Sample records for predictive model development

  1. Clinical Predictive Modeling Development and Deployment through FHIR Web Services.

    PubMed

    Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng

    2015-01-01

    Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction.

  2. Clinical Predictive Modeling Development and Deployment through FHIR Web Services

    PubMed Central

    Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng

    2015-01-01

    Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction. PMID:26958207

  3. Risk prediction model: Statistical and artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  4. Development of estrogen receptor beta binding prediction model using large sets of chemicals.

    PubMed

    Sakkiah, Sugunadevi; Selvaraj, Chandrabose; Gong, Ping; Zhang, Chaoyang; Tong, Weida; Hong, Huixiao

    2017-11-03

    We developed an ER β binding prediction model to facilitate identification of chemicals specifically bind ER β or ER α together with our previously developed ER α binding model. Decision Forest was used to train ER β binding prediction model based on a large set of compounds obtained from EADB. Model performance was estimated through 1000 iterations of 5-fold cross validations. Prediction confidence was analyzed using predictions from the cross validations. Informative chemical features for ER β binding were identified through analysis of the frequency data of chemical descriptors used in the models in the 5-fold cross validations. 1000 permutations were conducted to assess the chance correlation. The average accuracy of 5-fold cross validations was 93.14% with a standard deviation of 0.64%. Prediction confidence analysis indicated that the higher the prediction confidence the more accurate the predictions. Permutation testing results revealed that the prediction model is unlikely generated by chance. Eighteen informative descriptors were identified to be important to ER β binding prediction. Application of the prediction model to the data from ToxCast project yielded very high sensitivity of 90-92%. Our results demonstrated ER β binding of chemicals could be accurately predicted using the developed model. Coupling with our previously developed ER α prediction model, this model could be expected to facilitate drug development through identification of chemicals that specifically bind ER β or ER α .

  5. Future missions studies: Combining Schatten's solar activity prediction model with a chaotic prediction model

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.

    1991-01-01

    K. Schatten (1991) recently developed a method for combining his prediction model with our chaotic model. The philosophy behind this combined model and his method of combination is explained. Because the Schatten solar prediction model (KS) uses a dynamo to mimic solar dynamics, accurate prediction is limited to long-term solar behavior (10 to 20 years). The Chaotic prediction model (SA) uses the recently developed techniques of nonlinear dynamics to predict solar activity. It can be used to predict activity only up to the horizon. In theory, the chaotic prediction should be several orders of magnitude better than statistical predictions up to that horizon; beyond the horizon, chaotic predictions would theoretically be just as good as statistical predictions. Therefore, chaos theory puts a fundamental limit on predictability.

  6. Dynamic Simulation of Human Gait Model With Predictive Capability.

    PubMed

    Sun, Jinming; Wu, Shaoli; Voglewede, Philip A

    2018-03-01

    In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.

  7. Developing Risk Prediction Models for Postoperative Pancreatic Fistula: a Systematic Review of Methodology and Reporting Quality.

    PubMed

    Wen, Zhang; Guo, Ya; Xu, Banghao; Xiao, Kaiyin; Peng, Tao; Peng, Minhao

    2016-04-01

    Postoperative pancreatic fistula is still a major complication after pancreatic surgery, despite improvements of surgical technique and perioperative management. We sought to systematically review and critically access the conduct and reporting of methods used to develop risk prediction models for predicting postoperative pancreatic fistula. We conducted a systematic search of PubMed and EMBASE databases to identify articles published before January 1, 2015, which described the development of models to predict the risk of postoperative pancreatic fistula. We extracted information of developing a prediction model including study design, sample size and number of events, definition of postoperative pancreatic fistula, risk predictor selection, missing data, model-building strategies, and model performance. Seven studies of developing seven risk prediction models were included. In three studies (42 %), the number of events per variable was less than 10. The number of candidate risk predictors ranged from 9 to 32. Five studies (71 %) reported using univariate screening, which was not recommended in building a multivariate model, to reduce the number of risk predictors. Six risk prediction models (86 %) were developed by categorizing all continuous risk predictors. The treatment and handling of missing data were not mentioned in all studies. We found use of inappropriate methods that could endanger the development of model, including univariate pre-screening of variables, categorization of continuous risk predictors, and model validation. The use of inappropriate methods affects the reliability and the accuracy of the probability estimates of predicting postoperative pancreatic fistula.

  8. A predictive model for biomimetic plate type broadband frequency sensor

    NASA Astrophysics Data System (ADS)

    Ahmed, Riaz U.; Banerjee, Sourav

    2016-04-01

    In this work, predictive model for a bio-inspired broadband frequency sensor is developed. Broadband frequency sensing is essential in many domains of science and technology. One great example of such sensor is human cochlea, where it senses a frequency band of 20 Hz to 20 KHz. Developing broadband sensor adopting the physics of human cochlea has found tremendous interest in recent years. Although few experimental studies have been reported, a true predictive model to design such sensors is missing. A predictive model is utmost necessary for accurate design of selective broadband sensors that are capable of sensing very selective band of frequencies. Hence, in this study, we proposed a novel predictive model for the cochlea-inspired broadband sensor, aiming to select the frequency band and model parameters predictively. Tapered plate geometry is considered mimicking the real shape of the basilar membrane in the human cochlea. The predictive model is intended to develop flexible enough that can be employed in a wide variety of scientific domains. To do that, the predictive model is developed in such a way that, it can not only handle homogeneous but also any functionally graded model parameters. Additionally, the predictive model is capable of managing various types of boundary conditions. It has been found that, using the homogeneous model parameters, it is possible to sense a specific frequency band from a specific portion (B) of the model length (L). It is also possible to alter the attributes of `B' using functionally graded model parameters, which confirms the predictive frequency selection ability of the developed model.

  9. Independent external validation of predictive models for urinary dysfunction following external beam radiotherapy of the prostate: Issues in model development and reporting.

    PubMed

    Yahya, Noorazrul; Ebert, Martin A; Bulsara, Max; Kennedy, Angel; Joseph, David J; Denham, James W

    2016-08-01

    Most predictive models are not sufficiently validated for prospective use. We performed independent external validation of published predictive models for urinary dysfunctions following radiotherapy of the prostate. Multivariable models developed to predict atomised and generalised urinary symptoms, both acute and late, were considered for validation using a dataset representing 754 participants from the TROG 03.04-RADAR trial. Endpoints and features were harmonised to match the predictive models. The overall performance, calibration and discrimination were assessed. 14 models from four publications were validated. The discrimination of the predictive models in an independent external validation cohort, measured using the area under the receiver operating characteristic (ROC) curve, ranged from 0.473 to 0.695, generally lower than in internal validation. 4 models had ROC >0.6. Shrinkage was required for all predictive models' coefficients ranging from -0.309 (prediction probability was inverse to observed proportion) to 0.823. Predictive models which include baseline symptoms as a feature produced the highest discrimination. Two models produced a predicted probability of 0 and 1 for all patients. Predictive models vary in performance and transferability illustrating the need for improvements in model development and reporting. Several models showed reasonable potential but efforts should be increased to improve performance. Baseline symptoms should always be considered as potential features for predictive models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. The Role of Multimodel Combination in Improving Streamflow Prediction

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Li, W.

    2008-12-01

    Model errors are the inevitable part in any prediction exercise. One approach that is currently gaining attention to reduce model errors is by optimally combining multiple models to develop improved predictions. The rationale behind this approach primarily lies on the premise that optimal weights could be derived for each model so that the developed multimodel predictions will result in improved predictability. In this study, we present a new approach to combine multiple hydrological models by evaluating their predictability contingent on the predictor state. We combine two hydrological models, 'abcd' model and Variable Infiltration Capacity (VIC) model, with each model's parameter being estimated by two different objective functions to develop multimodel streamflow predictions. The performance of multimodel predictions is compared with individual model predictions using correlation, root mean square error and Nash-Sutcliffe coefficient. To quantify precisely under what conditions the multimodel predictions result in improved predictions, we evaluate the proposed algorithm by testing it against streamflow generated from a known model ('abcd' model or VIC model) with errors being homoscedastic or heteroscedastic. Results from the study show that streamflow simulated from individual models performed better than multimodels under almost no model error. Under increased model error, the multimodel consistently performed better than the single model prediction in terms of all performance measures. The study also evaluates the proposed algorithm for streamflow predictions in two humid river basins from NC as well as in two arid basins from Arizona. Through detailed validation in these four sites, the study shows that multimodel approach better predicts the observed streamflow in comparison to the single model predictions.

  11. Development of a noise prediction model based on advanced fuzzy approaches in typical industrial workrooms.

    PubMed

    Aliabadi, Mohsen; Golmohammadi, Rostam; Khotanlou, Hassan; Mansoorizadeh, Muharram; Salarpour, Amir

    2014-01-01

    Noise prediction is considered to be the best method for evaluating cost-preventative noise controls in industrial workrooms. One of the most important issues is the development of accurate models for analysis of the complex relationships among acoustic features affecting noise level in workrooms. In this study, advanced fuzzy approaches were employed to develop relatively accurate models for predicting noise in noisy industrial workrooms. The data were collected from 60 industrial embroidery workrooms in the Khorasan Province, East of Iran. The main acoustic and embroidery process features that influence the noise were used to develop prediction models using MATLAB software. Multiple regression technique was also employed and its results were compared with those of fuzzy approaches. Prediction errors of all prediction models based on fuzzy approaches were within the acceptable level (lower than one dB). However, Neuro-fuzzy model (RMSE=0.53dB and R2=0.88) could slightly improve the accuracy of noise prediction compared with generate fuzzy model. Moreover, fuzzy approaches provided more accurate predictions than did regression technique. The developed models based on fuzzy approaches as useful prediction tools give professionals the opportunity to have an optimum decision about the effectiveness of acoustic treatment scenarios in embroidery workrooms.

  12. A review of statistical updating methods for clinical prediction models.

    PubMed

    Su, Ting-Li; Jaki, Thomas; Hickey, Graeme L; Buchan, Iain; Sperrin, Matthew

    2018-01-01

    A clinical prediction model is a tool for predicting healthcare outcomes, usually within a specific population and context. A common approach is to develop a new clinical prediction model for each population and context; however, this wastes potentially useful historical information. A better approach is to update or incorporate the existing clinical prediction models already developed for use in similar contexts or populations. In addition, clinical prediction models commonly become miscalibrated over time, and need replacing or updating. In this article, we review a range of approaches for re-using and updating clinical prediction models; these fall in into three main categories: simple coefficient updating, combining multiple previous clinical prediction models in a meta-model and dynamic updating of models. We evaluated the performance (discrimination and calibration) of the different strategies using data on mortality following cardiac surgery in the United Kingdom: We found that no single strategy performed sufficiently well to be used to the exclusion of the others. In conclusion, useful tools exist for updating existing clinical prediction models to a new population or context, and these should be implemented rather than developing a new clinical prediction model from scratch, using a breadth of complementary statistical methods.

  13. Development of a Pavement Maintenance Management System. Volume 9. Development of Airfield Pavement Performance Prediction Models.

    DTIC Science & Technology

    1984-05-01

    materials, traffic, and climate, were used to develop PCI and key distress prediction models for both asphalt-concrete- and jointed-concrete- surfaced...Predicted PCI for PCC and AC/PCC Pavements Using Model Presented in Section III ...... 35 31 Effect of PCC Thickness on the PCI as a Function of Age...of Corner Breaking Observed vs Predicted Percent of Corner Breaking Using Model Presented in Section III

  14. Development of a computer model for prediction of collision response of a railroad passenger car

    DOT National Transportation Integrated Search

    2002-04-23

    The paper describes the development of a detailed finite element model that is capable of predicting the response of a rail passenger car to collision conditions. This model was developed to predict the car crush, the three-dimensional gross motions ...

  15. Development of an accident duration prediction model on the Korean Freeway Systems.

    PubMed

    Chung, Younshik

    2010-01-01

    Since duration prediction is one of the most important steps in an accident management process, there have been several approaches developed for modeling accident duration. This paper presents a model for the purpose of accident duration prediction based on accurately recorded and large accident dataset from the Korean Freeway Systems. To develop the duration prediction model, this study utilizes the log-logistic accelerated failure time (AFT) metric model and a 2-year accident duration dataset from 2006 to 2007. Specifically, the 2006 dataset is utilized to develop the prediction model and then, the 2007 dataset was employed to test the temporal transferability of the 2006 model. Although the duration prediction model has limitations such as large prediction error due to the individual differences of the accident treatment teams in terms of clearing similar accidents, the results from the 2006 model yielded a reasonable prediction based on the mean absolute percentage error (MAPE) scale. Additionally, the results of the statistical test for temporal transferability indicated that the estimated parameters in the duration prediction model are stable over time. Thus, this temporal stability suggests that the model may have potential to be used as a basis for making rational diversion and dispatching decisions in the event of an accident. Ultimately, such information will beneficially help in mitigating traffic congestion due to accidents.

  16. Development, Testing, and Validation of a Model-Based Tool to Predict Operator Responses in Unexpected Workload Transitions

    NASA Technical Reports Server (NTRS)

    Sebok, Angelia; Wickens, Christopher; Sargent, Robert

    2015-01-01

    One human factors challenge is predicting operator performance in novel situations. Approaches such as drawing on relevant previous experience, and developing computational models to predict operator performance in complex situations, offer potential methods to address this challenge. A few concerns with modeling operator performance are that models need to realistic, and they need to be tested empirically and validated. In addition, many existing human performance modeling tools are complex and require that an analyst gain significant experience to be able to develop models for meaningful data collection. This paper describes an effort to address these challenges by developing an easy to use model-based tool, using models that were developed from a review of existing human performance literature and targeted experimental studies, and performing an empirical validation of key model predictions.

  17. Archaeological predictive model set.

    DOT National Transportation Integrated Search

    2015-03-01

    This report is the documentation for Task 7 of the Statewide Archaeological Predictive Model Set. The goal of this project is to : develop a set of statewide predictive models to assist the planning of transportation projects. PennDOT is developing t...

  18. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement.

    PubMed

    Collins, Gary S; Reitsma, Johannes B; Altman, Douglas G; Moons, Karel G M

    2015-06-01

    Prediction models are developed to aid health care providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web-based survey and revised during a 3-day meeting in June 2011 with methodologists, health care professionals, and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org). The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Predicting Drug Concentration‐Time Profiles in Multiple CNS Compartments Using a Comprehensive Physiologically‐Based Pharmacokinetic Model

    PubMed Central

    Yamamoto, Yumi; Välitalo, Pyry A.; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; van den Berg, Dirk‐Jan; Hartman, Robin; Wong, Yin Cheong; Danhof, Meindert; van Hasselt, John G. C.

    2017-01-01

    Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS compartments. System‐specific and drug‐specific model parameters were derived from literature and in silico predictions. The model was validated using detailed concentration‐time profiles from 10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small molecules, were selected to cover a wide range of physicochemical properties. The concentration‐time profiles for these drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development. PMID:28891201

  20. Early Prediction of Intensive Care Unit-Acquired Weakness: A Multicenter External Validation Study.

    PubMed

    Witteveen, Esther; Wieske, Luuk; Sommers, Juultje; Spijkstra, Jan-Jaap; de Waard, Monique C; Endeman, Henrik; Rijkenberg, Saskia; de Ruijter, Wouter; Sleeswijk, Mengalvio; Verhamme, Camiel; Schultz, Marcus J; van Schaik, Ivo N; Horn, Janneke

    2018-01-01

    An early diagnosis of intensive care unit-acquired weakness (ICU-AW) is often not possible due to impaired consciousness. To avoid a diagnostic delay, we previously developed a prediction model, based on single-center data from 212 patients (development cohort), to predict ICU-AW at 2 days after ICU admission. The objective of this study was to investigate the external validity of the original prediction model in a new, multicenter cohort and, if necessary, to update the model. Newly admitted ICU patients who were mechanically ventilated at 48 hours after ICU admission were included. Predictors were prospectively recorded, and the outcome ICU-AW was defined by an average Medical Research Council score <4. In the validation cohort, consisting of 349 patients, we analyzed performance of the original prediction model by assessment of calibration and discrimination. Additionally, we updated the model in this validation cohort. Finally, we evaluated a new prediction model based on all patients of the development and validation cohort. Of 349 analyzed patients in the validation cohort, 190 (54%) developed ICU-AW. Both model calibration and discrimination of the original model were poor in the validation cohort. The area under the receiver operating characteristics curve (AUC-ROC) was 0.60 (95% confidence interval [CI]: 0.54-0.66). Model updating methods improved calibration but not discrimination. The new prediction model, based on all patients of the development and validation cohort (total of 536 patients) had a fair discrimination, AUC-ROC: 0.70 (95% CI: 0.66-0.75). The previously developed prediction model for ICU-AW showed poor performance in a new independent multicenter validation cohort. Model updating methods improved calibration but not discrimination. The newly derived prediction model showed fair discrimination. This indicates that early prediction of ICU-AW is still challenging and needs further attention.

  1. Preclinical models used for immunogenicity prediction of therapeutic proteins.

    PubMed

    Brinks, Vera; Weinbuch, Daniel; Baker, Matthew; Dean, Yann; Stas, Philippe; Kostense, Stefan; Rup, Bonita; Jiskoot, Wim

    2013-07-01

    All therapeutic proteins are potentially immunogenic. Antibodies formed against these drugs can decrease efficacy, leading to drastically increased therapeutic costs and in rare cases to serious and sometimes life threatening side-effects. Many efforts are therefore undertaken to develop therapeutic proteins with minimal immunogenicity. For this, immunogenicity prediction of candidate drugs during early drug development is essential. Several in silico, in vitro and in vivo models are used to predict immunogenicity of drug leads, to modify potentially immunogenic properties and to continue development of drug candidates with expected low immunogenicity. Despite the extensive use of these predictive models, their actual predictive value varies. Important reasons for this uncertainty are the limited/insufficient knowledge on the immune mechanisms underlying immunogenicity of therapeutic proteins, the fact that different predictive models explore different components of the immune system and the lack of an integrated clinical validation. In this review, we discuss the predictive models in use, summarize aspects of immunogenicity that these models predict and explore the merits and the limitations of each of the models.

  2. External validation of a prediction model for surgical site infection after thoracolumbar spine surgery in a Western European cohort.

    PubMed

    Janssen, Daniël M C; van Kuijk, Sander M J; d'Aumerie, Boudewijn B; Willems, Paul C

    2018-05-16

    A prediction model for surgical site infection (SSI) after spine surgery was developed in 2014 by Lee et al. This model was developed to compute an individual estimate of the probability of SSI after spine surgery based on the patient's comorbidity profile and invasiveness of surgery. Before any prediction model can be validly implemented in daily medical practice, it should be externally validated to assess how the prediction model performs in patients sampled independently from the derivation cohort. We included 898 consecutive patients who underwent instrumented thoracolumbar spine surgery. To quantify overall performance using Nagelkerke's R 2 statistic, the discriminative ability was quantified as the area under the receiver operating characteristic curve (AUC). We computed the calibration slope of the calibration plot, to judge prediction accuracy. Sixty patients developed an SSI. The overall performance of the prediction model in our population was poor: Nagelkerke's R 2 was 0.01. The AUC was 0.61 (95% confidence interval (CI) 0.54-0.68). The estimated slope of the calibration plot was 0.52. The previously published prediction model showed poor performance in our academic external validation cohort. To predict SSI after instrumented thoracolumbar spine surgery for the present population, a better fitting prediction model should be developed.

  3. Genetic Programming as Alternative for Predicting Development Effort of Individual Software Projects

    PubMed Central

    Chavoya, Arturo; Lopez-Martin, Cuauhtemoc; Andalon-Garcia, Irma R.; Meda-Campaña, M. E.

    2012-01-01

    Statistical and genetic programming techniques have been used to predict the software development effort of large software projects. In this paper, a genetic programming model was used for predicting the effort required in individually developed projects. Accuracy obtained from a genetic programming model was compared against one generated from the application of a statistical regression model. A sample of 219 projects developed by 71 practitioners was used for generating the two models, whereas another sample of 130 projects developed by 38 practitioners was used for validating them. The models used two kinds of lines of code as well as programming language experience as independent variables. Accuracy results from the model obtained with genetic programming suggest that it could be used to predict the software development effort of individual projects when these projects have been developed in a disciplined manner within a development-controlled environment. PMID:23226305

  4. Feasibility of dynamic risk prediction for hepatocellular carcinoma development in patients with chronic hepatitis B.

    PubMed

    Jeon, Mi Young; Lee, Hye Won; Kim, Seung Up; Kim, Beom Kyung; Park, Jun Yong; Kim, Do Young; Han, Kwang-Hyub; Ahn, Sang Hoon

    2018-04-01

    Several risk prediction models for hepatocellular carcinoma (HCC) development are available. We explored whether the use of risk prediction models can dynamically predict HCC development at different time points in chronic hepatitis B (CHB) patients. Between 2006 and 2014, 1397 CHB patients were recruited. All patients underwent serial transient elastography at intervals of >6 months. The median age of this study population (931 males and 466 females) was 49.0 years. The median CU-HCC, REACH-B, LSM-HCC and mREACH-B score at enrolment were 4.0, 9.0, 10.0 and 8.0 respectively. During the follow-up period (median, 68.0 months), 87 (6.2%) patients developed HCC. All risk prediction models were successful in predicting HCC development at both the first liver stiffness (LS) measurement (hazard ratio [HR] = 1.067-1.467 in the subgroup without antiviral therapy [AVT] and 1.096-1.458 in the subgroup with AVT) and second LS measurement (HR = 1.125-1.448 in the subgroup without AVT and 1.087-1.249 in the subgroup with AVT). In contrast, neither the absolute nor percentage change in the scores from the risk prediction models predicted HCC development (all P > .05). The mREACH-B score performed similarly or significantly better than did the other scores (AUROCs at 5 years, 0.694-0.862 vs 0.537-0.875). Dynamic prediction of HCC development at different time points was achieved using four risk prediction models, but not using the changes in the absolute and percentage values between two time points. The mREACH-B score was the most appropriate prediction model of HCC development among four prediction models. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The development of performance prediction models for Virginia's interstate highway system.

    DOT National Transportation Integrated Search

    1995-01-01

    Performance prediction models are a key component of any well-designed pavement management system. In this study, data compiled from the condition surveys conducted annually on Virginia's pavement network were used to develop prediction models for mo...

  6. A system identification approach for developing model predictive controllers of antibody quality attributes in cell culture processes

    PubMed Central

    Schmitt, John; Beller, Justin; Russell, Brian; Quach, Anthony; Hermann, Elizabeth; Lyon, David; Breit, Jeffrey

    2017-01-01

    As the biopharmaceutical industry evolves to include more diverse protein formats and processes, more robust control of Critical Quality Attributes (CQAs) is needed to maintain processing flexibility without compromising quality. Active control of CQAs has been demonstrated using model predictive control techniques, which allow development of processes which are robust against disturbances associated with raw material variability and other potentially flexible operating conditions. Wide adoption of model predictive control in biopharmaceutical cell culture processes has been hampered, however, in part due to the large amount of data and expertise required to make a predictive model of controlled CQAs, a requirement for model predictive control. Here we developed a highly automated, perfusion apparatus to systematically and efficiently generate predictive models using application of system identification approaches. We successfully created a predictive model of %galactosylation using data obtained by manipulating galactose concentration in the perfusion apparatus in serialized step change experiments. We then demonstrated the use of the model in a model predictive controller in a simulated control scenario to successfully achieve a %galactosylation set point in a simulated fed‐batch culture. The automated model identification approach demonstrated here can potentially be generalized to many CQAs, and could be a more efficient, faster, and highly automated alternative to batch experiments for developing predictive models in cell culture processes, and allow the wider adoption of model predictive control in biopharmaceutical processes. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1647–1661, 2017 PMID:28786215

  7. Artificial neural network models for prediction of cardiovascular autonomic dysfunction in general Chinese population

    PubMed Central

    2013-01-01

    Background The present study aimed to develop an artificial neural network (ANN) based prediction model for cardiovascular autonomic (CA) dysfunction in the general population. Methods We analyzed a previous dataset based on a population sample consisted of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN analysis. Performances of these prediction models were evaluated in the validation set. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with CA dysfunction (P < 0.05). The mean area under the receiver-operating curve was 0.762 (95% CI 0.732–0.793) for prediction model developed using ANN analysis. The mean sensitivity, specificity, positive and negative predictive values were similar in the prediction models was 0.751, 0.665, 0.330 and 0.924, respectively. All HL statistics were less than 15.0. Conclusion ANN is an effective tool for developing prediction models with high value for predicting CA dysfunction among the general population. PMID:23902963

  8. Development and Validation of a Risk Model for Prediction of Hazardous Alcohol Consumption in General Practice Attendees: The PredictAL Study

    PubMed Central

    King, Michael; Marston, Louise; Švab, Igor; Maaroos, Heidi-Ingrid; Geerlings, Mirjam I.; Xavier, Miguel; Benjamin, Vicente; Torres-Gonzalez, Francisco; Bellon-Saameno, Juan Angel; Rotar, Danica; Aluoja, Anu; Saldivia, Sandra; Correa, Bernardo; Nazareth, Irwin

    2011-01-01

    Background Little is known about the risk of progression to hazardous alcohol use in people currently drinking at safe limits. We aimed to develop a prediction model (predictAL) for the development of hazardous drinking in safe drinkers. Methods A prospective cohort study of adult general practice attendees in six European countries and Chile followed up over 6 months. We recruited 10,045 attendees between April 2003 to February 2005. 6193 European and 2462 Chilean attendees recorded AUDIT scores below 8 in men and 5 in women at recruitment and were used in modelling risk. 38 risk factors were measured to construct a risk model for the development of hazardous drinking using stepwise logistic regression. The model was corrected for over fitting and tested in an external population. The main outcome was hazardous drinking defined by an AUDIT score ≥8 in men and ≥5 in women. Results 69.0% of attendees were recruited, of whom 89.5% participated again after six months. The risk factors in the final predictAL model were sex, age, country, baseline AUDIT score, panic syndrome and lifetime alcohol problem. The predictAL model's average c-index across all six European countries was 0.839 (95% CI 0.805, 0.873). The Hedge's g effect size for the difference in log odds of predicted probability between safe drinkers in Europe who subsequently developed hazardous alcohol use and those who did not was 1.38 (95% CI 1.25, 1.51). External validation of the algorithm in Chilean safe drinkers resulted in a c-index of 0.781 (95% CI 0.717, 0.846) and Hedge's g of 0.68 (95% CI 0.57, 0.78). Conclusions The predictAL risk model for development of hazardous consumption in safe drinkers compares favourably with risk algorithms for disorders in other medical settings and can be a useful first step in prevention of alcohol misuse. PMID:21853028

  9. Development and validation of a risk model for prediction of hazardous alcohol consumption in general practice attendees: the predictAL study.

    PubMed

    King, Michael; Marston, Louise; Švab, Igor; Maaroos, Heidi-Ingrid; Geerlings, Mirjam I; Xavier, Miguel; Benjamin, Vicente; Torres-Gonzalez, Francisco; Bellon-Saameno, Juan Angel; Rotar, Danica; Aluoja, Anu; Saldivia, Sandra; Correa, Bernardo; Nazareth, Irwin

    2011-01-01

    Little is known about the risk of progression to hazardous alcohol use in people currently drinking at safe limits. We aimed to develop a prediction model (predictAL) for the development of hazardous drinking in safe drinkers. A prospective cohort study of adult general practice attendees in six European countries and Chile followed up over 6 months. We recruited 10,045 attendees between April 2003 to February 2005. 6193 European and 2462 Chilean attendees recorded AUDIT scores below 8 in men and 5 in women at recruitment and were used in modelling risk. 38 risk factors were measured to construct a risk model for the development of hazardous drinking using stepwise logistic regression. The model was corrected for over fitting and tested in an external population. The main outcome was hazardous drinking defined by an AUDIT score ≥8 in men and ≥5 in women. 69.0% of attendees were recruited, of whom 89.5% participated again after six months. The risk factors in the final predictAL model were sex, age, country, baseline AUDIT score, panic syndrome and lifetime alcohol problem. The predictAL model's average c-index across all six European countries was 0.839 (95% CI 0.805, 0.873). The Hedge's g effect size for the difference in log odds of predicted probability between safe drinkers in Europe who subsequently developed hazardous alcohol use and those who did not was 1.38 (95% CI 1.25, 1.51). External validation of the algorithm in Chilean safe drinkers resulted in a c-index of 0.781 (95% CI 0.717, 0.846) and Hedge's g of 0.68 (95% CI 0.57, 0.78). The predictAL risk model for development of hazardous consumption in safe drinkers compares favourably with risk algorithms for disorders in other medical settings and can be a useful first step in prevention of alcohol misuse.

  10. Developing models for the prediction of hospital healthcare waste generation rate.

    PubMed

    Tesfahun, Esubalew; Kumie, Abera; Beyene, Abebe

    2016-01-01

    An increase in the number of health institutions, along with frequent use of disposable medical products, has contributed to the increase of healthcare waste generation rate. For proper handling of healthcare waste, it is crucial to predict the amount of waste generation beforehand. Predictive models can help to optimise healthcare waste management systems, set guidelines and evaluate the prevailing strategies for healthcare waste handling and disposal. However, there is no mathematical model developed for Ethiopian hospitals to predict healthcare waste generation rate. Therefore, the objective of this research was to develop models for the prediction of a healthcare waste generation rate. A longitudinal study design was used to generate long-term data on solid healthcare waste composition, generation rate and develop predictive models. The results revealed that the healthcare waste generation rate has a strong linear correlation with the number of inpatients (R(2) = 0.965), and a weak one with the number of outpatients (R(2) = 0.424). Statistical analysis was carried out to develop models for the prediction of the quantity of waste generated at each hospital (public, teaching and private). In these models, the number of inpatients and outpatients were revealed to be significant factors on the quantity of waste generated. The influence of the number of inpatients and outpatients treated varies at different hospitals. Therefore, different models were developed based on the types of hospitals. © The Author(s) 2015.

  11. XplOit: An Ontology-Based Data Integration Platform Supporting the Development of Predictive Models for Personalized Medicine.

    PubMed

    Weiler, Gabriele; Schwarz, Ulf; Rauch, Jochen; Rohm, Kerstin; Lehr, Thorsten; Theobald, Stefan; Kiefer, Stephan; Götz, Katharina; Och, Katharina; Pfeifer, Nico; Handl, Lisa; Smola, Sigrun; Ihle, Matthias; Turki, Amin T; Beelen, Dietrich W; Rissland, Jürgen; Bittenbring, Jörg; Graf, Norbert

    2018-01-01

    Predictive models can support physicians to tailor interventions and treatments to their individual patients based on their predicted response and risk of disease and help in this way to put personalized medicine into practice. In allogeneic stem cell transplantation risk assessment is to be enhanced in order to respond to emerging viral infections and transplantation reactions. However, to develop predictive models it is necessary to harmonize and integrate high amounts of heterogeneous medical data that is stored in different health information systems. Driven by the demand for predictive instruments in allogeneic stem cell transplantation we present in this paper an ontology-based platform that supports data owners and model developers to share and harmonize their data for model development respecting data privacy.

  12. A reexamination of age-related variation in body weight and morphometry of Maryland nutria

    USGS Publications Warehouse

    Sherfy, M.H.; Mollett, T.A.; McGowan, K.R.; Daugherty, S.L.

    2006-01-01

    Age-related variation in morphometry has been documented for many species. Knowledge of growth patterns can be useful for modeling energetics, detecting physiological influences on populations, and predicting age. These benefits have shown value in understanding population dynamics of invasive species, particularly in developing efficient control and eradication programs. However, development and evaluation of descriptive and predictive models is a critical initial step in this process. Accordingly, we used data from necropsies of 1,544 nutria (Myocastor coypus) collected in Maryland, USA, to evaluate the accuracy of previously published models for prediction of nutria age from body weight. Published models underestimated body weights of our animals, especially for ages <3. We used cross-validation procedures to develop and evaluate models for describing nutria growth patterns and for predicting nutria age. We derived models from a randomly selected model-building data set (n = 192-193 M, 217-222 F) and evaluated them with the remaining animals (n = 487-488 M, 642-647 F). We used nonlinear regression to develop Gompertz growth-curve models relating morphometric variables to age. Predicted values of morphometric variables fell within the 95% confidence limits of their true values for most age classes. We also developed predictive models for estimating nutria age from morphometry, using linear regression of log-transformed age on morphometric variables. The evaluation data set corresponded with 95% prediction intervals from the new models. Predictive models for body weight and length provided greater accuracy and less bias than models for foot length and axillary girth. Our growth models accurately described age-related variation in nutria morphometry, and our predictive models provided accurate estimates of ages from morphometry that will be useful for live-captured individuals. Our models offer better accuracy and precision than previously published models, providing a capacity for modeling energetics and growth patterns of Maryland nutria as well as an empirical basis for determining population age structure from live-captured animals.

  13. Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Sankarasubramanian, A.

    2012-12-01

    Model errors are inevitable in any prediction exercise. One approach that is currently gaining attention in reducing model errors is by combining multiple models to develop improved predictions. The rationale behind this approach primarily lies on the premise that optimal weights could be derived for each model so that the developed multimodel predictions will result in improved predictions. A new dynamic approach (MM-1) to combine multiple hydrological models by evaluating their performance/skill contingent on the predictor state is proposed. We combine two hydrological models, "abcd" model and variable infiltration capacity (VIC) model, to develop multimodel streamflow predictions. To quantify precisely under what conditions the multimodel combination results in improved predictions, we compare multimodel scheme MM-1 with optimal model combination scheme (MM-O) by employing them in predicting the streamflow generated from a known hydrologic model (abcd model orVICmodel) with heteroscedastic error variance as well as from a hydrologic model that exhibits different structure than that of the candidate models (i.e., "abcd" model or VIC model). Results from the study show that streamflow estimated from single models performed better than multimodels under almost no measurement error. However, under increased measurement errors and model structural misspecification, both multimodel schemes (MM-1 and MM-O) consistently performed better than the single model prediction. Overall, MM-1 performs better than MM-O in predicting the monthly flow values as well as in predicting extreme monthly flows. Comparison of the weights obtained from each candidate model reveals that as measurement errors increase, MM-1 assigns weights equally for all the models, whereas MM-O assigns higher weights for always the best-performing candidate model under the calibration period. Applying the multimodel algorithms for predicting streamflows over four different sites revealed that MM-1 performs better than all single models and optimal model combination scheme, MM-O, in predicting the monthly flows as well as the flows during wetter months.

  14. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy.

    PubMed

    Payne, Courtney E; Wolfrum, Edward J

    2015-01-01

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. We present individual model statistics to demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. It is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.

  15. Incorporating uncertainty in predictive species distribution modelling.

    PubMed

    Beale, Colin M; Lennon, Jack J

    2012-01-19

    Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.

  16. Developing and implementing the use of predictive models for estimating water quality at Great Lakes beaches

    USGS Publications Warehouse

    Francy, Donna S.; Brady, Amie M.G.; Carvin, Rebecca B.; Corsi, Steven R.; Fuller, Lori M.; Harrison, John H.; Hayhurst, Brett A.; Lant, Jeremiah; Nevers, Meredith B.; Terrio, Paul J.; Zimmerman, Tammy M.

    2013-01-01

    Predictive models have been used at beaches to improve the timeliness and accuracy of recreational water-quality assessments over the most common current approach to water-quality monitoring, which relies on culturing fecal-indicator bacteria such as Escherichia coli (E. coli.). Beach-specific predictive models use environmental and water-quality variables that are easily and quickly measured as surrogates to estimate concentrations of fecal-indicator bacteria or to provide the probability that a State recreational water-quality standard will be exceeded. When predictive models are used for beach closure or advisory decisions, they are referred to as “nowcasts.” During the recreational seasons of 2010-12, the U.S. Geological Survey (USGS), in cooperation with 23 local and State agencies, worked to improve existing nowcasts at 4 beaches, validate predictive models at another 38 beaches, and collect data for predictive-model development at 7 beaches throughout the Great Lakes. This report summarizes efforts to collect data and develop predictive models by multiple agencies and to compile existing information on the beaches and beach-monitoring programs into one comprehensive report. Local agencies measured E. coli concentrations and variables expected to affect E. coli concentrations such as wave height, turbidity, water temperature, and numbers of birds at the time of sampling. In addition to these field measurements, equipment was installed by the USGS or local agencies at or near several beaches to collect water-quality and metrological measurements in near real time, including nearshore buoys, weather stations, and tributary staff gages and monitors. The USGS worked with local agencies to retrieve data from existing sources either manually or by use of tools designed specifically to compile and process data for predictive-model development. Predictive models were developed by use of linear regression and (or) partial least squares techniques for 42 beaches that had at least 2 years of data (2010-11 and sometimes earlier) and for 1 beach that had 1 year of data. For most models, software designed for model development by the U.S. Environmental Protection Agency (Virtual Beach) was used. The selected model for each beach was based on a combination of explanatory variables including, most commonly, turbidity, day of the year, change in lake level over 24 hours, wave height, wind direction and speed, and antecedent rainfall for various time periods. Forty-two predictive models were validated against data collected during an independent year (2012) and compared to the current method for assessing recreational water quality-using the previous day’s E. coli concentration (persistence model). Goals for good predictive-model performance were responses that were at least 5 percent greater than the persistence model and overall correct responses greater than or equal to 80 percent, sensitivities (percentage of exceedances of the bathing-water standard that were correctly predicted by the model) greater than or equal to 50 percent, and specificities (percentage of nonexceedances correctly predicted by the model) greater than or equal to 85 percent. Out of 42 predictive models, 24 models yielded over-all correct responses that were at least 5 percent greater than the use of the persistence model. Predictive-model responses met the performance goals more often than the persistence-model responses in terms of overall correctness (28 versus 17 models, respectively), sensitivity (17 versus 4 models), and specificity (34 versus 25 models). Gaining knowledge of each beach and the factors that affect E. coli concentrations is important for developing good predictive models. Collection of additional years of data with a wide range of environmental conditions may also help to improve future model performance. The USGS will continue to work with local agencies in 2013 and beyond to develop and validate predictive models at beaches and improve existing nowcasts, restructuring monitoring activities to accommodate future uncertainties in funding and resources.

  17. The North American Multi-Model Ensemble (NMME): Phase-1 Seasonal to Interannual Prediction, Phase-2 Toward Developing Intra-Seasonal Prediction

    NASA Technical Reports Server (NTRS)

    Kirtman, Ben P.; Min, Dughong; Infanti, Johnna M.; Kinter, James L., III; Paolino, Daniel A.; Zhang, Qin; vandenDool, Huug; Saha, Suranjana; Mendez, Malaquias Pena; Becker, Emily; hide

    2013-01-01

    The recent US National Academies report "Assessment of Intraseasonal to Interannual Climate Prediction and Predictability" was unequivocal in recommending the need for the development of a North American Multi-Model Ensemble (NMME) operational predictive capability. Indeed, this effort is required to meet the specific tailored regional prediction and decision support needs of a large community of climate information users. The multi-model ensemble approach has proven extremely effective at quantifying prediction uncertainty due to uncertainty in model formulation, and has proven to produce better prediction quality (on average) then any single model ensemble. This multi-model approach is the basis for several international collaborative prediction research efforts, an operational European system and there are numerous examples of how this multi-model ensemble approach yields superior forecasts compared to any single model. Based on two NOAA Climate Test Bed (CTB) NMME workshops (February 18, and April 8, 2011) a collaborative and coordinated implementation strategy for a NMME prediction system has been developed and is currently delivering real-time seasonal-to-interannual predictions on the NOAA Climate Prediction Center (CPC) operational schedule. The hindcast and real-time prediction data is readily available (e.g., http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/) and in graphical format from CPC (http://origin.cpc.ncep.noaa.gov/products/people/wd51yf/NMME/index.html). Moreover, the NMME forecast are already currently being used as guidance for operational forecasters. This paper describes the new NMME effort, presents an overview of the multi-model forecast quality, and the complementary skill associated with individual models.

  18. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement.

    PubMed

    Collins, G S; Reitsma, J B; Altman, D G; Moons, K G M

    2015-01-20

    Prediction models are developed to aid health-care providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web-based survey and revised during a 3-day meeting in June 2011 with methodologists, health-care professionals, and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org).

  19. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement.

    PubMed

    Collins, Gary S; Reitsma, Johannes B; Altman, Douglas G; Moons, Karel G M

    2015-02-01

    Prediction models are developed to aid healthcare providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision-making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) initiative developed a set of recommendations for the reporting of studies developing, validating or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web-based survey and revised during a 3-day meeting in June 2011 with methodologists, healthcare professionals and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org). © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  20. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement.

    PubMed

    Collins, Gary S; Reitsma, Johannes B; Altman, Douglas G; Moons, Karel G M

    2015-01-06

    Prediction models are developed to aid health care providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web-based survey and revised during a 3-day meeting in June 2011 with methodologists, health care professionals, and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org).

  1. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)

    PubMed Central

    Reitsma, Johannes B.; Altman, Douglas G.; Moons, Karel G.M.

