition, there may be useful exposures/predictors of interest that are measured concurrently with the outcome, complicating dynamic prediction. To address these problems, we propose a dynamic functional concurrent regression model to handle the case where both the functional response and the functional predictors are irregularly measured. Currently, such a model cannot be fit by existing software. We apply the model to dynamically predict children's length conditional on prior length, weight, and baseline covariates. Inference on model parameters and subject-specific trajectories is conducted using the mixed effects representation of the proposed model. An extensive simulation study shows that the dynamic functional regression model provides more accurate estimation and inference than existing methods. Methods are supported by fast, flexible, open source software that uses heavily tested smoothing techniques. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  2. Recent NASA Research on Aerodynamic Modeling of Post-Stall and Spin Dynamics of Large Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.; Foster, John V.

    2007-01-01

    A simulation study was conducted to investigate aerodynamic modeling methods for prediction of post-stall flight dynamics of large transport airplanes. The research approach involved integrating dynamic wind tunnel data from rotary balance and forced oscillation testing with static wind tunnel data to predict aerodynamic forces and moments during highly dynamic departure and spin motions. Several state-of-the-art aerodynamic modeling methods were evaluated and predicted flight dynamics using these various approaches were compared. Results showed the different modeling methods had varying effects on the predicted flight dynamics and the differences were most significant during uncoordinated maneuvers. Preliminary wind tunnel validation data indicated the potential of the various methods for predicting steady spin motions.

  3. Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks.

    PubMed

    Blanche, Paul; Proust-Lima, Cécile; Loubère, Lucie; Berr, Claudine; Dartigues, Jean-François; Jacqmin-Gadda, Hélène

    2015-03-01

    Thanks to the growing interest in personalized medicine, joint modeling of longitudinal marker and time-to-event data has recently started to be used to derive dynamic individual risk predictions. Individual predictions are called dynamic because they are updated when information on the subject's health profile grows with time. We focus in this work on statistical methods for quantifying and comparing dynamic predictive accuracy of this kind of prognostic models, accounting for right censoring and possibly competing events. Dynamic area under the ROC curve (AUC) and Brier Score (BS) are used to quantify predictive accuracy. Nonparametric inverse probability of censoring weighting is used to estimate dynamic curves of AUC and BS as functions of the time at which predictions are made. Asymptotic results are established and both pointwise confidence intervals and simultaneous confidence bands are derived. Tests are also proposed to compare the dynamic prediction accuracy curves of two prognostic models. The finite sample behavior of the inference procedures is assessed via simulations. We apply the proposed methodology to compare various prediction models using repeated measures of two psychometric tests to predict dementia in the elderly, accounting for the competing risk of death. Models are estimated on the French Paquid cohort and predictive accuracies are evaluated and compared on the French Three-City cohort. © 2014, The International Biometric Society.

  4. Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes

    PubMed Central

    Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian

    2015-01-01

    Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes. PMID:26294903

  5. Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes.

    PubMed

    Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian

    2015-01-01

    Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes.

  6. Governing Laws of Complex System Predictability under Co-evolving Uncertainty Sources: Theory and Nonlinear Geophysical Applications

    NASA Astrophysics Data System (ADS)

    Perdigão, R. A. P.

    2017-12-01

    Predictability assessments are traditionally made on a case-by-case basis, often by running the particular model of interest with randomly perturbed initial/boundary conditions and parameters, producing computationally expensive ensembles. These approaches provide a lumped statistical view of uncertainty evolution, without eliciting the fundamental processes and interactions at play in the uncertainty dynamics. In order to address these limitations, we introduce a systematic dynamical framework for predictability assessment and forecast, by analytically deriving governing equations of predictability in terms of the fundamental architecture of dynamical systems, independent of any particular problem under consideration. The framework further relates multiple uncertainty sources along with their coevolutionary interplay, enabling a comprehensive and explicit treatment of uncertainty dynamics along time, without requiring the actual model to be run. In doing so, computational resources are freed and a quick and effective a-priori systematic dynamic evaluation is made of predictability evolution and its challenges, including aspects in the model architecture and intervening variables that may require optimization ahead of initiating any model runs. It further brings out universal dynamic features in the error dynamics elusive to any case specific treatment, ultimately shedding fundamental light on the challenging issue of predictability. The formulated approach, framed with broad mathematical physics generality in mind, is then implemented in dynamic models of nonlinear geophysical systems with various degrees of complexity, in order to evaluate their limitations and provide informed assistance on how to optimize their design and improve their predictability in fundamental dynamical terms.

  7. A comparison of large-scale climate signals and the North American Multi-Model Ensemble (NMME) for drought prediction in China

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Chen, Nengcheng; Zhang, Xiang

    2018-02-01

    Drought is an extreme natural disaster that can lead to huge socioeconomic losses. Drought prediction ahead of months is helpful for early drought warning and preparations. In this study, we developed a statistical model, two weighted dynamic models and a statistical-dynamic (hybrid) model for 1-6 month lead drought prediction in China. Specifically, statistical component refers to climate signals weighting by support vector regression (SVR), dynamic components consist of the ensemble mean (EM) and Bayesian model averaging (BMA) of the North American Multi-Model Ensemble (NMME) climatic models, and the hybrid part denotes a combination of statistical and dynamic components by assigning weights based on their historical performances. The results indicate that the statistical and hybrid models show better rainfall predictions than NMME-EM and NMME-BMA models, which have good predictability only in southern China. In the 2011 China winter-spring drought event, the statistical model well predicted the spatial extent and severity of drought nationwide, although the severity was underestimated in the mid-lower reaches of Yangtze River (MLRYR) region. The NMME-EM and NMME-BMA models largely overestimated rainfall in northern and western China in 2011 drought. In the 2013 China summer drought, the NMME-EM model forecasted the drought extent and severity in eastern China well, while the statistical and hybrid models falsely detected negative precipitation anomaly (NPA) in some areas. Model ensembles such as multiple statistical approaches, multiple dynamic models or multiple hybrid models for drought predictions were highlighted. These conclusions may be helpful for drought prediction and early drought warnings in China.

  8. Concepts and tools for predictive modeling of microbial dynamics.

    PubMed

    Bernaerts, Kristel; Dens, Els; Vereecken, Karen; Geeraerd, Annemie H; Standaert, Arnout R; Devlieghere, Frank; Debevere, Johan; Van Impe, Jan F

    2004-09-01

    Description of microbial cell (population) behavior as influenced by dynamically changing environmental conditions intrinsically needs dynamic mathematical models. In the past, major effort has been put into the modeling of microbial growth and inactivation within a constant environment (static models). In the early 1990s, differential equation models (dynamic models) were introduced in the field of predictive microbiology. Here, we present a general dynamic model-building concept describing microbial evolution under dynamic conditions. Starting from an elementary model building block, the model structure can be gradually complexified to incorporate increasing numbers of influencing factors. Based on two case studies, the fundamentals of both macroscopic (population) and microscopic (individual) modeling approaches are revisited. These illustrations deal with the modeling of (i) microbial lag under variable temperature conditions and (ii) interspecies microbial interactions mediated by lactic acid production (product inhibition). Current and future research trends should address the need for (i) more specific measurements at the cell and/or population level, (ii) measurements under dynamic conditions, and (iii) more comprehensive (mechanistically inspired) model structures. In the context of quantitative microbial risk assessment, complexity of the mathematical model must be kept under control. An important challenge for the future is determination of a satisfactory trade-off between predictive power and manageability of predictive microbiology models.

  9. An individual-based model of zebrafish population dynamics accounting for energy dynamics.

    PubMed

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R R

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level.

  10. An Individual-Based Model of Zebrafish Population Dynamics Accounting for Energy Dynamics

    PubMed Central

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R. R.

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level. PMID:25938409

  11. Aerodynamic analysis of the Darrieus wind turbines including dynamic-stall effects

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, Ion; Allet, Azeddine

    Experimental data for a 17-m wind turbine are compared with aerodynamic performance predictions obtained with two dynamic stall methods which are based on numerical correlations of the dynamic stall delay with the pitch rate parameter. Unlike the Gormont (1973) model, the MIT model predicts that dynamic stall does not occur in the downwind part of the turbine, although it does exist in the upwind zone. The Gormont model is shown to overestimate the aerodynamic coefficients relative to the MIT model. The MIT model is found to accurately predict the dynamic-stall regime, which is characterized by a plateau oscillating near values of the experimental data for the rotor power vs wind speed at the equator.

  12. Analysis and test evaluation of the dynamic response and stability of three advanced turboprop models

    NASA Technical Reports Server (NTRS)

    Bansal, P. N.; Arseneaux, P. J.; Smith, A. F.; Turnberg, J. E.; Brooks, B. M.

    1985-01-01

    Results of dynamic response and stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan, advanced turboprop, are presented. Measurements of dynamic response were made with the rotors mounted on an isolated nacelle, with varying tilt for nonuniform inflow. One model was also tested using a semi-span wing and fuselage configuration for response to realistic aircraft inflow. Stability tests were performed using tunnel turbulence or a nitrogen jet for excitation. Measurements are compared with predictions made using beam analysis methods for the model with straight blades, and finite element analysis methods for the models with swept blades. Correlations between measured and predicted rotating blade natural frequencies for all the models are very good. The IP dynamic response of the straight blade model is reasonably well predicted. The IP response of the swept blades is underpredicted and the wing induced response of the straight blade is overpredicted. Two models did not flutter, as predicted. One swept blade model encountered an instability at a higher RPM than predicted, showing predictions to be conservative.

  13. A dynamic multi-scale Markov model based methodology for remaining life prediction

    NASA Astrophysics Data System (ADS)

    Yan, Jihong; Guo, Chaozhong; Wang, Xing

    2011-05-01

    The ability to accurately predict the remaining life of partially degraded components is crucial in prognostics. In this paper, a performance degradation index is designed using multi-feature fusion techniques to represent deterioration severities of facilities. Based on this indicator, an improved Markov model is proposed for remaining life prediction. Fuzzy C-Means (FCM) algorithm is employed to perform state division for Markov model in order to avoid the uncertainty of state division caused by the hard division approach. Considering the influence of both historical and real time data, a dynamic prediction method is introduced into Markov model by a weighted coefficient. Multi-scale theory is employed to solve the state division problem of multi-sample prediction. Consequently, a dynamic multi-scale Markov model is constructed. An experiment is designed based on a Bently-RK4 rotor testbed to validate the dynamic multi-scale Markov model, experimental results illustrate the effectiveness of the methodology.

  14. Vehicle dynamic prediction systems with on-line identification of vehicle parameters and road conditions.

    PubMed

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-11-13

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event.

  15. Vehicle Dynamic Prediction Systems with On-Line Identification of Vehicle Parameters and Road Conditions

    PubMed Central

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-01-01

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231

  16. A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.

    PubMed

    Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing

    2018-01-15

    Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.

  17. Future missions studies: Combining Schatten's solar activity prediction model with a chaotic prediction model

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.

    1991-01-01

    K. Schatten (1991) recently developed a method for combining his prediction model with our chaotic model. The philosophy behind this combined model and his method of combination is explained. Because the Schatten solar prediction model (KS) uses a dynamo to mimic solar dynamics, accurate prediction is limited to long-term solar behavior (10 to 20 years). The Chaotic prediction model (SA) uses the recently developed techniques of nonlinear dynamics to predict solar activity. It can be used to predict activity only up to the horizon. In theory, the chaotic prediction should be several orders of magnitude better than statistical predictions up to that horizon; beyond the horizon, chaotic predictions would theoretically be just as good as statistical predictions. Therefore, chaos theory puts a fundamental limit on predictability.

  18. Predictability and Coupled Dynamics of MJO During DYNAMO

    DTIC Science & Technology

    2013-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Predictability and Coupled Dynamics of MJO During DYNAMO ...Model (LIM) for MJO predictions and apply it in retrospective cross-validated forecast mode to the DYNAMO time period. APPROACH We are working as...a team to study MJO dynamics and predictability using several models as team members of the ONR DRI associated with the DYNAMO experiment. This is a

  19. Predictive models of forest dynamics.

    PubMed

    Purves, Drew; Pacala, Stephen

    2008-06-13

    Dynamic global vegetation models (DGVMs) have shown that forest dynamics could dramatically alter the response of the global climate system to increased atmospheric carbon dioxide over the next century. But there is little agreement between different DGVMs, making forest dynamics one of the greatest sources of uncertainty in predicting future climate. DGVM predictions could be strengthened by integrating the ecological realities of biodiversity and height-structured competition for light, facilitated by recent advances in the mathematics of forest modeling, ecological understanding of diverse forest communities, and the availability of forest inventory data.

  20. Comparing models of Red Knot population dynamics

    USGS Publications Warehouse

    McGowan, Conor P.

    2015-01-01

    Predictive population modeling contributes to our basic scientific understanding of population dynamics, but can also inform management decisions by evaluating alternative actions in virtual environments. Quantitative models mathematically reflect scientific hypotheses about how a system functions. In Delaware Bay, mid-Atlantic Coast, USA, to more effectively manage horseshoe crab (Limulus polyphemus) harvests and protect Red Knot (Calidris canutus rufa) populations, models are used to compare harvest actions and predict the impacts on crab and knot populations. Management has been chiefly driven by the core hypothesis that horseshoe crab egg abundance governs the survival and reproduction of migrating Red Knots that stopover in the Bay during spring migration. However, recently, hypotheses proposing that knot dynamics are governed by cyclical lemming dynamics garnered some support in data analyses. In this paper, I present alternative models of Red Knot population dynamics to reflect alternative hypotheses. Using 2 models with different lemming population cycle lengths and 2 models with different horseshoe crab effects, I project the knot population into the future under environmental stochasticity and parametric uncertainty with each model. I then compare each model's predictions to 10 yr of population monitoring from Delaware Bay. Using Bayes' theorem and model weight updating, models can accrue weight or support for one or another hypothesis of population dynamics. With 4 models of Red Knot population dynamics and only 10 yr of data, no hypothesis clearly predicted population count data better than another. The collapsed lemming cycle model performed best, accruing ~35% of the model weight, followed closely by the horseshoe crab egg abundance model, which accrued ~30% of the weight. The models that predicted no decline or stable populations (i.e. the 4-yr lemming cycle model and the weak horseshoe crab effect model) were the most weakly supported.

  1. Clinical time series prediction: Toward a hierarchical dynamical system framework.

    PubMed

    Liu, Zitao; Hauskrecht, Milos

    2015-09-01

    Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Dynamic Simulation of Human Gait Model With Predictive Capability.

    PubMed

    Sun, Jinming; Wu, Shaoli; Voglewede, Philip A

    2018-03-01

    In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.

  3. Benchmarking novel approaches for modelling species range dynamics

    PubMed Central

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H.; Moore, Kara A.; Zimmermann, Niklaus E.

    2016-01-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species’ range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species’ response to climate change but also emphasise several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. PMID:26872305

  4. Benchmarking novel approaches for modelling species range dynamics.

    PubMed

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. © 2016 John Wiley & Sons Ltd.

  5. Modeling aircraft noise induced sleep disturbance

    NASA Astrophysics Data System (ADS)

    McGuire, Sarah M.

    One of the primary impacts of aircraft noise on a community is its disruption of sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and decreases the amount of rapid eye movement and slow wave sleep. Understanding these changes in sleep may be important as they could increase the risk for developing next-day effects such as sleepiness and reduced performance and long-term health effects such as cardiovascular disease. There are models that have been developed to predict the effect of aircraft noise on sleep. However, most of these models only predict the percentage of the population that is awakened. Markov and nonlinear dynamic models have been developed to predict an individual's sleep structure during the night. However, both of these models have limitations. The Markov model only accounts for whether an aircraft event occurred not the noise level or other sound characteristics of the event that may affect the degree of disturbance. The nonlinear dynamic models were developed to describe normal sleep regulation and do not have a noise effects component. In addition, the nonlinear dynamic models have slow dynamics which make it difficult to predict short duration awakenings which occur both spontaneously and as a result of nighttime noise exposure. The purpose of this research was to examine these sleep structure models to determine how they could be altered to predict the effect of aircraft noise on sleep. Different approaches for adding a noise level dependence to the Markov Model was explored and the modified model was validated by comparing predictions to behavioral awakening data. In order to determine how to add faster dynamics to the nonlinear dynamic sleep models it was necessary to have a more detailed sleep stage classification than was available from visual scoring of sleep data. An automatic sleep stage classification algorithm was developed which extracts different features of polysomnography data including the occurrence of rapid eye movements, sleep spindles, and slow wave sleep. Using these features an approach for classifying sleep stages every one second during the night was developed. From observation of the results of the sleep stage classification, it was determined how to add faster dynamics to the nonlinear dynamic model. Slow and fast REM activity are modeled separately and the activity in the gamma frequency band of the EEG signal is used to model both spontaneous and noise-induced awakenings. The nonlinear model predicts changes in sleep structure similar to those found by other researchers and reported in the sleep literature and similar to those found in obtained survey data. To compare sleep disturbance model predictions, flight operations data from US airports were obtained and sleep disturbance in communities was predicted for different operations scenarios using the modified Markov model, the nonlinear dynamic model, and other aircraft noise awakening models. Similarities and differences in model predictions were evaluated in order to determine if the use of the developed sleep structure model leads to improved predictions of the impact of nighttime noise on communities.

  6. Predictive Multiple Model Switching Control with the Self-Organizing Map

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2000-01-01

    A predictive, multiple model control strategy is developed by extension of self-organizing map (SOM) local dynamic modeling of nonlinear autonomous systems to a control framework. Multiple SOMs collectively model the global response of a nonautonomous system to a finite set of representative prototype controls. Each SOM provides a codebook representation of the dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the global minimization of a similarity metric. The SOM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme that selects the best available model for the applied control. SOM based linear models are used to predict the response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal.

  7. Multibody dynamic simulation of knee contact mechanics

    PubMed Central

    Bei, Yanhong; Fregly, Benjamin J.

    2006-01-01

    Multibody dynamic musculoskeletal models capable of predicting muscle forces and joint contact pressures simultaneously would be valuable for studying clinical issues related to knee joint degeneration and restoration. Current three-dimensional multi-body knee models are either quasi-static with deformable contact or dynamic with rigid contact. This study proposes a computationally efficient methodology for combining multibody dynamic simulation methods with a deformable contact knee model. The methodology requires preparation of the articular surface geometry, development of efficient methods to calculate distances between contact surfaces, implementation of an efficient contact solver that accounts for the unique characteristics of human joints, and specification of an application programming interface for integration with any multibody dynamic simulation environment. The current implementation accommodates natural or artificial tibiofemoral joint models, small or large strain contact models, and linear or nonlinear material models. Applications are presented for static analysis (via dynamic simulation) of a natural knee model created from MRI and CT data and dynamic simulation of an artificial knee model produced from manufacturer’s CAD data. Small and large strain natural knee static analyses required 1 min of CPU time and predicted similar contact conditions except for peak pressure, which was higher for the large strain model. Linear and nonlinear artificial knee dynamic simulations required 10 min of CPU time and predicted similar contact force and torque but different contact pressures, which were lower for the nonlinear model due to increased contact area. This methodology provides an important step toward the realization of dynamic musculoskeletal models that can predict in vivo knee joint motion and loading simultaneously. PMID:15564115

  8. Exploring tropical forest vegetation dynamics using the FATES model

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Fisher, R.; Knox, R. G.; Chambers, J.; Kueppers, L. M.; Christoffersen, B. O.; Davies, S. J.; Dietze, M.; Holm, J.; Massoud, E. C.; Muller-Landau, H. C.; Powell, T.; Serbin, S.; Shuman, J. K.; Walker, A. P.; Wright, S. J.; Xu, C.

    2017-12-01

    Tropical forest vegetation dynamics represent a critical climate feedback in the Earth system, which is poorly represented in current global modeling approaches. We discuss recent progress on exploring these dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model for the CESM and ACME ESMs. We will discuss benchmarks of FATES predictions for forest structure against inventory sites, sensitivity of FATES predictions of size and age structure to model parameter uncertainty, and experiments using the FATES model to explore PFT competitive dynamics and the dynamics of size and age distributions in responses to changing climate and CO2.

  9. Forecasting influenza-like illness dynamics for military populations using neural networks and social media

    DOE PAGES

    Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine; ...

    2017-12-15

    This work is the first to take advantage of recurrent neural networks to predict influenza-like-illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data [1, 2] and the state-of-the-art machine learning models [3, 4], we build and evaluate the predictive power of Long Short Term Memory (LSTMs) architectures capable of nowcasting (predicting in \\real-time") and forecasting (predicting the future) ILI dynamics in the 2011 { 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, stylistic and syntactic patterns,more » emotions and opinions, and communication behavior. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks. Finally, we combine ILI and social media signals to build joint neural network models for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance [1], specifically for military rather than general populations [3] in 26 U.S. and six international locations. Our approach demonstrates several advantages: (a) Neural network models learned from social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than syntactic and stylistic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns.« less

  10. Forecasting influenza-like illness dynamics for military populations using neural networks and social media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine

    This work is the first to take advantage of recurrent neural networks to predict influenza-like-illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data [1, 2] and the state-of-the-art machine learning models [3, 4], we build and evaluate the predictive power of Long Short Term Memory (LSTMs) architectures capable of nowcasting (predicting in \\real-time") and forecasting (predicting the future) ILI dynamics in the 2011 { 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, stylistic and syntactic patterns,more » emotions and opinions, and communication behavior. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks. Finally, we combine ILI and social media signals to build joint neural network models for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance [1], specifically for military rather than general populations [3] in 26 U.S. and six international locations. Our approach demonstrates several advantages: (a) Neural network models learned from social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than syntactic and stylistic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns.« less

  11. Seasonal Drought Prediction: Advances, Challenges, and Future Prospects

    NASA Astrophysics Data System (ADS)

    Hao, Zengchao; Singh, Vijay P.; Xia, Youlong

    2018-03-01

    Drought prediction is of critical importance to early warning for drought managements. This review provides a synthesis of drought prediction based on statistical, dynamical, and hybrid methods. Statistical drought prediction is achieved by modeling the relationship between drought indices of interest and a suite of potential predictors, including large-scale climate indices, local climate variables, and land initial conditions. Dynamical meteorological drought prediction relies on seasonal climate forecast from general circulation models (GCMs), which can be employed to drive hydrological models for agricultural and hydrological drought prediction with the predictability determined by both climate forcings and initial conditions. Challenges still exist in drought prediction at long lead time and under a changing environment resulting from natural and anthropogenic factors. Future research prospects to improve drought prediction include, but are not limited to, high-quality data assimilation, improved model development with key processes related to drought occurrence, optimal ensemble forecast to select or weight ensembles, and hybrid drought prediction to merge statistical and dynamical forecasts.

  12. Capillary Rise: Validity of the Dynamic Contact Angle Models.

    PubMed

    Wu, Pingkeng; Nikolov, Alex D; Wasan, Darsh T

    2017-08-15

    The classical Lucas-Washburn-Rideal (LWR) equation, using the equilibrium contact angle, predicts a faster capillary rise process than experiments in many cases. The major contributor to the faster prediction is believed to be the velocity dependent dynamic contact angle. In this work, we investigated the dynamic contact angle models for their ability to correct the dynamic contact angle effect in the capillary rise process. We conducted capillary rise experiments of various wetting liquids in borosilicate glass capillaries and compared the model predictions with our experimental data. The results show that the LWR equations modified by the molecular kinetic theory and hydrodynamic model provide good predictions on the capillary rise of all the testing liquids with fitting parameters, while the one modified by Joos' empirical equation works for specific liquids, such as silicone oils. The LWR equation modified by molecular self-layering model predicts well the capillary rise of carbon tetrachloride, octamethylcyclotetrasiloxane, and n-alkanes with the molecular diameter or measured solvation force data. The molecular self-layering model modified LWR equation also has good predictions on the capillary rise of silicone oils covering a wide range of bulk viscosities with the same key parameter W(0), which results from the molecular self-layering. The advantage of the molecular self-layering model over the other models reveals the importance of the layered molecularly thin wetting film ahead of the main meniscus in the energy dissipation associated with dynamic contact angle. The analysis of the capillary rise of silicone oils with a wide range of bulk viscosities provides new insights into the capillary dynamics of polymer melts.

  13. A comparison between theoretical prediction and experimental measurement of the dynamic behavior of spur gears

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Forrester, B. David; Oswald, Fred B.; Townsend, Dennis P.

    1992-01-01

    A comparison was made between computer model predictions of gear dynamics behavior and experimental results. The experimental data were derived from the NASA gear noise rig, which was used to record dynamic tooth loads and vibration. The experimental results were compared with predictions from the DSTO Aeronautical Research Laboratory's gear dynamics code for a matrix of 28 load speed points. At high torque the peak dynamic load predictions agree with the experimental results with an average error of 5 percent in the speed range 800 to 6000 rpm. Tooth separation (or bounce), which was observed in the experimental data for light torque, high speed conditions, was simulated by the computer model. The model was also successful in simulating the degree of load sharing between gear teeth in the multiple tooth contact region.

  14. Real-time prediction of respiratory motion based on a local dynamic model in an augmented space

    NASA Astrophysics Data System (ADS)

    Hong, S.-M.; Jung, B.-H.; Ruan, D.

    2011-03-01

    Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively low observation rate. Sensitivity analysis indicates its robustness toward the choice of parameters. Its simplicity, robustness and low computation cost makes the proposed local dynamic model an attractive tool for real-time prediction with system latencies below 0.4 s.

  15. Real-time prediction of respiratory motion based on a local dynamic model in an augmented space.

    PubMed

    Hong, S-M; Jung, B-H; Ruan, D

    2011-03-21

    Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively low observation rate. Sensitivity analysis indicates its robustness toward the choice of parameters. Its simplicity, robustness and low computation cost makes the proposed local dynamic model an attractive tool for real-time prediction with system latencies below 0.4 s.

  16. Dynamic contraction behaviour of pneumatic artificial muscle

    NASA Astrophysics Data System (ADS)

    Doumit, Marc D.; Pardoel, Scott

    2017-07-01

    The development of a dynamic model for the Pneumatic Artificial Muscle (PAM) is an imperative undertaking for understanding and analyzing the behaviour of the PAM as a function of time. This paper proposes a Newtonian based dynamic PAM model that includes the modeling of the muscle geometry, force, inertia, fluid dynamic, static and dynamic friction, heat transfer and valve flow while ignoring the effect of bladder elasticity. This modeling contribution allows the designer to predict, analyze and optimize PAM performance prior to its development. Thus advancing successful implementations of PAM based powered exoskeletons and medical systems. To date, most muscle dynamic properties are determined experimentally, furthermore, no analytical models that can accurately predict the muscle's dynamic behaviour are found in the literature. Most developed analytical models adequately predict the muscle force in static cases but neglect the behaviour of the system in the transient response. This could be attributed to the highly challenging task of deriving such a dynamic model given the number of system elements that need to be identified and the system's highly non-linear properties. The proposed dynamic model in this paper is successfully simulated through MATLAB programing and validated the pressure, contraction distance and muscle temperature with experimental testing that is conducted with in-house built prototype PAM's.

  17. Predicting Drug Combination Index and Simulating the Network-Regulation Dynamics by Mathematical Modeling of Drug-Targeted EGFR-ERK Signaling Pathway

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Jiang, Yuyang; Chen, Yuzong

    2017-01-01

    Synergistic drug combinations enable enhanced therapeutics. Their discovery typically involves the measurement and assessment of drug combination index (CI), which can be facilitated by the development and applications of in-silico CI predictive tools. In this work, we developed and tested the ability of a mathematical model of drug-targeted EGFR-ERK pathway in predicting CIs and in analyzing multiple synergistic drug combinations against observations. Our mathematical model was validated against the literature reported signaling, drug response dynamics, and EGFR-MEK drug combination effect. The predicted CIs and combination therapeutic effects of the EGFR-BRaf, BRaf-MEK, FTI-MEK, and FTI-BRaf inhibitor combinations showed consistent synergism. Our results suggest that existing pathway models may be potentially extended for developing drug-targeted pathway models to predict drug combination CI values, isobolograms, and drug-response surfaces as well as to analyze the dynamics of individual and combinations of drugs. With our model, the efficacy of potential drug combinations can be predicted. Our method complements the developed in-silico methods (e.g. the chemogenomic profile and the statistically-inferenced network models) by predicting drug combination effects from the perspectives of pathway dynamics using experimental or validated molecular kinetic constants, thereby facilitating the collective prediction of drug combination effects in diverse ranges of disease systems.

  18. Clinical time series prediction: towards a hierarchical dynamical system framework

    PubMed Central

    Liu, Zitao; Hauskrecht, Milos

    2014-01-01

    Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. PMID:25534671

  19. Inter-comparison of dynamic models for radionuclide transfer to marine biota in a Fukushima accident scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vives i Batlle, J.; Beresford, N. A.; Beaugelin-Seiller, K.

    We report an inter-comparison of eight models designed to predict the radiological exposure of radionuclides in marine biota. The models were required to simulate dynamically the uptake and turnover of radionuclides by marine organisms. Model predictions of radionuclide uptake and turnover using kinetic calculations based on biological half-life (TB1/2) and/or more complex metabolic modelling approaches were used to predict activity concentrations and, consequently, dose rates of 90Sr, 131I and 137Cs to fish, crustaceans, macroalgae and molluscs under circumstances where the water concentrations are changing with time. For comparison, the ERICA Tool, a model commonly used in environmental assessment, and whichmore » uses equilibrium concentration ratios, was also used. As input to the models we used hydrodynamic forecasts of water and sediment activity concentrations using a simulated scenario reflecting the Fukushima accident releases. Although model variability is important, the intercomparison gives logical results, in that the dynamic models predict consistently a pattern of delayed rise of activity concentration in biota and slow decline instead of the instantaneous equilibrium with the activity concentration in seawater predicted by the ERICA Tool. The differences between ERICA and the dynamic models increase the shorter the TB1/2 becomes; however, there is significant variability between models, underpinned by parameter and methodological differences between them. The need to validate the dynamic models used in this intercomparison has been highlighted, particularly in regards to optimisation of the model biokinetic parameters.« less

  20. Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach

    DTIC Science & Technology

    2012-09-30

    characterization of extratropical storms and extremes and link these to LFV modes. Mingfang Ting, Yochanan Kushnir, Andrew W. Robertson...simulating and predicting a wide range of climate phenomena including ENSO, tropical Atlantic sea surface temperatures (SSTs), storm track variability...into empirical prediction models. Use observations to improve low-order dynamical MJO models. Adam Sobel, Daehyun Kim. Extratropical variability

  1. Prediction of dynamical systems by symbolic regression

    NASA Astrophysics Data System (ADS)

    Quade, Markus; Abel, Markus; Shafi, Kamran; Niven, Robert K.; Noack, Bernd R.

    2016-07-01

    We study the modeling and prediction of dynamical systems based on conventional models derived from measurements. Such algorithms are highly desirable in situations where the underlying dynamics are hard to model from physical principles or simplified models need to be found. We focus on symbolic regression methods as a part of machine learning. These algorithms are capable of learning an analytically tractable model from data, a highly valuable property. Symbolic regression methods can be considered as generalized regression methods. We investigate two particular algorithms, the so-called fast function extraction which is a generalized linear regression algorithm, and genetic programming which is a very general method. Both are able to combine functions in a certain way such that a good model for the prediction of the temporal evolution of a dynamical system can be identified. We illustrate the algorithms by finding a prediction for the evolution of a harmonic oscillator based on measurements, by detecting an arriving front in an excitable system, and as a real-world application, the prediction of solar power production based on energy production observations at a given site together with the weather forecast.

  2. Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: Meta-analysis with a joint model.

    PubMed

    Emura, Takeshi; Nakatochi, Masahiro; Matsui, Shigeyuki; Michimae, Hirofumi; Rondeau, Virginie

    2017-01-01

    Developing a personalized risk prediction model of death is fundamental for improving patient care and touches on the realm of personalized medicine. The increasing availability of genomic information and large-scale meta-analytic data sets for clinicians has motivated the extension of traditional survival prediction based on the Cox proportional hazards model. The aim of our paper is to develop a personalized risk prediction formula for death according to genetic factors and dynamic tumour progression status based on meta-analytic data. To this end, we extend the existing joint frailty-copula model to a model allowing for high-dimensional genetic factors. In addition, we propose a dynamic prediction formula to predict death given tumour progression events possibly occurring after treatment or surgery. For clinical use, we implement the computation software of the prediction formula in the joint.Cox R package. We also develop a tool to validate the performance of the prediction formula by assessing the prediction error. We illustrate the method with the meta-analysis of individual patient data on ovarian cancer patients.

  3. Modeling and Analysis of Structural Dynamics for a One-Tenth Scale Model NGST Sunshield

    NASA Technical Reports Server (NTRS)

    Johnston, John; Lienard, Sebastien; Brodeur, Steve (Technical Monitor)

    2001-01-01

    New modeling and analysis techniques have been developed for predicting the dynamic behavior of the Next Generation Space Telescope (NGST) sunshield. The sunshield consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. Modeling the structural dynamic behavior of the sunshield is a challenging aspect of the problem due to the effects of membrane wrinkling. A finite element model of the sunshield was developed using an approximate engineering approach, the cable network method, to account for membrane wrinkling effects. Ground testing of a one-tenth scale model of the NGST sunshield were carried out to provide data for validating the analytical model. A series of analyses were performed to predict the behavior of the sunshield under the ground test conditions. Modal analyses were performed to predict the frequencies and mode shapes of the test article and transient response analyses were completed to simulate impulse excitation tests. Comparison was made between analytical predictions and test measurements for the dynamic behavior of the sunshield. In general, the results show good agreement with the analytical model correctly predicting the approximate frequency and mode shapes for the significant structural modes.

  4. Recasting a model atomistic glassformer as a system of icosahedra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinney, Rhiannon; Bristol Centre for Complexity Science, University of Bristol, Bristol BS8 1TS; Liverpool, Tanniemola B.

    2015-12-28

    We consider a binary Lennard-Jones glassformer whose super-Arrhenius dynamics are correlated with the formation of icosahedral structures. Upon cooling, these icosahedra organize into mesoclusters. We recast this glassformer as an effective system of icosahedra which we describe with a population dynamics model. This model we parameterize with data from the temperature regime accessible to molecular dynamics simulations. We then use the model to determine the population of icosahedra in mesoclusters at arbitrary temperature. Using simulation data to incorporate dynamics into the model, we predict relaxation behavior at temperatures inaccessible to conventional approaches. Our model predicts super-Arrhenius dynamics whose relaxation timemore » remains finite for non-zero temperature.« less

  5. Predicting Student Academic Performance in an Engineering Dynamics Course: A Comparison of Four Types of Predictive Mathematical Models

    ERIC Educational Resources Information Center

    Huang, Shaobo; Fang, Ning

    2013-01-01

    Predicting student academic performance has long been an important research topic in many academic disciplines. The present study is the first study that develops and compares four types of mathematical models to predict student academic performance in engineering dynamics--a high-enrollment, high-impact, and core course that many engineering…

  6. A Formal Approach to Empirical Dynamic Model Optimization and Validation

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G; Morelli, Eugene A.; Kenny, Sean P.; Giesy, Daniel P.

    2014-01-01

    A framework was developed for the optimization and validation of empirical dynamic models subject to an arbitrary set of validation criteria. The validation requirements imposed upon the model, which may involve several sets of input-output data and arbitrary specifications in time and frequency domains, are used to determine if model predictions are within admissible error limits. The parameters of the empirical model are estimated by finding the parameter realization for which the smallest of the margins of requirement compliance is as large as possible. The uncertainty in the value of this estimate is characterized by studying the set of model parameters yielding predictions that comply with all the requirements. Strategies are presented for bounding this set, studying its dependence on admissible prediction error set by the analyst, and evaluating the sensitivity of the model predictions to parameter variations. This information is instrumental in characterizing uncertainty models used for evaluating the dynamic model at operating conditions differing from those used for its identification and validation. A practical example based on the short period dynamics of the F-16 is used for illustration.

  7. Automated adaptive inference of phenomenological dynamical models.

    PubMed

    Daniels, Bryan C; Nemenman, Ilya

    2015-08-21

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.

  8. Automated adaptive inference of phenomenological dynamical models

    PubMed Central

    Daniels, Bryan C.; Nemenman, Ilya

    2015-01-01

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508

  9. Dynamics and Predictability of The Eta Regional Model: The Role of Domain Size

    NASA Astrophysics Data System (ADS)

    Vannitsem, S.; Chomé, F.; Nicolis, C.

    This paper investigates the dynamical properties of the Eta model, a state-of-the- art nested limited-area model, following the approach previously developed by the present authors. It is first shown that the intrinsic dynamics of the model depends crucially on the size of the domain, with a non-chaotic behavior for small domains, supporting earlier findings on the absence of sensitivity to the initial conditions in these models. The quality of the predictions of several Eta model versions differing by their domain size is next evaluated and compared with the Avn analyses on a targeted region, centered on France. Contrary to what is usually taken for granted, a non-trivial relation between predictability and domain size is found, the best model versions be- ing the ones integrated on the smallest and the largest domain sizes. An explanation in connection with the intrinsic dynamics of the model is advanced.

  10. Modelling hydrologic responses in a small forested catchment (Panola Mountain, Georgia, USA): A comparison of the original and a new dynamic TOPMODEL

    USGS Publications Warehouse

    Peters, N.E.; Freer, J.; Beven, K.

    2003-01-01

    Preliminary modelling results for a new version of the rainfall-runoff model TOPMODEL, dynamic TOPMODEL, are compared with those of the original TOPMODEL formulation for predicting streamflow at the Panola Mountain Research Watershed, Georgia. Dynamic TOPMODEL uses a kinematic wave routing of subsurface flow, which allows for dynamically variable upslope contributing areas, while retaining the concept of hydrological similarity to increase computational efficiency. Model performance in predicting discharge was assessed for the original TOPMODEL and for one landscape unit (LU) and three LU versions of the dynamic TOPMODEL (a bare rock area, hillslope with regolith <1 m, and a riparian zone with regolith ???5 m). All simulations used a 30 min time step for each of three water years. Each 1-LU model underpredicted the peak streamflow, and generally overpredicted recession streamflow during wet periods and underpredicted during dry periods. The difference between predicted recession streamflow generally was less for the dynamic TOPMODEL and smallest for the 3-LU model. Bayesian combination of results for different water years within the GLUE methodology left no behavioural original or 1-LU dynamic models and only 168 (of 96 000 sample parameter sets) for the 3-LU model. The efficiency for the streamflow prediction of the best 3-LU model was 0.83 for an individual year, but the results suggest that further improvements could be made. ?? 2003 John Wiley & Sons, Ltd.

  11. Linking models and data on vegetation structure

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Fisk, J.; Thomas, R. Q.; Dubayah, R.; Moorcroft, P. R.; Shugart, H. H.

    2010-06-01

    For more than a century, scientists have recognized the importance of vegetation structure in understanding forest dynamics. Now future satellite missions such as Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI) hold the potential to provide unprecedented global data on vegetation structure needed to reduce uncertainties in terrestrial carbon dynamics. Here, we briefly review the uses of data on vegetation structure in ecosystem models, develop and analyze theoretical models to quantify model-data requirements, and describe recent progress using a mechanistic modeling approach utilizing a formal scaling method and data on vegetation structure to improve model predictions. Generally, both limited sampling and coarse resolution averaging lead to model initialization error, which in turn is propagated in subsequent model prediction uncertainty and error. In cases with representative sampling, sufficient resolution, and linear dynamics, errors in initialization tend to compensate at larger spatial scales. However, with inadequate sampling, overly coarse resolution data or models, and nonlinear dynamics, errors in initialization lead to prediction error. A robust model-data framework will require both models and data on vegetation structure sufficient to resolve important environmental gradients and tree-level heterogeneity in forest structure globally.

  12. A dynamic model for predicting growth in zinc-deficient stunted infants given supplemental zinc.

    PubMed

    Wastney, Meryl E; McDonald, Christine M; King, Janet C

    2018-05-01

    Zinc deficiency limits infant growth and increases susceptibility to infections, which further compromises growth. Zinc supplementation improves the growth of zinc-deficient stunted infants, but the amount, frequency, and duration of zinc supplementation required to restore growth in an individual child is unknown. A dynamic model of zinc metabolism that predicts changes in weight and length of zinc-deficient, stunted infants with dietary zinc would be useful to define effective zinc supplementation regimens. The aims of this study were to develop a dynamic model for zinc metabolism in stunted, zinc-deficient infants and to use that model to predict the growth response when those infants are given zinc supplements. A model of zinc metabolism was developed using data on zinc kinetics, tissue zinc, and growth requirements for healthy 9-mo-old infants. The kinetic model was converted to a dynamic model by replacing the rate constants for zinc absorption and excretion with functions for these processes that change with zinc intake. Predictions of the dynamic model, parameterized for zinc-deficient, stunted infants, were compared with the results of 5 published zinc intervention trials. The model was then used to predict the results for zinc supplementation regimes that varied in the amount, frequency, and duration of zinc dosing. Model predictions agreed with published changes in plasma zinc after zinc supplementation. Predictions of weight and length agreed with 2 studies, but overpredicted values from a third study in which other nutrient deficiencies may have been growth limiting; the model predicted that zinc absorption was impaired in that study. The model suggests that frequent, smaller doses (5-10 mg Zn/d) are more effective for increasing growth in stunted, zinc-deficient 9-mo-old infants than are larger, less-frequent doses. The dose amount affects the duration of dosing necessary to restore and maintain plasma zinc concentration and growth.

  13. Forecasting influenza-like illness dynamics for military populations using neural networks and social media

    PubMed Central

    Ayton, Ellyn; Porterfield, Katherine; Corley, Courtney D.

    2017-01-01

    This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting (predicting in “real-time”) and forecasting (predicting the future) ILI dynamics in the 2011 – 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a) Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns. (g) Model performance improves with more tweets available per geo-location e.g., the error gets lower and the Pearson score gets higher for locations with more tweets. PMID:29244814

  14. Forecasting influenza-like illness dynamics for military populations using neural networks and social media.

    PubMed

    Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine; Corley, Courtney D

    2017-01-01

    This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting (predicting in "real-time") and forecasting (predicting the future) ILI dynamics in the 2011 - 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a) Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns. (g) Model performance improves with more tweets available per geo-location e.g., the error gets lower and the Pearson score gets higher for locations with more tweets.

  15. Predicting and testing continental vertical motion histories since the Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Zhong, Shijie; Flowers, Rebecca M.

    2012-02-01

    Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400 Ma associated with Pangea assembly and breakup, with particular focus on cratonic regions. We propose that burial-unroofing histories of cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330 Ma but uplifts significantly from 330 Ma to 240 Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180 Ma to 90 Ma after Pangea breakup, but its dynamic topography remains stable for the last 90 Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests of and constraints on our mantle dynamic models.

  16. Predicting and testing continental vertical motion histories since the Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Zhong, S.; Flowers, R. M.

    2011-12-01

    Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400 Ma associated with Pangea assembly and breakup, with particular focus on continental cratonic regions. We propose that burial-unroofing histories of continental cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330 Ma but uplifts significantly from 330 Ma to 240 Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180 Ma to 90 Ma after Pangea breakup, but its dynamic topography remains stable for the last 90 Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests and constraints on our mantle dynamic models.

  17. Modelling oxygen transfer using dynamic alpha factors.

    PubMed

    Jiang, Lu-Man; Garrido-Baserba, Manel; Nolasco, Daniel; Al-Omari, Ahmed; DeClippeleir, Haydee; Murthy, Sudhir; Rosso, Diego

    2017-11-01

    Due to the importance of wastewater aeration in meeting treatment requirements and due to its elevated energy intensity, it is important to describe the real nature of an aeration system to improve design and specification, performance prediction, energy consumption, and process sustainability. Because organic loadings drive aeration efficiency to its lowest value when the oxygen demand (energy) is the highest, the implications of considering their dynamic nature on energy costs are of utmost importance. A dynamic model aimed at identifying conservation opportunities is presented. The model developed describes the correlation between the COD concentration and the α factor in activated sludge. Using the proposed model, the aeration efficiency is calculated as a function of the organic loading (i.e. COD). This results in predictions of oxygen transfer values that are more realistic than the traditional method of assuming constant α values. The model was applied to two water resource recovery facilities, and was calibrated and validated with time-sensitive databases. Our improved aeration model structure increases the quality of prediction of field data through the recognition of the dynamic nature of the alpha factor (α) as a function of the applied oxygen demand. For the cases presented herein, the model prediction of airflow improved by 20-35% when dynamic α is used. The proposed model offers a quantitative tool for the prediction of energy demand and for minimizing aeration design uncertainty. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Model-based prediction of nephropathia epidemica outbreaks based on climatological and vegetation data and bank vole population dynamics.

    PubMed

    Haredasht, S Amirpour; Taylor, C J; Maes, P; Verstraeten, W W; Clement, J; Barrios, M; Lagrou, K; Van Ranst, M; Coppin, P; Berckmans, D; Aerts, J-M

    2013-11-01

    Wildlife-originated zoonotic diseases in general are a major contributor to emerging infectious diseases. Hantaviruses more specifically cause thousands of human disease cases annually worldwide, while understanding and predicting human hantavirus epidemics pose numerous unsolved challenges. Nephropathia epidemica (NE) is a human infection caused by Puumala virus, which is naturally carried and shed by bank voles (Myodes glareolus). The objective of this study was to develop a method that allows model-based predicting 3 months ahead of the occurrence of NE epidemics. Two data sets were utilized to develop and test the models. These data sets were concerned with NE cases in Finland and Belgium. In this study, we selected the most relevant inputs from all the available data for use in a dynamic linear regression (DLR) model. The number of NE cases in Finland were modelled using data from 1996 to 2008. The NE cases were predicted based on the time series data of average monthly air temperature (°C) and bank voles' trapping index using a DLR model. The bank voles' trapping index data were interpolated using a related dynamic harmonic regression model (DHR). Here, the DLR and DHR models used time-varying parameters. Both the DHR and DLR models were based on a unified state-space estimation framework. For the Belgium case, no time series of the bank voles' population dynamics were available. Several studies, however, have suggested that the population of bank voles is related to the variation in seed production of beech and oak trees in Northern Europe. Therefore, the NE occurrence pattern in Belgium was predicted based on a DLR model by using remotely sensed phenology parameters of broad-leaved forests, together with the oak and beech seed categories and average monthly air temperature (°C) using data from 2001 to 2009. Our results suggest that even without any knowledge about hantavirus dynamics in the host population, the time variation in NE outbreaks in Finland could be predicted 3 months ahead with a 34% mean relative prediction error (MRPE). This took into account solely the population dynamics of the carrier species (bank voles). The time series analysis also revealed that climate change, as represented by the vegetation index, changes in forest phenology derived from satellite images and directly measured air temperature, may affect the mechanics of NE transmission. NE outbreaks in Belgium were predicted 3 months ahead with a 40% MRPE, based only on the climatological and vegetation data, in this case, without any knowledge of the bank vole's population dynamics. In this research, we demonstrated that NE outbreaks can be predicted using climate and vegetation data or the bank vole's population dynamics, by using dynamic data-based models with time-varying parameters. Such a predictive modelling approach might be used as a step towards the development of new tools for the prevention of future NE outbreaks. © 2012 Blackwell Verlag GmbH.

  19. Parameter Selection Methods in Inverse Problem Formulation

    DTIC Science & Technology

    2010-11-03

    clinical data and used for prediction and a model for the reaction of the cardiovascular system to an ergometric workload. Key Words: Parameter selection...model for HIV dynamics which has been successfully validated with clinical data and used for prediction and a model for the reaction of the...recently developed in-host model for HIV dynamics which has been successfully validated with clinical data and used for prediction [4, 8]; b) a global

  20. Shortened acquisition protocols for the quantitative assessment of the 2-tissue-compartment model using dynamic PET/CT 18F-FDG studies.

    PubMed

    Strauss, Ludwig G; Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2011-03-01

    (18)F-FDG kinetics are quantified by a 2-tissue-compartment model. The routine use of dynamic PET is limited because of this modality's 1-h acquisition time. We evaluated shortened acquisition protocols up to 0-30 min regarding the accuracy for data analysis with the 2-tissue-compartment model. Full dynamic series for 0-60 min were analyzed using a 2-tissue-compartment model. The time-activity curves and the resulting parameters for the model were stored in a database. Shortened acquisition data were generated from the database using the following time intervals: 0-10, 0-16, 0-20, 0-25, and 0-30 min. Furthermore, the impact of adding a 60-min uptake value to the dynamic series was evaluated. The datasets were analyzed using dedicated software to predict the results of the full dynamic series. The software is based on a modified support vector machines (SVM) algorithm and predicts the compartment parameters of the full dynamic series. The SVM-based software provides user-independent results and was accurate at predicting the compartment parameters of the full dynamic series. If a squared correlation coefficient of 0.8 (corresponding to 80% explained variance of the data) was used as a limit, a shortened acquisition of 0-16 min was accurate at predicting the 60-min 2-tissue-compartment parameters. If a limit of 0.9 (90% explained variance) was used, a dynamic series of at least 0-20 min together with the 60-min uptake values is required. Shortened acquisition protocols can be used to predict the parameters of the 2-tissue-compartment model. Either a dynamic PET series of 0-16 min or a combination of a dynamic PET/CT series of 0-20 min and a 60-min uptake value is accurate for analysis with a 2-tissue-compartment model.

  1. Evaluating the Performance of a New Model for Predicting the Growth of Clostridium perfringens in Cooked, Uncured Meat and Poultry Products under Isothermal, Heating, and Dynamically Cooling Conditions.

    PubMed

    Huang, Lihan

    2016-07-01

    Clostridium perfringens type A is a significant public health threat and its spores may germinate, outgrow, and multiply during cooling of cooked meats. This study applies a new C. perfringens growth model in the USDA Integrated Pathogen Modeling Program-Dynamic Prediction (IPMP Dynamic Prediction) Dynamic Prediction to predict the growth from spores of C. perfringens in cooked uncured meat and poultry products using isothermal, dynamic heating, and cooling data reported in the literature. The residual errors of predictions (observation-prediction) are analyzed, and the root-mean-square error (RMSE) calculated. For isothermal and heating profiles, each data point in growth curves is compared. The mean residual errors (MRE) of predictions range from -0.40 to 0.02 Log colony forming units (CFU)/g, with a RMSE of approximately 0.6 Log CFU/g. For cooling, the end point predictions are conservative in nature, with an MRE of -1.16 Log CFU/g for single-rate cooling and -0.66 Log CFU/g for dual-rate cooling. The RMSE is between 0.6 and 0.7 Log CFU/g. Compared with other models reported in the literature, this model makes more accurate and fail-safe predictions. For cooling, the percentage for accurate and fail-safe predictions is between 97.6% and 100%. Under criterion 1, the percentage of accurate predictions is 47.5% for single-rate cooling and 66.7% for dual-rate cooling, while the fail-dangerous predictions are between 0% and 2.4%. This study demonstrates that IPMP Dynamic Prediction can be used by food processors and regulatory agencies as a tool to predict the growth of C. perfringens in uncured cooked meats and evaluate the safety of cooked or heat-treated uncured meat and poultry products exposed to cooling deviations or to develop customized cooling schedules. This study also demonstrates the need for more accurate data collection during cooling. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  2. REVIEW: Widespread access to predictive models in the motor system: a short review

    NASA Astrophysics Data System (ADS)

    Davidson, Paul R.; Wolpert, Daniel M.

    2005-09-01

    Recent behavioural and computational studies suggest that access to internal predictive models of arm and object dynamics is widespread in the sensorimotor system. Several systems, including those responsible for oculomotor and skeletomotor control, perceptual processing, postural control and mental imagery, are able to access predictions of the motion of the arm. A capacity to make and use predictions of object dynamics is similarly widespread. Here, we review recent studies looking at the predictive capacity of the central nervous system which reveal pervasive access to forward models of the environment.

  3. Climate-based models for pulsed resources improve predictability of consumer population dynamics: outbreaks of house mice in forest ecosystems.

    PubMed

    Holland, E Penelope; James, Alex; Ruscoe, Wendy A; Pech, Roger P; Byrom, Andrea E

    2015-01-01

    Accurate predictions of the timing and magnitude of consumer responses to episodic seeding events (masts) are important for understanding ecosystem dynamics and for managing outbreaks of invasive species generated by masts. While models relating consumer populations to resource fluctuations have been developed successfully for a range of natural and modified ecosystems, a critical gap that needs addressing is better prediction of resource pulses. A recent model used change in summer temperature from one year to the next (ΔT) for predicting masts for forest and grassland plants in New Zealand. We extend this climate-based method in the framework of a model for consumer-resource dynamics to predict invasive house mouse (Mus musculus) outbreaks in forest ecosystems. Compared with previous mast models based on absolute temperature, the ΔT method for predicting masts resulted in an improved model for mouse population dynamics. There was also a threshold effect of ΔT on the likelihood of an outbreak occurring. The improved climate-based method for predicting resource pulses and consumer responses provides a straightforward rule of thumb for determining, with one year's advance warning, whether management intervention might be required in invaded ecosystems. The approach could be applied to consumer-resource systems worldwide where climatic variables are used to model the size and duration of resource pulses, and may have particular relevance for ecosystems where global change scenarios predict increased variability in climatic events.

  4. Is there a `universal' dynamic zero-parameter hydrological model? Evaluation of a dynamic Budyko model in US and India

    NASA Astrophysics Data System (ADS)

    Patnaik, S.; Biswal, B.; Sharma, V. C.

    2017-12-01

    River flow varies greatly in space and time, and the single biggest challenge for hydrologists and ecologists around the world is the fact that most rivers are either ungauged or poorly gauged. Although it is relatively easier to predict long-term average flow of a river using the `universal' zero-parameter Budyko model, lack of data hinders short-term flow prediction at ungauged locations using traditional hydrological models as they require observed flow data for model calibration. Flow prediction in ungauged basins thus requires a dynamic 'zero-parameter' hydrological model. One way to achieve this is to regionalize a dynamic hydrological model's parameters. However, a regionalization method based zero-parameter dynamic hydrological model is not `universal'. An alternative attempt was made recently to develop a zero-parameter dynamic model by defining an instantaneous dryness index as a function of antecedent rainfall and solar energy inputs with the help of a decay function and using the original Budyko function. The model was tested first in 63 US catchments and later in 50 Indian catchments. The median Nash-Sutcliffe efficiency (NSE) was found to be close to 0.4 in both the cases. Although improvements need to be incorporated in order to use the model for reliable prediction, the main aim of this study was to rather understand hydrological processes. The overall results here seem to suggest that the dynamic zero-parameter Budyko model is `universal.' In other words natural catchments around the world are strikingly similar to each other in the way they respond to hydrologic inputs; we thus need to focus more on utilizing catchment similarities in hydrological modelling instead of over parameterizing our models.

  5. Inter-comparison of dynamic models for radionuclide transfer to marine biota in a Fukushima accident scenario.

    PubMed

    Vives I Batlle, J; Beresford, N A; Beaugelin-Seiller, K; Bezhenar, R; Brown, J; Cheng, J-J; Ćujić, M; Dragović, S; Duffa, C; Fiévet, B; Hosseini, A; Jung, K T; Kamboj, S; Keum, D-K; Kryshev, A; LePoire, D; Maderich, V; Min, B-I; Periáñez, R; Sazykina, T; Suh, K-S; Yu, C; Wang, C; Heling, R

    2016-03-01

    We report an inter-comparison of eight models designed to predict the radiological exposure of radionuclides in marine biota. The models were required to simulate dynamically the uptake and turnover of radionuclides by marine organisms. Model predictions of radionuclide uptake and turnover using kinetic calculations based on biological half-life (TB1/2) and/or more complex metabolic modelling approaches were used to predict activity concentrations and, consequently, dose rates of (90)Sr, (131)I and (137)Cs to fish, crustaceans, macroalgae and molluscs under circumstances where the water concentrations are changing with time. For comparison, the ERICA Tool, a model commonly used in environmental assessment, and which uses equilibrium concentration ratios, was also used. As input to the models we used hydrodynamic forecasts of water and sediment activity concentrations using a simulated scenario reflecting the Fukushima accident releases. Although model variability is important, the intercomparison gives logical results, in that the dynamic models predict consistently a pattern of delayed rise of activity concentration in biota and slow decline instead of the instantaneous equilibrium with the activity concentration in seawater predicted by the ERICA Tool. The differences between ERICA and the dynamic models increase the shorter the TB1/2 becomes; however, there is significant variability between models, underpinned by parameter and methodological differences between them. The need to validate the dynamic models used in this intercomparison has been highlighted, particularly in regards to optimisation of the model biokinetic parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Predicting population dynamics from the properties of individuals: a cross-level test of dynamic energy budget theory.

    PubMed

    Martin, Benjamin T; Jager, Tjalling; Nisbet, Roger M; Preuss, Thomas G; Grimm, Volker

    2013-04-01

    Individual-based models (IBMs) are increasingly used to link the dynamics of individuals to higher levels of biological organization. Still, many IBMs are data hungry, species specific, and time-consuming to develop and analyze. Many of these issues would be resolved by using general theories of individual dynamics as the basis for IBMs. While such theories have frequently been examined at the individual level, few cross-level tests exist that also try to predict population dynamics. Here we performed a cross-level test of dynamic energy budget (DEB) theory by parameterizing an individual-based model using individual-level data of the water flea, Daphnia magna, and comparing the emerging population dynamics to independent data from population experiments. We found that DEB theory successfully predicted population growth rates and peak densities but failed to capture the decline phase. Further assumptions on food-dependent mortality of juveniles were needed to capture the population dynamics after the initial population peak. The resulting model then predicted, without further calibration, characteristic switches between small- and large-amplitude cycles, which have been observed for Daphnia. We conclude that cross-level tests help detect gaps in current individual-level theories and ultimately will lead to theory development and the establishment of a generic basis for individual-based models and ecology.

  7. Mathematical model for predicting human vertebral fracture

    NASA Technical Reports Server (NTRS)

    Benedict, J. V.

    1973-01-01

    Mathematical model has been constructed to predict dynamic response of tapered, curved beam columns in as much as human spine closely resembles this form. Model takes into consideration effects of impact force, mass distribution, and material properties. Solutions were verified by dynamic tests on curved, tapered, elastic polyethylene beam.

  8. Dynamic Modeling and Very Short-term Prediction of Wind Power Output Using Box-Cox Transformation

    NASA Astrophysics Data System (ADS)

    Urata, Kengo; Inoue, Masaki; Murayama, Dai; Adachi, Shuichi

    2016-09-01

    We propose a statistical modeling method of wind power output for very short-term prediction. The modeling method with a nonlinear model has cascade structure composed of two parts. One is a linear dynamic part that is driven by a Gaussian white noise and described by an autoregressive model. The other is a nonlinear static part that is driven by the output of the linear part. This nonlinear part is designed for output distribution matching: we shape the distribution of the model output to match with that of the wind power output. The constructed model is utilized for one-step ahead prediction of the wind power output. Furthermore, we study the relation between the prediction accuracy and the prediction horizon.

  9. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models.

    PubMed

    Daunizeau, J; Friston, K J; Kiebel, S J

    2009-11-01

    In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.

  10. High accuracy satellite drag model (HASDM)

    NASA Astrophysics Data System (ADS)

    Storz, M.; Bowman, B.; Branson, J.

    The dominant error source in the force models used to predict low perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying high-resolution density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal, semidiurnal and terdiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index a p to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low perigee satellites.

  11. High accuracy satellite drag model (HASDM)

    NASA Astrophysics Data System (ADS)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  12. Dynamic evaluation of the CMAQv5.0 modeling system: Assessing the model’s ability to simulate ozone changes due to NOx emission reductions

    EPA Science Inventory

    Regional air quality models are frequently used for regulatory applications to predict changes in air quality due to changes in emissions or changes in meteorology. Dynamic model evaluation is thus an important step in establishing credibility in the model predicted pollutant re...

  13. Analysis, simulation and visualization of 1D tapping via reduced dynamical models

    NASA Astrophysics Data System (ADS)

    Blackmore, Denis; Rosato, Anthony; Tricoche, Xavier; Urban, Kevin; Zou, Luo

    2014-04-01

    A low-dimensional center-of-mass dynamical model is devised as a simplified means of approximately predicting some important aspects of the motion of a vertical column comprised of a large number of particles subjected to gravity and periodic vertical tapping. This model is investigated first as a continuous dynamical system using analytical, simulation and visualization techniques. Then, by employing an approach analogous to that used to approximate the dynamics of a bouncing ball on an oscillating flat plate, it is modeled as a discrete dynamical system and analyzed to determine bifurcations and transitions to chaotic motion along with other properties. The predictions of the analysis are then compared-primarily qualitatively-with visualization and simulation results of the reduced continuous model, and ultimately with simulations of the complete system dynamics.