    2015-01-01

    Background— Prediction models are developed to aid health care providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. Methods— The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web-based survey and revised during a 3-day meeting in June 2011 with methodologists, health care professionals, and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. Results— The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. Conclusions— To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org). PMID:25561516

  2. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement

    PubMed Central

    Collins, G S; Reitsma, J B; Altman, D G; Moons, K G M

    2015-01-01

    Prediction models are developed to aid health-care providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web-based survey and revised during a 3-day meeting in June 2011 with methodologists, health-care professionals, and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org). PMID:25562432

  3. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement.

    PubMed

    Collins, G S; Reitsma, J B; Altman, D G; Moons, K G M

    2015-02-01

    Prediction models are developed to aid health care providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web-based survey and revised during a 3-day meeting in June 2011 with methodologists, health care professionals, and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org). © 2015 Royal College of Obstetricians and Gynaecologists.

  4. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. The TRIPOD Group.

    PubMed

    Collins, Gary S; Reitsma, Johannes B; Altman, Douglas G; Moons, Karel G M

    2015-01-13

    Prediction models are developed to aid health care providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web-based survey and revised during a 3-day meeting in June 2011 with methodologists, health care professionals, and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org). © 2015 The Authors.

  5. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement.

    PubMed

    Collins, Gary S; Reitsma, Johannes B; Altman, Douglas G; Moons, Karel G M

    2015-01-06

    Prediction models are developed to aid health care providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web-based survey and revised during a 3-day meeting in June 2011 with methodologists, health care professionals, and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org).

  6. Transparent reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement.

    PubMed

    Collins, Gary S; Reitsma, Johannes B; Altman, Douglas G; Moons, Karel G M

    2015-02-01

    Prediction models are developed to aid health care providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web-based survey and revised during a 3-day meeting in June 2011 with methodologists, health care professionals, and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org). Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A system identification approach for developing model predictive controllers of antibody quality attributes in cell culture processes.

    PubMed

    Downey, Brandon; Schmitt, John; Beller, Justin; Russell, Brian; Quach, Anthony; Hermann, Elizabeth; Lyon, David; Breit, Jeffrey

    2017-11-01

    As the biopharmaceutical industry evolves to include more diverse protein formats and processes, more robust control of Critical Quality Attributes (CQAs) is needed to maintain processing flexibility without compromising quality. Active control of CQAs has been demonstrated using model predictive control techniques, which allow development of processes which are robust against disturbances associated with raw material variability and other potentially flexible operating conditions. Wide adoption of model predictive control in biopharmaceutical cell culture processes has been hampered, however, in part due to the large amount of data and expertise required to make a predictive model of controlled CQAs, a requirement for model predictive control. Here we developed a highly automated, perfusion apparatus to systematically and efficiently generate predictive models using application of system identification approaches. We successfully created a predictive model of %galactosylation using data obtained by manipulating galactose concentration in the perfusion apparatus in serialized step change experiments. We then demonstrated the use of the model in a model predictive controller in a simulated control scenario to successfully achieve a %galactosylation set point in a simulated fed-batch culture. The automated model identification approach demonstrated here can potentially be generalized to many CQAs, and could be a more efficient, faster, and highly automated alternative to batch experiments for developing predictive models in cell culture processes, and allow the wider adoption of model predictive control in biopharmaceutical processes. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1647-1661, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  8. Dual Incorporation of the in vitro Data (IC50) and in vivo (Cmax) Data for the Prediction of Area Under the Curve (AUC) for Statins using Regression Models Developed for Either Pravastatin or Simvastatin.

    PubMed

    Srinivas, N R

    2016-08-01

    Linear regression models utilizing a single time point (Cmax) has been reported for pravastatin and simvastatin. A new model was developed for the prediction of AUC of statins that utilized the slopes of the above 2 models, with pharmacokinetic (Cmax) and a pharmacodynamic (IC50 value) components for the statins. The prediction of AUCs for various statins (pravastatin, atorvastatin, simvastatin and rosuvastatin) was carried out using the newly developed dual pharmacokinetic and pharmacodynamic model. Generally, the AUC predictions were contained within 0.5 to 2-fold difference of the observed AUC suggesting utility of the new models. The root mean square error predictions were<45% for the 2 models. On the basis of the present work, it is feasible to utilize both pharmacokinetic (Cmax) and pharmacodynamic (IC50) data for effectively predicting the AUC for statins. Such a new concept as described in the work may have utility in both drug discovery and development stages. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Development of machine learning models for diagnosis of glaucoma.

    PubMed

    Kim, Seong Jae; Cho, Kyong Jin; Oh, Sejong

    2017-01-01

    The study aimed to develop machine learning models that have strong prediction power and interpretability for diagnosis of glaucoma based on retinal nerve fiber layer (RNFL) thickness and visual field (VF). We collected various candidate features from the examination of retinal nerve fiber layer (RNFL) thickness and visual field (VF). We also developed synthesized features from original features. We then selected the best features proper for classification (diagnosis) through feature evaluation. We used 100 cases of data as a test dataset and 399 cases of data as a training and validation dataset. To develop the glaucoma prediction model, we considered four machine learning algorithms: C5.0, random forest (RF), support vector machine (SVM), and k-nearest neighbor (KNN). We repeatedly composed a learning model using the training dataset and evaluated it by using the validation dataset. Finally, we got the best learning model that produces the highest validation accuracy. We analyzed quality of the models using several measures. The random forest model shows best performance and C5.0, SVM, and KNN models show similar accuracy. In the random forest model, the classification accuracy is 0.98, sensitivity is 0.983, specificity is 0.975, and AUC is 0.979. The developed prediction models show high accuracy, sensitivity, specificity, and AUC in classifying among glaucoma and healthy eyes. It will be used for predicting glaucoma against unknown examination records. Clinicians may reference the prediction results and be able to make better decisions. We may combine multiple learning models to increase prediction accuracy. The C5.0 model includes decision rules for prediction. It can be used to explain the reasons for specific predictions.

  10. Challenges facing developers of CAD/CAM models that seek to predict human working postures

    NASA Astrophysics Data System (ADS)

    Wiker, Steven F.

    2005-11-01

    This paper outlines the need for development of human posture prediction models for Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) design applications in product, facility and work design. Challenges facing developers of posture prediction algorithms are presented and discussed.

  11. Deep learning architecture for air quality predictions.

    PubMed

    Li, Xiang; Peng, Ling; Hu, Yuan; Shao, Jing; Chi, Tianhe

    2016-11-01

    With the rapid development of urbanization and industrialization, many developing countries are suffering from heavy air pollution. Governments and citizens have expressed increasing concern regarding air pollution because it affects human health and sustainable development worldwide. Current air quality prediction methods mainly use shallow models; however, these methods produce unsatisfactory results, which inspired us to investigate methods of predicting air quality based on deep architecture models. In this paper, a novel spatiotemporal deep learning (STDL)-based air quality prediction method that inherently considers spatial and temporal correlations is proposed. A stacked autoencoder (SAE) model is used to extract inherent air quality features, and it is trained in a greedy layer-wise manner. Compared with traditional time series prediction models, our model can predict the air quality of all stations simultaneously and shows the temporal stability in all seasons. Moreover, a comparison with the spatiotemporal artificial neural network (STANN), auto regression moving average (ARMA), and support vector regression (SVR) models demonstrates that the proposed method of performing air quality predictions has a superior performance.

  12. A Bayesian network approach to predicting nest presence of thefederally-threatened piping plover (Charadrius melodus) using barrier island features

    USGS Publications Warehouse

    Gieder, Katherina D.; Karpanty, Sarah M.; Fraser, James D.; Catlin, Daniel H.; Gutierrez, Benjamin T.; Plant, Nathaniel G.; Turecek, Aaron M.; Thieler, E. Robert

    2014-01-01

    Sea-level rise and human development pose significant threats to shorebirds, particularly for species that utilize barrier island habitat. The piping plover (Charadrius melodus) is a federally-listed shorebird that nests on barrier islands and rapidly responds to changes in its physical environment, making it an excellent species with which to model how shorebird species may respond to habitat change related to sea-level rise and human development. The uncertainty and complexity in predicting sea-level rise, the responses of barrier island habitats to sea-level rise, and the responses of species to sea-level rise and human development necessitate a modelling approach that can link species to the physical habitat features that will be altered by changes in sea level and human development. We used a Bayesian network framework to develop a model that links piping plover nest presence to the physical features of their nesting habitat on a barrier island that is impacted by sea-level rise and human development, using three years of data (1999, 2002, and 2008) from Assateague Island National Seashore in Maryland. Our model performance results showed that we were able to successfully predict nest presence given a wide range of physical conditions within the model’s dataset. We found that model predictions were more successful when the range of physical conditions included in model development was varied rather than when those physical conditions were narrow. We also found that all model predictions had fewer false negatives (nests predicted to be absent when they were actually present in the dataset) than false positives (nests predicted to be present when they were actually absent in the dataset), indicating that our model correctly predicted nest presence better than nest absence. These results indicated that our approach of using a Bayesian network to link specific physical features to nest presence will be useful for modelling impacts of sea-level rise- or human-related habitat change on barrier islands. We recommend that potential users of this method utilize multiple years of data that represent a wide range of physical conditions in model development, because the model performed less well when constructed using a narrow range of physical conditions. Further, given that there will always be some uncertainty in predictions of future physical habitat conditions related to sea-level rise and/or human development, predictive models will perform best when developed using multiple, varied years of data input.

  13. Challenges in Understanding and Development of Predictive Models of Plasma Assisted Combustion

    DTIC Science & Technology

    2014-01-01

    and electron temperature in transient plasmas sustained by nanosecond pulse duration discharges, and their comparison with modeling predictions, are...in nanosecond pulse discharge in nitrogen at 0.25 bar, using the kinetic model developed in Ref. [11]. Rapid electric field reduction during...discharge pulses with kinetic modeling calculations, using conventional hydrocarbon-air combustion mechanisms. Although modeling predictions for H2-air

  14. Basis of predictive mycology.

    PubMed

    Dantigny, Philippe; Guilmart, Audrey; Bensoussan, Maurice

    2005-04-15

    For over 20 years, predictive microbiology focused on food-pathogenic bacteria. Few studies concerned modelling fungal development. On one hand, most of food mycologists are not familiar with modelling techniques; on the other hand, people involved in modelling are developing tools dedicated to bacteria. Therefore, there is a tendency to extend the use of models that were developed for bacteria to moulds. However, some mould specificities should be taken into account. The use of specific models for predicting germination and growth of fungi was advocated previously []. This paper provides a short review of fungal modelling studies.

  15. A Public-Private Partnership Develops and Externally Validates a 30-Day Hospital Readmission Risk Prediction Model

    PubMed Central

    Choudhry, Shahid A.; Li, Jing; Davis, Darcy; Erdmann, Cole; Sikka, Rishi; Sutariya, Bharat

    2013-01-01

    Introduction: Preventing the occurrence of hospital readmissions is needed to improve quality of care and foster population health across the care continuum. Hospitals are being held accountable for improving transitions of care to avert unnecessary readmissions. Advocate Health Care in Chicago and Cerner (ACC) collaborated to develop all-cause, 30-day hospital readmission risk prediction models to identify patients that need interventional resources. Ideally, prediction models should encompass several qualities: they should have high predictive ability; use reliable and clinically relevant data; use vigorous performance metrics to assess the models; be validated in populations where they are applied; and be scalable in heterogeneous populations. However, a systematic review of prediction models for hospital readmission risk determined that most performed poorly (average C-statistic of 0.66) and efforts to improve their performance are needed for widespread usage. Methods: The ACC team incorporated electronic health record data, utilized a mixed-method approach to evaluate risk factors, and externally validated their prediction models for generalizability. Inclusion and exclusion criteria were applied on the patient cohort and then split for derivation and internal validation. Stepwise logistic regression was performed to develop two predictive models: one for admission and one for discharge. The prediction models were assessed for discrimination ability, calibration, overall performance, and then externally validated. Results: The ACC Admission and Discharge Models demonstrated modest discrimination ability during derivation, internal and external validation post-recalibration (C-statistic of 0.76 and 0.78, respectively), and reasonable model fit during external validation for utility in heterogeneous populations. Conclusions: The ACC Admission and Discharge Models embody the design qualities of ideal prediction models. The ACC plans to continue its partnership to further improve and develop valuable clinical models. PMID:24224068

  16. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy

    DOE PAGES

    Payne, Courtney E.; Wolfrum, Edward J.

    2015-03-12

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. Here are the results: We present individual model statistics tomore » demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. In conclusion, it is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.« less

  17. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Courtney E.; Wolfrum, Edward J.

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. Here are the results: We present individual model statistics tomore » demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. In conclusion, it is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.« less

  18. Comparison of Prediction Model for Cardiovascular Autonomic Dysfunction Using Artificial Neural Network and Logistic Regression Analysis

    PubMed Central

    Zeng, Fangfang; Li, Zhongtao; Yu, Xiaoling; Zhou, Linuo

    2013-01-01

    Background This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches. Methods and Materials We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and 0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses. Conclusion The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset. PMID:23940593

  19. Who will have Sustainable Employment After a Back Injury? The Development of a Clinical Prediction Model in a Cohort of Injured Workers.

    PubMed

    Shearer, Heather M; Côté, Pierre; Boyle, Eleanor; Hayden, Jill A; Frank, John; Johnson, William G

    2017-09-01

    Purpose Our objective was to develop a clinical prediction model to identify workers with sustainable employment following an episode of work-related low back pain (LBP). Methods We used data from a cohort study of injured workers with incident LBP claims in the USA to predict employment patterns 1 and 6 months following a workers' compensation claim. We developed three sequential models to determine the contribution of three domains of variables: (1) basic demographic/clinical variables; (2) health-related variables; and (3) work-related factors. Multivariable logistic regression was used to develop the predictive models. We constructed receiver operator curves and used the c-index to measure predictive accuracy. Results Seventy-nine percent and 77 % of workers had sustainable employment at 1 and 6 months, respectively. Sustainable employment at 1 month was predicted by initial back pain intensity, mental health-related quality of life, claim litigation and employer type (c-index = 0.77). At 6 months, sustainable employment was predicted by physical and mental health-related quality of life, claim litigation and employer type (c-index = 0.77). Adding health-related and work-related variables to models improved predictive accuracy by 8.5 and 10 % at 1 and 6 months respectively. Conclusion We developed clinically-relevant models to predict sustainable employment in injured workers who made a workers' compensation claim for LBP. Inquiring about back pain intensity, physical and mental health-related quality of life, claim litigation and employer type may be beneficial in developing programs of care. Our models need to be validated in other populations.

  20. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  1. Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM

    DTIC Science & Technology

    2013-12-01

    UNCLASSIFIED Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM Stefano Wahono Aerospace...Georgia Institute of Technology. The OpenFOAM predicted result was also shown to compare favourably with ANSYS Fluent predictions. RELEASE...UNCLASSIFIED Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM Executive Summary The Infrared

  2. Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: Meta-analysis with a joint model.

    PubMed

    Emura, Takeshi; Nakatochi, Masahiro; Matsui, Shigeyuki; Michimae, Hirofumi; Rondeau, Virginie

    2017-01-01

    Developing a personalized risk prediction model of death is fundamental for improving patient care and touches on the realm of personalized medicine. The increasing availability of genomic information and large-scale meta-analytic data sets for clinicians has motivated the extension of traditional survival prediction based on the Cox proportional hazards model. The aim of our paper is to develop a personalized risk prediction formula for death according to genetic factors and dynamic tumour progression status based on meta-analytic data. To this end, we extend the existing joint frailty-copula model to a model allowing for high-dimensional genetic factors. In addition, we propose a dynamic prediction formula to predict death given tumour progression events possibly occurring after treatment or surgery. For clinical use, we implement the computation software of the prediction formula in the joint.Cox R package. We also develop a tool to validate the performance of the prediction formula by assessing the prediction error. We illustrate the method with the meta-analysis of individual patient data on ovarian cancer patients.

  3. Individualized prediction of perineural invasion in colorectal cancer: development and validation of a radiomics prediction model.

    PubMed

    Huang, Yanqi; He, Lan; Dong, Di; Yang, Caiyun; Liang, Cuishan; Chen, Xin; Ma, Zelan; Huang, Xiaomei; Yao, Su; Liang, Changhong; Tian, Jie; Liu, Zaiyi

    2018-02-01

    To develop and validate a radiomics prediction model for individualized prediction of perineural invasion (PNI) in colorectal cancer (CRC). After computed tomography (CT) radiomics features extraction, a radiomics signature was constructed in derivation cohort (346 CRC patients). A prediction model was developed to integrate the radiomics signature and clinical candidate predictors [age, sex, tumor location, and carcinoembryonic antigen (CEA) level]. Apparent prediction performance was assessed. After internal validation, independent temporal validation (separate from the cohort used to build the model) was then conducted in 217 CRC patients. The final model was converted to an easy-to-use nomogram. The developed radiomics nomogram that integrated the radiomics signature and CEA level showed good calibration and discrimination performance [Harrell's concordance index (c-index): 0.817; 95% confidence interval (95% CI): 0.811-0.823]. Application of the nomogram in validation cohort gave a comparable calibration and discrimination (c-index: 0.803; 95% CI: 0.794-0.812). Integrating the radiomics signature and CEA level into a radiomics prediction model enables easy and effective risk assessment of PNI in CRC. This stratification of patients according to their PNI status may provide a basis for individualized auxiliary treatment.

  4. Crop status evaluations and yield predictions

    NASA Technical Reports Server (NTRS)

    Haun, J. R.

    1975-01-01

    The growth-environment relationships for greenhouse and field conditions are compared, and the development of growth-prediction models for spring wheat is discussed along with the development of models for predicting the date for spring wheat emergence in North Dakota.

  5. An information model for use in software management estimation and prediction

    NASA Technical Reports Server (NTRS)

    Li, Ningda R.; Zelkowitz, Marvin V.

    1993-01-01

    This paper describes the use of cluster analysis for determining the information model within collected software engineering development data at the NASA/GSFC Software Engineering Laboratory. We describe the Software Management Environment tool that allows managers to predict development attributes during early phases of a software project and the modifications we propose to allow it to develop dynamic models for better predictions of these attributes.

  6. Developing a java android application of KMV-Merton default rate model

    NASA Astrophysics Data System (ADS)

    Yusof, Norliza Muhamad; Anuar, Aini Hayati; Isa, Norsyaheeda Natasha; Zulkafli, Sharifah Nursyuhada Syed; Sapini, Muhamad Luqman

    2017-11-01

    This paper presents a developed java android application for KMV-Merton model in predicting the defaut rate of a firm. Predicting default rate is essential in the risk management area as default risk can be immediately transmitted from one entity to another entity. This is the reason default risk is known as a global risk. Although there are several efforts, instruments and methods used to manage the risk, it is said to be insufficient. To the best of our knowledge, there has been limited innovation in developing the default risk mathematical model into a mobile application. Therefore, through this study, default risk is predicted quantitatively using the KMV-Merton model. The KMV-Merton model has been integrated in the form of java program using the Android Studio Software. The developed java android application is tested by predicting the levels of default risk of the three different rated companies. It is found that the levels of default risk are equivalent to the ratings of the respective companies. This shows that the default rate predicted by the KMV-Merton model using the developed java android application can be a significant tool to the risk mangement field. The developed java android application grants users an alternative to predict level of default risk within less procedure.

  7. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): the TRIPOD Statement.

    PubMed

    Collins, G S; Reitsma, J B; Altman, D G; Moons, K G M

    2015-02-01

    Prediction models are developed to aid healthcare providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision-making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a web-based survey and revised during a 3-day meeting in June 2011 with methodologists, healthcare professionals and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. A complete checklist is available at http://www.tripod-statement.org. © 2015 American College of Physicians.

  8. Near infrared spectrometric technique for testing fruit quality: optimisation of regression models using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Isingizwe Nturambirwe, J. Frédéric; Perold, Willem J.; Opara, Umezuruike L.

    2016-02-01

    Near infrared (NIR) spectroscopy has gained extensive use in quality evaluation. It is arguably one of the most advanced spectroscopic tools in non-destructive quality testing of food stuff, from measurement to data analysis and interpretation. NIR spectral data are interpreted through means often involving multivariate statistical analysis, sometimes associated with optimisation techniques for model improvement. The objective of this research was to explore the extent to which genetic algorithms (GA) can be used to enhance model development, for predicting fruit quality. Apple fruits were used, and NIR spectra in the range from 12000 to 4000 cm-1 were acquired on both bruised and healthy tissues, with different degrees of mechanical damage. GAs were used in combination with partial least squares regression methods to develop bruise severity prediction models, and compared to PLS models developed using the full NIR spectrum. A classification model was developed, which clearly separated bruised from unbruised apple tissue. GAs helped improve prediction models by over 10%, in comparison with full spectrum-based models, as evaluated in terms of error of prediction (Root Mean Square Error of Cross-validation). PLS models to predict internal quality, such as sugar content and acidity were developed and compared to the versions optimized by genetic algorithm. Overall, the results highlighted the potential use of GA method to improve speed and accuracy of fruit quality prediction.

  9. Development of bovine serum albumin-water partition coefficients predictive models for ionogenic organic chemicals based on chemical form adjusted descriptors.

    PubMed

    Ding, Feng; Yang, Xianhai; Chen, Guosong; Liu, Jining; Shi, Lili; Chen, Jingwen

    2017-10-01

    The partition coefficients between bovine serum albumin (BSA) and water (K BSA/w ) for ionogenic organic chemicals (IOCs) were different greatly from those of neutral organic chemicals (NOCs). For NOCs, several excellent models were developed to predict their logK BSA/w . However, it was found that the conventional descriptors are inappropriate for modeling logK BSA/w of IOCs. Thus, alternative approaches are urgently needed to develop predictive models for K BSA/w of IOCs. In this study, molecular descriptors that can be used to characterize the ionization effects (e.g. chemical form adjusted descriptors) were calculated and used to develop predictive models for logK BSA/w of IOCs. The models developed had high goodness-of-fit, robustness, and predictive ability. The predictor variables selected to construct the models included the chemical form adjusted averages of the negative potentials on the molecular surface (V s-adj - ), the chemical form adjusted molecular dipole moment (dipolemoment adj ), the logarithm of the n-octanol/water distribution coefficient (logD). As these molecular descriptors can be calculated from their molecular structures directly, the developed model can be easily used to fill the logK BSA/w data gap for other IOCs within the applicability domain. Furthermore, the chemical form adjusted descriptors calculated in this study also could be used to construct predictive models on other endpoints of IOCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. PREDICTING CLINICALLY DIAGNOSED DYSENTERY INCIDENCE OBTAINED FROM MONTHLY CASE REPORTING BASED ON METEOROLOGICAL VARIABLES IN DALIAN, LIAONING PROVINCE, CHINA, 2005-2011 USING A DEVELOPED MODEL.

    PubMed

    An, Qingyu; Yao, Wei; Wu, Jun

    2015-03-01

    This study describes our development of a model to predict the incidence of clinically diagnosed dysentery in Dalian, Liaoning Province, China, using time series analysis. The model was developed using the seasonal autoregressive integrated moving average (SARIMA). Spearman correlation analysis was conducted to explore the relationship between meteorological variables and the incidence of clinically diagnosed dysentery. The meteorological variables which significantly correlated with the incidence of clinically diagnosed dysentery were then used as covariables in the model, which incorporated the monthly incidence of clinically diagnosed dysentery from 2005 to 2010 in Dalian. After model development, a simulation was conducted for the year 2011 and the results of this prediction were compared with the real observed values. The model performed best when the temperature data for the preceding month was used to predict clinically diagnosed dysentery during the following month. The developed model was effective and reliable in predicting the incidence of clinically diagnosed dysentery for most but not all months, and may be a useful tool for dysentery disease control and prevention, but further studies are needed to fine tune the model.

  11. Development of an analytical-numerical model to predict radiant emission or absorption

    NASA Technical Reports Server (NTRS)

    Wallace, Tim L.

    1994-01-01

    The development of an analytical-numerical model to predict radiant emission or absorption is discussed. A voigt profile is assumed to predict the spectral qualities of a singlet atomic transition line for atomic species of interest to the OPAD program. The present state of this model is described in each progress report required under contract. Model and code development is guided by experimental data where available. When completed, the model will be used to provide estimates of specie erosion rates from spectral data collected from rocket exhaust plumes or other sources.

  12. Thermal barrier coating life prediction model

    NASA Technical Reports Server (NTRS)

    Pilsner, B. H.; Hillery, R. V.; Mcknight, R. L.; Cook, T. S.; Kim, K. S.; Duderstadt, E. C.

    1986-01-01

    The objectives of this program are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system, and then to develop and verify life prediction models accounting for these degradation modes. The program is divided into two phases, each consisting of several tasks. The work in Phase 1 is aimed at identifying the relative importance of the various failure modes, and developing and verifying life prediction model(s) for the predominant model for a thermal barrier coating system. Two possible predominant failure mechanisms being evaluated are bond coat oxidation and bond coat creep. The work in Phase 2 will develop design-capable, causal, life prediction models for thermomechanical and thermochemical failure modes, and for the exceptional conditions of foreign object damage and erosion.

  13. In Search of Black Swans: Identifying Students at Risk of Failing Licensing Examinations.

    PubMed

    Barber, Cassandra; Hammond, Robert; Gula, Lorne; Tithecott, Gary; Chahine, Saad

    2018-03-01

    To determine which admissions variables and curricular outcomes are predictive of being at risk of failing the Medical Council of Canada Qualifying Examination Part 1 (MCCQE1), how quickly student risk of failure can be predicted, and to what extent predictive modeling is possible and accurate in estimating future student risk. Data from five graduating cohorts (2011-2015), Schulich School of Medicine & Dentistry, Western University, were collected and analyzed using hierarchical generalized linear models (HGLMs). Area under the receiver operating characteristic curve (AUC) was used to evaluate the accuracy of predictive models and determine whether they could be used to predict future risk, using the 2016 graduating cohort. Four predictive models were developed to predict student risk of failure at admissions, year 1, year 2, and pre-MCCQE1. The HGLM analyses identified gender, MCAT verbal reasoning score, two preclerkship course mean grades, and the year 4 summative objective structured clinical examination score as significant predictors of student risk. The predictive accuracy of the models varied. The pre-MCCQE1 model was the most accurate at predicting a student's risk of failing (AUC 0.66-0.93), while the admissions model was not predictive (AUC 0.25-0.47). Key variables predictive of students at risk were found. The predictive models developed suggest, while it is not possible to identify student risk at admission, we can begin to identify and monitor students within the first year. Using such models, programs may be able to identify and monitor students at risk quantitatively and develop tailored intervention strategies.

  14. Predicting Drug Combination Index and Simulating the Network-Regulation Dynamics by Mathematical Modeling of Drug-Targeted EGFR-ERK Signaling Pathway

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Jiang, Yuyang; Chen, Yuzong

    2017-01-01

    Synergistic drug combinations enable enhanced therapeutics. Their discovery typically involves the measurement and assessment of drug combination index (CI), which can be facilitated by the development and applications of in-silico CI predictive tools. In this work, we developed and tested the ability of a mathematical model of drug-targeted EGFR-ERK pathway in predicting CIs and in analyzing multiple synergistic drug combinations against observations. Our mathematical model was validated against the literature reported signaling, drug response dynamics, and EGFR-MEK drug combination effect. The predicted CIs and combination therapeutic effects of the EGFR-BRaf, BRaf-MEK, FTI-MEK, and FTI-BRaf inhibitor combinations showed consistent synergism. Our results suggest that existing pathway models may be potentially extended for developing drug-targeted pathway models to predict drug combination CI values, isobolograms, and drug-response surfaces as well as to analyze the dynamics of individual and combinations of drugs. With our model, the efficacy of potential drug combinations can be predicted. Our method complements the developed in-silico methods (e.g. the chemogenomic profile and the statistically-inferenced network models) by predicting drug combination effects from the perspectives of pathway dynamics using experimental or validated molecular kinetic constants, thereby facilitating the collective prediction of drug combination effects in diverse ranges of disease systems.

  15. A new predictive model for continuous positive airway pressure in the treatment of obstructive sleep apnea.

    PubMed

    Ebben, Matthew R; Narizhnaya, Mariya; Krieger, Ana C

    2017-05-01

    Numerous mathematical formulas have been developed to determine continuous positive airway pressure (CPAP) without an in-laboratory titration study. Recent studies have shown that style of CPAP mask can affect the optimal pressure requirement. However, none of the current models take mask style into account. Therefore, the goal of this study was to develop new predictive models of CPAP that take into account the style of mask interface. Data from 200 subjects with attended CPAP titrations during overnight polysomnograms using nasal masks and 132 subjects using oronasal masks were randomized and split into either a model development or validation group. Predictive models were then created in each model development group and the accuracy of the models was then tested in the model validation groups. The correlation between our new oronasal model and laboratory determined optimal CPAP was significant, r = 0.61, p < 0.001. Our nasal formula was also significantly related to laboratory determined optimal CPAP, r = 0.35, p < 0.001. The oronasal model created in our study significantly outperformed the original CPAP predictive model developed by Miljeteig and Hoffstein, z = 1.99, p < 0.05. The predictive performance of our new nasal model did not differ significantly from Miljeteig and Hoffstein's original model, z = -0.16, p < 0.90. The best predictors for the nasal mask group were AHI, lowest SaO2, and neck size, whereas the top predictors in the oronasal group were AHI and lowest SaO2. Our data show that predictive models of CPAP that take into account mask style can significantly improve the formula's accuracy. Most of the past models likely focused on model development with nasal masks (mask style used for model development was not typically reported in previous investigations) and are not well suited for patients using an oronasal interface. Our new oronasal CPAP prediction equation produced significantly improved performance compared to the well-known Miljeteig and Hoffstein formula in patients titrated on CPAP with an oronasal mask and was also significantly related to laboratory determined optimal CPAP.

  16. QSAR Modeling of Rat Acute Toxicity by Oral Exposure

    PubMed Central

    Zhu, Hao; Martin, Todd M.; Ye, Lin; Sedykh, Alexander; Young, Douglas M.; Tropsha, Alexander

    2009-01-01

    Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. In this study, a comprehensive dataset of 7,385 compounds with their most conservative lethal dose (LD50) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire dataset was selected that included all 3,472 compounds used in the TOPKAT’s training set. The remaining 3,913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R2 of linear regression between actual and predicted LD50 values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R2 ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD50 for every compound using all 5 models. The consensus models afforded higher prediction accuracy for the external validation dataset with the higher coverage as compared to individual constituent models. The validated consensus LD50 models developed in this study can be used as reliable computational predictors of in vivo acute toxicity. PMID:19845371

  17. Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure.

    PubMed

    Zhu, Hao; Martin, Todd M; Ye, Lin; Sedykh, Alexander; Young, Douglas M; Tropsha, Alexander

    2009-12-01

    Few quantitative structure-activity relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity end points. In this study, a comprehensive data set of 7385 compounds with their most conservative lethal dose (LD(50)) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire data set was selected that included all 3472 compounds used in TOPKAT's training set. The remaining 3913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R(2) of linear regression between actual and predicted LD(50) values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R(2) ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD(50) for every compound using all five models. The consensus models afforded higher prediction accuracy for the external validation data set with the higher coverage as compared to individual constituent models. The validated consensus LD(50) models developed in this study can be used as reliable computational predictors of in vivo acute toxicity.

  18. Modelling milk production from feed intake in dairy cattle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, D.L.

    1985-05-01

    Predictive models were developed for both Holstein and Jersey cows. Since Holsteins comprised eighty-five percent of the data, the predictive models developed for Holsteins were used for the development of a user-friendly computer model. Predictive models included: milk production (squared multiple correlation .73), natural log (ln) of milk production (.73), four percent fat-corrected milk (.67), ln four percent fat-corrected milk (.68), fat-free milk (.73), ln fat-free milk (.73), dry matter intake (.61), ln dry matter intake (.60), milk fat (.52), and ln milk fat (.56). The predictive models for ln milk production, ln fat-free milk and ln dry matter intakemore » were incorporated into a computer model. The model was written in standard Fortran for use on mainframe or micro-computers. Daily milk production, fat-free milk production, and dry matter intake were predicted on a daily basis with the previous day's dry matter intake serving as an independent variable in the prediction of the daily milk and fat-free milk production. 21 refs.« less

  19. Development of a multi-ensemble Prediction Model for China

    NASA Astrophysics Data System (ADS)

    Brasseur, G. P.; Bouarar, I.; Petersen, A. K.

    2016-12-01

    As part of the EU-sponsored Panda and MarcoPolo Projects, a multi-model prediction system including 7 models has been developed. Most regional models use global air quality predictions provided by the Copernicus Atmospheric Monitoring Service and downscale the forecast at relatively high spatial resolution in eastern China. The paper will describe the forecast system and show examples of forecasts produced for several Chinese urban areas and displayed on a web site developed by the Dutch Meteorological service. A discussion on the accuracy of the predictions based on a detailed validation process using surface measurements from the Chinese monitoring network will be presented.

  20. Determination of heat capacity of ionic liquid based nanofluids using group method of data handling technique

    NASA Astrophysics Data System (ADS)

    Sadi, Maryam

    2018-01-01

    In this study a group method of data handling model has been successfully developed to predict heat capacity of ionic liquid based nanofluids by considering reduced temperature, acentric factor and molecular weight of ionic liquids, and nanoparticle concentration as input parameters. In order to accomplish modeling, 528 experimental data points extracted from the literature have been divided into training and testing subsets. The training set has been used to predict model coefficients and the testing set has been applied for model validation. The ability and accuracy of developed model, has been evaluated by comparison of model predictions with experimental values using different statistical parameters such as coefficient of determination, mean square error and mean absolute percentage error. The mean absolute percentage error of developed model for training and testing sets are 1.38% and 1.66%, respectively, which indicate excellent agreement between model predictions and experimental data. Also, the results estimated by the developed GMDH model exhibit a higher accuracy when compared to the available theoretical correlations.

  1. Robustness of intra urban land-use regression models for ultrafine particles and black carbon based on mobile monitoring.

    PubMed

    Kerckhoffs, Jules; Hoek, Gerard; Vlaanderen, Jelle; van Nunen, Erik; Messier, Kyle; Brunekreef, Bert; Gulliver, John; Vermeulen, Roel

    2017-11-01

    Land-use regression (LUR) models for ultrafine particles (UFP) and Black Carbon (BC) in urban areas have been developed using short-term stationary monitoring or mobile platforms in order to capture the high variability of these pollutants. However, little is known about the comparability of predictions of mobile and short-term stationary models and especially the validity of these models for assessing residential exposures and the robustness of model predictions developed in different campaigns. We used an electric car to collect mobile measurements (n = 5236 unique road segments) and short-term stationary measurements (3 × 30min, n = 240) of UFP and BC in three Dutch cities (Amsterdam, Utrecht, Maastricht) in 2014-2015. Predictions of LUR models based on mobile measurements were compared to (i) measured concentrations at the short-term stationary sites, (ii) LUR model predictions based on short-term stationary measurements at 1500 random addresses in the three cities, (iii) externally obtained home outdoor measurements (3 × 24h samples; n = 42) and (iv) predictions of a LUR model developed based upon a 2013 mobile campaign in two cities (Amsterdam, Rotterdam). Despite the poor model R 2 of 15%, the ability of mobile UFP models to predict measurements with longer averaging time increased substantially from 36% for short-term stationary measurements to 57% for home outdoor measurements. In contrast, the mobile BC model only predicted 14% of the variation in the short-term stationary sites and also 14% of the home outdoor sites. Models based upon mobile and short-term stationary monitoring provided fairly high correlated predictions of UFP concentrations at 1500 randomly selected addresses in the three Dutch cities (R 2 = 0.64). We found higher UFP predictions (of about 30%) based on mobile models opposed to short-term model predictions and home outdoor measurements with no clear geospatial patterns. The mobile model for UFP was stable over different settings as the model predicted concentration levels highly correlated to predictions made by a previously developed LUR model with another spatial extent and in a different year at the 1500 random addresses (R 2 = 0.80). In conclusion, mobile monitoring provided robust LUR models for UFP, valid to use in epidemiological studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement.

    PubMed

    Collins, G S; Reitsma, J B; Altman, D G; Moons, K G M

    2015-02-01

    Prediction models are developed to aid healthcare providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision-making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) initiative developed a set of recommendations for the reporting of studies developing, validating or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a web-based survey and revised during a 3-day meeting in June 2011 with methodologists, healthcare professionals and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study, regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org). © 2015 Joint copyright. The Authors and Annals of Internal Medicine. Diabetic Medicine published by John Wiley Ltd. on behalf of Diabetes UK.

  3. CADASTER QSPR Models for Predictions of Melting and Boiling Points of Perfluorinated Chemicals.

    PubMed

    Bhhatarai, Barun; Teetz, Wolfram; Liu, Tao; Öberg, Tomas; Jeliazkova, Nina; Kochev, Nikolay; Pukalov, Ognyan; Tetko, Igor V; Kovarich, Simona; Papa, Ester; Gramatica, Paola

    2011-03-14

    Quantitative structure property relationship (QSPR) studies on per- and polyfluorinated chemicals (PFCs) on melting point (MP) and boiling point (BP) are presented. The training and prediction chemicals used for developing and validating the models were selected from Syracuse PhysProp database and literatures. The available experimental data sets were split in two different ways: a) random selection on response value, and b) structural similarity verified by self-organizing-map (SOM), in order to propose reliable predictive models, developed only on the training sets and externally verified on the prediction sets. Individual linear and non-linear approaches based models developed by different CADASTER partners on 0D-2D Dragon descriptors, E-state descriptors and fragment based descriptors as well as consensus model and their predictions are presented. In addition, the predictive performance of the developed models was verified on a blind external validation set (EV-set) prepared using PERFORCE database on 15 MP and 25 BP data respectively. This database contains only long chain perfluoro-alkylated chemicals, particularly monitored by regulatory agencies like US-EPA and EU-REACH. QSPR models with internal and external validation on two different external prediction/validation sets and study of applicability-domain highlighting the robustness and high accuracy of the models are discussed. Finally, MPs for additional 303 PFCs and BPs for 271 PFCs were predicted for which experimental measurements are unknown. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development of speed models for improving travel forecasting and highway performance evaluation : [technical summary].

    DOT National Transportation Integrated Search

    2013-12-01

    Travel forecasting models predict travel demand based on the present transportation system and its use. Transportation modelers must develop, validate, and calibrate models to ensure that predicted travel demand is as close to reality as possible. Mo...

  5. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2018-05-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  6. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2017-12-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  7. Watershed Regressions for Pesticides (WARP) for Predicting Annual Maximum and Annual Maximum Moving-Average Concentrations of Atrazine in Streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.

    2008-01-01

    Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.

  8. An analytical framework to assist decision makers in the use of forest ecosystem model predictions

    USDA-ARS?s Scientific Manuscript database

    The predictions of most terrestrial ecosystem models originate from deterministic simulations. Relatively few uncertainty evaluation exercises in model outputs are performed by either model developers or users. This issue has important consequences for decision makers who rely on models to develop n...

  9. Reliability of Degree-Day Models to Predict the Development Time of Plutella xylostella (L.) under Field Conditions.

    PubMed

    Marchioro, C A; Krechemer, F S; de Moraes, C P; Foerster, L A

    2015-12-01

    The diamondback moth, Plutella xylostella (L.), is a cosmopolitan pest of brassicaceous crops occurring in regions with highly distinct climate conditions. Several studies have investigated the relationship between temperature and P. xylostella development rate, providing degree-day models for populations from different geographical regions. However, there are no data available to date to demonstrate the suitability of such models to make reliable projections on the development time for this species in field conditions. In the present study, 19 models available in the literature were tested regarding their ability to accurately predict the development time of two cohorts of P. xylostella under field conditions. Only 11 out of the 19 models tested accurately predicted the development time for the first cohort of P. xylostella, but only seven for the second cohort. Five models correctly predicted the development time for both cohorts evaluated. Our data demonstrate that the accuracy of the models available for P. xylostella varies widely and therefore should be used with caution for pest management purposes.

  10. Watershed regressions for pesticides (warp) models for predicting atrazine concentrations in Corn Belt streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.

    2012-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region-specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. The WARP-CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model-development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine-use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP-CB models. The WARP-CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine-use intensities of 17 kg/km2 of watershed area or greater.

  11. Developing and validating risk prediction models in an individual participant data meta-analysis

    PubMed Central

    2014-01-01

    Background Risk prediction models estimate the risk of developing future outcomes for individuals based on one or more underlying characteristics (predictors). We review how researchers develop and validate risk prediction models within an individual participant data (IPD) meta-analysis, in order to assess the feasibility and conduct of the approach. Methods A qualitative review of the aims, methodology, and reporting in 15 articles that developed a risk prediction model using IPD from multiple studies. Results The IPD approach offers many opportunities but methodological challenges exist, including: unavailability of requested IPD, missing patient data and predictors, and between-study heterogeneity in methods of measurement, outcome definitions and predictor effects. Most articles develop their model using IPD from all available studies and perform only an internal validation (on the same set of data). Ten of the 15 articles did not allow for any study differences in baseline risk (intercepts), potentially limiting their model’s applicability and performance in some populations. Only two articles used external validation (on different data), including a novel method which develops the model on all but one of the IPD studies, tests performance in the excluded study, and repeats by rotating the omitted study. Conclusions An IPD meta-analysis offers unique opportunities for risk prediction research. Researchers can make more of this by allowing separate model intercept terms for each study (population) to improve generalisability, and by using ‘internal-external cross-validation’ to simultaneously develop and validate their model. Methodological challenges can be reduced by prospectively planned collaborations that share IPD for risk prediction. PMID:24397587

  12. Development and evaluation of a regression-based model to predict cesium-137 concentration ratios for saltwater fish.

    PubMed

    Pinder, John E; Rowan, David J; Smith, Jim T

    2016-02-01

    Data from published studies and World Wide Web sources were combined to develop a regression model to predict (137)Cs concentration ratios for saltwater fish. Predictions were developed from 1) numeric trophic levels computed primarily from random resampling of known food items and 2) K concentrations in the saltwater for 65 samplings from 41 different species from both the Atlantic and Pacific Oceans. A number of different models were initially developed and evaluated for accuracy which was assessed as the ratios of independently measured concentration ratios to those predicted by the model. In contrast to freshwater systems, were K concentrations are highly variable and are an important factor in affecting fish concentration ratios, the less variable K concentrations in saltwater were relatively unimportant in affecting concentration ratios. As a result, the simplest model, which used only trophic level as a predictor, had comparable accuracies to more complex models that also included K concentrations. A test of model accuracy involving comparisons of 56 published concentration ratios from 51 species of marine fish to those predicted by the model indicated that 52 of the predicted concentration ratios were within a factor of 2 of the observed concentration ratios. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Pretreatment data is highly predictive of liver chemistry signals in clinical trials.

    PubMed

    Cai, Zhaohui; Bresell, Anders; Steinberg, Mark H; Silberg, Debra G; Furlong, Stephen T

    2012-01-01

    The goal of this retrospective analysis was to assess how well predictive models could determine which patients would develop liver chemistry signals during clinical trials based on their pretreatment (baseline) information. Based on data from 24 late-stage clinical trials, classification models were developed to predict liver chemistry outcomes using baseline information, which included demographics, medical history, concomitant medications, and baseline laboratory results. Predictive models using baseline data predicted which patients would develop liver signals during the trials with average validation accuracy around 80%. Baseline levels of individual liver chemistry tests were most important for predicting their own elevations during the trials. High bilirubin levels at baseline were not uncommon and were associated with a high risk of developing biochemical Hy's law cases. Baseline γ-glutamyltransferase (GGT) level appeared to have some predictive value, but did not increase predictability beyond using established liver chemistry tests. It is possible to predict which patients are at a higher risk of developing liver chemistry signals using pretreatment (baseline) data. Derived knowledge from such predictions may allow proactive and targeted risk management, and the type of analysis described here could help determine whether new biomarkers offer improved performance over established ones.

  14. Emerging approaches in predictive toxicology.

    PubMed

    Zhang, Luoping; McHale, Cliona M; Greene, Nigel; Snyder, Ronald D; Rich, Ivan N; Aardema, Marilyn J; Roy, Shambhu; Pfuhler, Stefan; Venkatactahalam, Sundaresan

    2014-12-01

    Predictive toxicology plays an important role in the assessment of toxicity of chemicals and the drug development process. While there are several well-established in vitro and in vivo assays that are suitable for predictive toxicology, recent advances in high-throughput analytical technologies and model systems are expected to have a major impact on the field of predictive toxicology. This commentary provides an overview of the state of the current science and a brief discussion on future perspectives for the field of predictive toxicology for human toxicity. Computational models for predictive toxicology, needs for further refinement and obstacles to expand computational models to include additional classes of chemical compounds are highlighted. Functional and comparative genomics approaches in predictive toxicology are discussed with an emphasis on successful utilization of recently developed model systems for high-throughput analysis. The advantages of three-dimensional model systems and stem cells and their use in predictive toxicology testing are also described. © 2014 Wiley Periodicals, Inc.

  15. Emerging Approaches in Predictive Toxicology

    PubMed Central

    Zhang, Luoping; McHale, Cliona M.; Greene, Nigel; Snyder, Ronald D.; Rich, Ivan N.; Aardema, Marilyn J.; Roy, Shambhu; Pfuhler, Stefan; Venkatactahalam, Sundaresan

    2016-01-01

    Predictive toxicology plays an important role in the assessment of toxicity of chemicals and the drug development process. While there are several well-established in vitro and in vivo assays that are suitable for predictive toxicology, recent advances in high-throughput analytical technologies and model systems are expected to have a major impact on the field of predictive toxicology. This commentary provides an overview of the state of the current science and a brief discussion on future perspectives for the field of predictive toxicology for human toxicity. Computational models for predictive toxicology, needs for further refinement and obstacles to expand computational models to include additional classes of chemical compounds are highlighted. Functional and comparative genomics approaches in predictive toxicology are discussed with an emphasis on successful utilization of recently developed model systems for high-throughput analysis. The advantages of three-dimensional model systems and stem cells and their use in predictive toxicology testing are also described. PMID:25044351

  16. Identification of informative features for predicting proinflammatory potentials of engine exhausts.

    PubMed

    Wang, Chia-Chi; Lin, Ying-Chi; Lin, Yuan-Chung; Jhang, Syu-Ruei; Tung, Chun-Wei

    2017-08-18

    The immunotoxicity of engine exhausts is of high concern to human health due to the increasing prevalence of immune-related diseases. However, the evaluation of immunotoxicity of engine exhausts is currently based on expensive and time-consuming experiments. It is desirable to develop efficient methods for immunotoxicity assessment. To accelerate the development of safe alternative fuels, this study proposed a computational method for identifying informative features for predicting proinflammatory potentials of engine exhausts. A principal component regression (PCR) algorithm was applied to develop prediction models. The informative features were identified by a sequential backward feature elimination (SBFE) algorithm. A total of 19 informative chemical and biological features were successfully identified by SBFE algorithm. The informative features were utilized to develop a computational method named FS-CBM for predicting proinflammatory potentials of engine exhausts. FS-CBM model achieved a high performance with correlation coefficient values of 0.997 and 0.943 obtained from training and independent test sets, respectively. The FS-CBM model was developed for predicting proinflammatory potentials of engine exhausts with a large improvement on prediction performance compared with our previous CBM model. The proposed method could be further applied to construct models for bioactivities of mixtures.

  17. A systematic review of predictive models for asthma development in children.

    PubMed

    Luo, Gang; Nkoy, Flory L; Stone, Bryan L; Schmick, Darell; Johnson, Michael D

    2015-11-28

    Asthma is the most common pediatric chronic disease affecting 9.6 % of American children. Delay in asthma diagnosis is prevalent, resulting in suboptimal asthma management. To help avoid delay in asthma diagnosis and advance asthma prevention research, researchers have proposed various models to predict asthma development in children. This paper reviews these models. A systematic review was conducted through searching in PubMed, EMBASE, CINAHL, Scopus, the Cochrane Library, the ACM Digital Library, IEEE Xplore, and OpenGrey up to June 3, 2015. The literature on predictive models for asthma development in children was retrieved, with search results limited to human subjects and children (birth to 18 years). Two independent reviewers screened the literature, performed data extraction, and assessed article quality. The literature search returned 13,101 references in total. After manual review, 32 of these references were determined to be relevant and are discussed in the paper. We identify several limitations of existing predictive models for asthma development in children, and provide preliminary thoughts on how to address these limitations. Existing predictive models for asthma development in children have inadequate accuracy. Efforts to improve these models' performance are needed, but are limited by a lack of a gold standard for asthma development in children.

  18. Development of Predictive Models for the Growth Kinetics of Listeria monocytogenes on Fresh Pork under Different Storage Temperatures.

    PubMed

    Luo, Ke; Hong, Sung-Sam; Wang, Jun; Chung, Mi-Ja; Deog-Hwan, Oh

    2015-05-01

    This study was conducted to develop a predictive model to estimate the growth of Listeria monocytogenes on fresh pork during storage at constant temperatures (5, 10, 15, 20, 25, 30, and 35°C). The Baranyi model was fitted to growth data (log CFU per gram) to calculate the specific growth rate (SGR) and lag time (LT) with a high coefficient of determination (R(2) > 0.98). As expected, SGR increased with a decline in LT with rising temperatures in all samples. Secondary models were then developed to describe the variation of SGR and LT as a function of temperature. Subsequently, the developed models were validated with additional independent growth data collected at 7, 17, 27, and 37°C and from published reports using proportion of relative errors and proportion of standard error of prediction. The proportion of relative errors of the SGR and LT models developed herein were 0.79 and 0.18, respectively. In addition, the standard error of prediction values of the SGR and LT of L. monocytogenes ranged from 25.7 to 33.1% and from 44.92 to 58.44%, respectively. These results suggest that the model developed in this study was capable of predicting the growth of L. monocytogenes under various isothermal conditions.

  19. PREDICTING THE EFFECTIVENESS OF CHEMICAL-PROTECTIVE CLOTHING MODEL AND TEST METHOD DEVELOPMENT

    EPA Science Inventory

    A predictive model and test method were developed for determining the chemical resistance of protective polymeric gloves exposed to liquid organic chemicals. The prediction of permeation through protective gloves by solvents was based on theories of the solution thermodynamics of...

  20. Ground-water models for water resources planning

    USGS Publications Warehouse

    Moore, John E.

    1980-01-01

    In the past decade hydrologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the groundwater system. These models have been used to provide information and predictions for water managers. Too frequently, groundwater was neglected in water-resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface water supplies. Now, however, with newly developed digital groundwater models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last 10 years from simple one-layer flow models to three-dimensional simulations of groundwater flow which may include solute transport, heat transport, effects of land subsidence, and encroachment of salt water. This paper illustrates, through case histories, how predictive groundwater models have provided the information needed for the sound planning and management of water resources in the United States. (USGS)

  1. Stata Modules for Calculating Novel Predictive Performance Indices for Logistic Models.

    PubMed

    Barkhordari, Mahnaz; Padyab, Mojgan; Hadaegh, Farzad; Azizi, Fereidoun; Bozorgmanesh, Mohammadreza

    2016-01-01

    Prediction is a fundamental part of prevention of cardiovascular diseases (CVD). The development of prediction algorithms based on the multivariate regression models loomed several decades ago. Parallel with predictive models development, biomarker researches emerged in an impressively great scale. The key question is how best to assess and quantify the improvement in risk prediction offered by new biomarkers or more basically how to assess the performance of a risk prediction model. Discrimination, calibration, and added predictive value have been recently suggested to be used while comparing the predictive performances of the predictive models' with and without novel biomarkers. Lack of user-friendly statistical software has restricted implementation of novel model assessment methods while examining novel biomarkers. We intended, thus, to develop a user-friendly software that could be used by researchers with few programming skills. We have written a Stata command that is intended to help researchers obtain cut point-free and cut point-based net reclassification improvement index and (NRI) and relative and absolute Integrated discriminatory improvement index (IDI) for logistic-based regression analyses.We applied the commands to a real data on women participating the Tehran lipid and glucose study (TLGS) to examine if information of a family history of premature CVD, waist circumference, and fasting plasma glucose can improve predictive performance of the Framingham's "general CVD risk" algorithm. The command is addpred for logistic regression models. The Stata package provided herein can encourage the use of novel methods in examining predictive capacity of ever-emerging plethora of novel biomarkers.

  2. Predicting Barrett's Esophagus in Families: An Esophagus Translational Research Network (BETRNet) Model Fitting Clinical Data to a Familial Paradigm.

    PubMed

    Sun, Xiangqing; Elston, Robert C; Barnholtz-Sloan, Jill S; Falk, Gary W; Grady, William M; Faulx, Ashley; Mittal, Sumeet K; Canto, Marcia; Shaheen, Nicholas J; Wang, Jean S; Iyer, Prasad G; Abrams, Julian A; Tian, Ye D; Willis, Joseph E; Guda, Kishore; Markowitz, Sanford D; Chandar, Apoorva; Warfe, James M; Brock, Wendy; Chak, Amitabh

    2016-05-01

    Barrett's esophagus is often asymptomatic and only a small portion of Barrett's esophagus patients are currently diagnosed and under surveillance. Therefore, it is important to develop risk prediction models to identify high-risk individuals with Barrett's esophagus. Familial aggregation of Barrett's esophagus and esophageal adenocarcinoma, and the increased risk of esophageal adenocarcinoma for individuals with a family history, raise the necessity of including genetic factors in the prediction model. Methods to determine risk prediction models using both risk covariates and ascertained family data are not well developed. We developed a Barrett's Esophagus Translational Research Network (BETRNet) risk prediction model from 787 singly ascertained Barrett's esophagus pedigrees and 92 multiplex Barrett's esophagus pedigrees, fitting a multivariate logistic model that incorporates family history and clinical risk factors. The eight risk factors, age, sex, education level, parental status, smoking, heartburn frequency, regurgitation frequency, and use of acid suppressant, were included in the model. The prediction accuracy was evaluated on the training dataset and an independent validation dataset of 643 multiplex Barrett's esophagus pedigrees. Our results indicate family information helps to predict Barrett's esophagus risk, and predicting in families improves both prediction calibration and discrimination accuracy. Our model can predict Barrett's esophagus risk for anyone with family members known to have, or not have, had Barrett's esophagus. It can predict risk for unrelated individuals without knowing any relatives' information. Our prediction model will shed light on effectively identifying high-risk individuals for Barrett's esophagus screening and surveillance, consequently allowing intervention at an early stage, and reducing mortality from esophageal adenocarcinoma. Cancer Epidemiol Biomarkers Prev; 25(5); 727-35. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Analysis of high vacuum systems using SINDA'85

    NASA Technical Reports Server (NTRS)

    Spivey, R. A.; Clanton, S. E.; Moore, J. D.

    1993-01-01

    The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.

  4. Review and developments of dissemination models for airborne carbon fibers

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1980-01-01

    Dissemination prediction models were reviewed to determine their applicability to a risk assessment for airborne carbon fibers. The review showed that the Gaussian prediction models using partial reflection at the ground agreed very closely with a more elaborate diffusion analysis developed for the study. For distances beyond 10,000 m the Gaussian models predicted a slower fall-off in exposure levels than the diffusion models. This resulting level of conservatism was preferred for the carbon fiber risk assessment. The results also showed that the perfect vertical-mixing models developed herein agreed very closely with the diffusion analysis for all except the most stable atmospheric conditions.

  5. Drug Distribution. Part 1. Models to Predict Membrane Partitioning.

    PubMed

    Nagar, Swati; Korzekwa, Ken

    2017-03-01

    Tissue partitioning is an important component of drug distribution and half-life. Protein binding and lipid partitioning together determine drug distribution. Two structure-based models to predict partitioning into microsomal membranes are presented. An orientation-based model was developed using a membrane template and atom-based relative free energy functions to select drug conformations and orientations for neutral and basic drugs. The resulting model predicts the correct membrane positions for nine compounds tested, and predicts the membrane partitioning for n = 67 drugs with an average fold-error of 2.4. Next, a more facile descriptor-based model was developed for acids, neutrals and bases. This model considers the partitioning of neutral and ionized species at equilibrium, and can predict membrane partitioning with an average fold-error of 2.0 (n = 92 drugs). Together these models suggest that drug orientation is important for membrane partitioning and that membrane partitioning can be well predicted from physicochemical properties.

  6. A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis

    PubMed Central

    Noren, David P.; Long, Byron L.; Norel, Raquel; Rrhissorrakrai, Kahn; Hess, Kenneth; Hu, Chenyue Wendy; Bisberg, Alex J.; Schultz, Andre; Engquist, Erik; Liu, Li; Lin, Xihui; Chen, Gregory M.; Xie, Honglei; Hunter, Geoffrey A. M.; Norman, Thea; Friend, Stephen H.; Stolovitzky, Gustavo; Kornblau, Steven; Qutub, Amina A.

    2016-01-01

    Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities underlying AML are extremely heterogeneous among patients, making prognosis and treatment selection very difficult. While clinical proteomics data has the potential to improve prognosis accuracy, thus far, the quantitative means to do so have yet to be developed. Here we report the results and insights gained from the DREAM 9 Acute Myeloid Prediction Outcome Prediction Challenge (AML-OPC), a crowdsourcing effort designed to promote the development of quantitative methods for AML prognosis prediction. We identify the most accurate and robust models in predicting patient response to therapy, remission duration, and overall survival. We further investigate patient response to therapy, a clinically actionable prediction, and find that patients that are classified as resistant to therapy are harder to predict than responsive patients across the 31 models submitted to the challenge. The top two performing models, which held a high sensitivity to these patients, substantially utilized the proteomics data to make predictions. Using these models, we also identify which signaling proteins were useful in predicting patient therapeutic response. PMID:27351836

  7. Using a RIVPACS model to predict expected macrofaunal species richness in Puget Sound

    EPA Science Inventory

    As part of a project to develop regional indicators for Pacific coastal environments using soft-bottom benthic species, we are evaluating a RIVPACS predictive model (River InVertebrate Prediction and Classification System). This approach was originally developed for rivers and s...

  8. A conceptual prediction model for seasonal drought processes using atmospheric and oceanic standardized anomalies: application to regional drought processes in China

    NASA Astrophysics Data System (ADS)

    Liu, Zhenchen; Lu, Guihua; He, Hai; Wu, Zhiyong; He, Jian

    2018-01-01

    Reliable drought prediction is fundamental for water resource managers to develop and implement drought mitigation measures. Considering that drought development is closely related to the spatial-temporal evolution of large-scale circulation patterns, we developed a conceptual prediction model of seasonal drought processes based on atmospheric and oceanic standardized anomalies (SAs). Empirical orthogonal function (EOF) analysis is first applied to drought-related SAs at 200 and 500 hPa geopotential height (HGT) and sea surface temperature (SST). Subsequently, SA-based predictors are built based on the spatial pattern of the first EOF modes. This drought prediction model is essentially the synchronous statistical relationship between 90-day-accumulated atmospheric-oceanic SA-based predictors and SPI3 (3-month standardized precipitation index), calibrated using a simple stepwise regression method. Predictor computation is based on forecast atmospheric-oceanic products retrieved from the NCEP Climate Forecast System Version 2 (CFSv2), indicating the lead time of the model depends on that of CFSv2. The model can make seamless drought predictions for operational use after a year-to-year calibration. Model application to four recent severe regional drought processes in China indicates its good performance in predicting seasonal drought development, despite its weakness in predicting drought severity. Overall, the model can be a worthy reference for seasonal water resource management in China.

  9. Crop status evaluations and yield predictions

    NASA Technical Reports Server (NTRS)

    Haun, J. R.

    1976-01-01

    One phase of the large area crop inventory project is presented. Wheat yield models based on the input of environmental variables potentially obtainable through the use of space remote sensing were developed and demonstrated. By the use of a unique method for visually qualifying daily plant development and subsequent multifactor computer analyses, it was possible to develop practical models for predicting crop development and yield. Development of wheat yield prediction models was based on the discovery that morphological changes in plants are detected and quantified on a daily basis, and that this change during a portion of the season was proportional to yield.

  10. Evaluating predictive modeling's potential to improve teleretinal screening participation in urban safety net clinics.

    PubMed

    Ogunyemi, Omolola; Teklehaimanot, Senait; Patty, Lauren; Moran, Erin; George, Sheba

    2013-01-01

    Screening guidelines for diabetic patients recommend yearly eye examinations to detect diabetic retinopathy and other forms of diabetic eye disease. However, annual screening rates for retinopathy in US urban safety net settings remain low. Using data gathered from a study of teleretinal screening in six urban safety net clinics, we assessed whether predictive modeling could be of value in identifying patients at risk of developing retinopathy. We developed and examined the accuracy of two predictive modeling approaches for diabetic retinopathy in a sample of 513 diabetic individuals, using routinely available clinical variables from retrospective medical record reviews. Bayesian networks and radial basis function (neural) networks were learned using ten-fold cross-validation. The predictive models were modestly predictive with the best model having an AUC of 0.71. Using routinely available clinical variables to predict patients at risk of developing retinopathy and to target them for annual eye screenings may be of some usefulness to safety net clinics.

  11. Correlation study of theoretical and experimental results for spin tests of a 1/10 scale radio control model

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.

    1976-01-01

    A correlation study was conducted to determine the ability of current analytical spin prediction techniques to predict the flight motions of a current fighter airplane configuration during the spin entry, the developed spin, and the spin recovery motions. The airplane math model used aerodynamics measured on an exact replica of the flight test model using conventional static and forced-oscillation wind-tunnel test techniques and a recently developed rotation-balance test apparatus capable of measuring aerodynamics under steady spinning conditions. An attempt was made to predict the flight motions measured during stall/spin flight testing of an unpowered, radio-controlled model designed to be a 1/10 scale, dynamically-scaled model of a current fighter configuration. Comparison of the predicted and measured flight motions show that while the post-stall and spin entry motions were not well-predicted, the developed spinning motion (a steady flat spin) and the initial phases of the spin recovery motion are reasonably well predicted.

  12. Predicting the Overall Spatial Quality of Automotive Audio Systems

    NASA Astrophysics Data System (ADS)

    Koya, Daisuke

    The spatial quality of automotive audio systems is often compromised due to their unideal listening environments. Automotive audio systems need to be developed quickly due to industry demands. A suitable perceptual model could evaluate the spatial quality of automotive audio systems with similar reliability to formal listening tests but take less time. Such a model is developed in this research project by adapting an existing model of spatial quality for automotive audio use. The requirements for the adaptation were investigated in a literature review. A perceptual model called QESTRAL was reviewed, which predicts the overall spatial quality of domestic multichannel audio systems. It was determined that automotive audio systems are likely to be impaired in terms of the spatial attributes that were not considered in developing the QESTRAL model, but metrics are available that might predict these attributes. To establish whether the QESTRAL model in its current form can accurately predict the overall spatial quality of automotive audio systems, MUSHRA listening tests using headphone auralisation with head tracking were conducted to collect results to be compared against predictions by the model. Based on guideline criteria, the model in its current form could not accurately predict the overall spatial quality of automotive audio systems. To improve prediction performance, the QESTRAL model was recalibrated and modified using existing metrics of the model, those that were proposed from the literature review, and newly developed metrics. The most important metrics for predicting the overall spatial quality of automotive audio systems included those that were interaural cross-correlation (IACC) based, relate to localisation of the frontal audio scene, and account for the perceived scene width in front of the listener. Modifying the model for automotive audio systems did not invalidate its use for domestic audio systems. The resulting model predicts the overall spatial quality of 2- and 5-channel automotive audio systems with a cross-validation performance of R. 2 = 0.85 and root-mean-squareerror (RMSE) = 11.03%.

  13. Predicting bending strength of fire-retardant-treated plywood from screw-withdrawal tests

    Treesearch

    J. E. Winandy; P. K. Lebow; W. Nelson

    This report describes the development of a test method and predictive model to estimate the residual bending strength of fire-retardant-treated plywood roof sheathing from measurement of screw-withdrawal force. The preferred test methodology is described in detail. Models were developed to predict loss in mean and lower prediction bounds for plywood bending strength as...

  14. Multivariate Statistical Models for Predicting Sediment Yields from Southern California Watersheds

    USGS Publications Warehouse

    Gartner, Joseph E.; Cannon, Susan H.; Helsel, Dennis R.; Bandurraga, Mark

    2009-01-01

    Debris-retention basins in Southern California are frequently used to protect communities and infrastructure from the hazards of flooding and debris flow. Empirical models that predict sediment yields are used to determine the size of the basins. Such models have been developed using analyses of records of the amount of material removed from debris retention basins, associated rainfall amounts, measures of watershed characteristics, and wildfire extent and history. In this study we used multiple linear regression methods to develop two updated empirical models to predict sediment yields for watersheds located in Southern California. The models are based on both new and existing measures of volume of sediment removed from debris retention basins, measures of watershed morphology, and characterization of burn severity distributions for watersheds located in Ventura, Los Angeles, and San Bernardino Counties. The first model presented reflects conditions in watersheds located throughout the Transverse Ranges of Southern California and is based on volumes of sediment measured following single storm events with known rainfall conditions. The second model presented is specific to conditions in Ventura County watersheds and was developed using volumes of sediment measured following multiple storm events. To relate sediment volumes to triggering storm rainfall, a rainfall threshold was developed to identify storms likely to have caused sediment deposition. A measured volume of sediment deposited by numerous storms was parsed among the threshold-exceeding storms based on relative storm rainfall totals. The predictive strength of the two models developed here, and of previously-published models, was evaluated using a test dataset consisting of 65 volumes of sediment yields measured in Southern California. The evaluation indicated that the model developed using information from single storm events in the Transverse Ranges best predicted sediment yields for watersheds in San Bernardino, Los Angeles, and Ventura Counties. This model predicts sediment yield as a function of the peak 1-hour rainfall, the watershed area burned by the most recent fire (at all severities), the time since the most recent fire, watershed area, average gradient, and relief ratio. The model that reflects conditions specific to Ventura County watersheds consistently under-predicted sediment yields and is not recommended for application. Some previously-published models performed reasonably well, while others either under-predicted sediment yields or had a larger range of errors in the predicted sediment yields.

  15. Models to predict length of stay in the Intensive Care Unit after coronary artery bypass grafting: a systematic review.

    PubMed

    Atashi, Alireza; Verburg, Ilona W; Karim, Hesam; Miri, Mirmohammad; Abu-Hanna, Ameen; de Jonge, Evert; de Keizer, Nicolette F; Eslami, Saeid

    2018-06-01

    Intensive Care Units (ICU) length of stay (LoS) prediction models are used to compare different institutions and surgeons on their performance, and is useful as an efficiency indicator for quality control. There is little consensus about which prediction methods are most suitable to predict (ICU) length of stay. The aim of this study is to systematically review models for predicting ICU LoS after coronary artery bypass grafting and to assess the reporting and methodological quality of these models to apply them for benchmarking. A general search was conducted in Medline and Embase up to 31-12-2016. Three authors classified the papers for inclusion by reading their title, abstract and full text. All original papers describing development and/or validation of a prediction model for LoS in the ICU after CABG surgery were included. We used a checklist developed for critical appraisal and data extraction for systematic reviews of prediction modeling and extended it on handling specific patients subgroups. We also defined other items and scores to assess the methodological and reporting quality of the models. Of 5181 uniquely identified articles, fifteen studies were included of which twelve on development of new models and three on validation of existing models. All studies used linear or logistic regression as method for model development, and reported various performance measures based on the difference between predicted and observed ICU LoS. Most used a prospective (46.6%) or retrospective study design (40%). We found heterogeneity in patient inclusion/exclusion criteria; sample size; reported accuracy rates; and methods of candidate predictor selection. Most (60%) studies have not mentioned the handling of missing values and none compared the model outcome measure of survivors with non-survivors. For model development and validation studies respectively, the maximum reporting (methodological) scores were 66/78 and 62/62 (14/22 and 12/22). There are relatively few models for predicting ICU length of stay after CABG. Several aspects of methodological and reporting quality of studies in this field should be improved. There is a need for standardizing outcome and risk factor definitions in order to develop/validate a multi-institutional and international risk scoring system.

  16. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.

    PubMed

    Gupta, S; Basant, N; Mohan, D; Singh, K P

    2016-07-01

    Experimental determinations of the rate constants of the reaction of NO3 with a large number of organic chemicals are tedious, and time and resource intensive; and the development of computational methods has widely been advocated. In this study, we have developed room-temperature (298 K) and temperature-dependent quantitative structure-reactivity relationship (QSRR) models based on the ensemble learning approaches (decision tree forest (DTF) and decision treeboost (DTB)) for predicting the rate constant of the reaction of NO3 radicals with diverse organic chemicals, under OECD guidelines. Predictive powers of the developed models were established in terms of statistical coefficients. In the test phase, the QSRR models yielded a correlation (r(2)) of >0.94 between experimental and predicted rate constants. The applicability domains of the constructed models were determined. An attempt has been made to provide the mechanistic interpretation of the selected features for QSRR development. The proposed QSRR models outperformed the previous reports, and the temperature-dependent models offered a much wider applicability domain. This is the first report presenting a temperature-dependent QSRR model for predicting the nitrate radical reaction rate constant at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards NO3 radicals in the atmosphere, hence, their persistence and exposure risk assessment.

  17. A methodology for reduced order modeling and calibration of the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Mehta, Piyush M.; Linares, Richard

    2017-10-01

    Atmospheric drag is the largest source of uncertainty in accurately predicting the orbit of satellites in low Earth orbit (LEO). Accurately predicting drag for objects that traverse LEO is critical to space situational awareness. Atmospheric models used for orbital drag calculations can be characterized either as empirical or physics-based (first principles based). Empirical models are fast to evaluate but offer limited real-time predictive/forecasting ability, while physics based models offer greater predictive/forecasting ability but require dedicated parallel computational resources. Also, calibration with accurate data is required for either type of models. This paper presents a new methodology based on proper orthogonal decomposition toward development of a quasi-physical, predictive, reduced order model that combines the speed of empirical and the predictive/forecasting capabilities of physics-based models. The methodology is developed to reduce the high dimensionality of physics-based models while maintaining its capabilities. We develop the methodology using the Naval Research Lab's Mass Spectrometer Incoherent Scatter model and show that the diurnal and seasonal variations can be captured using a small number of modes and parameters. We also present calibration of the reduced order model using the CHAMP and GRACE accelerometer-derived densities. Results show that the method performs well for modeling and calibration of the upper atmosphere.

  18. Development of polyparameter linear free energy relationship models for octanol-air partition coefficients of diverse chemicals.

    PubMed

    Jin, Xiaochen; Fu, Zhiqiang; Li, Xuehua; Chen, Jingwen

    2017-03-22

    The octanol-air partition coefficient (K OA ) is a key parameter describing the partition behavior of organic chemicals between air and environmental organic phases. As the experimental determination of K OA is costly, time-consuming and sometimes limited by the availability of authentic chemical standards for the compounds to be determined, it becomes necessary to develop credible predictive models for K OA . In this study, a polyparameter linear free energy relationship (pp-LFER) model for predicting K OA at 298.15 K and a novel model incorporating pp-LFERs with temperature (pp-LFER-T model) were developed from 795 log K OA values for 367 chemicals at different temperatures (263.15-323.15 K), and were evaluated with the OECD guidelines on QSAR model validation and applicability domain description. Statistical results show that both models are well-fitted, robust and have good predictive capabilities. Particularly, the pp-LFER model shows a strong predictive ability for polyfluoroalkyl substances and organosilicon compounds, and the pp-LFER-T model maintains a high predictive accuracy within a wide temperature range (263.15-323.15 K).

  19. Modeling aircraft noise induced sleep disturbance

    NASA Astrophysics Data System (ADS)

    McGuire, Sarah M.

    One of the primary impacts of aircraft noise on a community is its disruption of sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and decreases the amount of rapid eye movement and slow wave sleep. Understanding these changes in sleep may be important as they could increase the risk for developing next-day effects such as sleepiness and reduced performance and long-term health effects such as cardiovascular disease. There are models that have been developed to predict the effect of aircraft noise on sleep. However, most of these models only predict the percentage of the population that is awakened. Markov and nonlinear dynamic models have been developed to predict an individual's sleep structure during the night. However, both of these models have limitations. The Markov model only accounts for whether an aircraft event occurred not the noise level or other sound characteristics of the event that may affect the degree of disturbance. The nonlinear dynamic models were developed to describe normal sleep regulation and do not have a noise effects component. In addition, the nonlinear dynamic models have slow dynamics which make it difficult to predict short duration awakenings which occur both spontaneously and as a result of nighttime noise exposure. The purpose of this research was to examine these sleep structure models to determine how they could be altered to predict the effect of aircraft noise on sleep. Different approaches for adding a noise level dependence to the Markov Model was explored and the modified model was validated by comparing predictions to behavioral awakening data. In order to determine how to add faster dynamics to the nonlinear dynamic sleep models it was necessary to have a more detailed sleep stage classification than was available from visual scoring of sleep data. An automatic sleep stage classification algorithm was developed which extracts different features of polysomnography data including the occurrence of rapid eye movements, sleep spindles, and slow wave sleep. Using these features an approach for classifying sleep stages every one second during the night was developed. From observation of the results of the sleep stage classification, it was determined how to add faster dynamics to the nonlinear dynamic model. Slow and fast REM activity are modeled separately and the activity in the gamma frequency band of the EEG signal is used to model both spontaneous and noise-induced awakenings. The nonlinear model predicts changes in sleep structure similar to those found by other researchers and reported in the sleep literature and similar to those found in obtained survey data. To compare sleep disturbance model predictions, flight operations data from US airports were obtained and sleep disturbance in communities was predicted for different operations scenarios using the modified Markov model, the nonlinear dynamic model, and other aircraft noise awakening models. Similarities and differences in model predictions were evaluated in order to determine if the use of the developed sleep structure model leads to improved predictions of the impact of nighttime noise on communities.

  20. Gaussian mixture models as flux prediction method for central receivers

    NASA Astrophysics Data System (ADS)

    Grobler, Annemarie; Gauché, Paul; Smit, Willie

    2016-05-01

    Flux prediction methods are crucial to the design and operation of central receiver systems. Current methods such as the circular and elliptical (bivariate) Gaussian prediction methods are often used in field layout design and aiming strategies. For experimental or small central receiver systems, the flux profile of a single heliostat often deviates significantly from the circular and elliptical Gaussian models. Therefore a novel method of flux prediction was developed by incorporating the fitting of Gaussian mixture models onto flux profiles produced by flux measurement or ray tracing. A method was also developed to predict the Gaussian mixture model parameters of a single heliostat for a given time using image processing. Recording the predicted parameters in a database ensures that more accurate predictions are made in a shorter time frame.

  1. Genomic predictive model for recurrence and metastasis development in head and neck squamous cell carcinoma patients.

    PubMed

    Ribeiro, Ilda Patrícia; Caramelo, Francisco; Esteves, Luísa; Menoita, Joana; Marques, Francisco; Barroso, Leonor; Miguéis, Jorge; Melo, Joana Barbosa; Carreira, Isabel Marques

    2017-10-24

    The head and neck squamous cell carcinoma (HNSCC) population consists mainly of high-risk for recurrence and locally advanced stage patients. Increased knowledge of the HNSCC genomic profile can improve early diagnosis and treatment outcomes. The development of models to identify consistent genomic patterns that distinguish HNSCC patients that will recur and/or develop metastasis after treatment is of utmost importance to decrease mortality and improve survival rates. In this study, we used array comparative genomic hybridization data from HNSCC patients to implement a robust model to predict HNSCC recurrence/metastasis. This predictive model showed a good accuracy (>80%) and was validated in an independent population from TCGA data portal. This predictive genomic model comprises chromosomal regions from 5p, 6p, 8p, 9p, 11q, 12q, 15q and 17p, where several upstream and downstream members of signaling pathways that lead to an increase in cell proliferation and invasion are mapped. The introduction of genomic predictive models in clinical practice might contribute to a more individualized clinical management of the HNSCC patients, reducing recurrences and improving patients' quality of life. The power of this genomic model to predict the recurrence and metastases development should be evaluated in other HNSCC populations.

  2. Predictive Eco-Cruise Control (ECC) system : model development, modeling and potential benefits.

    DOT National Transportation Integrated Search

    2013-02-01

    The research develops a reference model of a predictive eco-cruise control (ECC) system that intelligently modulates vehicle speed within a pre-set speed range to minimize vehicle fuel consumption levels using roadway topographic information. The stu...

  3. Acute Brain Dysfunction: Development and Validation of a Daily Prediction Model.

    PubMed

    Marra, Annachiara; Pandharipande, Pratik P; Shotwell, Matthew S; Chandrasekhar, Rameela; Girard, Timothy D; Shintani, Ayumi K; Peelen, Linda M; Moons, Karl G M; Dittus, Robert S; Ely, E Wesley; Vasilevskis, Eduard E

    2018-03-24

    The goal of this study was to develop and validate a dynamic risk model to predict daily changes in acute brain dysfunction (ie, delirium and coma), discharge, and mortality in ICU patients. Using data from a multicenter prospective ICU cohort, a daily acute brain dysfunction-prediction model (ABD-pm) was developed by using multinomial logistic regression that estimated 15 transition probabilities (from one of three brain function states [normal, delirious, or comatose] to one of five possible outcomes [normal, delirious, comatose, ICU discharge, or died]) using baseline and daily risk factors. Model discrimination was assessed by using predictive characteristics such as negative predictive value (NPV). Calibration was assessed by plotting empirical vs model-estimated probabilities. Internal validation was performed by using a bootstrap procedure. Data were analyzed from 810 patients (6,711 daily transitions). The ABD-pm included individual risk factors: mental status, age, preexisting cognitive impairment, baseline and daily severity of illness, and daily administration of sedatives. The model yielded very high NPVs for "next day" delirium (NPV: 0.823), coma (NPV: 0.892), normal cognitive state (NPV: 0.875), ICU discharge (NPV: 0.905), and mortality (NPV: 0.981). The model demonstrated outstanding calibration when predicting the total number of patients expected to be in any given state across predicted risk. We developed and internally validated a dynamic risk model that predicts the daily risk for one of three cognitive states, ICU discharge, or mortality. The ABD-pm may be useful for predicting the proportion of patients for each outcome state across entire ICU populations to guide quality, safety, and care delivery activities. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  4. CONFOLD2: improved contact-driven ab initio protein structure modeling.

    PubMed

    Adhikari, Badri; Cheng, Jianlin

    2018-01-25

    Contact-guided protein structure prediction methods are becoming more and more successful because of the latest advances in residue-residue contact prediction. To support contact-driven structure prediction, effective tools that can quickly build tertiary structural models of good quality from predicted contacts need to be developed. We develop an improved contact-driven protein modelling method, CONFOLD2, and study how it may be effectively used for ab initio protein structure prediction with predicted contacts as input. It builds models using various subsets of input contacts to explore the fold space under the guidance of a soft square energy function, and then clusters the models to obtain the top five models. CONFOLD2 obtains an average reconstruction accuracy of 0.57 TM-score for the 150 proteins in the PSICOV contact prediction dataset. When benchmarked on the CASP11 contacts predicted using CONSIP2 and CASP12 contacts predicted using Raptor-X, CONFOLD2 achieves a mean TM-score of 0.41 on both datasets. CONFOLD2 allows to quickly generate top five structural models for a protein sequence when its secondary structures and contacts predictions at hand. The source code of CONFOLD2 is publicly available at https://github.com/multicom-toolbox/CONFOLD2/ .

  5. Biological Networks for Predicting Chemical Hepatocarcinogenicity Using Gene Expression Data from Treated Mice and Relevance across Human and Rat Species

    PubMed Central

    Thomas, Reuben; Thomas, Russell S.; Auerbach, Scott S.; Portier, Christopher J.

    2013-01-01

    Background Several groups have employed genomic data from subchronic chemical toxicity studies in rodents (90 days) to derive gene-centric predictors of chronic toxicity and carcinogenicity. Genes are annotated to belong to biological processes or molecular pathways that are mechanistically well understood and are described in public databases. Objectives To develop a molecular pathway-based prediction model of long term hepatocarcinogenicity using 90-day gene expression data and to evaluate the performance of this model with respect to both intra-species, dose-dependent and cross-species predictions. Methods Genome-wide hepatic mRNA expression was retrospectively measured in B6C3F1 mice following subchronic exposure to twenty-six (26) chemicals (10 were positive, 2 equivocal and 14 negative for liver tumors) previously studied by the US National Toxicology Program. Using these data, a pathway-based predictor model for long-term liver cancer risk was derived using random forests. The prediction model was independently validated on test sets associated with liver cancer risk obtained from mice, rats and humans. Results Using 5-fold cross validation, the developed prediction model had reasonable predictive performance with the area under receiver-operator curve (AUC) equal to 0.66. The developed prediction model was then used to extrapolate the results to data associated with rat and human liver cancer. The extrapolated model worked well for both extrapolated species (AUC value of 0.74 for rats and 0.91 for humans). The prediction models implied a balanced interplay between all pathway responses leading to carcinogenicity predictions. Conclusions Pathway-based prediction models estimated from sub-chronic data hold promise for predicting long-term carcinogenicity and also for its ability to extrapolate results across multiple species. PMID:23737943

  6. Biological networks for predicting chemical hepatocarcinogenicity using gene expression data from treated mice and relevance across human and rat species.