  14. How predictable is the anomaly pattern of the Indian summer rainfall?

    NASA Astrophysics Data System (ADS)

    Li, Juan; Wang, Bin

    2016-05-01

    Century-long efforts have been devoted to seasonal forecast of Indian summer monsoon rainfall (ISMR). Most studies of seasonal forecast so far have focused on predicting the total amount of summer rainfall averaged over the entire India (i.e., all Indian rainfall index-AIRI). However, it is practically more useful to forecast anomalous seasonal rainfall distribution (anomaly pattern) across India. The unknown science question is to what extent the anomalous rainfall pattern is predictable. This study attempted to address this question. Assessment of the 46-year (1960-2005) hindcast made by the five state-of-the-art ENSEMBLE coupled dynamic models' multi-model ensemble (MME) prediction reveals that the temporal correlation coefficient (TCC) skill for prediction of AIRI is 0.43, while the area averaged TCC skill for prediction of anomalous rainfall pattern is only 0.16. The present study aims to estimate the predictability of ISMR on regional scales by using Predictable Mode Analysis method and to develop a set of physics-based empirical (P-E) models for prediction of ISMR anomaly pattern. We show that the first three observed empirical orthogonal function (EOF) patterns of the ISMR have their distinct dynamical origins rooted in an eastern Pacific-type La Nina, a central Pacific-type La Nina, and a cooling center near dateline, respectively. These equatorial Pacific sea surface temperature anomalies, while located in different longitudes, can all set up a specific teleconnection pattern that affects Indian monsoon and results in different rainfall EOF patterns. Furthermore, the dynamical models' skill for predicting ISMR distribution primarily comes primarily from these three modes. Therefore, these modes can be regarded as potentially predictable modes. If these modes are perfectly predicted, about 51 % of the total observed variability is potentially predictable. Based on understanding the lead-lag relationships between the lower boundary anomalies and the predictable modes, a set of P-E models is established to predict the principal component of each predictable mode, so that the ISMR anomaly pattern can be predicted by using the sum of the predictable modes. Three validation schemes are used to assess the performance of the P-E models' hindcast and independent forecast. The validated TCC skills of the P-E model here are more than doubled that of dynamical models' MME hindcast, suggesting a large room for improvement of the current dynamical prediction. The methodology proposed here can be applied to a wide range of climate prediction and predictability studies. The limitation and future improvement are also discussed.

  15. Time Prediction Models for Echinococcosis Based on Gray System Theory and Epidemic Dynamics.

    PubMed

    Zhang, Liping; Wang, Li; Zheng, Yanling; Wang, Kai; Zhang, Xueliang; Zheng, Yujian

    2017-03-04

    Echinococcosis, which can seriously harm human health and animal husbandry production, has become an endemic in the Xinjiang Uygur Autonomous Region of China. In order to explore an effective human Echinococcosis forecasting model in Xinjiang, three grey models, namely, the traditional grey GM(1,1) model, the Grey-Periodic Extensional Combinatorial Model (PECGM(1,1)), and the Modified Grey Model using Fourier Series (FGM(1,1)), in addition to a multiplicative seasonal ARIMA(1,0,1)(1,1,0)₄ model, are applied in this study for short-term predictions. The accuracy of the different grey models is also investigated. The simulation results show that the FGM(1,1) model has a higher performance ability, not only for model fitting, but also for forecasting. Furthermore, considering the stability and the modeling precision in the long run, a dynamic epidemic prediction model based on the transmission mechanism of Echinococcosis is also established for long-term predictions. Results demonstrate that the dynamic epidemic prediction model is capable of identifying the future tendency. The number of human Echinococcosis cases will increase steadily over the next 25 years, reaching a peak of about 1250 cases, before eventually witnessing a slow decline, until it finally ends.

  16. Methodology for Uncertainty Analysis of Dynamic Computational Toxicology Models

    EPA Science Inventory

    The task of quantifying the uncertainty in both parameter estimates and model predictions has become more important with the increased use of dynamic computational toxicology models by the EPA. Dynamic toxicological models include physiologically-based pharmacokinetic (PBPK) mode...

  17. Dynamic modeling of Listeria monocytogenes growth in pasteurized vanilla cream after postprocessing contamination.

    PubMed

    Panagou, Efstathios Z; Nychas, George-John E

    2008-09-01

    A product-specific model was developed and validated under dynamic temperature conditions for predicting the growth of Listeria monocytogenes in pasteurized vanilla cream, a traditional milk-based product. Model performance was also compared with Growth Predictor and Sym'Previus predictive microbiology software packages. Commercially prepared vanilla cream samples were artificially inoculated with a five-strain cocktail of L. monocytogenes, with an initial concentration of 102 CFU g(-1), and stored at 3, 5, 10, and 15 degrees C for 36 days. The growth kinetic parameters at each temperature were determined by the primary model of Baranyi and Roberts. The maximum specific growth rate (mu(max)) was further modeled as a function of temperature by means of a square root-type model. The performance of the model in predicting the growth of the pathogen under dynamic temperature conditions was based on two different temperature scenarios with periodic changes from 4 to 15 degrees C. Growth prediction for dynamic temperature profiles was based on the square root model and the differential equations of the Baranyi and Roberts model, which were numerically integrated with respect to time. Model performance was based on the bias factor (B(f)), the accuracy factor (A(f)), the goodness-of-fit index (GoF), and the percent relative errors between observed and predicted growth. The product-specific model developed in the present study accurately predicted the growth of L. monocytogenes under dynamic temperature conditions. The average values for the performance indices were 1.038, 1.068, and 0.397 for B(f), A(f), and GoF, respectively for both temperature scenarios assayed. Predictions from Growth Predictor and Sym'Previus overestimated pathogen growth. The average values of B(f), A(f), and GoF were 1.173, 1.174, 1.162, and 0.956, 1.115, 0.713 for [corrected] Growth Predictor and Sym'Previus, respectively.

  18. Microbial models with data-driven parameters predict stronger soil carbon responses to climate change.

    PubMed

    Hararuk, Oleksandra; Smith, Matthew J; Luo, Yiqi

    2015-06-01

    Long-term carbon (C) cycle feedbacks to climate depend on the future dynamics of soil organic carbon (SOC). Current models show low predictive accuracy at simulating contemporary SOC pools, which can be improved through parameter estimation. However, major uncertainty remains in global soil responses to climate change, particularly uncertainty in how the activity of soil microbial communities will respond. To date, the role of microbes in SOC dynamics has been implicitly described by decay rate constants in most conventional global carbon cycle models. Explicitly including microbial biomass dynamics into C cycle model formulations has shown potential to improve model predictive performance when assessed against global SOC databases. This study aimed to data-constrained parameters of two soil microbial models, evaluate the improvements in performance of those calibrated models in predicting contemporary carbon stocks, and compare the SOC responses to climate change and their uncertainties between microbial and conventional models. Microbial models with calibrated parameters explained 51% of variability in the observed total SOC, whereas a calibrated conventional model explained 41%. The microbial models, when forced with climate and soil carbon input predictions from the 5th Coupled Model Intercomparison Project (CMIP5), produced stronger soil C responses to 95 years of climate change than any of the 11 CMIP5 models. The calibrated microbial models predicted between 8% (2-pool model) and 11% (4-pool model) soil C losses compared with CMIP5 model projections which ranged from a 7% loss to a 22.6% gain. Lastly, we observed unrealistic oscillatory SOC dynamics in the 2-pool microbial model. The 4-pool model also produced oscillations, but they were less prominent and could be avoided, depending on the parameter values. © 2014 John Wiley & Sons Ltd.

  19. Extra permeability is required to model dynamic oxygen measurements: evidence for functional recruitment?

    PubMed Central

    Barrett, Matthew JP; Suresh, Vinod

    2013-01-01

    Neural activation triggers a rapid, focal increase in blood flow and thus oxygen delivery. Local oxygen consumption also increases, although not to the same extent as oxygen delivery. This ‘uncoupling' enables a number of widely-used functional neuroimaging techniques; however, the physiologic mechanisms that govern oxygen transport under these conditions remain unclear. Here, we explore this dynamic process using a new mathematical model. Motivated by experimental observations and previous modeling, we hypothesized that functional recruitment of capillaries has an important role during neural activation. Using conventional mechanisms alone, the model predictions were inconsistent with in vivo measurements of oxygen partial pressure. However, dynamically increasing net capillary permeability, a simple description of functional recruitment, led to predictions consistent with the data. Increasing permeability in all vessel types had the same effect, but two alternative mechanisms were unable to produce predictions consistent with the data. These results are further evidence that conventional models of oxygen transport are not sufficient to predict dynamic experimental data. The data and modeling suggest that it is necessary to include a mechanism that dynamically increases net vascular permeability. While the model cannot distinguish between the different possibilities, we speculate that functional recruitment could have this effect in vivo. PMID:23673433

  20. Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America.

    PubMed

    Medvigy, David; Moorcroft, Paul R

    2012-01-19

    Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere models using flux-tower measurements, to date there have been relatively few assessments of their ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial biosphere model, evaluating the model's predictions against forest inventory measurements for the northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default parametrization, which used parameter values from the literature, and a constrained model parametrization, which had been developed by constraining the model's predictions against 2 years of measurements from a single site, Harvard Forest (42.5° N, 72.1° W). The analysis shows that the constrained model parametrization offered marked improvements over the default model formulation, capturing large-scale variation in patterns of biomass dynamics despite marked differences in climate forcing, land-use history and species-composition across the region. These results imply that data-constrained parametrizations of structured biosphere models such as ED2 can be successfully used for regional-scale ecosystem prediction and forecasting. We also assess the model's ability to capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different sizes and types of trees, and then discuss the implications of these analyses for further reducing the remaining biases in the model's predictions.

  1. Large eddy simulation of spanwise rotating turbulent channel flow with dynamic variants of eddy viscosity model

    NASA Astrophysics Data System (ADS)

    Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi

    2018-04-01

    A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.

  2. Does objective cluster analysis serve as a useful precursor to seasonal precipitation prediction at local scale? Application to western Ethiopia

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Moges, Semu; Block, Paul

    2018-01-01

    Prediction of seasonal precipitation can provide actionable information to guide management of various sectoral activities. For instance, it is often translated into hydrological forecasts for better water resources management. However, many studies assume homogeneity in precipitation across an entire study region, which may prove ineffective for operational and local-level decisions, particularly for locations with high spatial variability. This study proposes advancing local-level seasonal precipitation predictions by first conditioning on regional-level predictions, as defined through objective cluster analysis, for western Ethiopia. To our knowledge, this is the first study predicting seasonal precipitation at high resolution in this region, where lives and livelihoods are vulnerable to precipitation variability given the high reliance on rain-fed agriculture and limited water resources infrastructure. The combination of objective cluster analysis, spatially high-resolution prediction of seasonal precipitation, and a modeling structure spanning statistical and dynamical approaches makes clear advances in prediction skill and resolution, as compared with previous studies. The statistical model improves versus the non-clustered case or dynamical models for a number of specific clusters in northwestern Ethiopia, with clusters having regional average correlation and ranked probability skill score (RPSS) values of up to 0.5 and 33 %, respectively. The general skill (after bias correction) of the two best-performing dynamical models over the entire study region is superior to that of the statistical models, although the dynamical models issue predictions at a lower resolution and the raw predictions require bias correction to guarantee comparable skills.

  3. A Hierarchical Multivariate Bayesian Approach to Ensemble Model output Statistics in Atmospheric Prediction

    DTIC Science & Technology

    2017-09-01

    efficacy of statistical post-processing methods downstream of these dynamical model components with a hierarchical multivariate Bayesian approach to...Bayesian hierarchical modeling, Markov chain Monte Carlo methods , Metropolis algorithm, machine learning, atmospheric prediction 15. NUMBER OF PAGES...scale processes. However, this dissertation explores the efficacy of statistical post-processing methods downstream of these dynamical model components

  4. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we contend that creating believable soil carbon predictions requires a robust, transparent, and community-available benchmarking framework. I will present an ILAMB evaluation of several of the above-mentioned approaches in ACME, and attempt to motivate community adoption of this evaluation approach.

  5. Comparison of Models for Ball Bearing Dynamic Capacity and Life

    NASA Technical Reports Server (NTRS)

    Gupta, Pradeep K.; Oswald, Fred B.; Zaretsky, Erwin V.

    2015-01-01

    Generalized formulations for dynamic capacity and life of ball bearings, based on the models introduced by Lundberg and Palmgren and Zaretsky, have been developed and implemented in the bearing dynamics computer code, ADORE. Unlike the original Lundberg-Palmgren dynamic capacity equation, where the elastic properties are part of the life constant, the generalized formulations permit variation of elastic properties of the interacting materials. The newly updated Lundberg-Palmgren model allows prediction of life as a function of elastic properties. For elastic properties similar to those of AISI 52100 bearing steel, both the original and updated Lundberg-Palmgren models provide identical results. A comparison between the Lundberg-Palmgren and the Zaretsky models shows that at relatively light loads the Zaretsky model predicts a much higher life than the Lundberg-Palmgren model. As the load increases, the Zaretsky model provides a much faster drop off in life. This is because the Zaretsky model is much more sensitive to load than the Lundberg-Palmgren model. The generalized implementation where all model parameters can be varied provides an effective tool for future model validation and enhancement in bearing life prediction capabilities.

  6. Predicting the evolution of complex networks via similarity dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping

    2017-01-01

    Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.

  7. Adaptive Anchoring Model: How Static and Dynamic Presentations of Time Series Influence Judgments and Predictions.

    PubMed

    Kusev, Petko; van Schaik, Paul; Tsaneva-Atanasova, Krasimira; Juliusson, Asgeir; Chater, Nick

    2018-01-01

    When attempting to predict future events, people commonly rely on historical data. One psychological characteristic of judgmental forecasting of time series, established by research, is that when people make forecasts from series, they tend to underestimate future values for upward trends and overestimate them for downward ones, so-called trend-damping (modeled by anchoring on, and insufficient adjustment from, the average of recent time series values). Events in a time series can be experienced sequentially (dynamic mode), or they can also be retrospectively viewed simultaneously (static mode), not experienced individually in real time. In one experiment, we studied the influence of presentation mode (dynamic and static) on two sorts of judgment: (a) predictions of the next event (forecast) and (b) estimation of the average value of all the events in the presented series (average estimation). Participants' responses in dynamic mode were anchored on more recent events than in static mode for all types of judgment but with different consequences; hence, dynamic presentation improved prediction accuracy, but not estimation. These results are not anticipated by existing theoretical accounts; we develop and present an agent-based model-the adaptive anchoring model (ADAM)-to account for the difference between processing sequences of dynamically and statically presented stimuli (visually presented data). ADAM captures how variation in presentation mode produces variation in responses (and the accuracy of these responses) in both forecasting and judgment tasks. ADAM's model predictions for the forecasting and judgment tasks fit better with the response data than a linear-regression time series model. Moreover, ADAM outperformed autoregressive-integrated-moving-average (ARIMA) and exponential-smoothing models, while neither of these models accounts for people's responses on the average estimation task. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  8. Verification of a 2 kWe Closed-Brayton-Cycle Power Conversion System Mechanical Dynamics Model

    NASA Technical Reports Server (NTRS)

    Ludwiczak, Damian R.; Le, Dzu K.; McNelis, Anne M.; Yu, Albert C.; Samorezov, Sergey; Hervol, Dave S.

    2005-01-01

    Vibration test data from an operating 2 kWe closed-Brayton-cycle (CBC) power conversion system (PCS) located at the NASA Glenn Research Center was used for a comparison with a dynamic disturbance model of the same unit. This effort was performed to show that a dynamic disturbance model of a CBC PCS can be developed that can accurately predict the torque and vibration disturbance fields of such class of rotating machinery. The ability to accurately predict these disturbance fields is required before such hardware can be confidently integrated onto a spacecraft mission. Accurate predictions of CBC disturbance fields will be used for spacecraft control/structure interaction analyses and for understanding the vibration disturbances affecting the scientific instrumentation onboard. This paper discusses how test cell data measurements for the 2 kWe CBC PCS were obtained, the development of a dynamic disturbance model used to predict the transient torque and steady state vibration fields of the same unit, and a comparison of the two sets of data.

  9. Bayesian dynamic modeling of time series of dengue disease case counts.

    PubMed

    Martínez-Bello, Daniel Adyro; López-Quílez, Antonio; Torres-Prieto, Alexander

    2017-07-01

    The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model's short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health.

  10. High-Fidelity Multi-Rotor Unmanned Aircraft System Simulation Development for Trajectory Prediction Under Off-Nominal Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Foster, John V.; Hartman, David C.

    2017-01-01

    The NASA Unmanned Aircraft System (UAS) Traffic Management (UTM) project is conducting research to enable civilian low-altitude airspace and UAS operations. A goal of this project is to develop probabilistic methods to quantify risk during failures and off nominal flight conditions. An important part of this effort is the reliable prediction of feasible trajectories during off-nominal events such as control failure, atmospheric upsets, or navigation anomalies that can cause large deviations from the intended flight path or extreme vehicle upsets beyond the normal flight envelope. Few examples of high-fidelity modeling and prediction of off-nominal behavior for small UAS (sUAS) vehicles exist, and modeling requirements for accurately predicting flight dynamics for out-of-envelope or failure conditions are essentially undefined. In addition, the broad range of sUAS aircraft configurations already being fielded presents a significant modeling challenge, as these vehicles are often very different from one another and are likely to possess dramatically different flight dynamics and resultant trajectories and may require different modeling approaches to capture off-nominal behavior. NASA has undertaken an extensive research effort to define sUAS flight dynamics modeling requirements and develop preliminary high fidelity six degree-of-freedom (6-DOF) simulations capable of more closely predicting off-nominal flight dynamics and trajectories. This research has included a literature review of existing sUAS modeling and simulation work as well as development of experimental testing methods to measure and model key components of propulsion, airframe and control characteristics. The ultimate objective of these efforts is to develop tools to support UTM risk analyses and for the real-time prediction of off-nominal trajectories for use in the UTM Risk Assessment Framework (URAF). This paper focuses on modeling and simulation efforts for a generic quad-rotor configuration typical of many commercial vehicles in use today. An overview of relevant off-nominal multi-rotor behaviors will be presented to define modeling goals and to identify the prediction capability lacking in simplified models of multi-rotor performance. A description of recent NASA wind tunnel testing of multi-rotor propulsion and airframe components will be presented illustrating important experimental and data acquisition methods, and a description of preliminary propulsion and airframe models will be presented. Lastly, examples of predicted off-nominal flight dynamics and trajectories from the simulation will be presented.

  11. Data-driven reverse engineering of signaling pathways using ensembles of dynamic models.

    PubMed

    Henriques, David; Villaverde, Alejandro F; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R

    2017-02-01

    Despite significant efforts and remarkable progress, the inference of signaling networks from experimental data remains very challenging. The problem is particularly difficult when the objective is to obtain a dynamic model capable of predicting the effect of novel perturbations not considered during model training. The problem is ill-posed due to the nonlinear nature of these systems, the fact that only a fraction of the involved proteins and their post-translational modifications can be measured, and limitations on the technologies used for growing cells in vitro, perturbing them, and measuring their variations. As a consequence, there is a pervasive lack of identifiability. To overcome these issues, we present a methodology called SELDOM (enSEmbLe of Dynamic lOgic-based Models), which builds an ensemble of logic-based dynamic models, trains them to experimental data, and combines their individual simulations into an ensemble prediction. It also includes a model reduction step to prune spurious interactions and mitigate overfitting. SELDOM is a data-driven method, in the sense that it does not require any prior knowledge of the system: the interaction networks that act as scaffolds for the dynamic models are inferred from data using mutual information. We have tested SELDOM on a number of experimental and in silico signal transduction case-studies, including the recent HPN-DREAM breast cancer challenge. We found that its performance is highly competitive compared to state-of-the-art methods for the purpose of recovering network topology. More importantly, the utility of SELDOM goes beyond basic network inference (i.e. uncovering static interaction networks): it builds dynamic (based on ordinary differential equation) models, which can be used for mechanistic interpretations and reliable dynamic predictions in new experimental conditions (i.e. not used in the training). For this task, SELDOM's ensemble prediction is not only consistently better than predictions from individual models, but also often outperforms the state of the art represented by the methods used in the HPN-DREAM challenge.

  12. Moving From Static to Dynamic Models of the Onset of Mental Disorder: A Review.

    PubMed

    Nelson, Barnaby; McGorry, Patrick D; Wichers, Marieke; Wigman, Johanna T W; Hartmann, Jessica A

    2017-05-01

    In recent years, there has been increased focus on subthreshold stages of mental disorders, with attempts to model and predict which individuals will progress to full-threshold disorder. Given this research attention and the clinical significance of the issue, this article analyzes the assumptions of the theoretical models in the field. Psychiatric research into predicting the onset of mental disorder has shown an overreliance on one-off sampling of cross-sectional data (ie, a snapshot of clinical state and other risk markers) and may benefit from taking dynamic changes into account in predictive modeling. Cross-disciplinary approaches to complex system structures and changes, such as dynamical systems theory, network theory, instability mechanisms, chaos theory, and catastrophe theory, offer potent models that can be applied to the emergence (or decline) of psychopathology, including psychosis prediction, as well as to transdiagnostic emergence of symptoms. Psychiatric research may benefit from approaching psychopathology as a system rather than as a category, identifying dynamics of system change (eg, abrupt vs gradual psychosis onset), and determining the factors to which these systems are most sensitive (eg, interpersonal dynamics and neurochemical change) and the individual variability in system architecture and change. These goals can be advanced by testing hypotheses that emerge from cross-disciplinary models of complex systems. Future studies require repeated longitudinal assessment of relevant variables through either (or a combination of) micro-level (momentary and day-to-day) and macro-level (month and year) assessments. Ecological momentary assessment is a data collection technique appropriate for micro-level assessment. Relevant statistical approaches are joint modeling and time series analysis, including metric-based and model-based methods that draw on the mathematical principles of dynamical systems. This next generation of prediction studies may more accurately model the dynamic nature of psychopathology and system change as well as have treatment implications, such as introducing a means of identifying critical periods of risk for mental state deterioration.

  13. Data-driven reverse engineering of signaling pathways using ensembles of dynamic models

    PubMed Central

    Henriques, David; Villaverde, Alejandro F.; Banga, Julio R.

    2017-01-01

    Despite significant efforts and remarkable progress, the inference of signaling networks from experimental data remains very challenging. The problem is particularly difficult when the objective is to obtain a dynamic model capable of predicting the effect of novel perturbations not considered during model training. The problem is ill-posed due to the nonlinear nature of these systems, the fact that only a fraction of the involved proteins and their post-translational modifications can be measured, and limitations on the technologies used for growing cells in vitro, perturbing them, and measuring their variations. As a consequence, there is a pervasive lack of identifiability. To overcome these issues, we present a methodology called SELDOM (enSEmbLe of Dynamic lOgic-based Models), which builds an ensemble of logic-based dynamic models, trains them to experimental data, and combines their individual simulations into an ensemble prediction. It also includes a model reduction step to prune spurious interactions and mitigate overfitting. SELDOM is a data-driven method, in the sense that it does not require any prior knowledge of the system: the interaction networks that act as scaffolds for the dynamic models are inferred from data using mutual information. We have tested SELDOM on a number of experimental and in silico signal transduction case-studies, including the recent HPN-DREAM breast cancer challenge. We found that its performance is highly competitive compared to state-of-the-art methods for the purpose of recovering network topology. More importantly, the utility of SELDOM goes beyond basic network inference (i.e. uncovering static interaction networks): it builds dynamic (based on ordinary differential equation) models, which can be used for mechanistic interpretations and reliable dynamic predictions in new experimental conditions (i.e. not used in the training). For this task, SELDOM’s ensemble prediction is not only consistently better than predictions from individual models, but also often outperforms the state of the art represented by the methods used in the HPN-DREAM challenge. PMID:28166222

  14. A COMPARISON OF STATIC AND DYNAMIC OPTIMIZATION MUSCLE FORCE PREDICTIONS DURING WHEELCHAIR PROPULSION

    PubMed Central

    Morrow, Melissa M.; Rankin, Jeffery W.; Neptune, Richard R.; Kaufman, Kenton R.

    2014-01-01

    The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the shoulder and elbow muscle moment arms and net joint moments from the dynamic optimization were used as inputs into the static optimization routine. RMS errors between model predictions were calculated to quantify model agreement. There was a wide range of individual muscle force agreement that spanned from poor (26.4 % Fmax error in the middle deltoid) to good (6.4 % Fmax error in the anterior deltoid) in the prime movers of the shoulder. The predicted muscle forces from the static optimization were sufficient to create the appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, but showed deviations in the elbow moment, pronation-supination motion and hand rim forces. These results suggest the static approach does not produce results similar enough to be a replacement for forward dynamics simulations, and care should be taken in choosing the appropriate method for a specific task and set of constraints. Dynamic optimization modeling approaches may be required for motions that are greatly influenced by muscle activation dynamics or that require significant co-contraction. PMID:25282075

  15. Dynamic-landscape metapopulation models predict complex response of wildlife populations to climate and landscape change

    Treesearch

    Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh

    2017-01-01

    The increasing need to predict how climate change will impact wildlife species has exposed limitations in how well current approaches model important biological processes at scales at which those processes interact with climate. We used a comprehensive approach that combined recent advances in landscape and population modeling into dynamic-landscape metapopulation...

  16. The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.

    PubMed

    Weilnhammer, Veith A; Stuke, Heiner; Sterzer, Philipp; Schmack, Katharina

    2018-05-23

    Sensory information is inherently noisy, sparse, and ambiguous. In contrast, visual experience is usually clear, detailed, and stable. Bayesian theories of perception resolve this discrepancy by assuming that prior knowledge about the causes underlying sensory stimulation actively shapes perceptual decisions. The CNS is believed to entertain a generative model aligned to dynamic changes in the hierarchical states of our volatile sensory environment. Here, we used model-based fMRI to study the neural correlates of the dynamic updating of hierarchically structured predictions in male and female human observers. We devised a crossmodal associative learning task with covertly interspersed ambiguous trials in which participants engaged in hierarchical learning based on changing contingencies between auditory cues and visual targets. By inverting a Bayesian model of perceptual inference, we estimated individual hierarchical predictions, which significantly biased perceptual decisions under ambiguity. Although "high-level" predictions about the cue-target contingency correlated with activity in supramodal regions such as orbitofrontal cortex and hippocampus, dynamic "low-level" predictions about the conditional target probabilities were associated with activity in retinotopic visual cortex. Our results suggest that our CNS updates distinct representations of hierarchical predictions that continuously affect perceptual decisions in a dynamically changing environment. SIGNIFICANCE STATEMENT Bayesian theories posit that our brain entertains a generative model to provide hierarchical predictions regarding the causes of sensory information. Here, we use behavioral modeling and fMRI to study the neural underpinnings of such hierarchical predictions. We show that "high-level" predictions about the strength of dynamic cue-target contingencies during crossmodal associative learning correlate with activity in orbitofrontal cortex and the hippocampus, whereas "low-level" conditional target probabilities were reflected in retinotopic visual cortex. Our findings empirically corroborate theorizations on the role of hierarchical predictions in visual perception and contribute substantially to a longstanding debate on the link between sensory predictions and orbitofrontal or hippocampal activity. Our work fundamentally advances the mechanistic understanding of perceptual inference in the human brain. Copyright © 2018 the authors 0270-6474/18/385008-14$15.00/0.

  17. Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.

    PubMed

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2014-07-17

    Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.

  18. Correlation of ground tests and analyses of a dynamically scaled Space Station model configuration

    NASA Technical Reports Server (NTRS)

    Javeed, Mehzad; Edighoffer, Harold H.; Mcgowan, Paul E.

    1993-01-01

    Verification of analytical models through correlation with ground test results of a complex space truss structure is demonstrated. A multi-component, dynamically scaled space station model configuration is the focus structure for this work. Previously established test/analysis correlation procedures are used to develop improved component analytical models. Integrated system analytical models, consisting of updated component analytical models, are compared with modal test results to establish the accuracy of system-level dynamic predictions. Design sensitivity model updating methods are shown to be effective for providing improved component analytical models. Also, the effects of component model accuracy and interface modeling fidelity on the accuracy of integrated model predictions is examined.

  19. Bridging the gap between computation and clinical biology: validation of cable theory in humans

    PubMed Central

    Finlay, Malcolm C.; Xu, Lei; Taggart, Peter; Hanson, Ben; Lambiase, Pier D.

    2013-01-01

    Introduction: Computerized simulations of cardiac activity have significantly contributed to our understanding of cardiac electrophysiology, but techniques of simulations based on patient-acquired data remain in their infancy. We sought to integrate data acquired from human electrophysiological studies into patient-specific models, and validated this approach by testing whether electrophysiological responses to sequential premature stimuli could be predicted in a quantitatively accurate manner. Methods: Eleven patients with structurally normal hearts underwent electrophysiological studies. Semi-automated analysis was used to reconstruct activation and repolarization dynamics for each electrode. This S2 extrastimuli data was used to inform individualized models of cardiac conduction, including a novel derivation of conduction velocity restitution. Activation dynamics of multiple premature extrastimuli were then predicted from this model and compared against measured patient data as well as data derived from the ten-Tusscher cell-ionic model. Results: Activation dynamics following a premature S3 were significantly different from those after an S2. Patient specific models demonstrated accurate prediction of the S3 activation wave, (Pearson's R2 = 0.90, median error 4%). Examination of the modeled conduction dynamics allowed inferences into the spatial dispersion of activation delay. Further validation was performed against data from the ten-Tusscher cell-ionic model, with our model accurately recapitulating predictions of repolarization times (R2 = 0.99). Conclusions: Simulations based on clinically acquired data can be used to successfully predict complex activation patterns following sequential extrastimuli. Such modeling techniques may be useful as a method of incorporation of clinical data into predictive models. PMID:24027527

  20. The Contribution of Mathematical Modeling to Understanding Dynamic Aspects of Rumen Metabolism

    PubMed Central

    Bannink, André; van Lingen, Henk J.; Ellis, Jennifer L.; France, James; Dijkstra, Jan

    2016-01-01

    All mechanistic rumen models cover the main drivers of variation in rumen function, which are feed intake, the differences between feedstuffs and feeds in their intrinsic rumen degradation characteristics, and fractional outflow rate of fluid and particulate matter. Dynamic modeling approaches are best suited to the prediction of more nuanced responses in rumen metabolism, and represent the dynamics of the interactions between substrates and micro-organisms and inter-microbial interactions. The concepts of dynamics are discussed for the case of rumen starch digestion as influenced by starch intake rate and frequency of feed intake, and for the case of fermentation of fiber in the large intestine. Adding representations of new functional classes of micro-organisms (i.e., with new characteristics from the perspective of whole rumen function) in rumen models only delivers new insights if complemented by the dynamics of their interactions with other functional classes. Rumen fermentation conditions have to be represented due to their profound impact on the dynamics of substrate degradation and microbial metabolism. Although the importance of rumen pH is generally acknowledged, more emphasis is needed on predicting its variation as well as variation in the processes that underlie rumen fluid dynamics. The rumen wall has an important role in adapting to rapid changes in the rumen environment, clearing of volatile fatty acids (VFA), and maintaining rumen pH within limits. Dynamics of rumen wall epithelia and their role in VFA absorption needs to be better represented in models that aim to predict rumen responses across nutritional or physiological states. For a detailed prediction of rumen N balance there is merit in a dynamic modeling approach compared to the static approaches adopted in current protein evaluation systems. Improvement is needed on previous attempts to predict rumen VFA profiles, and this should be pursued by introducing factors that relate more to microbial metabolism. For rumen model construction, data on rumen microbiomes are preferably coupled with knowledge consolidated in rumen models instead of relying on correlations with rather general aspects of treatment or animal. This helps to prevent the disregard of basic principles and underlying mechanisms of whole rumen function. PMID:27933039

  1. Predicting the kinetics of Listeria monocytogenes and Yersinia enterocolitica under dynamic growth/death-inducing conditions, in Italian style fresh sausage.

    PubMed

    Iannetti, Luigi; Salini, Romolo; Sperandii, Anna Franca; Santarelli, Gino Angelo; Neri, Diana; Di Marzio, Violeta; Romantini, Romina; Migliorati, Giacomo; Baranyi, József

    2017-01-02

    Traditional Italian pork products can be consumed after variable drying periods, where the temporal decrease of water activity spans from optimal to inactivating values. This makes it necessary to A) consider the bias factor when applying culture-medium-based predictive models to sausage; B) apply the dynamic version (described by differential equations) of those models; C) combine growth and death models in a continuous way, including the highly uncertain growth/no growth range separating the two regions. This paper tests the applicability of published predictive models on the responses of Listeria monocytogenes and Yersinia enterocolitica to dynamic conditions in traditional Italian pork sausage, where the environment changes from growth-supporting to inhibitory conditions, so the growth and death models need to be combined. The effect of indigenous lactic acid bacteria was also taken into account in the predictions. Challenge tests were carried out using such sausages, inoculated separately with L. monocytogenes and Y. enterocolitica, stored for 480h at 8, 12, 18 and 20°C. The pH was fairly constant, while the water activity changed dynamically. The effects of the environment on the specific growth and death rate of the studied organisms were predicted using previously published predictive models and parameters. Microbial kinetics in many products with a long shelf-life and dynamic internal environment, could result in both growth and inactivation, making it difficult to estimate the bacterial concentration at the time of consumption by means of commonly available predictive software tools. Our prediction of the effect of the storage environment, where the water activity gradually decreases during a drying period, is designed to overcome these difficulties. The methodology can be used generally to predict and visualise bacterial kinetics under temporal variation of environments, which is vital when assessing the safety of many similar products. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Dynamic Socialized Gaussian Process Models for Human Behavior Prediction in a Health Social Network

    PubMed Central

    Shen, Yelong; Phan, NhatHai; Xiao, Xiao; Jin, Ruoming; Sun, Junfeng; Piniewski, Brigitte; Kil, David; Dou, Dejing

    2016-01-01

    Modeling and predicting human behaviors, such as the level and intensity of physical activity, is a key to preventing the cascade of obesity and helping spread healthy behaviors in a social network. In our conference paper, we have developed a social influence model, named Socialized Gaussian Process (SGP), for socialized human behavior modeling. Instead of explicitly modeling social influence as individuals' behaviors influenced by their friends' previous behaviors, SGP models the dynamic social correlation as the result of social influence. The SGP model naturally incorporates personal behavior factor and social correlation factor (i.e., the homophily principle: Friends tend to perform similar behaviors) into a unified model. And it models the social influence factor (i.e., an individual's behavior can be affected by his/her friends) implicitly in dynamic social correlation schemes. The detailed experimental evaluation has shown the SGP model achieves better prediction accuracy compared with most of baseline methods. However, a Socialized Random Forest model may perform better at the beginning compared with the SGP model. One of the main reasons is the dynamic social correlation function is purely based on the users' sequential behaviors without considering other physical activity-related features. To address this issue, we further propose a novel “multi-feature SGP model” (mfSGP) which improves the SGP model by using multiple physical activity-related features in the dynamic social correlation learning. Extensive experimental results illustrate that the mfSGP model clearly outperforms all other models in terms of prediction accuracy and running time. PMID:27746515

  3. Crowd computing: using competitive dynamics to develop and refine highly predictive models.

    PubMed

    Bentzien, Jörg; Muegge, Ingo; Hamner, Ben; Thompson, David C

    2013-05-01

    A recent application of a crowd computing platform to develop highly predictive in silico models for use in the drug discovery process is described. The platform, Kaggle™, exploits a competitive dynamic that results in model optimization as the competition unfolds. Here, this dynamic is described in detail and compared with more-conventional modeling strategies. The complete and full structure of the underlying dataset is disclosed and some thoughts as to the broader utility of such 'gamification' approaches to the field of modeling are offered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Empirical evidence that metabolic theory describes the temperature dependency of within-host parasite dynamics.

    PubMed

    Kirk, Devin; Jones, Natalie; Peacock, Stephanie; Phillips, Jessica; Molnár, Péter K; Krkošek, Martin; Luijckx, Pepijn

    2018-02-01

    The complexity of host-parasite interactions makes it difficult to predict how host-parasite systems will respond to climate change. In particular, host and parasite traits such as survival and virulence may have distinct temperature dependencies that must be integrated into models of disease dynamics. Using experimental data from Daphnia magna and a microsporidian parasite, we fitted a mechanistic model of the within-host parasite population dynamics. Model parameters comprising host aging and mortality, as well as parasite growth, virulence, and equilibrium abundance, were specified by relationships arising from the metabolic theory of ecology. The model effectively predicts host survival, parasite growth, and the cost of infection across temperature while using less than half the parameters compared to modeling temperatures discretely. Our results serve as a proof of concept that linking simple metabolic models with a mechanistic host-parasite framework can be used to predict temperature responses of parasite population dynamics at the within-host level.

  5. Empirical evidence that metabolic theory describes the temperature dependency of within-host parasite dynamics

    PubMed Central

    Jones, Natalie; Peacock, Stephanie; Phillips, Jessica; Molnár, Péter K.; Krkošek, Martin; Luijckx, Pepijn

    2018-01-01

    The complexity of host–parasite interactions makes it difficult to predict how host–parasite systems will respond to climate change. In particular, host and parasite traits such as survival and virulence may have distinct temperature dependencies that must be integrated into models of disease dynamics. Using experimental data from Daphnia magna and a microsporidian parasite, we fitted a mechanistic model of the within-host parasite population dynamics. Model parameters comprising host aging and mortality, as well as parasite growth, virulence, and equilibrium abundance, were specified by relationships arising from the metabolic theory of ecology. The model effectively predicts host survival, parasite growth, and the cost of infection across temperature while using less than half the parameters compared to modeling temperatures discretely. Our results serve as a proof of concept that linking simple metabolic models with a mechanistic host–parasite framework can be used to predict temperature responses of parasite population dynamics at the within-host level. PMID:29415043

  6. Time Prediction Models for Echinococcosis Based on Gray System Theory and Epidemic Dynamics

    PubMed Central

    Zhang, Liping; Wang, Li; Zheng, Yanling; Wang, Kai; Zhang, Xueliang; Zheng, Yujian

    2017-01-01

    Echinococcosis, which can seriously harm human health and animal husbandry production, has become an endemic in the Xinjiang Uygur Autonomous Region of China. In order to explore an effective human Echinococcosis forecasting model in Xinjiang, three grey models, namely, the traditional grey GM(1,1) model, the Grey-Periodic Extensional Combinatorial Model (PECGM(1,1)), and the Modified Grey Model using Fourier Series (FGM(1,1)), in addition to a multiplicative seasonal ARIMA(1,0,1)(1,1,0)4 model, are applied in this study for short-term predictions. The accuracy of the different grey models is also investigated. The simulation results show that the FGM(1,1) model has a higher performance ability, not only for model fitting, but also for forecasting. Furthermore, considering the stability and the modeling precision in the long run, a dynamic epidemic prediction model based on the transmission mechanism of Echinococcosis is also established for long-term predictions. Results demonstrate that the dynamic epidemic prediction model is capable of identifying the future tendency. The number of human Echinococcosis cases will increase steadily over the next 25 years, reaching a peak of about 1250 cases, before eventually witnessing a slow decline, until it finally ends. PMID:28273856

  7. Model Predictive Flight Control System with Full State Observer using H∞ Method

    NASA Astrophysics Data System (ADS)

    Sanwale, Jitu; Singh, Dhan Jeet

    2018-03-01

    This paper presents the application of the model predictive approach to design a flight control system (FCS) for longitudinal dynamics of a fixed wing aircraft. Longitudinal dynamics is derived for a conventional aircraft. Open loop aircraft response analysis is carried out. Simulation studies are illustrated to prove the efficacy of the proposed model predictive controller using H ∞ state observer. The estimation criterion used in the {H}_{∞} observer design is to minimize the worst possible effects of the modelling errors and additive noise on the parameter estimation.

  8. Experimental and modelling of Arthrospira platensis cultivation in open raceway ponds.

    PubMed

    Ranganathan, Panneerselvam; Amal, J C; Savithri, S; Haridas, Ajith

    2017-10-01

    In this study, the growth of Arthrospira platensis was studied in an open raceway pond. Furthermore, dynamic model for algae growth and CFD modelling of hydrodynamics in open raceway pond were developed. The dynamic behaviour of the algal system was developed by solving mass balance equations of various components, considering light intensity and gas-liquid mass transfer. A CFD modelling of the hydrodynamics of open raceway pond was developed by solving mass and momentum balance equations of the liquid medium. The prediction of algae concentration from the dynamic model was compared with the experimental data. The hydrodynamic behaviour of the open raceway pond was compared with the literature data for model validation. The model predictions match the experimental findings. Furthermore, the hydrodynamic behaviour and residence time distribution in our small raceway pond were predicted. These models can serve as a tool to assess the pond performance criteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Improvement of PM concentration predictability using WRF-CMAQ-DLM coupled system and its applications

    NASA Astrophysics Data System (ADS)

    Lee, Soon Hwan; Kim, Ji Sun; Lee, Kang Yeol; Shon, Keon Tae

    2017-04-01

    Air quality due to increasing Particulate Matter(PM) in Korea in Asia is getting worse. At present, the PM forecast is announced based on the PM concentration predicted from the air quality prediction numerical model. However, forecast accuracy is not as high as expected due to various uncertainties for PM physical and chemical characteristics. The purpose of this study was to develop a numerical-statistically ensemble models to improve the accuracy of prediction of PM10 concentration. Numerical models used in this study are the three dimensional atmospheric model Weather Research and Forecasting(WRF) and the community multiscale air quality model (CMAQ). The target areas for the PM forecast are Seoul, Busan, Daegu, and Daejeon metropolitan areas in Korea. The data used in the model development are PM concentration and CMAQ predictions and the data period is 3 months (March 1 - May 31, 2014). The dynamic-statistical technics for reducing the systematic error of the CMAQ predictions was applied to the dynamic linear model(DLM) based on the Baysian Kalman filter technic. As a result of applying the metrics generated from the dynamic linear model to the forecasting of PM concentrations accuracy was improved. Especially, at the high PM concentration where the damage is relatively large, excellent improvement results are shown.

  10. A simplified model to predict diurnal water temperature dynamics in a shallow tropical water pool.

    PubMed

    Paaijmans, Krijn P; Heusinkveld, Bert G; Jacobs, Adrie F G

    2008-11-01

    Water temperature is a critical regulator in the growth and development of malaria mosquito immatures, as they are poikilothermic. Measuring or estimating the diurnal temperature ranges to which these immatures are exposed is of the utmost importance, as these immatures will develop into adults that can transmit malaria. Recent attempts to predict the daily water temperature dynamics in mosquito breeding sites in Kenya have been successful. However, the developed model may be too complex, as the sophisticated equipment that was used for detailed meteorological observations is not widely distributed in Africa, making it difficult to predict the daily water temperature dynamics on a local scale. Therefore, we compared two energy budget models with earlier made observations of the daily water temperature dynamics in a small, shallow and clear water pool (diameter 0.96 m, depth 0.32 m) in Kenya. This paper describes (1) a complex 1-Dimensional model, and (2) a simplified second model, and (3) shows that both models mimic the water temperature dynamics in the water pool accurately. The latter model has the advantage that it only needs common weather data (air temperature, air humidity, wind speed and cloud cover) to estimate the diurnal temperature dynamics in breeding sites of African malaria mosquitoes.

  11. Dynamic Divisive Normalization Predicts Time-Varying Value Coding in Decision-Related Circuits

    PubMed Central

    LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W.

    2014-01-01

    Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. PMID:25429145

  12. Dynamic Smagorinsky model on anisotropic grids

    NASA Technical Reports Server (NTRS)

    Scotti, A.; Meneveau, C.; Fatica, M.

    1996-01-01

    Large Eddy Simulation (LES) of complex-geometry flows often involves highly anisotropic meshes. To examine the performance of the dynamic Smagorinsky model in a controlled fashion on such grids, simulations of forced isotropic turbulence are performed using highly anisotropic discretizations. The resulting model coefficients are compared with a theoretical prediction (Scotti et al., 1993). Two extreme cases are considered: pancake-like grids, for which two directions are poorly resolved compared to the third, and pencil-like grids, where one direction is poorly resolved when compared to the other two. For pancake-like grids the dynamic model yields the results expected from the theory (increasing coefficient with increasing aspect ratio), whereas for pencil-like grids the dynamic model does not agree with the theoretical prediction (with detrimental effects only on smallest resolved scales). A possible explanation of the departure is attempted, and it is shown that the problem may be circumvented by using an isotropic test-filter at larger scales. Overall, all models considered give good large-scale results, confirming the general robustness of the dynamic and eddy-viscosity models. But in all cases, the predictions were poor for scales smaller than that of the worst resolved direction.

  13. Statistical prediction of dynamic distortion of inlet flow using minimum dynamic measurement. An application to the Melick statistical method and inlet flow dynamic distortion prediction without RMS measurements

    NASA Technical Reports Server (NTRS)

    Schweikhard, W. G.; Chen, Y. S.

    1986-01-01

    The Melick method of inlet flow dynamic distortion prediction by statistical means is outlined. A hypothetic vortex model is used as the basis for the mathematical formulations. The main variables are identified by matching the theoretical total pressure rms ratio with the measured total pressure rms ratio. Data comparisons, using the HiMAT inlet test data set, indicate satisfactory prediction of the dynamic peak distortion for cases with boundary layer control device vortex generators. A method for the dynamic probe selection was developed. Validity of the probe selection criteria is demonstrated by comparing the reduced-probe predictions with the 40-probe predictions. It is indicated that the the number of dynamic probes can be reduced to as few as two and still retain good accuracy.

  14. A dynamic, climate-driven model of Rift Valley fever.

    PubMed

    Leedale, Joseph; Jones, Anne E; Caminade, Cyril; Morse, Andrew P

    2016-03-31

    Outbreaks of Rift Valley fever (RVF) in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF) model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information.

  15. Predicting Flow Reversals in a Computational Fluid Dynamics Simulated Thermosyphon Using Data Assimilation.

    PubMed

    Reagan, Andrew J; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M

    2016-01-01

    A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth's weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction.

  16. Predicting Flow Reversals in a Computational Fluid Dynamics Simulated Thermosyphon Using Data Assimilation

    PubMed Central

    Reagan, Andrew J.; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M.

    2016-01-01

    A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth’s weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction. PMID:26849061

  17. Dynamic rain fade compensation techniques for the advanced communications technology satellite

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1992-01-01

    The dynamic and composite nature of propagation impairments that are incurred on earth-space communications links at frequencies in and above the 30/20 GHz Ka band necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) project by the implementation of optimal processing schemes derived through the use of the ACTS Rain Attenuation Prediction Model and nonlinear Markov filtering theory. The ACTS Rain Attenuation Prediction Model discerns climatological variations on the order of 0.5 deg in latitude and longitude in the continental U.S. The time-dependent portion of the model gives precise availability predictions for the 'spot beam' links of ACTS. However, the structure of the dynamic portion of the model, which yields performance parameters such as fade duration probabilities, is isomorphic to the state-variable approach of stochastic control theory and is amenable to the design of such statistical fade processing schemes which can be made specific to the particular climatological location at which they are employed.

  18. Computational discovery and in vivo validation of hnf4 as a regulatory gene in planarian regeneration.

    PubMed

    Lobo, Daniel; Morokuma, Junji; Levin, Michael

    2016-09-01

    Automated computational methods can infer dynamic regulatory network models directly from temporal and spatial experimental data, such as genetic perturbations and their resultant morphologies. Recently, a computational method was able to reverse-engineer the first mechanistic model of planarian regeneration that can recapitulate the main anterior-posterior patterning experiments published in the literature. Validating this comprehensive regulatory model via novel experiments that had not yet been performed would add in our understanding of the remarkable regeneration capacity of planarian worms and demonstrate the power of this automated methodology. Using the Michigan Molecular Interactions and STRING databases and the MoCha software tool, we characterized as hnf4 an unknown regulatory gene predicted to exist by the reverse-engineered dynamic model of planarian regeneration. Then, we used the dynamic model to predict the morphological outcomes under different single and multiple knock-downs (RNA interference) of hnf4 and its predicted gene pathway interactors β-catenin and hh Interestingly, the model predicted that RNAi of hnf4 would rescue the abnormal regenerated phenotype (tailless) of RNAi of hh in amputated trunk fragments. Finally, we validated these predictions in vivo by performing the same surgical and genetic experiments with planarian worms, obtaining the same phenotypic outcomes predicted by the reverse-engineered model. These results suggest that hnf4 is a regulatory gene in planarian regeneration, validate the computational predictions of the reverse-engineered dynamic model, and demonstrate the automated methodology for the discovery of novel genes, pathways and experimental phenotypes. michael.levin@tufts.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. [Approximation to the dynamics of meningococcal meningitis through dynamic systems and time series].

    PubMed

    Canals, M

    1996-02-01

    Meningococcal meningitis is subjected to epidemiological surveillance due to its severity and the occasional presentation of epidemic outbreaks. This work analyses previous disease models, generate new ones and analyses monthly cases using ARIMA time series models. The results show that disease dynamics for closed populations is epidemic and the epidemic size is related to the proportion of carriers and the transmissiveness of the agent. In open populations, disease dynamics depends on the admission rate of susceptible and the relative admission of infected individuals. Our model considers a logistic populational growth and carrier admission proportional to populational size, generating an endemic dynamics. Considering a non-instantaneous system response, a greater realism is obtained establishing that the endemic situation may present a dynamics highly sensitive to initial conditions, depending on the transmissiveness and proportion of susceptible individuals in the population. Time series model showed an adequate predictive capacity in terms no longer than 10 months. The lack of long term predictability was attributed to local changes in the proportion of carriers or on transmissiveness that lead to chaotic dynamics over a seasonal pattern. Predictions for 1995 and 1996 were obtained.

  20. Prediction and validation of diffusion coefficients in a model drug delivery system using microsecond atomistic molecular dynamics simulation and vapour sorption analysis.

    PubMed

    Forrey, Christopher; Saylor, David M; Silverstein, Joshua S; Douglas, Jack F; Davis, Eric M; Elabd, Yossef A

    2014-10-14

    Diffusion of small to medium sized molecules in polymeric medical device materials underlies a broad range of public health concerns related to unintended leaching from or uptake into implantable medical devices. However, obtaining accurate diffusion coefficients for such systems at physiological temperature represents a formidable challenge, both experimentally and computationally. While molecular dynamics simulation has been used to accurately predict the diffusion coefficients, D, of a handful of gases in various polymers, this success has not been extended to molecules larger than gases, e.g., condensable vapours, liquids, and drugs. We present atomistic molecular dynamics simulation predictions of diffusion in a model drug eluting system that represent a dramatic improvement in accuracy compared to previous simulation predictions for comparable systems. We find that, for simulations of insufficient duration, sub-diffusive dynamics can lead to dramatic over-prediction of D. We present useful metrics for monitoring the extent of sub-diffusive dynamics and explore how these metrics correlate to error in D. We also identify a relationship between diffusion and fast dynamics in our system, which may serve as a means to more rapidly predict diffusion in slowly diffusing systems. Our work provides important precedent and essential insights for utilizing atomistic molecular dynamics simulations to predict diffusion coefficients of small to medium sized molecules in condensed soft matter systems.

  1. Protein Folding Simulations Combining Self-Guided Langevin Dynamics and Temperature-Based Replica Exchange

    DTIC Science & Technology

    2010-01-01

    formulations of molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage...ad hoc force term in the SGLD model. Introduction Molecular dynamics (MD) simulations of small proteins provide insight into the mechanisms and... molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage mini-protein. All

  2. Mid-frequency Band Dynamics of Large Space Structures

    NASA Technical Reports Server (NTRS)

    Coppolino, Robert N.; Adams, Douglas S.

    2004-01-01

    High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.

  3. Modal simulation of gearbox vibration with experimental correlation

    NASA Technical Reports Server (NTRS)

    Choy, Fred K.; Ruan, Yeefeng F.; Zakrajsek, James J.; Oswald, Fred B.

    1992-01-01

    A newly developed global dynamic model was used to simulate the dynamics of a gear noise rig at NASA Lewis Research Center. Experimental results from the test rig were used to verify the analytical model. In this global dynamic model, the number of degrees of freedom of the system are reduced by transforming the system equations of motion into modal coordinates. The vibration of the individual gear-shaft system are coupled through the gear mesh forces. A three-dimensional, axial-lateral coupled, bearing model was used to couple the casing structural vibration to the gear-rotor dynamics. The coupled system of modal equations is solved to predict the resulting vibration at several locations on the test rig. Experimental vibration data was compared to the predictions of the global dynamic model. There is excellent agreement between the vibration results from analysis and experiment.

  4. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model

    PubMed Central

    Saul, Katherine R.; Hu, Xiao; Goehler, Craig M.; Vidt, Meghan E.; Daly, Melissa; Velisar, Anca; Murray, Wendy M.

    2014-01-01

    Several opensource or commercially available software platforms are widely used to develop dynamic simulations of movement. While computational approaches are conceptually similar across platforms, technical differences in implementation may influence output. We present a new upper limb dynamic model as a tool to evaluate potential differences in predictive behavior between platforms. We evaluated to what extent differences in technical implementations in popular simulation software environments result in differences in kinematic predictions for single and multijoint movements using EMG- and optimization-based approaches for deriving control signals. We illustrate the benchmarking comparison using SIMM-Dynamics Pipeline-SD/Fast and OpenSim platforms. The most substantial divergence results from differences in muscle model and actuator paths. This model is a valuable resource and is available for download by other researchers. The model, data, and simulation results presented here can be used by future researchers to benchmark other software platforms and software upgrades for these two platforms. PMID:24995410

  5. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model.

    PubMed

    Saul, Katherine R; Hu, Xiao; Goehler, Craig M; Vidt, Meghan E; Daly, Melissa; Velisar, Anca; Murray, Wendy M

    2015-01-01

    Several opensource or commercially available software platforms are widely used to develop dynamic simulations of movement. While computational approaches are conceptually similar across platforms, technical differences in implementation may influence output. We present a new upper limb dynamic model as a tool to evaluate potential differences in predictive behavior between platforms. We evaluated to what extent differences in technical implementations in popular simulation software environments result in differences in kinematic predictions for single and multijoint movements using EMG- and optimization-based approaches for deriving control signals. We illustrate the benchmarking comparison using SIMM-Dynamics Pipeline-SD/Fast and OpenSim platforms. The most substantial divergence results from differences in muscle model and actuator paths. This model is a valuable resource and is available for download by other researchers. The model, data, and simulation results presented here can be used by future researchers to benchmark other software platforms and software upgrades for these two platforms.

  6. Predicted effect of dynamic load on pitting fatigue life for low-contact-ratio spur gears

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    1986-01-01

    How dynamic load affects the surface pitting fatigue life of external spur gears was predicted by using the NASA computer program TELSGE. Parametric studies were performed over a range of various gear parameters modeling low-contact-ratio involute spur gears. In general, gear life predictions based on dynamic loads differed significantly from those based on static loads, with the predictions being strongly influenced by the maximum dynamic load during contact. Gear mesh operating speed strongly affected predicted dynamic load and life. Meshes operating at a resonant speed or one-half the resonant speed had significantly shorter lives. Dynamic life factors for gear surface pitting fatigue were developed on the basis of the parametric studies. In general, meshes with higher contact ratios had higher dynamic life factors than meshes with lower contact ratios. A design chart was developed for hand calculations of dynamic life factors.

  7. Predicting critical transitions in dynamical systems from time series using nonstationary probability density modeling.

    PubMed

    Kwasniok, Frank

    2013-11-01

    A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.

  8. Occupant-vehicle dynamics and the role of the internal model

    NASA Astrophysics Data System (ADS)

    Cole, David J.

    2018-05-01

    With the increasing need to reduce time and cost of vehicle development there is increasing advantage in simulating mathematically the dynamic interaction of a vehicle and its occupant. The larger design space arising from the introduction of automated vehicles further increases the potential advantage. The aim of the paper is to outline the role of the internal model hypothesis in understanding and modelling occupant-vehicle dynamics, specifically the dynamics associated with direction and speed control of the vehicle. The internal model is the driver's or passenger's understanding of the vehicle dynamics and is thought to be employed in the perception, cognition and action processes of the brain. The internal model aids the estimation of the states of the vehicle from noisy sensory measurements. It can also be used to optimise cognitive control action by predicting the consequence of the action; thus model predictive control (MPC) theory provides a foundation for modelling the cognition process. The stretch reflex of the neuromuscular system also makes use of the prediction of the internal model. Extensions to the MPC approach are described which account for: interaction with an automated vehicle; robust control; intermittent control; and cognitive workload. Further work to extend understanding of occupant-vehicle dynamic interaction is outlined. This paper is based on a keynote presentation given by the author to the 13th International Symposium on Advanced Vehicle Control (AVEC) conference held in Munich, September 2016.

  9. Predictability and Coupled Dynamics of MJO During DYNAMO

    DTIC Science & Technology

    2013-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Predictability and Coupled Dynamics of MJO During DYNAMO ... DYNAMO time period. APPROACH We are working as a team to study MJO dynamics and predictability using several models as team members of the ONR DRI...associated with the DYNAMO experiment. This is a fundamentally collaborative proposal that involves close collaboration with Dr. Hyodae Seo of the

  10. Prediction uncertainty and optimal experimental design for learning dynamical systems.

    PubMed

    Letham, Benjamin; Letham, Portia A; Rudin, Cynthia; Browne, Edward P

    2016-06-01

    Dynamical systems are frequently used to model biological systems. When these models are fit to data, it is necessary to ascertain the uncertainty in the model fit. Here, we present prediction deviation, a metric of uncertainty that determines the extent to which observed data have constrained the model's predictions. This is accomplished by solving an optimization problem that searches for a pair of models that each provides a good fit for the observed data, yet has maximally different predictions. We develop a method for estimating a priori the impact that additional experiments would have on the prediction deviation, allowing the experimenter to design a set of experiments that would most reduce uncertainty. We use prediction deviation to assess uncertainty in a model of interferon-alpha inhibition of viral infection, and to select a sequence of experiments that reduces this uncertainty. Finally, we prove a theoretical result which shows that prediction deviation provides bounds on the trajectories of the underlying true model. These results show that prediction deviation is a meaningful metric of uncertainty that can be used for optimal experimental design.

  11. [Transmission dynamic model for echinococcosis granulosus: establishment and application].

    PubMed

    Yang, Shi-Jie; Wu, Wei-Ping

    2009-06-01

    A dynamic model of disease can be used to quantitatively describe the pattern and characteristics of disease transmission, predict the disease status and evaluate the efficacy of control strategy. This review summarizes the basic transmission dynamic models of echinococcosis granulosus and their application.

  12. Nonlinear dynamics of the magnetosphere and space weather

    NASA Technical Reports Server (NTRS)

    Sharma, A. Surjalal

    1996-01-01

    The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.

  13. Information-theoretic model selection for optimal prediction of stochastic dynamical systems from data

    NASA Astrophysics Data System (ADS)

    Darmon, David

    2018-03-01

    In the absence of mechanistic or phenomenological models of real-world systems, data-driven models become necessary. The discovery of various embedding theorems in the 1980s and 1990s motivated a powerful set of tools for analyzing deterministic dynamical systems via delay-coordinate embeddings of observations of their component states. However, in many branches of science, the condition of operational determinism is not satisfied, and stochastic models must be brought to bear. For such stochastic models, the tool set developed for delay-coordinate embedding is no longer appropriate, and a new toolkit must be developed. We present an information-theoretic criterion, the negative log-predictive likelihood, for selecting the embedding dimension for a predictively optimal data-driven model of a stochastic dynamical system. We develop a nonparametric estimator for the negative log-predictive likelihood and compare its performance to a recently proposed criterion based on active information storage. Finally, we show how the output of the model selection procedure can be used to compare candidate predictors for a stochastic system to an information-theoretic lower bound.

  14. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. Part 2: Theoretical development of a dynamic model and application to rain fade durations and tolerable control delays for fade countermeasures

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1987-01-01

    A dynamic rain attenuation prediction model is developed for use in obtaining the temporal characteristics, on time scales of minutes or hours, of satellite communication link availability. Analagous to the associated static rain attenuation model, which yields yearly attenuation predictions, this dynamic model is applicable at any location in the world that is characterized by the static rain attenuation statistics peculiar to the geometry of the satellite link and the rain statistics of the location. Such statistics are calculated by employing the formalism of Part I of this report. In fact, the dynamic model presented here is an extension of the static model and reduces to the static model in the appropriate limit. By assuming that rain attenuation is dynamically described by a first-order stochastic differential equation in time and that this random attenuation process is a Markov process, an expression for the associated transition probability is obtained by solving the related forward Kolmogorov equation. This transition probability is then used to obtain such temporal rain attenuation statistics as attenuation durations and allowable attenuation margins versus control system delay.

  15. Dissertation Defense Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  16. Dissertation Defense: Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  17. Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.

    2013-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. To date, the author is the only person to look at the uncertainty in the entire computational domain. For the flow regime being analyzed (turbulent, threedimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  18. Can theory predict the process of suicide on entry to prison? Predicting dynamic risk factors for suicide ideation in a high-risk prison population.