    PubMed

    Thomas, Reuben; Thomas, Russell S; Auerbach, Scott S; Portier, Christopher J

    2013-01-01

    Several groups have employed genomic data from subchronic chemical toxicity studies in rodents (90 days) to derive gene-centric predictors of chronic toxicity and carcinogenicity. Genes are annotated to belong to biological processes or molecular pathways that are mechanistically well understood and are described in public databases. To develop a molecular pathway-based prediction model of long term hepatocarcinogenicity using 90-day gene expression data and to evaluate the performance of this model with respect to both intra-species, dose-dependent and cross-species predictions. Genome-wide hepatic mRNA expression was retrospectively measured in B6C3F1 mice following subchronic exposure to twenty-six (26) chemicals (10 were positive, 2 equivocal and 14 negative for liver tumors) previously studied by the US National Toxicology Program. Using these data, a pathway-based predictor model for long-term liver cancer risk was derived using random forests. The prediction model was independently validated on test sets associated with liver cancer risk obtained from mice, rats and humans. Using 5-fold cross validation, the developed prediction model had reasonable predictive performance with the area under receiver-operator curve (AUC) equal to 0.66. The developed prediction model was then used to extrapolate the results to data associated with rat and human liver cancer. The extrapolated model worked well for both extrapolated species (AUC value of 0.74 for rats and 0.91 for humans). The prediction models implied a balanced interplay between all pathway responses leading to carcinogenicity predictions. Pathway-based prediction models estimated from sub-chronic data hold promise for predicting long-term carcinogenicity and also for its ability to extrapolate results across multiple species.

  7. Development of Novel Repellents Using Structure - Activity Modeling of Compounds in the USDA Archival Database

    DTIC Science & Technology

    2011-01-01

    used in efforts to develop QSAR models. Measurement of Repellent Efficacy Screening for Repellency of Compounds with Unknown Toxicology In screening...CPT) were used to develop Quantitative Structure Activity Relationship ( QSAR ) models to predict repellency. Successful prediction of novel...acylpiperidine QSAR models employed 4 descriptors to describe the relationship between structure and repellent duration. The ANN model of the carboxamides did not

  8. A user-friendly model for spray drying to aid pharmaceutical product development.

    PubMed

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L J; Frijlink, Henderik W

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach.

  9. Textile composite processing science

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Hammond, Vincent H.; Kranbuehl, David E.; Hasko, Gregory H.

    1993-01-01

    A multi-dimensional model of the Resin Transfer Molding (RTM) process was developed for the prediction of the infiltration behavior of a resin into an anisotropic fiber preform. Frequency dependent electromagnetic sensing (FDEMS) was developed for in-situ monitoring of the RTM process. Flow visualization and mold filling experiments were conducted to verify sensor measurements and model predictions. Test results indicated good agreement between model predictions, sensor readings, and experimental data.

  10. Crop status evaluations and yield predictions

    NASA Technical Reports Server (NTRS)

    Haun, J. R.

    1975-01-01

    A model was developed for predicting the day 50 percent of the wheat crop is planted in North Dakota. This model incorporates location as an independent variable. The Julian date when 50 percent of the crop was planted for the nine divisions of North Dakota for seven years was regressed on the 49 variables through the step-down multiple regression procedure. This procedure begins with all of the independent variables and sequentially removes variables that are below a predetermined level of significance after each step. The prediction equation was tested on daily data. The accuracy of the model is considered satisfactory for finding the historic dates on which to initiate yield prediction model. Growth prediction models were also developed for spring wheat.

  11. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.; Mcknight, R. L.; Cook, T. S.; Hartle, M. S.

    1988-01-01

    This report describes work performed to determine the predominat modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consisted of a low pressure plasma sprayed NiCrAlY bond coat, an air plasma sprayed ZrO2-Y2O3 top coat, and a Rene' 80 substrate. The work was divided into 3 technical tasks. The primary failure mode to be addressed was loss of the zirconia layer through spalling. Experiments showed that oxidation of the bond coat is a significant contributor to coating failure. It was evident from the test results that the species of oxide scale initially formed on the bond coat plays a role in coating degradation and failure. It was also shown that elevated temperature creep of the bond coat plays a role in coating failure. An empirical model was developed for predicting the test life of specimens with selected coating, specimen, and test condition variations. In the second task, a coating life prediction model was developed based on the data from Task 1 experiments, results from thermomechanical experiments performed as part of Task 2, and finite element analyses of the TBC system during thermal cycles. The third and final task attempted to verify the validity of the model developed in Task 2. This was done by using the model to predict the test lives of several coating variations and specimen geometries, then comparing these predicted lives to experimentally determined test lives. It was found that the model correctly predicts trends, but that additional refinement is needed to accurately predict coating life.

  12. Gene Expression Profiling Predicts the Development of Oral Cancer

    PubMed Central

    Saintigny, Pierre; Zhang, Li; Fan, You-Hong; El-Naggar, Adel K.; Papadimitrakopoulou, Vali; Feng, Lei; Lee, J. Jack; Kim, Edward S.; Hong, Waun Ki; Mao, Li

    2011-01-01

    Patients with oral preneoplastic lesion (OPL) have high risk of developing oral cancer. Although certain risk factors such as smoking status and histology are known, our ability to predict oral cancer risk remains poor. The study objective was to determine the value of gene expression profiling in predicting oral cancer development. Gene expression profile was measured in 86 of 162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of oral cancer development as a prespecified endpoint. The median follow-up time was 6.08 years and 35 of the 86 patients developed oral cancer over the course. Gene expression profiles were associated with oral cancer-free survival and used to develope multivariate predictive models for oral cancer prediction. We developed a 29-transcript predictive model which showed marked improvement in terms of prediction accuracy (with 8% predicting error rate) over the models using previously known clinico-pathological risk factors. Based on the gene expression profile data, we also identified 2182 transcripts significantly associated with oral cancer risk associated genes (P-value<0.01, single variate Cox proportional hazards model). Functional pathway analysis revealed proteasome machinery, MYC, and ribosomes components as the top gene sets associated with oral cancer risk. In multiple independent datasets, the expression profiles of the genes can differentiate head and neck cancer from normal mucosa. Our results show that gene expression profiles may improve the prediction of oral cancer risk in OPL patients and the significant genes identified may serve as potential targets for oral cancer chemoprevention. PMID:21292635

  13. Predictive Microbiology and Food Safety Applications

    USDA-ARS?s Scientific Manuscript database

    Mathematical modeling is the science of systematic study of recurrent events or phenomena. When models are properly developed, their applications may save costs and time. For microbial food safety research and applications, predictive microbiology models may be developed based on the fact that most ...

  14. Individualized pharmacokinetic risk assessment for development of diabetes in high risk population.

    PubMed

    Gupta, N; Al-Huniti, N H; Veng-Pedersen, P

    2007-10-01

    The objective of this study is to propose a non-parametric pharmacokinetic prediction model that addresses the individualized risk of developing type-2 diabetes in subjects with family history of type-2 diabetes. All selected 191 healthy subjects had both parents as type-2 diabetic. Glucose was administered intravenously (0.5 g/kg body weight) and 13 blood samples taken at specified times were analyzed for plasma insulin and glucose concentrations. All subjects were followed for an average of 13-14 years for diabetic or normal (non-diabetic) outcome. The new logistic regression model predicts the development of diabetes based on body mass index and only one blood sample at 90 min analyzed for insulin concentration. Our model correctly identified 4.5 times more subjects (54% versus 11.6%) predicted to develop diabetes and more than twice the subjects (99% versus 46.4%) predicted not to develop diabetes compared to current non-pharmacokinetic probability estimates for development of type-2 diabetes. Our model can be useful for individualized prediction of development of type-2 diabetes in subjects with family history of type-2 diabetes. This improved prediction may be an important mediating factor for better perception of risk and may result in an improved intervention.

  15. The Prediction of Noise Due to Jet Turbulence Convecting Past Flight Vehicle Trailing Edges

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    High intensity acoustic radiation occurs when turbulence convects past airframe trailing edges. A mathematical model is developed to predict this acoustic radiation. The model is dependent on the local flow and turbulent statistics above the trailing edge of the flight vehicle airframe. These quantities are dependent on the jet and flight vehicle Mach numbers and jet temperature. A term in the model approximates the turbulent statistics of single-stream heated jet flows and is developed based upon measurement. The developed model is valid for a wide range of jet Mach numbers, jet temperature ratios, and flight vehicle Mach numbers. The model predicts traditional trailing edge noise if the jet is not interacting with the airframe. Predictions of mean-flow quantities and the cross-spectrum of static pressure near the airframe trailing edge are compared with measurement. Finally, predictions of acoustic intensity are compared with measurement and the model is shown to accurately capture the phenomenon.

  16. Predicting the digestible energy of corn determined with growing swine from nutrient composition and cross-species measurements.

    PubMed

    Smith, B; Hassen, A; Hinds, M; Rice, D; Jones, D; Sauber, T; Iiams, C; Sevenich, D; Allen, R; Owens, F; McNaughton, J; Parsons, C

    2015-03-01

    The DE values of corn grain for pigs will differ among corn sources. More accurate prediction of DE may improve diet formulation and reduce diet cost. Corn grain sources ( = 83) were assayed with growing swine (20 kg) in DE experiments with total collection of feces, with 3-wk-old broiler chick in nitrogen-corrected apparent ME (AME) trials and with cecectomized adult roosters in nitrogen-corrected true ME (TME) studies. Additional AME data for the corn grain source set was generated based on an existing near-infrared transmittance prediction model (near-infrared transmittance-predicted AME [NIT-AME]). Corn source nutrient composition was determined by wet chemistry methods. These data were then used to 1) test the accuracy of predicting swine DE of individual corn sources based on available literature equations and nutrient composition and 2) develop models for predicting DE of sources from nutrient composition and the cross-species information gathered above (AME, NIT-AME, and TME). The overall measured DE, AME, NIT-AME, and TME values were 4,105 ± 11, 4,006 ± 10, 4,004 ± 10, and 4,086 ± 12 kcal/kg DM, respectively. Prediction models were developed using 80% of the corn grain sources; the remaining 20% was reserved for validation of the developed prediction equation. Literature equations based on nutrient composition proved imprecise for predicting corn DE; the root mean square error of prediction ranged from 105 to 331 kcal/kg, an equivalent of 2.6 to 8.8% error. Yet among the corn composition traits, 4-variable models developed in the current study provided adequate prediction of DE (model ranging from 0.76 to 0.79 and root mean square error [RMSE] of 50 kcal/kg). When prediction equations were tested using the validation set, these models had a 1 to 1.2% error of prediction. Simple linear equations from AME, NIT-AME, or TME provided an accurate prediction of DE for individual sources ( ranged from 0.65 to 0.73 and RMSE ranged from 50 to 61 kcal/kg). Percentage error of prediction based on the validation data set was greater (1.4%) for the TME model than for the NIT-AME or AME models (1 and 1.2%, respectively), indicating that swine DE values could be accurately predicted by using AME or NIT-AME. In conclusion, regression equations developed from broiler measurements or from analyzed nutrient composition proved adequate to reliably predict the DE of commercially available corn hybrids for growing pigs.

  17. Risk prediction models of breast cancer: a systematic review of model performances.

    PubMed

    Anothaisintawee, Thunyarat; Teerawattananon, Yot; Wiratkapun, Chollathip; Kasamesup, Vijj; Thakkinstian, Ammarin

    2012-05-01

    The number of risk prediction models has been increasingly developed, for estimating about breast cancer in individual women. However, those model performances are questionable. We therefore have conducted a study with the aim to systematically review previous risk prediction models. The results from this review help to identify the most reliable model and indicate the strengths and weaknesses of each model for guiding future model development. We searched MEDLINE (PubMed) from 1949 and EMBASE (Ovid) from 1974 until October 2010. Observational studies which constructed models using regression methods were selected. Information about model development and performance were extracted. Twenty-five out of 453 studies were eligible. Of these, 18 developed prediction models and 7 validated existing prediction models. Up to 13 variables were included in the models and sample sizes for each study ranged from 550 to 2,404,636. Internal validation was performed in four models, while five models had external validation. Gail and Rosner and Colditz models were the significant models which were subsequently modified by other scholars. Calibration performance of most models was fair to good (expected/observe ratio: 0.87-1.12), but discriminatory accuracy was poor to fair both in internal validation (concordance statistics: 0.53-0.66) and in external validation (concordance statistics: 0.56-0.63). Most models yielded relatively poor discrimination in both internal and external validation. This poor discriminatory accuracy of existing models might be because of a lack of knowledge about risk factors, heterogeneous subtypes of breast cancer, and different distributions of risk factors across populations. In addition the concordance statistic itself is insensitive to measure the improvement of discrimination. Therefore, the new method such as net reclassification index should be considered to evaluate the improvement of the performance of a new develop model.

  18. Statistical Models for Predicting Automobile Driving Postures for Men and Women Including Effects of Age.

    PubMed

    Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J

    2016-03-01

    Previously published statistical models of driving posture have been effective for vehicle design but have not taken into account the effects of age. The present study developed new statistical models for predicting driving posture. Driving postures of 90 U.S. drivers with a wide range of age and body size were measured in laboratory mockup in nine package conditions. Posture-prediction models for female and male drivers were separately developed by employing a stepwise regression technique using age, body dimensions, vehicle package conditions, and two-way interactions, among other variables. Driving posture was significantly associated with age, and the effects of other variables depended on age. A set of posture-prediction models is presented for women and men. The results are compared with a previously developed model. The present study is the first study of driver posture to include a large cohort of older drivers and the first to report a significant effect of age. The posture-prediction models can be used to position computational human models or crash-test dummies for vehicle design and assessment. © 2015, Human Factors and Ergonomics Society.

  19. A comparison of life prediction methodologies for titanium matrix composites subjected to thermomechanical fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calcaterra, J.R.; Johnson, W.S.; Neu, R.W.

    1997-12-31

    Several methodologies have been developed to predict the lives of titanium matrix composites (TMCs) subjected to thermomechanical fatigue (TMF). This paper reviews and compares five life prediction models developed at NASA-LaRC. Wright Laboratories, based on a dingle parameter, the fiber stress in the load-carrying, or 0{degree}, direction. The two other models, both developed at Wright Labs. are multi-parameter models. These can account for long-term damage, which is beyond the scope of the single-parameter models, but this benefit is offset by the additional complexity of the methodologies. Each of the methodologies was used to model data generated at NASA-LeRC. Wright Labs.more » and Georgia Tech for the SCS-6/Timetal 21-S material system. VISCOPLY, a micromechanical stress analysis code, was used to determine the constituent stress state for each test and was used for each model to maintain consistency. The predictive capabilities of the models are compared, and the ability of each model to accurately predict the responses of tests dominated by differing damage mechanisms is addressed.« less

  20. Next Generation Community Based Unified Global Modeling System Development and Operational Implementation Strategies at NCEP

    NASA Astrophysics Data System (ADS)

    Tallapragada, V.

    2017-12-01

    NOAA's Next Generation Global Prediction System (NGGPS) has provided the unique opportunity to develop and implement a non-hydrostatic global model based on Geophysical Fluid Dynamics Laboratory (GFDL) Finite Volume Cubed Sphere (FV3) Dynamic Core at National Centers for Environmental Prediction (NCEP), making a leap-step advancement in seamless prediction capabilities across all spatial and temporal scales. Model development efforts are centralized with unified model development in the NOAA Environmental Modeling System (NEMS) infrastructure based on Earth System Modeling Framework (ESMF). A more sophisticated coupling among various earth system components is being enabled within NEMS following National Unified Operational Prediction Capability (NUOPC) standards. The eventual goal of unifying global and regional models will enable operational global models operating at convective resolving scales. Apart from the advanced non-hydrostatic dynamic core and coupling to various earth system components, advanced physics and data assimilation techniques are essential for improved forecast skill. NGGPS is spearheading ambitious physics and data assimilation strategies, concentrating on creation of a Common Community Physics Package (CCPP) and Joint Effort for Data Assimilation Integration (JEDI). Both initiatives are expected to be community developed, with emphasis on research transitioning to operations (R2O). The unified modeling system is being built to support the needs of both operations and research. Different layers of community partners are also established with specific roles/responsibilities for researchers, core development partners, trusted super-users, and operations. Stakeholders are engaged at all stages to help drive the direction of development, resources allocations and prioritization. This talk presents the current and future plans of unified model development at NCEP for weather, sub-seasonal, and seasonal climate prediction applications with special emphasis on implementation of NCEP FV3 Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS) into operations by 2019.

  1. Pretreatment data is highly predictive of liver chemistry signals in clinical trials

    PubMed Central

    Cai, Zhaohui; Bresell, Anders; Steinberg, Mark H; Silberg, Debra G; Furlong, Stephen T

    2012-01-01

    Purpose The goal of this retrospective analysis was to assess how well predictive models could determine which patients would develop liver chemistry signals during clinical trials based on their pretreatment (baseline) information. Patients and methods Based on data from 24 late-stage clinical trials, classification models were developed to predict liver chemistry outcomes using baseline information, which included demographics, medical history, concomitant medications, and baseline laboratory results. Results Predictive models using baseline data predicted which patients would develop liver signals during the trials with average validation accuracy around 80%. Baseline levels of individual liver chemistry tests were most important for predicting their own elevations during the trials. High bilirubin levels at baseline were not uncommon and were associated with a high risk of developing biochemical Hy’s law cases. Baseline γ-glutamyltransferase (GGT) level appeared to have some predictive value, but did not increase predictability beyond using established liver chemistry tests. Conclusion It is possible to predict which patients are at a higher risk of developing liver chemistry signals using pretreatment (baseline) data. Derived knowledge from such predictions may allow proactive and targeted risk management, and the type of analysis described here could help determine whether new biomarkers offer improved performance over established ones. PMID:23226004

  2. The importance of different frequency bands in predicting subcutaneous glucose concentration in type 1 diabetic patients.

    PubMed

    Lu, Yinghui; Gribok, Andrei V; Ward, W Kenneth; Reifman, Jaques

    2010-08-01

    We investigated the relative importance and predictive power of different frequency bands of subcutaneous glucose signals for the short-term (0-50 min) forecasting of glucose concentrations in type 1 diabetic patients with data-driven autoregressive (AR) models. The study data consisted of minute-by-minute glucose signals collected from nine deidentified patients over a five-day period using continuous glucose monitoring devices. AR models were developed using single and pairwise combinations of frequency bands of the glucose signal and compared with a reference model including all bands. The results suggest that: for open-loop applications, there is no need to explicitly represent exogenous inputs, such as meals and insulin intake, in AR models; models based on a single-frequency band, with periods between 60-120 min and 150-500 min, yield good predictive power (error <3 mg/dL) for prediction horizons of up to 25 min; models based on pairs of bands produce predictions that are indistinguishable from those of the reference model as long as the 60-120 min period band is included; and AR models can be developed on signals of short length (approximately 300 min), i.e., ignoring long circadian rhythms, without any detriment in prediction accuracy. Together, these findings provide insights into efficient development of more effective and parsimonious data-driven models for short-term prediction of glucose concentrations in diabetic patients.

  3. In silico prediction of drug-induced myelotoxicity by using Naïve Bayes method.

    PubMed

    Zhang, Hui; Yu, Peng; Zhang, Teng-Guo; Kang, Yan-Li; Zhao, Xiao; Li, Yuan-Yuan; He, Jia-Hui; Zhang, Ji

    2015-11-01

    Drug-induced myelotoxicity usually leads to decrease the production of platelets, red cells, and white cells. Thus, early identification and characterization of myelotoxicity hazard in drug development is very necessary. The purpose of this investigation was to develop a prediction model of drug-induced myelotoxicity by using a Naïve Bayes classifier. For comparison, other prediction models based on support vector machine and single-hidden-layer feed-forward neural network  methods were also established. Among all the prediction models, the Naïve Bayes classification model showed the best prediction performance, which offered an average overall prediction accuracy of [Formula: see text] for the training set and [Formula: see text] for the external test set. The significant contributions of this study are that we first developed a Naïve Bayes classification model of drug-induced myelotoxicity adverse effect using a larger scale dataset, which could be employed for the prediction of drug-induced myelotoxicity. In addition, several important molecular descriptors and substructures of myelotoxic compounds have been identified, which should be taken into consideration in the design of new candidate compounds to produce safer and more effective drugs, ultimately reducing the attrition rate in later stages of drug development.

  4. [Development of a predictive program for microbial growth under various temperature conditions].

    PubMed

    Fujikawa, Hiroshi; Yano, Kazuyoshi; Morozumi, Satoshi; Kimura, Bon; Fujii, Tateo

    2006-12-01

    A predictive program for microbial growth under various temperature conditions was developed with a mathematical model. The model was a new logistic model recently developed by us. The program predicts Escherichia coli growth in broth, Staphylococcus aureus growth and its enterotoxin production in milk, and Vibrio parahaemolyticus growth in broth at various temperature patterns. The program, which was built with Microsoft Excel (Visual Basic Application), is user-friendly; users can easily input the temperature history of a test food and obtain the prediction instantly on the computer screen. The predicted growth and toxin production can be important indices to determine whether a food is microbiologically safe or not. This program should be a useful tool to confirm the microbial safety of commercial foods.

  5. Development of Multi-Layered Floating Floor for Cabin Noise Reduction

    NASA Astrophysics Data System (ADS)

    Song, Jee-Hun; Hong, Suk-Yoon; Kwon, Hyun-Wung

    2017-12-01

    Recently, regulations pertaining to the noise and vibration environment of ship cabins have been strengthened. In this paper, a numerical model is developed for multi-layered floating floor to predict the structure-borne noise in ship cabins. The theoretical model consists of multi-panel structures lined with high-density mineral wool. The predicted results for structure-borne noise when multi-layered floating floor is used are compared to the measure-ments made of a mock-up. A comparison of the predicted results and the experimental one shows that the developed model could be an effective tool for predicting structure-borne noise in ship cabins.

  6. Landscapes for Energy and Wildlife: Conservation Prioritization for Golden Eagles across Large Spatial Scales

    PubMed Central

    Tack, Jason D.; Fedy, Bradley C.

    2015-01-01

    Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development. PMID:26262876

  7. Landscapes for energy and wildlife: conservation prioritization for golden eagles across large spatial scales

    USGS Publications Warehouse

    Tack, Jason D.; Fedy, Bradley C.

    2015-01-01

    Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.

  8. Landscapes for Energy and Wildlife: Conservation Prioritization for Golden Eagles across Large Spatial Scales.

    PubMed

    Tack, Jason D; Fedy, Bradley C

    2015-01-01

    Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.

  9. The Development of Statistical Models for Predicting Surgical Site Infections in Japan: Toward a Statistical Model-Based Standardized Infection Ratio.

    PubMed

    Fukuda, Haruhisa; Kuroki, Manabu

    2016-03-01

    To develop and internally validate a surgical site infection (SSI) prediction model for Japan. Retrospective observational cohort study. We analyzed surveillance data submitted to the Japan Nosocomial Infections Surveillance system for patients who had undergone target surgical procedures from January 1, 2010, through December 31, 2012. Logistic regression analyses were used to develop statistical models for predicting SSIs. An SSI prediction model was constructed for each of the procedure categories by statistically selecting the appropriate risk factors from among the collected surveillance data and determining their optimal categorization. Standard bootstrapping techniques were applied to assess potential overfitting. The C-index was used to compare the predictive performances of the new statistical models with those of models based on conventional risk index variables. The study sample comprised 349,987 cases from 428 participant hospitals throughout Japan, and the overall SSI incidence was 7.0%. The C-indices of the new statistical models were significantly higher than those of the conventional risk index models in 21 (67.7%) of the 31 procedure categories (P<.05). No significant overfitting was detected. Japan-specific SSI prediction models were shown to generally have higher accuracy than conventional risk index models. These new models may have applications in assessing hospital performance and identifying high-risk patients in specific procedure categories.

  10. A Simplified Micromechanical Modeling Approach to Predict the Tensile Flow Curve Behavior of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal

    2017-11-01

    Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.

  11. SITE CHARACTERIZATION TO SUPPORT DEVELOPMENT OF CONCEPTUAL SITE MODELS AND TRANSPORT MODELS FOR MONITORING CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The development of conceptual and predictive models is an important tool to guide site characterization in support of monitoring contaminants in ground water. The accuracy of predictive models is limited by the adequacy of the input data and the assumptions made to constrain mod...

  12. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  13. Development of an automated energy audit protocol for office buildings

    NASA Astrophysics Data System (ADS)

    Deb, Chirag

    This study aims to enhance the building energy audit process, and bring about reduction in time and cost requirements in the conduction of a full physical audit. For this, a total of 5 Energy Service Companies in Singapore have collaborated and provided energy audit reports for 62 office buildings. Several statistical techniques are adopted to analyse these reports. These techniques comprise cluster analysis and development of prediction models to predict energy savings for buildings. The cluster analysis shows that there are 3 clusters of buildings experiencing different levels of energy savings. To understand the effect of building variables on the change in EUI, a robust iterative process for selecting the appropriate variables is developed. The results show that the 4 variables of GFA, non-air-conditioning energy consumption, average chiller plant efficiency and installed capacity of chillers should be taken for clustering. This analysis is extended to the development of prediction models using linear regression and artificial neural networks (ANN). An exhaustive variable selection algorithm is developed to select the input variables for the two energy saving prediction models. The results show that the ANN prediction model can predict the energy saving potential of a given building with an accuracy of +/-14.8%.

  14. A predictive estimation method for carbon dioxide transport by data-driven modeling with a physically-based data model

    NASA Astrophysics Data System (ADS)

    Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young; Jun, Seong-Chun; Choung, Sungwook; Yun, Seong-Taek; Oh, Junho; Kim, Hyun-Jun

    2017-11-01

    In this study, a data-driven method for predicting CO2 leaks and associated concentrations from geological CO2 sequestration is developed. Several candidate models are compared based on their reproducibility and predictive capability for CO2 concentration measurements from the Environment Impact Evaluation Test (EIT) site in Korea. Based on the data mining results, a one-dimensional solution of the advective-dispersive equation for steady flow (i.e., Ogata-Banks solution) is found to be most representative for the test data, and this model is adopted as the data model for the developed method. In the validation step, the method is applied to estimate future CO2 concentrations with the reference estimation by the Ogata-Banks solution, where a part of earlier data is used as the training dataset. From the analysis, it is found that the ensemble mean of multiple estimations based on the developed method shows high prediction accuracy relative to the reference estimation. In addition, the majority of the data to be predicted are included in the proposed quantile interval, which suggests adequate representation of the uncertainty by the developed method. Therefore, the incorporation of a reasonable physically-based data model enhances the prediction capability of the data-driven model. The proposed method is not confined to estimations of CO2 concentration and may be applied to various real-time monitoring data from subsurface sites to develop automated control, management or decision-making systems.

  15. Development and validation of a set of six adaptable prognosis prediction (SAP) models based on time-series real-world big data analysis for patients with cancer receiving chemotherapy: A multicenter case crossover study

    PubMed Central

    Kanai, Masashi; Okamoto, Kazuya; Yamamoto, Yosuke; Yoshioka, Akira; Hiramoto, Shuji; Nozaki, Akira; Nishikawa, Yoshitaka; Yamaguchi, Daisuke; Tomono, Teruko; Nakatsui, Masahiko; Baba, Mika; Morita, Tatsuya; Matsumoto, Shigemi; Kuroda, Tomohiro; Okuno, Yasushi; Muto, Manabu

    2017-01-01

    Background We aimed to develop an adaptable prognosis prediction model that could be applied at any time point during the treatment course for patients with cancer receiving chemotherapy, by applying time-series real-world big data. Methods Between April 2004 and September 2014, 4,997 patients with cancer who had received systemic chemotherapy were registered in a prospective cohort database at the Kyoto University Hospital. Of these, 2,693 patients with a death record were eligible for inclusion and divided into training (n = 1,341) and test (n = 1,352) cohorts. In total, 3,471,521 laboratory data at 115,738 time points, representing 40 laboratory items [e.g., white blood cell counts and albumin (Alb) levels] that were monitored for 1 year before the death event were applied for constructing prognosis prediction models. All possible prediction models comprising three different items from 40 laboratory items (40C3 = 9,880) were generated in the training cohort, and the model selection was performed in the test cohort. The fitness of the selected models was externally validated in the validation cohort from three independent settings. Results A prognosis prediction model utilizing Alb, lactate dehydrogenase, and neutrophils was selected based on a strong ability to predict death events within 1–6 months and a set of six prediction models corresponding to 1,2, 3, 4, 5, and 6 months was developed. The area under the curve (AUC) ranged from 0.852 for the 1 month model to 0.713 for the 6 month model. External validation supported the performance of these models. Conclusion By applying time-series real-world big data, we successfully developed a set of six adaptable prognosis prediction models for patients with cancer receiving chemotherapy. PMID:28837592

  16. Mathematical prediction of core body temperature from environment, activity, and clothing: The heat strain decision aid (HSDA).

    PubMed

    Potter, Adam W; Blanchard, Laurie A; Friedl, Karl E; Cadarette, Bruce S; Hoyt, Reed W

    2017-02-01

    Physiological models provide useful summaries of complex interrelated regulatory functions. These can often be reduced to simple input requirements and simple predictions for pragmatic applications. This paper demonstrates this modeling efficiency by tracing the development of one such simple model, the Heat Strain Decision Aid (HSDA), originally developed to address Army needs. The HSDA, which derives from the Givoni-Goldman equilibrium body core temperature prediction model, uses 16 inputs from four elements: individual characteristics, physical activity, clothing biophysics, and environmental conditions. These inputs are used to mathematically predict core temperature (T c ) rise over time and can estimate water turnover from sweat loss. Based on a history of military applications such as derivation of training and mission planning tools, we conclude that the HSDA model is a robust integration of physiological rules that can guide a variety of useful predictions. The HSDA model is limited to generalized predictions of thermal strain and does not provide individualized predictions that could be obtained from physiological sensor data-driven predictive models. This fully transparent physiological model should be improved and extended with new findings and new challenging scenarios. Published by Elsevier Ltd.

  17. Physiological time model of Scirpophaga incertulas (Lepidoptera: Pyralidae) in rice in Guandong Province, People's Republic of China.

    PubMed

    Stevenson, Douglass E; Feng, Ge; Zhang, Runjie; Harris, Marvin K

    2005-08-01

    Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae) is autochthonous and monophagous on rice, Oryza spp., which favors the development of a physiological time model using degree-days (degrees C) to establish a well defined window during which adults will be present in fields. Model development of S. incertulas adult flight phenology used climatic data and historical field observations of S. incertulas from 1962 through 1988. Analysis of variance was used to evaluate 5,203 prospective models with starting dates ranging from 1 January (day 1) to 30 April (day 121) and base temperatures ranging from -3 through 18.5 degrees C. From six candidate models, which shared the lowest standard deviation of prediction error, a model with a base temperature of 10 degrees C starting on 19 January was selected for validation. Validation with linear regression evaluated the differences between predicted and observed events and showed the model consistently predicted phenological events of 10 to 90% cumulative flight activity within a 3.5-d prediction interval regarded as acceptable for pest management decision making. The degree-day phenology model developed here is expected to find field application in Guandong Province. Expansion to other areas of rice production will require field validation. We expect the degree-day characterization of the activity period will remain essentially intact, but the start day may vary based on climate and geographic location. The development and validation of the phenology model of the S. incertulas by using procedures originally developed for pecan nut casebearer, Acrobasis nuxvorella Neunzig, shows the fungibility of this approach to developing prediction models for other insects.

  18. Gene expression models for prediction of longitudinal dispersion coefficient in streams

    NASA Astrophysics Data System (ADS)

    Sattar, Ahmed M. A.; Gharabaghi, Bahram

    2015-05-01

    Longitudinal dispersion is the key hydrologic process that governs transport of pollutants in natural streams. It is critical for spill action centers to be able to predict the pollutant travel time and break-through curves accurately following accidental spills in urban streams. This study presents a novel gene expression model for longitudinal dispersion developed using 150 published data sets of geometric and hydraulic parameters in natural streams in the United States, Canada, Europe, and New Zealand. The training and testing of the model were accomplished using randomly-selected 67% (100 data sets) and 33% (50 data sets) of the data sets, respectively. Gene expression programming (GEP) is used to develop empirical relations between the longitudinal dispersion coefficient and various control variables, including the Froude number which reflects the effect of reach slope, aspect ratio, and the bed material roughness on the dispersion coefficient. Two GEP models have been developed, and the prediction uncertainties of the developed GEP models are quantified and compared with those of existing models, showing improved prediction accuracy in favor of GEP models. Finally, a parametric analysis is performed for further verification of the developed GEP models. The main reason for the higher accuracy of the GEP models compared to the existing regression models is that exponents of the key variables (aspect ratio and bed material roughness) are not constants but a function of the Froude number. The proposed relations are both simple and accurate and can be effectively used to predict the longitudinal dispersion coefficients in natural streams.

  19. Risk Prediction Models in Psychiatry: Toward a New Frontier for the Prevention of Mental Illnesses.

    PubMed

    Bernardini, Francesco; Attademo, Luigi; Cleary, Sean D; Luther, Charles; Shim, Ruth S; Quartesan, Roberto; Compton, Michael T

    2017-05-01

    We conducted a systematic, qualitative review of risk prediction models designed and tested for depression, bipolar disorder, generalized anxiety disorder, posttraumatic stress disorder, and psychotic disorders. Our aim was to understand the current state of research on risk prediction models for these 5 disorders and thus future directions as our field moves toward embracing prediction and prevention. Systematic searches of the entire MEDLINE electronic database were conducted independently by 2 of the authors (from 1960 through 2013) in July 2014 using defined search criteria. Search terms included risk prediction, predictive model, or prediction model combined with depression, bipolar, manic depressive, generalized anxiety, posttraumatic, PTSD, schizophrenia, or psychosis. We identified 268 articles based on the search terms and 3 criteria: published in English, provided empirical data (as opposed to review articles), and presented results pertaining to developing or validating a risk prediction model in which the outcome was the diagnosis of 1 of the 5 aforementioned mental illnesses. We selected 43 original research reports as a final set of articles to be qualitatively reviewed. The 2 independent reviewers abstracted 3 types of data (sample characteristics, variables included in the model, and reported model statistics) and reached consensus regarding any discrepant abstracted information. Twelve reports described models developed for prediction of major depressive disorder, 1 for bipolar disorder, 2 for generalized anxiety disorder, 4 for posttraumatic stress disorder, and 24 for psychotic disorders. Most studies reported on sensitivity, specificity, positive predictive value, negative predictive value, and area under the (receiver operating characteristic) curve. Recent studies demonstrate the feasibility of developing risk prediction models for psychiatric disorders (especially psychotic disorders). The field must now advance by (1) conducting more large-scale, longitudinal studies pertaining to depression, bipolar disorder, anxiety disorders, and other psychiatric illnesses; (2) replicating and carrying out external validations of proposed models; (3) further testing potential selective and indicated preventive interventions; and (4) evaluating effectiveness of such interventions in the context of risk stratification using risk prediction models. © Copyright 2017 Physicians Postgraduate Press, Inc.

  20. Predicting Depression among Patients with Diabetes Using Longitudinal Data. A Multilevel Regression Model.

    PubMed

    Jin, H; Wu, S; Vidyanti, I; Di Capua, P; Wu, B

    2015-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". Depression is a common and often undiagnosed condition for patients with diabetes. It is also a condition that significantly impacts healthcare outcomes, use, and cost as well as elevating suicide risk. Therefore, a model to predict depression among diabetes patients is a promising and valuable tool for providers to proactively assess depressive symptoms and identify those with depression. This study seeks to develop a generalized multilevel regression model, using a longitudinal data set from a recent large-scale clinical trial, to predict depression severity and presence of major depression among patients with diabetes. Severity of depression was measured by the Patient Health Questionnaire PHQ-9 score. Predictors were selected from 29 candidate factors to develop a 2-level Poisson regression model that can make population-average predictions for all patients and subject-specific predictions for individual patients with historical records. Newly obtained patient records can be incorporated with historical records to update the prediction model. Root-mean-square errors (RMSE) were used to evaluate predictive accuracy of PHQ-9 scores. The study also evaluated the classification ability of using the predicted PHQ-9 scores to classify patients as having major depression. Two time-invariant and 10 time-varying predictors were selected for the model. Incorporating historical records and using them to update the model may improve both predictive accuracy of PHQ-9 scores and classification ability of the predicted scores. Subject-specific predictions (for individual patients with historical records) achieved RMSE about 4 and areas under the receiver operating characteristic (ROC) curve about 0.9 and are better than population-average predictions. The study developed a generalized multilevel regression model to predict depression and demonstrated that using generalized multilevel regression based on longitudinal patient records can achieve high predictive ability.

  1. Toward Big Data Analytics: Review of Predictive Models in Management of Diabetes and Its Complications.

    PubMed

    Cichosz, Simon Lebech; Johansen, Mette Dencker; Hejlesen, Ole

    2015-10-14

    Diabetes is one of the top priorities in medical science and health care management, and an abundance of data and information is available on these patients. Whether data stem from statistical models or complex pattern recognition models, they may be fused into predictive models that combine patient information and prognostic outcome results. Such knowledge could be used in clinical decision support, disease surveillance, and public health management to improve patient care. Our aim was to review the literature and give an introduction to predictive models in screening for and the management of prevalent short- and long-term complications in diabetes. Predictive models have been developed for management of diabetes and its complications, and the number of publications on such models has been growing over the past decade. Often multiple logistic or a similar linear regression is used for prediction model development, possibly owing to its transparent functionality. Ultimately, for prediction models to prove useful, they must demonstrate impact, namely, their use must generate better patient outcomes. Although extensive effort has been put in to building these predictive models, there is a remarkable scarcity of impact studies. © 2015 Diabetes Technology Society.

  2. Development of Web tools to predict axillary lymph node metastasis and pathological response to neoadjuvant chemotherapy in breast cancer patients.

    PubMed

    Sugimoto, Masahiro; Takada, Masahiro; Toi, Masakazu

    2014-12-09

    Nomograms are a standard computational tool to predict the likelihood of an outcome using multiple available patient features. We have developed a more powerful data mining methodology, to predict axillary lymph node (AxLN) metastasis and response to neoadjuvant chemotherapy (NAC) in primary breast cancer patients. We developed websites to use these tools. The tools calculate the probability of AxLN metastasis (AxLN model) and pathological complete response to NAC (NAC model). As a calculation algorithm, we employed a decision tree-based prediction model known as the alternative decision tree (ADTree), which is an analog development of if-then type decision trees. An ensemble technique was used to combine multiple ADTree predictions, resulting in higher generalization abilities and robustness against missing values. The AxLN model was developed with training datasets (n=148) and test datasets (n=143), and validated using an independent cohort (n=174), yielding an area under the receiver operating characteristic curve (AUC) of 0.768. The NAC model was developed and validated with n=150 and n=173 datasets from a randomized controlled trial, yielding an AUC of 0.787. AxLN and NAC models require users to input up to 17 and 16 variables, respectively. These include pathological features, including human epidermal growth factor receptor 2 (HER2) status and imaging findings. Each input variable has an option of "unknown," to facilitate prediction for cases with missing values. The websites developed facilitate the use of these tools, and serve as a database for accumulating new datasets.

  3. A Unified Model of Performance: Validation of its Predictions across Different Sleep/Wake Schedules

    PubMed Central

    Ramakrishnan, Sridhar; Wesensten, Nancy J.; Balkin, Thomas J.; Reifman, Jaques

    2016-01-01

    Study Objectives: Historically, mathematical models of human neurobehavioral performance developed on data from one sleep study were limited to predicting performance in similar studies, restricting their practical utility. We recently developed a unified model of performance (UMP) to predict the effects of the continuum of sleep loss—from chronic sleep restriction (CSR) to total sleep deprivation (TSD) challenges—and validated it using data from two studies of one laboratory. Here, we significantly extended this effort by validating the UMP predictions across a wide range of sleep/wake schedules from different studies and laboratories. Methods: We developed the UMP on psychomotor vigilance task (PVT) lapse data from one study encompassing four different CSR conditions (7 d of 3, 5, 7, and 9 h of sleep/night), and predicted performance in five other studies (from four laboratories), including different combinations of TSD (40 to 88 h), CSR (2 to 6 h of sleep/night), control (8 to 10 h of sleep/night), and nap (nocturnal and diurnal) schedules. Results: The UMP accurately predicted PVT performance trends across 14 different sleep/wake conditions, yielding average prediction errors between 7% and 36%, with the predictions lying within 2 standard errors of the measured data 87% of the time. In addition, the UMP accurately predicted performance impairment (average error of 15%) for schedules (TSD and naps) not used in model development. Conclusions: The unified model of performance can be used as a tool to help design sleep/wake schedules to optimize the extent and duration of neurobehavioral performance and to accelerate recovery after sleep loss. Citation: Ramakrishnan S, Wesensten NJ, Balkin TJ, Reifman J. A unified model of performance: validation of its predictions across different sleep/wake schedules. SLEEP 2016;39(1):249–262. PMID:26518594

  4. [Determination of soluble solids content in Nanfeng Mandarin by Vis/NIR spectroscopy and UVE-ICA-LS-SVM].

    PubMed

    Sun, Tong; Xu, Wen-Li; Hu, Tian; Liu, Mu-Hua

    2013-12-01

    The objective of the present research was to assess soluble solids content (SSC) of Nanfeng mandarin by visible/near infrared (Vis/NIR) spectroscopy combined with new variable selection method, simplify prediction model and improve the performance of prediction model for SSC of Nanfeng mandarin. A total of 300 Nanfeng mandarin samples were used, the numbers of Nanfeng mandarin samples in calibration, validation and prediction sets were 150, 75 and 75, respectively. Vis/NIR spectra of Nanfeng mandarin samples were acquired by a QualitySpec spectrometer in the wavelength range of 350-1000 nm. Uninformative variables elimination (UVE) was used to eliminate wavelength variables that had few information of SSC, then independent component analysis (ICA) was used to extract independent components (ICs) from spectra that eliminated uninformative wavelength variables. At last, least squares support vector machine (LS-SVM) was used to develop calibration models for SSC of Nanfeng mandarin using extracted ICs, and 75 prediction samples that had not been used for model development were used to evaluate the performance of SSC model of Nanfeng mandarin. The results indicate t hat Vis/NIR spectroscopy combinedwith UVE-ICA-LS-SVM is suitable for assessing SSC o f Nanfeng mandarin, and t he precision o f prediction ishigh. UVE--ICA is an effective method to eliminate uninformative wavelength variables, extract important spectral information, simplify prediction model and improve the performance of prediction model. The SSC model developed by UVE-ICA-LS-SVM is superior to that developed by PLS, PCA-LS-SVM or ICA-LS-SVM, and the coefficient of determination and root mean square error in calibration, validation and prediction sets were 0.978, 0.230%, 0.965, 0.301% and 0.967, 0.292%, respectively.

  5. Forecasting the Water Demand in Chongqing, China Using a Grey Prediction Model and Recommendations for the Sustainable Development of Urban Water Consumption.

    PubMed

    Wu, Hua'an; Zeng, Bo; Zhou, Meng

    2017-11-15

    High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy.

  6. Development and Validation of Decision Forest Model for Estrogen Receptor Binding Prediction of Chemicals Using Large Data Sets.

    PubMed

    Ng, Hui Wen; Doughty, Stephen W; Luo, Heng; Ye, Hao; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2015-12-21

    Some chemicals in the environment possess the potential to interact with the endocrine system in the human body. Multiple receptors are involved in the endocrine system; estrogen receptor α (ERα) plays very important roles in endocrine activity and is the most studied receptor. Understanding and predicting estrogenic activity of chemicals facilitates the evaluation of their endocrine activity. Hence, we have developed a decision forest classification model to predict chemical binding to ERα using a large training data set of 3308 chemicals obtained from the U.S. Food and Drug Administration's Estrogenic Activity Database. We tested the model using cross validations and external data sets of 1641 chemicals obtained from the U.S. Environmental Protection Agency's ToxCast project. The model showed good performance in both internal (92% accuracy) and external validations (∼ 70-89% relative balanced accuracies), where the latter involved the validations of the model across different ER pathway-related assays in ToxCast. The important features that contribute to the prediction ability of the model were identified through informative descriptor analysis and were related to current knowledge of ER binding. Prediction confidence analysis revealed that the model had both high prediction confidence and accuracy for most predicted chemicals. The results demonstrated that the model constructed based on the large training data set is more accurate and robust for predicting ER binding of chemicals than the published models that have been developed using much smaller data sets. The model could be useful for the evaluation of ERα-mediated endocrine activity potential of environmental chemicals.

  7. Using a Gravity Model to Predict Circulation in a Public Library System.

    ERIC Educational Resources Information Center

    Ottensmann, John R.

    1995-01-01

    Describes the development of a gravity model based upon principles of spatial interaction to predict the circulation of libraries in the Indianapolis-Marion County Public Library (Indiana). The model effectively predicted past circulation figures and was tested by predicting future library circulation, particularly for a new branch library.…

  8. Limited Sampling Strategy for Accurate Prediction of Pharmacokinetics of Saroglitazar: A 3-point Linear Regression Model Development and Successful Prediction of Human Exposure.

    PubMed

    Joshi, Shuchi N; Srinivas, Nuggehally R; Parmar, Deven V

    2018-03-01

    Our aim was to develop and validate the extrapolative performance of a regression model using a limited sampling strategy for accurate estimation of the area under the plasma concentration versus time curve for saroglitazar. Healthy subject pharmacokinetic data from a well-powered food-effect study (fasted vs fed treatments; n = 50) was used in this work. The first 25 subjects' serial plasma concentration data up to 72 hours and corresponding AUC 0-t (ie, 72 hours) from the fasting group comprised a training dataset to develop the limited sampling model. The internal datasets for prediction included the remaining 25 subjects from the fasting group and all 50 subjects from the fed condition of the same study. The external datasets included pharmacokinetic data for saroglitazar from previous single-dose clinical studies. Limited sampling models were composed of 1-, 2-, and 3-concentration-time points' correlation with AUC 0-t of saroglitazar. Only models with regression coefficients (R 2 ) >0.90 were screened for further evaluation. The best R 2 model was validated for its utility based on mean prediction error, mean absolute prediction error, and root mean square error. Both correlations between predicted and observed AUC 0-t of saroglitazar and verification of precision and bias using Bland-Altman plot were carried out. None of the evaluated 1- and 2-concentration-time points models achieved R 2 > 0.90. Among the various 3-concentration-time points models, only 4 equations passed the predefined criterion of R 2 > 0.90. Limited sampling models with time points 0.5, 2, and 8 hours (R 2 = 0.9323) and 0.75, 2, and 8 hours (R 2 = 0.9375) were validated. Mean prediction error, mean absolute prediction error, and root mean square error were <30% (predefined criterion) and correlation (r) was at least 0.7950 for the consolidated internal and external datasets of 102 healthy subjects for the AUC 0-t prediction of saroglitazar. The same models, when applied to the AUC 0-t prediction of saroglitazar sulfoxide, showed mean prediction error, mean absolute prediction error, and root mean square error <30% and correlation (r) was at least 0.9339 in the same pool of healthy subjects. A 3-concentration-time points limited sampling model predicts the exposure of saroglitazar (ie, AUC 0-t ) within predefined acceptable bias and imprecision limit. Same model was also used to predict AUC 0-∞ . The same limited sampling model was found to predict the exposure of saroglitazar sulfoxide within predefined criteria. This model can find utility during late-phase clinical development of saroglitazar in the patient population. Copyright © 2018 Elsevier HS Journals, Inc. All rights reserved.

  9. SITE CHARACTERIZATION TO SUPPORT MODEL DEVELOPMENT FOR CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The development of conceptual and predictive models is an important tool to guide site characterization in support of monitoring contaminants in ground water. The accuracy of predictive models is limited by the adequacy of the input data and the assumptions made to constrain mod...

  10. NEXT Ion Thruster Thermal Model

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.

    2010-01-01

    As the NEXT ion thruster progresses towards higher technology readiness, it is necessary to develop the tools that will support its implementation into flight programs. An ion thruster thermal model has been developed for the latest prototype model design to aid in predicting thruster temperatures for various missions. This model is comprised of two parts. The first part predicts the heating from the discharge plasma for various throttling points based on a discharge chamber plasma model. This model shows, as expected, that the internal heating is strongly correlated with the discharge power. Typically, the internal plasma heating increases with beam current and decreases slightly with beam voltage. The second is a model based on a finite difference thermal code used to predict the thruster temperatures. Both parts of the model will be described in this paper. This model has been correlated with a thermal development test on the NEXT Prototype Model 1 thruster with most predicted component temperatures within 5 to 10 C of test temperatures. The model indicates that heating, and hence current collection, is not based purely on the footprint of the magnet rings, but follows a 0.1:1:2:1 ratio for the cathode-to-conical-to-cylindrical-to-front magnet rings. This thermal model has also been used to predict the temperatures during the worst case mission profile that is anticipated for the thruster. The model predicts ample thermal margin for all of its components except the external cable harness under the hottest anticipated mission scenario. The external cable harness will be re-rated or replaced to meet the predicted environment.

  11. Intelligent path loss prediction engine design using machine learning in the urban outdoor environment

    NASA Astrophysics Data System (ADS)

    Wang, Ruichen; Lu, Jingyang; Xu, Yiran; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2018-05-01

    Due to the progressive expansion of public mobile networks and the dramatic growth of the number of wireless users in recent years, researchers are motivated to study the radio propagation in urban environments and develop reliable and fast path loss prediction models. During last decades, different types of propagation models are developed for urban scenario path loss predictions such as the Hata model and the COST 231 model. In this paper, the path loss prediction model is thoroughly investigated using machine learning approaches. Different non-linear feature selection methods are deployed and investigated to reduce the computational complexity. The simulation results are provided to demonstratethe validity of the machine learning based path loss prediction engine, which can correctly determine the signal propagation in a wireless urban setting.

  12. Analysis of model development strategies: predicting ventral hernia recurrence.

    PubMed

    Holihan, Julie L; Li, Linda T; Askenasy, Erik P; Greenberg, Jacob A; Keith, Jerrod N; Martindale, Robert G; Roth, J Scott; Liang, Mike K

    2016-11-01

    There have been many attempts to identify variables associated with ventral hernia recurrence; however, it is unclear which statistical modeling approach results in models with greatest internal and external validity. We aim to assess the predictive accuracy of models developed using five common variable selection strategies to determine variables associated with hernia recurrence. Two multicenter ventral hernia databases were used. Database 1 was randomly split into "development" and "internal validation" cohorts. Database 2 was designated "external validation". The dependent variable for model development was hernia recurrence. Five variable selection strategies were used: (1) "clinical"-variables considered clinically relevant, (2) "selective stepwise"-all variables with a P value <0.20 were assessed in a step-backward model, (3) "liberal stepwise"-all variables were included and step-backward regression was performed, (4) "restrictive internal resampling," and (5) "liberal internal resampling." Variables were included with P < 0.05 for the Restrictive model and P < 0.10 for the Liberal model. A time-to-event analysis using Cox regression was performed using these strategies. The predictive accuracy of the developed models was tested on the internal and external validation cohorts using Harrell's C-statistic where C > 0.70 was considered "reasonable". The recurrence rate was 32.9% (n = 173/526; median/range follow-up, 20/1-58 mo) for the development cohort, 36.0% (n = 95/264, median/range follow-up 20/1-61 mo) for the internal validation cohort, and 12.7% (n = 155/1224, median/range follow-up 9/1-50 mo) for the external validation cohort. Internal validation demonstrated reasonable predictive accuracy (C-statistics = 0.772, 0.760, 0.767, 0.757, 0.763), while on external validation, predictive accuracy dipped precipitously (C-statistic = 0.561, 0.557, 0.562, 0.553, 0.560). Predictive accuracy was equally adequate on internal validation among models; however, on external validation, all five models failed to demonstrate utility. Future studies should report multiple variable selection techniques and demonstrate predictive accuracy on external data sets for model validation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Validation of a modified Medical Resource Model for mass gatherings.

    PubMed

    Smith, Wayne P; Tuffin, Heather; Stratton, Samuel J; Wallis, Lee A

    2013-02-01

    A modified Medical Resource Model to predict the medical resources required at mass gatherings based on the risk profile of events has been developed. This study was undertaken to validate this tool using data from events held in both a developed and a developing country. A retrospective study was conducted utilizing prospectively gathered data from individual events at Old Trafford Stadium in Manchester, United Kingdom, and Ellis Park Stadium, Johannesburg, South Africa. Both stadia are similar in design and spectator capacity. Data for Professional Football as well as Rugby League and Rugby Union (respectively) matches were used for the study. The medical resources predicted for the events were determined by entering the risk profile of each of the events into the Medical Resource Model. A recently developed South African tool was used to predetermine medical staffing for mass gatherings. For the study, the medical resources actually required to deal with the patient load for events within the control sample from the two stadia were compared with the number of needed resources predicted by the Medical Resource Model when that tool was applied retrospectively to the study events. The comparison was used to determine if the newly developed tool was either over- or under-predicting the resource requirements. In the case of Ellis Park, the model under-predicted the basic life support (BLS) requirement for 1.5% of the events in the data set. Mean over-prediction was 209.1 minutes for BLS availability. Old Trafford displayed no events for which the Medical Resource Model would have under-predicted. The mean over-prediction of BLS availability for Old Trafford was 671.6 minutes. The intermediate life support (ILS) requirement for Ellis Park was under-predicted for seven of the total 66 events (10.6% of the events), all of which had one factor in common, that being relatively low spectator attendance numbers. Modelling for ILS at Old Trafford did not under-predict for any events. The ILS requirements showed a mean over-prediction of 161.4 minutes ILS availability for Ellis Park compared with 425.2 minutes for Old Trafford. Of the events held at Ellis Park, the Medical Resource Model under-predicted the ambulance requirement in 4.5% of the events. For Old Trafford events, the under-prediction was higher: 7.5% of cases. The medical resources that are deployed at a mass gathering should best match the requirement for patient care at a particular event. An important consideration for any model is that it does not continually under-predict the resources required in relation to the actual requirement. With the exception of a specific subset of events at Ellis Park, the rate of under-prediction for this model was acceptable.

  14. Crash prediction modeling for curved segments of rural two-lane two-way highways in Utah.

    DOT National Transportation Integrated Search

    2015-10-01

    This report contains the results of the development of crash prediction models for curved segments of rural : two-lane two-way highways in the state of Utah. The modeling effort included the calibration of the predictive : model found in the Highway ...

  15. Feasibility of developing LSI microcircuit reliability prediction models

    NASA Technical Reports Server (NTRS)

    Ryerson, C. M.

    1972-01-01

    In the proposed modeling approach, when any of the essential key factors are not known initially, they can be approximated in various ways with a known impact on the accuracy of the final predictions. For example, on any program where reliability predictions are started at interim states of project completion, a-priori approximate estimates of the key factors are established for making preliminary predictions. Later these are refined for greater accuracy as subsequent program information of a more definitive nature becomes available. Specific steps to develop, validate and verify these new models are described.

  16. Extrapolation of a predictive model for growth of a low inoculum size of Salmonella typhimurium DT104 on chicken skin to higher inoculum sizes

    USDA-ARS?s Scientific Manuscript database

    Validation of model predictions for independent variables not included in model development can save time and money by identifying conditions for which new models are not needed. A single strain of Salmonella Typhimurium DT104 was used to develop a general regression neural network model for growth...

  17. Probabilistic fatigue life prediction of metallic and composite materials

    NASA Astrophysics Data System (ADS)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  18. Using connectome-based predictive modeling to predict individual behavior from brain connectivity

    PubMed Central

    Shen, Xilin; Finn, Emily S.; Scheinost, Dustin; Rosenberg, Monica D.; Chun, Marvin M.; Papademetris, Xenophon; Constable, R Todd

    2017-01-01

    Neuroimaging is a fast developing research area where anatomical and functional images of human brains are collected using techniques such as functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and electroencephalography (EEG). Technical advances and large-scale datasets have allowed for the development of models capable of predicting individual differences in traits and behavior using brain connectivity measures derived from neuroimaging data. Here, we present connectome-based predictive modeling (CPM), a data-driven protocol for developing predictive models of brain-behavior relationships from connectivity data using cross-validation. This protocol includes the following steps: 1) feature selection, 2) feature summarization, 3) model building, and 4) assessment of prediction significance. We also include suggestions for visualizing the most predictive features (i.e., brain connections). The final result should be a generalizable model that takes brain connectivity data as input and generates predictions of behavioral measures in novel subjects, accounting for a significant amount of the variance in these measures. It has been demonstrated that the CPM protocol performs equivalently or better than most of the existing approaches in brain-behavior prediction. However, because CPM focuses on linear modeling and a purely data-driven driven approach, neuroscientists with limited or no experience in machine learning or optimization would find it easy to implement the protocols. Depending on the volume of data to be processed, the protocol can take 10–100 minutes for model building, 1–48 hours for permutation testing, and 10–20 minutes for visualization of results. PMID:28182017

  19. Evaluating predictive modeling’s potential to improve teleretinal screening participation in urban safety net clinics

    PubMed Central

    Ogunyemi, Omolola; Teklehaimanot, Senait; Patty, Lauren; Moran, Erin; George, Sheba

    2013-01-01

    Introduction Screening guidelines for diabetic patients recommend yearly eye examinations to detect diabetic retinopathy and other forms of diabetic eye disease. However, annual screening rates for retinopathy in US urban safety net settings remain low. Methods Using data gathered from a study of teleretinal screening in six urban safety net clinics, we assessed whether predictive modeling could be of value in identifying patients at risk of developing retinopathy. We developed and examined the accuracy of two predictive modeling approaches for diabetic retinopathy in a sample of 513 diabetic individuals, using routinely available clinical variables from retrospective medical record reviews. Bayesian networks and radial basis function (neural) networks were learned using ten-fold cross-validation. Results The predictive models were modestly predictive with the best model having an AUC of 0.71. Discussion Using routinely available clinical variables to predict patients at risk of developing retinopathy and to target them for annual eye screenings may be of some usefulness to safety net clinics. PMID:23920536

  20. Watershed Regressions for Pesticides (WARP) models for predicting stream concentrations of multiple pesticides

    USGS Publications Warehouse

    Stone, Wesley W.; Crawford, Charles G.; Gilliom, Robert J.

    2013-01-01

    Watershed Regressions for Pesticides for multiple pesticides (WARP-MP) are statistical models developed to predict concentration statistics for a wide range of pesticides in unmonitored streams. The WARP-MP models use the national atrazine WARP models in conjunction with an adjustment factor for each additional pesticide. The WARP-MP models perform best for pesticides with application timing and methods similar to those used with atrazine. For other pesticides, WARP-MP models tend to overpredict concentration statistics for the model development sites. For WARP and WARP-MP, the less-than-ideal sampling frequency for the model development sites leads to underestimation of the shorter-duration concentration; hence, the WARP models tend to underpredict 4- and 21-d maximum moving-average concentrations, with median errors ranging from 9 to 38% As a result of this sampling bias, pesticides that performed well with the model development sites are expected to have predictions that are biased low for these shorter-duration concentration statistics. The overprediction by WARP-MP apparent for some of the pesticides is variably offset by underestimation of the model development concentration statistics. Of the 112 pesticides used in the WARP-MP application to stream segments nationwide, 25 were predicted to have concentration statistics with a 50% or greater probability of exceeding one or more aquatic life benchmarks in one or more stream segments. Geographically, many of the modeled streams in the Corn Belt Region were predicted to have one or more pesticides that exceeded an aquatic life benchmark during 2009, indicating the potential vulnerability of streams in this region.

  1. Experimental and computational prediction of glass transition temperature of drugs.

    PubMed

    Alzghoul, Ahmad; Alhalaweh, Amjad; Mahlin, Denny; Bergström, Christel A S

    2014-12-22

    Glass transition temperature (Tg) is an important inherent property of an amorphous solid material which is usually determined experimentally. In this study, the relation between Tg and melting temperature (Tm) was evaluated using a data set of 71 structurally diverse druglike compounds. Further, in silico models for prediction of Tg were developed based on calculated molecular descriptors and linear (multilinear regression, partial least-squares, principal component regression) and nonlinear (neural network, support vector regression) modeling techniques. The models based on Tm predicted Tg with an RMSE of 19.5 K for the test set. Among the five computational models developed herein the support vector regression gave the best result with RMSE of 18.7 K for the test set using only four chemical descriptors. Hence, two different models that predict Tg of drug-like molecules with high accuracy were developed. If Tm is available, a simple linear regression can be used to predict Tg. However, the results also suggest that support vector regression and calculated molecular descriptors can predict Tg with equal accuracy, already before compound synthesis.

  2. Prediction models for clustered data: comparison of a random intercept and standard regression model

    PubMed Central

    2013-01-01

    Background When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Methods Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. Results The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. Conclusion The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters. PMID:23414436

  3. Prediction models for clustered data: comparison of a random intercept and standard regression model.

    PubMed

    Bouwmeester, Walter; Twisk, Jos W R; Kappen, Teus H; van Klei, Wilton A; Moons, Karel G M; Vergouwe, Yvonne

    2013-02-15

    When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters.

  4. Debris-flow runout predictions based on the average channel slope (ACS)

    USGS Publications Warehouse

    Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.

    2008-01-01

    Prediction of the runout distance of a debris flow is an important element in the delineation of potentially hazardous areas on alluvial fans and for the siting of mitigation structures. Existing runout estimation methods rely on input parameters that are often difficult to estimate, including volume, velocity, and frictional factors. In order to provide a simple method for preliminary estimates of debris-flow runout distances, we developed a model that provides runout predictions based on the average channel slope (ACS model) for non-volcanic debris flows that emanate from confined channels and deposit on well-defined alluvial fans. This model was developed from 20 debris-flow events in the western United States and British Columbia. Based on a runout estimation method developed for snow avalanches, this model predicts debris-flow runout as an angle of reach from a fixed point in the drainage channel to the end of the runout zone. The best fixed point was found to be the mid-point elevation of the drainage channel, measured from the apex of the alluvial fan to the top of the drainage basin. Predicted runout lengths were more consistent than those obtained from existing angle-of-reach estimation methods. Results of the model compared well with those of laboratory flume tests performed using the same range of channel slopes. The robustness of this model was tested by applying it to three debris-flow events not used in its development: predicted runout ranged from 82 to 131% of the actual runout for these three events. Prediction interval multipliers were also developed so that the user may calculate predicted runout within specified confidence limits. ?? 2008 Elsevier B.V. All rights reserved.

  5. Prediction of high-risk areas for visceral leishmaniasis using socioeconomic indicators and remote sensing data

    PubMed Central

    2014-01-01

    Spatial heterogeneity in the incidence of visceral leishmaniasis (VL) is an important aspect to be considered in planning control actions for the disease. The objective of this study was to predict areas at high risk for visceral leishmaniasis (VL) based on socioeconomic indicators and remote sensing data. We applied classification and regression trees to develop and validate prediction models. Performance of the models was assessed by means of sensitivity, specificity and area under the ROC curve. The model developed was able to discriminate 15 subsets of census tracts (CT) with different probabilities of containing CT with high risk of VL occurrence. The model presented, respectively, in the validation and learning samples, sensitivity of 79% and 52%, specificity of 75% and 66%, and area under the ROC curve of 83% and 66%. Considering the complex network of factors involved in the occurrence of VL in urban areas, the results of this study showed that the development of a predictive model for VL might be feasible and useful for guiding interventions against the disease, but it is still a challenge as demonstrated by the unsatisfactory predictive performance of the model developed. PMID:24885128

  6. Diagnostic accuracy of a mathematical model to predict apnea-hypopnea index using nighttime pulse oximetry

    NASA Astrophysics Data System (ADS)

    Ebben, Matthew R.; Krieger, Ana C.

    2016-03-01

    The intent of this study is to develop a predictive model to convert an oxygen desaturation index (ODI) to an apnea-hypopnea index (AHI). This model will then be compared to actual AHI to determine its precision. One thousand four hundred and sixty-seven subjects given polysomnograms with concurrent pulse oximetry between April 14, 2010, and February 7, 2012, were divided into model development (n=733) and verification groups (n=734) in order to develop a predictive model of AHI using ODI. Quadratic regression was used for model development. The coefficient of determination (r2) between the actual AHI and the predicted AHI (PredAHI) was 0.80 (r=0.90), which was significant at a p<0.001. The areas under the receiver operating characteristic curve ranged from 0.96 for AHI thresholds of ≥10 and ≥15/h to 0.97 for thresholds of ≥5 and ≥30/h. The algorithm described in this paper provides a convenient and accurate way to convert ODI to a predicted AHI. This tool makes it easier for clinicians to understand oximetry data in the context of traditional measures of sleep apnea.

  7. Validating spatiotemporal predictions of an important pest of small grains.

    PubMed

    Merrill, Scott C; Holtzer, Thomas O; Peairs, Frank B; Lester, Philip J

    2015-01-01

    Arthropod pests are typically managed using tactics applied uniformly to the whole field. Precision pest management applies tactics under the assumption that within-field pest pressure differences exist. This approach allows for more precise and judicious use of scouting resources and management tactics. For example, a portion of a field delineated as attractive to pests may be selected to receive extra monitoring attention. Likely because of the high variability in pest dynamics, little attention has been given to developing precision pest prediction models. Here, multimodel synthesis was used to develop a spatiotemporal model predicting the density of a key pest of wheat, the Russian wheat aphid, Diuraphis noxia (Kurdjumov). Spatially implicit and spatially explicit models were synthesized to generate spatiotemporal pest pressure predictions. Cross-validation and field validation were used to confirm model efficacy. A strong within-field signal depicting aphid density was confirmed with low prediction errors. Results show that the within-field model predictions will provide higher-quality information than would be provided by traditional field scouting. With improvements to the broad-scale model component, the model synthesis approach and resulting tool could improve pest management strategy and provide a template for the development of spatially explicit pest pressure models. © 2014 Society of Chemical Industry.

  8. A User-Friendly Model for Spray Drying to Aid Pharmaceutical Product Development

    PubMed Central

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach. PMID:24040240

  9. Computation of turbulent rotating channel flow with an algebraic Reynolds stress model

    NASA Technical Reports Server (NTRS)

    Warfield, M. J.; Lakshminarayana, B.

    1986-01-01

    An Algebraic Reynolds Stress Model has been implemented to modify the Kolmogorov-Prandtl eddy viscosity relation to produce an anisotropic turbulence model. The eddy viscosity relation becomes a function of the local turbulent production to dissipation ratio and local turbulence/rotation parameters. The model is used to predict fully-developed rotating channel flow over a diverse range of rotation numbers. In addition, predictions are obtained for a developing channel flow with high rotation. The predictions are compared with the experimental data available. Good predictions are achieved for mean velocity and wall shear stress over most of the rotation speeds tested. There is some prediction breakdown at high rotation (rotation number greater than .10) where the effects of the rotation on turbulence become quite complex. At high rotation and low Reynolds number, the laminarization on the trailing side represents a complex effect of rotation which is difficult to predict with the described models.

  10. Gap model development, validation, and application to succession of secondary subtropical dry forests of Puerto Rico

    Treesearch

    Jennifer A. Holm; H.H. Shugart; Skip J. Van Bloem; G.R. Larocque

    2012-01-01

    Because of human pressures, the need to understand and predict the long-term dynamics and development of subtropical dry forests is urgent. Through modifications to the ZELIG simulation model, including the development of species- and site-specific parameters and internal modifications, the capability to model and predict forest change within the 4500-ha Guanica State...

  11. Data-driven modeling and predictive control for boiler-turbine unit using fuzzy clustering and subspace methods.

    PubMed

    Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y

    2014-05-01

    This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Ground Motion Prediction Model Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Dhanya, J.; Raghukanth, S. T. G.

    2018-03-01

    This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg-Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude ( M w), closest distance to rupture plane ( R rup), shear wave velocity in the region ( V s30) and focal mechanism ( F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.

  13. How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology

    PubMed Central

    Aladjov, Hristo; Ankley, Gerald; Byrne, Hugh J.; de Knecht, Joop; Heinzle, Elmar; Klambauer, Günter; Landesmann, Brigitte; Luijten, Mirjam; MacKay, Cameron; Maxwell, Gavin; Meek, M. E. (Bette); Paini, Alicia; Perkins, Edward; Sobanski, Tomasz; Villeneuve, Dan; Waters, Katrina M.; Whelan, Maurice

    2017-01-01

    Efforts are underway to transform regulatory toxicology and chemical safety assessment from a largely empirical science based on direct observation of apical toxicity outcomes in whole organism toxicity tests to a predictive one in which outcomes and risk are inferred from accumulated mechanistic understanding. The adverse outcome pathway (AOP) framework provides a systematic approach for organizing knowledge that may support such inference. Likewise, computational models of biological systems at various scales provide another means and platform to integrate current biological understanding to facilitate inference and extrapolation. We argue that the systematic organization of knowledge into AOP frameworks can inform and help direct the design and development of computational prediction models that can further enhance the utility of mechanistic and in silico data for chemical safety assessment. This concept was explored as part of a workshop on AOP-Informed Predictive Modeling Approaches for Regulatory Toxicology held September 24–25, 2015. Examples of AOP-informed model development and its application to the assessment of chemicals for skin sensitization and multiple modes of endocrine disruption are provided. The role of problem formulation, not only as a critical phase of risk assessment, but also as guide for both AOP and complementary model development is described. Finally, a proposal for actively engaging the modeling community in AOP-informed computational model development is made. The contents serve as a vision for how AOPs can be leveraged to facilitate development of computational prediction models needed to support the next generation of chemical safety assessment. PMID:27994170

  14. A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance.

    PubMed

    Meads, Catherine; Ahmed, Ikhlaaq; Riley, Richard D

    2012-04-01

    A risk prediction model is a statistical tool for estimating the probability that a currently healthy individual with specific risk factors will develop a condition in the future such as breast cancer. Reliably accurate prediction models can inform future disease burdens, health policies and individual decisions. Breast cancer prediction models containing modifiable risk factors, such as alcohol consumption, BMI or weight, condom use, exogenous hormone use and physical activity, are of particular interest to women who might be considering how to reduce their risk of breast cancer and clinicians developing health policies to reduce population incidence rates. We performed a systematic review to identify and evaluate the performance of prediction models for breast cancer that contain modifiable factors. A protocol was developed and a sensitive search in databases including MEDLINE and EMBASE was conducted in June 2010. Extensive use was made of reference lists. Included were any articles proposing or validating a breast cancer prediction model in a general female population, with no language restrictions. Duplicate data extraction and quality assessment were conducted. Results were summarised qualitatively, and where possible meta-analysis of model performance statistics was undertaken. The systematic review found 17 breast cancer models, each containing a different but often overlapping set of modifiable and other risk factors, combined with an estimated baseline risk that was also often different. Quality of reporting was generally poor, with characteristics of included participants and fitted model results often missing. Only four models received independent validation in external data, most notably the 'Gail 2' model with 12 validations. None of the models demonstrated consistently outstanding ability to accurately discriminate between those who did and those who did not develop breast cancer. For example, random-effects meta-analyses of the performance of the 'Gail 2' model showed the average C statistic was 0.63 (95% CI 0.59-0.67), and the expected/observed ratio of events varied considerably across studies (95% prediction interval for E/O ratio when the model was applied in practice was 0.75-1.19). There is a need for models with better predictive performance but, given the large amount of work already conducted, further improvement of existing models based on conventional risk factors is perhaps unlikely. Research to identify new risk factors with large additionally predictive ability is therefore needed, alongside clearer reporting and continual validation of new models as they develop.

  15. Youth Sport Readiness: A Predictive Model for Success.

    ERIC Educational Resources Information Center

    Aicinena, Steven

    1992-01-01

    A model for predicting organized youth sport participation readiness has four predictive components: sport-related fundamental motor skill development; sport-specific knowledge; motivation; and socialization. Physical maturation is also important. The model emphasizes the importance of preparing children for successful participation through…

  16. PTSITE--a new method of site evaluation for loblolly pine: model development and user's guide

    Treesearch

    Constance A. Harrington

    1991-01-01

    A model, named PTSITE, was developed to predict site index for loblolly pine based on soil characteristics, site location on the landscape, and land history. The model was tested with data from several sources and judged to predict site index within + 4 feet (P

  17. Measuring pedestrian volumes and conflicts. Volume IV, Pedestrian/vehicle accident prediction model : a users manual

    DOT National Transportation Integrated Search

    1988-03-01

    Users of this manual are expected to be researchers who are attempting to develop models that can be used to predict occurrence of pedestrian accidents in a particular city. The manual presents guidelines in the development of such models. A group-...

  18. MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development (SETAC abstract)

    EPA Science Inventory

    The mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity and as an alternative to chemical class-based predictive toxicity modeling. However, the development of quantitative structure activity relationship (QSAR) and other models has been limit...

  19. MOAtox: A Comprehensive Mode of Action and Acute Aquatic Toxicity Database for Predictive Model Development

    EPA Science Inventory

    tThe mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity andas an alternative to chemical class-based predictive toxicity modeling. However, the development ofquantitative structure activity relationship (QSAR) and other models has been limite...

  20. Predictive modeling of infrared radiative heating in tomato dry-peeling process: Part II. Model validation and sensitivity analysis

    USDA-ARS?s Scientific Manuscript database

    A predictive mathematical model was developed to simulate heat transfer in a tomato undergoing double sided infrared (IR) heating in a dry-peeling process. The aims of this study were to validate the developed model using experimental data and to investigate different engineering parameters that mos...

  1. Stata Modules for Calculating Novel Predictive Performance Indices for Logistic Models

    PubMed Central

    Barkhordari, Mahnaz; Padyab, Mojgan; Hadaegh, Farzad; Azizi, Fereidoun; Bozorgmanesh, Mohammadreza

    2016-01-01

    Background Prediction is a fundamental part of prevention of cardiovascular diseases (CVD). The development of prediction algorithms based on the multivariate regression models loomed several decades ago. Parallel with predictive models development, biomarker researches emerged in an impressively great scale. The key question is how best to assess and quantify the improvement in risk prediction offered by new biomarkers or more basically how to assess the performance of a risk prediction model. Discrimination, calibration, and added predictive value have been recently suggested to be used while comparing the predictive performances of the predictive models’ with and without novel biomarkers. Objectives Lack of user-friendly statistical software has restricted implementation of novel model assessment methods while examining novel biomarkers. We intended, thus, to develop a user-friendly software that could be used by researchers with few programming skills. Materials and Methods We have written a Stata command that is intended to help researchers obtain cut point-free and cut point-based net reclassification improvement index and (NRI) and relative and absolute Integrated discriminatory improvement index (IDI) for logistic-based regression analyses.We applied the commands to a real data on women participating the Tehran lipid and glucose study (TLGS) to examine if information of a family history of premature CVD, waist circumference, and fasting plasma glucose can improve predictive performance of the Framingham’s “general CVD risk” algorithm. Results The command is addpred for logistic regression models. Conclusions The Stata package provided herein can encourage the use of novel methods in examining predictive capacity of ever-emerging plethora of novel biomarkers. PMID:27279830

  2. [Development and Application of a Performance Prediction Model for Home Care Nursing Based on a Balanced Scorecard using the Bayesian Belief Network].

    PubMed

    Noh, Wonjung; Seomun, Gyeongae

    2015-06-01

    This study was conducted to develop key performance indicators (KPIs) for home care nursing (HCN) based on a balanced scorecard, and to construct a performance prediction model of strategic objectives using the Bayesian Belief Network (BBN). This methodological study included four steps: establishment of KPIs, performance prediction modeling, development of a performance prediction model using BBN, and simulation of a suggested nursing management strategy. An HCN expert group and a staff group participated. The content validity index was analyzed using STATA 13.0, and BBN was analyzed using HUGIN 8.0. We generated a list of KPIs composed of 4 perspectives, 10 strategic objectives, and 31 KPIs. In the validity test of the performance prediction model, the factor with the greatest variance for increasing profit was maximum cost reduction of HCN services. The factor with the smallest variance for increasing profit was a minimum image improvement for HCN. During sensitivity analysis, the probability of the expert group did not affect the sensitivity. Furthermore, simulation of a 10% image improvement predicted the most effective way to increase profit. KPIs of HCN can estimate financial and non-financial performance. The performance prediction model for HCN will be useful to improve performance.

  3. Comprehensive ripeness-index for prediction of ripening level in mangoes by multivariate modelling of ripening behaviour

    NASA Astrophysics Data System (ADS)

    Eyarkai Nambi, Vijayaram; Thangavel, Kuladaisamy; Manickavasagan, Annamalai; Shahir, Sultan

    2017-01-01

    Prediction of ripeness level in climacteric fruits is essential for post-harvest handling. An index capable of predicting ripening level with minimum inputs would be highly beneficial to the handlers, processors and researchers in fruit industry. A study was conducted with Indian mango cultivars to develop a ripeness index and associated model. Changes in physicochemical, colour and textural properties were measured throughout the ripening period and the period was classified into five stages (unripe, early ripe, partially ripe, ripe and over ripe). Multivariate regression techniques like partial least square regression, principal component regression and multi linear regression were compared and evaluated for its prediction. Multi linear regression model with 12 parameters was found more suitable in ripening prediction. Scientific variable reduction method was adopted to simplify the developed model. Better prediction was achieved with either 2 or 3 variables (total soluble solids, colour and acidity). Cross validation was done to increase the robustness and it was found that proposed ripening index was more effective in prediction of ripening stages. Three-variable model would be suitable for commercial applications where reasonable accuracies are sufficient. However, 12-variable model can be used to obtain more precise results in research and development applications.

  4. The predictive ability of six pharmacokinetic models of rocuronium developed using a single bolus: evaluation with bolus and continuous infusion regimen.

    PubMed

    Sasakawa, Tomoki; Masui, Kenichi; Kazama, Tomiei; Iwasaki, Hiroshi

    2016-08-01

    Rocuronium concentration prediction using pharmacokinetic (PK) models would be useful for controlling rocuronium effects because neuromuscular monitoring throughout anesthesia can be difficult. This study assessed whether six different compartmental PK models developed from data obtained after bolus administration only could predict the measured plasma concentration (Cp) values of rocuronium delivered by bolus followed by continuous infusion. Rocuronium Cp values from 19 healthy subjects who received a bolus dose followed by continuous infusion in a phase III multicenter trial in Japan were used retrospectively as evaluation datasets. Six different compartmental PK models of rocuronium were used to simulate rocuronium Cp time course values, which were compared with measured Cp values. Prediction error (PE) derivatives of median absolute PE (MDAPE), median PE (MDPE), wobble, divergence absolute PE, and divergence PE were used to assess inaccuracy, bias, intra-individual variability, and time-related trends in APE and PE values. MDAPE and MDPE values were acceptable only for the Magorian and Kleijn models. The divergence PE value for the Kleijn model was lower than -10 %/h, indicating unstable prediction over time. The Szenohradszky model had the lowest divergence PE (-2.7 %/h) and wobble (5.4 %) values with negative bias (MDPE = -25.9 %). These three models were developed using the mixed-effects modeling approach. The Magorian model showed the best PE derivatives among the models assessed. A PK model developed from data obtained after single-bolus dosing can predict Cp values during bolus and continuous infusion. Thus, a mixed-effects modeling approach may be preferable in extrapolating such data.

  5. Improved NASA-ANOPP Noise Prediction Computer Code for Advanced Subsonic Propulsion Systems. Volume 2; Fan Suppression Model Development

    NASA Technical Reports Server (NTRS)

    Kontos, Karen B.; Kraft, Robert E.; Gliebe, Philip R.

    1996-01-01

    The Aircraft Noise Predication Program (ANOPP) is an industry-wide tool used to predict turbofan engine flyover noise in system noise optimization studies. Its goal is to provide the best currently available methods for source noise prediction. As part of a program to improve the Heidmann fan noise model, models for fan inlet and fan exhaust noise suppression estimation that are based on simple engine and acoustic geometry inputs have been developed. The models can be used to predict sound power level suppression and sound pressure level suppression at a position specified relative to the engine inlet.

  6. Validation and Use of a Predictive Modeling Tool: Employing Scientific Findings to Improve Responsible Conduct of Research Education.

    PubMed

    Mulhearn, Tyler J; Watts, Logan L; Todd, E Michelle; Medeiros, Kelsey E; Connelly, Shane; Mumford, Michael D

    2017-01-01

    Although recent evidence suggests ethics education can be effective, the nature of specific training programs, and their effectiveness, varies considerably. Building on a recent path modeling effort, the present study developed and validated a predictive modeling tool for responsible conduct of research education. The predictive modeling tool allows users to enter ratings in relation to a given ethics training program and receive instantaneous evaluative information for course refinement. Validation work suggests the tool's predicted outcomes correlate strongly (r = 0.46) with objective course outcomes. Implications for training program development and refinement are discussed.

  7. Prediction of Chemical Function: Model Development and Application

    EPA Science Inventory

    The United States Environmental Protection Agency’s Exposure Forecaster (ExpoCast) project is developing both statistical and mechanism-based computational models for predicting exposures to thousands of chemicals, including those in consumer products. The high-throughput (...

  8. Estimating wildfire risk on a Mojave Desert landscape using remote sensing and field sampling

    USGS Publications Warehouse

    Van Linn, Peter F.; Nussear, Kenneth E.; Esque, Todd C.; DeFalco, Lesley A.; Inman, Richard D.; Abella, Scott R.

    2013-01-01

    Predicting wildfires that affect broad landscapes is important for allocating suppression resources and guiding land management. Wildfire prediction in the south-western United States is of specific concern because of the increasing prevalence and severe effects of fire on desert shrublands and the current lack of accurate fire prediction tools. We developed a fire risk model to predict fire occurrence in a north-eastern Mojave Desert landscape. First we developed a spatial model using remote sensing data to predict fuel loads based on field estimates of fuels. We then modelled fire risk (interactions of fuel characteristics and environmental conditions conducive to wildfire) using satellite imagery, our model of fuel loads, and spatial data on ignition potential (lightning strikes and distance to roads), topography (elevation and aspect) and climate (maximum and minimum temperatures). The risk model was developed during a fire year at our study landscape and validated at a nearby landscape; model performance was accurate and similar at both sites. This study demonstrates that remote sensing techniques used in combination with field surveys can accurately predict wildfire risk in the Mojave Desert and may be applicable to other arid and semiarid lands where wildfires are prevalent.