    PubMed

    Slade, Karen; Edelman, Robert

    2014-01-01

    Each year approximately 110,000 people are imprisoned in England and Wales and new prisoners remain one of the highest risk groups for suicide across the world. The reduction of suicide in prisoners remains difficult as assessments and interventions tend to rely on static risk factors with few theoretical or integrated models yet evaluated. To identify the dynamic factors that contribute to suicide ideation in this population based on Williams and Pollock's (2001) Cry of Pain (CoP) model. New arrivals (N = 198) into prison were asked to complete measures derived from the CoP model plus clinical and prison-specific factors. It was hypothesized that the factors of the CoP model would be predictive of suicide ideation. Support was provided for the defeat and entrapment aspects of the CoP model with previous self-harm, repeated times in prison, and suicide-permissive cognitions also key in predicting suicide ideation for prisoners on entry to prison. An integrated and dynamic model was developed that has utility in predicting suicide in early-stage prisoners. Implications for both theory and practice are discussed along with recommendations for future research.

  19. Development of a dynamic computational model of social cognitive theory.

    PubMed

    Riley, William T; Martin, Cesar A; Rivera, Daniel E; Hekler, Eric B; Adams, Marc A; Buman, Matthew P; Pavel, Misha; King, Abby C

    2016-12-01

    Social cognitive theory (SCT) is among the most influential theories of behavior change and has been used as the conceptual basis of health behavior interventions for smoking cessation, weight management, and other health behaviors. SCT and other behavior theories were developed primarily to explain differences between individuals, but explanatory theories of within-person behavioral variability are increasingly needed as new technologies allow for intensive longitudinal measures and interventions adapted from these inputs. These within-person explanatory theoretical applications can be modeled as dynamical systems. SCT constructs, such as reciprocal determinism, are inherently dynamical in nature, but SCT has not been modeled as a dynamical system. This paper describes the development of a dynamical system model of SCT using fluid analogies and control systems principles drawn from engineering. Simulations of this model were performed to assess if the model performed as predicted based on theory and empirical studies of SCT. This initial model generates precise and testable quantitative predictions for future intensive longitudinal research. Dynamic modeling approaches provide a rigorous method for advancing health behavior theory development and refinement and for guiding the development of more potent and efficient interventions.

  20. Predictions of Cockpit Simulator Experimental Outcome Using System Models

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1984-01-01

    This study involved predicting the outcome of a cockpit simulator experiment where pilots used cockpit displays of traffic information (CDTI) to establish and maintain in-trail spacing behind a lead aircraft during approach. The experiments were run on the NASA Ames Research Center multicab cockpit simulator facility. Prior to the experiments, a mathematical model of the pilot/aircraft/CDTI flight system was developed which included relative in-trail and vertical dynamics between aircraft in the approach string. This model was used to construct a digital simulation of the string dynamics including response to initial position errors. The model was then used to predict the outcome of the in-trail following cockpit simulator experiments. Outcome included performance and sensitivity to different separation criteria. The experimental results were then used to evaluate the model and its prediction accuracy. Lessons learned in this modeling and prediction study are noted.

  1. A computational cognitive model of self-efficacy and daily adherence in mHealth.

    PubMed

    Pirolli, Peter

    2016-12-01

    Mobile health (mHealth) applications provide an excellent opportunity for collecting rich, fine-grained data necessary for understanding and predicting day-to-day health behavior change dynamics. A computational predictive model (ACT-R-DStress) is presented and fit to individual daily adherence in 28-day mHealth exercise programs. The ACT-R-DStress model refines the psychological construct of self-efficacy. To explain and predict the dynamics of self-efficacy and predict individual performance of targeted behaviors, the self-efficacy construct is implemented as a theory-based neurocognitive simulation of the interaction of behavioral goals, memories of past experiences, and behavioral performance.

  2. Modeling pilot interaction with automated digital avionics systems: Guidance and control algorithms for contour and nap-of-the-Earth flight

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.

  3. The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia

    NASA Astrophysics Data System (ADS)

    Pokhrel, Prafulla; Wang, Q. J.; Robertson, David E.

    2013-10-01

    Seasonal streamflow forecasts are valuable for planning and allocation of water resources. In Australia, the Bureau of Meteorology employs a statistical method to forecast seasonal streamflows. The method uses predictors that are related to catchment wetness at the start of a forecast period and to climate during the forecast period. For the latter, a predictor is selected among a number of lagged climate indices as candidates to give the "best" model in terms of model performance in cross validation. This study investigates two strategies for further improvement in seasonal streamflow forecasts. The first is to combine, through Bayesian model averaging, multiple candidate models with different lagged climate indices as predictors, to take advantage of different predictive strengths of the multiple models. The second strategy is to introduce additional candidate models, using rainfall and sea surface temperature predictions from a global climate model as predictors. This is to take advantage of the direct simulations of various dynamic processes. The results show that combining forecasts from multiple statistical models generally yields more skillful forecasts than using only the best model and appears to moderate the worst forecast errors. The use of rainfall predictions from the dynamical climate model marginally improves the streamflow forecasts when viewed over all the study catchments and seasons, but the use of sea surface temperature predictions provide little additional benefit.

  4. Comparisons with observational and experimental manipulation data imply needed conceptual changes to ESM land models

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Zhu, Q.; Tang, J.

    2016-12-01

    The land models integrated in Earth System Models (ESMs) are critical components necessary to predict soil carbon dynamics and carbon-climate interactions under a changing climate. Yet, these models have been shown to have poor predictive power when compared with observations and ignore many processes known to the observational communities to influence above and belowground carbon dynamics. Here I will report work to tightly couple observations and perturbation experiment results with development of an ESM land model (ALM), focusing on nutrient constraints of the terrestrial C cycle. Using high-frequency flux tower observations and short-term nitrogen and phosphorus perturbation experiments, we show that conceptualizing plant and soil microbe interactions as a multi-substrate, multi-competitor kinetic network allows for accurate prediction of nutrient acquisition. Next, using multiple-year FACE and fertilization response observations at many forest sites, we show that capturing the observed responses requires representation of dynamic allocation to respond to the resulting stresses. Integrating the mechanisms implied by these observations into ALM leads to much lower observational bias and to very different predictions of long-term soil and aboveground C stocks and dynamics, and therefore C-climate feedbacks. I describe how these types of observational constraints are being integrated into the open-source International Land Model Benchmarking (ILAMB) package, and end with the argument that consolidating as many observations of all sorts for easy use by modelers is an important goal to improve C-climate feedback predictions.

  5. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  6. Bayesian dynamic modeling of time series of dengue disease case counts

    PubMed Central

    López-Quílez, Antonio; Torres-Prieto, Alexander

    2017-01-01

    The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model’s short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health. PMID:28671941

  7. Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments

    PubMed Central

    Seaton, Daniel D; Krishnan, J

    2016-01-01

    Cell cycle progression is carefully coordinated with a cell’s intra- and extracellular environment. While some pathways have been identified that communicate information from the environment to the cell cycle, a systematic understanding of how this information is dynamically processed is lacking. We address this by performing dynamic sensitivity analysis of three mathematical models of the cell cycle in Saccharomyces cerevisiae. We demonstrate that these models make broadly consistent qualitative predictions about cell cycle progression under dynamically changing conditions. For example, it is shown that the models predict anticorrelated changes in cell size and cell cycle duration under different environments independently of the growth rate. This prediction is validated by comparison to available literature data. Other consistent patterns emerge, such as widespread nonmonotonic changes in cell size down generations in response to parameter changes. We extend our analysis by investigating glucose signalling to the cell cycle, showing that known regulation of Cln3 translation and Cln1,2 transcription by glucose is sufficient to explain the experimentally observed changes in cell cycle dynamics at different glucose concentrations. Together, these results provide a framework for understanding the complex responses the cell cycle is capable of producing in response to dynamic environments. PMID:26741131

  8. Single-trial dynamics of motor cortex and their applications to brain-machine interfaces

    PubMed Central

    Kao, Jonathan C.; Nuyujukian, Paul; Ryu, Stephen I.; Churchland, Mark M.; Cunningham, John P.; Shenoy, Krishna V.

    2015-01-01

    Increasing evidence suggests that neural population responses have their own internal drive, or dynamics, that describe how the neural population evolves through time. An important prediction of neural dynamical models is that previously observed neural activity is informative of noisy yet-to-be-observed activity on single-trials, and may thus have a denoising effect. To investigate this prediction, we built and characterized dynamical models of single-trial motor cortical activity. We find these models capture salient dynamical features of the neural population and are informative of future neural activity on single trials. To assess how neural dynamics may beneficially denoise single-trial neural activity, we incorporate neural dynamics into a brain–machine interface (BMI). In online experiments, we find that a neural dynamical BMI achieves substantially higher performance than its non-dynamical counterpart. These results provide evidence that neural dynamics beneficially inform the temporal evolution of neural activity on single trials and may directly impact the performance of BMIs. PMID:26220660

  9. Seasonal Prediction of Regional Surface Air Temperature and First-flowering Date in South Korea using Dynamical Downscaling

    NASA Astrophysics Data System (ADS)

    Ahn, J. B.; Hur, J.

    2015-12-01

    The seasonal prediction of both the surface air temperature and the first-flowering date (FFD) over South Korea are produced using dynamical downscaling (Hur and Ahn, 2015). Dynamical downscaling is performed using Weather Research and Forecast (WRF) v3.0 with the lateral forcing from hourly outputs of Pusan National University (PNU) coupled general circulation model (CGCM) v1.1. Gridded surface air temperature data with high spatial (3km) and temporal (daily) resolution are obtained using the physically-based dynamical models. To reduce systematic bias, simple statistical correction method is then applied to the model output. The FFDs of cherry, peach and pear in South Korea are predicted for the decade of 1999-2008 by applying the corrected daily temperature predictions to the phenological thermal-time model. The WRF v3.0 results reflect the detailed topographical effect, despite having cold and warm biases for warm and cold seasons, respectively. After applying the correction, the mean temperature for early spring (February to April) well represents the general pattern of observation, while preserving the advantages of dynamical downscaling. The FFD predictabilities for the three species of trees are evaluated in terms of qualitative, quantitative and categorical estimations. Although FFDs derived from the corrected WRF results well predict the spatial distribution and the variation of observation, the prediction performance has no statistical significance or appropriate predictability. The approach used in the study may be helpful in obtaining detailed and useful information about FFD and regional temperature by accounting for physically-based atmospheric dynamics, although the seasonal predictability of flowering phenology is not high enough. Acknowledgements This work was carried out with the support of the Rural Development Administration Cooperative Research Program for Agriculture Science and Technology Development under Grant Project No. PJ009953 and Project No. PJ009353, Republic of Korea. Reference Hur, J., J.-B. Ahn, 2015. Seasonal Prediction of Regional Surface Air Temperature and First-flowering Date over South Korea, Int. J. Climatol., DOI: 10.1002/joc.4323.

  10. Freezing in stripe states for kinetic Ising models: a comparative study of three dynamics

    NASA Astrophysics Data System (ADS)

    Godrèche, Claude; Pleimling, Michel

    2018-04-01

    We present a comparative study of the fate of an Ising ferromagnet on the square lattice with periodic boundary conditions evolving under three different zero-temperature dynamics. The first one is Glauber dynamics, the two other dynamics correspond to two limits of the directed Ising model, defined by rules that break the full symmetry of the former, yet sharing the same Boltzmann-Gibbs distribution at stationarity. In one of these limits the directed Ising model is reversible, in the other one it is irreversible. For the kinetic Ising-Glauber model, several recent studies have demonstrated the role of critical percolation to predict the probabilities for the system to reach the ground state or to fall in a metastable state. We investigate to what extent the predictions coming from critical percolation still apply to the two other dynamics.

  11. Two-Speed Gearbox Dynamic Simulation Predictions and Test Validation

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; DeSmidt, Hans; Smith, Edward C.; Bauman, Steven W.

    2010-01-01

    Dynamic simulations and experimental validation tests were performed on a two-stage, two-speed gearbox as part of the drive system research activities of the NASA Fundamental Aeronautics Subsonics Rotary Wing Project. The gearbox was driven by two electromagnetic motors and had two electromagnetic, multi-disk clutches to control output speed. A dynamic model of the system was created which included a direct current electric motor with proportional-integral-derivative (PID) speed control, a two-speed gearbox with dual electromagnetically actuated clutches, and an eddy current dynamometer. A six degree-of-freedom model of the gearbox accounted for the system torsional dynamics and included gear, clutch, shaft, and load inertias as well as shaft flexibilities and a dry clutch stick-slip friction model. Experimental validation tests were performed on the gearbox in the NASA Glenn gear noise test facility. Gearbox output speed and torque as well as drive motor speed and current were compared to those from the analytical predictions. The experiments correlate very well with the predictions, thus validating the dynamic simulation methodologies.

  12. A coarse wood dynamics model for the Western Cascades.

    Treesearch

    K. Mellen; A. Ager

    2002-01-01

    The Coarse Wood Dynamics Model (CWDM) analyzes the dynamics (fall, fragmentation, and decomposition) of Douglas-fir (Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla) snags and down logs in forested ecosystems of the western Cascades of Oregon and Washington. The model predicts snag fall, height loss and decay,...

  13. Model-Based Prognostics of Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil; Bregon, Anibal

    2015-01-01

    Model-based prognostics has become a popular approach to solving the prognostics problem. However, almost all work has focused on prognostics of systems with continuous dynamics. In this paper, we extend the model-based prognostics framework to hybrid systems models that combine both continuous and discrete dynamics. In general, most systems are hybrid in nature, including those that combine physical processes with software. We generalize the model-based prognostics formulation to hybrid systems, and describe the challenges involved. We present a general approach for modeling hybrid systems, and overview methods for solving estimation and prediction in hybrid systems. As a case study, we consider the problem of conflict (i.e., loss of separation) prediction in the National Airspace System, in which the aircraft models are hybrid dynamical systems.

  14. A quantitative model of honey bee colony population dynamics.

    PubMed

    Khoury, David S; Myerscough, Mary R; Barron, Andrew B

    2011-04-18

    Since 2006 the rate of honey bee colony failure has increased significantly. As an aid to testing hypotheses for the causes of colony failure we have developed a compartment model of honey bee colony population dynamics to explore the impact of different death rates of forager bees on colony growth and development. The model predicts a critical threshold forager death rate beneath which colonies regulate a stable population size. If death rates are sustained higher than this threshold rapid population decline is predicted and colony failure is inevitable. The model also predicts that high forager death rates draw hive bees into the foraging population at much younger ages than normal, which acts to accelerate colony failure. The model suggests that colony failure can be understood in terms of observed principles of honey bee population dynamics, and provides a theoretical framework for experimental investigation of the problem.

  15. Prediction of Flutter Boundary Using Flutter Margin for The Discrete-Time System

    NASA Astrophysics Data System (ADS)

    Dwi Saputra, Angga; Wibawa Purabaya, R.

    2018-04-01

    Flutter testing in a wind tunnel is generally conducted at subcritical speeds to avoid damages. Hence, The flutter speed has to be predicted from the behavior some of its stability criteria estimated against the dynamic pressure or flight speed. Therefore, it is quite important for a reliable flutter prediction method to estimates flutter boundary. This paper summarizes the flutter testing of a wing cantilever model in a wind tunnel. The model has two degree of freedom; they are bending and torsion modes. The flutter test was conducted in a subsonic wind tunnel. The dynamic data responses was measured by two accelerometers that were mounted on leading edge and center of wing tip. The measurement was repeated while the wind speed increased. The dynamic responses were used to determine the parameter flutter margin for the discrete-time system. The flutter boundary of the model was estimated using extrapolation of the parameter flutter margin against the dynamic pressure. The parameter flutter margin for the discrete-time system has a better performance for flutter prediction than the modal parameters. A model with two degree freedom and experiencing classical flutter, the parameter flutter margin for the discrete-time system gives a satisfying result in prediction of flutter boundary on subsonic wind tunnel test.

  16. Dynamic divisive normalization predicts time-varying value coding in decision-related circuits.

    PubMed

    Louie, Kenway; LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W

    2014-11-26

    Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. Copyright © 2014 the authors 0270-6474/14/3416046-12$15.00/0.

  17. Review and evaluation of recent developments in melic inlet dynamic flow distortion prediction and computer program documentation and user's manual estimating maximum instantaneous inlet flow distortion from steady-state total pressure measurements with full, limited, or no dynamic data

    NASA Technical Reports Server (NTRS)

    Schweikhard, W. G.; Dennon, S. R.

    1986-01-01

    A review of the Melick method of inlet flow dynamic distortion prediction by statistical means is provided. These developments include the general Melick approach with full dynamic measurements, a limited dynamic measurement approach, and a turbulence modelling approach which requires no dynamic rms pressure fluctuation measurements. These modifications are evaluated by comparing predicted and measured peak instantaneous distortion levels from provisional inlet data sets. A nonlinear mean-line following vortex model is proposed and evaluated as a potential criterion for improving the peak instantaneous distortion map generated from the conventional linear vortex of the Melick method. The model is simplified to a series of linear vortex segments which lay along the mean line. Maps generated with this new approach are compared with conventionally generated maps, as well as measured peak instantaneous maps. Inlet data sets include subsonic, transonic, and supersonic inlets under various flight conditions.

  18. Predictability of weather and climate in a coupled ocean-atmosphere model: A dynamical systems approach. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nese, Jon M.

    1989-01-01

    A dynamical systems approach is used to quantify the instantaneous and time-averaged predictability of a low-order moist general circulation model. Specifically, the effects on predictability of incorporating an active ocean circulation, implementing annual solar forcing, and asynchronously coupling the ocean and atmosphere are evaluated. The predictability and structure of the model attractors is compared using the Lyapunov exponents, the local divergence rates, and the correlation, fractal, and Lyapunov dimensions. The Lyapunov exponents measure the average rate of growth of small perturbations on an attractor, while the local divergence rates quantify phase-spatial variations of predictability. These local rates are exploited to efficiently identify and distinguish subtle differences in predictability among attractors. In addition, the predictability of monthly averaged and yearly averaged states is investigated by using attractor reconstruction techniques.

  19. Effects of the infectious period distribution on predicted transitions in childhood disease dynamics

    PubMed Central

    Krylova, Olga; Earn, David J. D.

    2013-01-01

    The population dynamics of infectious diseases occasionally undergo rapid qualitative changes, such as transitions from annual to biennial cycles or to irregular dynamics. Previous work, based on the standard seasonally forced ‘susceptible–exposed–infectious–removed’ (SEIR) model has found that transitions in the dynamics of many childhood diseases result from bifurcations induced by slow changes in birth and vaccination rates. However, the standard SEIR formulation assumes that the stage durations (latent and infectious periods) are exponentially distributed, whereas real distributions are narrower and centred around the mean. Much recent work has indicated that realistically distributed stage durations strongly affect the dynamical structure of seasonally forced epidemic models. We investigate whether inferences drawn from previous analyses of transitions in patterns of measles dynamics are robust to the shapes of the stage duration distributions. As an illustrative example, we analyse measles dynamics in New York City from 1928 to 1972. We find that with a fixed mean infectious period in the susceptible–infectious–removed (SIR) model, the dynamical structure and predicted transitions vary substantially as a function of the shape of the infectious period distribution. By contrast, with fixed mean latent and infectious periods in the SEIR model, the shapes of the stage duration distributions have a less dramatic effect on model dynamical structure and predicted transitions. All these results can be understood more easily by considering the distribution of the disease generation time as opposed to the distributions of individual disease stages. Numerical bifurcation analysis reveals that for a given mean generation time the dynamics of the SIR and SEIR models for measles are nearly equivalent and are insensitive to the shapes of the disease stage distributions. PMID:23676892

  20. Effects of the infectious period distribution on predicted transitions in childhood disease dynamics.

    PubMed

    Krylova, Olga; Earn, David J D

    2013-07-06

    The population dynamics of infectious diseases occasionally undergo rapid qualitative changes, such as transitions from annual to biennial cycles or to irregular dynamics. Previous work, based on the standard seasonally forced 'susceptible-exposed-infectious-removed' (SEIR) model has found that transitions in the dynamics of many childhood diseases result from bifurcations induced by slow changes in birth and vaccination rates. However, the standard SEIR formulation assumes that the stage durations (latent and infectious periods) are exponentially distributed, whereas real distributions are narrower and centred around the mean. Much recent work has indicated that realistically distributed stage durations strongly affect the dynamical structure of seasonally forced epidemic models. We investigate whether inferences drawn from previous analyses of transitions in patterns of measles dynamics are robust to the shapes of the stage duration distributions. As an illustrative example, we analyse measles dynamics in New York City from 1928 to 1972. We find that with a fixed mean infectious period in the susceptible-infectious-removed (SIR) model, the dynamical structure and predicted transitions vary substantially as a function of the shape of the infectious period distribution. By contrast, with fixed mean latent and infectious periods in the SEIR model, the shapes of the stage duration distributions have a less dramatic effect on model dynamical structure and predicted transitions. All these results can be understood more easily by considering the distribution of the disease generation time as opposed to the distributions of individual disease stages. Numerical bifurcation analysis reveals that for a given mean generation time the dynamics of the SIR and SEIR models for measles are nearly equivalent and are insensitive to the shapes of the disease stage distributions.

  1. RELATING ACCUMULATOR MODEL PARAMETERS AND NEURAL DYNAMICS

    PubMed Central

    Purcell, Braden A.; Palmeri, Thomas J.

    2016-01-01

    Accumulator models explain decision-making as an accumulation of evidence to a response threshold. Specific model parameters are associated with specific model mechanisms, such as the time when accumulation begins, the average rate of evidence accumulation, and the threshold. These mechanisms determine both the within-trial dynamics of evidence accumulation and the predicted behavior. Cognitive modelers usually infer what mechanisms vary during decision-making by seeing what parameters vary when a model is fitted to observed behavior. The recent identification of neural activity with evidence accumulation suggests that it may be possible to directly infer what mechanisms vary from an analysis of how neural dynamics vary. However, evidence accumulation is often noisy, and noise complicates the relationship between accumulator dynamics and the underlying mechanisms leading to those dynamics. To understand what kinds of inferences can be made about decision-making mechanisms based on measures of neural dynamics, we measured simulated accumulator model dynamics while systematically varying model parameters. In some cases, decision- making mechanisms can be directly inferred from dynamics, allowing us to distinguish between models that make identical behavioral predictions. In other cases, however, different parameterized mechanisms produce surprisingly similar dynamics, limiting the inferences that can be made based on measuring dynamics alone. Analyzing neural dynamics can provide a powerful tool to resolve model mimicry at the behavioral level, but we caution against drawing inferences based solely on neural analyses. Instead, simultaneous modeling of behavior and neural dynamics provides the most powerful approach to understand decision-making and likely other aspects of cognition and perception. PMID:28392584

  2. Testing an idealized dynamic cascade model of the development of serious violence in adolescence.

    PubMed

    Dodge, Kenneth A; Greenberg, Mark T; Malone, Patrick S

    2008-01-01

    A dynamic cascade model of development of serious adolescent violence was proposed and tested through prospective inquiry with 754 children (50% male; 43% African American) from 27 schools at 4 geographic sites followed annually from kindergarten through Grade 11 (ages 5-18). Self, parent, teacher, peer, observer, and administrative reports provided data. Partial least squares analyses revealed a cascade of prediction and mediation: An early social context of disadvantage predicts harsh-inconsistent parenting, which predicts social and cognitive deficits, which predicts conduct problem behavior, which predicts elementary school social and academic failure, which predicts parental withdrawal from supervision and monitoring, which predicts deviant peer associations, which ultimately predicts adolescent violence. Findings suggest targets for in-depth inquiry and preventive intervention.

  3. Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model

    NASA Astrophysics Data System (ADS)

    Afraimovich, Valentin; Tristan, Irma; Huerta, Ramon; Rabinovich, Mikhail I.

    2008-12-01

    Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently complex model with the necessary predicting power requires solutions that are structurally stable. Small variations of the system parameters should not qualitatively perturb its solutions. When one is interested in just asymptotic results of evolution (as time goes to infinity), then the problem has a straightforward mathematical image involving simple attractors (fixed points or limit cycles) of a dynamical system. However, for an accurate prediction of evolution, the analysis of transient solutions is critical. In this paper, in the framework of the traditional Lotka-Volterra model (generalized in some sense), we show that the transient solution representing multispecies sequential competition can be reproducible and predictable with high probability.

  4. Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model.

    PubMed

    Afraimovich, Valentin; Tristan, Irma; Huerta, Ramon; Rabinovich, Mikhail I

    2008-12-01

    Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently complex model with the necessary predicting power requires solutions that are structurally stable. Small variations of the system parameters should not qualitatively perturb its solutions. When one is interested in just asymptotic results of evolution (as time goes to infinity), then the problem has a straightforward mathematical image involving simple attractors (fixed points or limit cycles) of a dynamical system. However, for an accurate prediction of evolution, the analysis of transient solutions is critical. In this paper, in the framework of the traditional Lotka-Volterra model (generalized in some sense), we show that the transient solution representing multispecies sequential competition can be reproducible and predictable with high probability.

  5. Predicting the effects of unmodeled dynamics on an aircraft flight control system design using eigenspace assignment

    NASA Technical Reports Server (NTRS)

    Johnson, Eric N.; Davidson, John B.; Murphy, Patrick C.

    1994-01-01

    When using eigenspace assignment to design an aircraft flight control system, one must first develop a model of the plant. Certain questions arise when creating this model as to which dynamics of the plant need to be included in the model and which dynamics can be left out or approximated. The answers to these questions are important because a poor choice can lead to closed-loop dynamics that are unpredicted by the design model. To alleviate this problem, a method has been developed for predicting the effect of not including certain dynamics in the design model on the final closed-loop eigenspace. This development provides insight as to which characteristics of unmodeled dynamics will ultimately affect the closed-loop rigid-body dynamics. What results from this insight is a guide for eigenstructure control law designers to aid them in determining which dynamics need or do not need to be included and a new way to include these dynamics in the flight control system design model to achieve a required accuracy in the closed-loop rigid-body dynamics. The method is illustrated for a lateral-directional flight control system design using eigenspace assignment for the NASA High Alpha Research Vehicle (HARV).

  6. Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases.

    PubMed

    Peterson, A Townsend; Martínez-Campos, Carmen; Nakazawa, Yoshinori; Martínez-Meyer, Enrique

    2005-09-01

    Numerous human diseases-malaria, dengue, yellow fever and leishmaniasis, to name a few-are transmitted by insect vectors with brief life cycles and biting activity that varies in both space and time. Although the general geographic distributions of these epidemiologically important species are known, the spatiotemporal variation in their emergence and activity remains poorly understood. We used ecological niche modeling via a genetic algorithm to produce time-specific predictive models of monthly distributions of Aedes aegypti in Mexico in 1995. Significant predictions of monthly mosquito activity and distributions indicate that predicting spatiotemporal dynamics of disease vector species is feasible; significant coincidence with human cases of dengue indicate that these dynamics probably translate directly into transmission of dengue virus to humans. This approach provides new potential for optimizing use of resources for disease prevention and remediation via automated forecasting of disease transmission risk.

  7. Unified model of brain tissue microstructure dynamically binds diffusion and osmosis with extracellular space geometry

    NASA Astrophysics Data System (ADS)

    Yousefnezhad, Mohsen; Fotouhi, Morteza; Vejdani, Kaveh; Kamali-Zare, Padideh

    2016-09-01

    We present a universal model of brain tissue microstructure that dynamically links osmosis and diffusion with geometrical parameters of brain extracellular space (ECS). Our model robustly describes and predicts the nonlinear time dependency of tortuosity (λ =√{D /D* } ) changes with very high precision in various media with uniform and nonuniform osmolarity distribution, as demonstrated by previously published experimental data (D = free diffusion coefficient, D* = effective diffusion coefficient). To construct this model, we first developed a multiscale technique for computationally effective modeling of osmolarity in the brain tissue. Osmolarity differences across cell membranes lead to changes in the ECS dynamics. The evolution of the underlying dynamics is then captured by a level set method. Subsequently, using a homogenization technique, we derived a coarse-grained model with parameters that are explicitly related to the geometry of cells and their associated ECS. Our modeling results in very accurate analytical approximation of tortuosity based on time, space, osmolarity differences across cell membranes, and water permeability of cell membranes. Our model provides a unique platform for studying ECS dynamics not only in physiologic conditions such as sleep-wake cycles and aging but also in pathologic conditions such as stroke, seizure, and neoplasia, as well as in predictive pharmacokinetic modeling such as predicting medication biodistribution and efficacy and novel biomolecule development and testing.

  8. Modeling and control of magnetorheological fluid dampers using neural networks

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Liao, W. H.

    2005-02-01

    Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.

  9. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming.

    PubMed

    Cotto, Olivier; Wessely, Johannes; Georges, Damien; Klonner, Günther; Schmid, Max; Dullinger, Stefan; Thuiller, Wilfried; Guillaume, Frédéric

    2017-05-05

    Withstanding extinction while facing rapid climate change depends on a species' ability to track its ecological niche or to evolve a new one. Current methods that predict climate-driven species' range shifts use ecological modelling without eco-evolutionary dynamics. Here we present an eco-evolutionary forecasting framework that combines niche modelling with individual-based demographic and genetic simulations. Applying our approach to four endemic perennial plant species of the Austrian Alps, we show that accounting for eco-evolutionary dynamics when predicting species' responses to climate change is crucial. Perennial species persist in unsuitable habitats longer than predicted by niche modelling, causing delayed range losses; however, their evolutionary responses are constrained because long-lived adults produce increasingly maladapted offspring. Decreasing population size due to maladaptation occurs faster than the contraction of the species range, especially for the most abundant species. Monitoring of species' local abundance rather than their range may likely better inform on species' extinction risks under climate change.

  10. Estimating long-wavelength dynamic topographic change of passive continental margins since the Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Müller, Dietmar; Hassan, Rakib; Gurnis, Michael; Flament, Nicolas; Williams, Simon

    2017-04-01

    The influence of mantle convection on dynamic topographic change along continental margins is difficult to unravel, because their stratigraphic record is dominated by tectonic subsidence caused by rifting. Yet, dynamic topography can potentially introduce significant depth anomalies along passive margins, influencing their water depth, sedimentary environments and geohistory. Here we follow a three-fold approach to estimate changes in dynamic topography along both continental interiors and passive margins based on a set of seven global mantle convection models. These models include different methodologies (forward and hybrid backward-forward methods), different plate reconstructions and alternative mantle rheologies. We demonstrate that a geodynamic forward model that includes adiabatic heating in addition to internal heating from radiogenic sources, and a mantle viscosity profile with a gradual increase in viscosity below the mantle transition zone, provides a greatly improved match to the spectral range of residual topography end-members as compared with previous models at very long wavelengths (spherical degrees 2-3). We combine global sea level estimates with predicted surface dynamic topography to evaluate the match between predicted continental flooding patterns and published paleo-coastlines by comparing predicted versus geologically reconstructed land fractions and spatial overlaps of flooded regions for individual continents since 140 Ma. Modelled versus geologically reconstructed land fractions match within 10% for most models, and the spatial overlaps of inundated regions are mostly between 85% and 100% for the Cenozoic, dropping to about 75-100% in the Cretaceous. We categorise the evolution of modelled dynamic topography in both continental interiors and along passive margins using cluster analysis to investigate how clusters of similar dynamic topography time series are distributed spatially. A subdivision of four clusters is found to best reveal end-members of dynamic topography evolution along passive margins and their hinterlands, differentiating topographic stability, long-term pronounced subsidence, initial stability over a dynamic high followed by moderate subsidence and regions that are relatively proximal to subduction zones with varied dynamic topography histories. Along passive continental margins the most commonly observed process is a gradual move from dynamic highs towards lows during the fragmentation of Pangea, reflecting that many passive margins now overly slabs sinking in the lower mantle. Our best-fit model results in up to 500 ±150 m of total dynamic subsidence of continental interiors while along passive margins the maximum predicted dynamic topographic change over 140 million years is about 350 ±150 m of subsidence. Models with plumes exhibit clusters of transient passive margin uplift of about 200 ±200m. The good overall match between predicted dynamic topography and geologically mapped paleo-coastlines makes a convincing case that mantle-driven topographic change is a critical component of relative sea level change, and one of the main driving forces generating the observed geometries and timings of large-scale shifts in paleo-coastlines.

  11. Basal glycogenolysis in mouse skeletal muscle: in vitro model predicts in vivo fluxes

    NASA Technical Reports Server (NTRS)

    Lambeth, Melissa J.; Kushmerick, Martin J.; Marcinek, David J.; Conley, Kevin E.

    2002-01-01

    A previously published mammalian kinetic model of skeletal muscle glycogenolysis, consisting of literature in vitro parameters, was modified by substituting mouse specific Vmax values. The model demonstrates that glycogen breakdown to lactate is under ATPase control. Our criteria to test whether in vitro parameters could reproduce in vivo dynamics was the ability of the model to fit phosphocreatine (PCr) and inorganic phosphate (Pi) dynamic NMR data from ischemic basal mouse hindlimbs and predict biochemically-assayed lactate concentrations. Fitting was accomplished by optimizing four parameters--the ATPase rate coefficient, fraction of activated glycogen phosphorylase, and the equilibrium constants of creatine kinase and adenylate kinase (due to the absence of pH in the model). The optimized parameter values were physiologically reasonable, the resultant model fit the [PCr] and [Pi] timecourses well, and the model predicted the final measured lactate concentration. This result demonstrates that additional features of in vivo enzyme binding are not necessary for quantitative description of glycogenolytic dynamics.

  12. A model for predicting aortic dynamic response to -G sub z impact acceleration.

    NASA Technical Reports Server (NTRS)

    Advani, S. H.; Tarnay, T. J.; Byars, E. F.; Love, J. S.

    1972-01-01

    A steady state dynamic response model for the radial motion of the aorta is developed from in vivo pressure-displacement and nerve stimulation experiments on canines. The model represented by a modified Van der Pol wave motion oscillator closely predicts steady state and perturbed response results. The applicability of the steady state canine aortic model to tailward acting impact forces is studied by means of the perturbed phase plane of the oscillator. The backflow through the aortic arch resulting from a specified acceleration-time profile is computed and an analysis for predicting the forced motion aortic response is presented.

  13. Application of dynamical systems theory to nonlinear aircraft dynamics

    NASA Technical Reports Server (NTRS)

    Culick, Fred E. C.; Jahnke, Craig C.

    1988-01-01

    Dynamical systems theory has been used to study nonlinear aircraft dynamics. A six degree of freedom model that neglects gravity has been analyzed. The aerodynamic model, supplied by NASA, is for a generic swept wing fighter and includes nonlinearities as functions of the angle of attack. A continuation method was used to calculate the steady states of the aircraft, and bifurcations of these steady states, as functions of the control deflections. Bifurcations were used to predict jump phenomena and the onset of periodic motion for roll coupling instabilities and high angle of attack maneuvers. The predictions were verified with numerical simulations.

  14. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions.

    PubMed

    Wang, Bin; Xiang, Baoqiang; Lee, June-Yi

    2013-02-19

    Monsoon rainfall and tropical storms (TSs) impose great impacts on society, yet their seasonal predictions are far from successful. The western Pacific Subtropical High (WPSH) is a prime circulation system affecting East Asian summer monsoon (EASM) and western North Pacific TS activities, but the sources of its variability and predictability have not been established. Here we show that the WPSH variation faithfully represents fluctuations of EASM strength (r = -0.92), the total TS days over the subtropical western North Pacific (r = -0.81), and the total number of TSs impacting East Asian coasts (r = -0.76) during 1979-2009. Our numerical experiment results establish that the WPSH variation is primarily controlled by central Pacific cooling/warming and a positive atmosphere-ocean feedback between the WPSH and the Indo-Pacific warm pool oceans. With a physically based empirical model and the state-of-the-art dynamical models, we demonstrate that the WPSH is highly predictable; this predictability creates a promising way for prediction of monsoon and TS. The predictions using the WPSH predictability not only yields substantially improved skills in prediction of the EASM rainfall, but also enables skillful prediction of the TS activities that the current dynamical models fail. Our findings reveal that positive WPSH-ocean interaction can provide a source of climate predictability and highlight the importance of subtropical dynamics in understanding monsoon and TS predictability.

  15. Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions

    PubMed Central

    Wang, Bin; Xiang, Baoqiang; Lee, June-Yi

    2013-01-01

    Monsoon rainfall and tropical storms (TSs) impose great impacts on society, yet their seasonal predictions are far from successful. The western Pacific Subtropical High (WPSH) is a prime circulation system affecting East Asian summer monsoon (EASM) and western North Pacific TS activities, but the sources of its variability and predictability have not been established. Here we show that the WPSH variation faithfully represents fluctuations of EASM strength (r = –0.92), the total TS days over the subtropical western North Pacific (r = –0.81), and the total number of TSs impacting East Asian coasts (r = –0.76) during 1979–2009. Our numerical experiment results establish that the WPSH variation is primarily controlled by central Pacific cooling/warming and a positive atmosphere-ocean feedback between the WPSH and the Indo-Pacific warm pool oceans. With a physically based empirical model and the state-of-the-art dynamical models, we demonstrate that the WPSH is highly predictable; this predictability creates a promising way for prediction of monsoon and TS. The predictions using the WPSH predictability not only yields substantially improved skills in prediction of the EASM rainfall, but also enables skillful prediction of the TS activities that the current dynamical models fail. Our findings reveal that positive WPSH–ocean interaction can provide a source of climate predictability and highlight the importance of subtropical dynamics in understanding monsoon and TS predictability. PMID:23341624

  16. A dynamic Monte Carlo model for predicting radiant exposure distribution in dental composites: model development and verifications

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Chu; Ferracane, Jack L.; Prahl, Scott A.

    2005-03-01

    Photo-cured dental composites are widely used in dental practices to restore teeth due to the esthetic appearance of the composites and the ability to cure in situ. However, their complex optical characteristics make it difficult to understand the light transport within the composites and to predict the depth of cure. Our previous work showed that the absorption and scattering coefficients of the composite changed after the composite was cured. The static Monte Carlo simulation showed that the penetration of radiant exposures differed significantly for cured and uncured optical properties. This means that a dynamic model is required for accurate prediction of radiant exposure in the composites. The purpose of this study was to develop and verify a dynamic Monte Carlo (DMC) model simulating light propagation in dental composites that have dynamic optical properties while photons are absorbed. The composite was divided into many small cubes, each of which had its own scattering and absorption coefficients. As light passed through the composite, the light was scattered and absorbed. The amount of light absorbed in each cube was calculated using Beer's Law and was used to determine the next optical properties in that cube. Finally, the predicted total reflectance and transmittance as well as the optical property during curing were verified numerically and experimentally. Our results showed that the model predicted values agreed with the theoretical values within 1% difference. The DMC model results are comparable with experimental results within 5% differences.

  17. Boolean Dynamic Modeling Approaches to Study Plant Gene Regulatory Networks: Integration, Validation, and Prediction.

    PubMed

    Velderraín, José Dávila; Martínez-García, Juan Carlos; Álvarez-Buylla, Elena R

    2017-01-01

    Mathematical models based on dynamical systems theory are well-suited tools for the integration of available molecular experimental data into coherent frameworks in order to propose hypotheses about the cooperative regulatory mechanisms driving developmental processes. Computational analysis of the proposed models using well-established methods enables testing the hypotheses by contrasting predictions with observations. Within such framework, Boolean gene regulatory network dynamical models have been extensively used in modeling plant development. Boolean models are simple and intuitively appealing, ideal tools for collaborative efforts between theorists and experimentalists. In this chapter we present protocols used in our group for the study of diverse plant developmental processes. We focus on conceptual clarity and practical implementation, providing directions to the corresponding technical literature.

  18. Muscle Synergies May Improve Optimization Prediction of Knee Contact Forces During Walking

    PubMed Central

    Walter, Jonathan P.; Kinney, Allison L.; Banks, Scott A.; D'Lima, Darryl D.; Besier, Thor F.; Lloyd, David G.; Fregly, Benjamin J.

    2014-01-01

    The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force predictions (0.61 < R2 < 0.90, 83 N < RMS error < 161 N) than did independent controls (-0.15 < R2 < 0.79, 124 N < RMS error < 343 N) for corresponding subcases. For independent controls, contact force predictions improved when precalibrated model parameter values or EMG shape tracking was used. For synergy controls, contact force predictions were relatively insensitive to how model parameter values were calibrated, while EMG shape tracking made lateral (but not medial) contact force predictions worse. For the subject and optimization cost function analyzed in this study, use of subject-specific synergy controls improved the accuracy of knee contact force predictions, especially for lateral contact force when EMG shape tracking was omitted, and reduced prediction sensitivity to uncertainties in muscle model parameter values. PMID:24402438

  19. Muscle synergies may improve optimization prediction of knee contact forces during walking.

    PubMed

    Walter, Jonathan P; Kinney, Allison L; Banks, Scott A; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Fregly, Benjamin J

    2014-02-01

    The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force predictions (0.61 < R2 < 0.90, 83 N < RMS error < 161 N) than did independent controls (-0.15 < R2 < 0.79, 124 N < RMS error < 343 N) for corresponding subcases. For independent controls, contact force predictions improved when precalibrated model parameter values or EMG shape tracking was used. For synergy controls, contact force predictions were relatively insensitive to how model parameter values were calibrated, while EMG shape tracking made lateral (but not medial) contact force predictions worse. For the subject and optimization cost function analyzed in this study, use of subject-specific synergy controls improved the accuracy of knee contact force predictions, especially for lateral contact force when EMG shape tracking was omitted, and reduced prediction sensitivity to uncertainties in muscle model parameter values.

  20. Assessing predictability of a hydrological stochastic-dynamical system

    NASA Astrophysics Data System (ADS)

    Gelfan, Alexander

    2014-05-01

    The water cycle includes the processes with different memory that creates potential for predictability of hydrological system based on separating its long and short memory components and conditioning long-term prediction on slower evolving components (similar to approaches in climate prediction). In the face of the Panta Rhei IAHS Decade questions, it is important to find a conceptual approach to classify hydrological system components with respect to their predictability, define predictable/unpredictable patterns, extend lead-time and improve reliability of hydrological predictions based on the predictable patterns. Representation of hydrological systems as the dynamical systems subjected to the effect of noise (stochastic-dynamical systems) provides possible tool for such conceptualization. A method has been proposed for assessing predictability of hydrological system caused by its sensitivity to both initial and boundary conditions. The predictability is defined through a procedure of convergence of pre-assigned probabilistic measure (e.g. variance) of the system state to stable value. The time interval of the convergence, that is the time interval during which the system losses memory about its initial state, defines limit of the system predictability. The proposed method was applied to assess predictability of soil moisture dynamics in the Nizhnedevitskaya experimental station (51.516N; 38.383E) located in the agricultural zone of the central European Russia. A stochastic-dynamical model combining a deterministic one-dimensional model of hydrothermal regime of soil with a stochastic model of meteorological inputs was developed. The deterministic model describes processes of coupled heat and moisture transfer through unfrozen/frozen soil and accounts for the influence of phase changes on water flow. The stochastic model produces time series of daily meteorological variables (precipitation, air temperature and humidity), whose statistical properties are similar to those of the corresponding series of the actual data measured at the station. Beginning from the initial conditions and being forced by Monte-Carlo generated synthetic meteorological series, the model simulated diverging trajectories of soil moisture characteristics (water content of soil column, moisture of different soil layers, etc.). Limit of predictability of the specific characteristic was determined through time of stabilization of variance of the characteristic between the trajectories, as they move away from the initial state. Numerical experiments were carried out with the stochastic-dynamical model to analyze sensitivity of the soil moisture predictability assessments to uncertainty in the initial conditions, to determine effects of the soil hydraulic properties and processes of soil freezing on the predictability. It was found, particularly, that soil water content predictability is sensitive to errors in the initial conditions and strongly depends on the hydraulic properties of soil under both unfrozen and frozen conditions. Even if the initial conditions are "well-established", the assessed predictability of water content of unfrozen soil does not exceed 30-40 days, while for frozen conditions it may be as long as 3-4 months. The latter creates opportunity for utilizing the autumn water content of soil as the predictor for spring snowmelt runoff in the region under consideration.

  1. Measles on the edge: coastal heterogeneities and infection dynamics.

    PubMed

    Bharti, Nita; Xia, Yingcun; Bjornstad, Ottar N; Grenfell, Bryan T

    2008-04-09

    Mathematical models can help elucidate the spatio-temporal dynamics of epidemics as well as the impact of control measures. The gravity model for directly transmitted diseases is currently one of the most parsimonious models for spatial epidemic spread. This model uses distance-weighted, population size-dependent coupling to estimate host movement and disease incidence in metapopulations. The model captures overall measles dynamics in terms of underlying human movement in pre-vaccination England and Wales (previously established). In spatial models, edges often present a special challenge. Therefore, to test the model's robustness, we analyzed gravity model incidence predictions for coastal cities in England and Wales. Results show that, although predictions are accurate for inland towns, they significantly underestimate coastal persistence. We examine incidence, outbreak seasonality, and public transportation records, to show that the model's inaccuracies stem from an underestimation of total contacts per individual along the coast. We rescue this predicted 'edge effect' by increasing coastal contacts to approximate the number of per capita inland contacts. These results illustrate the impact of 'edge effects' on epidemic metapopulations in general and illustrate directions for the refinement of spatiotemporal epidemic models.

  2. A novel multilayer model for missing link prediction and future link forecasting in dynamic complex networks

    NASA Astrophysics Data System (ADS)

    Yasami, Yasser; Safaei, Farshad

    2018-02-01

    The traditional complex network theory is particularly focused on network models in which all network constituents are dealt with equivalently, while fail to consider the supplementary information related to the dynamic properties of the network interactions. This is a main constraint leading to incorrect descriptions of some real-world phenomena or incomplete capturing the details of certain real-life problems. To cope with the problem, this paper addresses the multilayer aspects of dynamic complex networks by analyzing the properties of intrinsically multilayered co-authorship networks, DBLP and Astro Physics, and presenting a novel multilayer model of dynamic complex networks. The model examines the layers evolution (layers birth/death process and lifetime) throughout the network evolution. Particularly, this paper models the evolution of each node's membership in different layers by an Infinite Factorial Hidden Markov Model considering feature cascade, and thereby formulates the link generation process for intra-layer and inter-layer links. Although adjacency matrixes are useful to describe the traditional single-layer networks, such a representation is not sufficient to describe and analyze the multilayer dynamic networks. This paper also extends a generalized mathematical infrastructure to address the problems issued by multilayer complex networks. The model inference is performed using some Markov Chain Monte Carlo sampling strategies, given synthetic and real complex networks data. Experimental results indicate a tremendous improvement in the performance of the proposed multilayer model in terms of sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, F1-score, Matthews correlation coefficient, and accuracy for two important applications of missing link prediction and future link forecasting. The experimental results also indicate the strong predictivepower of the proposed model for the application of cascade prediction in terms of accuracy.

  3. A Dynamic Finite Element Analysis of Human Foot Complex in the Sagittal Plane during Level Walking

    PubMed Central

    Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R.; Ren, Luquan

    2013-01-01

    The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%–33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning. PMID:24244500

  4. A dynamic finite element analysis of human foot complex in the sagittal plane during level walking.

    PubMed

    Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R; Ren, Luquan

    2013-01-01

    The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%-33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning.

  5. Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading.

    PubMed

    Ignasiak, Dominika; Dendorfer, Sebastian; Ferguson, Stephen J

    2016-04-11

    Musculoskeletal modeling offers an invaluable insight into the spine biomechanics. A better understanding of thoracic spine kinetics is essential for understanding disease processes and developing new prevention and treatment methods. Current models of the thoracic region are not designed for segmental load estimation, or do not include the complex construct of the ribcage, despite its potentially important role in load transmission. In this paper, we describe a numerical musculoskeletal model of the thoracolumbar spine with articulated ribcage, modeled as a system of individual vertebral segments, elastic elements and thoracic muscles, based on a previously established lumbar spine model and data from the literature. The inverse dynamics simulations of the model allow the prediction of spinal loading as well as costal joints kinetics and kinematics. The intradiscal pressure predicted by the model correlated well (R(2)=0.89) with reported intradiscal pressure measurements, providing a first validation of the model. The inclusion of the ribcage did not affect segmental force predictions when the thoracic spine did not perform motion. During thoracic motion tasks, the ribcage had an important influence on the predicted compressive forces and muscle activation patterns. The compressive forces were reduced by up to 32%, or distributed more evenly between thoracic vertebrae, when compared to the predictions of the model without ribcage, for mild thoracic flexion and hyperextension tasks, respectively. The presented musculoskeletal model provides a tool for investigating thoracic spine loading and load sharing between vertebral column and ribcage during dynamic activities. Further validation for specific applications is still necessary. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Long-term prediction of fish growth under varying ambient temperature using a multiscale dynamic model

    PubMed Central

    2009-01-01

    Background Feed composition has a large impact on the growth of animals, particularly marine fish. We have developed a quantitative dynamic model that can predict the growth and body composition of marine fish for a given feed composition over a timespan of several months. The model takes into consideration the effects of environmental factors, particularly temperature, on growth, and it incorporates detailed kinetics describing the main metabolic processes (protein, lipid, and central metabolism) known to play major roles in growth and body composition. Results For validation, we compared our model's predictions with the results of several experimental studies. We showed that the model gives reliable predictions of growth, nutrient utilization (including amino acid retention), and body composition over a timespan of several months, longer than most of the previously developed predictive models. Conclusion We demonstrate that, despite the difficulties involved, multiscale models in biology can yield reasonable and useful results. The model predictions are reliable over several timescales and in the presence of strong temperature fluctuations, which are crucial factors for modeling marine organism growth. The model provides important improvements over existing models. PMID:19903354

  7. Drivers and seasonal predictability of extreme wind speeds in the ECMWF System 4 and a statistical model

    NASA Astrophysics Data System (ADS)

    Walz, M. A.; Donat, M.; Leckebusch, G. C.

    2017-12-01

    As extreme wind speeds are responsible for large socio-economic losses in Europe, a skillful prediction would be of great benefit for disaster prevention as well as for the actuarial community. Here we evaluate patterns of large-scale atmospheric variability and the seasonal predictability of extreme wind speeds (e.g. >95th percentile) in the European domain in the dynamical seasonal forecast system ECMWF System 4, and compare to the predictability based on a statistical prediction model. The dominant patterns of atmospheric variability show distinct differences between reanalysis and ECMWF System 4, with most patterns in System 4 extended downstream in comparison to ERA-Interim. The dissimilar manifestations of the patterns within the two models lead to substantially different drivers associated with the occurrence of extreme winds in the respective model. While the ECMWF System 4 is shown to provide some predictive power over Scandinavia and the eastern Atlantic, only very few grid cells in the European domain have significant correlations for extreme wind speeds in System 4 compared to ERA-Interim. In contrast, a statistical model predicts extreme wind speeds during boreal winter in better agreement with the observations. Our results suggest that System 4 does not seem to capture the potential predictability of extreme winds that exists in the real world, and therefore fails to provide reliable seasonal predictions for lead months 2-4. This is likely related to the unrealistic representation of large-scale patterns of atmospheric variability. Hence our study points to potential improvements of dynamical prediction skill by improving the simulation of large-scale atmospheric dynamics.

  8. Potent New Small-Molecule Inhibitor of Botulinum Neurotoxin Serotype A Endopeptidase Developed by Synthesis-Based Computer-Aided Molecular Design

    DTIC Science & Technology

    2009-11-01

    dynamics of the complex predicted by multiple molecular dynamics simulations , and discuss further structural optimization to achieve better in vivo efficacy...complex with BoNTAe and the dynamics of the complex predicted by multiple molecular dynamics simulations (MMDSs). On the basis of the 3D model, we discuss...is unlimited whereas AHP exhibited 54% inhibition under the same conditions (Table 1). Computer Simulation Twenty different molecular dynamics

  9. Thermophysical properties of liquid UO2, ZrO2 and corium by molecular dynamics and predictive models

    NASA Astrophysics Data System (ADS)

    Kim, Woong Kee; Shim, Ji Hoon; Kaviany, Massoud

    2017-08-01

    Predicting the fate of accident-melted nuclear fuel-cladding requires the understanding of the thermophysical properties which are lacking or have large scatter due to high-temperature experimental challenges. Using equilibrium classical molecular dynamics (MD), we predict the properties of melted UO2 and ZrO2 and compare them with the available experimental data and the predictive models. The existing interatomic potential models have been developed mainly for the polymorphic solid phases of these oxides, so they cannot be used to predict all the properties accurately. We compare and decipher the distinctions of those MD predictions using the specific property-related autocorrelation decays. The predicted properties are density, specific heat, heat of fusion, compressibility, viscosity, surface tension, and the molecular and electronic thermal conductivities. After the comparisons, we provide readily usable temperature-dependent correlations (including UO2-ZrO2 compounds, i.e. corium melt).

  10. Dynamics and control of quadcopter using linear model predictive control approach

    NASA Astrophysics Data System (ADS)

    Islam, M.; Okasha, M.; Idres, M. M.

    2017-12-01

    This paper investigates the dynamics and control of a quadcopter using the Model Predictive Control (MPC) approach. The dynamic model is of high fidelity and nonlinear, with six degrees of freedom that include disturbances and model uncertainties. The control approach is developed based on MPC to track different reference trajectories ranging from simple ones such as circular to complex helical trajectories. In this control technique, a linearized model is derived and the receding horizon method is applied to generate the optimal control sequence. Although MPC is computer expensive, it is highly effective to deal with the different types of nonlinearities and constraints such as actuators’ saturation and model uncertainties. The MPC parameters (control and prediction horizons) are selected by trial-and-error approach. Several simulation scenarios are performed to examine and evaluate the performance of the proposed control approach using MATLAB and Simulink environment. Simulation results show that this control approach is highly effective to track a given reference trajectory.

  11. Sig2GRN: a software tool linking signaling pathway with gene regulatory network for dynamic simulation.

    PubMed

    Zhang, Fan; Liu, Runsheng; Zheng, Jie

    2016-12-23

    Linking computational models of signaling pathways to predicted cellular responses such as gene expression regulation is a major challenge in computational systems biology. In this work, we present Sig2GRN, a Cytoscape plugin that is able to simulate time-course gene expression data given the user-defined external stimuli to the signaling pathways. A generalized logical model is used in modeling the upstream signaling pathways. Then a Boolean model and a thermodynamics-based model are employed to predict the downstream changes in gene expression based on the simulated dynamics of transcription factors in signaling pathways. Our empirical case studies show that the simulation of Sig2GRN can predict changes in gene expression patterns induced by DNA damage signals and drug treatments. As a software tool for modeling cellular dynamics, Sig2GRN can facilitate studies in systems biology by hypotheses generation and wet-lab experimental design. http://histone.scse.ntu.edu.sg/Sig2GRN/.

  12. Rethinking Indian monsoon rainfall prediction in the context of recent global warming

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Xiang, Baoqiang; Li, Juan; Webster, Peter J.; Rajeevan, Madhavan N.; Liu, Jian; Ha, Kyung-Ja

    2015-05-01

    Prediction of Indian summer monsoon rainfall (ISMR) is at the heart of tropical climate prediction. Despite enormous progress having been made in predicting ISMR since 1886, the operational forecasts during recent decades (1989-2012) have little skill. Here we show, with both dynamical and physical-empirical models, that this recent failure is largely due to the models' inability to capture new predictability sources emerging during recent global warming, that is, the development of the central-Pacific El Nino-Southern Oscillation (CP-ENSO), the rapid deepening of the Asian Low and the strengthening of North and South Pacific Highs during boreal spring. A physical-empirical model that captures these new predictors can produce an independent forecast skill of 0.51 for 1989-2012 and a 92-year retrospective forecast skill of 0.64 for 1921-2012. The recent low skills of the dynamical models are attributed to deficiencies in capturing the developing CP-ENSO and anomalous Asian Low. The results reveal a considerable gap between ISMR prediction skill and predictability.

  13. Prediction of human gait trajectories during the SSP using a neuromusculoskeletal modeling: A challenge for parametric optimization.

    PubMed

    Seyed, Mohammadali Rahmati; Mostafa, Rostami; Borhan, Beigzadeh

    2018-04-27

    The parametric optimization techniques have been widely employed to predict human gait trajectories; however, their applications to reveal the other aspects of gait are questionable. The aim of this study is to investigate whether or not the gait prediction model is able to justify the movement trajectories for the higher average velocities. A planar, seven-segment model with sixteen muscle groups was used to represent human neuro-musculoskeletal dynamics. At first, the joint angles, ground reaction forces (GRFs) and muscle activations were predicted and validated for normal average velocity (1.55 m/s) in the single support phase (SSP) by minimizing energy expenditure, which is subject to the non-linear constraints of the gait. The unconstrained system dynamics of extended inverse dynamics (USDEID) approach was used to estimate muscle activations. Then by scaling time and applying the same procedure, the movement trajectories were predicted for higher average velocities (from 2.07 m/s to 4.07 m/s) and compared to the pattern of movement with fast walking speed. The comparison indicated a high level of compatibility between the experimental and predicted results, except for the vertical position of the center of gravity (COG). It was concluded that the gait prediction model can be effectively used to predict gait trajectories for higher average velocities.

  14. Modeling human vestibular responses during eccentric rotation and off vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Paloski, W. H. (Principal Investigator)

    1995-01-01

    A mathematical model has been developed to help explain human multi-sensory interactions. The most important constituent of the model is the hypothesis that the nervous system incorporates knowledge of sensory dynamics into an "internal model" of these dynamics. This internal model allows the nervous system to integrate the sensory information from many different sensors into a coherent estimate of self-motion. The essence of the model is unchanged from a previously published model of monkey eye movement responses; only a few variables have been adjusted to yield the prediction of human responses. During eccentric rotation, the model predicts that the axis of eye rotation shifts slightly toward alignment with gravito-inertial force. The model also predicts that the time course of the perception of tilt following the acceleration phase of eccentric rotation is much slower than that during deceleration. During off vertical axis rotation (OVAR) the model predicts a small horizontal bias along with small horizontal, vertical, and torsional oscillations. Following OVAR stimulation, when stopped right- or left-side down, a small vertical component is predicted that decays with the horizontal post-rotatory response. All of the predictions are consistent with measurements of human responses.

  15. Quantifying predictability variations in a low-order ocean-atmosphere model - A dynamical systems approach

    NASA Technical Reports Server (NTRS)

    Nese, Jon M.; Dutton, John A.

    1993-01-01

    The predictability of the weather and climatic states of a low-order moist general circulation model is quantified using a dynamic systems approach, and the effect of incorporating a simple oceanic circulation on predictability is evaluated. The predictability and the structure of the model attractors are compared using Liapunov exponents, local divergence rates, and the correlation and Liapunov dimensions. It was found that the activation of oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10 percent and decreases the variance of the largest local divergence rate by 20 percent. When an oceanic circulation develops, the average predictability of annually averaged states is improved by 25 percent and the variance of the largest local divergence rate decreases by 25 percent.

  16. Development of a severe local storm prediction system: A 60-day test of a mesoscale primitive equation model

    NASA Technical Reports Server (NTRS)

    Paine, D. A.; Zack, J. W.; Kaplan, M. L.

    1979-01-01

    The progress and problems associated with the dynamical forecast system which was developed to predict severe storms are examined. The meteorological problem of severe convective storm forecasting is reviewed. The cascade hypothesis which forms the theoretical core of the nested grid dynamical numerical modelling system is described. The dynamical and numerical structure of the model used during the 1978 test period is presented and a preliminary description of a proposed multigrid system for future experiments and tests is provided. Six cases from the spring of 1978 are discussed to illustrate the model's performance and its problems. Potential solutions to the problems are examined.

  17. Dynamic Forecasting of Zika Epidemics Using Google Trends

    PubMed Central

    Jin, Yuan; Huang, Yong; Lin, Baihan; An, Xiaoping; Feng, Dan; Tong, Yigang

    2017-01-01

    We developed a dynamic forecasting model for Zika virus (ZIKV), based on real-time online search data from Google Trends (GTs). It was designed to provide Zika virus disease (ZVD) surveillance and detection for Health Departments, and predictive numbers of infection cases, which would allow them sufficient time to implement interventions. In this study, we found a strong correlation between Zika-related GTs and the cumulative numbers of reported cases (confirmed, suspected and total cases; p<0.001). Then, we used the correlation data from Zika-related online search in GTs and ZIKV epidemics between 12 February and 20 October 2016 to construct an autoregressive integrated moving average (ARIMA) model (0, 1, 3) for the dynamic estimation of ZIKV outbreaks. The forecasting results indicated that the predicted data by ARIMA model, which used the online search data as the external regressor to enhance the forecasting model and assist the historical epidemic data in improving the quality of the predictions, are quite similar to the actual data during ZIKV epidemic early November 2016. Integer-valued autoregression provides a useful base predictive model for ZVD cases. This is enhanced by the incorporation of GTs data, confirming the prognostic utility of search query based surveillance. This accessible and flexible dynamic forecast model could be used in the monitoring of ZVD to provide advanced warning of future ZIKV outbreaks. PMID:28060809

  18. Dynamic Forecasting of Zika Epidemics Using Google Trends.

    PubMed

    Teng, Yue; Bi, Dehua; Xie, Guigang; Jin, Yuan; Huang, Yong; Lin, Baihan; An, Xiaoping; Feng, Dan; Tong, Yigang

    2017-01-01

    We developed a dynamic forecasting model for Zika virus (ZIKV), based on real-time online search data from Google Trends (GTs). It was designed to provide Zika virus disease (ZVD) surveillance and detection for Health Departments, and predictive numbers of infection cases, which would allow them sufficient time to implement interventions. In this study, we found a strong correlation between Zika-related GTs and the cumulative numbers of reported cases (confirmed, suspected and total cases; p<0.001). Then, we used the correlation data from Zika-related online search in GTs and ZIKV epidemics between 12 February and 20 October 2016 to construct an autoregressive integrated moving average (ARIMA) model (0, 1, 3) for the dynamic estimation of ZIKV outbreaks. The forecasting results indicated that the predicted data by ARIMA model, which used the online search data as the external regressor to enhance the forecasting model and assist the historical epidemic data in improving the quality of the predictions, are quite similar to the actual data during ZIKV epidemic early November 2016. Integer-valued autoregression provides a useful base predictive model for ZVD cases. This is enhanced by the incorporation of GTs data, confirming the prognostic utility of search query based surveillance. This accessible and flexible dynamic forecast model could be used in the monitoring of ZVD to provide advanced warning of future ZIKV outbreaks.