  9. Development of a Model to Predict the Primary Infection Date of Bacterial Spot (Xanthomonas campestris pv. vesicatoria) on Hot Pepper.

    PubMed

    Kim, Ji-Hoon; Kang, Wee-Soo; Yun, Sung-Chul

    2014-06-01

    A population model of bacterial spot caused by Xanthomonas campestris pv. vesicatoria on hot pepper was developed to predict the primary disease infection date. The model estimated the pathogen population on the surface and within the leaf of the host based on the wetness period and temperature. For successful infection, at least 5,000 cells/ml of the bacterial population were required. Also, wind and rain were necessary according to regression analyses of the monitored data. Bacterial spot on the model is initiated when the pathogen population exceeds 10(15) cells/g within the leaf. The developed model was validated using 94 assessed samples from 2000 to 2007 obtained from monitored fields. Based on the validation study, the predicted initial infection dates varied based on the year rather than the location. Differences in initial infection dates between the model predictions and the monitored data in the field were minimal. For example, predicted infection dates for 7 locations were within the same month as the actual infection dates, 11 locations were within 1 month of the actual infection, and only 3 locations were more than 2 months apart from the actual infection. The predicted infection dates were mapped from 2009 to 2012; 2011 was the most severe year. Although the model was not sensitive enough to predict disease severity of less than 0.1% in the field, our model predicted bacterial spot severity of 1% or more. Therefore, this model can be applied in the field to determine when bacterial spot control is required.

  10. Development of a Model to Predict the Primary Infection Date of Bacterial Spot (Xanthomonas campestris pv. vesicatoria) on Hot Pepper

    PubMed Central

    Kim, Ji-Hoon; Kang, Wee-Soo; Yun, Sung-Chul

    2014-01-01

    A population model of bacterial spot caused by Xanthomonas campestris pv. vesicatoria on hot pepper was developed to predict the primary disease infection date. The model estimated the pathogen population on the surface and within the leaf of the host based on the wetness period and temperature. For successful infection, at least 5,000 cells/ml of the bacterial population were required. Also, wind and rain were necessary according to regression analyses of the monitored data. Bacterial spot on the model is initiated when the pathogen population exceeds 1015 cells/g within the leaf. The developed model was validated using 94 assessed samples from 2000 to 2007 obtained from monitored fields. Based on the validation study, the predicted initial infection dates varied based on the year rather than the location. Differences in initial infection dates between the model predictions and the monitored data in the field were minimal. For example, predicted infection dates for 7 locations were within the same month as the actual infection dates, 11 locations were within 1 month of the actual infection, and only 3 locations were more than 2 months apart from the actual infection. The predicted infection dates were mapped from 2009 to 2012; 2011 was the most severe year. Although the model was not sensitive enough to predict disease severity of less than 0.1% in the field, our model predicted bacterial spot severity of 1% or more. Therefore, this model can be applied in the field to determine when bacterial spot control is required. PMID:25288995

  11. Development of a predictive program for Vibrio parahaemolyticus growth under various environmental conditions.

    PubMed

    Fujikawa, Hiroshi; Kimura, Bon; Fujii, Tateo

    2009-09-01

    In this study, we developed a predictive program for Vibrio parahaemolyticus growth under various environmental conditions. Raw growth data was obtained with a V. parahaemolyticus O3:K6 strain cultured at a variety of broth temperatures, pH, and salt concentrations. Data were analyzed with our logistic model and the parameter values of the model were analyzed with polynomial equations. A prediction program consisting of the growth model and the polynomial equations was then developed. After the range of the growth environments was modified, the program successfully predicted the growth for all environments tested. The program could be a useful tool to ensure the bacteriological safety of seafood.

  12. Systematic review of prediction models for delirium in the older adult inpatient.

    PubMed

    Lindroth, Heidi; Bratzke, Lisa; Purvis, Suzanne; Brown, Roger; Coburn, Mark; Mrkobrada, Marko; Chan, Matthew T V; Davis, Daniel H J; Pandharipande, Pratik; Carlsson, Cynthia M; Sanders, Robert D

    2018-04-28

    To identify existing prognostic delirium prediction models and evaluate their validity and statistical methodology in the older adult (≥60 years) acute hospital population. Systematic review. PubMed, CINAHL, PsychINFO, SocINFO, Cochrane, Web of Science and Embase were searched from 1 January 1990 to 31 December 2016. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses and CHARMS Statement guided protocol development. age >60 years, inpatient, developed/validated a prognostic delirium prediction model. alcohol-related delirium, sample size ≤50. The primary performance measures were calibration and discrimination statistics. Two authors independently conducted search and extracted data. The synthesis of data was done by the first author. Disagreement was resolved by the mentoring author. The initial search resulted in 7,502 studies. Following full-text review of 192 studies, 33 were excluded based on age criteria (<60 years) and 27 met the defined criteria. Twenty-three delirium prediction models were identified, 14 were externally validated and 3 were internally validated. The following populations were represented: 11 medical, 3 medical/surgical and 13 surgical. The assessment of delirium was often non-systematic, resulting in varied incidence. Fourteen models were externally validated with an area under the receiver operating curve range from 0.52 to 0.94. Limitations in design, data collection methods and model metric reporting statistics were identified. Delirium prediction models for older adults show variable and typically inadequate predictive capabilities. Our review highlights the need for development of robust models to predict delirium in older inpatients. We provide recommendations for the development of such models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. A Constitutive Model for the Inelastic Multiaxial Cyclic Response of a Nickel Base Superalloy Rene 80. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Ramaswamy, V. G.

    1986-01-01

    The objective was to develop unified constitutive equations which can model a variety of nonlinear material phenomena observed in Rene 80 at elevated temperatures. A constitutive model was developed based on back stress and drag stress. The tensorial back stress was used to model directional effects; whereas, the scalar drag stress was used to model isotropic effects and cyclic hardening or softening. A flow equation and evolution equations for the state variables were developed in multiaxial form. Procedures were developed to generate the material parameters. The model predicted very well the monotonic tensile, cyclic, creep, and stress relaxation behavior of Rene 80 at 982 C. The model was then extended to 871, 760, and 538 C. It was shown that strain rate dependent behavior at high temperatures and strain rate independent behavior at the lower temperatures could be predicted very well. A large number of monotonic tensile, creep, stress relation, and cyclic experiments were predicted. The multiaxial capabilities of the model were verified extensively for combined tension/torsion experiments. The prediction of the model agreed very well for proportional, nonproportional, and pure shear cyclic loading conditions at 982 and 871 C.

  14. Development and Current Status of the “Cambridge” Loudness Models

    PubMed Central

    2014-01-01

    This article reviews the evolution of a series of models of loudness developed in Cambridge, UK. The first model, applicable to stationary sounds, was based on modifications of the model developed by Zwicker, including the introduction of a filter to allow for the effects of transfer of sound through the outer and middle ear prior to the calculation of an excitation pattern, and changes in the way that the excitation pattern was calculated. Later, modifications were introduced to the assumed middle-ear transfer function and to the way that specific loudness was calculated from excitation level. These modifications led to a finite calculated loudness at absolute threshold, which made it possible to predict accurately the absolute thresholds of broadband and narrowband sounds, based on the assumption that the absolute threshold corresponds to a fixed small loudness. The model was also modified to give predictions of partial loudness—the loudness of one sound in the presence of another. This allowed predictions of masked thresholds based on the assumption that the masked threshold corresponds to a fixed small partial loudness. Versions of the model for time-varying sounds were developed, which allowed prediction of the masked threshold of any sound in a background of any other sound. More recent extensions incorporate binaural processing to account for the summation of loudness across ears. In parallel, versions of the model for predicting loudness for hearing-impaired ears have been developed and have been applied to the development of methods for fitting multichannel compression hearing aids. PMID:25315375

  15. Review of numerical models to predict cooling tower performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B.M.; Nomura, K.K.; Bartz, J.A.

    1987-01-01

    Four state-of-the-art computer models developed to predict the thermal performance of evaporative cooling towers are summarized. The formulation of these models, STAR and TEFERI (developed in Europe) and FACTS and VERA2D (developed in the U.S.), is summarized. A fifth code, based on Merkel analysis, is also discussed. Principal features of the codes, computation time and storage requirements are described. A discussion of model validation is also provided.

  16. Computer-Assisted Decision Support for Student Admissions Based on Their Predicted Academic Performance.

    PubMed

    Muratov, Eugene; Lewis, Margaret; Fourches, Denis; Tropsha, Alexander; Cox, Wendy C

    2017-04-01

    Objective. To develop predictive computational models forecasting the academic performance of students in the didactic-rich portion of a doctor of pharmacy (PharmD) curriculum as admission-assisting tools. Methods. All PharmD candidates over three admission cycles were divided into two groups: those who completed the PharmD program with a GPA ≥ 3; and the remaining candidates. Random Forest machine learning technique was used to develop a binary classification model based on 11 pre-admission parameters. Results. Robust and externally predictive models were developed that had particularly high overall accuracy of 77% for candidates with high or low academic performance. These multivariate models were highly accurate in predicting these groups to those obtained using undergraduate GPA and composite PCAT scores only. Conclusion. The models developed in this study can be used to improve the admission process as preliminary filters and thus quickly identify candidates who are likely to be successful in the PharmD curriculum.

  17. QSAR modeling for predicting mutagenic toxicity of diverse chemicals for regulatory purposes.

    PubMed

    Basant, Nikita; Gupta, Shikha

    2017-06-01

    The safety assessment process of chemicals requires information on their mutagenic potential. The experimental determination of mutagenicity of a large number of chemicals is tedious and time and cost intensive, thus compelling for alternative methods. We have established local and global QSAR models for discriminating low and high mutagenic compounds and predicting their mutagenic activity in a quantitative manner in Salmonella typhimurium (TA) bacterial strains (TA98 and TA100). The decision treeboost (DTB)-based classification QSAR models discriminated among two categories with accuracies of >96% and the regression QSAR models precisely predicted the mutagenic activity of diverse chemicals yielding high correlations (R 2 ) between the experimental and model-predicted values in the respective training (>0.96) and test (>0.94) sets. The test set root mean squared error (RMSE) and mean absolute error (MAE) values emphasized the usefulness of the developed models for predicting new compounds. Relevant structural features of diverse chemicals that were responsible and influence the mutagenic activity were identified. The applicability domains of the developed models were defined. The developed models can be used as tools for screening new chemicals for their mutagenicity assessment for regulatory purpose.

  18. A comparative study of clonal selection algorithm for effluent removal forecasting in septic sludge treatment plant.

    PubMed

    Chun, Ting Sie; Malek, M A; Ismail, Amelia Ritahani

    2015-01-01

    The development of effluent removal prediction is crucial in providing a planning tool necessary for the future development and the construction of a septic sludge treatment plant (SSTP), especially in the developing countries. In order to investigate the expected functionality of the required standard, the prediction of the effluent quality, namely biological oxygen demand, chemical oxygen demand and total suspended solid of an SSTP was modelled using an artificial intelligence approach. In this paper, we adopt the clonal selection algorithm (CSA) to set up a prediction model, with a well-established method - namely the least-square support vector machine (LS-SVM) as a baseline model. The test results of the case study showed that the prediction of the CSA-based SSTP model worked well and provided model performance as satisfactory as the LS-SVM model. The CSA approach shows that fewer control and training parameters are required for model simulation as compared with the LS-SVM approach. The ability of a CSA approach in resolving limited data samples, non-linear sample function and multidimensional pattern recognition makes it a powerful tool in modelling the prediction of effluent removals in an SSTP.

  19. Identification of Chemical Vascular Disruptors During Development Using An Integrative Predictive Toxicity Model and Zebrafish and in Vitro Functional Angiogenesis Assays.

    EPA Science Inventory

    Identification of chemical vascular disruptors during development using an integrative predictive toxicity model and zebrafish and in vitro functional angiogenesis assays Chemically-induced vascular toxicity during embryonic development can result in a wide range of adverse pre...

  20. Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition: Computational Modeling

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We developed a mechanistic mathematical model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course (DRTC)...

  1. A conceptual prediction model for seasonal drought processes using atmospheric and oceanic standardized anomalies and its application to four recent severe regional drought events in China

    NASA Astrophysics Data System (ADS)

    Liu, Z.; LU, G.; He, H.; Wu, Z.; He, J.

    2017-12-01

    Reliable drought prediction is fundamental for seasonal water management. Considering that drought development is closely related to the spatio-temporal evolution of large-scale circulation patterns, we develop a conceptual prediction model of seasonal drought processes based on atmospheric/oceanic Standardized Anomalies (SA). It is essentially the synchronous stepwise regression relationship between 90-day-accumulated atmospheric/oceanic SA-based predictors and 3-month SPI updated daily (SPI3). It is forced with forecasted atmospheric and oceanic variables retrieved from seasonal climate forecast systems, and it can make seamless drought prediction for operational use after a year-to-year calibration. Simulation and prediction of four severe seasonal regional drought processes in China were forced with the NCEP/NCAR reanalysis datasets and the NCEP Climate Forecast System Version 2 (CFSv2) operationally forecasted datasets, respectively. With the help of real-time correction for operational application, model application during four recent severe regional drought events in China revealed that the model is good at development prediction but weak in severity prediction. In addition to weakness in prediction of drought peak, the prediction of drought relief is possible to be predicted as drought recession. This weak performance may be associated with precipitation-causing weather patterns during drought relief. Based on initial virtual analysis on predicted 90-day prospective SPI3 curves, it shows that the 2009/2010 drought in Southwest China and 2014 drought in North China can be predicted and simulated well even for the prospective 1-75 day. In comparison, the prospective 1-45 day may be a feasible and acceptable lead time for simulation and prediction of the 2011 droughts in Southwest China and East China, after which the simulated and predicted developments clearly change.

  2. How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittwehr, Clemens; Aladjov, Hristo; Ankley, Gerald

    Efforts are underway to transform regulatory toxicology and chemical safety assessment from a largely empirical science based on direct observation of apical toxicity outcomes in whole organism toxicity tests to a predictive one in which outcomes and risk are inferred from accumulated mechanistic understanding. The adverse outcome pathway (AOP) framework has emerged as a systematic approach for organizing knowledge that supports such inference. We argue that this systematic organization of knowledge can inform and help direct the design and development of computational prediction models that can further enhance the utility of mechanistic and in silico data for chemical safety assessment.more » Examples of AOP-informed model development and its application to the assessment of chemicals for skin sensitization and multiple modes of endocrine disruption are provided. The role of problem formulation, not only as a critical phase of risk assessment, but also as guide for both AOP and complementary model development described. Finally, a proposal for actively engaging the modeling community in AOP-informed computational model development is made. The contents serve as a vision for how AOPs can be leveraged to facilitate development of computational prediction models needed to support the next generation of chemical safety assessment.« less

  3. Measurement error and timing of predictor values for multivariable risk prediction models are poorly reported.

    PubMed

    Whittle, Rebecca; Peat, George; Belcher, John; Collins, Gary S; Riley, Richard D

    2018-05-18

    Measurement error in predictor variables may threaten the validity of clinical prediction models. We sought to evaluate the possible extent of the problem. A secondary objective was to examine whether predictors are measured at the intended moment of model use. A systematic search of Medline was used to identify a sample of articles reporting the development of a clinical prediction model published in 2015. After screening according to a predefined inclusion criteria, information on predictors, strategies to control for measurement error and intended moment of model use were extracted. Susceptibility to measurement error for each predictor was classified into low and high risk. Thirty-three studies were reviewed, including 151 different predictors in the final prediction models. Fifty-one (33.7%) predictors were categorised as high risk of error, however this was not accounted for in the model development. Only 8 (24.2%) studies explicitly stated the intended moment of model use and when the predictors were measured. Reporting of measurement error and intended moment of model use is poor in prediction model studies. There is a need to identify circumstances where ignoring measurement error in prediction models is consequential and whether accounting for the error will improve the predictions. Copyright © 2018. Published by Elsevier Inc.

  4. Runoff as a factor in USLE/RUSLE technology

    NASA Astrophysics Data System (ADS)

    Kinnell, Peter

    2014-05-01

    Modelling erosion for prediction purposes started with the development of the Universal Soil Loss Equation the focus of which was the prediction of long term (~20) average annul soil loss from field sized areas. That purpose has been maintained in the subsequent revision RUSLE, the most widely used erosion prediction model in the world. The lack of ability to predict short term soil loss saw the development of so-called process based models like WEPP and EUROSEM which focussed on predicting event erosion but failed to improve the prediction of long term erosion where the RUSLE worked well. One of the features of erosion recognised in the so-called process based modes is the fact that runoff is a primary factor in rainfall erosion and some modifications of USLE/RUSLE model have been proposed have included runoff as in independent factor in determining event erosivity. However, these models have ignored fundamental mathematical rules. The USLE-M which replaces the EI30 index by the product of the runoff ratio and EI30 was developed from the concept that soil loss is the product of runoff and sediment concentration and operates in a way that obeys the mathematical rules upon which the USLE/RUSLE model was based. In accounts for event soil loss better that the EI30 index where runoff values are known or predicted adequately. RUSLE2 now includes a capacity to model runoff driven erosion.

  5. An empirical model for prediction of household solid waste generation rate - A case study of Dhanbad, India.

    PubMed

    Kumar, Atul; Samadder, S R

    2017-10-01

    Accurate prediction of the quantity of household solid waste generation is very much essential for effective management of municipal solid waste (MSW). In actual practice, modelling methods are often found useful for precise prediction of MSW generation rate. In this study, two models have been proposed that established the relationships between the household solid waste generation rate and the socioeconomic parameters, such as household size, total family income, education, occupation and fuel used in the kitchen. Multiple linear regression technique was applied to develop the two models, one for the prediction of biodegradable MSW generation rate and the other for non-biodegradable MSW generation rate for individual households of the city Dhanbad, India. The results of the two models showed that the coefficient of determinations (R 2 ) were 0.782 for biodegradable waste generation rate and 0.676 for non-biodegradable waste generation rate using the selected independent variables. The accuracy tests of the developed models showed convincing results, as the predicted values were very close to the observed values. Validation of the developed models with a new set of data indicated a good fit for actual prediction purpose with predicted R 2 values of 0.76 and 0.64 for biodegradable and non-biodegradable MSW generation rate respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Novel prediction model of renal function after nephrectomy from automated renal volumetry with preoperative multidetector computed tomography (MDCT).

    PubMed

    Isotani, Shuji; Shimoyama, Hirofumi; Yokota, Isao; Noma, Yasuhiro; Kitamura, Kousuke; China, Toshiyuki; Saito, Keisuke; Hisasue, Shin-ichi; Ide, Hisamitsu; Muto, Satoru; Yamaguchi, Raizo; Ukimura, Osamu; Gill, Inderbir S; Horie, Shigeo

    2015-10-01

    The predictive model of postoperative renal function may impact on planning nephrectomy. To develop the novel predictive model using combination of clinical indices with computer volumetry to measure the preserved renal cortex volume (RCV) using multidetector computed tomography (MDCT), and to prospectively validate performance of the model. Total 60 patients undergoing radical nephrectomy from 2011 to 2013 participated, including a development cohort of 39 patients and an external validation cohort of 21 patients. RCV was calculated by voxel count using software (Vincent, FUJIFILM). Renal function before and after radical nephrectomy was assessed via the estimated glomerular filtration rate (eGFR). Factors affecting postoperative eGFR were examined by regression analysis to develop the novel model for predicting postoperative eGFR with a backward elimination method. The predictive model was externally validated and the performance of the model was compared with that of the previously reported models. The postoperative eGFR value was associated with age, preoperative eGFR, preserved renal parenchymal volume (RPV), preserved RCV, % of RPV alteration, and % of RCV alteration (p < 0.01). The significant correlated variables for %eGFR alteration were %RCV preservation (r = 0.58, p < 0.01) and %RPV preservation (r = 0.54, p < 0.01). We developed our regression model as follows: postoperative eGFR = 57.87 - 0.55(age) - 15.01(body surface area) + 0.30(preoperative eGFR) + 52.92(%RCV preservation). Strong correlation was seen between postoperative eGFR and the calculated estimation model (r = 0.83; p < 0.001). The external validation cohort (n = 21) showed our model outperformed previously reported models. Combining MDCT renal volumetry and clinical indices might yield an important tool for predicting postoperative renal function.

  7. Predictability of the Indian Ocean Dipole in the coupled models

    NASA Astrophysics Data System (ADS)

    Liu, Huafeng; Tang, Youmin; Chen, Dake; Lian, Tao

    2017-03-01

    In this study, the Indian Ocean Dipole (IOD) predictability, measured by the Indian Dipole Mode Index (DMI), is comprehensively examined at the seasonal time scale, including its actual prediction skill and potential predictability, using the ENSEMBLES multiple model ensembles and the recently developed information-based theoretical framework of predictability. It was found that all model predictions have useful skill, which is normally defined by the anomaly correlation coefficient larger than 0.5, only at around 2-3 month leads. This is mainly because there are more false alarms in predictions as leading time increases. The DMI predictability has significant seasonal variation, and the predictions whose target seasons are boreal summer (JJA) and autumn (SON) are more reliable than that for other seasons. All of models fail to predict the IOD onset before May and suffer from the winter (DJF) predictability barrier. The potential predictability study indicates that, with the model development and initialization improvement, the prediction of IOD onset is likely to be improved but the winter barrier cannot be overcome. The IOD predictability also has decadal variation, with a high skill during the 1960s and the early 1990s, and a low skill during the early 1970s and early 1980s, which is very consistent with the potential predictability. The main factors controlling the IOD predictability, including its seasonal and decadal variations, are also analyzed in this study.

  8. A predictive model for assistive technology adoption for people with dementia.

    PubMed

    Zhang, Shuai; McClean, Sally I; Nugent, Chris D; Donnelly, Mark P; Galway, Leo; Scotney, Bryan W; Cleland, Ian

    2014-01-01

    Assistive technology has the potential to enhance the level of independence of people with dementia, thereby increasing the possibility of supporting home-based care. In general, people with dementia are reluctant to change; therefore, it is important that suitable assistive technologies are selected for them. Consequently, the development of predictive models that are able to determine a person's potential to adopt a particular technology is desirable. In this paper, a predictive adoption model for a mobile phone-based video streaming system, developed for people with dementia, is presented. Taking into consideration characteristics related to a person's ability, living arrangements, and preferences, this paper discusses the development of predictive models, which were based on a number of carefully selected data mining algorithms for classification. For each, the learning on different relevant features for technology adoption has been tested, in conjunction with handling the imbalance of available data for output classes. Given our focus on providing predictive tools that could be used and interpreted by healthcare professionals, models with ease-of-use, intuitive understanding, and clear decision making processes are preferred. Predictive models have, therefore, been evaluated on a multi-criterion basis: in terms of their prediction performance, robustness, bias with regard to two types of errors and usability. Overall, the model derived from incorporating a k-Nearest-Neighbour algorithm using seven features was found to be the optimal classifier of assistive technology adoption for people with dementia (prediction accuracy 0.84 ± 0.0242).

  9. Predicting intensity ranks of peptide fragment ions.

    PubMed

    Frank, Ari M

    2009-05-01

    Accurate modeling of peptide fragmentation is necessary for the development of robust scoring functions for peptide-spectrum matches, which are the cornerstone of MS/MS-based identification algorithms. Unfortunately, peptide fragmentation is a complex process that can involve several competing chemical pathways, which makes it difficult to develop generative probabilistic models that describe it accurately. However, the vast amounts of MS/MS data being generated now make it possible to use data-driven machine learning methods to develop discriminative ranking-based models that predict the intensity ranks of a peptide's fragment ions. We use simple sequence-based features that get combined by a boosting algorithm into models that make peak rank predictions with high accuracy. In an accompanying manuscript, we demonstrate how these prediction models are used to significantly improve the performance of peptide identification algorithms. The models can also be useful in the design of optimal multiple reaction monitoring (MRM) transitions, in cases where there is insufficient experimental data to guide the peak selection process. The prediction algorithm can also be run independently through PepNovo+, which is available for download from http://bix.ucsd.edu/Software/PepNovo.html.

  10. Predicting Intensity Ranks of Peptide Fragment Ions

    PubMed Central

    Frank, Ari M.

    2009-01-01

    Accurate modeling of peptide fragmentation is necessary for the development of robust scoring functions for peptide-spectrum matches, which are the cornerstone of MS/MS-based identification algorithms. Unfortunately, peptide fragmentation is a complex process that can involve several competing chemical pathways, which makes it difficult to develop generative probabilistic models that describe it accurately. However, the vast amounts of MS/MS data being generated now make it possible to use data-driven machine learning methods to develop discriminative ranking-based models that predict the intensity ranks of a peptide's fragment ions. We use simple sequence-based features that get combined by a boosting algorithm in to models that make peak rank predictions with high accuracy. In an accompanying manuscript, we demonstrate how these prediction models are used to significantly improve the performance of peptide identification algorithms. The models can also be useful in the design of optimal MRM transitions, in cases where there is insufficient experimental data to guide the peak selection process. The prediction algorithm can also be run independently through PepNovo+, which is available for download from http://bix.ucsd.edu/Software/PepNovo.html. PMID:19256476

  11. Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database.

    PubMed

    Niu, Mutian; Kebreab, Ermias; Hristov, Alexander N; Oh, Joonpyo; Arndt, Claudia; Bannink, André; Bayat, Ali R; Brito, André F; Boland, Tommy; Casper, David; Crompton, Les A; Dijkstra, Jan; Eugène, Maguy A; Garnsworthy, Phil C; Haque, Md Najmul; Hellwing, Anne L F; Huhtanen, Pekka; Kreuzer, Michael; Kuhla, Bjoern; Lund, Peter; Madsen, Jørgen; Martin, Cécile; McClelland, Shelby C; McGee, Mark; Moate, Peter J; Muetzel, Stefan; Muñoz, Camila; O'Kiely, Padraig; Peiren, Nico; Reynolds, Christopher K; Schwarm, Angela; Shingfield, Kevin J; Storlien, Tonje M; Weisbjerg, Martin R; Yáñez-Ruiz, David R; Yu, Zhongtang

    2018-02-16

    Enteric methane (CH 4 ) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH 4 is complex, expensive, and impractical at large scales; therefore, models are commonly used to predict CH 4 production. However, building robust prediction models requires extensive data from animals under different management systems worldwide. The objectives of this study were to (1) collate a global database of enteric CH 4 production from individual lactating dairy cattle; (2) determine the availability of key variables for predicting enteric CH 4 production (g/day per cow), yield [g/kg dry matter intake (DMI)], and intensity (g/kg energy corrected milk) and their respective relationships; (3) develop intercontinental and regional models and cross-validate their performance; and (4) assess the trade-off between availability of on-farm inputs and CH 4 prediction accuracy. The intercontinental database covered Europe (EU), the United States (US), and Australia (AU). A sequential approach was taken by incrementally adding key variables to develop models with increasing complexity. Methane emissions were predicted by fitting linear mixed models. Within model categories, an intercontinental model with the most available independent variables performed best with root mean square prediction error (RMSPE) as a percentage of mean observed value of 16.6%, 14.7%, and 19.8% for intercontinental, EU, and United States regions, respectively. Less complex models requiring only DMI had predictive ability comparable to complex models. Enteric CH 4 production, yield, and intensity prediction models developed on an intercontinental basis had similar performance across regions, however, intercepts and slopes were different with implications for prediction. Revised CH 4 emission conversion factors for specific regions are required to improve CH 4 production estimates in national inventories. In conclusion, information on DMI is required for good prediction, and other factors such as dietary neutral detergent fiber (NDF) concentration, improve the prediction. For enteric CH 4 yield and intensity prediction, information on milk yield and composition is required for better estimation. © 2018 John Wiley & Sons Ltd.

  12. Chemical structure-based predictive model for methanogenic anaerobic biodegradation potential.

    PubMed

    Meylan, William; Boethling, Robert; Aronson, Dallas; Howard, Philip; Tunkel, Jay

    2007-09-01

    Many screening-level models exist for predicting aerobic biodegradation potential from chemical structure, but anaerobic biodegradation generally has been ignored by modelers. We used a fragment contribution approach to develop a model for predicting biodegradation potential under methanogenic anaerobic conditions. The new model has 37 fragments (substructures) and classifies a substance as either fast or slow, relative to the potential to be biodegraded in the "serum bottle" anaerobic biodegradation screening test (Organization for Economic Cooperation and Development Guideline 311). The model correctly classified 90, 77, and 91% of the chemicals in the training set (n = 169) and two independent validation sets (n = 35 and 23), respectively. Accuracy of predictions of fast and slow degradation was equal for training-set chemicals, but fast-degradation predictions were less accurate than slow-degradation predictions for the validation sets. Analysis of the signs of the fragment coefficients for this and the other (aerobic) Biowin models suggests that in the context of simple group contribution models, the majority of positive and negative structural influences on ultimate degradation are the same for aerobic and methanogenic anaerobic biodegradation.

  13. Predicting lettuce canopy photosynthesis with statistical and neural network models

    NASA Technical Reports Server (NTRS)

    Frick, J.; Precetti, C.; Mitchell, C. A.

    1998-01-01

    An artificial neural network (NN) and a statistical regression model were developed to predict canopy photosynthetic rates (Pn) for 'Waldman's Green' leaf lettuce (Latuca sativa L.). All data used to develop and test the models were collected for crop stands grown hydroponically and under controlled-environment conditions. In the NN and regression models, canopy Pn was predicted as a function of three independent variables: shootzone CO2 concentration (600 to 1500 micromoles mol-1), photosynthetic photon flux (PPF) (600 to 1100 micromoles m-2 s-1), and canopy age (10 to 20 days after planting). The models were used to determine the combinations of CO2 and PPF setpoints required each day to maintain maximum canopy Pn. The statistical model (a third-order polynomial) predicted Pn more accurately than the simple NN (a three-layer, fully connected net). Over an 11-day validation period, average percent difference between predicted and actual Pn was 12.3% and 24.6% for the statistical and NN models, respectively. Both models lost considerable accuracy when used to determine relatively long-range Pn predictions (> or = 6 days into the future).

  14. Maximum spreading of liquid drop on various substrates with different wettabilities

    NASA Astrophysics Data System (ADS)

    Choudhury, Raihan; Choi, Junho; Yang, Sangsun; Kim, Yong-Jin; Lee, Donggeun

    2017-09-01

    This paper describes a novel model developed for a priori prediction of the maximal spread of a liquid drop on a surface. As a first step, a series of experiments were conducted under precise control of the initial drop diameter, its falling height, roughness, and wettability of dry surfaces. The transient liquid spreading was recorded by a high-speed camera to obtain its maximum spreading under various conditions. Eight preexisting models were tested for accurate prediction of the maximum spread; however, most of the model predictions were not satisfactory except one, in comparison with our experimental data. A comparative scaling analysis of the literature models was conducted to elucidate the condition-dependent prediction characteristics of the models. The conditioned bias in the predictions was mainly attributed to the inappropriate formulations of viscous dissipation or interfacial energy of liquid on the surface. Hence, a novel model based on energy balance during liquid impact was developed to overcome the limitations of the previous models. As a result, the present model was quite successful in predicting the liquid spread in all the conditions.

  15. Predicting Occurrence of Spine Surgery Complications Using "Big Data" Modeling of an Administrative Claims Database.

    PubMed

    Ratliff, John K; Balise, Ray; Veeravagu, Anand; Cole, Tyler S; Cheng, Ivan; Olshen, Richard A; Tian, Lu

    2016-05-18

    Postoperative metrics are increasingly important in determining standards of quality for physicians and hospitals. Although complications following spinal surgery have been described, procedural and patient variables have yet to be incorporated into a predictive model of adverse-event occurrence. We sought to develop a predictive model of complication occurrence after spine surgery. We used longitudinal prospective data from a national claims database and developed a predictive model incorporating complication type and frequency of occurrence following spine surgery procedures. We structured our model to assess the impact of features such as preoperative diagnosis, patient comorbidities, location in the spine, anterior versus posterior approach, whether fusion had been performed, whether instrumentation had been used, number of levels, and use of bone morphogenetic protein (BMP). We assessed a variety of adverse events. Prediction models were built using logistic regression with additive main effects and logistic regression with main effects as well as all 2 and 3-factor interactions. Least absolute shrinkage and selection operator (LASSO) regularization was used to select features. Competing approaches included boosted additive trees and the classification and regression trees (CART) algorithm. The final prediction performance was evaluated by estimating the area under a receiver operating characteristic curve (AUC) as predictions were applied to independent validation data and compared with the Charlson comorbidity score. The model was developed from 279,135 records of patients with a minimum duration of follow-up of 30 days. Preliminary assessment showed an adverse-event rate of 13.95%, well within norms reported in the literature. We used the first 80% of the records for training (to predict adverse events) and the remaining 20% of the records for validation. There was remarkable similarity among methods, with an AUC of 0.70 for predicting the occurrence of adverse events. The AUC using the Charlson comorbidity score was 0.61. The described model was more accurate than Charlson scoring (p < 0.01). We present a modeling effort based on administrative claims data that predicts the occurrence of complications after spine surgery. We believe that the development of a predictive modeling tool illustrating the risk of complication occurrence after spine surgery will aid in patient counseling and improve the accuracy of risk modeling strategies. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  16. Long-term prediction of fish growth under varying ambient temperature using a multiscale dynamic model

    PubMed Central

    2009-01-01

    Background Feed composition has a large impact on the growth of animals, particularly marine fish. We have developed a quantitative dynamic model that can predict the growth and body composition of marine fish for a given feed composition over a timespan of several months. The model takes into consideration the effects of environmental factors, particularly temperature, on growth, and it incorporates detailed kinetics describing the main metabolic processes (protein, lipid, and central metabolism) known to play major roles in growth and body composition. Results For validation, we compared our model's predictions with the results of several experimental studies. We showed that the model gives reliable predictions of growth, nutrient utilization (including amino acid retention), and body composition over a timespan of several months, longer than most of the previously developed predictive models. Conclusion We demonstrate that, despite the difficulties involved, multiscale models in biology can yield reasonable and useful results. The model predictions are reliable over several timescales and in the presence of strong temperature fluctuations, which are crucial factors for modeling marine organism growth. The model provides important improvements over existing models. PMID:19903354

  17. Promises of Machine Learning Approaches in Prediction of Absorption of Compounds.

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2018-01-01

    The Machine Learning (ML) is one of the fastest developing techniques in the prediction and evaluation of important pharmacokinetic properties such as absorption, distribution, metabolism and excretion. The availability of a large number of robust validation techniques for prediction models devoted to pharmacokinetics has significantly enhanced the trust and authenticity in ML approaches. There is a series of prediction models generated and used for rapid screening of compounds on the basis of absorption in last one decade. Prediction of absorption of compounds using ML models has great potential across the pharmaceutical industry as a non-animal alternative to predict absorption. However, these prediction models still have to go far ahead to develop the confidence similar to conventional experimental methods for estimation of drug absorption. Some of the general concerns are selection of appropriate ML methods and validation techniques in addition to selecting relevant descriptors and authentic data sets for the generation of prediction models. The current review explores published models of ML for the prediction of absorption using physicochemical properties as descriptors and their important conclusions. In addition, some critical challenges in acceptance of ML models for absorption are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. A predictive estimation method for carbon dioxide transport by data-driven modeling with a physically-based data model.

    PubMed

    Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young; Jun, Seong-Chun; Choung, Sungwook; Yun, Seong-Taek; Oh, Junho; Kim, Hyun-Jun

    2017-11-01

    In this study, a data-driven method for predicting CO 2 leaks and associated concentrations from geological CO 2 sequestration is developed. Several candidate models are compared based on their reproducibility and predictive capability for CO 2 concentration measurements from the Environment Impact Evaluation Test (EIT) site in Korea. Based on the data mining results, a one-dimensional solution of the advective-dispersive equation for steady flow (i.e., Ogata-Banks solution) is found to be most representative for the test data, and this model is adopted as the data model for the developed method. In the validation step, the method is applied to estimate future CO 2 concentrations with the reference estimation by the Ogata-Banks solution, where a part of earlier data is used as the training dataset. From the analysis, it is found that the ensemble mean of multiple estimations based on the developed method shows high prediction accuracy relative to the reference estimation. In addition, the majority of the data to be predicted are included in the proposed quantile interval, which suggests adequate representation of the uncertainty by the developed method. Therefore, the incorporation of a reasonable physically-based data model enhances the prediction capability of the data-driven model. The proposed method is not confined to estimations of CO 2 concentration and may be applied to various real-time monitoring data from subsurface sites to develop automated control, management or decision-making systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Development of predictive weather scenarios for early prediction of rice yield in South Korea

    NASA Astrophysics Data System (ADS)

    Shin, Y.; Cho, J.; Jung, I.

    2017-12-01

    International grain prices are becoming unstable due to frequent occurrence of abnormal weather phenomena caused by climate change. Early prediction of grain yield using weather forecast data is important for stabilization of international grain prices. The APEC Climate Center (APCC) is providing seasonal forecast data based on monthly climate prediction models for global seasonal forecasting services. The 3-month and 6-month seasonal forecast data using the multi-model ensemble (MME) technique are provided in their own website, ADSS (APCC Data Service System, http://adss.apcc21.org/). The spatial resolution of seasonal forecast data for each individual model is 2.5°×2.5°(about 250km) and the time scale is created as monthly. In this study, we developed customized weather forecast scenarios that are combined seasonal forecast data and observational data apply to early rice yield prediction model. Statistical downscale method was applied to produce meteorological input data of crop model because field scale crop model (ORYZA2000) requires daily weather data. In order to determine whether the forecasting data is suitable for the crop model, we produced spatio-temporal downscaled weather scenarios and evaluated the predictability by comparison with observed weather data at 57 ASOS stations in South Korea. The customized weather forecast scenarios can be applied to various application fields not only early rice yield prediction. Acknowledgement This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No: PJ012855022017)" Rural Development Administration, Republic of Korea.

  20. Prediction Models for 30-Day Mortality and Complications After Total Knee and Hip Arthroplasties for Veteran Health Administration Patients With Osteoarthritis.

    PubMed

    Harris, Alex Hs; Kuo, Alfred C; Bowe, Thomas; Gupta, Shalini; Nordin, David; Giori, Nicholas J

    2018-05-01

    Statistical models to preoperatively predict patients' risk of death and major complications after total joint arthroplasty (TJA) could improve the quality of preoperative management and informed consent. Although risk models for TJA exist, they have limitations including poor transparency and/or unknown or poor performance. Thus, it is currently impossible to know how well currently available models predict short-term complications after TJA, or if newly developed models are more accurate. We sought to develop and conduct cross-validation of predictive risk models, and report details and performance metrics as benchmarks. Over 90 preoperative variables were used as candidate predictors of death and major complications within 30 days for Veterans Health Administration patients with osteoarthritis who underwent TJA. Data were split into 3 samples-for selection of model tuning parameters, model development, and cross-validation. C-indexes (discrimination) and calibration plots were produced. A total of 70,569 patients diagnosed with osteoarthritis who received primary TJA were included. C-statistics and bootstrapped confidence intervals for the cross-validation of the boosted regression models were highest for cardiac complications (0.75; 0.71-0.79) and 30-day mortality (0.73; 0.66-0.79) and lowest for deep vein thrombosis (0.59; 0.55-0.64) and return to the operating room (0.60; 0.57-0.63). Moderately accurate predictive models of 30-day mortality and cardiac complications after TJA in Veterans Health Administration patients were developed and internally cross-validated. By reporting model coefficients and performance metrics, other model developers can test these models on new samples and have a procedure and indication-specific benchmark to surpass. Published by Elsevier Inc.

  1. Development and External Validation of a Melanoma Risk Prediction Model Based on Self-assessed Risk Factors.

    PubMed

    Vuong, Kylie; Armstrong, Bruce K; Weiderpass, Elisabete; Lund, Eiliv; Adami, Hans-Olov; Veierod, Marit B; Barrett, Jennifer H; Davies, John R; Bishop, D Timothy; Whiteman, David C; Olsen, Catherine M; Hopper, John L; Mann, Graham J; Cust, Anne E; McGeechan, Kevin

    2016-08-01

    Identifying individuals at high risk of melanoma can optimize primary and secondary prevention strategies. To develop and externally validate a risk prediction model for incident first-primary cutaneous melanoma using self-assessed risk factors. We used unconditional logistic regression to develop a multivariable risk prediction model. Relative risk estimates from the model were combined with Australian melanoma incidence and competing mortality rates to obtain absolute risk estimates. A risk prediction model was developed using the Australian Melanoma Family Study (629 cases and 535 controls) and externally validated using 4 independent population-based studies: the Western Australia Melanoma Study (511 case-control pairs), Leeds Melanoma Case-Control Study (960 cases and 513 controls), Epigene-QSkin Study (44 544, of which 766 with melanoma), and Swedish Women's Lifestyle and Health Cohort Study (49 259 women, of which 273 had melanoma). We validated model performance internally and externally by assessing discrimination using the area under the receiver operating curve (AUC). Additionally, using the Swedish Women's Lifestyle and Health Cohort Study, we assessed model calibration and clinical usefulness. The risk prediction model included hair color, nevus density, first-degree family history of melanoma, previous nonmelanoma skin cancer, and lifetime sunbed use. On internal validation, the AUC was 0.70 (95% CI, 0.67-0.73). On external validation, the AUC was 0.66 (95% CI, 0.63-0.69) in the Western Australia Melanoma Study, 0.67 (95% CI, 0.65-0.70) in the Leeds Melanoma Case-Control Study, 0.64 (95% CI, 0.62-0.66) in the Epigene-QSkin Study, and 0.63 (95% CI, 0.60-0.67) in the Swedish Women's Lifestyle and Health Cohort Study. Model calibration showed close agreement between predicted and observed numbers of incident melanomas across all deciles of predicted risk. In the external validation setting, there was higher net benefit when using the risk prediction model to classify individuals as high risk compared with classifying all individuals as high risk. The melanoma risk prediction model performs well and may be useful in prevention interventions reliant on a risk assessment using self-assessed risk factors.

  2. Modeling the frequency of opposing left-turn conflicts at signalized intersections using generalized linear regression models.

    PubMed

    Zhang, Xin; Liu, Pan; Chen, Yuguang; Bai, Lu; Wang, Wei

    2014-01-01

    The primary objective of this study was to identify whether the frequency of traffic conflicts at signalized intersections can be modeled. The opposing left-turn conflicts were selected for the development of conflict predictive models. Using data collected at 30 approaches at 20 signalized intersections, the underlying distributions of the conflicts under different traffic conditions were examined. Different conflict-predictive models were developed to relate the frequency of opposing left-turn conflicts to various explanatory variables. The models considered include a linear regression model, a negative binomial model, and separate models developed for four traffic scenarios. The prediction performance of different models was compared. The frequency of traffic conflicts follows a negative binominal distribution. The linear regression model is not appropriate for the conflict frequency data. In addition, drivers behaved differently under different traffic conditions. Accordingly, the effects of conflicting traffic volumes on conflict frequency vary across different traffic conditions. The occurrences of traffic conflicts at signalized intersections can be modeled using generalized linear regression models. The use of conflict predictive models has potential to expand the uses of surrogate safety measures in safety estimation and evaluation.

  3. Application of Artificial Neural Network and Support Vector Machines in Predicting Metabolizable Energy in Compound Feeds for Pigs.

    PubMed

    Ahmadi, Hamed; Rodehutscord, Markus

    2017-01-01

    In the nutrition literature, there are several reports on the use of artificial neural network (ANN) and multiple linear regression (MLR) approaches for predicting feed composition and nutritive value, while the use of support vector machines (SVM) method as a new alternative approach to MLR and ANN models is still not fully investigated. The MLR, ANN, and SVM models were developed to predict metabolizable energy (ME) content of compound feeds for pigs based on the German energy evaluation system from analyzed contents of crude protein (CP), ether extract (EE), crude fiber (CF), and starch. A total of 290 datasets from standardized digestibility studies with compound feeds was provided from several institutions and published papers, and ME was calculated thereon. Accuracy and precision of developed models were evaluated, given their produced prediction values. The results revealed that the developed ANN [ R 2  = 0.95; root mean square error (RMSE) = 0.19 MJ/kg of dry matter] and SVM ( R 2  = 0.95; RMSE = 0.21 MJ/kg of dry matter) models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR ( R 2  = 0.89; RMSE = 0.27 MJ/kg of dry matter). The developed ANN and SVM models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR; however, there were not obvious differences between performance of ANN and SVM models. Thus, SVM model may also be considered as a promising tool for modeling the relationship between chemical composition and ME of compound feeds for pigs. To provide the readers and nutritionist with the easy and rapid tool, an Excel ® calculator, namely, SVM_ME_pig, was created to predict the metabolizable energy values in compound feeds for pigs using developed support vector machine model.

  4. A Unified Model of Performance: Validation of its Predictions across Different Sleep/Wake Schedules.

    PubMed

    Ramakrishnan, Sridhar; Wesensten, Nancy J; Balkin, Thomas J; Reifman, Jaques

    2016-01-01

    Historically, mathematical models of human neurobehavioral performance developed on data from one sleep study were limited to predicting performance in similar studies, restricting their practical utility. We recently developed a unified model of performance (UMP) to predict the effects of the continuum of sleep loss-from chronic sleep restriction (CSR) to total sleep deprivation (TSD) challenges-and validated it using data from two studies of one laboratory. Here, we significantly extended this effort by validating the UMP predictions across a wide range of sleep/wake schedules from different studies and laboratories. We developed the UMP on psychomotor vigilance task (PVT) lapse data from one study encompassing four different CSR conditions (7 d of 3, 5, 7, and 9 h of sleep/night), and predicted performance in five other studies (from four laboratories), including different combinations of TSD (40 to 88 h), CSR (2 to 6 h of sleep/night), control (8 to 10 h of sleep/night), and nap (nocturnal and diurnal) schedules. The UMP accurately predicted PVT performance trends across 14 different sleep/wake conditions, yielding average prediction errors between 7% and 36%, with the predictions lying within 2 standard errors of the measured data 87% of the time. In addition, the UMP accurately predicted performance impairment (average error of 15%) for schedules (TSD and naps) not used in model development. The unified model of performance can be used as a tool to help design sleep/wake schedules to optimize the extent and duration of neurobehavioral performance and to accelerate recovery after sleep loss. © 2016 Associated Professional Sleep Societies, LLC.

  5. Numerical description of cavitation on axisymmetric bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickox, C.E.; Hailey, C.E.; Wolfe, W.P.

    1988-01-01

    This paper reports on ongoing studies which are directed toward the development of predictive techniques for the modeling of steady cavitation on axisymmetric bodies. The primary goal of the modeling effort is the prediction of cavity shape and pressure distribution from which forces and moments can be calculated. Here we present an overview of the modeling techniques developed and compare predictions with experimental data obtained from water tunnel tests for both limited and supercavitation. 14 refs., 4 figs.

  6. An Operational Model for the Prediction of Jet Blast

    DOT National Transportation Integrated Search

    2012-01-09

    This paper presents an operational model for the prediction of jet blast. The model was : developed based upon three modules including a jet exhaust model, jet centerline decay : model and aircraft motion model. The final analysis was compared with d...

  7. Comparing GIS-based habitat models for applications in EIA and SEA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gontier, Mikael, E-mail: gontier@kth.s; Moertberg, Ulla, E-mail: mortberg@kth.s; Balfors, Berit, E-mail: balfors@kth.s

    Land use changes, urbanisation and infrastructure developments in particular, cause fragmentation of natural habitats and threaten biodiversity. Tools and measures must be adapted to assess and remedy the potential effects on biodiversity caused by human activities and developments. Within physical planning, environmental impact assessment (EIA) and strategic environmental assessment (SEA) play important roles in the prediction and assessment of biodiversity-related impacts from planned developments. However, adapted prediction tools to forecast and quantify potential impacts on biodiversity components are lacking. This study tested and compared four different GIS-based habitat models and assessed their relevance for applications in environmental assessment. The modelsmore » were implemented in the Stockholm region in central Sweden and applied to data on the crested tit (Parus cristatus), a sedentary bird species of coniferous forest. All four models performed well and allowed the distribution of suitable habitats for the crested tit in the Stockholm region to be predicted. The models were also used to predict and quantify habitat loss for two regional development scenarios. The study highlighted the importance of model selection in impact prediction. Criteria that are relevant for the choice of model for predicting impacts on biodiversity were identified and discussed. Finally, the importance of environmental assessment for the preservation of biodiversity within the general frame of biodiversity conservation is emphasised.« less

  8. Empirical models for predicting volumes of sediment deposited by debris flows and sediment-laden floods in the transverse ranges of southern California

    USGS Publications Warehouse

    Gartner, Joseph E.; Cannon, Susan H.; Santi, Paul M

    2014-01-01

    Debris flows and sediment-laden floods in the Transverse Ranges of southern California pose severe hazards to nearby communities and infrastructure. Frequent wildfires denude hillslopes and increase the likelihood of these hazardous events. Debris-retention basins protect communities and infrastructure from the impacts of debris flows and sediment-laden floods and also provide critical data for volumes of sediment deposited at watershed outlets. In this study, we supplement existing data for the volumes of sediment deposited at watershed outlets with newly acquired data to develop new empirical models for predicting volumes of sediment produced by watersheds located in the Transverse Ranges of southern California. The sediment volume data represent a broad sample of conditions found in Ventura, Los Angeles and San Bernardino Counties, California. The measured volumes of sediment, watershed morphology, distributions of burn severity within each watershed, the time since the most recent fire, triggering storm rainfall conditions, and engineering soil properties were analyzed using multiple linear regressions to develop two models. A “long-term model” was developed for predicting volumes of sediment deposited by both debris flows and floods at various times since the most recent fire from a database of volumes of sediment deposited by a combination of debris flows and sediment-laden floods with no time limit since the most recent fire (n = 344). A subset of this database was used to develop an “emergency assessment model” for predicting volumes of sediment deposited by debris flows within two years of a fire (n = 92). Prior to developing the models, 32 volumes of sediment, and related parameters for watershed morphology, burn severity and rainfall conditions were retained to independently validate the long-term model. Ten of these volumes of sediment were deposited by debris flows within two years of a fire and were used to validate the emergency assessment model. The models were validated by comparing predicted and measured volumes of sediment. These validations were also performed for previously developed models and identify that the models developed here best predict volumes of sediment for burned watersheds in comparison to previously developed models.

  9. A new framework to enhance the interpretation of external validation studies of clinical prediction models.

    PubMed

    Debray, Thomas P A; Vergouwe, Yvonne; Koffijberg, Hendrik; Nieboer, Daan; Steyerberg, Ewout W; Moons, Karel G M

    2015-03-01

    It is widely acknowledged that the performance of diagnostic and prognostic prediction models should be assessed in external validation studies with independent data from "different but related" samples as compared with that of the development sample. We developed a framework of methodological steps and statistical methods for analyzing and enhancing the interpretation of results from external validation studies of prediction models. We propose to quantify the degree of relatedness between development and validation samples on a scale ranging from reproducibility to transportability by evaluating their corresponding case-mix differences. We subsequently assess the models' performance in the validation sample and interpret the performance in view of the case-mix differences. Finally, we may adjust the model to the validation setting. We illustrate this three-step framework with a prediction model for diagnosing deep venous thrombosis using three validation samples with varying case mix. While one external validation sample merely assessed the model's reproducibility, two other samples rather assessed model transportability. The performance in all validation samples was adequate, and the model did not require extensive updating to correct for miscalibration or poor fit to the validation settings. The proposed framework enhances the interpretation of findings at external validation of prediction models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Seasonal prediction of East Asian summer rainfall using a multi-model ensemble system

    NASA Astrophysics Data System (ADS)

    Ahn, Joong-Bae; Lee, Doo-Young; Yoo, Jin‑Ho

    2015-04-01

    Using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers, the prediction skills of climate models in the western tropical Pacific (WTP) and East Asian region are assessed. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP Indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index or each MPI. Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by hybrid dynamical-statistical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using a hybrid dynamical-statistical approach compared to the dynamical forecast alone. Acknowledgements This work was carried out with the support of Rural Development Administration Cooperative Research Program for Agriculture Science and Technology Development under grant project PJ009353 and Korea Meteorological Administration Research and Development Program under grant CATER 2012-3100, Republic of Korea.

  11. Fire spread in chaparral – a comparison of laboratory data and model predictions in burning live fuels

    Treesearch

    David R. Weise; Eunmo Koo; Xiangyang Zhou; Shankar Mahalingam; Frédéric Morandini; Jacques-Henri Balbi

    2016-01-01

    Fire behaviour data from 240 laboratory fires in high-density live chaparral fuel beds were compared with model predictions. Logistic regression was used to develop a model to predict fire spread success in the fuel beds and linear regression was used to predict rate of spread. Predictions from the Rothermel equation and three proposed changes as well as two physically...

  12. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction.

    PubMed

    Hamadache, Mabrouk; Benkortbi, Othmane; Hanini, Salah; Amrane, Abdeltif; Khaouane, Latifa; Si Moussa, Cherif

    2016-02-13

    Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Predictive and mechanistic multivariate linear regression models for reaction development

    PubMed Central

    Santiago, Celine B.; Guo, Jing-Yao

    2018-01-01

    Multivariate Linear Regression (MLR) models utilizing computationally-derived and empirically-derived physical organic molecular descriptors are described in this review. Several reports demonstrating the effectiveness of this methodological approach towards reaction optimization and mechanistic interrogation are discussed. A detailed protocol to access quantitative and predictive MLR models is provided as a guide for model development and parameter analysis. PMID:29719711

  14. Modeling strength loss in wood by chemical composition. Part I, An individual component model for southern pine

    Treesearch

    J. E. Winandy; P. K. Lebow

    2001-01-01

    In this study, we develop models for predicting loss in bending strength of clear, straight-grained pine from changes in chemical composition. Although significant work needs to be done before truly universal predictive models are developed, a quantitative fundamental relationship between changes in chemical composition and strength loss for pine was demonstrated. In...

  15. Predicting post-fire tree mortality for 12 western US conifers using the First-Order Fire Effects Model (FOFEM)

    Treesearch

    Sharon Hood; Duncan Lutes

    2017-01-01

    Accurate prediction of fire-caused tree mortality is critical for making sound land management decisions such as developing burning prescriptions and post-fire management guidelines. To improve efforts to predict post-fire tree mortality, we developed 3-year post-fire mortality models for 12 Western conifer species - white fir (Abies concolor [Gord. &...

  16. Validation of a Clinical Scoring System for Outcome Prediction in Dogs with Acute Kidney Injury Managed by Hemodialysis.

    PubMed

    Segev, G; Langston, C; Takada, K; Kass, P H; Cowgill, L D

    2016-05-01

    A scoring system for outcome prediction in dogs with acute kidney injury (AKI) recently has been developed but has not been validated. The scoring system previously developed for outcome prediction will accurately predict outcome in a validation cohort of dogs with AKI managed with hemodialysis. One hundred fifteen client-owned dogs with AKI. Medical records of dogs with AKI treated by hemodialysis between 2011 and 2015 were reviewed. Dogs were included only if all variables required to calculate the final predictive score were available, and the 30-day outcome was known. A predictive score for 3 models was calculated for each dog. Logistic regression was used to evaluate the association of the final predictive score with each model's outcome. Receiver operating curve (ROC) analyses were performed to determine sensitivity and specificity for each model based on previously established cut-off values. Higher scores for each model were associated with decreased survival probability (P < .001). Based on previously established cut-off values, 3 models (models A, B, C) were associated with sensitivities/specificities of 73/75%, 71/80%, and 75/86%, respectively, and correctly classified 74-80% of the dogs. All models were simple to apply and allowed outcome prediction that closely corresponded with actual outcome in an independent cohort. As expected, accuracies were slightly lower compared with those from the previously reported cohort used initially to develop the models. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  17. An empirical propellant response function for combustion stability predictions

    NASA Technical Reports Server (NTRS)

    Hessler, R. O.

    1980-01-01

    An empirical response function model was developed for ammonium perchlorate propellants to supplant T-burner testing at the preliminary design stage. The model was developed by fitting a limited T-burner data base, in terms of oxidizer size and concentration, to an analytical two parameter response function expression. Multiple peaks are predicted, but the primary effect is of a single peak for most formulations, with notable bulges for the various AP size fractions. The model was extended to velocity coupling with the assumption that dynamic response was controlled primarily by the solid phase described by the two parameter model. The magnitude of velocity coupling was then scaled using an erosive burning law. Routine use of the model for stability predictions on a number of propulsion units indicates that the model tends to overpredict propellant response. It is concluded that the model represents a generally conservative prediction tool, suited especially for the preliminary design stage when T-burner data may not be readily available. The model work included development of a rigorous summation technique for pseudopropellant properties and of a concept for modeling ordered packing of particulates.

  18. Predicting the effect of cytochrome P450 inhibitors on substrate drugs: analysis of physiologically based pharmacokinetic modeling submissions to the US Food and Drug Administration.

    PubMed

    Wagner, Christian; Pan, Yuzhuo; Hsu, Vicky; Grillo, Joseph A; Zhang, Lei; Reynolds, Kellie S; Sinha, Vikram; Zhao, Ping

    2015-01-01

    The US Food and Drug Administration (FDA) has seen a recent increase in the application of physiologically based pharmacokinetic (PBPK) modeling towards assessing the potential of drug-drug interactions (DDI) in clinically relevant scenarios. To continue our assessment of such approaches, we evaluated the predictive performance of PBPK modeling in predicting cytochrome P450 (CYP)-mediated DDI. This evaluation was based on 15 substrate PBPK models submitted by nine sponsors between 2009 and 2013. For these 15 models, a total of 26 DDI studies (cases) with various CYP inhibitors were available. Sponsors developed the PBPK models, reportedly without considering clinical DDI data. Inhibitor models were either developed by sponsors or provided by PBPK software developers and applied with minimal or no modification. The metric for assessing predictive performance of the sponsors' PBPK approach was the R predicted/observed value (R predicted/observed = [predicted mean exposure ratio]/[observed mean exposure ratio], with the exposure ratio defined as [C max (maximum plasma concentration) or AUC (area under the plasma concentration-time curve) in the presence of CYP inhibition]/[C max or AUC in the absence of CYP inhibition]). In 81 % (21/26) and 77 % (20/26) of cases, respectively, the R predicted/observed values for AUC and C max ratios were within a pre-defined threshold of 1.25-fold of the observed data. For all cases, the R predicted/observed values for AUC and C max were within a 2-fold range. These results suggest that, based on the submissions to the FDA to date, there is a high degree of concordance between PBPK-predicted and observed effects of CYP inhibition, especially CYP3A-based, on the exposure of drug substrates.

  19. Models for predicting fuel consumption in sagebrush-dominated ecosystems

    Treesearch

    Clinton S. Wright

    2013-01-01

    Fuel consumption predictions are necessary to accurately estimate or model fire effects, including pollutant emissions during wildland fires. Fuel and environmental measurements on a series of operational prescribed fires were used to develop empirical models for predicting fuel consumption in big sagebrush (Artemisia tridentate Nutt.) ecosystems....

  20. Genetic programming based quantitative structure-retention relationships for the prediction of Kovats retention indices.

    PubMed

    Goel, Purva; Bapat, Sanket; Vyas, Renu; Tambe, Amruta; Tambe, Sanjeev S

    2015-11-13

    The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Joint use of over- and under-sampling techniques and cross-validation for the development and assessment of prediction models.

    PubMed

    Blagus, Rok; Lusa, Lara

    2015-11-04

    Prediction models are used in clinical research to develop rules that can be used to accurately predict the outcome of the patients based on some of their characteristics. They represent a valuable tool in the decision making process of clinicians and health policy makers, as they enable them to estimate the probability that patients have or will develop a disease, will respond to a treatment, or that their disease will recur. The interest devoted to prediction models in the biomedical community has been growing in the last few years. Often the data used to develop the prediction models are class-imbalanced as only few patients experience the event (and therefore belong to minority class). Prediction models developed using class-imbalanced data tend to achieve sub-optimal predictive accuracy in the minority class. This problem can be diminished by using sampling techniques aimed at balancing the class distribution. These techniques include under- and oversampling, where a fraction of the majority class samples are retained in the analysis or new samples from the minority class are generated. The correct assessment of how the prediction model is likely to perform on independent data is of crucial importance; in the absence of an independent data set, cross-validation is normally used. While the importance of correct cross-validation is well documented in the biomedical literature, the challenges posed by the joint use of sampling techniques and cross-validation have not been addressed. We show that care must be taken to ensure that cross-validation is performed correctly on sampled data, and that the risk of overestimating the predictive accuracy is greater when oversampling techniques are used. Examples based on the re-analysis of real datasets and simulation studies are provided. We identify some results from the biomedical literature where the incorrect cross-validation was performed, where we expect that the performance of oversampling techniques was heavily overestimated.

  2. Prediction of biodegradability from chemical structure: Modeling or ready biodegradation test data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loonen, H.; Lindgren, F.; Hansen, B.

    1999-08-01

    Biodegradation data were collected and evaluated for 894 substances with widely varying chemical structures. All data were determined according to the Japanese Ministry of International Trade and Industry (MITI) I test protocol. The MITI I test is a screening test for ready biodegradability and has been described by Organization for Economic Cooperation and Development (OECD) test guideline 301 C and European Union (EU) test guideline C4F. The chemicals were characterized by a set of 127 predefined structural fragments. This data set was used to develop a model for the prediction of the biodegradability of chemicals under standardized OECD and EUmore » ready biodegradation test conditions. Partial least squares (PLS) discriminant analysis was used for the model development. The model was evaluated by means of internal cross-validation and repeated external validation. The importance of various structural fragments and fragment interactions was investigated. The most important fragments include the presence of a long alkyl chain; hydroxy, ester, and acid groups (enhancing biodegradation); and the presence of one or more aromatic rings and halogen substituents (regarding biodegradation). More than 85% of the model predictions were correct for using the complete data set. The not readily biodegradable predictions were slightly better than the readily biodegradable predictions (86 vs 84%). The average percentage of correct predictions from four external validation studies was 83%. Model optimization by including fragment interactions improve the model predicting capabilities to 89%. It can be concluded that the PLS model provides predictions of high reliability for a diverse range of chemical structures. The predictions conform to the concept of readily biodegradable (or not readily biodegradable) as defined by OECD and EU test guidelines.« less

  3. Gastro-esophageal reflux disease symptoms and demographic factors as a pre-screening tool for Barrett's esophagus.

    PubMed

    Liu, Xinxue; Wong, Angela; Kadri, Sudarshan R; Corovic, Andrej; O'Donovan, Maria; Lao-Sirieix, Pierre; Lovat, Laurence B; Burnham, Rodney W; Fitzgerald, Rebecca C

    2014-01-01

    Barrett's esophagus (BE) occurs as consequence of reflux and is a risk factor for esophageal adenocarcinoma. The current "gold-standard" for diagnosing BE is endoscopy which remains prohibitively expensive and impractical as a population screening tool. We aimed to develop a pre-screening tool to aid decision making for diagnostic referrals. A prospective (training) cohort of 1603 patients attending for endoscopy was used for identification of risk factors to develop a risk prediction model. Factors associated with BE in the univariate analysis were selected to develop prediction models that were validated in an independent, external cohort of 477 non-BE patients referred for endoscopy with symptoms of reflux or dyspepsia. Two prediction models were developed separately for columnar lined epithelium (CLE) of any length and using a stricter definition of intestinal metaplasia (IM) with segments ≥ 2 cm with areas under the ROC curves (AUC) of 0.72 (95%CI: 0.67-0.77) and 0.81 (95%CI: 0.76-0.86), respectively. The two prediction models included demographics (age, sex), symptoms (heartburn, acid reflux, chest pain, abdominal pain) and medication for "stomach" symptoms. These two models were validated in the independent cohort with AUCs of 0.61 (95%CI: 0.54-0.68) and 0.64 (95%CI: 0.52-0.77) for CLE and IM ≥ 2 cm, respectively. We have identified and validated two prediction models for CLE and IM ≥ 2 cm. Both models have fair prediction accuracies and can select out around 20% of individuals unlikely to benefit from investigation for Barrett's esophagus. Such prediction models have the potential to generate useful cost-savings for BE screening among the symptomatic population.

  4. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement.

    PubMed

    Collins, Gary S; Reitsma, Johannes B; Altman, Douglas G; Moons, Karel G M

    2015-01-07

    Prediction models are developed to aid health care providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web based survey and revised during a three day meeting in June 2011 with methodologists, health care professionals, and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org).To encourage dissemination of the TRIPOD Statement, this article is freely accessible on the Annals of Internal Medicine Web site (www.annals.org) and will be also published in BJOG, British Journal of Cancer, British Journal of Surgery, BMC Medicine, The BMJ, Circulation, Diabetic Medicine, European Journal of Clinical Investigation, European Urology, and Journal of Clinical Epidemiology. The authors jointly hold the copyright of this article. An accompanying explanation and elaboration article is freely available only on www.annals.org; Annals of Internal Medicine holds copyright for that article. © BMJ Publishing Group Ltd 2014.

  5. Improving Gastric Cancer Outcome Prediction Using Single Time-Point Artificial Neural Network Models

    PubMed Central

    Nilsaz-Dezfouli, Hamid; Abu-Bakar, Mohd Rizam; Arasan, Jayanthi; Adam, Mohd Bakri; Pourhoseingholi, Mohamad Amin

    2017-01-01

    In cancer studies, the prediction of cancer outcome based on a set of prognostic variables has been a long-standing topic of interest. Current statistical methods for survival analysis offer the possibility of modelling cancer survivability but require unrealistic assumptions about the survival time distribution or proportionality of hazard. Therefore, attention must be paid in developing nonlinear models with less restrictive assumptions. Artificial neural network (ANN) models are primarily useful in prediction when nonlinear approaches are required to sift through the plethora of available information. The applications of ANN models for prognostic and diagnostic classification in medicine have attracted a lot of interest. The applications of ANN models in modelling the survival of patients with gastric cancer have been discussed in some studies without completely considering the censored data. This study proposes an ANN model for predicting gastric cancer survivability, considering the censored data. Five separate single time-point ANN models were developed to predict the outcome of patients after 1, 2, 3, 4, and 5 years. The performance of ANN model in predicting the probabilities of death is consistently high for all time points according to the accuracy and the area under the receiver operating characteristic curve. PMID:28469384

  6. Modeling Rabbit Responses to Single and Multiple Aerosol ...

    EPA Pesticide Factsheets

    Journal Article Survival models are developed here to predict response and time-to-response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple dose dataset to predict the probability of death through specifying dose-response functions and the time between exposure and the time-to-death (TTD). Among the models developed, the best-fitting survival model (baseline model) has an exponential dose-response model with a Weibull TTD distribution. Alternative models assessed employ different underlying dose-response functions and use the assumption that, in a multiple dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this paper. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high-dose rabbit datasets. More accurate survival models depend upon future development of dose-response datasets specifically designed to assess potential multiple dose effects on response and time-to-response. The process used in this paper to dev

  7. Forecasting the Water Demand in Chongqing, China Using a Grey Prediction Model and Recommendations for the Sustainable Development of Urban Water Consumption

    PubMed Central

    Wu, Hua’an; Zhou, Meng

    2017-01-01

    High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy. PMID:29140266

  8. Predictive modeling: Solubility of C60 and C70 fullerenes in diverse solvents.

    PubMed

    Gupta, Shikha; Basant, Nikita

    2018-06-01

    Solubility of fullerenes imposes a major limitation to further advanced research and technological development using these novel materials. There have been continued efforts to discover better solvents and their properties that influence the solubility of fullerenes. Here, we have developed QSPR (quantitative structure-property relationship) models based on structural features of diverse solvents and large experimental data for predicting the solubility of C 60 and C 70 fullerenes. The developed models identified most relevant features of the solvents that encode the polarizability, polarity and lipophilicity properties which largely influence the solubilizing potential of the solvent for the fullerenes. We also established Inter-moieties solubility correlations (IMSC) based quantitative property-property relationship (QPPR) models for predicting solubility of C 60 and C 70 fullerenes. The QSPR and QPPR models were internally and externally validated deriving the most stringent statistical criteria and predicted C 60 and C 70 solubility values in different solvents were in close agreement with the experimental values. In test sets, the QSPR models yielded high correlations (R 2  > 0.964) and low root mean squared error of prediction errors (RMSEP< 0.25). Results of comparison with other studies indicated that the proposed models could effectively improve the accuracy and ability for predicting solubility of C 60 and C 70 fullerenes in solvents with diverse structures and would be useful in development of more effective solvents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Prediction models for intracranial hemorrhage or major bleeding in patients on antiplatelet therapy: a systematic review and external validation study.

    PubMed

    Hilkens, N A; Algra, A; Greving, J P

    2016-01-01

    ESSENTIALS: Prediction models may help to identify patients at high risk of bleeding on antiplatelet therapy. We identified existing prediction models for bleeding and validated them in patients with cerebral ischemia. Five prediction models were identified, all of which had some methodological shortcomings. Performance in patients with cerebral ischemia was poor. Background Antiplatelet therapy is widely used in secondary prevention after a transient ischemic attack (TIA) or ischemic stroke. Bleeding is the main adverse effect of antiplatelet therapy and is potentially life threatening. Identification of patients at increased risk of bleeding may help target antiplatelet therapy. This study sought to identify existing prediction models for intracranial hemorrhage or major bleeding in patients on antiplatelet therapy and evaluate their performance in patients with cerebral ischemia. We systematically searched PubMed and Embase for existing prediction models up to December 2014. The methodological quality of the included studies was assessed with the CHARMS checklist. Prediction models were externally validated in the European Stroke Prevention Study 2, comprising 6602 patients with a TIA or ischemic stroke. We assessed discrimination and calibration of included prediction models. Five prediction models were identified, of which two were developed in patients with previous cerebral ischemia. Three studies assessed major bleeding, one studied intracerebral hemorrhage and one gastrointestinal bleeding. None of the studies met all criteria of good quality. External validation showed poor discriminative performance, with c-statistics ranging from 0.53 to 0.64 and poor calibration. A limited number of prediction models is available that predict intracranial hemorrhage or major bleeding in patients on antiplatelet therapy. The methodological quality of the models varied, but was generally low. Predictive performance in patients with cerebral ischemia was poor. In order to reliably predict the risk of bleeding in patients with cerebral ischemia, development of a prediction model according to current methodological standards is needed. © 2015 International Society on Thrombosis and Haemostasis.

  10. An integrated approach to evaluating alternative risk prediction strategies: a case study comparing alternative approaches for preventing invasive fungal disease.

    PubMed

    Sadique, Z; Grieve, R; Harrison, D A; Jit, M; Allen, E; Rowan, K M

    2013-12-01

    This article proposes an integrated approach to the development, validation, and evaluation of new risk prediction models illustrated with the Fungal Infection Risk Evaluation study, which developed risk models to identify non-neutropenic, critically ill adult patients at high risk of invasive fungal disease (IFD). Our decision-analytical model compared alternative strategies for preventing IFD at up to three clinical decision time points (critical care admission, after 24 hours, and end of day 3), followed with antifungal prophylaxis for those judged "high" risk versus "no formal risk assessment." We developed prognostic models to predict the risk of IFD before critical care unit discharge, with data from 35,455 admissions to 70 UK adult, critical care units, and validated the models externally. The decision model was populated with positive predictive values and negative predictive values from the best-fitting risk models. We projected lifetime cost-effectiveness and expected value of partial perfect information for groups of parameters. The risk prediction models performed well in internal and external validation. Risk assessment and prophylaxis at the end of day 3 was the most cost-effective strategy at the 2% and 1% risk threshold. Risk assessment at each time point was the most cost-effective strategy at a 0.5% risk threshold. Expected values of partial perfect information were high for positive predictive values or negative predictive values (£11 million-£13 million) and quality-adjusted life-years (£11 million). It is cost-effective to formally assess the risk of IFD for non-neutropenic, critically ill adult patients. This integrated approach to developing and evaluating risk models is useful for informing clinical practice and future research investment. © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Published by International Society for Pharmacoeconomics and Outcomes Research (ISPOR) All rights reserved.

  11. Multiaxial and Thermomechanical Fatigue of Materials: A Historical Perspective and Some Future Challenges

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh

    2013-01-01

    Structural materials used in engineering applications routinely subjected to repetitive mechanical loads in multiple directions under non-isothermal conditions. Over past few decades, several multiaxial fatigue life estimation models (stress- and strain-based) developed for isothermal conditions. Historically, numerous fatigue life prediction models also developed for thermomechanical fatigue (TMF) life prediction, predominantly for uniaxial mechanical loading conditions. Realistic structural components encounter multiaxial loads and non-isothermal loading conditions, which increase potential for interaction of damage modes. A need exists for mechanical testing and development verification of life prediction models under such conditions.

  12. AAA gunnermodel based on observer theory. [predicting a gunner's tracking response

    NASA Technical Reports Server (NTRS)

    Kou, R. S.; Glass, B. C.; Day, C. N.; Vikmanis, M. M.

    1978-01-01

    The Luenberger observer theory is used to develop a predictive model of a gunner's tracking response in antiaircraft artillery systems. This model is composed of an observer, a feedback controller and a remnant element. An important feature of the model is that the structure is simple, hence a computer simulation requires only a short execution time. A parameter identification program based on the least squares curve fitting method and the Gauss Newton gradient algorithm is developed to determine the parameter values of the gunner model. Thus, a systematic procedure exists for identifying model parameters for a given antiaircraft tracking task. Model predictions of tracking errors are compared with human tracking data obtained from manned simulation experiments. Model predictions are in excellent agreement with the empirical data for several flyby and maneuvering target trajectories.

  13. Prediction of functional aerobic capacity without exercise testing

    NASA Technical Reports Server (NTRS)

    Jackson, A. S.; Blair, S. N.; Mahar, M. T.; Wier, L. T.; Ross, R. M.; Stuteville, J. E.

    1990-01-01

    The purpose of this study was to develop functional aerobic capacity prediction models without using exercise tests (N-Ex) and to compare the accuracy with Astrand single-stage submaximal prediction methods. The data of 2,009 subjects (9.7% female) were randomly divided into validation (N = 1,543) and cross-validation (N = 466) samples. The validation sample was used to develop two N-Ex models to estimate VO2peak. Gender, age, body composition, and self-report activity were used to develop two N-Ex prediction models. One model estimated percent fat from skinfolds (N-Ex %fat) and the other used body mass index (N-Ex BMI) to represent body composition. The multiple correlations for the developed models were R = 0.81 (SE = 5.3 ml.kg-1.min-1) and R = 0.78 (SE = 5.6 ml.kg-1.min-1). This accuracy was confirmed when applied to the cross-validation sample. The N-Ex models were more accurate than what was obtained from VO2peak estimated from the Astrand prediction models. The SEs of the Astrand models ranged from 5.5-9.7 ml.kg-1.min-1. The N-Ex models were cross-validated on 59 men on hypertensive medication and 71 men who were found to have a positive exercise ECG. The SEs of the N-Ex models ranged from 4.6-5.4 ml.kg-1.min-1 with these subjects.(ABSTRACT TRUNCATED AT 250 WORDS).

  14. Towards a generalized energy prediction model for machine tools

    PubMed Central

    Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H.; Dornfeld, David A.; Helu, Moneer; Rachuri, Sudarsan

    2017-01-01

    Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process. PMID:28652687

  15. Towards a generalized energy prediction model for machine tools.

    PubMed

    Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H; Dornfeld, David A; Helu, Moneer; Rachuri, Sudarsan

    2017-04-01

    Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.

  16. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    PubMed

    Ashraf, M Irfan; Meng, Fan-Rui; Bourque, Charles P-A; MacLean, David A

    2015-01-01

    Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2) 5-year(-1) and volume: 0.0008 m(3) 5-year(-1)). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm(2) 5-year(-1) and 0.0393 m(3) 5-year(-1) in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology has substantial potential in forest modelling.

  17. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change

    PubMed Central

    Ashraf, M. Irfan; Meng, Fan-Rui; Bourque, Charles P.-A.; MacLean, David A.

    2015-01-01

    Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm2 5-year-1 and volume: 0.0008 m3 5-year-1). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm2 5-year-1 and 0.0393 m3 5-year-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology has substantial potential in forest modelling. PMID:26173081

  18. Bankruptcy prediction for credit risk using neural networks: a survey and new results.

    PubMed

    Atiya, A F

    2001-01-01

    The prediction of corporate bankruptcies is an important and widely studied topic since it can have significant impact on bank lending decisions and profitability. This work presents two contributions. First we review the topic of bankruptcy prediction, with emphasis on neural-network (NN) models. Second, we develop an NN bankruptcy prediction model. Inspired by one of the traditional credit risk models developed by Merton (1974), we propose novel indicators for the NN system. We show that the use of these indicators in addition to traditional financial ratio indicators provides a significant improvement in the (out-of-sample) prediction accuracy (from 81.46% to 85.5% for a three-year-ahead forecast).

  19. Accurate and dynamic predictive model for better prediction in medicine and healthcare.

    PubMed

    Alanazi, H O; Abdullah, A H; Qureshi, K N; Ismail, A S

    2018-05-01

    Information and communication technologies (ICTs) have changed the trend into new integrated operations and methods in all fields of life. The health sector has also adopted new technologies to improve the systems and provide better services to customers. Predictive models in health care are also influenced from new technologies to predict the different disease outcomes. However, still, existing predictive models have suffered from some limitations in terms of predictive outcomes performance. In order to improve predictive model performance, this paper proposed a predictive model by classifying the disease predictions into different categories. To achieve this model performance, this paper uses traumatic brain injury (TBI) datasets. TBI is one of the serious diseases worldwide and needs more attention due to its seriousness and serious impacts on human life. The proposed predictive model improves the predictive performance of TBI. The TBI data set is developed and approved by neurologists to set its features. The experiment results show that the proposed model has achieved significant results including accuracy, sensitivity, and specificity.

  20. Prediction of Human Cytochrome P450 Inhibition Using a Multitask Deep Autoencoder Neural Network.

    PubMed

    Li, Xiang; Xu, Youjun; Lai, Luhua; Pei, Jianfeng

    2018-05-30

    Adverse side effects of drug-drug interactions induced by human cytochrome P450 (CYP450) inhibition is an important consideration in drug discovery. It is highly desirable to develop computational models that can predict the inhibitive effect of a compound against a specific CYP450 isoform. In this study, we developed a multitask model for concurrent inhibition prediction of five major CYP450 isoforms, namely, 1A2, 2C9, 2C19, 2D6, and 3A4. The model was built by training a multitask autoencoder deep neural network (DNN) on a large dataset containing more than 13 000 compounds, extracted from the PubChem BioAssay Database. We demonstrate that the multitask model gave better prediction results than that of single-task models, previous reported classifiers, and traditional machine learning methods on an average of five prediction tasks. Our multitask DNN model gave average prediction accuracies of 86.4% for the 10-fold cross-validation and 88.7% for the external test datasets. In addition, we built linear regression models to quantify how the other tasks contributed to the prediction difference of a given task between single-task and multitask models, and we explained under what conditions the multitask model will outperform the single-task model, which suggested how to use multitask DNN models more effectively. We applied sensitivity analysis to extract useful knowledge about CYP450 inhibition, which may shed light on the structural features of these isoforms and give hints about how to avoid side effects during drug development. Our models are freely available at http://repharma.pku.edu.cn/deepcyp/home.php or http://www.pkumdl.cn/deepcyp/home.php .

  1. Interactions of timing and prediction error learning.

    PubMed

    Kirkpatrick, Kimberly

    2014-01-01

    Timing and prediction error learning have historically been treated as independent processes, but growing evidence has indicated that they are not orthogonal. Timing emerges at the earliest time point when conditioned responses are observed, and temporal variables modulate prediction error learning in both simple conditioning and cue competition paradigms. In addition, prediction errors, through changes in reward magnitude or value alter timing of behavior. Thus, there appears to be a bi-directional interaction between timing and prediction error learning. Modern theories have attempted to integrate the two processes with mixed success. A neurocomputational approach to theory development is espoused, which draws on neurobiological evidence to guide and constrain computational model development. Heuristics for future model development are presented with the goal of sparking new approaches to theory development in the timing and prediction error fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A whole-body physiologically based pharmacokinetic (WB-PBPK) model of ciprofloxacin: a step towards predicting bacterial killing at sites of infection.

    PubMed

    Sadiq, Muhammad W; Nielsen, Elisabet I; Khachman, Dalia; Conil, Jean-Marie; Georges, Bernard; Houin, Georges; Laffont, Celine M; Karlsson, Mats O; Friberg, Lena E

    2017-04-01

    The purpose of this study was to develop a whole-body physiologically based pharmacokinetic (WB-PBPK) model for ciprofloxacin for ICU patients, based on only plasma concentration data. In a next step, tissue and organ concentration time profiles in patients were predicted using the developed model. The WB-PBPK model was built using a non-linear mixed effects approach based on data from 102 adult intensive care unit patients. Tissue to plasma distribution coefficients (Kp) were available from the literature and used as informative priors. The developed WB-PBPK model successfully characterized both the typical trends and variability of the available ciprofloxacin plasma concentration data. The WB-PBPK model was thereafter combined with a pharmacokinetic-pharmacodynamic (PKPD) model, developed based on in vitro time-kill data of ciprofloxacin and Escherichia coli to illustrate the potential of this type of approach to predict the time-course of bacterial killing at different sites of infection. The predicted unbound concentration-time profile in extracellular tissue was driving the bacterial killing in the PKPD model and the rate and extent of take-over of mutant bacteria in different tissues were explored. The bacterial killing was predicted to be most efficient in lung and kidney, which correspond well to ciprofloxacin's indications pneumonia and urinary tract infections. Furthermore, a function based on available information on bacterial killing by the immune system in vivo was incorporated. This work demonstrates the development and application of a WB-PBPK-PD model to compare killing of bacteria with different antibiotic susceptibility, of value for drug development and the optimal use of antibiotics .