  19. Dynamic predictive model for the growth of Salmonella spp. in liquid whole egg.

    PubMed

    Singh, Aikansh; Korasapati, Nageswara R; Juneja, Vijay K; Subbiah, Jeyamkondan; Froning, Glenn; Thippareddi, Harshavardhan

    2011-04-01

    A dynamic model for the growth of Salmonella spp. in liquid whole egg (LWE) (approximately pH 7.8) under continuously varying temperature was developed. The model was validated using 2 (5 to 15 °C; 600 h and 10 to 40 °C; 52 h) sinusoidal, continuously varying temperature profiles. LWE adjusted to pH 7.8 was inoculated with approximately 2.5-3.0 log CFU/mL of Salmonella spp., and the growth data at several isothermal conditions (5, 7, 10, 15, 20, 25, 30, 35, 37, 39, 41, 43, 45, and 47 °C) was collected. A primary model (Baranyi model) was fitted for each temperature growth data and corresponding maximum growth rates were estimated. Pseudo-R2 values were greater than 0.97 for primary models. Modified Ratkowsky model was used to fit the secondary model. The pseudo-R2 and root mean square error were 0.99 and 0.06 log CFU/mL, respectively, for the secondary model. A dynamic model for the prediction of Salmonella spp. growth under varying temperature conditions was developed using 4th-order Runge-Kutta method. The developed dynamic model was validated for 2 sinusoidal temperature profiles, 5 to 15 °C (for 600 h) and 10 to 40 °C (for 52 h) with corresponding root mean squared error values of 0.28 and 0.23 log CFU/mL, respectively, between predicted and observed Salmonella spp. populations. The developed dynamic model can be used to predict the growth of Salmonella spp. in LWE under varying temperature conditions.   Liquid egg and egg products are widely used in food processing and in restaurant operations. These products can be contaminated with Salmonella spp. during breaking and other unit operations during processing. The raw, liquid egg products are stored under refrigeration prior to pasteurization. However, process deviations can occur such as refrigeration failure, leading to temperature fluctuations above the required temperatures as specified in the critical limits within hazard analysis and critical control point plans for the operations. The processors are required to evaluate the potential growth of Salmonella spp. in such products before the product can be used, or further processed. Dynamic predictive models are excellent tools for regulators as well as the processing plant personnel to evaluate the microbiological safety of the product under such conditions.

  20. The architecture of dynamic reservoir in the echo state network

    NASA Astrophysics Data System (ADS)

    Cui, Hongyan; Liu, Xiang; Li, Lixiang

    2012-09-01

    Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.

  1. Feasibility of dynamic risk prediction for hepatocellular carcinoma development in patients with chronic hepatitis B.

    PubMed

    Jeon, Mi Young; Lee, Hye Won; Kim, Seung Up; Kim, Beom Kyung; Park, Jun Yong; Kim, Do Young; Han, Kwang-Hyub; Ahn, Sang Hoon

    2018-04-01

    Several risk prediction models for hepatocellular carcinoma (HCC) development are available. We explored whether the use of risk prediction models can dynamically predict HCC development at different time points in chronic hepatitis B (CHB) patients. Between 2006 and 2014, 1397 CHB patients were recruited. All patients underwent serial transient elastography at intervals of >6 months. The median age of this study population (931 males and 466 females) was 49.0 years. The median CU-HCC, REACH-B, LSM-HCC and mREACH-B score at enrolment were 4.0, 9.0, 10.0 and 8.0 respectively. During the follow-up period (median, 68.0 months), 87 (6.2%) patients developed HCC. All risk prediction models were successful in predicting HCC development at both the first liver stiffness (LS) measurement (hazard ratio [HR] = 1.067-1.467 in the subgroup without antiviral therapy [AVT] and 1.096-1.458 in the subgroup with AVT) and second LS measurement (HR = 1.125-1.448 in the subgroup without AVT and 1.087-1.249 in the subgroup with AVT). In contrast, neither the absolute nor percentage change in the scores from the risk prediction models predicted HCC development (all P > .05). The mREACH-B score performed similarly or significantly better than did the other scores (AUROCs at 5 years, 0.694-0.862 vs 0.537-0.875). Dynamic prediction of HCC development at different time points was achieved using four risk prediction models, but not using the changes in the absolute and percentage values between two time points. The mREACH-B score was the most appropriate prediction model of HCC development among four prediction models. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Prediction Models for Dynamic Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman, Saima; Frincu, Marc; Chelmis, Charalampos

    2015-11-02

    As Smart Grids move closer to dynamic curtailment programs, Demand Response (DR) events will become necessary not only on fixed time intervals and weekdays predetermined by static policies, but also during changing decision periods and weekends to react to real-time demand signals. Unique challenges arise in this context vis-a-vis demand prediction and curtailment estimation and the transformation of such tasks into an automated, efficient dynamic demand response (D 2R) process. While existing work has concentrated on increasing the accuracy of prediction models for DR, there is a lack of studies for prediction models for D 2R, which we address inmore » this paper. Our first contribution is the formal definition of D 2R, and the description of its challenges and requirements. Our second contribution is a feasibility analysis of very-short-term prediction of electricity consumption for D 2R over a diverse, large-scale dataset that includes both small residential customers and large buildings. Our third, and major contribution is a set of insights into the predictability of electricity consumption in the context of D 2R. Specifically, we focus on prediction models that can operate at a very small data granularity (here 15-min intervals), for both weekdays and weekends - all conditions that characterize scenarios for D 2R. We find that short-term time series and simple averaging models used by Independent Service Operators and utilities achieve superior prediction accuracy. We also observe that workdays are more predictable than weekends and holiday. Also, smaller customers have large variation in consumption and are less predictable than larger buildings. Key implications of our findings are that better models are required for small customers and for non-workdays, both of which are critical for D 2R. Also, prediction models require just few days’ worth of data indicating that small amounts of historical training data can be used to make reliable predictions, simplifying the complexity of big data challenge associated with D 2R.« less

  3. Predictive power of food web models based on body size decreases with trophic complexity.

    PubMed

    Jonsson, Tomas; Kaartinen, Riikka; Jonsson, Mattias; Bommarco, Riccardo

    2018-05-01

    Food web models parameterised using body size show promise to predict trophic interaction strengths (IS) and abundance dynamics. However, this remains to be rigorously tested in food webs beyond simple trophic modules, where indirect and intraguild interactions could be important and driven by traits other than body size. We systematically varied predator body size, guild composition and richness in microcosm insect webs and compared experimental outcomes with predictions of IS from models with allometrically scaled parameters. Body size was a strong predictor of IS in simple modules (r 2  = 0.92), but with increasing complexity the predictive power decreased, with model IS being consistently overestimated. We quantify the strength of observed trophic interaction modifications, partition this into density-mediated vs. behaviour-mediated indirect effects and show that model shortcomings in predicting IS is related to the size of behaviour-mediated effects. Our findings encourage development of dynamical food web models explicitly including and exploring indirect mechanisms. © 2018 John Wiley & Sons Ltd/CNRS.

  4. Prediction of time-integrated activity coefficients in PRRT using simulated dynamic PET and a pharmacokinetic model.

    PubMed

    Hardiansyah, Deni; Attarwala, Ali Asgar; Kletting, Peter; Mottaghy, Felix M; Glatting, Gerhard

    2017-10-01

    To investigate the accuracy of predicted time-integrated activity coefficients (TIACs) in peptide-receptor radionuclide therapy (PRRT) using simulated dynamic PET data and a physiologically based pharmacokinetic (PBPK) model. PBPK parameters were estimated using biokinetic data of 15 patients after injection of (152±15)MBq of 111 In-DTPAOC (total peptide amount (5.78±0.25)nmol). True mathematical phantoms of patients (MPPs) were the PBPK model with the estimated parameters. Dynamic PET measurements were simulated as being done after bolus injection of 150MBq 68 Ga-DOTATATE using the true MPPs. Dynamic PET scans around 35min p.i. (P 1 ), 4h p.i. (P 2 ) and the combination of P 1 and P 2 (P 3 ) were simulated. Each measurement was simulated with four frames of 5min each and 2 bed positions. PBPK parameters were fitted to the PET data to derive the PET-predicted MPPs. Therapy was simulated assuming an infusion of 5.1GBq of 90 Y-DOTATATE over 30min in both true and PET-predicted MPPs. TIACs of simulated therapy were calculated, true MPPs (true TIACs) and predicted MPPs (predicted TIACs) followed by the calculation of variabilities v. For P 1 and P 2 the population variabilities of kidneys, liver and spleen were acceptable (v<10%). For the tumours and the remainders, the values were large (up to 25%). For P 3 , population variabilities for all organs including the remainder further improved, except that of the tumour (v>10%). Treatment planning of PRRT based on dynamic PET data seems possible for the kidneys, liver and spleen using a PBPK model and patient specific information. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbante, Paolo; Frezzotti, Aldo; Gibelli, Livio

    The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviationsmore » of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.« less

  6. THE DYNAMIC RESPONSE OF THERMOMETER-WELL ASSEMBLIES.

    DTIC Science & Technology

    parameter models of the thermometric system were constructed and gave acceptable agreement with the experimental results. These models can be used to predict the dynamic behavior of any similar thermometer system. (Author)

  7. Structure-based control of complex networks with nonlinear dynamics.

    PubMed

    Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka

    2017-07-11

    What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.

  8. Statistical and dynamical forecast of regional precipitation after mature phase of ENSO

    NASA Astrophysics Data System (ADS)

    Sohn, S.; Min, Y.; Lee, J.; Tam, C.; Ahn, J.

    2010-12-01

    While the seasonal predictability of general circulation models (GCMs) has been improved, the current model atmosphere in the mid-latitude does not respond correctly to external forcing such as tropical sea surface temperature (SST), particularly over the East Asia and western North Pacific summer monsoon regions. In addition, the time-scale of prediction scope is considerably limited and the model forecast skill still is very poor beyond two weeks. Although recent studies indicate that coupled model based multi-model ensemble (MME) forecasts show the better performance, the long-lead forecasts exceeding 9 months still show a dramatic decrease of the seasonal predictability. This study aims at diagnosing the dynamical MME forecasts comprised of the state of art 1-tier models as well as comparing them with the statistical model forecasts, focusing on the East Asian summer precipitation predictions after mature phase of ENSO. The lagged impact of El Nino as major climate contributor on the summer monsoon in model environments is also evaluated, in the sense of the conditional probabilities. To evaluate the probability forecast skills, the reliability (attributes) diagram and the relative operating characteristics following the recommendations of the World Meteorological Organization (WMO) Standardized Verification System for Long-Range Forecasts are used in this study. The results should shed light on the prediction skill for dynamical model and also for the statistical model, in forecasting the East Asian summer monsoon rainfall with a long-lead time.

  9. Conceptual modelling to predict unobserved system states - the case of groundwater flooding in the UK Chalk

    NASA Astrophysics Data System (ADS)

    Hartmann, A. J.; Ireson, A. M.

    2017-12-01

    Chalk aquifers represent an important source of drinking water in the UK. Due to its fractured-porous structure, Chalk aquifers are characterized by highly dynamic groundwater fluctuations that enhance the risk of groundwater flooding. The risk of groundwater flooding can be assessed by physically-based groundwater models. But for reliable results, a-priori information about the distribution of hydraulic conductivities and porosities is necessary, which is often not available. For that reason, conceptual simulation models are often used to predict groundwater behaviour. They commonly require calibration by historic groundwater observations. Consequently, their prediction performance may reduce significantly, when it comes to system states that did not occur within the calibration time series. In this study, we calibrate a conceptual model to the observed groundwater level observations at several locations within a Chalk system in Southern England. During the calibration period, no groundwater flooding occurred. We then apply our model to predict the groundwater dynamics of the system at a time that includes a groundwater flooding event. We show that the calibrated model provides reasonable predictions before and after the flooding event but it over-estimates groundwater levels during the event. After modifying the model structure to include topographic information, the model is capable of prediction the groundwater flooding event even though groundwater flooding never occurred in the calibration period. Although straight forward, our approach shows how conceptual process-based models can be applied to predict system states and dynamics that did not occur in the calibration period. We believe such an approach can be transferred to similar cases, especially to regions where rainfall intensities are expected to trigger processes and system states that may have not yet been observed.

  10. Modeling Dynamic Regulatory Processes in Stroke.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Jarman, Kenneth D.; Taylor, Ronald C.

    2012-10-11

    The ability to examine in silico the behavior of biological systems can greatly accelerate the pace of discovery in disease pathologies, such as stroke, where in vivo experimentation is lengthy and costly. In this paper we describe an approach to in silico examination of blood genomic responses to neuroprotective agents and subsequent stroke through the development of dynamic models of the regulatory processes observed in the experimental gene expression data. First, we identified functional gene clusters from these data. Next, we derived ordinary differential equations (ODEs) relating regulators and functional clusters from the data. These ODEs were used to developmore » dynamic models that simulate the expression of regulated functional clusters using system dynamics as the modeling paradigm. The dynamic model has the considerable advantage of only requiring an initial starting state, and does not require measurement of regulatory influences at each time point in order to make accurate predictions. The manipulation of input model parameters, such as changing the magnitude of gene expression, made it possible to assess the behavior of the networks through time under varying conditions. We report that an optimized dynamic model can provide accurate predictions of overall system behavior under several different preconditioning paradigms.« less

  11. Using dynamic population simulations to extend resource selection analyses and prioritize habitats for conservation

    USGS Publications Warehouse

    Heinrichs, Julie; Aldridge, Cameron L.; O'Donnell, Michael; Schumaker, Nathan

    2017-01-01

    Prioritizing habitats for conservation is a challenging task, particularly for species with fluctuating populations and seasonally dynamic habitat needs. Although the use of resource selection models to identify and prioritize habitat for conservation is increasingly common, their ability to characterize important long-term habitats for dynamic populations are variable. To examine how habitats might be prioritized differently if resource selection was directly and dynamically linked with population fluctuations and movement limitations among seasonal habitats, we constructed a spatially explicit individual-based model for a dramatically fluctuating population requiring temporally varying resources. Using greater sage-grouse (Centrocercus urophasianus) in Wyoming as a case study, we used resource selection function maps to guide seasonal movement and habitat selection, but emergent population dynamics and simulated movement limitations modified long-term habitat occupancy. We compared priority habitats in RSF maps to long-term simulated habitat use. We examined the circumstances under which the explicit consideration of movement limitations, in combination with population fluctuations and trends, are likely to alter predictions of important habitats. In doing so, we assessed the future occupancy of protected areas under alternative population and habitat conditions. Habitat prioritizations based on resource selection models alone predicted high use in isolated parcels of habitat and in areas with low connectivity among seasonal habitats. In contrast, results based on more biologically-informed simulations emphasized central and connected areas near high-density populations, sometimes predicted to be low selection value. Dynamic models of habitat use can provide additional biological realism that can extend, and in some cases, contradict habitat use predictions generated from short-term or static resource selection analyses. The explicit inclusion of population dynamics and movement propensities via spatial simulation modeling frameworks may provide an informative means of predicting long-term habitat use, particularly for fluctuating populations with complex seasonal habitat needs. Importantly, our results indicate the possible need to consider habitat selection models as a starting point rather than the common end point for refining and prioritizing habitats for protection for cyclic and highly variable populations.

  12. A Smoluchowski model of crystallization dynamics of small colloidal clusters

    NASA Astrophysics Data System (ADS)

    Beltran-Villegas, Daniel J.; Sehgal, Ray M.; Maroudas, Dimitrios; Ford, David M.; Bevan, Michael A.

    2011-10-01

    We investigate the dynamics of colloidal crystallization in a 32-particle system at a fixed value of interparticle depletion attraction that produces coexisting fluid and solid phases. Free energy landscapes (FELs) and diffusivity landscapes (DLs) are obtained as coefficients of 1D Smoluchowski equations using as order parameters either the radius of gyration or the average crystallinity. FELs and DLs are estimated by fitting the Smoluchowski equations to Brownian dynamics (BD) simulations using either linear fits to locally initiated trajectories or global fits to unbiased trajectories using Bayesian inference. The resulting FELs are compared to Monte Carlo Umbrella Sampling results. The accuracy of the FELs and DLs for modeling colloidal crystallization dynamics is evaluated by comparing mean first-passage times from BD simulations with analytical predictions using the FEL and DL models. While the 1D models accurately capture dynamics near the free energy minimum fluid and crystal configurations, predictions near the transition region are not quantitatively accurate. A preliminary investigation of ensemble averaged 2D order parameter trajectories suggests that 2D models are required to capture crystallization dynamics in the transition region.

  13. Tear dynamics in healthy and dry eyes.

    PubMed

    Cerretani, Colin F; Radke, C J

    2014-06-01

    Dry-eye disease, an increasingly prevalent ocular-surface disorder, significantly alters tear physiology. Understanding the basic physics of tear dynamics in healthy and dry eyes benefits both diagnosis and treatment of dry eye. We present a physiological-based model to describe tear dynamics during blinking. Tears are compartmentalized over the ocular surface; the blink cycle is divided into three repeating phases. Conservation laws quantify the tear volume and tear osmolarity of each compartment during each blink phase. Lacrimal-supply and tear-evaporation rates are varied to reveal the dependence of tear dynamics on dry-eye conditions, specifically tear osmolarity, tear volume, tear-turnover rate (TTR), and osmotic water flow. Predicted periodic-steady tear-meniscus osmolarity is 309 and 321 mOsM in normal and dry eyes, respectively. Tear osmolarity, volume, and TTR all match available clinical measurements. Osmotic water flow through the cornea and conjunctiva contribute 10 and 50% to the total tear supply in healthy and dry-eye conditions, respectively. TTR in aqueous-deficient dry eye (ADDE) is only half that in evaporative dry eye (EDE). The compartmental periodic-steady tear-dynamics model accurately predicts tear behavior in normal and dry eyes. Inclusion of osmotic water flow is crucial to match measured tear osmolarity. Tear-dynamics predictions corroborate the use of TTR as a clinical discriminator between ADDE and EDE. The proposed model is readily extended to predict the dynamics of aqueous solutes such as drugs or fluorescent tags.

  14. Nonlinear Dynamic Modeling of Neuron Action Potential Threshold During Synaptically Driven Broadband Intracellular Activity

    PubMed Central

    Roach, Shane M.; Song, Dong; Berger, Theodore W.

    2012-01-01

    Activity-dependent variation of neuronal thresholds for action potential (AP) generation is one of the key determinants of spike-train temporal-pattern transformations from presynaptic to postsynaptic spike trains. In this study, we model the nonlinear dynamics of the threshold variation during synaptically driven broadband intracellular activity. First, membrane potentials of single CA1 pyramidal cells were recorded under physiologically plausible broadband stimulation conditions. Second, a method was developed to measure AP thresholds from the continuous recordings of membrane potentials. It involves measuring the turning points of APs by analyzing the third-order derivatives of the membrane potentials. Four stimulation paradigms with different temporal patterns were applied to validate this method by comparing the measured AP turning points and the actual AP thresholds estimated with varying stimulation intensities. Results show that the AP turning points provide consistent measurement of the AP thresholds, except for a constant offset. It indicates that 1) the variation of AP turning points represents the nonlinearities of threshold dynamics; and 2) an optimization of the constant offset is required to achieve accurate spike prediction. Third, a nonlinear dynamical third-order Volterra model was built to describe the relations between the threshold dynamics and the AP activities. Results show that the model can predict threshold accurately based on the preceding APs. Finally, the dynamic threshold model was integrated into a previously developed single neuron model and resulted in a 33% improvement in spike prediction. PMID:22156947

  15. Improving the long-lead predictability of El Niño using a novel forecasting scheme based on a dynamic components model

    NASA Astrophysics Data System (ADS)

    Petrova, Desislava; Koopman, Siem Jan; Ballester, Joan; Rodó, Xavier

    2017-02-01

    El Niño (EN) is a dominant feature of climate variability on inter-annual time scales driving changes in the climate throughout the globe, and having wide-spread natural and socio-economic consequences. In this sense, its forecast is an important task, and predictions are issued on a regular basis by a wide array of prediction schemes and climate centres around the world. This study explores a novel method for EN forecasting. In the state-of-the-art the advantageous statistical technique of unobserved components time series modeling, also known as structural time series modeling, has not been applied. Therefore, we have developed such a model where the statistical analysis, including parameter estimation and forecasting, is based on state space methods, and includes the celebrated Kalman filter. The distinguishing feature of this dynamic model is the decomposition of a time series into a range of stochastically time-varying components such as level (or trend), seasonal, cycles of different frequencies, irregular, and regression effects incorporated as explanatory covariates. These components are modeled separately and ultimately combined in a single forecasting scheme. Customary statistical models for EN prediction essentially use SST and wind stress in the equatorial Pacific. In addition to these, we introduce a new domain of regression variables accounting for the state of the subsurface ocean temperature in the western and central equatorial Pacific, motivated by our analysis, as well as by recent and classical research, showing that subsurface processes and heat accumulation there are fundamental for the genesis of EN. An important feature of the scheme is that different regression predictors are used at different lead months, thus capturing the dynamical evolution of the system and rendering more efficient forecasts. The new model has been tested with the prediction of all warm events that occurred in the period 1996-2015. Retrospective forecasts of these events were made for long lead times of at least two and a half years. Hence, the present study demonstrates that the theoretical limit of ENSO prediction should be sought much longer than the commonly accepted "Spring Barrier". The high correspondence between the forecasts and observations indicates that the proposed model outperforms all current operational statistical models, and behaves comparably to the best dynamical models used for EN prediction. Thus, the novel way in which the modeling scheme has been structured could also be used for improving other statistical and dynamical modeling systems.

  16. Heterogeneous Structure of Stem Cells Dynamics: Statistical Models and Quantitative Predictions

    PubMed Central

    Bogdan, Paul; Deasy, Bridget M.; Gharaibeh, Burhan; Roehrs, Timo; Marculescu, Radu

    2014-01-01

    Understanding stem cell (SC) population dynamics is essential for developing models that can be used in basic science and medicine, to aid in predicting cells fate. These models can be used as tools e.g. in studying patho-physiological events at the cellular and tissue level, predicting (mal)functions along the developmental course, and personalized regenerative medicine. Using time-lapsed imaging and statistical tools, we show that the dynamics of SC populations involve a heterogeneous structure consisting of multiple sub-population behaviors. Using non-Gaussian statistical approaches, we identify the co-existence of fast and slow dividing subpopulations, and quiescent cells, in stem cells from three species. The mathematical analysis also shows that, instead of developing independently, SCs exhibit a time-dependent fractal behavior as they interact with each other through molecular and tactile signals. These findings suggest that more sophisticated models of SC dynamics should view SC populations as a collective and avoid the simplifying homogeneity assumption by accounting for the presence of more than one dividing sub-population, and their multi-fractal characteristics. PMID:24769917

  17. A Continuum Model for the Effect of Dynamic Recrystallization on the Stress⁻Strain Response.

    PubMed

    Kooiker, H; Perdahcıoğlu, E S; van den Boogaard, A H

    2018-05-22

    Austenitic Stainless Steels and High-Strength Low-Alloy (HSLA) steels show significant dynamic recovery and dynamic recrystallization (DRX) during hot forming. In order to design optimal and safe hot-formed products, a good understanding and constitutive description of the material behavior is vital. A new continuum model is presented and validated on a wide range of deformation conditions including high strain rate deformation. The model is presented in rate form to allow for the prediction of material behavior in transient process conditions. The proposed model is capable of accurately describing the stress⁻strain behavior of AISI 316LN in hot forming conditions, also the high strain rate DRX-induced softening observed during hot torsion of HSLA is accurately predicted. It is shown that the increase in recrystallization rate at high strain rates observed in experiments can be captured by including the elastic energy due to the dynamic stress in the driving pressure for recrystallization. Furthermore, the predicted resulting grain sizes follow the power-law dependence with steady state stress that is often reported in literature and the evolution during hot deformation shows the expected trend.

  18. Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge.

    PubMed

    Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T

    2018-05-10

    The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.

  19. Integrating System Dynamics and Bayesian Networks with Application to Counter-IED Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarman, Kenneth D.; Brothers, Alan J.; Whitney, Paul D.

    2010-06-06

    The practice of choosing a single modeling paradigm for predictive analysis can limit the scope and relevance of predictions and their utility to decision-making processes. Considering multiple modeling methods simultaneously may improve this situation, but a better solution provides a framework for directly integrating different, potentially complementary modeling paradigms to enable more comprehensive modeling and predictions, and thus better-informed decisions. The primary challenges of this kind of model integration are to bridge language and conceptual gaps between modeling paradigms, and to determine whether natural and useful linkages can be made in a formal mathematical manner. To address these challenges inmore » the context of two specific modeling paradigms, we explore mathematical and computational options for linking System Dynamics (SD) and Bayesian network (BN) models and incorporating data into the integrated models. We demonstrate that integrated SD/BN models can naturally be described as either state space equations or Dynamic Bayes Nets, which enables the use of many existing computational methods for simulation and data integration. To demonstrate, we apply our model integration approach to techno-social models of insurgent-led attacks and security force counter-measures centered on improvised explosive devices.« less

  20. Comparison of RF spectrum prediction methods for dynamic spectrum access

    NASA Astrophysics Data System (ADS)

    Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2017-05-01

    Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.

  1. Predicting the dynamic fracture of steel via a non-local strain-energy density failure criterion.

    DOT National Transportation Integrated Search

    2014-06-01

    Predicting the onset of fracture in a material subjected to dynamic loading conditions has typically been heavily mesh-dependent, and often must be specifically calibrated for each geometric design. This can lead to costly models and even : costlier ...

  2. Prediction of main factors’ values of air transportation system safety based on system dynamics

    NASA Astrophysics Data System (ADS)

    Spiridonov, A. Yu; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikova, E. V.; Shulga, T. E.; Tverdokhlebov, V. A.; Kushnikov, O. V.; Fominykh, D. S.

    2018-05-01

    On the basis of the system-dynamic approach [1-8], a set of models has been developed that makes it possible to analyse and predict the values of the main safety indicators for the operation of aviation transport systems.

  3. Prediction of Cognitive Performance and Subjective Sleepiness Using a Model of Arousal Dynamics.

    PubMed

    Postnova, Svetlana; Lockley, Steven W; Robinson, Peter A

    2018-04-01

    A model of arousal dynamics is applied to predict objective performance and subjective sleepiness measures, including lapses and reaction time on a visual Performance Vigilance Test (vPVT), performance on a mathematical addition task (ADD), and the Karolinska Sleepiness Scale (KSS). The arousal dynamics model is comprised of a physiologically based flip-flop switch between the wake- and sleep-active neuronal populations and a dynamic circadian oscillator, thus allowing prediction of sleep propensity. Published group-level experimental constant routine (CR) and forced desynchrony (FD) data are used to calibrate the model to predict performance and sleepiness. Only the studies using dim light (<15 lux) during alertness measurements and controlling for sleep and entrainment before the start of the protocol are selected for modeling. This is done to avoid the direct alerting effects of light and effects of prior sleep debt and circadian misalignment on the data. The results show that linear combination of circadian and homeostatic drives is sufficient to predict dynamics of a variety of sleepiness and performance measures during CR and FD protocols, with sleep-wake cycles ranging from 20 to 42.85 h and a 2:1 wake-to-sleep ratio. New metrics relating model outputs to performance and sleepiness data are developed and tested against group average outcomes from 7 (vPVT lapses), 5 (ADD), and 8 (KSS) experimental protocols, showing good quantitative and qualitative agreement with the data (root mean squared error of 0.38, 0.19, and 0.35, respectively). The weights of the homeostatic and circadian effects are found to be different between the measures, with KSS having stronger homeostatic influence compared with the objective measures of performance. Using FD data in addition to CR data allows us to challenge the model in conditions of both acute sleep deprivation and structured circadian misalignment, ensuring that the role of the circadian and homeostatic drives in performance is properly captured.

  4. Forecasting experiments of a dynamical-statistical model of the sea surface temperature anomaly field based on the improved self-memorization principle

    NASA Astrophysics Data System (ADS)

    Hong, Mei; Chen, Xi; Zhang, Ren; Wang, Dong; Shen, Shuanghe; Singh, Vijay P.

    2018-04-01

    With the objective of tackling the problem of inaccurate long-term El Niño-Southern Oscillation (ENSO) forecasts, this paper develops a new dynamical-statistical forecast model of the sea surface temperature anomaly (SSTA) field. To avoid single initial prediction values, a self-memorization principle is introduced to improve the dynamical reconstruction model, thus making the model more appropriate for describing such chaotic systems as ENSO events. The improved dynamical-statistical model of the SSTA field is used to predict SSTA in the equatorial eastern Pacific and during El Niño and La Niña events. The long-term step-by-step forecast results and cross-validated retroactive hindcast results of time series T1 and T2 are found to be satisfactory, with a Pearson correlation coefficient of approximately 0.80 and a mean absolute percentage error (MAPE) of less than 15 %. The corresponding forecast SSTA field is accurate in that not only is the forecast shape similar to the actual field but also the contour lines are essentially the same. This model can also be used to forecast the ENSO index. The temporal correlation coefficient is 0.8062, and the MAPE value of 19.55 % is small. The difference between forecast results in spring and those in autumn is not high, indicating that the improved model can overcome the spring predictability barrier to some extent. Compared with six mature models published previously, the present model has an advantage in prediction precision and length, and is a novel exploration of the ENSO forecast method.

  5. Multiscale Particle-Based Modeling of Flowing Platelets in Blood Plasma Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics

    PubMed Central

    Zhang, Peng; Gao, Chao; Zhang, Na; Slepian, Marvin J.; Deng, Yuefan; Bluestein, Danny

    2014-01-01

    We developed a multiscale particle-based model of platelets, to study the transport dynamics of shear stresses between the surrounding fluid and the platelet membrane. This model facilitates a more accurate prediction of the activation potential of platelets by viscous shear stresses - one of the major mechanisms leading to thrombus formation in cardiovascular diseases and in prosthetic cardiovascular devices. The interface of the model couples coarse-grained molecular dynamics (CGMD) with dissipative particle dynamics (DPD). The CGMD handles individual platelets while the DPD models the macroscopic transport of blood plasma in vessels. A hybrid force field is formulated for establishing a functional interface between the platelet membrane and the surrounding fluid, in which the microstructural changes of platelets may respond to the extracellular viscous shear stresses transferred to them. The interaction between the two systems preserves dynamic properties of the flowing platelets, such as the flipping motion. Using this multiscale particle-based approach, we have further studied the effects of the platelet elastic modulus by comparing the action of the flow-induced shear stresses on rigid and deformable platelet models. The results indicate that neglecting the platelet deformability may overestimate the stress on the platelet membrane, which in turn may lead to erroneous predictions of the platelet activation under viscous shear flow conditions. This particle-based fluid-structure interaction multiscale model offers for the first time a computationally feasible approach for simulating deformable platelets interacting with viscous blood flow, aimed at predicting flow induced platelet activation by using a highly resolved mapping of the stress distribution on the platelet membrane under dynamic flow conditions. PMID:25530818

  6. Learning Latent Variable and Predictive Models of Dynamical Systems

    DTIC Science & Technology

    2009-10-01

    stable over the full 1000 frame image sequence without significant damping. C. Sam- ples drawn from a least squares synthesized sequences (top), and...LDS stabilizing algorithms, LB-1 and LB-2. Bars at every 20 timesteps denote variance in the results. CG provides the best stable short term predictions...observations. This thesis contributes (1) novel learning algorithms for existing dynamical system models that overcome significant limitations of previous

  7. Evaluating the performance of a new model for predicting the growth of Clostridium perfringens in cooked, uncured meat and poultry products under isothermal, heating, and dynamically cooling conditions

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens Type A is a significant public health threat and may germinate, outgrow, and multiply during cooling of cooked meats. This study evaluates a new C. perfringens growth model in IPMP Dynamic Prediction using the same criteria and cooling data in Mohr and others (2015), but inc...

  8. A Rainfall- and Temperature-Driven Abundance Model for Aedes albopictus Populations

    PubMed Central

    Tran, Annelise; L’Ambert, Grégory; Lacour, Guillaume; Benoît, Romain; Demarchi, Marie; Cros, Myriam; Cailly, Priscilla; Aubry-Kientz, Mélaine; Balenghien, Thomas; Ezanno, Pauline

    2013-01-01

    The mosquito Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) is an invasive species which has colonized Southern Europe in the last two decades. As it is a competent vector for several arboviruses, its spread is of increasing public health concern, and there is a need for appropriate monitoring tools. In this paper, we have developed a modelling approach to predict mosquito abundance over time, and identify the main determinants of mosquito population dynamics. The model is temperature- and rainfall-driven, takes into account egg diapause during unfavourable periods, and was used to model the population dynamics of Ae. albopictus in the French Riviera since 2008. Entomological collections of egg stage from six locations in Nice conurbation were used for model validation. We performed a sensitivity analysis to identify the key parameters of the mosquito population dynamics. Results showed that the model correctly predicted entomological field data (Pearson r correlation coefficient values range from 0.73 to 0.93). The model’s main control points were related to adult’s mortality rates, the carrying capacity in pupae of the environment, and the beginning of the unfavourable period. The proposed model can be efficiently used as a tool to predict Ae. albopictus population dynamics, and to assess the efficiency of different control strategies. PMID:23624579

  9. A DYNAMIC MODEL OF AN ESTUARINE INVASION BY A NON-NATIVE SEAGRASS

    EPA Science Inventory

    Mathematical and simulation models provide an excellent tool for examining and predicting biological invasions in time and space; however, traditional models do not incorporate dynamic rates of population growth, which limits their realism. We developed a spatially explicit simul...

  10. Parameterizing Coefficients of a POD-Based Dynamical System

    NASA Technical Reports Server (NTRS)

    Kalb, Virginia L.

    2010-01-01

    A method of parameterizing the coefficients of a dynamical system based of a proper orthogonal decomposition (POD) representing the flow dynamics of a viscous fluid has been introduced. (A brief description of POD is presented in the immediately preceding article.) The present parameterization method is intended to enable construction of the dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers. The need for this or a similar method arises as follows: A procedure that includes direct numerical simulation followed by POD, followed by Galerkin projection to a dynamical system has been proven to enable representation of flow dynamics by a low-dimensional model at the Reynolds number of the simulation. However, a more difficult task is to obtain models that are valid over a range of Reynolds numbers. Extrapolation of low-dimensional models by use of straightforward Reynolds-number-based parameter continuation has proven to be inadequate for successful prediction of flows. A key part of the problem of constructing a dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers is the problem of understanding and providing for the variation of the coefficients of the dynamical system with the Reynolds number. Prior methods do not enable capture of temporal dynamics over ranges of Reynolds numbers in low-dimensional models, and are not even satisfactory when large numbers of modes are used. The basic idea of the present method is to solve the problem through a suitable parameterization of the coefficients of the dynamical system. The parameterization computations involve utilization of the transfer of kinetic energy between modes as a function of Reynolds number. The thus-parameterized dynamical system accurately predicts the flow dynamics and is applicable to a range of flow problems in the dynamical regime around the Hopf bifurcation. Parameter-continuation software can be used on the parameterized dynamical system to derive a bifurcation diagram that accurately predicts the temporal flow behavior.

  11. Predictable patterns of the May-June rainfall anomaly over East Asia

    NASA Astrophysics Data System (ADS)

    Xing, Wen; Wang, Bin; Yim, So-Young; Ha, Kyung-Ja

    2017-02-01

    During early summer (May-June, MJ), East Asia (EA) subtropical front is a defining feature of Asian monsoon, which produces the most prominent precipitation band in the global subtropics. Here we show that dynamical prediction of early summer EA (20°N-45°N, 100°E-130°E) rainfall made by four coupled climate models' ensemble hindcast (1979-2010) yields only a moderate skill and cannot be used to estimate predictability. The present study uses an alternative, empirical orthogonal function (EOF)-based physical-empirical (P-E) model approach to predict rainfall anomaly pattern and estimate its potential predictability. The first three leading modes are physically meaningful and can be, respectively, attributed to (a) the interaction between the anomalous western North Pacific subtropical high and underlying Indo-Pacific warm ocean, (b) the forcing associated with North Pacific sea surface temperature (SST) anomaly, and (c) the development of equatorial central Pacific SST anomalies. A suite of P-E models is established to forecast the first three leading principal components. All predictors are 0 month ahead of May, so the prediction here is named as a 0 month lead prediction. The cross-validated hindcast results demonstrate that these modes may be predicted with significant temporal correlation skills (0.48-0.72). Using the predicted principal components and the corresponding EOF patterns, the total MJ rainfall anomaly was hindcasted for the period of 1979-2015. The time-mean pattern correlation coefficient (PCC) score reaches 0.38, which is significantly higher than dynamical models' multimodel ensemble skill (0.21). The estimated potential maximum attainable PCC is around 0.65, suggesting that the dynamical prediction models may have large rooms to improve. Limitations and future work are discussed.

  12. Season-ahead water quality forecasts for the Schuylkill River, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Block, P. J.; Leung, K.

    2013-12-01

    Anticipating and preparing for elevated water quality parameter levels in critical water sources, using weather forecasts, is not uncommon. In this study, we explore the feasibility of extending this prediction scale to a season-ahead for the Schuylkill River in Philadelphia, utilizing both statistical and dynamical prediction models, to characterize the season. This advance information has relevance for recreational activities, ecosystem health, and water treatment, as the Schuylkill provides 40% of Philadelphia's water supply. The statistical model associates large-scale climate drivers with streamflow and water quality parameter levels; numerous variables from NOAA's CFSv2 model are evaluated for the dynamical approach. A multi-model combination is also assessed. Results indicate moderately skillful prediction of average summertime total coliform and wintertime turbidity, using season-ahead oceanic and atmospheric variables, predominantly from the North Atlantic Ocean. Models predicting the number of elevated turbidity events across the wintertime season are also explored.

  13. Integration of Gravitational Torques in Cerebellar Pathways Allows for the Dynamic Inverse Computation of Vertical Pointing Movements of a Robot Arm

    PubMed Central

    Gentili, Rodolphe J.; Papaxanthis, Charalambos; Ebadzadeh, Mehdi; Eskiizmirliler, Selim; Ouanezar, Sofiane; Darlot, Christian

    2009-01-01

    Background Several authors suggested that gravitational forces are centrally represented in the brain for planning, control and sensorimotor predictions of movements. Furthermore, some studies proposed that the cerebellum computes the inverse dynamics (internal inverse model) whereas others suggested that it computes sensorimotor predictions (internal forward model). Methodology/Principal Findings This study proposes a model of cerebellar pathways deduced from both biological and physical constraints. The model learns the dynamic inverse computation of the effect of gravitational torques from its sensorimotor predictions without calculating an explicit inverse computation. By using supervised learning, this model learns to control an anthropomorphic robot arm actuated by two antagonists McKibben artificial muscles. This was achieved by using internal parallel feedback loops containing neural networks which anticipate the sensorimotor consequences of the neural commands. The artificial neural networks architecture was similar to the large-scale connectivity of the cerebellar cortex. Movements in the sagittal plane were performed during three sessions combining different initial positions, amplitudes and directions of movements to vary the effects of the gravitational torques applied to the robotic arm. The results show that this model acquired an internal representation of the gravitational effects during vertical arm pointing movements. Conclusions/Significance This is consistent with the proposal that the cerebellar cortex contains an internal representation of gravitational torques which is encoded through a learning process. Furthermore, this model suggests that the cerebellum performs the inverse dynamics computation based on sensorimotor predictions. This highlights the importance of sensorimotor predictions of gravitational torques acting on upper limb movements performed in the gravitational field. PMID:19384420

  14. Finite Element Model Development For Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.

  15. A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM

    PubMed Central

    Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei

    2018-01-01

    Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model’s performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM’s parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models’ performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors. PMID:29342942

  16. Feedbacks Between Shallow Groundwater Dynamics and Surface Topography on Runoff Generation in Flat Fields

    NASA Astrophysics Data System (ADS)

    Appels, Willemijn M.; Bogaart, Patrick W.; van der Zee, Sjoerd E. A. T. M.

    2017-12-01

    In winter, saturation excess (SE) ponding is observed regularly in temperate lowland regions. Surface runoff dynamics are controlled by small topographical features that are unaccounted for in hydrological models. To better understand storage and routing effects of small-scale topography and their interaction with shallow groundwater under SE conditions, we developed a model of reduced complexity to investigate SE runoff generation, emphasizing feedbacks between shallow groundwater dynamics and mesotopography. The dynamic specific yield affected unsaturated zone water storage, causing rapid switches between negative and positive head and a flatter groundwater mound than predicted by analytical agrohydrological models. Accordingly, saturated areas were larger and local groundwater fluxes smaller than predicted, leading to surface runoff generation. Mesotopographic features routed water over larger distances, providing a feedback mechanism that amplified changes to the shape of the groundwater mound. This in turn enhanced runoff generation, but whether it also resulted in runoff events depended on the geometry and location of the depressions. Whereas conditions favorable to runoff generation may abound during winter, these feedbacks profoundly reduce the predictability of SE runoff: statistically identical rainfall series may result in completely different runoff generation. The model results indicate that waterlogged areas in any given rainfall event are larger than those predicted by current analytical groundwater models used for drainage design. This change in the groundwater mound extent has implications for crop growth and damage assessments.

  17. Dynamics of blood flow in a microfluidic ladder network

    NASA Astrophysics Data System (ADS)

    Maddala, Jeevan; Zilberman-Rudenko, Jevgenia; McCarty, Owen

    The dynamics of a complex mixture of cells and proteins, such as blood, in perturbed shear flow remains ill-defined. Microfluidics is a promising technology for improving the understanding of blood flow under complex conditions of shear; as found in stent implants and in tortuous blood vessels. We model the fluid dynamics of blood flow in a microfluidic ladder network with dimensions mimicking venules. Interaction of blood cells was modeled using multiagent framework, where cells of different diameters were treated as spheres. This model served as the basis for predicting transition regions, collision pathways, re-circulation zones and residence times of cells dependent on their diameters and device architecture. Based on these insights from the model, we were able to predict the clot formation configurations at various locations in the device. These predictions were supported by the experiments using whole blood. To facilitate platelet aggregation, the devices were coated with fibrillar collagen and tissue factor. Blood was perfused through the microfluidic device for 9 min at a physiologically relevant venous shear rate of 600 s-1. Using fluorescent microscopy, we observed flow transitions near the channel intersections and at the areas of blood flow obstruction, which promoted larger thrombus formation. This study of integrating model predictions with experimental design, aids in defining the dynamics of blood flow in microvasculature and in development of novel biomedical devices.

  18. Analytical Finite Element Simulation Model for Structural Crashworthiness Prediction

    DOT National Transportation Integrated Search

    1974-02-01

    The analytical development and appropriate derivations are presented for a simulation model of vehicle crashworthiness prediction. Incremental equations governing the nonlinear elasto-plastic dynamic response of three-dimensional frame structures are...

  19. Solar Dynamics Observatory (SDO) HGAS Induced Jitter

    NASA Technical Reports Server (NTRS)

    Liu, Alice; Blaurock, Carl; Liu, Kuo-Chia; Mule, Peter

    2008-01-01

    This paper presents the results of a comprehensive assessment of High Gain Antenna System induced jitter on the Solar Dynamics Observatory. The jitter prediction is created using a coupled model of the structural dynamics, optical response, control systems, and stepper motor actuator electromechanical dynamics. The paper gives an overview of the model components, presents the verification processes used to evaluate the models, describes validation and calibration tests and model-to-measurement comparison results, and presents the jitter analysis methodology and results.

  20. Development of an improved MATLAB GUI for the prediction of coefficients of restitution, and integration into LMS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baca, Renee Nicole; Congdon, Michael L.; Brake, Matthew Robert

    In 2012, a Matlab GUI for the prediction of the coefficient of restitution was developed in order to enable the formulation of more accurate Finite Element Analysis (FEA) models of components. This report details the development of a new Rebound Dynamics GUI, and how it differs from the previously developed program. The new GUI includes several new features, such as source and citation documentation for the material database, as well as a multiple materials impact modeler for use with LMS Virtual.Lab Motion (LMS VLM), and a rigid body dynamics modeling software. The Rebound Dynamics GUI has been designed to workmore » with LMS VLM to enable straightforward incorporation of velocity-dependent coefficients of restitution in rigid body dynamics simulations.« less

  1. Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers.

    PubMed

    Axelsen, Jacob Bock; Yaari, Rami; Grenfell, Bryan T; Stone, Lewi

    2014-07-01

    Human influenza occurs annually in most temperate climatic zones of the world, with epidemics peaking in the cold winter months. Considerable debate surrounds the relative role of epidemic dynamics, viral evolution, and climatic drivers in driving year-to-year variability of outbreaks. The ultimate test of understanding is prediction; however, existing influenza models rarely forecast beyond a single year at best. Here, we use a simple epidemiological model to reveal multiannual predictability based on high-quality influenza surveillance data for Israel; the model fit is corroborated by simple metapopulation comparisons within Israel. Successful forecasts are driven by temperature, humidity, antigenic drift, and immunity loss. Essentially, influenza dynamics are a balance between large perturbations following significant antigenic jumps, interspersed with nonlinear epidemic dynamics tuned by climatic forcing.

  2. Use of simulated satellite radiances from a mesoscale numerical model to understand kinematic and dynamic processes

    NASA Technical Reports Server (NTRS)

    Kalb, Michael; Robertson, Franklin; Jedlovec, Gary; Perkey, Donald

    1987-01-01

    Techniques by which mesoscale numerical weather prediction model output and radiative transfer codes are combined to simulate the radiance fields that a given passive temperature/moisture satellite sensor would see if viewing the evolving model atmosphere are introduced. The goals are to diagnose the dynamical atmospheric processes responsible for recurring patterns in observed satellite radiance fields, and to develop techniques to anticipate the ability of satellite sensor systems to depict atmospheric structures and provide information useful for numerical weather prediction (NWP). The concept of linking radiative transfer and dynamical NWP codes is demonstrated with time sequences of simulated radiance imagery in the 24 TIROS vertical sounder channels derived from model integrations for March 6, 1982.

  3. Discovering novel phenotypes with automatically inferred dynamic models: a partial melanocyte conversion in Xenopus

    NASA Astrophysics Data System (ADS)

    Lobo, Daniel; Lobikin, Maria; Levin, Michael

    2017-01-01

    Progress in regenerative medicine requires reverse-engineering cellular control networks to infer perturbations with desired systems-level outcomes. Such dynamic models allow phenotypic predictions for novel perturbations to be rapidly assessed in silico. Here, we analyzed a Xenopus model of conversion of melanocytes to a metastatic-like phenotype only previously observed in an all-or-none manner. Prior in vivo genetic and pharmacological experiments showed that individual animals either fully convert or remain normal, at some characteristic frequency after a given perturbation. We developed a Machine Learning method which inferred a model explaining this complex, stochastic all-or-none dataset. We then used this model to ask how a new phenotype could be generated: animals in which only some of the melanocytes converted. Systematically performing in silico perturbations, the model predicted that a combination of altanserin (5HTR2 inhibitor), reserpine (VMAT inhibitor), and VP16-XlCreb1 (constitutively active CREB) would break the all-or-none concordance. Remarkably, applying the predicted combination of three reagents in vivo revealed precisely the expected novel outcome, resulting in partial conversion of melanocytes within individuals. This work demonstrates the capability of automated analysis of dynamic models of signaling networks to discover novel phenotypes and predictively identify specific manipulations that can reach them.

  4. Proton exchange membrane fuel cell model for aging predictions: Simulated equivalent active surface area loss and comparisons with durability tests

    NASA Astrophysics Data System (ADS)

    Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.

    2016-09-01

    The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.

  5. Prediction of population with Alzheimer's disease in the European Union using a system dynamics model.

    PubMed

    Tomaskova, Hana; Kuhnova, Jitka; Cimler, Richard; Dolezal, Ondrej; Kuca, Kamil

    2016-01-01

    Alzheimer's disease (AD) is a slowly progressing neurodegenerative brain disease with irreversible brain effects; it is the most common cause of dementia. With increasing age, the probability of suffering from AD increases. In this research, population growth of the European Union (EU) until the year 2080 and the number of patients with AD are modeled. The aim of this research is to predict the spread of AD in the EU population until year 2080 using a computer simulation. For the simulation of the EU population and the occurrence of AD in this population, a system dynamics modeling approach has been used. System dynamics is a useful and effective method for the investigation of complex social systems. Over the past decades, its applicability has been demonstrated in a wide variety of applications. In this research, this method has been used to investigate the growth of the EU population and predict the number of patients with AD. The model has been calibrated on the population prediction data created by Eurostat. Based on data from Eurostat, the EU population until year 2080 has been modeled. In 2013, the population of the EU was 508 million and the number of patients with AD was 7.5 million. Based on the prediction, in 2040, the population of the EU will be 524 million and the number of patients with AD will be 13.1 million. By the year 2080, the EU population will be 520 million and the number of patients with AD will be 13.7 million. System dynamics modeling approach has been used for the prediction of the number of patients with AD in the EU population till the year 2080. These results can be used to determine the economic burden of the treatment of these patients. With different input data, the simulation can be used also for the different regions as well as for different noncontagious disease predictions.

  6. Measles on the Edge: Coastal Heterogeneities and Infection Dynamics

    PubMed Central

    Bharti, Nita; Xia, Yingcun; Bjornstad, Ottar N.; Grenfell, Bryan T.

    2008-01-01

    Mathematical models can help elucidate the spatio-temporal dynamics of epidemics as well as the impact of control measures. The gravity model for directly transmitted diseases is currently one of the most parsimonious models for spatial epidemic spread. This model uses distance-weighted, population size-dependent coupling to estimate host movement and disease incidence in metapopulations. The model captures overall measles dynamics in terms of underlying human movement in pre-vaccination England and Wales (previously established). In spatial models, edges often present a special challenge. Therefore, to test the model's robustness, we analyzed gravity model incidence predictions for coastal cities in England and Wales. Results show that, although predictions are accurate for inland towns, they significantly underestimate coastal persistence. We examine incidence, outbreak seasonality, and public transportation records, to show that the model's inaccuracies stem from an underestimation of total contacts per individual along the coast. We rescue this predicted ‘edge effect’ by increasing coastal contacts to approximate the number of per capita inland contacts. These results illustrate the impact of ‘edge effects’ on epidemic metapopulations in general and illustrate directions for the refinement of spatiotemporal epidemic models. PMID:18398467

  7. The Influence of Dynamic Contact Angle on Wetting Dynamics

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Garoff, Steven

    2005-01-01

    When surface tension forces dominate, and regardless of whether the situation is static or dynamic, the contact angle (the angle the interface between two immiscible fluids makes when it contacts a solid) is the key parameter that determines the shape of a fluid-fluid interface. The static contact angle is easy to measure and implement in models predicting static capillary surface shapes and such associated quantities as pressure drops. By contrast, when the interface moves relative to the solid (as in dynamic wetting processes) the dynamic contact angle is not identified unambiguously because it depends on the geometry of the system Consequently, its determination becomes problematic and measurements in one geometry cannot be applied in another for prediction purposes. However, knowing how to measure and use the dynamic contact angle is crucial to determine such dynamics as a microsystem throughput reliably. In this talk we will present experimental and analytical efforts aimed at resolving modeling issues present in dynamic wetting. We will review experiments that show the inadequacy of the usual hydrodynamic model when a fluid-fluid meniscus moves over a solid surface such as the wall of a small tube or duct. We will then present analytical results that show how to parametrize these problems in a predictive manner. We will illustrate these ideas by showing how to implement the method in numerical fluid mechanical calculations.

  8. Fast integration-based prediction bands for ordinary differential equation models.

    PubMed

    Hass, Helge; Kreutz, Clemens; Timmer, Jens; Kaschek, Daniel

    2016-04-15

    To gain a deeper understanding of biological processes and their relevance in disease, mathematical models are built upon experimental data. Uncertainty in the data leads to uncertainties of the model's parameters and in turn to uncertainties of predictions. Mechanistic dynamic models of biochemical networks are frequently based on nonlinear differential equation systems and feature a large number of parameters, sparse observations of the model components and lack of information in the available data. Due to the curse of dimensionality, classical and sampling approaches propagating parameter uncertainties to predictions are hardly feasible and insufficient. However, for experimental design and to discriminate between competing models, prediction and confidence bands are essential. To circumvent the hurdles of the former methods, an approach to calculate a profile likelihood on arbitrary observations for a specific time point has been introduced, which provides accurate confidence and prediction intervals for nonlinear models and is computationally feasible for high-dimensional models. In this article, reliable and smooth point-wise prediction and confidence bands to assess the model's uncertainty on the whole time-course are achieved via explicit integration with elaborate correction mechanisms. The corresponding system of ordinary differential equations is derived and tested on three established models for cellular signalling. An efficiency analysis is performed to illustrate the computational benefit compared with repeated profile likelihood calculations at multiple time points. The integration framework and the examples used in this article are provided with the software package Data2Dynamics, which is based on MATLAB and freely available at http://www.data2dynamics.org helge.hass@fdm.uni-freiburg.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Expanding a dynamic flux balance model of yeast fermentation to genome-scale

    PubMed Central

    2011-01-01

    Background Yeast is considered to be a workhorse of the biotechnology industry for the production of many value-added chemicals, alcoholic beverages and biofuels. Optimization of the fermentation is a challenging task that greatly benefits from dynamic models able to accurately describe and predict the fermentation profile and resulting products under different genetic and environmental conditions. In this article, we developed and validated a genome-scale dynamic flux balance model, using experimentally determined kinetic constraints. Results Appropriate equations for maintenance, biomass composition, anaerobic metabolism and nutrient uptake are key to improve model performance, especially for predicting glycerol and ethanol synthesis. Prediction profiles of synthesis and consumption of the main metabolites involved in alcoholic fermentation closely agreed with experimental data obtained from numerous lab and industrial fermentations under different environmental conditions. Finally, fermentation simulations of genetically engineered yeasts closely reproduced previously reported experimental results regarding final concentrations of the main fermentation products such as ethanol and glycerol. Conclusion A useful tool to describe, understand and predict metabolite production in batch yeast cultures was developed. The resulting model, if used wisely, could help to search for new metabolic engineering strategies to manage ethanol content in batch fermentations. PMID:21595919

  10. Near infrared spectroscopy based monitoring of extraction processes of raw material with the help of dynamic predictive modeling

    NASA Astrophysics Data System (ADS)

    Wang, Haixia; Suo, Tongchuan; Wu, Xiaolin; Zhang, Yue; Wang, Chunhua; Yu, Heshui; Li, Zheng

    2018-03-01

    The control of batch-to-batch quality variations remains a challenging task for pharmaceutical industries, e.g., traditional Chinese medicine (TCM) manufacturing. One difficult problem is to produce pharmaceutical products with consistent quality from raw material of large quality variations. In this paper, an integrated methodology combining the near infrared spectroscopy (NIRS) and dynamic predictive modeling is developed for the monitoring and control of the batch extraction process of licorice. With the spectra data in hand, the initial state of the process is firstly estimated with a state-space model to construct a process monitoring strategy for the early detection of variations induced by the initial process inputs such as raw materials. Secondly, the quality property of the end product is predicted at the mid-course during the extraction process with a partial least squares (PLS) model. The batch-end-time (BET) is then adjusted accordingly to minimize the quality variations. In conclusion, our study shows that with the help of the dynamic predictive modeling, NIRS can offer the past and future information of the process, which enables more accurate monitoring and control of process performance and product quality.

  11. An online spatiotemporal prediction model for dengue fever epidemic in Kaohsiung (Taiwan).

    PubMed

    Yu, Hwa-Lung; Angulo, José M; Cheng, Ming-Hung; Wu, Jiaping; Christakos, George

    2014-05-01

    The emergence and re-emergence of disease epidemics is a complex question that may be influenced by diverse factors, including the space-time dynamics of human populations, environmental conditions, and associated uncertainties. This study proposes a stochastic framework to integrate space-time dynamics in the form of a Susceptible-Infected-Recovered (SIR) model, together with uncertain disease observations, into a Bayesian maximum entropy (BME) framework. The resulting model (BME-SIR) can be used to predict space-time disease spread. Specifically, it was applied to obtain a space-time prediction of the dengue fever (DF) epidemic that took place in Kaohsiung City (Taiwan) during 2002. In implementing the model, the SIR parameters were continually updated and information on new cases of infection was incorporated. The results obtained show that the proposed model is rigorous to user-specified initial values of unknown model parameters, that is, transmission and recovery rates. In general, this model provides a good characterization of the spatial diffusion of the DF epidemic, especially in the city districts proximal to the location of the outbreak. Prediction performance may be affected by various factors, such as virus serotypes and human intervention, which can change the space-time dynamics of disease diffusion. The proposed BME-SIR disease prediction model can provide government agencies with a valuable reference for the timely identification, control, and prevention of DF spread in space and time. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Increased Drought Impacts on Temperate Rainforests from Southern South America: Results of a Process-Based, Dynamic Forest Model

    PubMed Central

    Gutiérrez, Alvaro G.; Armesto, Juan J.; Díaz, M. Francisca; Huth, Andreas

    2014-01-01

    Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests. PMID:25068869

  13. Increased drought impacts on temperate rainforests from southern South America: results of a process-based, dynamic forest model.

    PubMed

    Gutiérrez, Alvaro G; Armesto, Juan J; Díaz, M Francisca; Huth, Andreas

    2014-01-01

    Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests.

  14. Modeling to predict pilot performance during CDTI-based in-trail following experiments

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1984-01-01

    A mathematical model was developed of the flight system with the pilot using a cockpit display of traffic information (CDTI) to establish and maintain in-trail spacing behind a lead aircraft during approach. Both in-trail and vertical dynamics were included. The nominal spacing was based on one of three criteria (Constant Time Predictor; Constant Time Delay; or Acceleration Cue). This model was used to simulate digitally the dynamics of a string of multiple following aircraft, including response to initial position errors. The simulation was used to predict the outcome of a series of in-trail following experiments, including pilot performance in maintaining correct longitudinal spacing and vertical position. The experiments were run in the NASA Ames Research Center multi-cab cockpit simulator facility. The experimental results were then used to evaluate the model and its prediction accuracy. Model parameters were adjusted, so that modeled performance matched experimental results. Lessons learned in this modeling and prediction study are summarized.

  15. Prediction of muscle activation for an eye movement with finite element modeling.

    PubMed

    Karami, Abbas; Eghtesad, Mohammad; Haghpanah, Seyyed Arash

    2017-10-01

    In this paper, a 3D finite element (FE) modeling is employed in order to predict extraocular muscles' activation and investigate force coordination in various motions of the eye orbit. A continuum constitutive hyperelastic model is employed for material description in dynamic modeling of the extraocular muscles (EOMs). Two significant features of this model are accurate mass modeling with FE method and stimulating EOMs for motion through muscle activation parameter. In order to validate the eye model, a forward dynamics simulation of the eye motion is carried out by variation of the muscle activation. Furthermore, to realize muscle activation prediction in various eye motions, two different tracking-based inverse controllers are proposed. The performance of these two inverse controllers is investigated according to their resulted muscle force magnitude and muscle force coordination. The simulation results are compared with the available experimental data and the well-known existing neurological laws. The comparison authenticates both the validation and the prediction results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Gosangi, Rakesh; Gutierrez-Osuna, Ricardo

    2011-09-01

    We present a data-driven probabilistic framework to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Although building these models provides an insight into the sensor behavior, they also require a thorough understanding of the underlying operating principles. Here we propose a data-driven approach to characterize the dynamical relationship between sensor inputs and outputs. Namely, we use dynamic Bayesian networks (DBNs), probabilistic models that represent temporal relations between a set of random variables. We identify a set of control variables that influence the sensor responses, create a graphical representation that captures the causal relations between these variables, and finally train the model with experimental data. We validated the approach on experimental data in terms of predictive accuracy and classification performance. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well as capture the discriminatory information present in the sensor transients.

  17. Enhancing seasonal climate prediction capacity for the Pacific countries

    NASA Astrophysics Data System (ADS)

    Kuleshov, Y.; Jones, D.; Hendon, H.; Charles, A.; Cottrill, A.; Lim, E.-P.; Langford, S.; de Wit, R.; Shelton, K.

    2012-04-01

    Seasonal and inter-annual climate variability is a major factor in determining the vulnerability of many Pacific Island Countries to climate change and there is need to improve weekly to seasonal range climate prediction capabilities beyond what is currently available from statistical models. In the seasonal climate prediction project under the Australian Government's Pacific Adaptation Strategy Assistance Program (PASAP), we describe a comprehensive project to strengthen the climate prediction capacities in National Meteorological Services in 14 Pacific Island Countries and East Timor. The intent is particularly to reduce the vulnerability of current services to a changing climate, and improve the overall level of information available assist with managing climate variability. Statistical models cannot account for aspects of climate variability and change that are not represented in the historical record. In contrast, dynamical physics-based models implicitly include the effects of a changing climate whatever its character or cause and can predict outcomes not seen previously. The transition from a statistical to a dynamical prediction system provides more valuable and applicable climate information to a wide range of climate sensitive sectors throughout the countries of the Pacific region. In this project, we have developed seasonal climate outlooks which are based upon the current dynamical model POAMA (Predictive Ocean-Atmosphere Model for Australia) seasonal forecast system. At present, meteorological services of the Pacific Island Countries largely employ statistical models for seasonal outlooks. Outcomes of the PASAP project enhanced capabilities of the Pacific Island Countries in seasonal prediction providing National Meteorological Services with an additional tool to analyse meteorological variables such as sea surface temperatures, air temperature, pressure and rainfall using POAMA outputs and prepare more accurate seasonal climate outlooks.

  18. Efficient finite element modelling for the investigation of the dynamic behaviour of a structure with bolted joints

    NASA Astrophysics Data System (ADS)

    Omar, R.; Rani, M. N. Abdul; Yunus, M. A.; Mirza, W. I. I. Wan Iskandar; Zin, M. S. Mohd

    2018-04-01

    A simple structure with bolted joints consists of the structural components, bolts and nuts. There are several methods to model the structures with bolted joints, however there is no reliable, efficient and economic modelling methods that can accurately predict its dynamics behaviour. Explained in this paper is an investigation that was conducted to obtain an appropriate modelling method for bolted joints. This was carried out by evaluating four different finite element (FE) models of the assembled plates and bolts namely the solid plates-bolts model, plates without bolt model, hybrid plates-bolts model and simplified plates-bolts model. FE modal analysis was conducted for all four initial FE models of the bolted joints. Results of the FE modal analysis were compared with the experimental modal analysis (EMA) results. EMA was performed to extract the natural frequencies and mode shapes of the test physical structure with bolted joints. Evaluation was made by comparing the number of nodes, number of elements, elapsed computer processing unit (CPU) time, and the total percentage of errors of each initial FE model when compared with EMA result. The evaluation showed that the simplified plates-bolts model could most accurately predict the dynamic behaviour of the structure with bolted joints. This study proved that the reliable, efficient and economic modelling of bolted joints, mainly the representation of the bolting, has played a crucial element in ensuring the accuracy of the dynamic behaviour prediction.

  19. A generalized population dynamics model for reproductive interference with absolute density dependence.

    PubMed

    Kyogoku, Daisuke; Sota, Teiji

    2017-05-17

    Interspecific mating interactions, or reproductive interference, can affect population dynamics, species distribution and abundance. Previous population dynamics models have assumed that the impact of frequency-dependent reproductive interference depends on the relative abundances of species. However, this assumption could be an oversimplification inappropriate for making quantitative predictions. Therefore, a more general model to forecast population dynamics in the presence of reproductive interference is required. Here we developed a population dynamics model to describe the absolute density dependence of reproductive interference, which appears likely when encounter rate between individuals is important. Our model (i) can produce diverse shapes of isoclines depending on parameter values and (ii) predicts weaker reproductive interference when absolute density is low. These novel characteristics can create conditions where coexistence is stable and independent from the initial conditions. We assessed the utility of our model in an empirical study using an experimental pair of seed beetle species, Callosobruchus maculatus and Callosobruchus chinensis. Reproductive interference became stronger with increasing total beetle density even when the frequencies of the two species were kept constant. Our model described the effects of absolute density and showed a better fit to the empirical data than the existing model overall.

  20. Dynamic fuzzy modeling of storm water infiltration in urban fractured aquifers

    USGS Publications Warehouse

    Hong, Y.-S.; Rosen, Michael R.; Reeves, R.R.

    2002-01-01

    In an urban fractured-rock aquifer in the Mt. Eden area of Auckland, New Zealand, disposal of storm water is via "soakholes" drilled directly into the top of the fractured basalt rock. The dynamic response of the groundwater level due to the storm water infiltration shows characteristics of a strongly time-varying system. A dynamic fuzzy modeling approach, which is based on multiple local models that are weighted using fuzzy membership functions, has been developed to identify and predict groundwater level fluctuations caused by storm water infiltration. The dynamic fuzzy model is initialized by the fuzzy clustering algorithm and optimized by the gradient-descent algorithm in order to effectively derive the multiple local models-each of which is associated with a locally valid model that represents the groundwater level state as a response to different intensities of rainfall events. The results have shown that even if the number of fuzzy local models derived is small, the fuzzy modeling approach developed provides good prediction results despite the highly time-varying nature of this urban fractured-rock aquifer system. Further, it allows interpretable representations of the dynamic behavior of the groundwater system due to storm water infiltration.

  1. Predicting full-field dynamic strain on a three-bladed wind turbine using three dimensional point tracking and expansion techniques

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter

    2014-03-01

    As part of a project to predict the full-field dynamic strain in rotating structures (e.g. wind turbines and helicopter blades), an experimental measurement was performed on a wind turbine attached to a 500-lb steel block and excited using a mechanical shaker. In this paper, the dynamic displacement of several optical targets mounted to a turbine placed in a semi-built-in configuration was measured by using three-dimensional point tracking. Using an expansion algorithm in conjunction with a finite element model of the blades, the measured displacements were expanded to all finite element degrees of freedom. The calculated displacements were applied to the finite element model to extract dynamic strain on the surface as well as within the interior points of the structure. To validate the technique for dynamic strain prediction, the physical strain at eight locations on the blades was measured during excitation using strain-gages. The expansion was performed by using both structural modes of an individual cantilevered blade and using modes of the entire structure (three-bladed wind turbine and the fixture) and the predicted strain was compared to the physical strain-gage measurements. The results demonstrate the ability of the technique to predict full-field dynamic strain from limited sets of measurements and can be used as a condition based monitoring tool to help provide damage prognosis of structures during operation.

  2. A Combined Pharmacokinetic and Radiologic Assessment of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Predicts Response to Chemoradiation in Locally Advanced Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semple, Scott; Harry, Vanessa N. MRCOG.; Parkin, David E.

    2009-10-01

    Purpose: To investigate the combination of pharmacokinetic and radiologic assessment of dynamic contrast-enhanced magnetic resonance imaging (MRI) as an early response indicator in women receiving chemoradiation for advanced cervical cancer. Methods and Materials: Twenty women with locally advanced cervical cancer were included in a prospective cohort study. Dynamic contrast-enhanced MRI was carried out before chemoradiation, after 2 weeks of therapy, and at the conclusion of therapy using a 1.5-T MRI scanner. Radiologic assessment of uptake parameters was obtained from resultant intensity curves. Pharmacokinetic analysis using a multicompartment model was also performed. General linear modeling was used to combine radiologic andmore » pharmacokinetic parameters and correlated with eventual response as determined by change in MRI tumor size and conventional clinical response. A subgroup of 11 women underwent repeat pretherapy MRI to test pharmacokinetic reproducibility. Results: Pretherapy radiologic parameters and pharmacokinetic K{sup trans} correlated with response (p < 0.01). General linear modeling demonstrated that a combination of radiologic and pharmacokinetic assessments before therapy was able to predict more than 88% of variance of response. Reproducibility of pharmacokinetic modeling was confirmed. Conclusions: A combination of radiologic assessment with pharmacokinetic modeling applied to dynamic MRI before the start of chemoradiation improves the predictive power of either by more than 20%. The potential improvements in therapy response prediction using this type of combined analysis of dynamic contrast-enhanced MRI may aid in the development of more individualized, effective therapy regimens for this patient group.« less

  3. Non-linear dynamics in muscle fatigue and strength model during maximal self-perceived elbow extensors training.

    PubMed

    Gacesa, Jelena Popadic; Ivancevic, Tijana; Ivancevic, Nik; Paljic, Feodora Popic; Grujic, Nikola

    2010-08-26

    Our aim was to determine the dynamics in muscle strength increase and fatigue development during repetitive maximal contraction in specific maximal self-perceived elbow extensors training program. We will derive our functional model for m. triceps brachii in spirit of traditional Hill's two-component muscular model and after fitting our data, develop a prediction tool for this specific training system. Thirty-six healthy young men (21 +/- 1.0 y, BMI 25.4 +/- 7.2 kg/m(2)), who did not take part in any formal resistance exercise regime, volunteered for this study. The training protocol was performed on the isoacceleration dynamometer, lasted for 12 weeks, with a frequency of five sessions per week. Each training session included five sets of 10 maximal contractions (elbow extensions) with a 1 min resting period between each set. The non-linear dynamic system model was used for fitting our data in conjunction with the Levenberg-Marquardt regression algorithm. As a proper dynamical system, our functional model of m. triceps brachii can be used for prediction and control. The model can be used for the predictions of muscular fatigue in a single series, the cumulative daily muscular fatigue and the muscular growth throughout the training process. In conclusion, the application of non-linear dynamics in this particular training model allows us to mathematically explain some functional changes in the skeletal muscle as a result of its adaptation to programmed physical activity-training. 2010 Elsevier Ltd. All rights reserved.

  4. Methodology Development of a Gas-Liquid Dynamic Flow Regime Transition Model

    NASA Astrophysics Data System (ADS)

    Doup, Benjamin Casey

    Current reactor safety analysis codes, such as RELAP5, TRACE, and CATHARE, use flow regime maps or flow regime transition criteria that were developed for static fully-developed two-phase flows to choose interfacial transfer models that are necessary to solve the two-fluid model. The flow regime is therefore difficult to identify near the flow regime transitions, in developing two-phase flows, and in transient two-phase flows. Interfacial area transport equations were developed to more accurately predict the dynamic nature of two-phase flows. However, other model coefficients are still flow regime dependent. Therefore, an accurate prediction of the flow regime is still important. In the current work, the methodology for the development of a dynamic flow regime transition model that uses the void fraction and interfacial area concentration obtained by solving three-field the two-fluid model and two-group interfacial area transport equation is investigated. To develop this model, detailed local experimental data are obtained, the two-group interfacial area transport equations are revised, and a dynamic flow regime transition model is evaluated using a computational fluid dynamics model. Local experimental data is acquired for 63 different flow conditions in bubbly, cap-bubbly, slug, and churn-turbulent flow regimes. The measured parameters are the group-1 and group-2 bubble number frequency, void fraction, interfacial area concentration, and interfacial bubble velocities. The measurements are benchmarked by comparing the prediction of the superficial gas velocities, determined using the local measurements with those determined from volumetric flow rate measurements and the agreement is generally within +/-20%. The repeatability four-sensor probe construction process is within +/-10%. The repeatability of the measurement process is within +/-7%. The symmetry of the test section is examined and the average agreement is within +/-5.3% at z/D = 10 and +/-3.4% at z/D = 32. Revised source/sink terms for the two-group interfacial area transport equations are derived and fit to area-averaged experimental data to determine new model coefficients. The average agreement between this model and the experiment data for the void fraction and interfacial area concentration is 10.6% and 15.7%, respectively. This revised two-group interfacial area transport equation and the three-field two-fluid model are used to solve for the group-1 and group-2 interfacial area concentration and void fraction. These values and a dynamic flow regime transition model are used to classify the flow regimes. The flow regimes determined using this model are compared with the flow regimes based on the experimental data and on a flow regime map using Mishima and Ishii's (1984) transition criteria. The dynamic flow regime transition model is shown to predict the flow regimes dynamically and has improved the prediction of the flow regime over that using a flow regime map. Safety codes often employ the one-dimensional two-fluid model to model two-phase flows. The area-averaged relative velocity correlation necessary to close this model is derived from the drift flux model. The effects of the necessary assumptions used to derive this correlation are investigated using local measurements and these effects are found to have a limited impact on the prediction of the area-averaged relative velocity.

  5. Practical limits for reverse engineering of dynamical systems: a statistical analysis of sensitivity and parameter inferability in systems biology models.

    PubMed

    Erguler, Kamil; Stumpf, Michael P H

    2011-05-01

    The size and complexity of cellular systems make building predictive models an extremely difficult task. In principle dynamical time-course data can be used to elucidate the structure of the underlying molecular mechanisms, but a central and recurring problem is that many and very different models can be fitted to experimental data, especially when the latter are limited and subject to noise. Even given a model, estimating its parameters remains challenging in real-world systems. Here we present a comprehensive analysis of 180 systems biology models, which allows us to classify the parameters with respect to their contribution to the overall dynamical behaviour of the different systems. Our results reveal candidate elements of control in biochemical pathways that differentially contribute to dynamics. We introduce sensitivity profiles that concisely characterize parameter sensitivity and demonstrate how this can be connected to variability in data. Systematically linking data and model sloppiness allows us to extract features of dynamical systems that determine how well parameters can be estimated from time-course measurements, and associates the extent of data required for parameter inference with the model structure, and also with the global dynamical state of the system. The comprehensive analysis of so many systems biology models reaffirms the inability to estimate precisely most model or kinetic parameters as a generic feature of dynamical systems, and provides safe guidelines for performing better inferences and model predictions in the context of reverse engineering of mathematical models for biological systems.

  6. Observing Clonal Dynamics across Spatiotemporal Axes: A Prelude to Quantitative Fitness Models for Cancer.

    PubMed

    McPherson, Andrew W; Chan, Fong Chun; Shah, Sohrab P

    2018-02-01

    The ability to accurately model evolutionary dynamics in cancer would allow for prediction of progression and response to therapy. As a prelude to quantitative understanding of evolutionary dynamics, researchers must gather observations of in vivo tumor evolution. High-throughput genome sequencing now provides the means to profile the mutational content of evolving tumor clones from patient biopsies. Together with the development of models of tumor evolution, reconstructing evolutionary histories of individual tumors generates hypotheses about the dynamics of evolution that produced the observed clones. In this review, we provide a brief overview of the concepts involved in predicting evolutionary histories, and provide a workflow based on bulk and targeted-genome sequencing. We then describe the application of this workflow to time series data obtained for transformed and progressed follicular lymphomas (FL), and contrast the observed evolutionary dynamics between these two subtypes. We next describe results from a spatial sampling study of high-grade serous (HGS) ovarian cancer, propose mechanisms of disease spread based on the observed clonal mixtures, and provide examples of diversification through subclonal acquisition of driver mutations and convergent evolution. Finally, we state implications of the techniques discussed in this review as a necessary but insufficient step on the path to predictive modelling of disease dynamics. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Verification and Validation of the New Dynamic Mooring Modules Available in FAST v8: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian; Robertson, Amy; Jonkman, Jason

    2016-08-01

    The open-source aero-hydro-servo-elastic wind turbine simulation software, FAST v8, was recently coupled to two newly developed mooring dynamics modules: MoorDyn and FEAMooring. MoorDyn is a lumped-mass-based mooring dynamics module developed by the University of Maine, and FEAMooring is a finite-element-based mooring dynamics module developed by Texas A&M University. This paper summarizes the work performed to verify and validate these modules against other mooring models and measured test data to assess their reliability and accuracy. The quality of the fairlead load predictions by the open-source mooring modules MoorDyn and FEAMooring appear to be largely equivalent to what is predicted by themore » commercial tool OrcaFlex. Both mooring dynamic model predictions agree well with the experimental data, considering the given limitations in the accuracy of the platform hydrodynamic load calculation and the quality of the measurement data.« less

  8. Verification and Validation of the New Dynamic Mooring Modules Available in FAST v8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F.; Andersen, Morten T.; Robertson, Amy N.

    2016-07-01

    The open-source aero-hydro-servo-elastic wind turbine simulation software, FAST v8, was recently coupled to two newly developed mooring dynamics modules: MoorDyn and FEAMooring. MoorDyn is a lumped-mass-based mooring dynamics module developed by the University of Maine, and FEAMooring is a finite-element-based mooring dynamics module developed by Texas A&M University. This paper summarizes the work performed to verify and validate these modules against other mooring models and measured test data to assess their reliability and accuracy. The quality of the fairlead load predictions by the open-source mooring modules MoorDyn and FEAMooring appear to be largely equivalent to what is predicted by themore » commercial tool OrcaFlex. Both mooring dynamic model predictions agree well with the experimental data, considering the given limitations in the accuracy of the platform hydrodynamic load calculation and the quality of the measurement data.« less

  9. Challenges and opportunities for improved understanding of regional climate dynamics

    NASA Astrophysics Data System (ADS)

    Collins, Matthew; Minobe, Shoshiro; Barreiro, Marcelo; Bordoni, Simona; Kaspi, Yohai; Kuwano-Yoshida, Akira; Keenlyside, Noel; Manzini, Elisa; O'Reilly, Christopher H.; Sutton, Rowan; Xie, Shang-Ping; Zolina, Olga

    2018-01-01

    Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical-extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models.

  10. Dynamic Testing of a Subscale Sunshield for the Next Generation Space Telescope (NGST)

    NASA Technical Reports Server (NTRS)

    Lienard, Sebastien; Johnston, John D.; Ross, Brian; Smith, James; Brodeur, Steve (Technical Monitor)

    2001-01-01

    The NGST sunshield is a lightweight, flexible structure consisting of multiple layers of pretensioned, thin-film membranes supported by deployable booms. The structural dynamic behavior of the sunshield must be well understood in order to predict its influence on observatory performance. Ground tests were carried out in a vacuum environment to characterize the structural dynamic behavior of a one-tenth scale model of the sunshield. Results from the tests will be used to validate analytical modeling techniques that can be used in conjunction with scaling laws to predict the performance of the full-sized structure. This paper summarizes the ground tests and presents representative results for the dynamic behavior of the sunshield.

  11. A dynamic spatio-temporal model for spatial data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin; Walsh, Daniel P.

    2017-01-01

    Analyzing spatial data often requires modeling dependencies created by a dynamic spatio-temporal data generating process. In many applications, a generalized linear mixed model (GLMM) is used with a random effect to account for spatial dependence and to provide optimal spatial predictions. Location-specific covariates are often included as fixed effects in a GLMM and may be collinear with the spatial random effect, which can negatively affect inference. We propose a dynamic approach to account for spatial dependence that incorporates scientific knowledge of the spatio-temporal data generating process. Our approach relies on a dynamic spatio-temporal model that explicitly incorporates location-specific covariates. We illustrate our approach with a spatially varying ecological diffusion model implemented using a computationally efficient homogenization technique. We apply our model to understand individual-level and location-specific risk factors associated with chronic wasting disease in white-tailed deer from Wisconsin, USA and estimate the location the disease was first introduced. We compare our approach to several existing methods that are commonly used in spatial statistics. Our spatio-temporal approach resulted in a higher predictive accuracy when compared to methods based on optimal spatial prediction, obviated confounding among the spatially indexed covariates and the spatial random effect, and provided additional information that will be important for containing disease outbreaks.

  12. Modeling the population dynamics of Culex quinquefasciatus (Diptera: Culcidae), along an elevational gradient in Hawaii

    USGS Publications Warehouse

    Ahumada, Jorge A.; LaPointe, Dennis; Samuel, Michael D.

    2004-01-01

    We present a population model to understand the effects of temperature and rainfall on the population dynamics of the southern house mosquito, Culex quinquefasciatus Say, along an elevational gradient in Hawaii. We use a novel approach to model the effects of temperature on population growth by dynamically incorporating developmental rate into the transition matrix, by using physiological ages of immatures instead of chronological age or stages. We also model the effects of rainfall on survival of immatures as the cumulative number of days below a certain rain threshold. Finally, we incorporate density dependence into the model as competition between immatures within breeding sites. Our model predicts the upper altitudinal distributions of Cx. quinquefasciatus on the Big Island of Hawaii for self-sustaining mosquito and migrating summer sink populations at 1,475 and 1,715 m above sea level, respectively. Our model predicts that mosquitoes at lower elevations can grow under a broader range of rainfall parameters than middle and high elevation populations. Density dependence in conjunction with the seasonal forcing imposed by temperature and rain creates cycles in the dynamics of the population that peak in the summer and early fall. The model provides a reasonable fit to the available data on mosquito abundance for the east side of Mauna Loa, Hawaii. The predictions of our model indicate the importance of abiotic conditions on mosquito dynamics and have important implications for the management of diseases transmitted by Cx. quinquefasciatus in Hawaii and elsewhere.

  13. Prediction of Flows about Forebodies at High-Angle-of-Attack Dynamic Conditions

    NASA Technical Reports Server (NTRS)

    Fremaux, C. M.; vanDam, C. P.; Saephan, S.; DalBello, T.

    2003-01-01

    A Reynolds-average Navier Stokes method developed for rotorcraft type of flow problems is applied for predicting the forces and moments of forebody models at high-angle-of-attack dynamic conditions and for providing insight into the flow characteristics at these conditions. Wind-tunnel results from rotary testing on generic forebody models conducted by NASA Langley and DERA are used for comparison. This paper focuses on the steady-state flow problem.

  14. A High Precision Prediction Model Using Hybrid Grey Dynamic Model

    ERIC Educational Resources Information Center

    Li, Guo-Dong; Yamaguchi, Daisuke; Nagai, Masatake; Masuda, Shiro

    2008-01-01

    In this paper, we propose a new prediction analysis model which combines the first order one variable Grey differential equation Model (abbreviated as GM(1,1) model) from grey system theory and time series Autoregressive Integrated Moving Average (ARIMA) model from statistics theory. We abbreviate the combined GM(1,1) ARIMA model as ARGM(1,1)…

  15. Symbiont diversity may help coral reefs survive moderate climate change.

    PubMed

    Baskett, Marissa L; Gaines, Steven D; Nisbet, Roger M

    2009-01-01

    Given climate change, thermal stress-related mass coral-bleaching events present one of the greatest anthropogenic threats to coral reefs. While corals and their symbiotic algae may respond to future temperatures through genetic adaptation and shifts in community compositions, the climate may change too rapidly for coral response. To test this potential for response, here we develop a model of coral and symbiont ecological dynamics and symbiont evolutionary dynamics. Model results without variation in symbiont thermal tolerance predict coral reef collapse within decades under multiple future climate scenarios, consistent with previous threshold-based predictions. However, model results with genetic or community-level variation in symbiont thermal tolerance can predict coral reef persistence into the next century, provided low enough greenhouse gas emissions occur. Therefore, the level of greenhouse gas emissions will have a significant effect on the future of coral reefs, and accounting for biodiversity and biological dynamics is vital to estimating the size of this effect.

  16. Preface: Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Mancho, Ana M.; Hernández-García, Emilio; López, Cristóbal; Turiel, Antonio; Wiggins, Stephen; Pérez-Muñuzuri, Vicente

    2018-02-01

    The third edition of the international workshop Nonlinear Processes in Oceanic and Atmospheric Flows was held at the Institute of Mathematical Sciences (ICMAT) in Madrid from 6 to 8 July 2016. The event gathered oceanographers, atmospheric scientists, physicists, and applied mathematicians sharing a common interest in the nonlinear dynamics of geophysical fluid flows. The philosophy of this meeting was to bring together researchers from a variety of backgrounds into an environment that favoured a vigorous discussion of concepts across different disciplines. The present Special Issue on Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics contains selected contributions, mainly from attendants of the workshop, providing an updated perspective on modelling aspects of geophysical flows as well as issues on prediction and assimilation of observational data and novel tools for describing transport and mixing processes in these contexts. More details on these aspects are discussed in this preface.

  17. A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine

    NASA Astrophysics Data System (ADS)

    Peng, Chong; Wang, Lun; Liao, T. Warren

    2015-10-01

    Currently, chatter has become the critical factor in hindering machining quality and productivity in machining processes. To avoid cutting chatter, a new method based on dynamic cutting force simulation model and support vector machine (SVM) is presented for the prediction of chatter stability lobes. The cutting force is selected as the monitoring signal, and the wavelet energy entropy theory is used to extract the feature vectors. A support vector machine is constructed using the MATLAB LIBSVM toolbox for pattern classification based on the feature vectors derived from the experimental cutting data. Then combining with the dynamic cutting force simulation model, the stability lobes diagram (SLD) can be estimated. Finally, the predicted results are compared with existing methods such as zero-order analytical (ZOA) and semi-discretization (SD) method as well as actual cutting experimental results to confirm the validity of this new method.

  18. Dynamic optimization of metabolic networks coupled with gene expression.

    PubMed

    Waldherr, Steffen; Oyarzún, Diego A; Bockmayr, Alexander

    2015-01-21

    The regulation of metabolic activity by tuning enzyme expression levels is crucial to sustain cellular growth in changing environments. Metabolic networks are often studied at steady state using constraint-based models and optimization techniques. However, metabolic adaptations driven by changes in gene expression cannot be analyzed by steady state models, as these do not account for temporal changes in biomass composition. Here we present a dynamic optimization framework that integrates the metabolic network with the dynamics of biomass production and composition. An approximation by a timescale separation leads to a coupled model of quasi-steady state constraints on the metabolic reactions, and differential equations for the substrate concentrations and biomass composition. We propose a dynamic optimization approach to determine reaction fluxes for this model, explicitly taking into account enzyme production costs and enzymatic capacity. In contrast to the established dynamic flux balance analysis, our approach allows predicting dynamic changes in both the metabolic fluxes and the biomass composition during metabolic adaptations. Discretization of the optimization problems leads to a linear program that can be efficiently solved. We applied our algorithm in two case studies: a minimal nutrient uptake network, and an abstraction of core metabolic processes in bacteria. In the minimal model, we show that the optimized uptake rates reproduce the empirical Monod growth for bacterial cultures. For the network of core metabolic processes, the dynamic optimization algorithm predicted commonly observed metabolic adaptations, such as a diauxic switch with a preference ranking for different nutrients, re-utilization of waste products after depletion of the original substrate, and metabolic adaptation to an impending nutrient depletion. These examples illustrate how dynamic adaptations of enzyme expression can be predicted solely from an optimization principle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. On the Performance of Alternate Conceptual Ecohydrological Models for Streamflow Prediction

    NASA Astrophysics Data System (ADS)

    Naseem, Bushra; Ajami, Hoori; Cordery, Ian; Sharma, Ashish

    2016-04-01

    A merging of a lumped conceptual hydrological model with two conceptual dynamic vegetation models is presented to assess the performance of these models for simultaneous simulations of streamflow and leaf area index (LAI). Two conceptual dynamic vegetation models with differing representation of ecological processes are merged with a lumped conceptual hydrological model (HYMOD) to predict catchment scale streamflow and LAI. The merged RR-LAI-I model computes relative leaf biomass based on transpiration rates while the RR-LAI-II model computes above ground green and dead biomass based on net primary productivity and water use efficiency in response to soil moisture dynamics. To assess the performance of these models, daily discharge and 8-day MODIS LAI product for 27 catchments of 90 - 1600km2 in size located in the Murray - Darling Basin in Australia are used. Our results illustrate that when single-objective optimisation was focussed on maximizing the objective function for streamflow or LAI, the other un-calibrated predicted outcome (LAI if streamflow is the focus) was consistently compromised. Thus, single-objective optimization cannot take into account the essence of all processes in the conceptual ecohydrological models. However, multi-objective optimisation showed great strength for streamflow and LAI predictions. Both response outputs were better simulated by RR-LAI-II than RR-LAI-I due to better representation of physical processes such as net primary productivity (NPP) in RR-LAI-II. Our results highlight that simultaneous calibration of streamflow and LAI using a multi-objective algorithm proves to be an attractive tool for improved streamflow predictions.

  20. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    NASA Technical Reports Server (NTRS)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  1. The Rangeland Hydrology and Erosion Model: A dynamic approach for predicting soil loss on rangelands

    USDA-ARS?s Scientific Manuscript database

    In this study we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed agains...

  2. Predicting Student Performance in a Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Olsen, Jennifer K.; Aleven, Vincent; Rummel, Nikol

    2015-01-01

    Student models for adaptive systems may not model collaborative learning optimally. Past research has either focused on modeling individual learning or for collaboration, has focused on group dynamics or group processes without predicting learning. In the current paper, we adjust the Additive Factors Model (AFM), a standard logistic regression…

  3. Nonlinear modeling of chaotic time series: Theory and applications

    NASA Astrophysics Data System (ADS)

    Casdagli, M.; Eubank, S.; Farmer, J. D.; Gibson, J.; Desjardins, D.; Hunter, N.; Theiler, J.

    We review recent developments in the modeling and prediction of nonlinear time series. In some cases, apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases, it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifying and quantifying low-dimensional chaotic behavior. During the past few years, methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics, and human speech.

  4. Entraining IDyOT: Timing in the Information Dynamics of Thinking

    PubMed Central

    Forth, Jamie; Agres, Kat; Purver, Matthew; Wiggins, Geraint A.

    2016-01-01

    We present a novel hypothetical account of entrainment in music and language, in context of the Information Dynamics of Thinking model, IDyOT. The extended model affords an alternative view of entrainment, and its companion term, pulse, from earlier accounts. The model is based on hierarchical, statistical prediction, modeling expectations of both what an event will be and when it will happen. As such, it constitutes a kind of predictive coding, with a particular novel hypothetical implementation. Here, we focus on the model's mechanism for predicting when a perceptual event will happen, given an existing sequence of past events, which may be musical or linguistic. We propose a range of tests to validate or falsify the model, at various different levels of abstraction, and argue that computational modeling in general, and this model in particular, can offer a means of providing limited but useful evidence for evolutionary hypotheses. PMID:27803682

  5. Multiscale Modeling of PEEK Using Reactive Molecular Dynamics Modeling and Micromechanics

    NASA Technical Reports Server (NTRS)

    Pisani, William A.; Radue, Matthew; Chinkanjanarot, Sorayot; Bednarcyk, Brett A.; Pineda, Evan J.; King, Julia A.; Odegard, Gregory M.

    2018-01-01

    Polyether ether ketone (PEEK) is a high-performance, semi-crystalline thermoplastic that is used in a wide range of engineering applications, including some structural components of aircraft. The design of new PEEK-based materials requires a precise understanding of the multiscale structure and behavior of semi-crystalline PEEK. Molecular Dynamics (MD) modeling can efficiently predict bulk-level properties of single phase polymers, and micromechanics can be used to homogenize those phases based on the overall polymer microstructure. In this study, MD modeling was used to predict the mechanical properties of the amorphous and crystalline phases of PEEK. The hierarchical microstructure of PEEK, which combines the aforementioned phases, was modeled using a multiscale modeling approach facilitated by NASA's MSGMC. The bulk mechanical properties of semi-crystalline PEEK predicted using MD modeling and MSGMC agree well with vendor data, thus validating the multiscale modeling approach.

  6. A reduced-order model for compressible flows with buffeting condition using higher order dynamic mode decomposition with a mode selection criterion

    NASA Astrophysics Data System (ADS)

    Kou, Jiaqing; Le Clainche, Soledad; Zhang, Weiwei

    2018-01-01

    This study proposes an improvement in the performance of reduced-order models (ROMs) based on dynamic mode decomposition to model the flow dynamics of the attractor from a transient solution. By combining higher order dynamic mode decomposition (HODMD) with an efficient mode selection criterion, the HODMD with criterion (HODMDc) ROM is able to identify dominant flow patterns with high accuracy. This helps us to develop a more parsimonious ROM structure, allowing better predictions of the attractor dynamics. The method is tested in the solution of a NACA0012 airfoil buffeting in a transonic flow, and its good performance in both the reconstruction of the original solution and the prediction of the permanent dynamics is shown. In addition, the robustness of the method has been successfully tested using different types of parameters, indicating that the proposed ROM approach is a tool promising for using in both numerical simulations and experimental data.

  7. Structure-based control of complex networks with nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Yang, Gang; Albert, Reka

    What can we learn about controlling a system solely from its underlying network structure? Here we use a framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors, regardless of the dynamic details and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of classical structural control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case, but not in specific model instances. This work was supported by NSF Grants PHY 1205840 and IIS 1160995. JGTZ is a recipient of a Stand Up To Cancer - The V Foundation Convergence Scholar Award.

  8. Model of human dynamic orientation. Ph.D. Thesis; [associated with vestibular stimuli

    NASA Technical Reports Server (NTRS)

    Ormsby, C. C.

    1974-01-01

    The dynamics associated with the perception of orientation were modelled for near-threshold and suprathreshold vestibular stimuli. A model of the information available at the peripheral sensors which was consistent with available neurophysiologic data was developed and served as the basis for the models of the perceptual responses. The central processor was assumed to utilize the information from the peripheral sensors in an optimal (minimum mean square error) manner to produce the perceptual estimates of dynamic orientation. This assumption, coupled with the models of sensory information, determined the form of the model for the central processor. The problem of integrating information from the semi-circular canals and the otoliths to predict the perceptual response to motions which stimulated both organs was studied. A model was developed which was shown to be useful in predicting the perceptual response to multi-sensory stimuli.

  9. Prediction of SA 349/2 GV blade loads in high speed flight using several rotor analyses

    NASA Technical Reports Server (NTRS)

    Gaubert, Michel; Yamauchi, Gloria K.

    1987-01-01

    The influence of blade dynamics, dynamic stall, and transonic aerodynamics on the predictions of rotor loads in high-speed flight are presented. Data were obtained from an Aerospatiale Gazelle SA 349/2 helicopter with three Grande Vitesse blades. Several analyses are used for this investigation. First, blade dynamics effects on the correlation are studied using three rotor analyses which differ mainly in the method of calculating the blade elastic response. Next, an ONERA dynamic stall model is used to predict retreating blade stall. Finally, advancing blade aerodynamic loads are calculated using a NASA-developed rotorcraft analysis coupled with two transonic finite-difference analyses.

  10. Predictive Modeling of Rice Yellow Stem Borer Population Dynamics under Climate Change Scenarios in Indramayu

    NASA Astrophysics Data System (ADS)

    Nurhayati, E.; Koesmaryono, Y.; Impron

    2017-03-01

    Rice Yellow Stem Borer (YSB) is one of the major insect pests in rice plants that has high attack intensity in rice production center areas, especially in West Java. This pest is consider as holometabola insects that causes rice damage in the vegetative phase (deadheart) as well as generative phase (whitehead). Climatic factor is one of the environmental factors influence the pattern of dynamics population. The purpose of this study was to develop a predictive modeling of YSB pest dynamics population under climate change scenarios (2016-2035 period) using Dymex Model in Indramayu area, West Java. YSB modeling required two main components, namely climate parameters and YSB development lower threshold of temperature (To) to describe YSB life cycle in every phase. Calibration and validation test of models showed the coefficient of determination (R2) between the predicted results and observations of the study area were 0.74 and 0.88 respectively, which was able to illustrate the development, mortality, transfer of individuals from one stage to the next life also fecundity and YSB reproduction. On baseline climate condition, there was a tendency of population abundance peak (outbreak) occured when a change of rainfall intensity in the rainy season transition to dry season or the opposite conditions was happen. In both of application of climate change scenarios, the model outputs were generated well and able to predict the pattern of YSB population dynamics with a the increasing trend of specific population numbers, generation numbers per season and also shifting pattern of populations abundance peak in the future climatic conditions. These results can be adopted as a tool to predict outbreak and to give early warning to control YSB pest more effectively.

  11. Remaining dischargeable time prediction for lithium-ion batteries using unscented Kalman filter

    NASA Astrophysics Data System (ADS)

    Dong, Guangzhong; Wei, Jingwen; Chen, Zonghai; Sun, Han; Yu, Xiaowei

    2017-10-01

    To overcome the range anxiety, one of the important strategies is to accurately predict the range or dischargeable time of the battery system. To accurately predict the remaining dischargeable time (RDT) of a battery, a RDT prediction framework based on accurate battery modeling and state estimation is presented in this paper. Firstly, a simplified linearized equivalent-circuit-model is developed to simulate the dynamic characteristics of a battery. Then, an online recursive least-square-algorithm method and unscented-Kalman-filter are employed to estimate the system matrices and SOC at every prediction point. Besides, a discrete wavelet transform technique is employed to capture the statistical information of past dynamics of input currents, which are utilized to predict the future battery currents. Finally, the RDT can be predicted based on the battery model, SOC estimation results and predicted future battery currents. The performance of the proposed methodology has been verified by a lithium-ion battery cell. Experimental results indicate that the proposed method can provide an accurate SOC and parameter estimation and the predicted RDT can solve the range anxiety issues.

  12. The western spruce budworm model: structure and content.

    Treesearch

    K.A. Sheehan; W.P. Kemp; J.J. Colbert; N.L. Crookston

    1989-01-01

    The Budworm Model predicts the amounts of foliage destroyed annually by the western spruce budworm, Choristoneura occidentalis Freeman, in a forest stand. The model may be used independently, or it may be linked to the Stand Prognosis Model to simulate the dynamics of forest stands. Many processes that affect budworm population dynamics are...

  13. Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain.

    PubMed

    Aerts, Hannelore; Schirner, Michael; Jeurissen, Ben; Van Roost, Dirk; Achten, Eric; Ritter, Petra; Marinazzo, Daniele

    2018-01-01

    Presurgical planning for brain tumor resection aims at delineating eloquent tissue in the vicinity of the lesion to spare during surgery. To this end, noninvasive neuroimaging techniques such as functional MRI and diffusion-weighted imaging fiber tracking are currently employed. However, taking into account this information is often still insufficient, as the complex nonlinear dynamics of the brain impede straightforward prediction of functional outcome after surgical intervention. Large-scale brain network modeling carries the potential to bridge this gap by integrating neuroimaging data with biophysically based models to predict collective brain dynamics. As a first step in this direction, an appropriate computational model has to be selected, after which suitable model parameter values have to be determined. To this end, we simulated large-scale brain dynamics in 25 human brain tumor patients and 11 human control participants using The Virtual Brain, an open-source neuroinformatics platform. Local and global model parameters of the Reduced Wong-Wang model were individually optimized and compared between brain tumor patients and control subjects. In addition, the relationship between model parameters and structural network topology and cognitive performance was assessed. Results showed (1) significantly improved prediction accuracy of individual functional connectivity when using individually optimized model parameters; (2) local model parameters that can differentiate between regions directly affected by a tumor, regions distant from a tumor, and regions in a healthy brain; and (3) interesting associations between individually optimized model parameters and structural network topology and cognitive performance.

  14. Putting mechanisms into crop production models

    USDA-ARS?s Scientific Manuscript database

    Crop simulation models dynamically predict processes of carbon, nitrogen, and water balance on daily or hourly time-steps to the point of predicting yield and production at crop maturity. A brief history of these models is reviewed, and their level of mechanism for assimilation and respiration, ran...

  15. Bounded rationality alters the dynamics of paediatric immunization acceptance.

    PubMed

    Oraby, Tamer; Bauch, Chris T

    2015-06-02

    Interactions between disease dynamics and vaccinating behavior have been explored in many coupled behavior-disease models. Cognitive effects such as risk perception, framing, and subjective probabilities of adverse events can be important determinants of the vaccinating behaviour, and represent departures from the pure "rational" decision model that are often described as "bounded rationality". However, the impact of such cognitive effects in the context of paediatric infectious disease vaccines has received relatively little attention. Here, we develop a disease-behavior model that accounts for bounded rationality through prospect theory. We analyze the model and compare its predictions to a reduced model that lacks bounded rationality. We find that, in general, introducing bounded rationality increases the dynamical richness of the model and makes it harder to eliminate a paediatric infectious disease. In contrast, in other cases, a low cost, highly efficacious vaccine can be refused, even when the rational decision model predicts acceptance. Injunctive social norms can prevent vaccine refusal, if vaccine acceptance is sufficiently high in the beginning of the vaccination campaign. Cognitive processes can have major impacts on the predictions of behaviour-disease models, and further study of such processes in the context of vaccination is thus warranted.

  16. Development and Validation of Computational Fluid Dynamics Models for Prediction of Heat Transfer and Thermal Microenvironments of Corals

    PubMed Central

    Ong, Robert H.; King, Andrew J. C.; Mullins, Benjamin J.; Cooper, Timothy F.; Caley, M. Julian

    2012-01-01

    We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching. PMID:22701582

  17. Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long

    2017-09-01

    This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.

  18. Bounded rationality alters the dynamics of paediatric immunization acceptance

    PubMed Central

    Oraby, Tamer; Bauch, Chris T.

    2015-01-01

    Interactions between disease dynamics and vaccinating behavior have been explored in many coupled behavior-disease models. Cognitive effects such as risk perception, framing, and subjective probabilities of adverse events can be important determinants of the vaccinating behaviour, and represent departures from the pure “rational” decision model that are often described as “bounded rationality”. However, the impact of such cognitive effects in the context of paediatric infectious disease vaccines has received relatively little attention. Here, we develop a disease-behavior model that accounts for bounded rationality through prospect theory. We analyze the model and compare its predictions to a reduced model that lacks bounded rationality. We find that, in general, introducing bounded rationality increases the dynamical richness of the model and makes it harder to eliminate a paediatric infectious disease. In contrast, in other cases, a low cost, highly efficacious vaccine can be refused, even when the rational decision model predicts acceptance. Injunctive social norms can prevent vaccine refusal, if vaccine acceptance is sufficiently high in the beginning of the vaccination campaign. Cognitive processes can have major impacts on the predictions of behaviour-disease models, and further study of such processes in the context of vaccination is thus warranted. PMID:26035413

  19. Preliminary Exploration of Adaptive State Predictor Based Human Operator Modeling

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.

    2012-01-01

    Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to quantify the effects of changing aircraft dynamics on an operator s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. A gradient descent estimator and a least squares estimator with exponential forgetting used these data to predict pilot stick input. The results indicate that individual pilot characteristics and vehicle dynamics did not affect the accuracy of either estimator method to estimate pilot stick input. These methods also were able to predict pilot stick input during changing aircraft dynamics and they may have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot.

  20. Application of a new dynamic transport model to predict the evolution of performances throughout the nanofiltration of single salt solutions in concentration and diafiltration modes.

    PubMed

    Déon, Sébastien; Lam, Boukary; Fievet, Patrick

    2018-06-01

    Although many knowledge models describing the rejection of ionic compounds by nanofiltration membranes are available in literature, they are all used in full recycling mode. Indeed, both permeate and retentate streams are recycled in order to maintain constant concentrations in the feed solution. However, nanofiltration of real effluents is implemented either in concentration or diafiltration modes, for which the permeate stream is collected. In these conditions, concentrations progressively evolve during filtration and classical models fail to predict performances. In this paper, an improvement of the so called "Donnan Steric Pore Model", which includes both volume and concentration variations over time is proposed. This dynamic model is used here to predict the evolution of volumes and concentrations in both permeate and retentate streams during the filtration of salt solutions. This model was found to predict accurately the filtration performances with various salts whether the filtration is performed in concentration or diafiltration modes. The parameters of the usual model can be easily assessed from full batch experiments before being used in the dynamic version. Nevertheless, it is also highlighted that the variation of the membrane charge due to the evolution of feed concentration over time has to be taken into account in the model through the use of adsorption isotherms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth.

    PubMed

    Ben Yaghlene, H; Leguerinel, I; Hamdi, M; Mafart, P

    2009-07-31

    In this study, predictive microbiology and food engineering were combined in order to develop a new analytical model predicting the bacterial growth under dynamic temperature conditions. The proposed model associates a simplified primary bacterial growth model without lag, the secondary Ratkowsky "square root" model and a simplified two-parameter heat transfer model regarding an infinite slab. The model takes into consideration the product thickness, its thermal properties, the ambient air temperature, the convective heat transfer coefficient and the growth parameters of the micro organism of concern. For the validation of the overall model, five different combinations of ambient air temperature (ranging from 8 degrees C to 12 degrees C), product thickness (ranging from 1 cm to 6 cm) and convective heat transfer coefficient (ranging from 8 W/(m(2) K) to 60 W/(m(2) K)) were tested during a cooling procedure. Moreover, three different ambient air temperature scenarios assuming alternated cooling and heating stages, drawn from real refrigerated food processes, were tested. General agreement between predicted and observed bacterial growth was obtained and less than 5% of the experimental data fell outside the 95% confidence bands estimated by the bootstrap percentile method, at all the tested conditions. Accordingly, the overall model was successfully validated for isothermal and dynamic refrigeration cycles allowing for temperature dynamic changes at the centre and at the surface of the product. The major impact of the convective heat transfer coefficient and the product thickness on bacterial growth during the product cooling was demonstrated. For instance, the time needed for the same level of bacterial growth to be reached at the product's half thickness was estimated to be 5 and 16.5 h at low and high convection level, respectively. Moreover, simulation results demonstrated that the predicted bacterial growth at the air ambient temperature cannot be assumed to be equivalent to the bacterial growth occurring at the product's surface or centre when convection heat transfer is taken into account. Our results indicate that combining food engineering and predictive microbiology models is an interesting approach providing very useful tools for food safety and process optimisation.

  2. MATHEMATICAL MODEL OF STERIODOGENESIS TO PREDICT DYNAMIC RESPONSE TO ENDOCRINE DISRUPTORS

    EPA Science Inventory

    WE ARE DEVELOPING A MECHANISTIC MATHEMATICAL MODEL OF THE INTRATESTICULAR AND INTRAOVARIAN METABOLIC NETWORK THAT MEDIATES STEROID SYNTHESIS, AND THE KINETICS FOR ENZYME INHIBITION BY EDCs TO PREDICT THE TIME AND DOSE-RESPONSE.

  3. Dynamic and Thermal Turbulent Time Scale Modelling for Homogeneous Shear Flows

    NASA Technical Reports Server (NTRS)

    Schwab, John R.; Lakshminarayana, Budugur

    1994-01-01

    A new turbulence model, based upon dynamic and thermal turbulent time scale transport equations, is developed and applied to homogeneous shear flows with constant velocity and temperature gradients. The new model comprises transport equations for k, the turbulent kinetic energy; tau, the dynamic time scale; k(sub theta), the fluctuating temperature variance; and tau(sub theta), the thermal time scale. It offers conceptually parallel modeling of the dynamic and thermal turbulence at the two equation level, and eliminates the customary prescription of an empirical turbulent Prandtl number, Pr(sub t), thus permitting a more generalized prediction capability for turbulent heat transfer in complex flows and geometries. The new model also incorporates constitutive relations, based upon invariant theory, that allow the effects of nonequilibrium to modify the primary coefficients for the turbulent shear stress and heat flux. Predictions of the new model, along with those from two other similar models, are compared with experimental data for decaying homogeneous dynamic and thermal turbulence, homogeneous turbulence with constant temperature gradient, and homogeneous turbulence with constant temperature gradient and constant velocity gradient. The new model offers improvement in agreement with the data for most cases considered in this work, although it was no better than the other models for several cases where all the models performed poorly.

  4. Quantitative theory of driven nonlinear brain dynamics.

    PubMed

    Roberts, J A; Robinson, P A

    2012-09-01

    Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia Wang; Xiaodong Sun; Benjamin Doup

    In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present workmore » aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.« less

  6. Simultaneous prediction of muscle and contact forces in the knee during gait.

    PubMed

    Lin, Yi-Chung; Walter, Jonathan P; Banks, Scott A; Pandy, Marcus G; Fregly, Benjamin J

    2010-03-22

    Musculoskeletal models are currently the primary means for estimating in vivo muscle and contact forces in the knee during gait. These models typically couple a dynamic skeletal model with individual muscle models but rarely include articular contact models due to their high computational cost. This study evaluates a novel method for predicting muscle and contact forces simultaneously in the knee during gait. The method utilizes a 12 degree-of-freedom knee model (femur, tibia, and patella) combining muscle, articular contact, and dynamic skeletal models. Eight static optimization problems were formulated using two cost functions (one based on muscle activations and one based on contact forces) and four constraints sets (each composed of different combinations of inverse dynamic loads). The estimated muscle and contact forces were evaluated using in vivo tibial contact force data collected from a patient with a force-measuring knee implant. When the eight optimization problems were solved with added constraints to match the in vivo contact force measurements, root-mean-square errors in predicted contact forces were less than 10 N. Furthermore, muscle and patellar contact forces predicted by the two cost functions became more similar as more inverse dynamic loads were used as constraints. When the contact force constraints were removed, estimated medial contact forces were similar and lateral contact forces lower in magnitude compared to measured contact forces, with estimated muscle forces being sensitive and estimated patellar contact forces relatively insensitive to the choice of cost function and constraint set. These results suggest that optimization problem formulation coupled with knee model complexity can significantly affect predicted muscle and contact forces in the knee during gait. Further research using a complete lower limb model is needed to assess the importance of this finding to the muscle and contact force estimation process. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  7. Predictability in community dynamics.

    PubMed

    Blonder, Benjamin; Moulton, Derek E; Blois, Jessica; Enquist, Brian J; Graae, Bente J; Macias-Fauria, Marc; McGill, Brian; Nogué, Sandra; Ordonez, Alejandro; Sandel, Brody; Svenning, Jens-Christian

    2017-03-01

    The coupling between community composition and climate change spans a gradient from no lags to strong lags. The no-lag hypothesis is the foundation of many ecophysiological models, correlative species distribution modelling and climate reconstruction approaches. Simple lag hypotheses have become prominent in disequilibrium ecology, proposing that communities track climate change following a fixed function or with a time delay. However, more complex dynamics are possible and may lead to memory effects and alternate unstable states. We develop graphical and analytic methods for assessing these scenarios and show that these dynamics can appear in even simple models. The overall implications are that (1) complex community dynamics may be common and (2) detailed knowledge of past climate change and community states will often be necessary yet sometimes insufficient to make predictions of a community's future state. © 2017 John Wiley & Sons Ltd/CNRS.

  8. Investigation on temporal evolution of the grain refinement in copper under high strain rate loading via in-situ synchrotron measurement and predictive modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao

    Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less

  9. Investigation on temporal evolution of the grain refinement in copper under high strain rate loading via in-situ synchrotron measurement and predictive modeling

    DOE PAGES

    Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao

    2017-10-03

    Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less

  10. Orbital maneuvering engine feed system coupled stability investigation

    NASA Technical Reports Server (NTRS)

    Kahn, D. R.; Schuman, M. D.; Hunting, J. K.; Fertig, K. W.

    1975-01-01

    A digital computer model used to analyze and predict engine feed system coupled instabilities over a frequency range of 10 to 1000 Hz was developed and verified. The analytical approach to modeling the feed system hydrodynamics, combustion dynamics, chamber dynamics, and overall engineering model structure is described and the governing equations in each of the technical areas are presented. This is followed by a description of the generalized computer model, including formulation of the discrete subprograms and their integration into an overall engineering model structure. The operation and capabilities of the engineering model were verified by comparing the model's theoretical predictions with experimental data from an OMS-type engine with a known feed system/engine chugging history.

  11. Predicting lymphatic filariasis transmission and elimination dynamics using a multi-model ensemble framework.

    PubMed

    Smith, Morgan E; Singh, Brajendra K; Irvine, Michael A; Stolk, Wilma A; Subramanian, Swaminathan; Hollingsworth, T Déirdre; Michael, Edwin

    2017-03-01

    Mathematical models of parasite transmission provide powerful tools for assessing the impacts of interventions. Owing to complexity and uncertainty, no single model may capture all features of transmission and elimination dynamics. Multi-model ensemble modelling offers a framework to help overcome biases of single models. We report on the development of a first multi-model ensemble of three lymphatic filariasis (LF) models (EPIFIL, LYMFASIM, and TRANSFIL), and evaluate its predictive performance in comparison with that of the constituents using calibration and validation data from three case study sites, one each from the three major LF endemic regions: Africa, Southeast Asia and Papua New Guinea (PNG). We assessed the performance of the respective models for predicting the outcomes of annual MDA strategies for various baseline scenarios thought to exemplify the current endemic conditions in the three regions. The results show that the constructed multi-model ensemble outperformed the single models when evaluated across all sites. Single models that best fitted calibration data tended to do less well in simulating the out-of-sample, or validation, intervention data. Scenario modelling results demonstrate that the multi-model ensemble is able to compensate for variance between single models in order to produce more plausible predictions of intervention impacts. Our results highlight the value of an ensemble approach to modelling parasite control dynamics. However, its optimal use will require further methodological improvements as well as consideration of the organizational mechanisms required to ensure that modelling results and data are shared effectively between all stakeholders. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Dynamic Evaluation of a Regional Air Quality Model: Assessing the Emissions-Induced Weekly Ozone Cycle

    EPA Science Inventory

    Air quality models are used to predict changes in pollutant concentrations resulting from envisioned emission control policies. Recognizing the need to assess the credibility of air quality models in a policy-relevant context, we perform a dynamic evaluation of the community Mult...

  13. Using waveform information in nonlinear data assimilation

    NASA Astrophysics Data System (ADS)

    Rey, Daniel; Eldridge, Michael; Morone, Uriel; Abarbanel, Henry D. I.; Parlitz, Ulrich; Schumann-Bischoff, Jan

    2014-12-01

    Information in measurements of a nonlinear dynamical system can be transferred to a quantitative model of the observed system to establish its fixed parameters and unobserved state variables. After this learning period is complete, one may predict the model response to new forces and, when successful, these predictions will match additional observations. This adjustment process encounters problems when the model is nonlinear and chaotic because dynamical instability impedes the transfer of information from the data to the model when the number of measurements at each observation time is insufficient. We discuss the use of information in the waveform of the data, realized through a time delayed collection of measurements, to provide additional stability and accuracy to this search procedure. Several examples are explored, including a few familiar nonlinear dynamical systems and small networks of Colpitts oscillators.

  14. Assessing the accuracy of improved force-matched water models derived from Ab initio molecular dynamics simulations.

    PubMed

    Köster, Andreas; Spura, Thomas; Rutkai, Gábor; Kessler, Jan; Wiebeler, Hendrik; Vrabec, Jadran; Kühne, Thomas D

    2016-07-15

    The accuracy of water models derived from ab initio molecular dynamics simulations by means on an improved force-matching scheme is assessed for various thermodynamic, transport, and structural properties. It is found that although the resulting force-matched water models are typically less accurate than fully empirical force fields in predicting thermodynamic properties, they are nevertheless much more accurate than generally appreciated in reproducing the structure of liquid water and in fact superseding most of the commonly used empirical water models. This development demonstrates the feasibility to routinely parametrize computationally efficient yet predictive potential energy functions based on accurate ab initio molecular dynamics simulations for a large variety of different systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Testing models of parental investment strategy and offspring size in ants.

    PubMed

    Gilboa, Smadar; Nonacs, Peter

    2006-01-01

    Parental investment strategies can be fixed or flexible. A fixed strategy predicts making all offspring a single 'optimal' size. Dynamic models predict flexible strategies with more than one optimal size of offspring. Patterns in the distribution of offspring sizes may thus reveal the investment strategy. Static strategies should produce normal distributions. Dynamic strategies should often result in non-normal distributions. Furthermore, variance in morphological traits should be positively correlated with the length of developmental time the traits are exposed to environmental influences. Finally, the type of deviation from normality (i.e., skewed left or right, or platykurtic) should be correlated with the average offspring size. To test the latter prediction, we used simulations to detect significant departures from normality and categorize distribution types. Data from three species of ants strongly support the predicted patterns for dynamic parental investment. Offspring size distributions are often significantly non-normal. Traits fixed earlier in development, such as head width, are less variable than final body weight. The type of distribution observed correlates with mean female dry weight. The overall support for a dynamic parental investment model has implications for life history theory. Predicted conflicts over parental effort, sex investment ratios, and reproductive skew in cooperative breeders follow from assumptions of static parental investment strategies and omnipresent resource limitations. By contrast, with flexible investment strategies such conflicts can be either absent or maladaptive.

  16. An Artificial Intelligence Approach for Modeling and Prediction of Water Diffusion Inside a Carbon Nanotube

    PubMed Central

    2009-01-01

    Modeling of water flow in carbon nanotubes is still a challenge for the classic models of fluid dynamics. In this investigation, an adaptive-network-based fuzzy inference system (ANFIS) is presented to solve this problem. The proposed ANFIS approach can construct an input–output mapping based on both human knowledge in the form of fuzzy if-then rules and stipulated input–output data pairs. Good performance of the designed ANFIS ensures its capability as a promising tool for modeling and prediction of fluid flow at nanoscale where the continuum models of fluid dynamics tend to break down. PMID:20596382

  17. An Artificial Intelligence Approach for Modeling and Prediction of Water Diffusion Inside a Carbon Nanotube.

    PubMed

    Ahadian, Samad; Kawazoe, Yoshiyuki

    2009-06-04

    Modeling of water flow in carbon nanotubes is still a challenge for the classic models of fluid dynamics. In this investigation, an adaptive-network-based fuzzy inference system (ANFIS) is presented to solve this problem. The proposed ANFIS approach can construct an input-output mapping based on both human knowledge in the form of fuzzy if-then rules and stipulated input-output data pairs. Good performance of the designed ANFIS ensures its capability as a promising tool for modeling and prediction of fluid flow at nanoscale where the continuum models of fluid dynamics tend to break down.

  18. A novel unscented predictive filter for relative position and attitude estimation of satellite formation

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Chen, Xiaoqian; Misra, Arun K.

    2015-07-01

    This paper presents a novel sigma-point unscented predictive filter (UPF) for relative position and attitude estimation of satellite formation taking into account the influence of J2. A coupled relative translational dynamics model is formulated to represent orbital motion of arbitrary feature points on the deputy spacecraft, and the relative attitude motion is formulated by considering a rotational dynamics for a satellite without gyros. Based on the proposed coupled dynamic model, the UPF is developed based on unscented transformation technique, extending the capability of a traditional predictive filter (PF). The algorithm flow of the UPF is described first. Then it is demonstrated that the estimation accuracy of the model error and system state for UPF is higher than that of the traditional PF. In addition, the unscented Kalman filter (UKF) is also employed in order to compare the performance of the proposed UPF with that of the UKF. Several different scenarios are simulated to validate the effectiveness of the coupled dynamics model and the performance of the proposed UPF. Through comparisons, the proposed UPF is shown to yield highly accurate estimation of relative position and attitude during satellite formation flying.

  19. A Continuum Model for the Effect of Dynamic Recrystallization on the Stress–Strain Response

    PubMed Central

    Perdahcıoğlu, E. S.; van den Boogaard, A. H.

    2018-01-01

    Austenitic Stainless Steels and High-Strength Low-Alloy (HSLA) steels show significant dynamic recovery and dynamic recrystallization (DRX) during hot forming. In order to design optimal and safe hot-formed products, a good understanding and constitutive description of the material behavior is vital. A new continuum model is presented and validated on a wide range of deformation conditions including high strain rate deformation. The model is presented in rate form to allow for the prediction of material behavior in transient process conditions. The proposed model is capable of accurately describing the stress–strain behavior of AISI 316LN in hot forming conditions, also the high strain rate DRX-induced softening observed during hot torsion of HSLA is accurately predicted. It is shown that the increase in recrystallization rate at high strain rates observed in experiments can be captured by including the elastic energy due to the dynamic stress in the driving pressure for recrystallization. Furthermore, the predicted resulting grain sizes follow the power-law dependence with steady state stress that is often reported in literature and the evolution during hot deformation shows the expected trend. PMID:29789492

  20. A study on predicting network corrections in PPP-RTK processing

    NASA Astrophysics Data System (ADS)

    Wang, Kan; Khodabandeh, Amir; Teunissen, Peter

    2017-10-01

    In PPP-RTK processing, the network corrections including the satellite clocks, the satellite phase biases and the ionospheric delays are provided to the users to enable fast single-receiver integer ambiguity resolution. To solve the rank deficiencies in the undifferenced observation equations, the estimable parameters are formed to generate full-rank design matrix. In this contribution, we firstly discuss the interpretation of the estimable parameters without and with a dynamic satellite clock model incorporated in a Kalman filter during the network processing. The functionality of the dynamic satellite clock model is tested in the PPP-RTK processing. Due to the latency generated by the network processing and data transfer, the network corrections are delayed for the real-time user processing. To bridge the latencies, we discuss and compare two prediction approaches making use of the network corrections without and with the dynamic satellite clock model, respectively. The first prediction approach is based on the polynomial fitting of the estimated network parameters, while the second approach directly follows the dynamic model in the Kalman filter of the network processing and utilises the satellite clock drifts estimated in the network processing. Using 1 Hz data from two networks in Australia, the influences of the two prediction approaches on the user positioning results are analysed and compared for latencies ranging from 3 to 10 s. The accuracy of the positioning results decreases with the increasing latency of the network products. For a latency of 3 s, the RMS of the horizontal and the vertical coordinates (with respect to the ground truth) do not show large differences applying both prediction approaches. For a latency of 10 s, the prediction approach making use of the satellite clock model has generated slightly better positioning results with the differences of the RMS at mm-level. Further advantages and disadvantages of both prediction approaches are also discussed in this contribution.

  1. Fit to predict? Eco-informatics for predicting the catchability of a pelagic fish in near real time.

    PubMed

    Scales, Kylie L; Hazen, Elliott L; Maxwell, Sara M; Dewar, Heidi; Kohin, Suzanne; Jacox, Michael G; Edwards, Christopher A; Briscoe, Dana K; Crowder, Larry B; Lewison, Rebecca L; Bograd, Steven J

    2017-12-01

    The ocean is a dynamic environment inhabited by a diverse array of highly migratory species, many of which are under direct exploitation in targeted fisheries. The timescales of variability in the marine realm coupled with the extreme mobility of ocean-wandering species such as tuna and billfish complicates fisheries management. Developing eco-informatics solutions that allow for near real-time prediction of the distributions of highly mobile marine species is an important step towards the maturation of dynamic ocean management and ecological forecasting. Using 25 yr (1990-2014) of NOAA fisheries' observer data from the California drift gillnet fishery, we model relative probability of occurrence (presence-absence) and catchability (total catch per gillnet set) of broadbill swordfish Xiphias gladius in the California Current System. Using freely available environmental data sets and open source software, we explore the physical drivers of regional swordfish distribution. Comparing models built upon remotely sensed data sets with those built upon a data-assimilative configuration of the Regional Ocean Modelling System (ROMS), we explore trade-offs in model construction, and address how physical data can affect predictive performance and operational capacity. Swordfish catchability was found to be highest in deeper waters (>1,500 m) with surface temperatures in the 14-20°C range, isothermal layer depth (ILD) of 20-40 m, positive sea surface height (SSH) anomalies, and during the new moon (<20% lunar illumination). We observed a greater influence of mesoscale variability (SSH, wind speed, isothermal layer depth, eddy kinetic energy) in driving swordfish catchability (total catch) than was evident in predicting the relative probability of presence (presence-absence), confirming the utility of generating spatiotemporally dynamic predictions. Data-assimilative ROMS circumvent the limitations of satellite remote sensing in providing physical data fields for species distribution models (e.g., cloud cover, variable resolution, subsurface data), and facilitate broad-scale prediction of dynamic species distributions in near real time. © 2017 by the Ecological Society of America.

  2. Advances in Parameter and Uncertainty Quantification Using Bayesian Hierarchical Techniques with a Spatially Referenced Watershed Model (Invited)

    NASA Astrophysics Data System (ADS)

    Alexander, R. B.; Boyer, E. W.; Schwarz, G. E.; Smith, R. A.

    2013-12-01

    Estimating water and material stores and fluxes in watershed studies is frequently complicated by uncertainties in quantifying hydrological and biogeochemical effects of factors such as land use, soils, and climate. Although these process-related effects are commonly measured and modeled in separate catchments, researchers are especially challenged by their complexity across catchments and diverse environmental settings, leading to a poor understanding of how model parameters and prediction uncertainties vary spatially. To address these concerns, we illustrate the use of Bayesian hierarchical modeling techniques with a dynamic version of the spatially referenced watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes). The dynamic SPARROW model is designed to predict streamflow and other water cycle components (e.g., evapotranspiration, soil and groundwater storage) for monthly varying hydrological regimes, using mechanistic functions, mass conservation constraints, and statistically estimated parameters. In this application, the model domain includes nearly 30,000 NHD (National Hydrologic Data) stream reaches and their associated catchments in the Susquehanna River Basin. We report the results of our comparisons of alternative models of varying complexity, including models with different explanatory variables as well as hierarchical models that account for spatial and temporal variability in model parameters and variance (error) components. The model errors are evaluated for changes with season and catchment size and correlations in time and space. The hierarchical models consist of a two-tiered structure in which climate forcing parameters are modeled as random variables, conditioned on watershed properties. Quantification of spatial and temporal variations in the hydrological parameters and model uncertainties in this approach leads to more efficient (lower variance) and less biased model predictions throughout the river network. Moreover, predictions of water-balance components are reported according to probabilistic metrics (e.g., percentiles, prediction intervals) that include both parameter and model uncertainties. These improvements in predictions of streamflow dynamics can inform the development of more accurate predictions of spatial and temporal variations in biogeochemical stores and fluxes (e.g., nutrients and carbon) in watersheds.

  3. Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations.

    PubMed

    Gupta, Jasmine; Nunes, Cletus; Vyas, Shyam; Jonnalagadda, Sriramakamal

    2011-03-10

    The objectives of this study were (i) to develop a computational model based on molecular dynamics technique to predict the miscibility of indomethacin in carriers (polyethylene oxide, glucose, and sucrose) and (ii) to experimentally verify the in silico predictions by characterizing the drug-carrier mixtures using thermoanalytical techniques. Molecular dynamics (MD) simulations were performed using the COMPASS force field, and the cohesive energy density and the solubility parameters were determined for the model compounds. The magnitude of difference in the solubility parameters of drug and carrier is indicative of their miscibility. The MD simulations predicted indomethacin to be miscible with polyethylene oxide and to be borderline miscible with sucrose and immiscible with glucose. The solubility parameter values obtained using the MD simulations values were in reasonable agreement with those calculated using group contribution methods. Differential scanning calorimetry showed melting point depression of polyethylene oxide with increasing levels of indomethacin accompanied by peak broadening, confirming miscibility. In contrast, thermal analysis of blends of indomethacin with sucrose and glucose verified general immiscibility. The findings demonstrate that molecular modeling is a powerful technique for determining the solubility parameters and predicting miscibility of pharmaceutical compounds. © 2011 American Chemical Society

  4. Predicting U.S. food demand in the 20th century: a new look at system dynamics

    NASA Astrophysics Data System (ADS)

    Moorthy, Mukund; Cellier, Francois E.; LaFrance, Jeffrey T.

    1998-08-01

    The paper describes a new methodology for predicting the behavior of macroeconomic variables. The approach is based on System Dynamics and Fuzzy Inductive Reasoning. A four- layer pseudo-hierarchical model is proposed. The bottom layer makes predications about population dynamics, age distributions among the populace, as well as demographics. The second layer makes predications about the general state of the economy, including such variables as inflation and unemployment. The third layer makes predictions about the demand for certain goods or services, such as milk products, used cars, mobile telephones, or internet services. The fourth and top layer makes predictions about the supply of such goods and services, both in terms of their prices. Each layer can be influenced by control variables the values of which are only determined at higher levels. In this sense, the model is not strictly hierarchical. For example, the demand for goods at level three depends on the prices of these goods, which are only determined at level four. Yet, the prices are themselves influenced by the expected demand. The methodology is exemplified by means of a macroeconomic model that makes predictions about US food demand during the 20th century.

  5. Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications.

    PubMed

    Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel

    2018-04-05

    Hexagonal boron nitride (hBN) is an up-and-coming two-dimensional material, with applications in electronic devices, tribology, and separation membranes. Herein, we utilize density-functional-theory-based ab initio molecular dynamics (MD) simulations and lattice dynamics calculations to develop a classical force field (FF) for modeling hBN. The FF predicts the crystal structure, elastic constants, and phonon dispersion relation of hBN with good accuracy and exhibits remarkable agreement with the interlayer binding energy predicted by random phase approximation calculations. We demonstrate the importance of including Coulombic interactions but excluding 1-4 intrasheet interactions to obtain the correct phonon dispersion relation. We find that improper dihedrals do not modify the bulk mechanical properties and the extent of thermal vibrations in hBN, although they impact its flexural rigidity. Combining the FF with the accurate TIP4P/Ice water model yields excellent agreement with interaction energies predicted by quantum Monte Carlo calculations. Our FF should enable an accurate description of hBN interfaces in classical MD simulations.

  6. Dynamics of cell shape and forces on micropatterned substrates predicted by a cellular Potts model.

    PubMed

    Albert, Philipp J; Schwarz, Ulrich S

    2014-06-03

    Micropatterned substrates are often used to standardize cell experiments and to quantitatively study the relation between cell shape and function. Moreover, they are increasingly used in combination with traction force microscopy on soft elastic substrates. To predict the dynamics and steady states of cell shape and forces without any a priori knowledge of how the cell will spread on a given micropattern, here we extend earlier formulations of the two-dimensional cellular Potts model. The third dimension is treated as an area reservoir for spreading. To account for local contour reinforcement by peripheral bundles, we augment the cellular Potts model by elements of the tension-elasticity model. We first parameterize our model and show that it accounts for momentum conservation. We then demonstrate that it is in good agreement with experimental data for shape, spreading dynamics, and traction force patterns of cells on micropatterned substrates. We finally predict shapes and forces for micropatterns that have not yet been experimentally studied. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Dynamically downscaling predictions for deciduous tree leaf emergence in California under current and future climate.

    PubMed

    Medvigy, David; Kim, Seung Hee; Kim, Jinwon; Kafatos, Menas C

    2016-07-01

    Models that predict the timing of deciduous tree leaf emergence are typically very sensitive to temperature. However, many temperature data products, including those from climate models, have been developed at a very coarse spatial resolution. Such coarse-resolution temperature products can lead to highly biased predictions of leaf emergence. This study investigates how dynamical downscaling of climate models impacts simulations of deciduous tree leaf emergence in California. Models for leaf emergence are forced with temperatures simulated by a general circulation model (GCM) at ~200-km resolution for 1981-2000 and 2031-2050 conditions. GCM simulations are then dynamically downscaled to 32- and 8-km resolution, and leaf emergence is again simulated. For 1981-2000, the regional average leaf emergence date is 30.8 days earlier in 32-km simulations than in ~200-km simulations. Differences between the 32 and 8 km simulations are small and mostly local. The impact of downscaling from 200 to 8 km is ~15 % smaller in 2031-2050 than in 1981-2000, indicating that the impacts of downscaling are unlikely to be stationary.

  8. Mathematical modeling and computational prediction of cancer drug resistance.

    PubMed

    Sun, Xiaoqiang; Hu, Bin

    2017-06-23

    Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of computational methods for studying drug resistance, including inferring drug-induced signaling networks, multiscale modeling, drug combinations and precision medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Performance of Smagorinsky and dynamic models in near surface turbulence

    NASA Astrophysics Data System (ADS)

    Brasseur, James G.; Juneja, Anurag

    1997-11-01

    In LES of high-Reynolds-number wall bounded turbulence such as the atmospheric boundary layer (ABL), a viscous sublayer either does not exist or is within the first grid cell, and some integral scale motions are necessarily under-resolved at the first few grid locations. Here the subgrid terms dominate the evolution of resolved velocity and the SGS model performance becomes crucial. To develop improved closures for surface layer turbulence (under-resolved and anisotropic), we explore (a) why current SGS closures fail and (b) what needs to be fixed. We evaluate the performance of the Smagorinsky and dynamic models using DNS data from shear- and buoyancy-driven turbulence as a function of filter cutoff location. We find that the underlying assumption of good alignment between the subgrid stress and resolved strain-rate tensors is not correct in general. More importantly, the Smagorinsky model incorrectly predicts a strong preference in the direction of the SGS stress divergence vector, a spurious prediction that is directly related to the anisotropic structure of the resolved turbulence field. This, and its under-estimation of the SGS pressure gradient, are likely sources of the errors observed in LES of the ABL. Whereas the dynamic formulations do a better job predicting some SGS dynamics, the model fails when the filter cutoff is near an integral scale, and predicts unreasonable fluctuation levels-- although performance is sensitive to type of averaging. *supported by ARO grant DAAL03-92-0117.

  10. Integration of nitrogen dynamics into the Noah-MP land surface model v1.1 for climate and environmental predictions

    NASA Astrophysics Data System (ADS)

    Cai, X.; Yang, Z.-L.; Fisher, J. B.; Zhang, X.; Barlage, M.; Chen, F.

    2016-01-01

    Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. In this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soil and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station - a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.

  11. Low Frequency Predictive Skill Despite Structural Instability and Model Error

    DTIC Science & Technology

    2014-09-30

    Majda, based on earlier theoretical work. 1. Dynamic Stochastic Superresolution of sparseley observed turbulent systems M. Branicki (Post doc...of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by...resolving subgridscale turbulence through Dynamic Stochastic Superresolution utilizing aliased grids is a potential breakthrough for practical online

  12. Species and temperature measurement in H2/O2 rocket flow fields by means of Raman scattering diagnostics

    NASA Technical Reports Server (NTRS)

    Degroot, Wim A.; Weiss, Jonathan M.

    1992-01-01

    Validation of Computational Fluid Dynamics (CFD) codes developed for prediction and evaluation of rocket performance is hampered by a lack of experimental data. Non-intrusive laser based diagnostics are needed to provide spatially and temporally resolved gas dynamic and fluid dynamic measurements. This paper reports the first non-intrusive temperature and species measurements in the plume of a 110 N gaseous hydrogen/oxygen thruster at and below ambient pressures, obtained with spontaneous Raman spectroscopy. Measurements at 10 mm downstream of the exit plane are compared with predictions from a numerical solution of the axisymmetric Navier-Stokes and species transport equations with chemical kinetics, which fully model the combustor-nozzle-plume flowfield. The experimentally determined oxygen number density at the centerline at 10 mm downstream of the exit plane is four times that predicted by the model. The experimental number density data fall between those numerically predicted for the exit and 10 mm downstream planes in both magnitude and radial gradient. The predicted temperature levels are within 10 to 15 percent of measured values. Some of the discrepancies between experimental data and predictions result from not modeling the three dimensional core flow injection mixing process, facility back pressure effects, and possible diffuser-thruster interactions.

  13. Parameter prediction based on Improved Process neural network and ARMA error compensation in Evaporation Process

    NASA Astrophysics Data System (ADS)

    Qian, Xiaoshan

    2018-01-01

    The traditional model of evaporation process parameters have continuity and cumulative characteristics of the prediction error larger issues, based on the basis of the process proposed an adaptive particle swarm neural network forecasting method parameters established on the autoregressive moving average (ARMA) error correction procedure compensated prediction model to predict the results of the neural network to improve prediction accuracy. Taking a alumina plant evaporation process to analyze production data validation, and compared with the traditional model, the new model prediction accuracy greatly improved, can be used to predict the dynamic process of evaporation of sodium aluminate solution components.

  14. Contrast-enhanced ultrasound measurement of pancreatic blood flow dynamics predicts type 1 diabetes progression in preclinical models.

    PubMed

    St Clair, Joshua R; Ramirez, David; Passman, Samantha; Benninger, Richard K P

    2018-05-01

    In type 1 diabetes (T1D), immune-cell infiltration into the islets of Langerhans (insulitis) and β-cell decline occurs many years before diabetes clinically presents. Non-invasively detecting insulitis and β-cell decline would allow the diagnosis of eventual diabetes, and provide a means to monitor therapeutic intervention. However, there is a lack of validated clinical approaches for specifically and non-invasively imaging disease progression leading to T1D. Islets have a denser microvasculature that reorganizes during diabetes. Here we apply contrast-enhanced ultrasound measurements of pancreatic blood-flow dynamics to non-invasively and predictively assess disease progression in T1D pre-clinical models. STZ-treated mice, NOD mice, and adoptive-transfer mice demonstrate altered islet blood-flow dynamics prior to diabetes onset, consistent with islet microvasculature reorganization. These assessments predict both time to diabetes onset and future responders to antiCD4-mediated disease prevention. Thus contrast-enhanced ultrasound measurements of pancreas blood-flow dynamics may provide a clinically deployable predictive marker for disease progression in pre-symptomatic T1D and therapeutic reversal.

  15. Mathematical Models to Determine Stable Behavior of Complex Systems

    NASA Astrophysics Data System (ADS)

    Sumin, V. I.; Dushkin, A. V.; Smolentseva, T. E.

    2018-05-01

    The paper analyzes a possibility to predict functioning of a complex dynamic system with a significant amount of circulating information and a large number of random factors impacting its functioning. Functioning of the complex dynamic system is described as a chaotic state, self-organized criticality and bifurcation. This problem may be resolved by modeling such systems as dynamic ones, without applying stochastic models and taking into account strange attractors.

  16. The Mechanisms for Within-Host Influenza Virus Control Affect Model-Based Assessment and Prediction of Antiviral Treatment

    PubMed Central

    Cao, Pengxing

    2017-01-01

    Models of within-host influenza viral dynamics have contributed to an improved understanding of viral dynamics and antiviral effects over the past decade. Existing models can be classified into two broad types based on the mechanism of viral control: models utilising target cell depletion to limit the progress of infection and models which rely on timely activation of innate and adaptive immune responses to control the infection. In this paper, we compare how two exemplar models based on these different mechanisms behave and investigate how the mechanistic difference affects the assessment and prediction of antiviral treatment. We find that the assumed mechanism for viral control strongly influences the predicted outcomes of treatment. Furthermore, we observe that for the target cell-limited model the assumed drug efficacy strongly influences the predicted treatment outcomes. The area under the viral load curve is identified as the most reliable predictor of drug efficacy, and is robust to model selection. Moreover, with support from previous clinical studies, we suggest that the target cell-limited model is more suitable for modelling in vitro assays or infection in some immunocompromised/immunosuppressed patients while the immune response model is preferred for predicting the infection/antiviral effect in immunocompetent animals/patients. PMID:28933757

  17. A model for prediction of STOVL ejector dynamics

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.

    1989-01-01

    A semi-empirical control-volume approach to ejector modeling for transient performance prediction is presented. This new approach is motivated by the need for a predictive real-time ejector sub-system simulation for Short Take-Off Verticle Landing (STOVL) integrated flight and propulsion controls design applications. Emphasis is placed on discussion of the approximate characterization of the mixing process central to thrust augmenting ejector operation. The proposed ejector model suggests transient flow predictions are possible with a model based on steady-flow data. A practical test case is presented to illustrate model calibration.

  18. Anticipatory Neurofuzzy Control

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1994-01-01

    Technique of feedback control, called "anticipatory neurofuzzy control," developed for use in controlling flexible structures and other dynamic systems for which mathematical models of dynamics poorly known or unknown. Superior ability to act during operation to compensate for, and adapt to, errors in mathematical model of dynamics, changes in dynamics, and noise. Also offers advantage of reduced computing time. Hybrid of two older fuzzy-logic control techniques: standard fuzzy control and predictive fuzzy control.

  19. Prediction of early summer rainfall over South China by a physical-empirical model

    NASA Astrophysics Data System (ADS)

    Yim, So-Young; Wang, Bin; Xing, Wen

    2014-10-01

    In early summer (May-June, MJ) the strongest rainfall belt of the northern hemisphere occurs over the East Asian (EA) subtropical front. During this period the South China (SC) rainfall reaches its annual peak and represents the maximum rainfall variability over EA. Hence we establish an SC rainfall index, which is the MJ mean precipitation averaged over 72 stations over SC (south of 28°N and east of 110°E) and represents superbly the leading empirical orthogonal function mode of MJ precipitation variability over EA. In order to predict SC rainfall, we established a physical-empirical model. Analysis of 34-year observations (1979-2012) reveals three physically consequential predictors. A plentiful SC rainfall is preceded in the previous winter by (a) a dipole sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (b) a tripolar SST tendency in North Atlantic Ocean, and (c) a warming tendency in northern Asia. These precursors foreshadow enhanced Philippine Sea subtropical High and Okhotsk High in early summer, which are controlling factors for enhanced subtropical frontal rainfall. The physical empirical model built on these predictors achieves a cross-validated forecast correlation skill of 0.75 for 1979-2012. Surprisingly, this skill is substantially higher than four-dynamical models' ensemble prediction for 1979-2010 period (0.15). The results here suggest that the low prediction skill of current dynamical models is largely due to models' deficiency and the dynamical prediction has large room to improve.

  20. Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching

    NASA Astrophysics Data System (ADS)

    Flament, Nicolas; Gurnis, Michael; Williams, Simon; Seton, Maria; Skogseid, Jakob; Heine, Christian; Dietmar Müller, R.

    2014-02-01

    The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in thirteen model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. The uplift of southern Africa is best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle.

  1. Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching

    NASA Astrophysics Data System (ADS)

    Flament, Nicolas; Gurnis, Michael; Williams, Simon; Seton, Maria; Skogseid, Jakob; Heine, Christian; Müller, Dietmar

    2014-05-01

    The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in multiple model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. We find the uplift of southern Africa to be best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle.

  2. A data-driven prediction method for fast-slow systems

    NASA Astrophysics Data System (ADS)

    Groth, Andreas; Chekroun, Mickael; Kondrashov, Dmitri; Ghil, Michael

    2016-04-01

    In this work, we present a prediction method for processes that exhibit a mixture of variability on low and fast scales. The method relies on combining empirical model reduction (EMR) with singular spectrum analysis (SSA). EMR is a data-driven methodology for constructing stochastic low-dimensional models that account for nonlinearity and serial correlation in the estimated noise, while SSA provides a decomposition of the complex dynamics into low-order components that capture spatio-temporal behavior on different time scales. Our study focuses on the data-driven modeling of partial observations from dynamical systems that exhibit power spectra with broad peaks. The main result in this talk is that the combination of SSA pre-filtering with EMR modeling improves, under certain circumstances, the modeling and prediction skill of such a system, as compared to a standard EMR prediction based on raw data. Specifically, it is the separation into "fast" and "slow" temporal scales by the SSA pre-filtering that achieves the improvement. We show, in particular that the resulting EMR-SSA emulators help predict intermittent behavior such as rapid transitions between specific regions of the system's phase space. This capability of the EMR-SSA prediction will be demonstrated on two low-dimensional models: the Rössler system and a Lotka-Volterra model for interspecies competition. In either case, the chaotic dynamics is produced through a Shilnikov-type mechanism and we argue that the latter seems to be an important ingredient for the good prediction skills of EMR-SSA emulators. Shilnikov-type behavior has been shown to arise in various complex geophysical fluid models, such as baroclinic quasi-geostrophic flows in the mid-latitude atmosphere and wind-driven double-gyre ocean circulation models. This pervasiveness of the Shilnikow mechanism of fast-slow transition opens interesting perspectives for the extension of the proposed EMR-SSA approach to more realistic situations.

  3. Dynamically analyzing cell interactions in biological environments using multiagent social learning framework.

    PubMed

    Zhang, Chengwei; Li, Xiaohong; Li, Shuxin; Feng, Zhiyong

    2017-09-20

    Biological environment is uncertain and its dynamic is similar to the multiagent environment, thus the research results of the multiagent system area can provide valuable insights to the understanding of biology and are of great significance for the study of biology. Learning in a multiagent environment is highly dynamic since the environment is not stationary anymore and each agent's behavior changes adaptively in response to other coexisting learners, and vice versa. The dynamics becomes more unpredictable when we move from fixed-agent interaction environments to multiagent social learning framework. Analytical understanding of the underlying dynamics is important and challenging. In this work, we present a social learning framework with homogeneous learners (e.g., Policy Hill Climbing (PHC) learners), and model the behavior of players in the social learning framework as a hybrid dynamical system. By analyzing the dynamical system, we obtain some conditions about convergence or non-convergence. We experimentally verify the predictive power of our model using a number of representative games. Experimental results confirm the theoretical analysis. Under multiagent social learning framework, we modeled the behavior of agent in biologic environment, and theoretically analyzed the dynamics of the model. We present some sufficient conditions about convergence or non-convergence and prove them theoretically. It can be used to predict the convergence of the system.

  4. FAST Simulation Tool Containing Methods for Predicting the Dynamic Response of Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, Jason

    2015-08-12

    FAST is a simulation tool (computer software) for modeling tlie dynamic response of horizontal-axis wind turbines. FAST employs a combined modal and multibody structural-dynamics formulation in the time domain.

  5. Parametric Study of the Effect of Membrane Tension on Sunshield Dynamics

    NASA Technical Reports Server (NTRS)

    Ross, Brian; Johnston, John D.; Smith, James

    2002-01-01

    The NGST sunshield is a lightweight, flexible structure consisting of pretensioned membranes supported by deployable booms. The structural dynamic behavior of the sunshield must be well understood in order to predict its influence on observatory performance. A 1/10th scale model of the sunshield has been developed for ground testing to provide data to validate modeling techniques for thin film membrane structures. The validated models can then be used to predict the behaviour of the full scale sunshield. This paper summarizes the most recent tests performed on the 1/10th scale sunshield to study the effect of membrane preload on sunshield dynamics. Topics to be covered include the test setup, procedures, and a summary of results.

  6. Semianalytical Models for the Formation of Disk Galaxies. II. Dark Matter versus Modified Newtonian Dynamics

    NASA Astrophysics Data System (ADS)

    van den Bosch, Frank C.; Dalcanton, Julianne J.

    2000-05-01

    We present detailed semianalytical models for the formation of disk galaxies both in a universe dominated by dark matter (DM) and in one for which the force law is given by modified Newtonian dynamics (MOND). We tune the models to fit the observed near-infrared Tully-Fisher (TF) relation and compare numerous predictions of the resulting models with observations. The DM and MOND models are almost indistinguishable. They both yield gas mass fractions and dynamical mass-to-light ratios that are in good agreement with observations. Both models reproduce the narrow relation between global mass-to-light ratio and central surface brightness and reveal a characteristic acceleration, contrary to claims that these relations are not predicted by DM models. Both models require SN feedback in order to reproduce the lack of high surface brightness dwarf galaxies. However, the introduction of feedback to the MOND models steepens the TF relation and increases the scatter, making MOND only marginally consistent with observations. The most serious problem for the DM models is their prediction of steep central rotation curves. However, the DM rotation curves are only slightly steeper than those of MOND and are only marginally inconsistent with the poor resolution data on LSB galaxies.

  7. Metapopulation responses to patch connectivity and quality are masked by successional habitat dynamics.

    PubMed

    Hodgson, Jenny A; Moilanen, Atte; Thomas, Chris D

    2009-06-01

    Many species have to track changes in the spatial distribution of suitable habitat from generation to generation. Understanding the dynamics of such species will likely require spatially explicit models, and patch-based metapopulation models are potentially appropriate. However, relatively little attention has been paid to developing metapopulation models that include habitat dynamics, and very little to testing the predictions of these models. We tested three predictions from theory about the differences between dynamic habitat metapopulations and their static counterparts using long-term survey data from two metapopulations of the butterfly Plebejus argus. As predicted, we showed first that the metapopulation inhabiting dynamic habitat had a lower level of habitat occupancy, which could not be accounted for by other differences between the metapopulations. Secondly, we found that patch occupancy did not significantly increase with increasing patch connectivity in dynamic habitat, whereas there was a strong positive connectivity-occupancy relationship in static habitat. Thirdly, we found no significant relationship between patch occupancy and patch quality in dynamic habitat, whereas there was a strong, positive quality-occupancy relationship in static habitat. Modeling confirmed that the differences in mean patch occupancy and connectivity-occupancy slope could arise without changing the species' metapopulation parameters-importantly, without changing the dependence of colonization upon connectivity. We found that, for a range of landscape scenarios, successional simulations always produced a lower connectivity-occupancy slope than comparable simulations with static patches, whether compared like-for-like or controlling for mean occupancy. We conclude that landscape-scale studies may often underestimate the importance of connectivity for species occurrence and persistence because habitat turnover can obscure the connectivity-occupancy relationship in commonly available snapshot data.

  8. Semiparametric Identification of Human Arm Dynamics for Flexible Control of a Functional Electrical Stimulation Neuroprosthesis

    PubMed Central

    Schearer, Eric M.; Liao, Yu-Wei; Perreault, Eric J.; Tresch, Matthew C.; Memberg, William D.; Kirsch, Robert F.; Lynch, Kevin M.

    2016-01-01

    We present a method to identify the dynamics of a human arm controlled by an implanted functional electrical stimulation neuroprosthesis. The method uses Gaussian process regression to predict shoulder and elbow torques given the shoulder and elbow joint positions and velocities and the electrical stimulation inputs to muscles. We compare the accuracy of torque predictions of nonparametric, semiparametric, and parametric model types. The most accurate of the three model types is a semiparametric Gaussian process model that combines the flexibility of a black box function approximator with the generalization power of a parameterized model. The semiparametric model predicted torques during stimulation of multiple muscles with errors less than 20% of the total muscle torque and passive torque needed to drive the arm. The identified model allows us to define an arbitrary reaching trajectory and approximately determine the muscle stimulations required to drive the arm along that trajectory. PMID:26955041

  9. AHPCRC (Army High Performance Computing Rsearch Center) Bulletin. Volume 1, Issue 4

    DTIC Science & Technology

    2011-01-01

    Computational and Mathematical Engineering, Stanford University esgs@stanford.edu (650) 723-3764 Molecular Dynamics Models of Antimicrobial ...simulations using low-fidelity Reynolds-av- eraged models illustrate the limited predictive capabili- ties of these schemes. The predictions for scalar and...driving force. The AHPCRC group has used their models to predict nonuniform concentra- tion profiles across small channels as a result of variations

  10. The salt marsh vegetation spread dynamics simulation and prediction based on conditions optimized CA

    NASA Astrophysics Data System (ADS)

    Guan, Yujuan; Zhang, Liquan

    2006-10-01

    The biodiversity conservation and management of the salt marsh vegetation relies on processing their spatial information. Nowadays, more attentions are focused on their classification surveying and describing qualitatively dynamics based on RS images interpreted, rather than on simulating and predicting their dynamics quantitatively, which is of greater importance for managing and planning the salt marsh vegetation. In this paper, our notion is to make a dynamic model on large-scale and to provide a virtual laboratory in which researchers can run it according requirements. Firstly, the characteristic of the cellular automata was analyzed and a conclusion indicated that it was necessary for a CA model to be extended geographically under varying conditions of space-time circumstance in order to make results matched the facts accurately. Based on the conventional cellular automata model, the author introduced several new conditions to optimize it for simulating the vegetation objectively, such as elevation, growth speed, invading ability, variation and inheriting and so on. Hence the CA cells and remote sensing image pixels, cell neighbors and pixel neighbors, cell rules and nature of the plants were unified respectively. Taking JiuDuanSha as the test site, where holds mainly Phragmites australis (P.australis) community, Scirpus mariqueter (S.mariqueter) community and Spartina alterniflora (S.alterniflora) community. The paper explored the process of making simulation and predictions about these salt marsh vegetable changing with the conditions optimized CA (COCA) model, and examined the links among data, statistical models, and ecological predictions. This study exploited the potential of applying Conditioned Optimized CA model technique to solve this problem.

  11. A model of the relationship between weedy rice seed-bank dynamics and rice-crop infestation and damage in Jiangsu Province, China.

    PubMed

    Zhang, Zheng; Dai, Weimin; Song, Xiaoling; Qiang, Sheng

    2014-05-01

    A heavy infestation of weedy rice leading to no harvested rice has never been predicted in China due to a lack of knowledge about the weedy rice seed bank. We studied the seed-bank dynamics of weedy rice for three consecutive years and analyzed the relationship between seed-bank density and population density in order to predict future weedy rice infestations of direct-seeded rice at six sites along the Yangtze River in Jiangsu Province, China. The seed-bank density of weedy rice in all six sites displayed an increasing trend with seasonal fluctuations. Weedy rice seeds found in the 0-10 cm soil layer contributed most to seedling emergence. An exponential curve expressed the relationship between cultivated rice yield loss and adult weedy rice density. Based on data collected during the weedy rice life-cycle, a semi-empirical mathematic model was developed that fits well with the experimental data in a way that could be used to predict seed-bank dynamics. By integrating the semi-empirical model and the exponential curve, weedy rice infestation levels and crop losses can be predicted based on the seed-bank dynamics so that a practical control can be adopted before rice planting. © 2013 Society of Chemical Industry.

  12. Finite Element Model of the Knee for Investigation of Injury Mechanisms: Development and Validation

    PubMed Central

    Kiapour, Ali; Kiapour, Ata M.; Kaul, Vikas; Quatman, Carmen E.; Wordeman, Samuel C.; Hewett, Timothy E.; Demetropoulos, Constantine K.; Goel, Vijay K.

    2014-01-01

    Multiple computational models have been developed to study knee biomechanics. However, the majority of these models are mainly validated against a limited range of loading conditions and/or do not include sufficient details of the critical anatomical structures within the joint. Due to the multifactorial dynamic nature of knee injuries, anatomic finite element (FE) models validated against multiple factors under a broad range of loading conditions are necessary. This study presents a validated FE model of the lower extremity with an anatomically accurate representation of the knee joint. The model was validated against tibiofemoral kinematics, ligaments strain/force, and articular cartilage pressure data measured directly from static, quasi-static, and dynamic cadaveric experiments. Strong correlations were observed between model predictions and experimental data (r > 0.8 and p < 0.0005 for all comparisons). FE predictions showed low deviations (root-mean-square (RMS) error) from average experimental data under all modes of static and quasi-static loading, falling within 2.5 deg of tibiofemoral rotation, 1% of anterior cruciate ligament (ACL) and medial collateral ligament (MCL) strains, 17 N of ACL load, and 1 mm of tibiofemoral center of pressure. Similarly, the FE model was able to accurately predict tibiofemoral kinematics and ACL and MCL strains during simulated bipedal landings (dynamic loading). In addition to minimal deviation from direct cadaveric measurements, all model predictions fell within 95% confidence intervals of the average experimental data. Agreement between model predictions and experimental data demonstrates the ability of the developed model to predict the kinematics of the human knee joint as well as the complex, nonuniform stress and strain fields that occur in biological soft tissue. Such a model will facilitate the in-depth understanding of a multitude of potential knee injury mechanisms with special emphasis on ACL injury. PMID:24763546

  13. Evolutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction.

    PubMed

    Muruganantham, Arrchana; Tan, Kay Chen; Vadakkepat, Prahlad

    2016-12-01

    Evolutionary algorithms are effective in solving static multiobjective optimization problems resulting in the emergence of a number of state-of-the-art multiobjective evolutionary algorithms (MOEAs). Nevertheless, the interest in applying them to solve dynamic multiobjective optimization problems has only been tepid. Benchmark problems, appropriate performance metrics, as well as efficient algorithms are required to further the research in this field. One or more objectives may change with time in dynamic optimization problems. The optimization algorithm must be able to track the moving optima efficiently. A prediction model can learn the patterns from past experience and predict future changes. In this paper, a new dynamic MOEA using Kalman filter (KF) predictions in decision space is proposed to solve the aforementioned problems. The predictions help to guide the search toward the changed optima, thereby accelerating convergence. A scoring scheme is devised to hybridize the KF prediction with a random reinitialization method. Experimental results and performance comparisons with other state-of-the-art algorithms demonstrate that the proposed algorithm is capable of significantly improving the dynamic optimization performance.

  14. Next Generation Community Based Unified Global Modeling System Development and Operational Implementation Strategies at NCEP

    NASA Astrophysics Data System (ADS)

    Tallapragada, V.

    2017-12-01

    NOAA's Next Generation Global Prediction System (NGGPS) has provided the unique opportunity to develop and implement a non-hydrostatic global model based on Geophysical Fluid Dynamics Laboratory (GFDL) Finite Volume Cubed Sphere (FV3) Dynamic Core at National Centers for Environmental Prediction (NCEP), making a leap-step advancement in seamless prediction capabilities across all spatial and temporal scales. Model development efforts are centralized with unified model development in the NOAA Environmental Modeling System (NEMS) infrastructure based on Earth System Modeling Framework (ESMF). A more sophisticated coupling among various earth system components is being enabled within NEMS following National Unified Operational Prediction Capability (NUOPC) standards. The eventual goal of unifying global and regional models will enable operational global models operating at convective resolving scales. Apart from the advanced non-hydrostatic dynamic core and coupling to various earth system components, advanced physics and data assimilation techniques are essential for improved forecast skill. NGGPS is spearheading ambitious physics and data assimilation strategies, concentrating on creation of a Common Community Physics Package (CCPP) and Joint Effort for Data Assimilation Integration (JEDI). Both initiatives are expected to be community developed, with emphasis on research transitioning to operations (R2O). The unified modeling system is being built to support the needs of both operations and research. Different layers of community partners are also established with specific roles/responsibilities for researchers, core development partners, trusted super-users, and operations. Stakeholders are engaged at all stages to help drive the direction of development, resources allocations and prioritization. This talk presents the current and future plans of unified model development at NCEP for weather, sub-seasonal, and seasonal climate prediction applications with special emphasis on implementation of NCEP FV3 Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS) into operations by 2019.

  15. A network of molecular switches controls the activation of the two-component response regulator NtrC

    NASA Astrophysics Data System (ADS)

    Vanatta, Dan K.; Shukla, Diwakar; Lawrenz, Morgan; Pande, Vijay S.

    2015-06-01

    Recent successes in simulating protein structure and folding dynamics have demonstrated the power of molecular dynamics to predict the long timescale behaviour of proteins. Here, we extend and improve these methods to predict molecular switches that characterize conformational change pathways between the active and inactive state of nitrogen regulatory protein C (NtrC). By employing unbiased Markov state model-based molecular dynamics simulations, we construct a dynamic picture of the activation pathways of this key bacterial signalling protein that is consistent with experimental observations and predicts new mutants that could be used for validation of the mechanism. Moreover, these results suggest a novel mechanistic paradigm for conformational switching.

  16. Multiscale regression modeling in mouse supraspinatus tendons reveals that dynamic processes act as mediators in structure-function relationships.

    PubMed

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J

    2016-06-14

    Recent advances in technology have allowed for the measurement of dynamic processes (re-alignment, crimp, deformation, sliding), but only a limited number of studies have investigated their relationship with mechanical properties. The overall objective of this study was to investigate the role of composition, structure, and the dynamic response to load in predicting tendon mechanical properties in a multi-level fashion mimicking native hierarchical collagen structure. Multiple linear regression models were investigated to determine the relationships between composition/structure, dynamic processes, and mechanical properties. Mediation was then used to determine if dynamic processes mediated structure-function relationships. Dynamic processes were strong predictors of mechanical properties. These predictions were location-dependent, with the insertion site utilizing all four dynamic responses and the midsubstance responding primarily with fibril deformation and sliding. In addition, dynamic processes were moderately predicted by composition and structure in a regionally-dependent manner. Finally, dynamic processes were partial mediators of the relationship between composition/structure and mechanical function, and results suggested that mediation is likely shared between multiple dynamic processes. In conclusion, the mechanical properties at the midsubstance of the tendon are controlled primarily by fibril structure and this region responds to load via fibril deformation and sliding. Conversely, the mechanical function at the insertion site is controlled by many other important parameters and the region responds to load via all four dynamic mechanisms. Overall, this study presents a strong foundation on which to design future experimental and modeling efforts in order to fully understand the complex structure-function relationships present in tendon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Twist Model Development and Results from the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Allen, Michael J.

    2007-01-01

    Understanding the wing twist of the active aeroelastic wing (AAW) F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption. This technique produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.

  18. Twist Model Development and Results From the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew; Allen, Michael J.

    2005-01-01

    Understanding the wing twist of the active aeroelastic wing F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption and by using neural networks. These techniques produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.

  19. Population Dynamics of a Salmonella Lytic Phage and Its Host: Implications of the Host Bacterial Growth Rate in Modelling

    PubMed Central

    Santos, Sílvio B.; Carvalho, Carla; Azeredo, Joana; Ferreira, Eugénio C.

    2014-01-01

    The prevalence and impact of bacteriophages in the ecology of bacterial communities coupled with their ability to control pathogens turn essential to understand and predict the dynamics between phage and bacteria populations. To achieve this knowledge it is essential to develop mathematical models able to explain and simulate the population dynamics of phage and bacteria. We have developed an unstructured mathematical model using delay-differential equations to predict the interactions between a broad-host-range Salmonella phage and its pathogenic host. The model takes into consideration the main biological parameters that rule phage-bacteria interactions likewise the adsorption rate, latent period, burst size, bacterial growth rate, and substrate uptake rate, among others. The experimental validation of the model was performed with data from phage-interaction studies in a 5 L bioreactor. The key and innovative aspect of the model was the introduction of variations in the latent period and adsorption rate values that are considered as constants in previous developed models. By modelling the latent period as a normal distribution of values and the adsorption rate as a function of the bacterial growth rate it was possible to accurately predict the behaviour of the phage-bacteria population. The model was shown to predict simulated data with a good agreement with the experimental observations and explains how a lytic phage and its host bacteria are able to coexist. PMID:25051248

  20. Dynamic characteristic of electromechanical coupling effects in motor-gear system

    NASA Astrophysics Data System (ADS)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-06-01

    Dynamic characteristics of an electromechanical model which combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system is analyzed in this study. The simulations reveal the effects of internal excitations or parameters like machine slotting, magnetic saturation, time-varying mesh stiffness and shaft stiffness on the system dynamics. The responses of the electromechanical system with PNM motor model are compared with those responses of the system with dynamic motor model. The electromechanical coupling due to the interactions between the motor and gear system are studied. Furthermore, the frequency analysis of the electromechanical system dynamic characteristics predicts an efficient way to detect work condition of unsymmetrical voltage sag.

  1. The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John

    1988-01-01

    The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.

  2. When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world

    Treesearch

    Eric J. Gustafson

    2013-01-01

    Researchers and natural resource managers need predictions of how multiple global changes (e.g., climate change, rising levels of air pollutants, exotic invasions) will affect landscape composition and ecosystem function. Ecological predictive models used for this purpose are constructed using either a mechanistic (process-based) or a phenomenological (empirical)...

  3. Spatiotemporal properties of microsaccades: Model predictions and experimental tests

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Fang; Yuan, Wu-Jie; Zhou, Zhao

    2016-10-01

    Microsaccades are involuntary and very small eye movements during fixation. Recently, the microsaccade-related neural dynamics have been extensively investigated both in experiments and by constructing neural network models. Experimentally, microsaccades also exhibit many behavioral properties. It’s well known that the behavior properties imply the underlying neural dynamical mechanisms, and so are determined by neural dynamics. The behavioral properties resulted from neural responses to microsaccades, however, are not yet understood and are rarely studied theoretically. Linking neural dynamics to behavior is one of the central goals of neuroscience. In this paper, we provide behavior predictions on spatiotemporal properties of microsaccades according to microsaccade-induced neural dynamics in a cascading network model, which includes both retinal adaptation and short-term depression (STD) at thalamocortical synapses. We also successfully give experimental tests in the statistical sense. Our results provide the first behavior description of microsaccades based on neural dynamics induced by behaving activity, and so firstly link neural dynamics to behavior of microsaccades. These results indicate strongly that the cascading adaptations play an important role in the study of microsaccades. Our work may be useful for further investigations of the microsaccadic behavioral properties and of the underlying neural dynamical mechanisms responsible for the behavioral properties.

  4. Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) using Complex Quantum Neuron (CQN): Applications to time series prediction.

    PubMed

    Cui, Yiqian; Shi, Junyou; Wang, Zili

    2015-11-01

    Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Mental models accurately predict emotion transitions.

    PubMed

    Thornton, Mark A; Tamir, Diana I

    2017-06-06

    Successful social interactions depend on people's ability to predict others' future actions and emotions. People possess many mechanisms for perceiving others' current emotional states, but how might they use this information to predict others' future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others' emotional dynamics. People could then use these mental models of emotion transitions to predict others' future emotions from currently observable emotions. To test this hypothesis, studies 1-3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants' ratings of emotion transitions predicted others' experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation-valence, social impact, rationality, and human mind-inform participants' mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants' accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone.

  6. A Flight Prediction for Performance of the SWAS Solar Array Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Seniderman, Gary; Daniel, Walter K.

    1999-01-01

    The focus of this paper is a comparison of ground-based solar array deployment tests with the on-orbit deployment. The discussion includes a summary of the mechanisms involved and the correlation of a dynamics model with ground based test results. Some of the unique characteristics of the mechanisms are explained through the analysis of force and angle data acquired from the test deployments. The correlated dynamics model is then used to predict the performance of the system in its flight application.

  7. Dynamic modeling and experiments on the coupled vibrations of building and elevator ropes

    NASA Astrophysics Data System (ADS)

    Yang, Dong-Ho; Kim, Ki-Young; Kwak, Moon K.; Lee, Seungjun

    2017-03-01

    This study is concerned with the theoretical modelling and experimental verification of the coupled vibrations of building and elevator ropes. The elevator ropes consist of a main rope which supports the cage and the compensation rope which is connected to the compensation sheave. The elevator rope is a flexible wire with a low damping, so it is prone to vibrations. In the case of a high-rise building, the rope length also increases significantly, so that the fundamental frequency of the elevator rope approaches the fundamental frequency of the building thus increasing the possibility of resonance. In this study, the dynamic model for the analysis of coupled vibrations of building and elevator ropes was derived by using Hamilton's principle, where the cage motion was also considered. An experimental testbed was built to validate the proposed dynamic model. It was found that the experimental results are in good agreement with the theoretical predictions thus validating the proposed dynamic model. The proposed model was then used to predict the vibrations of real building and elevator ropes.

  8. Modelling hen harrier dynamics to inform human-wildlife conflict resolution: a spatially-realistic, individual-based approach.

    PubMed

    Heinonen, Johannes P M; Palmer, Stephen C F; Redpath, Steve M; Travis, Justin M J

    2014-01-01

    Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions.

  9. Modelling Hen Harrier Dynamics to Inform Human-Wildlife Conflict Resolution: A Spatially-Realistic, Individual-Based Approach

    PubMed Central

    Heinonen, Johannes P. M.; Palmer, Stephen C. F.; Redpath, Steve M.; Travis, Justin M. J.

    2014-01-01

    Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions. PMID:25405860

  10. Modeling detour behavior of pedestrian dynamics under different conditions

    NASA Astrophysics Data System (ADS)

    Qu, Yunchao; Xiao, Yao; Wu, Jianjun; Tang, Tao; Gao, Ziyou

    2018-02-01

    Pedestrian simulation approach has been widely used to reveal the human behavior and evaluate the performance of crowd evacuation. In the existing pedestrian simulation models, the social force model is capable of predicting many collective phenomena. Detour behavior occurs in many cases, and the important behavior is a dominate factor of the crowd evacuation efficiency. However, limited attention has been attracted for analyzing and modeling the characteristics of detour behavior. In this paper, a modified social force model integrated by Voronoi diagram is proposed to calculate the detour direction and preferred velocity. Besides, with the consideration of locations and velocities of neighbor pedestrians, a Logit-based choice model is built to describe the detour direction choice. The proposed model is applied to analyze pedestrian dynamics in a corridor scenario with either unidirectional or bidirectional flow, and a building scenario in real-world. Simulation results show that the modified social force model including detour behavior could reduce the frequency of collision and deadlock, increase the average speed of the crowd, and predict more practical crowd dynamics with detour behavior. This model can also be potentially applied to understand the pedestrian dynamics and design emergent management strategies for crowd evacuations.

  11. The dynamic financial distress prediction method of EBW-VSTW-SVM

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Li, Hui; Chang, Pei-Chann; He, Kai-Yu

    2016-07-01

    Financial distress prediction (FDP) takes important role in corporate financial risk management. Most of former researches in this field tried to construct effective static FDP (SFDP) models that are difficult to be embedded into enterprise information systems, because they are based on horizontal data-sets collected outside the modelling enterprise by defining the financial distress as the absolute conditions such as bankruptcy or insolvency. This paper attempts to propose an approach for dynamic evaluation and prediction of financial distress based on the entropy-based weighting (EBW), the support vector machine (SVM) and an enterprise's vertical sliding time window (VSTW). The dynamic FDP (DFDP) method is named EBW-VSTW-SVM, which keeps updating the FDP model dynamically with time goes on and only needs the historic financial data of the modelling enterprise itself and thus is easier to be embedded into enterprise information systems. The DFDP method of EBW-VSTW-SVM consists of four steps, namely evaluation of vertical relative financial distress (VRFD) based on EBW, construction of training data-set for DFDP modelling according to VSTW, training of DFDP model based on SVM and DFDP for the future time point. We carry out case studies for two listed pharmaceutical companies and experimental analysis for some other companies to simulate the sliding of enterprise vertical time window. The results indicated that the proposed approach was feasible and efficient to help managers improve corporate financial management.

  12. Multiscale Analysis of Structurally-Graded Microstructures Using Molecular Dynamics, Discrete Dislocation Dynamics and Continuum Crystal Plasticity

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri

    2014-01-01

    A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.

  13. Numeric, Agent-based or System Dynamics Model? Which Modeling Approach is the Best for Vast Population Simulation?

    PubMed

    Cimler, Richard; Tomaskova, Hana; Kuhnova, Jitka; Dolezal, Ondrej; Pscheidl, Pavel; Kuca, Kamil

    2018-01-01

    Alzheimer's disease is one of the most common mental illnesses. It is posited that more than 25% of the population is affected by some mental disease during their lifetime. Treatment of each patient draws resources from the economy concerned. Therefore, it is important to quantify the potential economic impact. Agent-based, system dynamics and numerical approaches to dynamic modeling of the population of the European Union and its patients with Alzheimer's disease are presented in this article. Simulations, their characteristics, and the results from different modeling tools are compared. The results of these approaches are compared with EU population growth predictions from the statistical office of the EU by Eurostat. The methodology of a creation of the models is described and all three modeling approaches are compared. The suitability of each modeling approach for the population modeling is discussed. In this case study, all three approaches gave us the results corresponding with the EU population prediction. Moreover, we were able to predict the number of patients with AD and, based on the modeling method, we were also able to monitor different characteristics of the population. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION

    PubMed Central

    Finch, Craig; Clarke, Thomas; Hickman, James J.

    2012-01-01

    Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices. PMID:23729843

  15. Solar Activity Across the Scales: From Small-Scale Quiet-Sun Dynamics to Magnetic Activity Cycles

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina N.; Collins, Nancy N.; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2017-01-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  16. Solar activity across the scales: from small-scale quiet-Sun dynamics to magnetic activity cycles

    NASA Astrophysics Data System (ADS)

    Kitiashvili, I.; Collins, N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.

    2017-12-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high-resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  17. A fully dynamic model of a multi-layer piezoelectric actuator incorporating the power amplifier

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Yang, Fufeng; Rui, Xiaoting

    2017-12-01

    The dynamic input-output characteristics of the multi-layer piezoelectric actuator (PA) are intrinsically rate-dependent and hysteresis. Meanwhile, aiming at the strong capacitive impedance of multi-layer PA, the power amplifier of the actuator can greatly affect the dynamic performances of the actuator. In this paper, a novel dynamic model that includes a model of the electric circuit providing voltage to the actuator, an inverse piezoelectric effect model describing the hysteresis and creep behavior of the actuator, and a mechanical model, in which the vibration characteristics of the multi-layer PA is described, is put forward. Validation experimental tests are conducted. Experimental results show that the proposed dynamic model can accurately predict the fully dynamic behavior of the multi-layer PA with different driving power.

  18. Application of biomarkers in cancer risk management: evaluation from stochastic clonal evolutionary and dynamic system optimization points of view.

    PubMed

    Li, Xiaohong; Blount, Patricia L; Vaughan, Thomas L; Reid, Brian J

    2011-02-01

    Aside from primary prevention, early detection remains the most effective way to decrease mortality associated with the majority of solid cancers. Previous cancer screening models are largely based on classification of at-risk populations into three conceptually defined groups (normal, cancer without symptoms, and cancer with symptoms). Unfortunately, this approach has achieved limited successes in reducing cancer mortality. With advances in molecular biology and genomic technologies, many candidate somatic genetic and epigenetic "biomarkers" have been identified as potential predictors of cancer risk. However, none have yet been validated as robust predictors of progression to cancer or shown to reduce cancer mortality. In this Perspective, we first define the necessary and sufficient conditions for precise prediction of future cancer development and early cancer detection within a simple physical model framework. We then evaluate cancer risk prediction and early detection from a dynamic clonal evolution point of view, examining the implications of dynamic clonal evolution of biomarkers and the application of clonal evolution for cancer risk management in clinical practice. Finally, we propose a framework to guide future collaborative research between mathematical modelers and biomarker researchers to design studies to investigate and model dynamic clonal evolution. This approach will allow optimization of available resources for cancer control and intervention timing based on molecular biomarkers in predicting cancer among various risk subsets that dynamically evolve over time.

  19. Development of finite element models to predict dynamic bridge response.

    DOT National Transportation Integrated Search

    1997-10-01

    Dynamic response has long been recognized as one of the significant factors affecting the service life and safety of bridge structures. Even though considerable research, both analytical and experimental, has been devoted to dynamic bridge behavior, ...

  20. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling.

    PubMed

    Walter, Jonathan P; Pandy, Marcus G

    2017-10-01

    The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Finite volume solution for two-phase flow in a straight capillary

    NASA Astrophysics Data System (ADS)

    Yelkhovsky, Alexander; Pinczewski, W. Val

    2018-04-01

    The problem of two-phase flow in straight capillaries of polygonal cross section displays many of the dynamic characteristics of rapid interfacial motions associated with pore-scale displacements in porous media. Fluid inertia is known to be important in these displacements but is usually ignored in network models commonly used to predict macroscopic flow properties. This study presents a numerical model for two-phase flow which describes the spatial and temporal evolution of the interface between the fluids. The model is based on an averaged Navier-Stokes equation and is shown to be successful in predicting the complex dynamics of both capillary rise in round capillaries and imbibition along the corners of polygonal capillaries. The model can form the basis for more realistic network models which capture the effect of capillary, viscous, and inertial forces on pore-scale interfacial dynamics and consequent macroscopic flow properties.

  2. Nonlinear Model Predictive Control with Constraint Satisfactions for a Quadcopter

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Ramirez-Jaime, Andres; Xu, Feng; Puig, Vicenç

    2017-01-01

    This paper presents a nonlinear model predictive control (NMPC) strategy combined with constraint satisfactions for a quadcopter. The full dynamics of the quadcopter describing the attitude and position are nonlinear, which are quite sensitive to changes of inputs and disturbances. By means of constraint satisfactions, partial nonlinearities and modeling errors of the control-oriented model of full dynamics can be transformed into the inequality constraints. Subsequently, the quadcopter can be controlled by an NMPC controller with the updated constraints generated by constraint satisfactions. Finally, the simulation results applied to a quadcopter simulator are provided to show the effectiveness of the proposed strategy.

  3. Peak-summer East Asian rainfall predictability and prediction part II: extratropical East Asia

    NASA Astrophysics Data System (ADS)

    Yim, So-Young; Wang, Bin; Xing, Wen

    2016-07-01

    The part II of the present study focuses on northern East Asia (NEA: 26°N-50°N, 100°-140°E), exploring the source and limit of the predictability of the peak summer (July-August) rainfall. Prediction of NEA peak summer rainfall is extremely challenging because of the exposure of the NEA to midlatitude influence. By examining four coupled climate models' multi-model ensemble (MME) hindcast during 1979-2010, we found that the domain-averaged MME temporal correlation coefficient (TCC) skill is only 0.13. It is unclear whether the dynamical models' poor skills are due to limited predictability of the peak-summer NEA rainfall. In the present study we attempted to address this issue by applying predictable mode analysis method using 35-year observations (1979-2013). Four empirical orthogonal modes of variability and associated major potential sources of variability are identified: (a) an equatorial western Pacific (EWP)-NEA teleconnection driven by EWP sea surface temperature (SST) anomalies, (b) a western Pacific subtropical high and Indo-Pacific dipole SST feedback mode, (c) a central Pacific-El Nino-Southern Oscillation mode, and (d) a Eurasian wave train pattern. Physically meaningful predictors for each principal component (PC) were selected based on analysis of the lead-lag correlations with the persistent and tendency fields of SST and sea-level pressure from March to June. A suite of physical-empirical (P-E) models is established to predict the four leading PCs. The peak summer rainfall anomaly pattern is then objectively predicted by using the predicted PCs and the corresponding observed spatial patterns. A 35-year cross-validated hindcast over the NEA yields a domain-averaged TCC skill of 0.36, which is significantly higher than the MME dynamical hindcast (0.13). The estimated maximum potential attainable TCC skill averaged over the entire domain is around 0.61, suggesting that the current dynamical prediction models may have large rooms to improve. Limitations and future work are also discussed.

  4. Dynamic effects of root system architecture improve root water uptake in 1-D process-based soil-root hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bouda, Martin; Saiers, James E.

    2017-12-01

    Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, descriptions of RSA have not been included because of their three-dimensional complexity, which makes them generally too computationally costly. Here we demonstrate a new, process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA under different soil moisture conditions: the RSA stencil. Using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, we show that the RSA stencil predicts plant water potentials within 2% to the outputs of a full 3D model, under the same assumptions on soil moisture heterogeneity, despite its trivial computational cost, resulting in improved predictions of water uptake and soil moisture compared to a model without RSA in a transient simulation. Our results suggest that LSM predictions of soil moisture dynamics and dependent variables can be improved by the implementation of this model, calibrated for individual PFTs using field observations.

  5. Error modeling for surrogates of dynamical systems using machine learning: Machine-learning-based error model for surrogates of dynamical systems

    DOE PAGES

    Trehan, Sumeet; Carlberg, Kevin T.; Durlofsky, Louis J.

    2017-07-14

    A machine learning–based framework for modeling the error introduced by surrogate models of parameterized dynamical systems is proposed. The framework entails the use of high-dimensional regression techniques (eg, random forests, and LASSO) to map a large set of inexpensively computed “error indicators” (ie, features) produced by the surrogate model at a given time instance to a prediction of the surrogate-model error in a quantity of interest (QoI). This eliminates the need for the user to hand-select a small number of informative features. The methodology requires a training set of parameter instances at which the time-dependent surrogate-model error is computed bymore » simulating both the high-fidelity and surrogate models. Using these training data, the method first determines regression-model locality (via classification or clustering) and subsequently constructs a “local” regression model to predict the time-instantaneous error within each identified region of feature space. We consider 2 uses for the resulting error model: (1) as a correction to the surrogate-model QoI prediction at each time instance and (2) as a way to statistically model arbitrary functions of the time-dependent surrogate-model error (eg, time-integrated errors). We then apply the proposed framework to model errors in reduced-order models of nonlinear oil-water subsurface flow simulations, with time-varying well-control (bottom-hole pressure) parameters. The reduced-order models used in this work entail application of trajectory piecewise linearization in conjunction with proper orthogonal decomposition. Moreover, when the first use of the method is considered, numerical experiments demonstrate consistent improvement in accuracy in the time-instantaneous QoI prediction relative to the original surrogate model, across a large number of test cases. When the second use is considered, results show that the proposed method provides accurate statistical predictions of the time- and well-averaged errors.« less

  6. Error modeling for surrogates of dynamical systems using machine learning: Machine-learning-based error model for surrogates of dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trehan, Sumeet; Carlberg, Kevin T.; Durlofsky, Louis J.

    A machine learning–based framework for modeling the error introduced by surrogate models of parameterized dynamical systems is proposed. The framework entails the use of high-dimensional regression techniques (eg, random forests, and LASSO) to map a large set of inexpensively computed “error indicators” (ie, features) produced by the surrogate model at a given time instance to a prediction of the surrogate-model error in a quantity of interest (QoI). This eliminates the need for the user to hand-select a small number of informative features. The methodology requires a training set of parameter instances at which the time-dependent surrogate-model error is computed bymore » simulating both the high-fidelity and surrogate models. Using these training data, the method first determines regression-model locality (via classification or clustering) and subsequently constructs a “local” regression model to predict the time-instantaneous error within each identified region of feature space. We consider 2 uses for the resulting error model: (1) as a correction to the surrogate-model QoI prediction at each time instance and (2) as a way to statistically model arbitrary functions of the time-dependent surrogate-model error (eg, time-integrated errors). We then apply the proposed framework to model errors in reduced-order models of nonlinear oil-water subsurface flow simulations, with time-varying well-control (bottom-hole pressure) parameters. The reduced-order models used in this work entail application of trajectory piecewise linearization in conjunction with proper orthogonal decomposition. Moreover, when the first use of the method is considered, numerical experiments demonstrate consistent improvement in accuracy in the time-instantaneous QoI prediction relative to the original surrogate model, across a large number of test cases. When the second use is considered, results show that the proposed method provides accurate statistical predictions of the time- and well-averaged errors.« less

  7. A Kinetic Model for Calcium Dynamics in RAW 264.7 Cells: 1. Mechanisms, Parameters, and Subpopulational Variability

    PubMed Central

    Maurya, Mano Ram; Subramaniam, Shankar

    2007-01-01

    Calcium (Ca2+) is an important second messenger and has been the subject of numerous experimental measurements and mechanistic studies in intracellular signaling. Calcium profile can also serve as a useful cellular phenotype. Kinetic models of calcium dynamics provide quantitative insights into the calcium signaling networks. We report here the development of a complex kinetic model for calcium dynamics in RAW 264.7 cells stimulated by the C5a ligand. The model is developed using the vast number of measurements of in vivo calcium dynamics carried out in the Alliance for Cellular Signaling (AfCS) Laboratories. Ligand binding, phospholipase C-β (PLC-β) activation, inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) dynamics, and calcium exchange with mitochondria and extracellular matrix have all been incorporated into the model. The experimental data include data from both native and knockdown cell lines. Subpopulational variability in measurements is addressed by allowing nonkinetic parameters to vary across datasets. The model predicts temporal response of Ca2+ concentration for various doses of C5a under different initial conditions. The optimized parameters for IP3R dynamics are in agreement with the legacy data. Further, the half-maximal effect concentration of C5a and the predicted dose response are comparable to those seen in AfCS measurements. Sensitivity analysis shows that the model is robust to parametric perturbations. PMID:17483174

  8. An evaluation of string theory for the prediction of dynamic tire properties using scale model aircraft tires

    NASA Technical Reports Server (NTRS)

    Clark, S. K.; Dodge, R. N.; Nybakken, G. H.

    1972-01-01

    The string theory was evaluated for predicting lateral tire dynamic properties as obtained from scaled model tests. The experimental data and string theory predictions are in generally good agreement using lateral stiffness and relaxation length values obtained from the static or slowly rolling tire. The results indicate that lateral forces and self-aligning torques are linearly proportional to tire lateral stiffness and to the amplitude of either steer or lateral displacement. In addition, the results show that the ratio of input excitation frequency to road speed is the proper independent variable by which frequency should be measured.

  9. Complexity Science Framework for Big Data: Data-enabled Science

    NASA Astrophysics Data System (ADS)

    Surjalal Sharma, A.

    2016-07-01

    The ubiquity of Big Data has stimulated the development of analytic tools to harness the potential for timely and improved modeling and prediction. While much of the data is available near-real time and can be compiled to specify the current state of the system, the capability to make predictions is lacking. The main reason is the basic nature of Big Data - the traditional techniques are challenged in their ability to cope with its velocity, volume and variability to make optimum use of the available information. Another aspect is the absence of an effective description of the time evolution or dynamics of the specific system, derived from the data. Once such dynamical models are developed predictions can be made readily. This approach of " letting the data speak for itself " is distinct from the first-principles models based on the understanding of the fundamentals of the system. The predictive capability comes from the data-derived dynamical model, with no modeling assumptions, and can address many issues such as causality and correlation. This approach provides a framework for addressing the challenges in Big Data, especially in the case of spatio-temporal time series data. The reconstruction of dynamics from time series data is based on recognition that in most systems the different variables or degrees of freedom are coupled nonlinearly and in the presence of dissipation the state space contracts, effectively reducing the number of variables, thus enabling a description of its dynamical evolution and consequently prediction of future states. The predictability is analysed from the intrinsic characteristics of the distribution functions, such as Hurst exponents and Hill estimators. In most systems the distributions have heavy tails, which imply higher likelihood for extreme events. The characterization of the probabilities of extreme events are critical in many cases e. g., natural hazards, for proper assessment of risk and mitigation strategies. Big Data with such new analytics can yield improved risk estimates. The challenges of scientific inference from complex and massive data are addressed by data-enabled science, also referred as the Fourth paradigm, after experiment, theory and simulation. An example of this approach is the modelling of dynamical and statistical features of natural systems, without assumptions of specific processes. An effective use of the techniques of complexity science to yield the inherent features of a system from extensive data from observations and large scale numerical simulations is evident in the case of Earth's magnetosphere. The multiscale nature of the magnetosphere makes the numerical simulations a challenge, requiring very large computing resources. The reconstruction of dynamics from observational data can however yield the inherent characteristics using typical desktop computers. Such studies for other systems are in progress. Data-enabled approach using the framework of complexity science provides new techniques for modelling and prediction using Big Data. The studies of Earth's magnetosphere, provide an example of the potential for a new approach to the development of quantitative analytic tools.

  10. Dynamic Models of Learning That Characterize Parent-Child Exchanges Predict Vocabulary Growth

    ERIC Educational Resources Information Center

    Ober, David R.; Beekman, John A.

    2016-01-01

    Cumulative vocabulary models for infants and toddlers were developed from models of learning that predict trajectories associated with low, average, and high vocabulary growth rates (14 to 46 months). It was hypothesized that models derived from rates of learning mirror the type of exchanges provided to infants and toddlers by parents and…

  11. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China

    NASA Astrophysics Data System (ADS)

    Xu, Shiluo; Niu, Ruiqing

    2018-02-01

    Every year, landslides pose huge threats to thousands of people in China, especially those in the Three Gorges area. It is thus necessary to establish an early warning system to help prevent property damage and save peoples' lives. Most of the landslide displacement prediction models that have been proposed are static models. However, landslides are dynamic systems. In this paper, the total accumulative displacement of the Baijiabao landslide is divided into trend and periodic components using empirical mode decomposition. The trend component is predicted using an S-curve estimation, and the total periodic component is predicted using a long short-term memory neural network (LSTM). LSTM is a dynamic model that can remember historical information and apply it to the current output. Six triggering factors are chosen to predict the periodic term using the Pearson cross-correlation coefficient and mutual information. These factors include the cumulative precipitation during the previous month, the cumulative precipitation during a two-month period, the reservoir level during the current month, the change in the reservoir level during the previous month, the cumulative increment of the reservoir level during the current month, and the cumulative displacement during the previous month. When using one-step-ahead prediction, LSTM yields a root mean squared error (RMSE) value of 6.112 mm, while the support vector machine for regression (SVR) and the back-propagation neural network (BP) yield values of 10.686 mm and 8.237 mm, respectively. Meanwhile, the Elman network (Elman) yields an RMSE value of 6.579 mm. In addition, when using multi-step-ahead prediction, LSTM obtains an RMSE value of 8.648 mm, while SVR, BP and the Elman network obtains RSME values of 13.418 mm, 13.014 mm, and 13.370 mm. The predicted results indicate that, to some extent, the dynamic model (LSTM) achieves results that are more accurate than those of the static models (i.e., SVR and BP). LSTM even displays better performance than the Elman network, which is also a dynamic method.

  12. Separating direct and indirect effects of global change: a population dynamic modeling approach using readily available field data.

    PubMed

    Farrer, Emily C; Ashton, Isabel W; Knape, Jonas; Suding, Katharine N

    2014-04-01

    Two sources of complexity make predicting plant community response to global change particularly challenging. First, realistic global change scenarios involve multiple drivers of environmental change that can interact with one another to produce non-additive effects. Second, in addition to these direct effects, global change drivers can indirectly affect plants by modifying species interactions. In order to tackle both of these challenges, we propose a novel population modeling approach, requiring only measurements of abundance and climate over time. To demonstrate the applicability of this approach, we model population dynamics of eight abundant plant species in a multifactorial global change experiment in alpine tundra where we manipulated nitrogen, precipitation, and temperature over 7 years. We test whether indirect and interactive effects are important to population dynamics and whether explicitly incorporating species interactions can change predictions when models are forecast under future climate change scenarios. For three of the eight species, population dynamics were best explained by direct effect models, for one species neither direct nor indirect effects were important, and for the other four species indirect effects mattered. Overall, global change had negative effects on species population growth, although species responded to different global change drivers, and single-factor effects were slightly more common than interactive direct effects. When the fitted population dynamic models were extrapolated under changing climatic conditions to the end of the century, forecasts of community dynamics and diversity loss were largely similar using direct effect models that do not explicitly incorporate species interactions or best-fit models; however, inclusion of species interactions was important in refining the predictions for two of the species. The modeling approach proposed here is a powerful way of analyzing readily available datasets which should be added to our toolbox to tease apart complex drivers of global change. © 2013 John Wiley & Sons Ltd.

  13. Melting of genomic DNA: Predictive modeling by nonlinear lattice dynamics

    NASA Astrophysics Data System (ADS)

    Theodorakopoulos, Nikos

    2010-08-01

    The melting behavior of long, heterogeneous DNA chains is examined within the framework of the nonlinear lattice dynamics based Peyrard-Bishop-Dauxois (PBD) model. Data for the pBR322 plasmid and the complete T7 phage have been used to obtain model fits and determine parameter dependence on salt content. Melting curves predicted for the complete fd phage and the Y1 and Y2 fragments of the ϕX174 phage without any adjustable parameters are in good agreement with experiment. The calculated probabilities for single base-pair opening are consistent with values obtained from imino proton exchange experiments.

  14. The effect of the hot oxygen corona on the interaction of the solar wind with Venus

    NASA Astrophysics Data System (ADS)

    Belotserkovskii, O. M.; Breus, T. K.; Krymskii, A. M.; Mitnitskii, V. Ya.; Nagey, A. F.; Gombosi, T. I.

    1987-05-01

    A numerical gas dynamic model, which includes the effects of mass loading of the shocked solar wind, was used to calculate the density and magnetic field variations in the magnetosheath of Venus. These calculations were carried out for conditions corresponding to a specific orbit of the Pioneer Venus Orbiter (PVO orbit 582). A comparison of the model predictions and the measured shock position, density and magnetic field values showed a reasonable agreement, indicating that a gas dynamic model that includes the effects of mass loading can be used to predict these parameters.

  15. Comparison of statistical models for analyzing wheat yield time series.

    PubMed

    Michel, Lucie; Makowski, David

    2013-01-01

    The world's population is predicted to exceed nine billion by 2050 and there is increasing concern about the capability of agriculture to feed such a large population. Foresight studies on food security are frequently based on crop yield trends estimated from yield time series provided by national and regional statistical agencies. Various types of statistical models have been proposed for the analysis of yield time series, but the predictive performances of these models have not yet been evaluated in detail. In this study, we present eight statistical models for analyzing yield time series and compare their ability to predict wheat yield at the national and regional scales, using data provided by the Food and Agriculture Organization of the United Nations and by the French Ministry of Agriculture. The Holt-Winters and dynamic linear models performed equally well, giving the most accurate predictions of wheat yield. However, dynamic linear models have two advantages over Holt-Winters models: they can be used to reconstruct past yield trends retrospectively and to analyze uncertainty. The results obtained with dynamic linear models indicated a stagnation of wheat yields in many countries, but the estimated rate of increase of wheat yield remained above 0.06 t ha⁻¹ year⁻¹ in several countries in Europe, Asia, Africa and America, and the estimated values were highly uncertain for several major wheat producing countries. The rate of yield increase differed considerably between French regions, suggesting that efforts to identify the main causes of yield stagnation should focus on a subnational scale.

  16. Bioinactivation: Software for modelling dynamic microbial inactivation.

    PubMed

    Garre, Alberto; Fernández, Pablo S; Lindqvist, Roland; Egea, Jose A

    2017-03-01

    This contribution presents the bioinactivation software, which implements functions for the modelling of isothermal and non-isothermal microbial inactivation. This software offers features such as user-friendliness, modelling of dynamic conditions, possibility to choose the fitting algorithm and generation of prediction intervals. The software is offered in two different formats: Bioinactivation core and Bioinactivation SE. Bioinactivation core is a package for the R programming language, which includes features for the generation of predictions and for the fitting of models to inactivation experiments using non-linear regression or a Markov Chain Monte Carlo algorithm (MCMC). The calculations are based on inactivation models common in academia and industry (Bigelow, Peleg, Mafart and Geeraerd). Bioinactivation SE supplies a user-friendly interface to selected functions of Bioinactivation core, namely the model fitting of non-isothermal experiments and the generation of prediction intervals. The capabilities of bioinactivation are presented in this paper through a case study, modelling the non-isothermal inactivation of Bacillus sporothermodurans. This study has provided a full characterization of the response of the bacteria to dynamic temperature conditions, including confidence intervals for the model parameters and a prediction interval of the survivor curve. We conclude that the MCMC algorithm produces a better characterization of the biological uncertainty and variability than non-linear regression. The bioinactivation software can be relevant to the food and pharmaceutical industry, as well as to regulatory agencies, as part of a (quantitative) microbial risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dynamics of Social Group Competition: Modeling the Decline of Religious Affiliation

    NASA Astrophysics Data System (ADS)

    Abrams, Daniel M.; Yaple, Haley A.; Wiener, Richard J.

    2011-08-01

    When social groups compete for members, the resulting dynamics may be understandable with mathematical models. We demonstrate that a simple ordinary differential equation (ODE) model is a good fit for religious shift by comparing it to a new international data set tracking religious nonaffiliation. We then generalize the model to include the possibility of nontrivial social interaction networks and examine the limiting case of a continuous system. Analytical and numerical predictions of this generalized system, which is robust to polarizing perturbations, match those of the original ODE model and justify its agreement with real-world data. The resulting predictions highlight possible causes of social shift and suggest future lines of research in both physics and sociology.

  18. Performance of an inverted pendulum model directly applied to normal human gait.

    PubMed

    Buczek, Frank L; Cooney, Kevin M; Walker, Matthew R; Rainbow, Michael J; Concha, M Cecilia; Sanders, James O

    2006-03-01

    In clinical gait analysis, we strive to understand contributions to body support and propulsion as this forms a basis for treatment selection, yet the relative importance of gravitational forces and joint powers can be controversial even for normal gait. We hypothesized that an inverted pendulum model, propelled only by gravity, would be inadequate to predict velocities and ground reaction forces during gait. Unlike previous ballistic and passive dynamic walking studies, we directly compared model predictions to gait data for 24 normal children. We defined an inverted pendulum from the average center-of-pressure to the instantaneous center-of-mass, and derived equations of motion during single support that allowed a telescoping action. Forward and inverse dynamics predicted pendulum velocities and ground reaction forces, and these were statistically and graphically compared to actual gait data for identical strides. Results of forward dynamics replicated those in the literature, with reasonable predictions for velocities and anterior ground reaction forces, but poor predictions for vertical ground reaction forces. Deviations from actual values were explained by joint powers calculated for these subjects. With a telescoping action during inverse dynamics, predicted vertical forces improved dramatically and gained a dual-peak pattern previously missing in the literature, yet expected for normal gait. These improvements vanished when telescoping terms were set to zero. Because this telescoping action is difficult to explain without muscle activity, we believe these results support the need for both gravitational forces and joint powers in normal gait. Our approach also begins to quantify the relative contributions of each.

  19. On the Selection of Models for Runtime Prediction of System Resources

    NASA Astrophysics Data System (ADS)

    Casolari, Sara; Colajanni, Michele

    Applications and services delivered through large Internet Data Centers are now feasible thanks to network and server improvement, but also to virtualization, dynamic allocation of resources and dynamic migrations. The large number of servers and resources involved in these systems requires autonomic management strategies because no amount of human administrators would be capable of cloning and migrating virtual machines in time, as well as re-distributing or re-mapping the underlying hardware. At the basis of most autonomic management decisions, there is the need of evaluating own global behavior and change it when the evaluation indicates that they are not accomplishing what they were intended to do or some relevant anomalies are occurring. Decisions algorithms have to satisfy different time scales constraints. In this chapter we are interested to short-term contexts where runtime prediction models work on the basis of time series coming from samples of monitored system resources, such as disk, CPU and network utilization. In similar environments, we have to address two main issues. First, original time series are affected by limited predictability because measurements are characterized by noises due to system instability, variable offered load, heavy-tailed distributions, hardware and software interactions. Moreover, there is no existing criteria that can help us to choose a suitable prediction model and related parameters with the purpose of guaranteeing an adequate prediction quality. In this chapter, we evaluate the impact that different choices on prediction models have on different time series, and we suggest how to treat input data and whether it is convenient to choose the parameters of a prediction model in a static or dynamic way. Our conclusions are supported by a large set of analyses on realistic and synthetic data traces.

  20. Predicting dynamic metabolic demands in the photosynthetic eukaryote Chlorella vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuniga, Cristal; Levering, Jennifer; Antoniewicz, Maciek R.

    Phototrophic organisms exhibit a highly dynamic proteome, adapting their biomass composition in response to diurnal light/dark cycles and nutrient availability. We used experimentally determined biomass compositions over the course of growth to determine and constrain the biomass objective function (BOF) in a genome-scale metabolic model of Chlorella vulgaris UTEX 395 over time. Changes in the BOF, which encompasses all metabolites necessary to produce biomass, influence the state of the metabolic network thus directly affecting predictions. Simulations using dynamic BOFs predicted distinct proteome demands during heterotrophic or photoautotrophic growth. Model-driven analysis of extracellular nitrogen concentrations and predicted nitrogen uptake rates revealedmore » an intracellular nitrogen pool, which contains 38% of the total nitrogen provided in the medium for photoautotrophic and 13% for heterotrophic growth. Agreement between flux and gene expression trends was determined by statistical comparison. Accordance between predicted fluxes trends and gene expression trends was found for 65% of multi-subunit enzymes and 75% of allosteric reactions. Reactions with the highest agreement between simulations and experimental data were associated with energy metabolism, terpenoid biosynthesis, fatty acids, nucleotides, and amino acids metabolism. Moreover, predicted flux distributions at each time point were compared with gene expression data to gain new insights into intracellular compartmentalization, specifically for transporters. A total of 103 genes related to internal transport reactions were identified and added to the updated model of C. vulgaris, iCZ946, thus increasing our knowledgebase by 10% for this model green alga.« less

  1. Predicting dynamic metabolic demands in the photosynthetic eukaryote Chlorella vulgaris

    DOE PAGES

    Zuniga, Cristal; Levering, Jennifer; Antoniewicz, Maciek R.; ...

    2017-09-26

    Phototrophic organisms exhibit a highly dynamic proteome, adapting their biomass composition in response to diurnal light/dark cycles and nutrient availability. We used experimentally determined biomass compositions over the course of growth to determine and constrain the biomass objective function (BOF) in a genome-scale metabolic model of Chlorella vulgaris UTEX 395 over time. Changes in the BOF, which encompasses all metabolites necessary to produce biomass, influence the state of the metabolic network thus directly affecting predictions. Simulations using dynamic BOFs predicted distinct proteome demands during heterotrophic or photoautotrophic growth. Model-driven analysis of extracellular nitrogen concentrations and predicted nitrogen uptake rates revealedmore » an intracellular nitrogen pool, which contains 38% of the total nitrogen provided in the medium for photoautotrophic and 13% for heterotrophic growth. Agreement between flux and gene expression trends was determined by statistical comparison. Accordance between predicted fluxes trends and gene expression trends was found for 65% of multi-subunit enzymes and 75% of allosteric reactions. Reactions with the highest agreement between simulations and experimental data were associated with energy metabolism, terpenoid biosynthesis, fatty acids, nucleotides, and amino acids metabolism. Moreover, predicted flux distributions at each time point were compared with gene expression data to gain new insights into intracellular compartmentalization, specifically for transporters. A total of 103 genes related to internal transport reactions were identified and added to the updated model of C. vulgaris, iCZ946, thus increasing our knowledgebase by 10% for this model green alga.« less

  2. PREDICTIVE MODEL OF CONJUGATIVE PLASMID TRANSFER IN THE RHIZOSPHERE AND PHYLLOSPHERE

    EPA Science Inventory

    A computer simulation model was used to predict the dynamics of survival and conjugation of Pseudomonas cepacia (carrying the transmissible recombinant plasmid R388:Tn1721) with a nonrecombinant recipient strain in simple rhizosphere and phyllosphere microcosms. lasmid transfer r...

  3. Recurrent connectivity can account for the dynamics of disparity processing in V1

    PubMed Central

    Samonds, Jason M.; Potetz, Brian R.; Tyler, Christopher W.; Lee, Tai Sing

    2013-01-01

    Disparity tuning measured in the primary visual cortex (V1) is described well by the disparity energy model, but not all aspects of disparity tuning are fully explained by the model. Such deviations from the disparity energy model provide us with insight into how network interactions may play a role in disparity processing and help to solve the stereo correspondence problem. Here, we propose a neuronal circuit model with recurrent connections that provides a simple account of the observed deviations. The model is based on recurrent connections inferred from neurophysiological observations on spike timing correlations, and is in good accord with existing data on disparity tuning dynamics. We further performed two additional experiments to test predictions of the model. First, we increased the size of stimuli to drive more neurons and provide a stronger recurrent input. Our model predicted sharper disparity tuning for larger stimuli. Second, we displayed anti-correlated stereograms, where dots of opposite luminance polarity are matched between the left- and right-eye images and result in inverted disparity tuning in the disparity energy model. In this case, our model predicted reduced sharpening and strength of inverted disparity tuning. For both experiments, the dynamics of disparity tuning observed from the neurophysiological recordings in macaque V1 matched model simulation predictions. Overall, the results of this study support the notion that, while the disparity energy model provides a primary account of disparity tuning in V1 neurons, neural disparity processing in V1 neurons is refined by recurrent interactions among elements in the neural circuit. PMID:23407952

  4. An information model for use in software management estimation and prediction

    NASA Technical Reports Server (NTRS)

    Li, Ningda R.; Zelkowitz, Marvin V.

    1993-01-01

    This paper describes the use of cluster analysis for determining the information model within collected software engineering development data at the NASA/GSFC Software Engineering Laboratory. We describe the Software Management Environment tool that allows managers to predict development attributes during early phases of a software project and the modifications we propose to allow it to develop dynamic models for better predictions of these attributes.

  5. Lifetime of Major Histocompatibility Complex Class-I Membrane Clusters Is Controlled by the Actin Cytoskeleton

    PubMed Central

    Lavi, Yael; Gov, Nir; Edidin, Michael; Gheber, Levi A.

    2012-01-01

    Lateral heterogeneity of cell membranes has been demonstrated in numerous studies showing anomalous diffusion of membrane proteins; it has been explained by models and experiments suggesting dynamic barriers to free diffusion, that temporarily confine membrane proteins into microscopic patches. This picture, however, comes short of explaining a steady-state patchy distribution of proteins, in face of the transient opening of the barriers. In our previous work we directly imaged persistent clusters of MHC-I, a type I transmembrane protein, and proposed a model of a dynamic equilibrium between proteins newly delivered to the cell surface by vesicle traffic, temporary confinement by dynamic barriers to lateral diffusion, and dispersion of the clusters by diffusion over the dynamic barriers. Our model predicted that the clusters are dynamic, appearing when an exocytic vesicle fuses with the plasma membrane and dispersing with a typical lifetime that depends on lateral diffusion and the dynamics of barriers. In a subsequent work, we showed this to be the case. Here we test another prediction of the model, and show that changing the stability of actin barriers to lateral diffusion changes cluster lifetimes. We also develop a model for the distribution of cluster lifetimes, consistent with the function of barriers to lateral diffusion in maintaining MHC-I clusters. PMID:22500754

  6. Contributions of Dynamic Systems Theory to Cognitive Development

    ERIC Educational Resources Information Center

    Spencer, John P.; Austin, Andrew; Schutte, Anne R.

    2012-01-01

    We examine the contributions of dynamic systems theory to the field of cognitive development, focusing on modeling using dynamic neural fields. After introducing central concepts of dynamic field theory (DFT), we probe empirical predictions and findings around two examples--the DFT of infant perseverative reaching that explains Piaget's A-not-B…

  7. Dynamic Web Pages: Performance Impact on Web Servers.

    ERIC Educational Resources Information Center

    Kothari, Bhupesh; Claypool, Mark

    2001-01-01

    Discussion of Web servers and requests for dynamic pages focuses on experimentally measuring and analyzing the performance of the three dynamic Web page generation technologies: CGI, FastCGI, and Servlets. Develops a multivariate linear regression model and predicts Web server performance under some typical dynamic requests. (Author/LRW)

  8. Data-driven Climate Modeling and Prediction

    NASA Astrophysics Data System (ADS)

    Kondrashov, D. A.; Chekroun, M.

    2016-12-01

    Global climate models aim to simulate a broad range of spatio-temporal scales of climate variability with state vector having many millions of degrees of freedom. On the other hand, while detailed weather prediction out to a few days requires high numerical resolution, it is fairly clear that a major fraction of large-scale climate variability can be predicted in a much lower-dimensional phase space. Low-dimensional models can simulate and predict this fraction of climate variability, provided they are able to account for linear and nonlinear interactions between the modes representing large scales of climate dynamics, as well as their interactions with a much larger number of modes representing fast and small scales. This presentation will highlight several new applications by Multilayered Stochastic Modeling (MSM) [Kondrashov, Chekroun and Ghil, 2015] framework that has abundantly proven its efficiency in the modeling and real-time forecasting of various climate phenomena. MSM is a data-driven inverse modeling technique that aims to obtain a low-order nonlinear system of prognostic equations driven by stochastic forcing, and estimates both the dynamical operator and the properties of the driving noise from multivariate time series of observations or a high-end model's simulation. MSM leads to a system of stochastic differential equations (SDEs) involving hidden (auxiliary) variables of fast-small scales ranked by layers, which interact with the macroscopic (observed) variables of large-slow scales to model the dynamics of the latter, and thus convey memory effects. New MSM climate applications focus on development of computationally efficient low-order models by using data-adaptive decomposition methods that convey memory effects by time-embedding techniques, such as Multichannel Singular Spectrum Analysis (M-SSA) [Ghil et al. 2002] and recently developed Data-Adaptive Harmonic (DAH) decomposition method [Chekroun and Kondrashov, 2016]. In particular, new results by DAH-MSM modeling and prediction of Arctic Sea Ice, as well as decadal predictions of near-surface Earth temperatures will be presented.

  9. The synergistic use of models and observations: understanding the mechanisms behind observed biomass dynamics at 14 Amazonian field sites and the implications for future biomass change

    NASA Astrophysics Data System (ADS)

    Levine, N. M.; Galbraith, D.; Christoffersen, B. J.; Imbuzeiro, H. A.; Restrepo-Coupe, N.; Malhi, Y.; Saleska, S. R.; Costa, M. H.; Phillips, O.; Andrade, A.; Moorcroft, P. R.

    2011-12-01

    The Amazonian rainforests play a vital role in global water, energy and carbon cycling. The sensitivity of this system to natural and anthropogenic disturbances therefore has important implications for the global climate. Some global models have predicted large-scale forest dieback and the savannization of Amazonia over the next century [Meehl et al., 2007]. While several studies have demonstrated the sensitivity of dynamic global vegetation models to changes in temperature, precipitation, and dry season length [e.g. Galbraith et al., 2010; Good et al., 2011], the ability of these models to accurately reproduce ecosystem dynamics of present-day transitional or low biomass tropical forests has not been demonstrated. A model-data intercomparison was conducted with four state-of-the-art terrestrial ecosystem models to evaluate the ability of these models to accurately represent structure, function, and long-term biomass dynamics over a range of Amazonian ecosystems. Each modeling group conducted a series of simulations for 14 sites including mature forest, transitional forest, savannah, and agricultural/pasture sites. All models were run using standard physical parameters and the same initialization procedure. Model results were compared against forest inventory and dendrometer data in addition to flux tower measurements. While the models compared well against field observations for the mature forest sites, significant differences were observed between predicted and measured ecosystem structure and dynamics for the transitional forest and savannah sites. The length of the dry season and soil sand content were good predictors of model performance. In addition, for the big leaf models, model performance was highest for sites dominated by late successional trees and lowest for sites with predominantly early and mid-successional trees. This study provides insight into tropical forest function and sensitivity to environmental conditions that will aid in predictions of the response of the Amazonian rainforest to future anthropogenically induced changes.

  10. Effects of distribution of infection rate on epidemic models

    NASA Astrophysics Data System (ADS)

    Lachiany, Menachem; Louzoun, Yoram

    2016-08-01

    A goal of many epidemic models is to compute the outcome of the epidemics from the observed infected early dynamics. However, often, the total number of infected individuals at the end of the epidemics is much lower than predicted from the early dynamics. This discrepancy is argued to result from human intervention or nonlinear dynamics not incorporated in standard models. We show that when variability in infection rates is included in standard susciptible-infected-susceptible (SIS ) and susceptible-infected-recovered (SIR ) models the total number of infected individuals in the late dynamics can be orders lower than predicted from the early dynamics. This discrepancy holds for SIS and SIR models, where the assumption that all individuals have the same sensitivity is eliminated. In contrast with network models, fixed partnerships are not assumed. We derive a moment closure scheme capturing the distribution of sensitivities. We find that the shape of the sensitivity distribution does not affect R0 or the number of infected individuals in the early phases of the epidemics. However, a wide distribution of sensitivities reduces the total number of removed individuals in the SIR model and the steady-state infected fraction in the SIS model. The difference between the early and late dynamics implies that in order to extrapolate the expected effect of the epidemics from the initial phase of the epidemics, the rate of change in the average infectivity should be computed. These results are supported by a comparison of the theoretical model to the Ebola epidemics and by numerical simulation.

  11. Bayesian Inference of High-Dimensional Dynamical Ocean Models

    NASA Astrophysics Data System (ADS)

    Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.

    2015-12-01

    This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.

  12. Nonlinear modeling of chaotic time series: Theory and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casdagli, M.; Eubank, S.; Farmer, J.D.

    1990-01-01

    We review recent developments in the modeling and prediction of nonlinear time series. In some cases apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifyingmore » and quantifying low-dimensional chaotic behavior. During the past few years methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics and human speech. 162 refs., 13 figs.« less

  13. Evaluating the accuracy of recent electron transport models at predicting Hall thruster plasma dynamics

    NASA Astrophysics Data System (ADS)

    Cappelli, Mark; Young, Christopher

    2016-10-01

    We present continued efforts towards introducing physical models for cross-magnetic field electron transport into Hall thruster discharge simulations. In particular, we seek to evaluate whether such models accurately capture ion dynamics, both averaged and resolved in time, through comparisons with measured ion velocity distributions which are now becoming available for several devices. Here, we describe a turbulent electron transport model that is integrated into 2-D hybrid fluid/PIC simulations of a 72 mm diameter laboratory thruster operating at 400 W. We also compare this model's predictions with one recently proposed by Lafluer et al.. Introducing these models into 2-D hybrid simulations is relatively straightforward and leverages the existing framework for solving the electron fluid equations. The models are tested for their ability to capture the time-averaged experimental discharge current and its fluctuations due to ionization instabilities. Model predictions are also more rigorously evaluated against recent laser-induced fluorescence measurements of time-resolved ion velocity distributions.

  14. How uncertain is model-based prediction of copper loads in stormwater runoff?

    PubMed

    Lindblom, E; Ahlman, S; Mikkelsen, P S

    2007-01-01

    In this paper, we conduct a systematic analysis of the uncertainty related with estimating the total load of pollution (copper) from a separate stormwater drainage system, conditioned on a specific combination of input data, a dynamic conceptual pollutant accumulation-washout model and measurements (runoff volumes and pollutant masses). We use the generalized likelihood uncertainty estimation (GLUE) methodology and generate posterior parameter distributions that result in model outputs encompassing a significant number of the highly variable measurements. Given the applied pollution accumulation-washout model and a total of 57 measurements during one month, the total predicted copper masses can be predicted within a range of +/-50% of the median value. The message is that this relatively large uncertainty should be acknowledged in connection with posting statements about micropollutant loads as estimated from dynamic models, even when calibrated with on-site concentration data.

  15. Modeling and dynamic environment analysis technology for spacecraft

    NASA Astrophysics Data System (ADS)

    Fang, Ren; Zhaohong, Qin; Zhong, Zhang; Zhenhao, Liu; Kai, Yuan; Long, Wei

    Spacecraft sustains complex and severe vibrations and acoustic environments during flight. Predicting the resulting structures, including numerical predictions of fluctuating pressure, updating models and random vibration and acoustic analysis, plays an important role during the design, manufacture and ground testing of spacecraft. In this paper, Monotony Integrative Large Eddy Simulation (MILES) is introduced to predict the fluctuating pressure of the fairing. The exact flow structures of the fairing wall surface under different Mach numbers are obtained, then a spacecraft model is constructed using the finite element method (FEM). According to the modal test data, the model is updated by the penalty method. On this basis, the random vibration and acoustic responses of the fairing and satellite are analyzed by different methods. The simulated results agree well with the experimental ones, which shows the validity of the modeling and dynamic environment analysis technology. This information can better support test planning, defining test conditions and designing optimal structures.

  16. Challenges in microbial ecology: building predictive understanding of community function and dynamics

    PubMed Central

    Widder, Stefanie; Allen, Rosalind J; Pfeiffer, Thomas; Curtis, Thomas P; Wiuf, Carsten; Sloan, William T; Cordero, Otto X; Brown, Sam P; Momeni, Babak; Shou, Wenying; Kettle, Helen; Flint, Harry J; Haas, Andreas F; Laroche, Béatrice; Kreft, Jan-Ulrich; Rainey, Paul B; Freilich, Shiri; Schuster, Stefan; Milferstedt, Kim; van der Meer, Jan R; Groβkopf, Tobias; Huisman, Jef; Free, Andrew; Picioreanu, Cristian; Quince, Christopher; Klapper, Isaac; Labarthe, Simon; Smets, Barth F; Wang, Harris; Soyer, Orkun S

    2016-01-01

    The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth's soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development with mathematical model building. We discuss specific examples where model–experiment integration has already resulted in important insights into MC function and structure. We also highlight key research questions that still demand better integration of experiments and models. We argue that such integration is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved. PMID:27022995

  17. SGS Dynamics and Modeling near a Rough Wall.

    NASA Astrophysics Data System (ADS)

    Juneja, Anurag; Brasseur, James G.

    1998-11-01

    Large-eddy simulation (LES) of the atmospheric boundary layer (ABL) using classical subgrid-scale (SGS) models is known to poorly predict mean shear at the first few grid cells near the rough surface, creating error which can propogate vertically to infect the entire ABL. Our goal was to determine the first-order errors in predicted SGS terms that arise as a consequence of necessary under-resolution of integral scales and anisotropy which exist at the first few grid levels in LES of rough wall turbulence. Analyzing the terms predicted from eddy-viscosity and similarity closures with DNS anisotropic datasets of buoyancy- and shear-driven turbulence, we uncover three important issues which should be addressed in the design of SGS closures for rough walls and we provide a priori tests for the SGS model. Firstly, we identify a strong spurious coupling between the anisotropic structure of the resolved velocity field and predicted SGS dynamics which can create a feedback loop to incorrectly enhance certain components of the predicted resolved velocity. Secondly, we find that eddy viscosity and similarity SGS models do not contain enough degrees of freedom to capture, at a sufficient level of accuracy, both RS-SGS energy flux and SGS-RS dynamics. Thirdly, to correctly capture pressure transport near a wall, closures must be made more flexible to accommodate proper partitioning between SGS stress divergence and SGS pressure gradient.

  18. A Nonlinear Dynamical Systems based Model for Stochastic Simulation of Streamflow

    NASA Astrophysics Data System (ADS)

    Erkyihun, S. T.; Rajagopalan, B.; Zagona, E. A.

    2014-12-01

    Traditional time series methods model the evolution of the underlying process as a linear or nonlinear function of the autocorrelation. These methods capture the distributional statistics but are incapable of providing insights into the dynamics of the process, the potential regimes, and predictability. This work develops a nonlinear dynamical model for stochastic simulation of streamflows. In this, first a wavelet spectral analysis is employed on the flow series to isolate dominant orthogonal quasi periodic timeseries components. The periodic bands are added denoting the 'signal' component of the time series and the residual being the 'noise' component. Next, the underlying nonlinear dynamics of this combined band time series is recovered. For this the univariate time series is embedded in a d-dimensional space with an appropriate lag T to recover the state space in which the dynamics unfolds. Predictability is assessed by quantifying the divergence of trajectories in the state space with time, as Lyapunov exponents. The nonlinear dynamics in conjunction with a K-nearest neighbor time resampling is used to simulate the combined band, to which the noise component is added to simulate the timeseries. We demonstrate this method by applying it to the data at Lees Ferry that comprises of both the paleo reconstructed and naturalized historic annual flow spanning 1490-2010. We identify interesting dynamics of the signal in the flow series and epochal behavior of predictability. These will be of immense use for water resources planning and management.

  19. BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure

    PubMed Central

    Becher, Matthias A; Grimm, Volker; Thorbek, Pernille; Horn, Juliane; Kennedy, Peter J; Osborne, Juliet L

    2014-01-01

    A notable increase in failure of managed European honeybee Apis mellifera L. colonies has been reported in various regions in recent years. Although the underlying causes remain unclear, it is likely that a combination of stressors act together, particularly varroa mites and other pathogens, forage availability and potentially pesticides. It is experimentally challenging to address causality at the colony scale when multiple factors interact. In silico experiments offer a fast and cost-effective way to begin to address these challenges and inform experiments. However, none of the published bee models combine colony dynamics with foraging patterns and varroa dynamics. We have developed a honeybee model, BEEHAVE, which integrates colony dynamics, population dynamics of the varroa mite, epidemiology of varroa-transmitted viruses and allows foragers in an agent-based foraging model to collect food from a representation of a spatially explicit landscape. We describe the model, which is freely available online (www.beehave-model.net). Extensive sensitivity analyses and tests illustrate the model's robustness and realism. Simulation experiments with various combinations of stressors demonstrate, in simplified landscape settings, the model's potential: predicting colony dynamics and potential losses with and without varroa mites under different foraging conditions and under pesticide application. We also show how mitigation measures can be tested. Synthesis and applications. BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee colony dynamics. PMID:25598549

  20. BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure.

    PubMed

    Becher, Matthias A; Grimm, Volker; Thorbek, Pernille; Horn, Juliane; Kennedy, Peter J; Osborne, Juliet L

    2014-04-01

    A notable increase in failure of managed European honeybee Apis mellifera L. colonies has been reported in various regions in recent years. Although the underlying causes remain unclear, it is likely that a combination of stressors act together, particularly varroa mites and other pathogens, forage availability and potentially pesticides. It is experimentally challenging to address causality at the colony scale when multiple factors interact. In silico experiments offer a fast and cost-effective way to begin to address these challenges and inform experiments. However, none of the published bee models combine colony dynamics with foraging patterns and varroa dynamics.We have developed a honeybee model, BEEHAVE, which integrates colony dynamics, population dynamics of the varroa mite, epidemiology of varroa-transmitted viruses and allows foragers in an agent-based foraging model to collect food from a representation of a spatially explicit landscape.We describe the model, which is freely available online (www.beehave-model.net). Extensive sensitivity analyses and tests illustrate the model's robustness and realism. Simulation experiments with various combinations of stressors demonstrate, in simplified landscape settings, the model's potential: predicting colony dynamics and potential losses with and without varroa mites under different foraging conditions and under pesticide application. We also show how mitigation measures can be tested. Synthesis and applications . BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee colony dynamics.

  1. [Prediction of 137Cs behaviour in the soil-plant system in the territory of Semipalatinsk test site].

    PubMed

    Spiridonov, S I; Mukusheva, M K; Gontarenko, I A; Fesenko, S V; Baranov, S A

    2005-01-01

    A mathematical model of 137Cs behaviour in the soil-plant system is presented. The model has been parameterized for the area adjacent to the testing area Ground Zero of the Semipalatinsk Test Site. The model describes the main processes responsible for the changes in 137Cs content in the soil solution and, thereby, dynamics of the radionuclide uptake by vegetation. The results are taken from predictive and retrospective calculations that reflect the dynamics of 137Cs distribution by species in soil after nuclear explosions. The importance of factors governing 137Cs accumulation in plants within the STS area is assessed. The analysis of sensitivity of the output model variable to changes in its parameters revealed that the key soil properties significantly influence the results of prediction of 137Cs content in plants.

  2. Measurement of sediment and crustal thickness corrected RDA for 2D profiles at rifted continental margins: Applications to the Iberian, Gulf of Aden and S Angolan margins

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick

    2014-05-01

    Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal thickness provide a measurement of anomalous uplift or subsidence which we attribute to mantle dynamic topography. We compare our sediment and crustal thickness corrected RDA analysis results with published predictions of mantle dynamic topography from global models.

  3. Predicting Upwelling Radiance on the West Florida Shelf

    DTIC Science & Technology

    2006-03-31

    National Science Foundation . The chemical and biological model includes the ability to simulate multiple groups of phytoplankton, multiple limiting nutrients, spectral light harvesting by phytoplankton, multiple particulate and dissolved degradational pools of organic material, and non-stoichometric carbon, nitrogen, phosphorus, silica, and iron dynamics. It also includes a complete spectral light model for the prediction of Inherent Optical Properties (IOPs). The coupling of the predicted IOP model (Ecosim 2.0) with robust radiative transfer model (Ecolight

  4. Dynamic properties of porous B sub 4 C. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brar, N.S.; Rosenberg, Z.; Bless, S.J.

    1990-01-25

    The sound speed in porous B4C (Boron Carbide) was measured and predicted on the basis of a spherical void model and a penny crack model. Neither model does well for porosity exceeding 10 percent. Measured values of Hugoniot elastic limit for porous B4C agree well with those predicted by the Steinberg's model. Measured transverse stress in the elastic range of B4C under 1-d strain condition agrees with the predictions.

  5. Predicting the Dynamic Crushing Response of a Composite Honeycomb Energy Absorber Using Solid-Element-Based Models in LS-DYNA

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.

    2010-01-01

    This paper describes an analytical study that was performed as part of the development of an externally deployable energy absorber (DEA) concept. The concept consists of a composite honeycomb structure that can be stowed until needed to provide energy attenuation during a crash event, much like an external airbag system. One goal of the DEA development project was to generate a robust and reliable Finite Element Model (FEM) of the DEA that could be used to accurately predict its crush response under dynamic loading. The results of dynamic crush tests of 50-, 104-, and 68-cell DEA components are presented, and compared with simulation results from a solid-element FEM. Simulations of the FEM were performed in LS-DYNA(Registered TradeMark) to compare the capabilities of three different material models: MAT 63 (crushable foam), MAT 26 (honeycomb), and MAT 126 (modified honeycomb). These material models are evaluated to determine if they can be used to accurately predict both the uniform crushing and final compaction phases of the DEA for normal and off-axis loading conditions

  6. Mathematical modeling of antibody drug conjugates with the target and tubulin dynamics to predict AUC.

    PubMed

    Byun, Jong Hyuk; Jung, Il Hyo

    2018-04-14

    Antibody drug conjugates (ADCs)are one of the most recently developed chemotherapeutics to treat some types of tumor cells. They consist of monoclonal antibodies (mAbs), linkers, and potent cytotoxic drugs. Unlike common chemotherapies, ADCs combine selectively with a target at the surface of the tumor cell, and a potent cytotoxic drug (payload) effectively prevents microtubule polymerization. In this work, we construct an ADC model that considers both the target of antibodies and the receptor (tubulin) of the cytotoxic payloads. The model is simulated with brentuximab vedotin, one of ADCs, and used to investigate the pharmacokinetic (PK) characteristics of ADCs in vivo. It also predicts area under the curve (AUC) of ADCs and the payloads by identifying the half-life. The results show that dynamical behaviors fairly coincide with the observed data and half-life and capture AUC. Thus, the model can be used for estimating some parameters, fitting experimental observations, predicting AUC, and exploring various dynamical behaviors of the target and the receptor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Key Process Uncertainties in Soil Carbon Dynamics: Comparing Multiple Model Structures and Observational Meta-analysis

    NASA Astrophysics Data System (ADS)

    Sulman, B. N.; Moore, J.; Averill, C.; Abramoff, R. Z.; Bradford, M.; Classen, A. T.; Hartman, M. D.; Kivlin, S. N.; Luo, Y.; Mayes, M. A.; Morrison, E. W.; Riley, W. J.; Salazar, A.; Schimel, J.; Sridhar, B.; Tang, J.; Wang, G.; Wieder, W. R.

    2016-12-01

    Soil carbon (C) dynamics are crucial to understanding and predicting C cycle responses to global change and soil C modeling is a key tool for understanding these dynamics. While first order model structures have historically dominated this area, a recent proliferation of alternative model structures representing different assumptions about microbial activity and mineral protection is providing new opportunities to explore process uncertainties related to soil C dynamics. We conducted idealized simulations of soil C responses to warming and litter addition using models from five research groups that incorporated different sets of assumptions about processes governing soil C decomposition and stabilization. We conducted a meta-analysis of published warming and C addition experiments for comparison with simulations. Assumptions related to mineral protection and microbial dynamics drove strong differences among models. In response to C additions, some models predicted long-term C accumulation while others predicted transient increases that were counteracted by accelerating decomposition. In experimental manipulations, doubling litter addition did not change soil C stocks in studies spanning as long as two decades. This result agreed with simulations from models with strong microbial growth responses and limited mineral sorption capacity. In observations, warming initially drove soil C loss via increased CO2 production, but in some studies soil C rebounded and increased over decadal time scales. In contrast, all models predicted sustained C losses under warming. The disagreement with experimental results could be explained by physiological or community-level acclimation, or by warming-related changes in plant growth. In addition to the role of microbial activity, assumptions related to mineral sorption and protected C played a key role in driving long-term model responses. In general, simulations were similar in their initial responses to perturbations but diverged over decadal time scales. This suggests that more long-term soil experiments may be necessary to resolve important process uncertainties related to soil C storage. We also suggest future experiments examine how microbial activity responds to warming under a range of soil clay contents and in concert with changes in litter inputs.

  8. Si amorphization by focused ion beam milling: Point defect model with dynamic BCA simulation and experimental validation.

    PubMed

    Huang, J; Loeffler, M; Muehle, U; Moeller, W; Mulders, J J L; Kwakman, L F Tz; Van Dorp, W F; Zschech, E

    2018-01-01

    A Ga focused ion beam (FIB) is often used in transmission electron microscopy (TEM) analysis sample preparation. In case of a crystalline Si sample, an amorphous near-surface layer is formed by the FIB process. In order to optimize the FIB recipe by minimizing the amorphization, it is important to predict the amorphous layer thickness from simulation. Molecular Dynamics (MD) simulation has been used to describe the amorphization, however, it is limited by computational power for a realistic FIB process simulation. On the other hand, Binary Collision Approximation (BCA) simulation is able and has been used to simulate ion-solid interaction process at a realistic scale. In this study, a Point Defect Density approach is introduced to a dynamic BCA simulation, considering dynamic ion-solid interactions. We used this method to predict the c-Si amorphization caused by FIB milling on Si. To validate the method, dedicated TEM studies are performed. It shows that the amorphous layer thickness predicted by the numerical simulation is consistent with the experimental data. In summary, the thickness of the near-surface Si amorphization layer caused by FIB milling can be well predicted using the Point Defect Density approach within the dynamic BCA model. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Integration of nitrogen dynamics into the Noah-MP land surface model v1.1 for climate and environmental predictions

    DOE PAGES

    Cai, X.; Yang, Z. -L.; Fisher, J. B.; ...

    2016-01-15

    Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. Here in this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soilmore » and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station – a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.« less

  10. Integration of nitrogen dynamics into the Noah-MP land surface model v1.1 for climate and environmental predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, X.; Yang, Z. -L.; Fisher, J. B.

    Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. Here in this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soilmore » and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station – a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.« less

  11. Seasonal prediction of East Asian summer rainfall using a multi-model ensemble system

    NASA Astrophysics Data System (ADS)

    Ahn, Joong-Bae; Lee, Doo-Young; Yoo, Jin‑Ho

    2015-04-01

    Using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers, the prediction skills of climate models in the western tropical Pacific (WTP) and East Asian region are assessed. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP Indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index or each MPI. Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by hybrid dynamical-statistical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using a hybrid dynamical-statistical approach compared to the dynamical forecast alone. Acknowledgements This work was carried out with the support of Rural Development Administration Cooperative Research Program for Agriculture Science and Technology Development under grant project PJ009353 and Korea Meteorological Administration Research and Development Program under grant CATER 2012-3100, Republic of Korea.

  12. Dynamic model for predicting growth of salmonella spp. in ground sterile pork

    USDA-ARS?s Scientific Manuscript database

    Predictive model for Salmonella spp. growth in ground pork was developed and validated using kinetic growth data. Salmonella spp. kinetic growth data in ground pork was collected at several isothermal conditions (between 10 and 45C) and Baranyi model was fitted to describe the growth at each temper...

  13. Predicting landscape vegetation dynamics using state-and-transition simulation models

    Treesearch

    Colin J. Daniel; Leonardo Frid

    2012-01-01

    This paper outlines how state-and-transition simulation models (STSMs) can be used to project changes in vegetation over time across a landscape. STSMs are stochastic, empirical simulation models that use an adapted Markov chain approach to predict how vegetation will transition between states over time, typically in response to interactions between succession,...

  14. EVALUATION OF THE EFFICACY OF EXTRAPOLATION POPULATION MODELING TO PREDICT THE DYNAMICS OF AMERICAMYSIS BAHIA POPULATIONS IN THE LABORATORY

    EPA Science Inventory

    An age-classified projection matrix model has been developed to extrapolate the chronic (28-35d) demographic responses of Americamysis bahia (formerly Mysidopsis bahia) to population-level response. This study was conducted to evaluate the efficacy of this model for predicting t...

  15. Molecular Dynamic Simulation and Inhibitor Prediction of Cysteine Synthase Structured Model as a Potential Drug Target for Trichomoniasis

    PubMed Central

    Singh, Satendra; Singh, Atul Kumar; Gautam, Budhayash

    2013-01-01

    In our presented research, we made an attempt to predict the 3D model for cysteine synthase (A2GMG5_TRIVA) using homology-modeling approaches. To investigate deeper into the predicted structure, we further performed a molecular dynamics simulation for 10 ns and calculated several supporting analysis for structural properties such as RMSF, radius of gyration, and the total energy calculation to support the predicted structured model of cysteine synthase. The present findings led us to conclude that the proposed model is stereochemically stable. The overall PROCHECK G factor for the homology-modeled structure was −0.04. On the basis of the virtual screening for cysteine synthase against the NCI subset II molecule, we present the molecule 1-N, 4-N-bis [3-(1H-benzimidazol-2-yl) phenyl] benzene-1,4-dicarboxamide (ZINC01690699) having the minimum energy score (−13.0 Kcal/Mol) and a log P value of 6 as a potential inhibitory molecule used to inhibit the growth of T. vaginalis infection. PMID:24073401

  16. WE-AB-202-11: Radiobiological Modeling of Tumor Response During Radiotherapy Based On Pre-Treatment Dynamic PET Imaging Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crispin-Ortuzar, M; Grkovski, M; Beattie, B

    Purpose: To evaluate the ability of a multiscale radiobiological model of tumor response to predict mid-treatment hypoxia images, based on pretreatment imaging of perfusion and hypoxia with [18-F]FMISO dynamic PET and glucose metabolism with [18-F]FDG PET. Methods: A mechanistic tumor control probability (TCP) radiobiological model describing the interplay between tumor cell proliferation and hypoxia (Jeong et al., PMB 2013) was extended to account for intra-tumor nutrient heterogeneity, dynamic cell migration due to nutrient gradients, and stromal cells. This extended model was tested on 10 head and neck cancer patients treated with chemoradiotherapy, randomly drawn from a larger MSKCC protocol involvingmore » baseline and mid-therapy dynamic PET scans. For each voxel, initial fractions of proliferative and hypoxic tumor cells were obtained by finding an approximate solution to a system of linear equations relating cell fractions to voxel-level FDG uptake, perfusion (FMISO K{sub 1}) and hypoxia (FMISO k{sub 3}). The TCP model then predicted their evolution over time up until the mid treatment scan. Finally, the linear model was reapplied to predict each lesion’s median hypoxia level (k{sub 3}[med,sim]) which in turn was compared to the FMISO k{sub 3}[med] measured at mid-therapy. Results: The average k3[med] of the tumors in pre-treatment scans was 0.0035 min{sup −1}, with an inter-tumor standard deviation of σ[pre]=0.0034 min{sup −1}. The initial simulated k{sub 3}[med,sim] of each tumor agreed with the corresponding measurements within 0.1σ[pre]. In 7 out of 10 lesions, the mid-treatment k{sub 3}[med,sim] prediction agreed with the data within 0.3σ[pre]. The remaining cases corresponded to the most extreme relative changes in k{sub 3}[med]. Conclusion: This work presents a method to personalize the prediction of a TCP model using pre-treatment kinetic imaging data, and validates the modeling of radiotherapy response by predicting changes in median hypoxia values during treatment. Variations from predicted response may be a useful biomarker, which should be further explored. Partially supported by NIH grant #1 R01 CA157770-01A1 and a grant from Varian Corporation.« less

  17. Ecological change points: The strength of density dependence and the loss of history.

    PubMed

    Ponciano, José M; Taper, Mark L; Dennis, Brian

    2018-05-01

    Change points in the dynamics of animal abundances have extensively been recorded in historical time series records. Little attention has been paid to the theoretical dynamic consequences of such change-points. Here we propose a change-point model of stochastic population dynamics. This investigation embodies a shift of attention from the problem of detecting when a change will occur, to another non-trivial puzzle: using ecological theory to understand and predict the post-breakpoint behavior of the population dynamics. The proposed model and the explicit expressions derived here predict and quantify how density dependence modulates the influence of the pre-breakpoint parameters into the post-breakpoint dynamics. Time series transitioning from one stationary distribution to another contain information about where the process was before the change-point, where is it heading and how long it will take to transition, and here this information is explicitly stated. Importantly, our results provide a direct connection of the strength of density dependence with theoretical properties of dynamic systems, such as the concept of resilience. Finally, we illustrate how to harness such information through maximum likelihood estimation for state-space models, and test the model robustness to widely different forms of compensatory dynamics. The model can be used to estimate important quantities in the theory and practice of population recovery. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Mesoscale energy deposition footprint model for kiloelectronvolt cluster bombardment of solids.

    PubMed

    Russo, Michael F; Garrison, Barbara J

    2006-10-15

    Molecular dynamics simulations have been performed to model 5-keV C60 and Au3 projectile bombardment of an amorphous water substrate. The goal is to obtain detailed insights into the dynamics of motion in order to develop a straightforward and less computationally demanding model of the process of ejection. The molecular dynamics results provide the basis for the mesoscale energy deposition footprint model. This model provides a method for predicting relative yields based on information from less than 1 ps of simulation time.

  19. Hybrid experimental/analytical models of structural dynamics - Creation and use for predictions

    NASA Technical Reports Server (NTRS)

    Balmes, Etienne

    1993-01-01

    An original complete methodology for the construction of predictive models of damped structural vibrations is introduced. A consistent definition of normal and complex modes is given which leads to an original method to accurately identify non-proportionally damped normal mode models. A new method to create predictive hybrid experimental/analytical models of damped structures is introduced, and the ability of hybrid models to predict the response to system configuration changes is discussed. Finally a critical review of the overall methodology is made by application to the case of the MIT/SERC interferometer testbed.

  20. Dynamic Characteristics of Simple Cylindrical Hydraulic Engine Mount Utilizing Air Compressibility

    NASA Astrophysics Data System (ADS)

    Nakahara, Kazunari; Nakagawa, Noritoshi; Ohta, Katsutoshi

    A cylindrical hydraulic engine mount with simple construction has been developed. This engine mount has a sub chamber formed by utilizing air compressibility without a diaphragm. A mathematical model of the mount is presented to predict non-linear dynamic characteristics in consideration of the effect of the excitation amplitude on the storage stiffness and loss factor. The mathematical model predicts experimental results well for the frequency responses of the storage stiffness and loss factor over the frequency range of 5 Hz to 60Hz. The effect of air volume and internal pressure on the dynamic characteristics is clarified by the analysis and dynamic characterization testing. The effectiveness of the cylindrical hydraulic engine mount on the reduction of engine shake is demonstrated for riding comfort through on-vehicle testing with a chassis dynamometer.

  1. Nonlinear dynamics of laser systems with elements of a chaos: Advanced computational code

    NASA Astrophysics Data System (ADS)

    Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Kuznetsova, A. A.; Buyadzhi, A. A.; Prepelitsa, G. P.; Ternovsky, V. B.

    2017-10-01

    A general, uniform chaos-geometric computational approach to analysis, modelling and prediction of the non-linear dynamics of quantum and laser systems (laser and quantum generators system etc) with elements of the deterministic chaos is briefly presented. The approach is based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analysis, false nearest neighbour algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc There are firstly presented the numerical data on the topological and dynamical invariants (in particular, the correlation, embedding, Kaplan-York dimensions, the Lyapunov’s exponents, Kolmogorov’s entropy and other parameters) for laser system (the semiconductor GaAs/GaAlAs laser with a retarded feedback) dynamics in a chaotic and hyperchaotic regimes.

  2. Intermittent dynamics in complex systems driven to depletion.

    PubMed

    Escobar, Juan V; Pérez Castillo, Isaac

    2018-03-19

    When complex systems are driven to depletion by some external factor, their non-stationary dynamics can present an intermittent behaviour between relative tranquility and burst of activity whose consequences are often catastrophic. To understand and ultimately be able to predict such dynamics, we propose an underlying mechanism based on sharp thresholds of a local generalized energy density that naturally leads to negative feedback. We find a transition from a continuous regime to an intermittent one, in which avalanches can be predicted despite the stochastic nature of the process. This model may have applications in many natural and social complex systems where a rapid depletion of resources or generalized energy drives the dynamics. In particular, we show how this model accurately describes the time evolution and avalanches present in a real social system.

  3. Application of the Rangeland Hydrology and Erosion Model to Ecological Site Descriptions and Management

    USDA-ARS?s Scientific Manuscript database

    The utility of Ecological Site Descriptions (ESDs) and State-and-Transition Models (STMs) concepts in guiding rangeland management hinges on their ability to accurately describe and predict community dynamics and the associated consequences. For many rangeland ecosystems, plant community dynamics ar...

  4. Dynamics of droplet motion under electrowetting actuation.

    PubMed

    Annapragada, S Ravi; Dash, Susmita; Garimella, Suresh V; Murthy, Jayathi Y

    2011-07-05

    The static shape of droplets under electrowetting actuation is well understood. The steady-state shape of the droplet is obtained on the basis of the balance of surface tension and electrowetting forces, and the change in the apparent contact angle is well characterized by the Young-Lippmann equation. However, the transient droplet shape behavior when a voltage is suddenly applied across a droplet has received less attention. Additional dynamic frictional forces are at play during this transient process. We present a model to predict this transient behavior of the droplet shape under electrowetting actuation. The droplet shape is modeled using the volume of fluid method. The electrowetting and dynamic frictional forces are included as an effective dynamic contact angle through a force balance at the contact line. The model is used to predict the transient behavior of water droplets on smooth hydrophobic surfaces under electrowetting actuation. The predictions of the transient behavior of droplet shape and contact radius are in excellent agreement with our experimental measurements. The internal fluid motion is explained, and the droplet motion is shown to initiate from the contact line. An approximate mathematical model is also developed to understand the physics of the droplet motion and to describe the overall droplet motion and the contact line velocities. © 2011 American Chemical Society

  5. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Li, C. James; Lee, Hyungdae

    2005-07-01

    This paper presents a model-based method that predicts remaining useful life of a gear with a fatigue crack. The method consists of an embedded model to identify gear meshing stiffness from measured gear torsional vibration, an inverse method to estimate crack size from the estimated meshing stiffness; a gear dynamic model to simulate gear meshing dynamics and determine the dynamic load on the cracked tooth; and a fast crack propagation model to forecast the remaining useful life based on the estimated crack size and dynamic load. The fast crack propagation model was established to avoid repeated calculations of FEM and facilitate field deployment of the proposed method. Experimental studies were conducted to validate and demonstrate the feasibility of the proposed method for prognosis of a cracked gear.

  6. Degradation Prediction Model Based on a Neural Network with Dynamic Windows

    PubMed Central

    Zhang, Xinghui; Xiao, Lei; Kang, Jianshe

    2015-01-01

    Tracking degradation of mechanical components is very critical for effective maintenance decision making. Remaining useful life (RUL) estimation is a widely used form of degradation prediction. RUL prediction methods when enough run-to-failure condition monitoring data can be used have been fully researched, but for some high reliability components, it is very difficult to collect run-to-failure condition monitoring data, i.e., from normal to failure. Only a certain number of condition indicators in certain period can be used to estimate RUL. In addition, some existing prediction methods have problems which block RUL estimation due to poor extrapolability. The predicted value converges to a certain constant or fluctuates in certain range. Moreover, the fluctuant condition features also have bad effects on prediction. In order to solve these dilemmas, this paper proposes a RUL prediction model based on neural network with dynamic windows. This model mainly consists of three steps: window size determination by increasing rate, change point detection and rolling prediction. The proposed method has two dominant strengths. One is that the proposed approach does not need to assume the degradation trajectory is subject to a certain distribution. The other is it can adapt to variation of degradation indicators which greatly benefits RUL prediction. Finally, the performance of the proposed RUL prediction model is validated by real field data and simulation data. PMID:25806873

  7. Drought Prediction Site Specific and Regional up to Three Years in Advance

    NASA Astrophysics Data System (ADS)

    Suhler, G.; O'Brien, D. P.

    2002-12-01

    Dynamic Predictables has developed proprietary software that analyzes and predicts future climatic behavior based on past data. The programs employ both a regional thermodynamic model together with a unique predictive algorithm to achieve a high degree of prediction accuracy up to 36 months. The thermodynamic model was developed initially to explain the results of a study on global circulation models done at SUNY-Stony Brook by S. Hameed, R.G. Currie, and H. LaGrone (Int. Jour. Climatology, 15, pp.852-871, 1995). The authors pointed out that on a time scale of 2-70 months the spectrum of sea level pressure is dominated by the harmonics and subharmonics of the seasonal cycle and their combination tones. These oscillations are fundamental to an understanding of climatic variations on a sub-regional to continental basis. The oscillatory nature of these variations allows them to be used as broad based climate predictors. In addition, they can be subtracted from the data to yield residuals. The residuals are then analyzed to determine components that are predictable. The program then combines both the thermodynamic model results (the primary predictive model) with those from the residual data (the secondary model) to yield an estimate of the future behavior of the climatic variable. Spatial resolution is site specific or aggregated regional based upon appropriate length (45 years or more monthly data) and reasonable quality weather observation records. Most climate analysis has been based on monthly time-step data, but time scales on the order of days can be used. Oregon Climate Division 1 (Coastal) precipitation provides an example relating DynaPred's method to nature's observed elements in the early 2000s. The prediction's leading dynamic factors are the strong seasonal in the primary model combined with high secondary model contributions from planet Earth's Chandler Wobble (near 15 months) and what has been called the Quasi-Triennial Oscillation (QTO, near 36 months) in equatorial regions. Examples of regional aggregate and site-specific predictions previously made blind forward and publicly available (AASC Annual Meetings 1998-2002) will be shown. Certain climate dynamics features relevant to extrema prediction and specifically drought prediction will then be discussed. Time steps presented will be monthly. Climate variables examined are mean temperature and accumulated precipitation. NINO3 SST, interior continental and marine/continental transition area examples will be shown. http://www.dynamicpredictables.com

  8. Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris

    2002-11-27

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fracturedmore » rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.« less

  9. Accurate and dynamic predictive model for better prediction in medicine and healthcare.

    PubMed

    Alanazi, H O; Abdullah, A H; Qureshi, K N; Ismail, A S

    2018-05-01

    Information and communication technologies (ICTs) have changed the trend into new integrated operations and methods in all fields of life. The health sector has also adopted new technologies to improve the systems and provide better services to customers. Predictive models in health care are also influenced from new technologies to predict the different disease outcomes. However, still, existing predictive models have suffered from some limitations in terms of predictive outcomes performance. In order to improve predictive model performance, this paper proposed a predictive model by classifying the disease predictions into different categories. To achieve this model performance, this paper uses traumatic brain injury (TBI) datasets. TBI is one of the serious diseases worldwide and needs more attention due to its seriousness and serious impacts on human life. The proposed predictive model improves the predictive performance of TBI. The TBI data set is developed and approved by neurologists to set its features. The experiment results show that the proposed model has achieved significant results including accuracy, sensitivity, and specificity.

  10. Langevin dynamics encapsulate the microscopic and emergent macroscopic properties of midge swarms

    PubMed Central

    2018-01-01

    In contrast to bird flocks, fish schools and animal herds, midge swarms maintain cohesion but do not possess global order. High-speed imaging techniques are now revealing that these swarms have surprising properties. Here, I show that simple models found on the Langevin equation are consistent with this wealth of recent observations. The models predict correctly that large accelerations, exceeding 10 g, will be common and they predict correctly the coexistence of core condensed phases surrounded by dilute vapour phases. The models also provide new insights into the influence of environmental conditions on swarm dynamics. They predict that correlations between midges increase the strength of the effective force binding the swarm together. This may explain why such correlations are absent in laboratory swarms but present in natural swarms which contend with the wind and other disturbances. Finally, the models predict that swarms have fluid-like macroscopic mechanical properties and will slosh rather than slide back and forth after being abruptly displaced. This prediction offers a promising avenue for future experimentation that goes beyond current quasi-static testing which has revealed solid-like responses. PMID:29298958

  11. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    NASA Astrophysics Data System (ADS)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  12. Comparing predictions of extinction risk using models and subjective judgement

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael A.; Keith, David; Tietjen, Justine; Burgman, Mark A.; Maunder, Mark; Master, Larry; Brook, Barry W.; Mace, Georgina; Possingham, Hugh P.; Medellin, Rodrigo; Andelman, Sandy; Regan, Helen; Regan, Tracey; Ruckelshaus, Mary

    2004-10-01

    Models of population dynamics are commonly used to predict risks in ecology, particularly risks of population decline. There is often considerable uncertainty associated with these predictions. However, alternatives to predictions based on population models have not been assessed. We used simulation models of hypothetical species to generate the kinds of data that might typically be available to ecologists and then invited other researchers to predict risks of population declines using these data. The accuracy of the predictions was assessed by comparison with the forecasts of the original model. The researchers used either population models or subjective judgement to make their predictions. Predictions made using models were only slightly more accurate than subjective judgements of risk. However, predictions using models tended to be unbiased, while subjective judgements were biased towards over-estimation. Psychology literature suggests that the bias of subjective judgements is likely to vary somewhat unpredictably among people, depending on their stake in the outcome. This will make subjective predictions more uncertain and less transparent than those based on models.

  13. Cardiorespiratory dynamics measured from continuous ECG monitoring improves detection of deterioration in acute care patients: A retrospective cohort study

    PubMed Central

    Clark, Matthew T.; Calland, James Forrest; Enfield, Kyle B.; Voss, John D.; Lake, Douglas E.; Moorman, J. Randall

    2017-01-01

    Background Charted vital signs and laboratory results represent intermittent samples of a patient’s dynamic physiologic state and have been used to calculate early warning scores to identify patients at risk of clinical deterioration. We hypothesized that the addition of cardiorespiratory dynamics measured from continuous electrocardiography (ECG) monitoring to intermittently sampled data improves the predictive validity of models trained to detect clinical deterioration prior to intensive care unit (ICU) transfer or unanticipated death. Methods and findings We analyzed 63 patient-years of ECG data from 8,105 acute care patient admissions at a tertiary care academic medical center. We developed models to predict deterioration resulting in ICU transfer or unanticipated death within the next 24 hours using either vital signs, laboratory results, or cardiorespiratory dynamics from continuous ECG monitoring and also evaluated models using all available data sources. We calculated the predictive validity (C-statistic), the net reclassification improvement, and the probability of achieving the difference in likelihood ratio χ2 for the additional degrees of freedom. The primary outcome occurred 755 times in 586 admissions (7%). We analyzed 395 clinical deteriorations with continuous ECG data in the 24 hours prior to an event. Using only continuous ECG measures resulted in a C-statistic of 0.65, similar to models using only laboratory results and vital signs (0.63 and 0.69 respectively). Addition of continuous ECG measures to models using conventional measurements improved the C-statistic by 0.01 and 0.07; a model integrating all data sources had a C-statistic of 0.73 with categorical net reclassification improvement of 0.09 for a change of 1 decile in risk. The difference in likelihood ratio χ2 between integrated models with and without cardiorespiratory dynamics was 2158 (p value: <0.001). Conclusions Cardiorespiratory dynamics from continuous ECG monitoring detect clinical deterioration in acute care patients and improve performance of conventional models that use only laboratory results and vital signs. PMID:28771487

  14. Cardiorespiratory dynamics measured from continuous ECG monitoring improves detection of deterioration in acute care patients: A retrospective cohort study.

    PubMed

    Moss, Travis J; Clark, Matthew T; Calland, James Forrest; Enfield, Kyle B; Voss, John D; Lake, Douglas E; Moorman, J Randall

    2017-01-01

    Charted vital signs and laboratory results represent intermittent samples of a patient's dynamic physiologic state and have been used to calculate early warning scores to identify patients at risk of clinical deterioration. We hypothesized that the addition of cardiorespiratory dynamics measured from continuous electrocardiography (ECG) monitoring to intermittently sampled data improves the predictive validity of models trained to detect clinical deterioration prior to intensive care unit (ICU) transfer or unanticipated death. We analyzed 63 patient-years of ECG data from 8,105 acute care patient admissions at a tertiary care academic medical center. We developed models to predict deterioration resulting in ICU transfer or unanticipated death within the next 24 hours using either vital signs, laboratory results, or cardiorespiratory dynamics from continuous ECG monitoring and also evaluated models using all available data sources. We calculated the predictive validity (C-statistic), the net reclassification improvement, and the probability of achieving the difference in likelihood ratio χ2 for the additional degrees of freedom. The primary outcome occurred 755 times in 586 admissions (7%). We analyzed 395 clinical deteriorations with continuous ECG data in the 24 hours prior to an event. Using only continuous ECG measures resulted in a C-statistic of 0.65, similar to models using only laboratory results and vital signs (0.63 and 0.69 respectively). Addition of continuous ECG measures to models using conventional measurements improved the C-statistic by 0.01 and 0.07; a model integrating all data sources had a C-statistic of 0.73 with categorical net reclassification improvement of 0.09 for a change of 1 decile in risk. The difference in likelihood ratio χ2 between integrated models with and without cardiorespiratory dynamics was 2158 (p value: <0.001). Cardiorespiratory dynamics from continuous ECG monitoring detect clinical deterioration in acute care patients and improve performance of conventional models that use only laboratory results and vital signs.

  15. Glacier calving, dynamics, and sea-level rise. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, M.F.; Pfeffer, W.T.; Amadei, B.

    1998-08-01

    The present-day calving flux from Greenland and Antarctica is poorly known, and this accounts for a significant portion of the uncertainty in the current mass balance of these ice sheets. Similarly, the lack of knowledge about the role of calving in glacier dynamics constitutes a major uncertainty in predicting the response of glaciers and ice sheets to changes in climate and thus sea level. Another fundamental problem has to do with incomplete knowledge of glacier areas and volumes, needed for analyses of sea-level change due to changing climate. The authors proposed to develop an improved ability to predict the futuremore » contributions of glaciers to sea level by combining work from four research areas: remote sensing observations of calving activity and iceberg flux, numerical modeling of glacier dynamics, theoretical analysis of the calving process, and numerical techniques for modeling flow with large deformations and fracture. These four areas have never been combined into a single research effort on this subject; in particular, calving dynamics have never before been included explicitly in a model of glacier dynamics. A crucial issue that they proposed to address was the general question of how calving dynamics and glacier flow dynamics interact.« less

  16. Dynamical compensation and structural identifiability of biological models: Analysis, implications, and reconciliation.

    PubMed

    Villaverde, Alejandro F; Banga, Julio R

    2017-11-01

    The concept of dynamical compensation has been recently introduced to describe the ability of a biological system to keep its output dynamics unchanged in the face of varying parameters. However, the original definition of dynamical compensation amounts to lack of structural identifiability. This is relevant if model parameters need to be estimated, as is often the case in biological modelling. Care should we taken when using an unidentifiable model to extract biological insight: the estimated values of structurally unidentifiable parameters are meaningless, and model predictions about unmeasured state variables can be wrong. Taking this into account, we explore alternative definitions of dynamical compensation that do not necessarily imply structural unidentifiability. Accordingly, we show different ways in which a model can be made identifiable while exhibiting dynamical compensation. Our analyses enable the use of the new concept of dynamical compensation in the context of parameter identification, and reconcile it with the desirable property of structural identifiability.

  17. Structural features that predict real-value fluctuations of globular proteins

    PubMed Central

    Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke

    2012-01-01

    It is crucial to consider dynamics for understanding the biological function of proteins. We used a large number of molecular dynamics trajectories of non-homologous proteins as references and examined static structural features of proteins that are most relevant to fluctuations. We examined correlation of individual structural features with fluctuations and further investigated effective combinations of features for predicting the real-value of residue fluctuations using the support vector regression. It was found that some structural features have higher correlation than crystallographic B-factors with fluctuations observed in molecular dynamics trajectories. Moreover, support vector regression that uses combinations of static structural features showed accurate prediction of fluctuations with an average Pearson’s correlation coefficient of 0.669 and a root mean square error of 1.04 Å. This correlation coefficient is higher than the one observed for the prediction by the Gaussian network model. An advantage of the developed method over the Gaussian network models is that the former predicts the real-value of fluctuation. The results help improve our understanding of relationships between protein structure and fluctuation. Furthermore, the developed method provides a convienient practial way to predict fluctuations of proteins using easily computed static structural features of proteins. PMID:22328193

  18. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.

    PubMed

    Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George Em

    2010-05-19

    Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics

    PubMed Central

    Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George Em

    2010-01-01

    Abstract Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary. PMID:20483330

  20. A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling.

    PubMed

    Dong, Zhanshan; Danilevskaya, Olga; Abadie, Tabare; Messina, Carlos; Coles, Nathan; Cooper, Mark

    2012-01-01

    The transition from the vegetative to reproductive development is a critical event in the plant life cycle. The accurate prediction of flowering time in elite germplasm is important for decisions in maize breeding programs and best agronomic practices. The understanding of the genetic control of flowering time in maize has significantly advanced in the past decade. Through comparative genomics, mutant analysis, genetic analysis and QTL cloning, and transgenic approaches, more than 30 flowering time candidate genes in maize have been revealed and the relationships among these genes have been partially uncovered. Based on the knowledge of the flowering time candidate genes, a conceptual gene regulatory network model for the genetic control of flowering time in maize is proposed. To demonstrate the potential of the proposed gene regulatory network model, a first attempt was made to develop a dynamic gene network model to predict flowering time of maize genotypes varying for specific genes. The dynamic gene network model is composed of four genes and was built on the basis of gene expression dynamics of the two late flowering id1 and dlf1 mutants, the early flowering landrace Gaspe Flint and the temperate inbred B73. The model was evaluated against the phenotypic data of the id1 dlf1 double mutant and the ZMM4 overexpressed transgenic lines. The model provides a working example that leverages knowledge from model organisms for the utilization of maize genomic information to predict a whole plant trait phenotype, flowering time, of maize genotypes.

  1. A novel phenomenological model for dynamic behavior of magnetorheological elastomers in tension-compression mode

    NASA Astrophysics Data System (ADS)

    Vatandoost, Hossein; Norouzi, Mahmood; Masoud Sajjadi Alehashem, Seyed; Smoukov, Stoyan K.

    2017-06-01

    Tension-compression operation in MR elastomers (MREs) offers both the most compact design and superior stiffness in many vertical load-bearing applications, such as MRE bearing isolators in bridges and buildings, suspension systems and engine mounts in cars, and vibration control equipment. It suffers, however, from lack of good computational models to predict device performance, and as a result shear-mode MREs are widely used in the industry, despite their low stiffness and load-bearing capacity. We start with a comprehensive review of modeling of MREs and their dynamic characteristics, showing previous studies have mostly focused on dynamic behavior of MREs in shear mode, though the MRE strength and MR effect are greatly decreased at high strain amplitudes, due to increasing distance between the magnetic particles. Moreover, the characteristic parameters of the current models assume either frequency, or strain, or magnetic field are constant; hence, new model parameters must be recalculated for new loading conditions. This is an experimentally time consuming and computationally expensive task, and no models capture the full dynamic behavior of the MREs at all loading conditions. In this study, we present an experimental setup to test MREs in a coupled tension-compression mode, as well as a novel phenomenological model which fully predicts the stress-strain material behavior as a function of magnetic flux density, loading frequency and strain. We use a training set of experiments to find the experimentally derived model parameters, from which can predict by interpolation the MRE behavior in a relatively large continuous range of frequency, strain and magnetic field. We also challenge the model to make extrapolating predictions and compare to additional experiments outside the training experimental data set with good agreement. Further development of this model would allow design and control of engineering structures equipped with tension-compression MREs and all the advantages they offer.

  2. Review of CTF s Fuel Rod Modeling Using FRAPCON-4.0 s Centerline Temperature Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toptan, Aysenur; Salko, Robert K; Avramova, Maria

    Coolant Boiling in Rod Arrays Two Fluid (COBRA-TF), or CTF1 [1], is a nuclear thermal hydraulic subchannel code used throughout academia and industry. CTF s fuel rod modeling is originally developed for VIPRE code [2]. Its methodology is based on GAPCON [3] and FRAP [4] fuel performance codes, and material properties are included from MATPRO handbook [5]. This work focuses on review of CTF s fuel rod modeling to address shortcomings in CTF s temperature predictions. CTF is compared to FRAPCON which is U.S. NRC s steady-state fuel performance code for light-water reactor fuel rods. FRAPCON calculates the changes inmore » fuel rod variables and temperatures including the eects of cladding hoop strain, cladding oxidation, hydriding, fuel irradiation swelling, densification, fission gas release and rod internal gas pressure. It uses fuel, clad and gap material properties from MATPRO. Additionally, it has its own models for fission gas release, cladding corrosion and cladding hydrogen pickup. It allows finite dierence or finite element approaches for its mechanical model. In this study, FRAPCON-4.0 [6] is used as a reference fuel performance code. In comparison, Halden Reactor Data for IFA432 Rod 1 and Rod 3. CTF simulations are performed in two ways; informing CTF with gap conductance value from FRAPCON, and using CTF s dynamic gap conductance model. First case is chosen to show temperature is predicted correctly with CTF s models for thermal and cladding conductivities once gap conductance is provided. Latter is to review CTF s dynamic gap conductance model. These Halden test cases are selected to be representative of cases with and without any physical contact between fuel-pellet and clad while reviewing functionality of CTF s dynamic gap conductance model. Improving the CTF s dynamic gap conductance model will allow prediction of fuel and cladding thermo-mechanical behavior under irradiation, and better temperature feedbacks from CTF in transient calculations.« less

  3. Mass and stiffness estimation using mobile devices for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Le, Viet; Yu, Tzuyang

    2015-04-01

    In the structural health monitoring (SHM) of civil infrastructure, dynamic methods using mass, damping, and stiffness for characterizing structural health have been a traditional and widely used approach. Changes in these system parameters over time indicate the progress of structural degradation or deterioration. In these methods, capability of predicting system parameters is essential to their success. In this paper, research work on the development of a dynamic SHM method based on perturbation analysis is reported. The concept is to use externally applied mass to perturb an unknown system and measure the natural frequency of the system. Derived theoretical expressions for mass and stiffness prediction are experimentally verified by a building model. Dynamic responses of the building model perturbed by various masses in free vibration were experimentally measured by a mobile device (cell phone) to extract the natural frequency of the building model. Single-degreeof- freedom (SDOF) modeling approach was adopted for the sake of using a cell phone. From the experimental result, it is shown that the percentage error of predicted mass increases when the mass ratio increases, while the percentage error of predicted stiffness decreases when the mass ratio increases. This work also demonstrated the potential use of mobile devices in the health monitoring of civil infrastructure.

  4. Quality by control: Towards model predictive control of mammalian cell culture bioprocesses.

    PubMed

    Sommeregger, Wolfgang; Sissolak, Bernhard; Kandra, Kulwant; von Stosch, Moritz; Mayer, Martin; Striedner, Gerald

    2017-07-01

    The industrial production of complex biopharmaceuticals using recombinant mammalian cell lines is still mainly built on a quality by testing approach, which is represented by fixed process conditions and extensive testing of the end-product. In 2004 the FDA launched the process analytical technology initiative, aiming to guide the industry towards advanced process monitoring and better understanding of how critical process parameters affect the critical quality attributes. Implementation of process analytical technology into the bio-production process enables moving from the quality by testing to a more flexible quality by design approach. The application of advanced sensor systems in combination with mathematical modelling techniques offers enhanced process understanding, allows on-line prediction of critical quality attributes and subsequently real-time product quality control. In this review opportunities and unsolved issues on the road to a successful quality by design and dynamic control implementation are discussed. A major focus is directed on the preconditions for the application of model predictive control for mammalian cell culture bioprocesses. Design of experiments providing information about the process dynamics upon parameter change, dynamic process models, on-line process state predictions and powerful software environments seem to be a prerequisite for quality by control realization. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Self-reported well-being score modelling and prediction: Proof-of-concept of an approach based on linear dynamic systems.

    PubMed

    Xinyang Li; Poli, Riccardo; Valenza, Gaetano; Scilingo, Enzo Pasquale; Citi, Luca

    2017-07-01

    Assessment and recognition of perceived well-being has wide applications in the development of assistive healthcare systems for people with physical and mental disorders. In practical data collection, these systems need to be less intrusive, and respect users' autonomy and willingness as much as possible. As a result, self-reported data are not necessarily available at all times. Conventional classifiers, which usually require feature vectors of a prefixed dimension, are not well suited for this problem. To address the issue of non-uniformly sampled measurements, in this study we propose a method for the modelling and prediction of self-reported well-being scores based on a linear dynamic system. Within the model, we formulate different features as observations, making predictions even in the presence of inconsistent and irregular data. We evaluate the proposed method with synthetic data, as well as real data from two patients diagnosed with cancer. In the latter, self-reported scores from three well-being-related scales were collected over a period of approximately 60 days. Prompted each day, the patients had the choice whether to respond or not. Results show that the proposed model is able to track and predict the patients' perceived well-being dynamics despite the irregularly sampled data.

  6. The case for an internal dynamics model versus equilibrium point control in human movement.

    PubMed

    Hinder, Mark R; Milner, Theodore E

    2003-06-15

    The equilibrium point hypothesis (EPH) was conceived as a means whereby the central nervous system could control limb movements by a relatively simple shift in equilibrium position without the need to explicitly compensate for task dynamics. Many recent studies have questioned this view with results that suggest the formation of an internal dynamics model of the specific task. However, supporters of the EPH have argued that these results are not incompatible with the EPH and that there is no reason to abandon it. In this study, we have tested one of the fundamental predictions of the EPH, namely, equifinality. Subjects learned to perform goal-directed wrist flexion movements while a motor provided assistance in proportion to the instantaneous velocity. It was found that the subjects stopped short of the target on the trials where the magnitude of the assistance was randomly decreased, compared to the preceding control trials (P = 0.003), i.e. equifinality was not achieved. This is contrary to the EPH, which predicts that final position should not be affected by external loads that depend purely on velocity. However, such effects are entirely consistent with predictions based on the formation of an internal dynamics model.

  7. Prediction of storm transfers and annual loads with data-based mechanistic models using high-frequency data

    NASA Astrophysics Data System (ADS)

    Ockenden, Mary C.; Tych, Wlodek; Beven, Keith J.; Collins, Adrian L.; Evans, Robert; Falloon, Peter D.; Forber, Kirsty J.; Hiscock, Kevin M.; Hollaway, Michael J.; Kahana, Ron; Macleod, Christopher J. A.; Villamizar, Martha L.; Wearing, Catherine; Withers, Paul J. A.; Zhou, Jian G.; Benskin, Clare McW. H.; Burke, Sean; Cooper, Richard J.; Freer, Jim E.; Haygarth, Philip M.

    2017-12-01

    Excess nutrients in surface waters, such as phosphorus (P) from agriculture, result in poor water quality, with adverse effects on ecological health and costs for remediation. However, understanding and prediction of P transfers in catchments have been limited by inadequate data and over-parameterised models with high uncertainty. We show that, with high temporal resolution data, we are able to identify simple dynamic models that capture the P load dynamics in three contrasting agricultural catchments in the UK. For a flashy catchment, a linear, second-order (two pathways) model for discharge gave high simulation efficiencies for short-term storm sequences and was useful in highlighting uncertainties in out-of-bank flows. A model with non-linear rainfall input was appropriate for predicting seasonal or annual cumulative P loads where antecedent conditions affected the catchment response. For second-order models, the time constant for the fast pathway varied between 2 and 15 h for all three catchments and for both discharge and P, confirming that high temporal resolution data are necessary to capture the dynamic responses in small catchments (10-50 km2). The models led to a better understanding of the dominant nutrient transfer modes, which will be helpful in determining phosphorus transfers following changes in precipitation patterns in the future.

  8. Resolving Discrepancies Between Observed and Predicted Dynamic Topography on Earth

    NASA Astrophysics Data System (ADS)

    Richards, F. D.; Hoggard, M.; White, N. J.

    2017-12-01

    Compilations of well-resolved oceanic residual depth measurements suggest that present-day dynamic topography differs from that predicted by geodynamic simulations in two significant respects. At short wavelengths (λ ≤ 5,000 km), much larger amplitude variations are observed, whereas at long wavelengths (λ > 5,000 km), observed dynamic topography is substantially smaller. Explaining the cause of this discrepancy with a view to reconciling these different approaches is central to constraining the structure and dynamics of the deep Earth. Here, we first convert shear wave velocity to temperature using an experimentally-derived anelasticity model. This relationship is calibrated using a pressure and temperature-dependent plate model that satisfies age-depth subsidence, heat flow measurements, and seismological constraints on the depth to the lithosphere-asthenosphere boundary. In this way, we show that, at short-wavelengths, observed dynamic topography is consistent with ±150 ºC asthenospheric temperature anomalies. These inferred thermal buoyancy variations are independently verified by temperature measurements derived from geochemical analyses of mid-ocean ridge basalts. Viscosity profiles derived from the anelasticity model suggest that the asthenosphere has an average viscosity that is two orders of magnitude lower than that of the underlying upper mantle. The base of this low-viscosity layer coincides with a peak in azimuthal anisotropy observed in recent seismic experiments. This agreement implies that lateral asthenospheric flow is rapid with respect to the underlying upper mantle. We conclude that improved density and viscosity models of the uppermost mantle, which combine a more comprehensive physical description of the lithosphere-asthenosphere system with recent seismic tomographic models, can help to resolve spectral discrepancies between observed and predicted dynamic topography. Finally, we explore possible solutions to the long-wavelength discrepancy that exploit the velocity to density conversion described above combined with radial variation of mantle viscosity.

  9. Estimating rates of local extinction and colonization in colonial species and an extension to the metapopulation and community levels

    USGS Publications Warehouse

    Barbraud, C.; Nichols, J.D.; Hines, J.E.; Hafner, H.

    2003-01-01

    Coloniality has mainly been studied from an evolutionary perspective, but relatively few studies have developed methods for modelling colony dynamics. Changes in number of colonies over time provide a useful tool for predicting and evaluating the responses of colonial species to management and to environmental disturbance. Probabilistic Markov process models have been recently used to estimate colony site dynamics using presence-absence data when all colonies are detected in sampling efforts. Here, we define and develop two general approaches for the modelling and analysis of colony dynamics for sampling situations in which all colonies are, and are not, detected. For both approaches, we develop a general probabilistic model for the data and then constrain model parameters based on various hypotheses about colony dynamics. We use Akaike's Information Criterion (AIC) to assess the adequacy of the constrained models. The models are parameterised with conditional probabilities of local colony site extinction and colonization. Presence-absence data arising from Pollock's robust capture-recapture design provide the basis for obtaining unbiased estimates of extinction, colonization, and detection probabilities when not all colonies are detected. This second approach should be particularly useful in situations where detection probabilities are heterogeneous among colony sites. The general methodology is illustrated using presence-absence data on two species of herons (Purple Heron, Ardea purpurea and Grey Heron, Ardea cinerea). Estimates of the extinction and colonization rates showed interspecific differences and strong temporal and spatial variations. We were also able to test specific predictions about colony dynamics based on ideas about habitat change and metapopulation dynamics. We recommend estimators based on probabilistic modelling for future work on colony dynamics. We also believe that this methodological framework has wide application to problems in animal ecology concerning metapopulation and community dynamics.

  10. Passive-dynamic ankle-foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription.

    PubMed

    Arch, Elisa S; Stanhope, Steven J; Higginson, Jill S

    2016-10-01

    Passive-dynamic ankle-foot orthosis characteristics, including bending stiffness, should be customized for individuals. However, while conventions for customizing passive-dynamic ankle-foot orthosis characteristics are often described and implemented in clinical practice, there is little evidence to explain their biomechanical rationale. To develop and combine a model of a customized passive-dynamic ankle-foot orthosis with a healthy musculoskeletal model and use simulation tools to explore the influence of passive-dynamic ankle-foot orthosis bending stiffness on plantar flexor function during gait. Dual case study. The customized passive-dynamic ankle-foot orthosis characteristics were integrated into a healthy musculoskeletal model available in OpenSim. Quasi-static forward dynamic simulations tracked experimental gait data under several passive-dynamic ankle-foot orthosis conditions. Predicted muscle activations were calculated through a computed muscle control optimization scheme. Simulations predicted that the passive-dynamic ankle-foot orthoses substituted for soleus but not gastrocnemius function. Induced acceleration analyses revealed the passive-dynamic ankle-foot orthosis acts like a uniarticular plantar flexor by inducing knee extension accelerations, which are counterproductive to natural knee kinematics in early midstance. These passive-dynamic ankle-foot orthoses can provide plantar flexion moments during mid and late stance to supplement insufficient plantar flexor strength. However, the passive-dynamic ankle-foot orthoses negatively influenced knee kinematics in early midstance. Identifying the role of passive-dynamic ankle-foot orthosis stiffness during gait provides biomechanical rationale for how to customize passive-dynamic ankle-foot orthoses for patients. Furthermore, these findings can be used in the future as the basis for developing objective prescription models to help drive the customization of passive-dynamic ankle-foot orthosis characteristics. © The International Society for Prosthetics and Orthotics 2015.

  11. CFD validation experiments at McDonnell Aircraft Company

    NASA Technical Reports Server (NTRS)

    Verhoff, August

    1987-01-01

    Information is given in viewgraph form on computational fluid dynamics (CFD) validation experiments at McDonnell Aircraft Company. Topics covered include a high speed research model, a supersonic persistence fighter model, a generic fighter wing model, surface grids, force and moment predictions, surface pressure predictions, forebody models with 65 degree clipped delta wings, and the low aspect ratio wing/body experiment.

  12. Research on dynamic characteristics of motor vibration isolation system through mechanical impedance method

    NASA Astrophysics Data System (ADS)

    Zhao, Xingqian; Xu, Wei; Shuai, Changgeng; Hu, Zechao

    2017-12-01

    A mechanical impedance model of a coupled motor-shaft-bearing system has been developed to predict the dynamic characteristics and partially validated by comparing the computing results with finite element method (FEM), including the comparison of displacement amplitude in x and z directions at the two ends of the flexible coupling, the comparison of normalized vertical reaction force in z direction at bearing pedestals. The results demonstrate that the developed model can precisely predict the dynamic characteristics and the main advantage of such a method is that it can clearly illustrate the vibration property of the motor subsystem, which plays an important role in the isolation system design.

  13. Dynamic modelling of solids in a full-scale activated sludge plant preceded by CEPT as a preliminary step for micropollutant removal modelling.

    PubMed

    Baalbaki, Zeina; Torfs, Elena; Maere, Thomas; Yargeau, Viviane; Vanrolleghem, Peter A

    2017-04-01

    The presence of micropollutants in the environment has triggered research on quantifying and predicting their fate in wastewater treatment plants (WWTPs). Since the removal of micropollutants is highly related to conventional pollutant removal and affected by hydraulics, aeration, biomass composition and solids concentration, the fate of these conventional pollutants and characteristics must be well predicted before tackling models to predict the fate of micropollutants. In light of this, the current paper presents the dynamic modelling of conventional pollutants undergoing activated sludge treatment using a limited set of additional daily composite data besides the routine data collected at a WWTP over one year. Results showed that as a basis for modelling, the removal of micropollutants, the Bürger-Diehl settler model was found to capture the actual effluent total suspended solids (TSS) concentrations more efficiently than the Takács model by explicitly modelling the overflow boundary. Results also demonstrated that particular attention must be given to characterizing incoming TSS to obtain a representative solids balance in the presence of a chemically enhanced primary treatment, which is key to predict the fate of micropollutants.

  14. Dynamic finite element method modeling of the upper shelf energy of precracked Charpy specimens of neutron irradiated weld metal 72W

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, A.S.; Sidener, S.E.; Hamilton, M.L.

    1999-10-01

    Dynamic finite element modeling of the fracture behavior of fatigue-precracked Charpy specimens in both unirradiated and irradiated conditions was performed using a computer code, ABAQUS Explicit, to predict the upper shelf energy of precracked specimens of a given size from experimental data obtained for a different size. A tensile fracture-strain based method for modeling crack extension and propagation was used. It was found that the predicted upper shelf energies of full and half size precracked specimens based on third size data were in reasonable agreement with their respective experimental values. Similar success was achieved for predicting the upper shelf energymore » of subsize precracked specimens based on full size data.« less

  15. The impact of dynamic topography on the bedrock elevation and volume of the Pliocene Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Austermann, Jacqueline; Pollard, David; Mitrovica, Jerry X.; Moucha, Robert; Forte, Alessandro M.; DeConto, Robert M.

    2015-04-01

    Reconstructions of the Antarctic ice sheet over long timescales (i.e. Myrs) require estimates of bedrock elevation through time. Ice sheet models have accounted, with varying levels of sophistication, for changes in the bedrock elevation due to glacial isostatic adjustment (GIA), but they have neglected other processes that may perturb topography. One notable example is dynamic topography, the deflection of the solid surface of the Earth due to convective flow within the mantle. Numerically predicted changes in dynamic topography have been used to correct paleo shorelines for this departure from eustasy, but the effect of such changes on ice sheet stability is unknown. In this study we use numerical predictions of time-varying dynamic topography to reconstruct bedrock elevation below the Antarctic ice sheet during the mid Pliocene warm period (~3 Ma). Moreover, we couple this reconstruction to a three-dimensional ice sheet model to explore the impact of dynamic topography on the evolution of the Antarctic ice sheet since the Pliocene. Our modeling indicates significant uplift in the area of the Transantarctic Mountains (TAM) and the adjacent Wilkes basin. This predicted uplift, which is at the lower end of geological inferences of uplift of the TAM, implies a lower elevation of the basin in the Pliocene. Relative to simulations that do not include dynamic topography, the lower elevation leads to a smaller Antarctic Ice Sheet volume and a more significant retreat of the grounding line in the Wilkes basin, both of which are consistent with offshore sediment core data. We conclude that reconstructions of the Antarctic Ice Sheet during the mid-Pliocene warm period should be based on bedrock elevation models that include the impact of both GIA and dynamic topography.

  16. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment

    Treesearch

    S. C. Stark; V. Leitold; J. L. Wu; M. O. Hunter; C. V. de Castilho; F. R. C. Costa; S. M. McMahon; G. G. Parker; M. Takako Shimabukuro; M. A. Lefsky; M. Keller; L. F. Alves; J. Schietti; Y. E. Shimabukuro; D. O. Brandao; T. K. Woodcock; N. Higuchi; P. B de Camargo; R. C. de Oliveira; S. R. Saleska

    2012-01-01

    Tropical forest structural variation across heterogeneous landscapes may control above-ground carbon dynamics. We tested the hypothesis that canopy structure (leaf area and light availability) – remotely estimated from LiDAR – control variation in above-ground coarse wood production (biomass growth). Using a statistical model, these factors predicted biomass growth...

  17. Large Variations in HIV-1 Viral Load Explained by Shifting-Mosaic Metapopulation Dynamics

    PubMed Central

    Lythgoe, Katrina A.; Blanquart, François

    2016-01-01

    The viral population of HIV-1, like many pathogens that cause systemic infection, is structured and differentiated within the body. The dynamics of cellular immune trafficking through the blood and within compartments of the body has also received wide attention. Despite these advances, mathematical models, which are widely used to interpret and predict viral and immune dynamics in infection, typically treat the infected host as a well-mixed homogeneous environment. Here, we present mathematical, analytical, and computational results that demonstrate that consideration of the spatial structure of the viral population within the host radically alters predictions of previous models. We study the dynamics of virus replication and cytotoxic T lymphocytes (CTLs) within a metapopulation of spatially segregated patches, representing T cell areas connected by circulating blood and lymph. The dynamics of the system depend critically on the interaction between CTLs and infected cells at the within-patch level. We show that for a wide range of parameters, the system admits an unexpected outcome called the shifting-mosaic steady state. In this state, the whole body’s viral population is stable over time, but the equilibrium results from an underlying, highly dynamic process of local infection and clearance within T-cell centers. Notably, and in contrast to previous models, this new model can explain the large differences in set-point viral load (SPVL) observed between patients and their distribution, as well as the relatively low proportion of cells infected at any one time, and alters the predicted determinants of viral load variation. PMID:27706164

  18. Incorporating a prediction of postgrazing herbage mass into a whole-farm model for pasture-based dairy systems.

    PubMed

    Gregorini, P; Galli, J; Romera, A J; Levy, G; Macdonald, K A; Fernandez, H H; Beukes, P C

    2014-07-01

    The DairyNZ whole-farm model (WFM; DairyNZ, Hamilton, New Zealand) consists of a framework that links component models for animal, pastures, crops, and soils. The model was developed to assist with analysis and design of pasture-based farm systems. New (this work) and revised (e.g., cow, pasture, crops) component models can be added to the WFM, keeping the model flexible and up to date. Nevertheless, the WFM does not account for plant-animal relationships determining herbage-depletion dynamics. The user has to preset the maximum allowable level of herbage depletion [i.e., postgrazing herbage mass (residuals)] throughout the year. Because residuals have a direct effect on herbage regrowth, the WFM in its current form does not dynamically simulate the effect of grazing pressure on herbage depletion and consequent effect on herbage regrowth. The management of grazing pressure is a key component of pasture-based dairy systems. Thus, the main objective of the present work was to develop a new version of the WFM able to predict residuals, and thereby simulate related effects of grazing pressure dynamically at the farm scale. This objective was accomplished by incorporating a new component model into the WFM. This model represents plant-animal relationships, for example sward structure and herbage intake rate, and resulting level of herbage depletion. The sensitivity of the new version of the WFM was evaluated and then the new WFM was tested against an experimental data set previously used to evaluate the WFM and to illustrate the adequacy and improvement of the model development. Key outputs variables of the new version pertinent to this work (milk production, herbage dry matter intake, intake rate, harvesting efficiency, and residuals) responded acceptably to a range of input variables. The relative prediction errors for monthly and mean annual residual predictions were 20 and 5%, respectively. Monthly predictions of residuals had a line bias (1.5%), with a proportion of square root of mean square prediction error (RMSPE) due to random error of 97.5%. Predicted monthly herbage growth rates had a line bias of 2%, a proportion of RMSPE due to random error of 96%, and a concordance correlation coefficient of 0.87. Annual herbage production was predicted with an RMSPE of 531 (kg of herbage dry matter/ha per year), a line bias of 11%, a proportion of RMSPE due to random error of 80%, and relative prediction errors of 2%. Annual herbage dry matter intake per cow and hectare, both per year, were predicted with RMSPE, relative prediction error, and concordance correlation coefficient of 169 and 692kg of dry matter, 3 and 4%, and 0.91 and 0.87, respectively. These results indicate that predictions of the new WFM are relatively accurate and precise, with a conclusion that incorporating a plant-animal relationship model into the WFM allows for dynamic predictions of residuals and more realistic simulations of the effect of grazing pressure on herbage production and intake at the farm level without the intervention from the user. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Structure and conformational dynamics of scaffolded DNA origami nanoparticles

    DTIC Science & Technology

    2017-05-08

    all-atom molecular dynamics and coarse-grained finite element modeling to DX-based nanoparticles to elucidate their fine-scale and global conforma... finite element (FE) modeling approach CanDo is also routinely used to predict the 3D equilibrium conformation of programmed DNA assemblies based on a...model with both experimental cryo-electron microscopy (cryo-EM) data and all-atom modeling. MATERIALS AND METHODS Lattice-free finite element model

  20. Dynamic Predictive Model for Growth of Bacillus cereus from Spores in Cooked Beans.

    PubMed

    Juneja, Vijay K; Mishra, Abhinav; Pradhan, Abani K

    2018-02-01

    Kinetic growth data for Bacillus cereus grown from spores were collected in cooked beans under several isothermal conditions (10 to 49°C). Samples were inoculated with approximately 2 log CFU/g heat-shocked (80°C for 10 min) spores and stored at isothermal temperatures. B. cereus populations were determined at appropriate intervals by plating on mannitol-egg yolk-polymyxin agar and incubating at 30°C for 24 h. Data were fitted into Baranyi, Huang, modified Gompertz, and three-phase linear primary growth models. All four models were fitted to the experimental growth data collected at 13 to 46°C. Performances of these models were evaluated based on accuracy and bias factors, the coefficient of determination ( R 2 ), and the root mean square error. Based on these criteria, the Baranyi model best described the growth data, followed by the Huang, modified Gompertz, and three-phase linear models. The maximum growth rates of each primary model were fitted as a function of temperature using the modified Ratkowsky model. The high R 2 values (0.95 to 0.98) indicate that the modified Ratkowsky model can be used to describe the effect of temperature on the growth rates for all four primary models. The acceptable prediction zone (APZ) approach also was used for validation of the model with observed data collected during single and two-step dynamic cooling temperature protocols. When the predictions using the Baranyi model were compared with the observed data using the APZ analysis, all 24 observations for the exponential single rate cooling were within the APZ, which was set between -0.5 and 1 log CFU/g; 26 of 28 predictions for the two-step cooling profiles also were within the APZ limits. The developed dynamic model can be used to predict potential B. cereus growth from spores in beans under various temperature conditions or during extended chilling of cooked beans.

  1. Computational Systems Toxicology: recapitulating the logistical dynamics of cellular response networks in virtual tissue models (Eurotox_2017)

    EPA Science Inventory

    Translating in vitro data and biological information into a predictive model for human toxicity poses a significant challenge. This is especially true for complex adaptive systems such as the embryo where cellular dynamics are precisely orchestrated in space and time. Computer ce...

  2. Climate Prediction Center - Seasonal Outlook

    Science.gov Websites

    SEASONAL CLIMATE VARIABILITY, INCLUDING ENSO, SOIL MOISTURE, AND VARIOUS STATE-OF-THE-ART DYNAMICAL MODEL ACROSS PARTS OF THE EAST-CENTRAL CONUS CENTERED ON THE MISSISSIPPI RIVER. THIS IS DUE TO VERY HIGH SOIL TRENDS, NEGATIVE SOIL MOISTURE ANOMALIES, LAGGED ENSO REGRESSIONS, AND DYNAMICAL MODEL GUIDANCE ARE ALL

  3. Plant toxicity, adaptive herbivory, and plant community dynamics

    Treesearch

    Zhilan Feng; Rongsong Liu; Donald L. DeAngelis; John P. Bryant; Knut Kielland; F. Stuart Chapin; Robert K. Swihart

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of...

  4. Dynamics of Affective States during Complex Learning

    ERIC Educational Resources Information Center

    D'Mello, Sidney; Graesser, Art

    2012-01-01

    We propose a model to explain the dynamics of affective states that emerge during deep learning activities. The model predicts that learners in a state of engagement/flow will experience cognitive disequilibrium and confusion when they face contradictions, incongruities, anomalies, obstacles to goals, and other impasses. Learners revert into the…

  5. Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks.

    PubMed

    Yan, Zheng; Wang, Jun

    2014-03-01

    This paper presents a neural network approach to robust model predictive control (MPC) for constrained discrete-time nonlinear systems with unmodeled dynamics affected by bounded uncertainties. The exact nonlinear model of underlying process is not precisely known, but a partially known nominal model is available. This partially known nonlinear model is first decomposed to an affine term plus an unknown high-order term via Jacobian linearization. The linearization residue combined with unmodeled dynamics is then modeled using an extreme learning machine via supervised learning. The minimax methodology is exploited to deal with bounded uncertainties. The minimax optimization problem is reformulated as a convex minimization problem and is iteratively solved by a two-layer recurrent neural network. The proposed neurodynamic approach to nonlinear MPC improves the computational efficiency and sheds a light for real-time implementability of MPC technology. Simulation results are provided to substantiate the effectiveness and characteristics of the proposed approach.

  6. Unfolding and melting of DNA (RNA) hairpins: the concept of structure-specific 2D dynamic landscapes.

    PubMed

    Lin, Milo M; Meinhold, Lars; Shorokhov, Dmitry; Zewail, Ahmed H

    2008-08-07

    A 2D free-energy landscape model is presented to describe the (un)folding transition of DNA/RNA hairpins, together with molecular dynamics simulations and experimental findings. The dependence of the (un)folding transition on the stem sequence and the loop length is shown in the enthalpic and entropic contributions to the free energy. Intermediate structures are well defined by the two coordinates of the landscape during (un)zipping. Both the free-energy landscape model and the extensive molecular dynamics simulations totaling over 10 mus predict the existence of temperature-dependent kinetic intermediate states during hairpin (un)zipping and provide the theoretical description of recent ultrafast temperature-jump studies which indicate that hairpin (un)zipping is, in general, not a two-state process. The model allows for lucid prediction of the collapsed state(s) in simple 2D space and we term it the kinetic intermediate structure (KIS) model.

  7. Study of journal bearing dynamics using 3-dimensional motion picture graphics

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Sosoka, D. J.

    1985-01-01

    Computer generated motion pictures of three dimensional graphics are being used to analyze journal bearings under dynamically loaded conditions. The motion pictures simultaneously present the motion of the journal and the pressures predicted within the fluid film of the bearing as they evolve in time. The correct prediction of these fluid film pressures can be complicated by the development of cavitation within the fluid. The numerical model that is used predicts the formation of the cavitation bubble and its growth, downstream movement, and subsequent collapse. A complete physical picture is created in the motion picture as the journal traverses through the entire dynamic cycle.

  8. Modeling potential hydrochemical responses to climate change and rising CO2 at the Hubbard Brook Experimental Forest using a dynamic biogeochemical model (PnET-BGC)

    Treesearch

    Afshin Pourmokhtarian; Charles T. Driscoll; John L. Campbell; Katharine Hayhoe

    2012-01-01

    Dynamic hydrochemical models are useful tools for understanding and predicting the interactive effects of climate change, atmospheric CO2, and atmospheric deposition on the hydrology and water quality of forested watersheds. We used the biogeochemical model, PnET-BGC, to evaluate the effects of potential future changes in temperature,...

  9. Dynamic genome-scale metabolic modeling of the yeast Pichia pastoris.

    PubMed

    Saitua, Francisco; Torres, Paulina; Pérez-Correa, José Ricardo; Agosin, Eduardo

    2017-02-21

    Pichia pastoris shows physiological advantages in producing recombinant proteins, compared to other commonly used cell factories. This yeast is mostly grown in dynamic cultivation systems, where the cell's environment is continuously changing and many variables influence process productivity. In this context, a model capable of explaining and predicting cell behavior for the rational design of bioprocesses is highly desirable. Currently, there are five genome-scale metabolic reconstructions of P. pastoris which have been used to predict extracellular cell behavior in stationary conditions. In this work, we assembled a dynamic genome-scale metabolic model for glucose-limited, aerobic cultivations of Pichia pastoris. Starting from an initial model structure for batch and fed-batch cultures, we performed pre/post regression diagnostics to ensure that model parameters were identifiable, significant and sensitive. Once identified, the non-relevant ones were iteratively fixed until a priori robust modeling structures were found for each type of cultivation. Next, the robustness of these reduced structures was confirmed by calibrating the model with new datasets, where no sensitivity, identifiability or significance problems appeared in their parameters. Afterwards, the model was validated for the prediction of batch and fed-batch dynamics in the studied conditions. Lastly, the model was employed as a case study to analyze the metabolic flux distribution of a fed-batch culture and to unravel genetic and process engineering strategies to improve the production of recombinant Human Serum Albumin (HSA). Simulation of single knock-outs indicated that deviation of carbon towards cysteine and tryptophan formation improves HSA production. The deletion of methylene tetrahydrofolate dehydrogenase could increase the HSA volumetric productivity by 630%. Moreover, given specific bioprocess limitations and strain characteristics, the model suggests that implementation of a decreasing specific growth rate during the feed phase of a fed-batch culture results in a 25% increase of the volumetric productivity of the protein. In this work, we formulated a dynamic genome scale metabolic model of Pichia pastoris that yields realistic metabolic flux distributions throughout dynamic cultivations. The model can be calibrated with experimental data to rationally propose genetic and process engineering strategies to improve the performance of a P. pastoris strain of interest.

  10. Aeroelastic loads and stability investigation of a full-scale hingeless rotor

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; Johnson, Wayne

    1991-01-01

    An analytical investigation was conducted to study the influence of various parameters on predicting the aeroelastic loads and stability of a full-scale hingeless rotor in hover and forward flight. The CAMRAD/JA (Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics, Johnson Aeronautics) analysis code is used to obtain the analytical predictions. Data are presented for rotor blade bending and torsional moments as well as inplane damping data obtained for rotor operation in hover at a constant rotor rotational speed of 425 rpm and thrust coefficients between 0.0 and 0.12. Experimental data are presented from a test in the wind tunnel. Validation of the rotor system structural model with experimental rotor blade loads data shows excellent correlation with analytical results. Using this analysis, the influence of different aerodynamic inflow models, the number of generalized blade and body degrees of freedom, and the control-system stiffness at predicted stability levels are shown. Forward flight predictions of the BO-105 rotor system for 1-G thrust conditions at advance ratios of 0.0 to 0.35 are presented. The influence of different aerodynamic inflow models, dynamic inflow models and shaft angle variations on predicted stability levels are shown as a function of advance ratio.

  11. UNRES server for physics-based coarse-grained simulations and prediction of protein structure, dynamics and thermodynamics.

    PubMed

    Czaplewski, Cezary; Karczynska, Agnieszka; Sieradzan, Adam K; Liwo, Adam

    2018-04-30

    A server implementation of the UNRES package (http://www.unres.pl) for coarse-grained simulations of protein structures with the physics-based UNRES model, coined a name UNRES server, is presented. In contrast to most of the protein coarse-grained models, owing to its physics-based origin, the UNRES force field can be used in simulations, including those aimed at protein-structure prediction, without ancillary information from structural databases; however, the implementation includes the possibility of using restraints. Local energy minimization, canonical molecular dynamics simulations, replica exchange and multiplexed replica exchange molecular dynamics simulations can be run with the current UNRES server; the latter are suitable for protein-structure prediction. The user-supplied input includes protein sequence and, optionally, restraints from secondary-structure prediction or small x-ray scattering data, and simulation type and parameters which are selected or typed in. Oligomeric proteins, as well as those containing D-amino-acid residues and disulfide links can be treated. The output is displayed graphically (minimized structures, trajectories, final models, analysis of trajectory/ensembles); however, all output files can be downloaded by the user. The UNRES server can be freely accessed at http://unres-server.chem.ug.edu.pl.

  12. Analysis and Modeling of Ground Operations at Hub Airports

    NASA Technical Reports Server (NTRS)

    Atkins, Stephen (Technical Monitor); Andersson, Kari; Carr, Francis; Feron, Eric; Hall, William D.

    2000-01-01

    Building simple and accurate models of hub airports can considerably help one understand airport dynamics, and may provide quantitative estimates of operational airport improvements. In this paper, three models are proposed to capture the dynamics of busy hub airport operations. Two simple queuing models are introduced to capture the taxi-out and taxi-in processes. An integer programming model aimed at representing airline decision-making attempts to capture the dynamics of the aircraft turnaround process. These models can be applied for predictive purposes. They may also be used to evaluate control strategies for improving overall airport efficiency.

  13. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    NASA Astrophysics Data System (ADS)

    Xavier, Marcelo A.; Trimboli, M. Scott

    2015-07-01

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models.

  14. Income gains predict cognitive functioning longitudinally throughout later childhood in poor children.

    PubMed

    Raffington, Laurel; Prindle, John J; Shing, Yee Lee

    2018-04-26

    Alleviating disadvantage in low-income environments predicts higher cognitive abilities during early childhood. It is less established whether family income continues to predict cognitive growth in later childhood or whether there may even be bidirectional dynamics. Notably, living in poverty may moderate income-cognition dynamics. In this study, we investigated longitudinal dynamics over 7 waves of data collection from 1,168 children between the ages of 4.6 and 12 years, 226 (19%) of whom lived in poverty in at least 1 wave, as part of the NICHD Study of Early Child Care and Youth Development. Two sets of dual change-score models evaluated, first, whether a score predicted change from that wave to the next and, second, whether change from 1 wave to the next predicted the following score. As previous comparisons have documented, poor children had substantially lower average starting points and cognitive growth slopes through later childhood. The first set of models showed that income scores did not predict cognitive change. In reverse, child cognitive scores positively predicted income change. We speculated that parents may reduce their work investment, thus reducing income gains, when their children fall behind. Second, income changes continued to positively predict higher cognitive scores at the following wave for poor children only, which suggests that income gains and losses continue to be a leading indicator in time of poor children's cognitive performance in later childhood. This study underlined the need to look at changes in income, allow for poverty moderation, and explore bidirectional income-cognition dynamics in middle childhood. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. A dynamical system view of cerebellar function

    NASA Astrophysics Data System (ADS)

    Keeler, James D.

    1990-06-01

    First some previous theories of cerebellar function are reviewed, and deficiencies in how they map onto the neurophysiological structure are pointed out. I hypothesize that the cerebellar cortex builds an internal model, or prediction, of the dynamics of the animal. A class of algorithms for doing prediction based on local reconstruction of attractors are described, and it is shown how this class maps very well onto the structure of the cerebellar cortex. I hypothesize that the climbing fibers multiplex between different trajectories corresponding to different modes of operation. Then the vestibulo-ocular reflex is examined, and experiments to test the proposed model are suggested. The purpose of the presentation here is twofold: (1) To enlighten physiologists to the mathematics of a class of prediction algorithms that map well onto cerebellar architecture. (2) To enlighten dynamical system theorists to the physiological and anatomical details of the cerebellum.

  16. Mental models accurately predict emotion transitions

    PubMed Central

    Thornton, Mark A.; Tamir, Diana I.

    2017-01-01

    Successful social interactions depend on people’s ability to predict others’ future actions and emotions. People possess many mechanisms for perceiving others’ current emotional states, but how might they use this information to predict others’ future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others’ emotional dynamics. People could then use these mental models of emotion transitions to predict others’ future emotions from currently observable emotions. To test this hypothesis, studies 1–3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants’ ratings of emotion transitions predicted others’ experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation—valence, social impact, rationality, and human mind—inform participants’ mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants’ accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone. PMID:28533373

  17. Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China)

    PubMed Central

    Liu, Xiaojun; Ferguson, Richard B.; Zheng, Hengbiao; Cao, Qiang; Tian, Yongchao; Cao, Weixing; Zhu, Yan

    2017-01-01

    The successful development of an optimal canopy vegetation index dynamic model for obtaining higher yield can offer a technical approach for real-time and nondestructive diagnosis of rice (Oryza sativa L) growth and nitrogen (N) nutrition status. In this study, multiple rice cultivars and N treatments of experimental plots were carried out to obtain: normalized difference vegetation index (NDVI), leaf area index (LAI), above-ground dry matter (DM), and grain yield (GY) data. The quantitative relationships between NDVI and these growth indices (e.g., LAI, DM and GY) were analyzed, showing positive correlations. Using the normalized modeling method, an appropriate NDVI simulation model of rice was established based on the normalized NDVI (RNDVI) and relative accumulative growing degree days (RAGDD). The NDVI dynamic model for high-yield production in rice can be expressed by a double logistic model: RNDVI=(1+e−15.2829×(RAGDDi−0.1944))−1−(1+e−11.6517×(RAGDDi−1.0267))−1 (R2 = 0.8577**), which can be used to accurately predict canopy NDVI dynamic changes during the entire growth period. Considering variation among rice cultivars, we constructed two relative NDVI (RNDVI) dynamic models for Japonica and Indica rice types, with R2 reaching 0.8764** and 0.8874**, respectively. Furthermore, independent experimental data were used to validate the RNDVI dynamic models. The results showed that during the entire growth period, the accuracy (k), precision (R2), and standard deviation of RNDVI dynamic models for the Japonica and Indica cultivars were 0.9991, 1.0170; 0.9084**, 0.8030**; and 0.0232, 0.0170, respectively. These results indicated that RNDVI dynamic models could accurately reflect crop growth and predict dynamic changes in high-yield crop populations, providing a rapid approach for monitoring rice growth status. PMID:28338637

  18. Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China).

    PubMed

    Liu, Xiaojun; Ferguson, Richard B; Zheng, Hengbiao; Cao, Qiang; Tian, Yongchao; Cao, Weixing; Zhu, Yan

    2017-03-24

    The successful development of an optimal canopy vegetation index dynamic model for obtaining higher yield can offer a technical approach for real-time and nondestructive diagnosis of rice (Oryza sativa L) growth and nitrogen (N) nutrition status. In this study, multiple rice cultivars and N treatments of experimental plots were carried out to obtain: normalized difference vegetation index (NDVI), leaf area index (LAI), above-ground dry matter (DM), and grain yield (GY) data. The quantitative relationships between NDVI and these growth indices (e.g., LAI, DM and GY) were analyzed, showing positive correlations. Using the normalized modeling method, an appropriate NDVI simulation model of rice was established based on the normalized NDVI (RNDVI) and relative accumulative growing degree days (RAGDD). The NDVI dynamic model for high-yield production in rice can be expressed by a double logistic model: RNDVI = ( 1 + e - 15.2829 × ( R A G D D i - 0.1944 ) ) - 1 - ( 1 + e - 11.6517 × ( R A G D D i - 1.0267 ) ) - 1 (R2 = 0.8577**), which can be used to accurately predict canopy NDVI dynamic changes during the entire growth period. Considering variation among rice cultivars, we constructed two relative NDVI (RNDVI) dynamic models for Japonica and Indica rice types, with R2 reaching 0.8764** and 0.8874**, respectively. Furthermore, independent experimental data were used to validate the RNDVI dynamic models. The results showed that during the entire growth period, the accuracy (k), precision (R2), and standard deviation of RNDVI dynamic models for the Japonica and Indica cultivars were 0.9991, 1.0170; 0.9084**, 0.8030**; and 0.0232, 0.0170, respectively. These results indicated that RNDVI dynamic models could accurately reflect crop growth and predict dynamic changes in high-yield crop populations, providing a rapid approach for monitoring rice growth status.

  19. Ensemble Simulations with Coupled Atmospheric Dynamic and Dispersion Models: Illustrating Uncertainties in Dosage Simulations.

    NASA Astrophysics Data System (ADS)

    Warner, Thomas T.; Sheu, Rong-Shyang; Bowers, James F.; Sykes, R. Ian; Dodd, Gregory C.; Henn, Douglas S.

    2002-05-01

    Ensemble simulations made using a coupled atmospheric dynamic model and a probabilistic Lagrangian puff dispersion model were employed in a forensic analysis of the transport and dispersion of a toxic gas that may have been released near Al Muthanna, Iraq, during the Gulf War. The ensemble study had two objectives, the first of which was to determine the sensitivity of the calculated dosage fields to the choices that must be made about the configuration of the atmospheric dynamic model. In this test, various choices were used for model physics representations and for the large-scale analyses that were used to construct the model initial and boundary conditions. The second study objective was to examine the dispersion model's ability to use ensemble inputs to predict dosage probability distributions. Here, the dispersion model was used with the ensemble mean fields from the individual atmospheric dynamic model runs, including the variability in the individual wind fields, to generate dosage probabilities. These are compared with the explicit dosage probabilities derived from the individual runs of the coupled modeling system. The results demonstrate that the specific choices made about the dynamic-model configuration and the large-scale analyses can have a large impact on the simulated dosages. For example, the area near the source that is exposed to a selected dosage threshold varies by up to a factor of 4 among members of the ensemble. The agreement between the explicit and ensemble dosage probabilities is relatively good for both low and high dosage levels. Although only one ensemble was considered in this study, the encouraging results suggest that a probabilistic dispersion model may be of value in quantifying the effects of uncertainties in a dynamic-model ensemble on dispersion model predictions of atmospheric transport and dispersion.

  20. In vivo and in silico dynamics of the development of Metabolic Syndrome.

    PubMed

    Rozendaal, Yvonne J W; Wang, Yanan; Paalvast, Yared; Tambyrajah, Lauren L; Li, Zhuang; Willems van Dijk, Ko; Rensen, Patrick C N; Kuivenhoven, Jan A; Groen, Albert K; Hilbers, Peter A J; van Riel, Natal A W

    2018-06-01

    The Metabolic Syndrome (MetS) is a complex, multifactorial disorder that develops slowly over time presenting itself with large differences among MetS patients. We applied a systems biology approach to describe and predict the onset and progressive development of MetS, in a study that combined in vivo and in silico models. A new data-driven, physiological model (MINGLeD: Model INtegrating Glucose and Lipid Dynamics) was developed, describing glucose, lipid and cholesterol metabolism. Since classic kinetic models cannot describe slowly progressing disorders, a simulation method (ADAPT) was used to describe longitudinal dynamics and to predict metabolic concentrations and fluxes. This approach yielded a novel model that can describe long-term MetS development and progression. This model was integrated with longitudinal in vivo data that was obtained from male APOE*3-Leiden.CETP mice fed a high-fat, high-cholesterol diet for three months and that developed MetS as reflected by classical symptoms including obesity and glucose intolerance. Two distinct subgroups were identified: those who developed dyslipidemia, and those who did not. The combination of MINGLeD with ADAPT could correctly predict both phenotypes, without making any prior assumptions about changes in kinetic rates or metabolic regulation. Modeling and flux trajectory analysis revealed that differences in liver fluxes and dietary cholesterol absorption could explain this occurrence of the two different phenotypes. In individual mice with dyslipidemia dietary cholesterol absorption and hepatic turnover of metabolites, including lipid fluxes, were higher compared to those without dyslipidemia. Predicted differences were also observed in gene expression data, and consistent with the emergence of insulin resistance and hepatic steatosis, two well-known MetS co-morbidities. Whereas MINGLeD specifically models the metabolic derangements underlying MetS, the simulation method ADAPT is generic and can be applied to other diseases where dynamic modeling and longitudinal data are available.

Top