  3. How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology.

    PubMed

    Wittwehr, Clemens; Aladjov, Hristo; Ankley, Gerald; Byrne, Hugh J; de Knecht, Joop; Heinzle, Elmar; Klambauer, Günter; Landesmann, Brigitte; Luijten, Mirjam; MacKay, Cameron; Maxwell, Gavin; Meek, M E Bette; Paini, Alicia; Perkins, Edward; Sobanski, Tomasz; Villeneuve, Dan; Waters, Katrina M; Whelan, Maurice

    2017-02-01

    Efforts are underway to transform regulatory toxicology and chemical safety assessment from a largely empirical science based on direct observation of apical toxicity outcomes in whole organism toxicity tests to a predictive one in which outcomes and risk are inferred from accumulated mechanistic understanding. The adverse outcome pathway (AOP) framework provides a systematic approach for organizing knowledge that may support such inference. Likewise, computational models of biological systems at various scales provide another means and platform to integrate current biological understanding to facilitate inference and extrapolation. We argue that the systematic organization of knowledge into AOP frameworks can inform and help direct the design and development of computational prediction models that can further enhance the utility of mechanistic and in silico data for chemical safety assessment. This concept was explored as part of a workshop on AOP-Informed Predictive Modeling Approaches for Regulatory Toxicology held September 24-25, 2015. Examples of AOP-informed model development and its application to the assessment of chemicals for skin sensitization and multiple modes of endocrine disruption are provided. The role of problem formulation, not only as a critical phase of risk assessment, but also as guide for both AOP and complementary model development is described. Finally, a proposal for actively engaging the modeling community in AOP-informed computational model development is made. The contents serve as a vision for how AOPs can be leveraged to facilitate development of computational prediction models needed to support the next generation of chemical safety assessment. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology.

  4. Relationship of Predicted Risk of Developing Invasive Breast Cancer, as Assessed with Three Models, and Breast Cancer Mortality among Breast Cancer Patients

    PubMed Central

    Pfeiffer, Ruth M.; Miglioretti, Diana L.; Kerlikowske, Karla; Tice, Jeffery; Vacek, Pamela M.; Gierach, Gretchen L.

    2016-01-01

    Purpose Breast cancer risk prediction models are used to plan clinical trials and counsel women; however, relationships of predicted risks of breast cancer incidence and prognosis after breast cancer diagnosis are unknown. Methods Using largely pre-diagnostic information from the Breast Cancer Surveillance Consortium (BCSC) for 37,939 invasive breast cancers (1996–2007), we estimated 5-year breast cancer risk (<1%; 1–1.66%; ≥1.67%) with three models: BCSC 1-year risk model (BCSC-1; adapted to 5-year predictions); Breast Cancer Risk Assessment Tool (BCRAT); and BCSC 5-year risk model (BCSC-5). Breast cancer-specific mortality post-diagnosis (range: 1–13 years; median: 5.4–5.6 years) was related to predicted risk of developing breast cancer using unadjusted Cox proportional hazards models, and in age-stratified (35–44; 45–54; 55–69; 70–89 years) models adjusted for continuous age, BCSC registry, calendar period, income, mode of presentation, stage and treatment. Mean age at diagnosis was 60 years. Results Of 6,021 deaths, 2,993 (49.7%) were ascribed to breast cancer. In unadjusted case-only analyses, predicted breast cancer risk ≥1.67% versus <1.0% was associated with lower risk of breast cancer death; BCSC-1: hazard ratio (HR) = 0.82 (95% CI = 0.75–0.90); BCRAT: HR = 0.72 (95% CI = 0.65–0.81) and BCSC-5: HR = 0.84 (95% CI = 0.75–0.94). Age-stratified, adjusted models showed similar, although mostly non-significant HRs. Among women ages 55–69 years, HRs approximated 1.0. Generally, higher predicted risk was inversely related to percentages of cancers with unfavorable prognostic characteristics, especially among women 35–44 years. Conclusions Among cases assessed with three models, higher predicted risk of developing breast cancer was not associated with greater risk of breast cancer death; thus, these models would have limited utility in planning studies to evaluate breast cancer mortality reduction strategies. Further, when offering women counseling, it may be useful to note that high predicted risk of developing breast cancer does not imply that if cancer develops it will behave aggressively. PMID:27560501

  5. An improved shuffled frog leaping algorithm based evolutionary framework for currency exchange rate prediction

    NASA Astrophysics Data System (ADS)

    Dash, Rajashree

    2017-11-01

    Forecasting purchasing power of one currency with respect to another currency is always an interesting topic in the field of financial time series prediction. Despite the existence of several traditional and computational models for currency exchange rate forecasting, there is always a need for developing simpler and more efficient model, which will produce better prediction capability. In this paper, an evolutionary framework is proposed by using an improved shuffled frog leaping (ISFL) algorithm with a computationally efficient functional link artificial neural network (CEFLANN) for prediction of currency exchange rate. The model is validated by observing the monthly prediction measures obtained for three currency exchange data sets such as USD/CAD, USD/CHF, and USD/JPY accumulated within same period of time. The model performance is also compared with two other evolutionary learning techniques such as Shuffled frog leaping algorithm and Particle Swarm optimization algorithm. Practical analysis of results suggest that, the proposed model developed using the ISFL algorithm with CEFLANN network is a promising predictor model for currency exchange rate prediction compared to other models included in the study.

  6. Modelling dimercaptosuccinic acid (DMSA) plasma kinetics in humans.

    PubMed

    van Eijkeren, Jan C H; Olie, J Daniël N; Bradberry, Sally M; Vale, J Allister; de Vries, Irma; Meulenbelt, Jan; Hunault, Claudine C

    2016-11-01

    No kinetic models presently exist which simulate the effect of chelation therapy on lead blood concentrations in lead poisoning. Our aim was to develop a kinetic model that describes the kinetics of dimercaptosuccinic acid (DMSA; succimer), a commonly used chelating agent, that could be used in developing a lead chelating model. This was a kinetic modelling study. We used a two-compartment model, with a non-systemic gastrointestinal compartment (gut lumen) and the whole body as one systemic compartment. The only data available from the literature were used to calibrate the unknown model parameters. The calibrated model was then validated by comparing its predictions with measured data from three different experimental human studies. The model predicted total DMSA plasma and urine concentrations measured in three healthy volunteers after ingestion of DMSA 10 mg/kg. The model was then validated by using data from three other published studies; it predicted concentrations within a factor of two, representing inter-human variability. A simple kinetic model simulating the kinetics of DMSA in humans has been developed and validated. The interest of this model lies in the future potential to use it to predict blood lead concentrations in lead-poisoned patients treated with DMSA.

  7. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models

    EPA Science Inventory

    The second phase of the MicroArray Quality Control (MAQC-II) project evaluated common practices for developing and validating microarray-based models aimed at predicting toxicological and clinical endpoints. Thirty-six teams developed classifiers for 13 endpoints - some easy, som...

  8. Analysis of Predicted Aircraft Wake Vortex Transport and Comparison with Experiment Volume I -- Wake Vortex Predictive System Study

    DOT National Transportation Integrated Search

    1974-04-01

    A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...

  9. The novel application of artificial neural network on bioelectrical impedance analysis to assess the body composition in elderly

    PubMed Central

    2013-01-01

    Background This study aims to improve accuracy of Bioelectrical Impedance Analysis (BIA) prediction equations for estimating fat free mass (FFM) of the elderly by using non-linear Back Propagation Artificial Neural Network (BP-ANN) model and to compare the predictive accuracy with the linear regression model by using energy dual X-ray absorptiometry (DXA) as reference method. Methods A total of 88 Taiwanese elderly adults were recruited in this study as subjects. Linear regression equations and BP-ANN prediction equation were developed using impedances and other anthropometrics for predicting the reference FFM measured by DXA (FFMDXA) in 36 male and 26 female Taiwanese elderly adults. The FFM estimated by BIA prediction equations using traditional linear regression model (FFMLR) and BP-ANN model (FFMANN) were compared to the FFMDXA. The measuring results of an additional 26 elderly adults were used to validate than accuracy of the predictive models. Results The results showed the significant predictors were impedance, gender, age, height and weight in developed FFMLR linear model (LR) for predicting FFM (coefficient of determination, r2 = 0.940; standard error of estimate (SEE) = 2.729 kg; root mean square error (RMSE) = 2.571kg, P < 0.001). The above predictors were set as the variables of the input layer by using five neurons in the BP-ANN model (r2 = 0.987 with a SD = 1.192 kg and relatively lower RMSE = 1.183 kg), which had greater (improved) accuracy for estimating FFM when compared with linear model. The results showed a better agreement existed between FFMANN and FFMDXA than that between FFMLR and FFMDXA. Conclusion When compared the performance of developed prediction equations for estimating reference FFMDXA, the linear model has lower r2 with a larger SD in predictive results than that of BP-ANN model, which indicated ANN model is more suitable for estimating FFM. PMID:23388042

  10. In Silico Modelling of Transdermal and Systemic Kinetics of Topically Applied Solutes: Model Development and Initial Validation for Transdermal Nicotine.

    PubMed

    Chen, Tao; Lian, Guoping; Kattou, Panayiotis

    2016-07-01

    The purpose was to develop a mechanistic mathematical model for predicting the pharmacokinetics of topically applied solutes penetrating through the skin and into the blood circulation. The model could be used to support the design of transdermal drug delivery systems and skin care products, and risk assessment of occupational or consumer exposure. A recently reported skin penetration model [Pharm Res 32 (2015) 1779] was integrated with the kinetic equations for dermis-to-capillary transport and systemic circulation. All model parameters were determined separately from the molecular, microscopic and physiological bases, without fitting to the in vivo data to be predicted. Published clinical studies of nicotine were used for model demonstration. The predicted plasma kinetics is in good agreement with observed clinical data. The simulated two-dimensional concentration profile in the stratum corneum vividly illustrates the local sub-cellular disposition kinetics, including tortuous lipid pathway for diffusion and the "reservoir" effect of the corneocytes. A mechanistic model for predicting transdermal and systemic kinetics was developed and demonstrated with published clinical data. The integrated mechanistic approach has significantly extended the applicability of a recently reported microscopic skin penetration model by providing prediction of solute concentration in the blood.

  11. Combustion of Nitramine Propellants

    DTIC Science & Technology

    1983-03-01

    through development of a comprehensive analytical model. The ultimate goals are to enable prediction of deflagration rate over a wide pressure range...superior in burn rate prediction , both simple models fail in correlating existing temperature- sensitivity data. (2) In the second part, a...auxiliary condition to enable independent burn rate prediction ; improved melt phase model including decomposition-gas bubbles; model for far-field

  12. New developments in isotropic turbulent models for FENE-P fluids

    NASA Astrophysics Data System (ADS)

    Resende, P. R.; Cavadas, A. S.

    2018-04-01

    The evolution of viscoelastic turbulent models, in the last years, has been significant due to the direct numeric simulation (DNS) advances, which allowed us to capture in detail the evolution of the viscoelastic effects and the development of viscoelastic closures. New viscoelastic closures are proposed for viscoelastic fluids described by the finitely extensible nonlinear elastic-Peterlin constitutive model. One of the viscoelastic closure developed in the context of isotropic turbulent models, consists in a modification of the turbulent viscosity to include an elastic effect, capable of predicting, with good accuracy, the behaviour for different drag reductions. Another viscoelastic closure essential to predict drag reduction relates the viscoelastic term involving velocity and the tensor conformation fluctuations. The DNS data show the high impact of this term to predict correctly the drag reduction, and for this reason is proposed a simpler closure capable of predicting the viscoelastic behaviour with good performance. In addition, a new relation is developed to predict the drag reduction, quantity based on the trace of the tensor conformation at the wall, eliminating the need of the typically parameters of Weissenberg and Reynolds numbers, which depend on the friction velocity. This allows future developments for complex geometries.

  13. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method

    PubMed Central

    Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang

    2016-01-01

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds. PMID:27270206

  14. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method.

    PubMed

    Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang

    2016-06-08

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds.

  15. Parameter selection for and implementation of a web-based decision-support tool to predict extubation outcome in premature infants.

    PubMed

    Mueller, Martina; Wagner, Carol L; Annibale, David J; Knapp, Rebecca G; Hulsey, Thomas C; Almeida, Jonas S

    2006-03-01

    Approximately 30% of intubated preterm infants with respiratory distress syndrome (RDS) will fail attempted extubation, requiring reintubation and mechanical ventilation. Although ventilator technology and monitoring of premature infants have improved over time, optimal extubation remains challenging. Furthermore, extubation decisions for premature infants require complex informational processing, techniques implicitly learned through clinical practice. Computer-aided decision-support tools would benefit inexperienced clinicians, especially during peak neonatal intensive care unit (NICU) census. A five-step procedure was developed to identify predictive variables. Clinical expert (CE) thought processes comprised one model. Variables from that model were used to develop two mathematical models for the decision-support tool: an artificial neural network (ANN) and a multivariate logistic regression model (MLR). The ranking of the variables in the three models was compared using the Wilcoxon Signed Rank Test. The best performing model was used in a web-based decision-support tool with a user interface implemented in Hypertext Markup Language (HTML) and the mathematical model employing the ANN. CEs identified 51 potentially predictive variables for extubation decisions for an infant on mechanical ventilation. Comparisons of the three models showed a significant difference between the ANN and the CE (p = 0.0006). Of the original 51 potentially predictive variables, the 13 most predictive variables were used to develop an ANN as a web-based decision-tool. The ANN processes user-provided data and returns the prediction 0-1 score and a novelty index. The user then selects the most appropriate threshold for categorizing the prediction as a success or failure. Furthermore, the novelty index, indicating the similarity of the test case to the training case, allows the user to assess the confidence level of the prediction with regard to how much the new data differ from the data originally used for the development of the prediction tool. State-of-the-art, machine-learning methods can be employed for the development of sophisticated tools to aid clinicians' decisions. We identified numerous variables considered relevant for extubation decisions for mechanically ventilated premature infants with RDS. We then developed a web-based decision-support tool for clinicians which can be made widely available and potentially improve patient care world wide.

  16. A hybrid model for predicting carbon monoxide from vehicular exhausts in urban environments

    NASA Astrophysics Data System (ADS)

    Gokhale, Sharad; Khare, Mukesh

    Several deterministic-based air quality models evaluate and predict the frequently occurring pollutant concentration well but, in general, are incapable of predicting the 'extreme' concentrations. In contrast, the statistical distribution models overcome the above limitation of the deterministic models and predict the 'extreme' concentrations. However, the environmental damages are caused by both extremes as well as by the sustained average concentration of pollutants. Hence, the model should predict not only 'extreme' ranges but also the 'middle' ranges of pollutant concentrations, i.e. the entire range. Hybrid modelling is one of the techniques that estimates/predicts the 'entire range' of the distribution of pollutant concentrations by combining the deterministic based models with suitable statistical distribution models ( Jakeman, et al., 1988). In the present paper, a hybrid model has been developed to predict the carbon monoxide (CO) concentration distributions at one of the traffic intersections, Income Tax Office (ITO), in the Delhi city, where the traffic is heterogeneous in nature and meteorology is 'tropical'. The model combines the general finite line source model (GFLSM) as its deterministic, and log logistic distribution (LLD) model, as its statistical components. The hybrid (GFLSM-LLD) model is then applied at the ITO intersection. The results show that the hybrid model predictions match with that of the observed CO concentration data within the 5-99 percentiles range. The model is further validated at different street location, i.e. Sirifort roadway. The validation results show that the model predicts CO concentrations fairly well ( d=0.91) in 10-95 percentiles range. The regulatory compliance is also developed to estimate the probability of exceedance of hourly CO concentration beyond the National Ambient Air Quality Standards (NAAQS) of India. It consists of light vehicles, heavy vehicles, three- wheelers (auto rickshaws) and two-wheelers (scooters, motorcycles, etc).

  17. Comparison of Predictive Modeling Methods of Aircraft Landing Speed

    NASA Technical Reports Server (NTRS)

    Diallo, Ousmane H.

    2012-01-01

    Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.

  18. Development of a prognostic model for predicting spontaneous singleton preterm birth.

    PubMed

    Schaaf, Jelle M; Ravelli, Anita C J; Mol, Ben Willem J; Abu-Hanna, Ameen

    2012-10-01

    To develop and validate a prognostic model for prediction of spontaneous preterm birth. Prospective cohort study using data of the nationwide perinatal registry in The Netherlands. We studied 1,524,058 singleton pregnancies between 1999 and 2007. We developed a multiple logistic regression model to estimate the risk of spontaneous preterm birth based on maternal and pregnancy characteristics. We used bootstrapping techniques to internally validate our model. Discrimination (AUC), accuracy (Brier score) and calibration (calibration graphs and Hosmer-Lemeshow C-statistic) were used to assess the model's predictive performance. Our primary outcome measure was spontaneous preterm birth at <37 completed weeks. Spontaneous preterm birth occurred in 57,796 (3.8%) pregnancies. The final model included 13 variables for predicting preterm birth. The predicted probabilities ranged from 0.01 to 0.71 (IQR 0.02-0.04). The model had an area under the receiver operator characteristic curve (AUC) of 0.63 (95% CI 0.63-0.63), the Brier score was 0.04 (95% CI 0.04-0.04) and the Hosmer Lemeshow C-statistic was significant (p<0.0001). The calibration graph showed overprediction at higher values of predicted probability. The positive predictive value was 26% (95% CI 20-33%) for the 0.4 probability cut-off point. The model's discrimination was fair and it had modest calibration. Previous preterm birth, drug abuse and vaginal bleeding in the first half of pregnancy were the most important predictors for spontaneous preterm birth. Although not applicable in clinical practice yet, this model is a next step towards early prediction of spontaneous preterm birth that enables caregivers to start preventive therapy in women at higher risk. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Perspectives for geographically oriented management of fusarium mycotoxins in the cereal supply chain.

    PubMed

    van der Fels-Klerx, H J; Booij, C J H

    2010-06-01

    This article provides an overview of available systems for management of Fusarium mycotoxins in the cereal grain supply chain, with an emphasis on the use of predictive mathematical modeling. From the state of the art, it proposes future developments in modeling and management and their challenges. Mycotoxin contamination in cereal grain-based feed and food products is currently managed and controlled by good agricultural practices, good manufacturing practices, hazard analysis critical control points, and by checking and more recently by notification systems and predictive mathematical models. Most of the predictive models for Fusarium mycotoxins in cereal grains focus on deoxynivalenol in wheat and aim to help growers make decisions about the application of fungicides during cultivation. Future developments in managing Fusarium mycotoxins should include the linkage between predictive mathematical models and geographical information systems, resulting into region-specific predictions for mycotoxin occurrence. The envisioned geographically oriented decision support system may incorporate various underlying models for specific users' demands and regions and various related databases to feed the particular models with (geographically oriented) input data. Depending on the user requirements, the system selects the best fitting model and available input information. Future research areas include organizing data management in the cereal grain supply chain, developing predictive models for other stakeholders (taking into account the period up to harvest), other Fusarium mycotoxins, and cereal grain types, and understanding the underlying effects of the regional component in the models.

  20. In silico prediction of potential chemical reactions mediated by human enzymes.

    PubMed

    Yu, Myeong-Sang; Lee, Hyang-Mi; Park, Aaron; Park, Chungoo; Ceong, Hyithaek; Rhee, Ki-Hyeong; Na, Dokyun

    2018-06-13

    Administered drugs are often converted into an ineffective or activated form by enzymes in our body. Conventional in silico prediction approaches focused on therapeutically important enzymes such as CYP450. However, there are more than thousands of different cellular enzymes that potentially convert administered drug into other forms. We developed an in silico model to predict which of human enzymes including metabolic enzymes as well as CYP450 family can catalyze a given chemical compound. The prediction is based on the chemical and physical similarity between known enzyme substrates and a query chemical compound. Our in silico model was developed using multiple linear regression and the model showed high performance (AUC = 0.896) despite of the large number of enzymes. When evaluated on a test dataset, it also showed significantly high performance (AUC = 0.746). Interestingly, evaluation with literature data showed that our model can be used to predict not only enzymatic reactions but also drug conversion and enzyme inhibition. Our model was able to predict enzymatic reactions of a query molecule with a high accuracy. This may foster to discover new metabolic routes and to accelerate the computational development of drug candidates by enabling the prediction of the potential conversion of administered drugs into active or inactive forms.

  1. Prediction of adolescent and adult adiposity outcomes from early life anthropometrics.

    PubMed

    Graversen, Lise; Sørensen, Thorkild I A; Gerds, Thomas A; Petersen, Liselotte; Sovio, Ulla; Kaakinen, Marika; Sandbaek, Annelli; Laitinen, Jaana; Taanila, Anja; Pouta, Anneli; Järvelin, Marjo-Riitta; Obel, Carsten

    2015-01-01

    Maternal body mass index (BMI), birth weight, and preschool BMI may help identify children at high risk of overweight as they are (1) similarly linked to adolescent overweight at different stages of the obesity epidemic, (2) linked to adult obesity and metabolic alterations, and (3) easily obtainable in health examinations in young children. The aim was to develop early childhood prediction models of adolescent overweight, adult overweight, and adult obesity. Prediction models at various ages in the Northern Finland Birth Cohort born in 1966 (NFBC1966) were developed. Internal validation was tested using a bootstrap design, and external validation was tested for the model predicting adolescent overweight using the Northern Finland Birth Cohort born in 1986 (NFBC1986). A prediction model developed in the NFBC1966 to predict adolescent overweight, applied to the NFBC1986, and aimed at labelling 10% as "at risk" on the basis of anthropometric information collected until 5 years of age showed that half of those at risk in fact did become overweight. This group constituted one-third of all who became overweight. Our prediction model identified a subgroup of children at very high risk of becoming overweight, which may be valuable in public health settings dealing with obesity prevention. © 2014 The Obesity Society.

  2. Development of a Clinical Forecasting Model to Predict Comorbid Depression Among Diabetes Patients and an Application in Depression Screening Policy Making.

    PubMed

    Jin, Haomiao; Wu, Shinyi; Di Capua, Paul

    2015-09-03

    Depression is a common but often undiagnosed comorbid condition of people with diabetes. Mass screening can detect undiagnosed depression but may require significant resources and time. The objectives of this study were 1) to develop a clinical forecasting model that predicts comorbid depression among patients with diabetes and 2) to evaluate a model-based screening policy that saves resources and time by screening only patients considered as depressed by the clinical forecasting model. We trained and validated 4 machine learning models by using data from 2 safety-net clinical trials; we chose the one with the best overall predictive ability as the ultimate model. We compared model-based policy with alternative policies, including mass screening and partial screening, on the basis of depression history or diabetes severity. Logistic regression had the best overall predictive ability of the 4 models evaluated and was chosen as the ultimate forecasting model. Compared with mass screening, the model-based policy can save approximately 50% to 60% of provider resources and time but will miss identifying about 30% of patients with depression. Partial-screening policy based on depression history alone found only a low rate of depression. Two other heuristic-based partial screening policies identified depression at rates similar to those of the model-based policy but cost more in resources and time. The depression prediction model developed in this study has compelling predictive ability. By adopting the model-based depression screening policy, health care providers can use their resources and time better and increase their efficiency in managing their patients with depression.

  3. Analytical prediction of digital signal crosstalk of FCC

    NASA Technical Reports Server (NTRS)

    Belleisle, A. P.

    1972-01-01

    The results are presented of study effort whose aim was the development of accurate means of analyzing and predicting signal cross-talk in multi-wire digital data cables. A complete analytical model is developed n + 1 wire systems of uniform transmission lines with arbitrary linear boundary conditions. In addition, a minimum set of parameter measurements required for the application of the model are presented. Comparisons between cross-talk predicted by this model and actual measured cross-talk are shown for a six conductor ribbon cable.

  4. Developing global regression models for metabolite concentration prediction regardless of cell line.

    PubMed

    André, Silvère; Lagresle, Sylvain; Da Sliva, Anthony; Heimendinger, Pierre; Hannas, Zahia; Calvosa, Éric; Duponchel, Ludovic

    2017-11-01

    Following the Process Analytical Technology (PAT) of the Food and Drug Administration (FDA), drug manufacturers are encouraged to develop innovative techniques in order to monitor and understand their processes in a better way. Within this framework, it has been demonstrated that Raman spectroscopy coupled with chemometric tools allow to predict critical parameters of mammalian cell cultures in-line and in real time. However, the development of robust and predictive regression models clearly requires many batches in order to take into account inter-batch variability and enhance models accuracy. Nevertheless, this heavy procedure has to be repeated for every new line of cell culture involving many resources. This is why we propose in this paper to develop global regression models taking into account different cell lines. Such models are finally transferred to any culture of the cells involved. This article first demonstrates the feasibility of developing regression models, not only for mammalian cell lines (CHO and HeLa cell cultures), but also for insect cell lines (Sf9 cell cultures). Then global regression models are generated, based on CHO cells, HeLa cells, and Sf9 cells. Finally, these models are evaluated considering a fourth cell line(HEK cells). In addition to suitable predictions of glucose and lactate concentration of HEK cell cultures, we expose that by adding a single HEK-cell culture to the calibration set, the predictive ability of the regression models are substantially increased. In this way, we demonstrate that using global models, it is not necessary to consider many cultures of a new cell line in order to obtain accurate models. Biotechnol. Bioeng. 2017;114: 2550-2559. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Rapid biochemical methane potential prediction of urban organic waste with near-infrared reflectance spectroscopy.

    PubMed

    Fitamo, T; Triolo, J M; Boldrin, A; Scheutz, C

    2017-08-01

    The anaerobic digestibility of various biomass feedstocks in biogas plants is determined with biochemical methane potential (BMP) assays. However, experimental BMP analysis is time-consuming, costly and challenging to optimise stock management and feeding to achieve improved biogas production. The aim of the present study is to develop a fast and reliable model based on near-infrared reflectance spectroscopy (NIRS) for the BMP prediction of urban organic waste (UOW). The model comprised 87 UOW samples. Additionally, 88 plant biomass samples were included, to develop a combined model predicting BMP. The coefficient of determination (R 2 ) and root mean square error in prediction (RMSE P ) of the UOW model were 0.88 and 44 mL CH 4 /g VS, while the combined model was 0.89 and 50 mL CH 4 /g VS. Improved model performance was obtained for the two individual models compared to the combined version. The BMP prediction with NIRS was satisfactory and moderately successful. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Identifying crash-prone traffic conditions under different weather on freeways.

    PubMed

    Xu, Chengcheng; Wang, Wei; Liu, Pan

    2013-09-01

    Understanding the relationships between traffic flow characteristics and crash risk under adverse weather conditions will help highway agencies develop proactive safety management strategies to improve traffic safety in adverse weather conditions. The primary objective is to develop separate crash risk prediction models for different weather conditions. The crash data, weather data, and traffic data used in this study were collected on the I-880N freeway in California in 2008 and 2010. This study considered three different weather conditions: clear weather, rainy weather, and reduced visibility weather. The preliminary analysis showed that there was some heterogeneity in the risk estimates for traffic flow characteristics by weather conditions, and that the crash risk prediction model for all weather conditions cannot capture the impacts of the traffic flow variables on crash risk under adverse weather conditions. The Bayesian random intercept logistic regression models were applied to link the likelihood of crash occurrence with various traffic flow characteristics under different weather conditions. The crash risk prediction models were compared to their corresponding logistic regression model. It was found that the random intercept model improved the goodness-of-fit of the crash risk prediction models. The model estimation results showed that the traffic flow characteristics contributing to crash risk were different across different weather conditions. The speed difference between upstream and downstream stations was found to be significant in each crash risk prediction model. Speed difference between upstream and downstream stations had the largest impact on crash risk in reduced visibility weather, followed by that in rainy weather. The ROC curves were further developed to evaluate the predictive performance of the crash risk prediction models under different weather conditions. The predictive performance of the crash risk model for clear weather was better than those of the crash risk models for adverse weather conditions. The research results could promote a better understanding of the impacts of traffic flow characteristics on crash risk under adverse weather conditions, which will help transportation professionals to develop better crash prevention strategies in adverse weather. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  7. Development of time-trend model for analysing and predicting case pattern of dog bite injury induced rabies-like-illness in Liberia, 2014-2017.

    PubMed

    Jomah, N D; Ojo, J F; Odigie, E A; Olugasa, B O

    2014-12-01

    The post-civil war records of dog bite injuries (DBI) and rabies-like-illness (RLI) among humans in Liberia is a vital epidemiological resource for developing a predictive model to guide the allocation of resources towards human rabies control. Whereas DBI and RLI are high, they are largely under-reported. The objective of this study was to develop a time model of the case-pattern and apply it to derive predictors of time-trend point distribution of DBI-RLI cases. A retrospective 6 years data of DBI distribution among humans countrywide were converted to quarterly series using a transformation technique of Minimizing Squared First Difference statistic. The generated dataset was used to train a time-trend model of the DBI-RLI syndrome in Liberia. An additive detenninistic time-trend model was selected due to its performance compared to multiplication model of trend and seasonal movement. Parameter predictors were run on least square method to predict DBI cases for a prospective 4 years period, covering 2014-2017. The two-stage predictive model of DBI case-pattern between 2014 and 2017 was characterised by a uniform upward trend within Liberia's coastal and hinterland Counties over the forecast period. This paper describes a translational application of the time-trend distribution pattern of DBI epidemics, 2008-2013 reported in Liberia, on which a predictive model was developed. A computationally feasible two-stage time-trend permutation approach is proposed to estimate the time-trend parameters and conduct predictive inference on DBI-RLI in Liberia.

  8. Recurrence predictive models for patients with hepatocellular carcinoma after radiofrequency ablation using support vector machines with feature selection methods.

    PubMed

    Liang, Ja-Der; Ping, Xiao-Ou; Tseng, Yi-Ju; Huang, Guan-Tarn; Lai, Feipei; Yang, Pei-Ming

    2014-12-01

    Recurrence of hepatocellular carcinoma (HCC) is an important issue despite effective treatments with tumor eradication. Identification of patients who are at high risk for recurrence may provide more efficacious screening and detection of tumor recurrence. The aim of this study was to develop recurrence predictive models for HCC patients who received radiofrequency ablation (RFA) treatment. From January 2007 to December 2009, 83 newly diagnosed HCC patients receiving RFA as their first treatment were enrolled. Five feature selection methods including genetic algorithm (GA), simulated annealing (SA) algorithm, random forests (RF) and hybrid methods (GA+RF and SA+RF) were utilized for selecting an important subset of features from a total of 16 clinical features. These feature selection methods were combined with support vector machine (SVM) for developing predictive models with better performance. Five-fold cross-validation was used to train and test SVM models. The developed SVM-based predictive models with hybrid feature selection methods and 5-fold cross-validation had averages of the sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and area under the ROC curve as 67%, 86%, 82%, 69%, 90%, and 0.69, respectively. The SVM derived predictive model can provide suggestive high-risk recurrent patients, who should be closely followed up after complete RFA treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Early prediction of intensive care unit-acquired weakness using easily available parameters: a prospective observational study.

    PubMed

    Wieske, Luuk; Witteveen, Esther; Verhamme, Camiel; Dettling-Ihnenfeldt, Daniela S; van der Schaaf, Marike; Schultz, Marcus J; van Schaik, Ivo N; Horn, Janneke

    2014-01-01

    An early diagnosis of Intensive Care Unit-acquired weakness (ICU-AW) using muscle strength assessment is not possible in most critically ill patients. We hypothesized that development of ICU-AW can be predicted reliably two days after ICU admission, using patient characteristics, early available clinical parameters, laboratory results and use of medication as parameters. Newly admitted ICU patients mechanically ventilated ≥2 days were included in this prospective observational cohort study. Manual muscle strength was measured according to the Medical Research Council (MRC) scale, when patients were awake and attentive. ICU-AW was defined as an average MRC score <4. A prediction model was developed by selecting predictors from an a-priori defined set of candidate predictors, based on known risk factors. Discriminative performance of the prediction model was evaluated, validated internally and compared to the APACHE IV and SOFA score. Of 212 included patients, 103 developed ICU-AW. Highest lactate levels, treatment with any aminoglycoside in the first two days after admission and age were selected as predictors. The area under the receiver operating characteristic curve of the prediction model was 0.71 after internal validation. The new prediction model improved discrimination compared to the APACHE IV and the SOFA score. The new early prediction model for ICU-AW using a set of 3 easily available parameters has fair discriminative performance. This model needs external validation.

  10. A microRNA-based prediction model for lymph node metastasis in hepatocellular carcinoma.

    PubMed

    Zhang, Li; Xiang, Zuo-Lin; Zeng, Zhao-Chong; Fan, Jia; Tang, Zhao-You; Zhao, Xiao-Mei

    2016-01-19

    We developed an efficient microRNA (miRNA) model that could predict the risk of lymph node metastasis (LNM) in hepatocellular carcinoma (HCC). We first evaluated a training cohort of 192 HCC patients after hepatectomy and found five LNM associated predictive factors: vascular invasion, Barcelona Clinic Liver Cancer stage, miR-145, miR-31, and miR-92a. The five statistically independent factors were used to develop a predictive model. The predictive value of the miRNA-based model was confirmed in a validation cohort of 209 consecutive HCC patients. The prediction model was scored for LNM risk from 0 to 8. The cutoff value 4 was used to distinguish high-risk and low-risk groups. The model sensitivity and specificity was 69.6 and 80.2%, respectively, during 5 years in the validation cohort. And the area under the curve (AUC) for the miRNA-based prognostic model was 0.860. The 5-year positive and negative predictive values of the model in the validation cohort were 30.3 and 95.5%, respectively. Cox regression analysis revealed that the LNM hazard ratio of the high-risk versus low-risk groups was 11.751 (95% CI, 5.110-27.021; P < 0.001) in the validation cohort. In conclusion, the miRNA-based model is reliable and accurate for the early prediction of LNM in patients with HCC.

  11. Response surface models for effects of temperature and previous growth sodium chloride on growth kinetics of Salmonella typhimurium on cooked chicken breast.

    PubMed

    Oscar, T P

    1999-12-01

    Response surface models were developed and validated for effects of temperature (10 to 40 degrees C) and previous growth NaCl (0.5 to 4.5%) on lag time (lambda) and specific growth rate (mu) of Salmonella Typhimurium on cooked chicken breast. Growth curves for model development (n = 55) and model validation (n = 16) were fit to a two-phase linear growth model to obtain lambda and mu of Salmonella Typhimurium on cooked chicken breast. Response surface models for natural logarithm transformations of lambda and mu as a function of temperature and previous growth NaCl were obtained by regression analysis. Both lambda and mu of Salmonella Typhimurium were affected (P < 0.0001) by temperature but not by previous growth NaCl. Models were validated against data not used in their development. Mean absolute relative error of predictions (model accuracy) was 26.6% for lambda and 15.4% for mu. Median relative error of predictions (model bias) was 0.9% for lambda and 5.2% for mu. Results indicated that the models developed provided reliable predictions of lambda and mu of Salmonella Typhimurium on cooked chicken breast within the matrix of conditions modeled. In addition, results indicated that previous growth NaCl (0.5 to 4.5%) was not a major factor affecting subsequent growth kinetics of Salmonella Typhimurium on cooked chicken breast. Thus, inclusion of previous growth NaCl in predictive models may not significantly improve our ability to predict growth of Salmonella spp. on food subjected to temperature abuse.

  12. National Centers for Environmental Prediction

    Science.gov Websites

    Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar The Mesoscale Modeling Branch conducts a program of research and development in support of the prediction. This research and development includes mesoscale four-dimensional data assimilation of domestic

  13. An Integrated Approach Linking Process to Structural Modeling With Microstructural Characterization for Injections-Molded Long-Fiber Thermoplastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Smith, Mark T.

    2008-09-01

    The objective of our work is to enable the optimum design of lightweight automotive structural components using injection-molded long fiber thermoplastics (LFTs). To this end, an integrated approach that links process modeling to structural analysis with experimental microstructural characterization and validation is developed. First, process models for LFTs are developed and implemented into processing codes (e.g. ORIENT, Moldflow) to predict the microstructure of the as-formed composite (i.e. fiber length and orientation distributions). In parallel, characterization and testing methods are developed to obtain necessary microstructural data to validate process modeling predictions. Second, the predicted LFT composite microstructure is imported into amore » structural finite element analysis by ABAQUS to determine the response of the as-formed composite to given boundary conditions. At this stage, constitutive models accounting for the composite microstructure are developed to predict various types of behaviors (i.e. thermoelastic, viscoelastic, elastic-plastic, damage, fatigue, and impact) of LFTs. Experimental methods are also developed to determine material parameters and to validate constitutive models. Such a process-linked-structural modeling approach allows an LFT composite structure to be designed with confidence through numerical simulations. Some recent results of our collaborative research will be illustrated to show the usefulness and applications of this integrated approach.« less

  14. Target specific proteochemometric model development for BACE1 - protein flexibility and structural water are critical in virtual screening.

    PubMed

    Manoharan, Prabu; Chennoju, Kiranmai; Ghoshal, Nanda

    2015-07-01

    BACE1 is an attractive target in Alzheimer's disease (AD) treatment. A rational drug design effort for the inhibition of BACE1 is actively pursued by researchers in both academic and pharmaceutical industries. This continued effort led to the steady accumulation of BACE1 crystal structures, co-complexed with different classes of inhibitors. This wealth of information is used in this study to develop target specific proteochemometric models and these models are exploited for predicting the prospective BACE1 inhibitors. The models developed in this study have performed excellently in predicting the computationally generated poses, separately obtained from single and ensemble docking approaches. The simple protein-ligand contact (SPLC) model outperforms other sophisticated high end models, in virtual screening performance, developed during this study. In an attempt to account for BACE1 protein active site flexibility information in predictive models, we included the change in the area of solvent accessible surface and the change in the volume of solvent accessible surface in our models. The ensemble and single receptor docking results obtained from this study indicate that the structural water mediated interactions improve the virtual screening results. Also, these waters are essential for recapitulating bioactive conformation during docking study. The proteochemometric models developed in this study can be used for the prediction of BACE1 inhibitors, during the early stage of AD drug discovery.

  15. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, Vinicius M.; Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599; Muratov, Eugene

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putativemore » sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. - Highlights: • It was compiled the largest publicly-available skin sensitization dataset. • Predictive QSAR models were developed for skin sensitization. • Developed models have higher prediction accuracy than OECD QSAR Toolbox. • Putative chemical hazards in the Scorecard database were found using our models.« less

  16. Prediction models for successful external cephalic version: a systematic review.

    PubMed

    Velzel, Joost; de Hundt, Marcella; Mulder, Frederique M; Molkenboer, Jan F M; Van der Post, Joris A M; Mol, Ben W; Kok, Marjolein

    2015-12-01

    To provide an overview of existing prediction models for successful ECV, and to assess their quality, development and performance. We searched MEDLINE, EMBASE and the Cochrane Library to identify all articles reporting on prediction models for successful ECV published from inception to January 2015. We extracted information on study design, sample size, model-building strategies and validation. We evaluated the phases of model development and summarized their performance in terms of discrimination, calibration and clinical usefulness. We collected different predictor variables together with their defined significance, in order to identify important predictor variables for successful ECV. We identified eight articles reporting on seven prediction models. All models were subjected to internal validation. Only one model was also validated in an external cohort. Two prediction models had a low overall risk of bias, of which only one showed promising predictive performance at internal validation. This model also completed the phase of external validation. For none of the models their impact on clinical practice was evaluated. The most important predictor variables for successful ECV described in the selected articles were parity, placental location, breech engagement and the fetal head being palpable. One model was assessed using discrimination and calibration using internal (AUC 0.71) and external validation (AUC 0.64), while two other models were assessed with discrimination and calibration, respectively. We found one prediction model for breech presentation that was validated in an external cohort and had acceptable predictive performance. This model should be used to council women considering ECV. Copyright © 2015. Published by Elsevier Ireland Ltd.

  17. PredictABEL: an R package for the assessment of risk prediction models.

    PubMed

    Kundu, Suman; Aulchenko, Yurii S; van Duijn, Cornelia M; Janssens, A Cecile J W

    2011-04-01

    The rapid identification of genetic markers for multifactorial diseases from genome-wide association studies is fuelling interest in investigating the predictive ability and health care utility of genetic risk models. Various measures are available for the assessment of risk prediction models, each addressing a different aspect of performance and utility. We developed PredictABEL, a package in R that covers descriptive tables, measures and figures that are used in the analysis of risk prediction studies such as measures of model fit, predictive ability and clinical utility, and risk distributions, calibration plot and the receiver operating characteristic plot. Tables and figures are saved as separate files in a user-specified format, which include publication-quality EPS and TIFF formats. All figures are available in a ready-made layout, but they can be customized to the preferences of the user. The package has been developed for the analysis of genetic risk prediction studies, but can also be used for studies that only include non-genetic risk factors. PredictABEL is freely available at the websites of GenABEL ( http://www.genabel.org ) and CRAN ( http://cran.r-project.org/).

  18. Application of Fracture Distribution Prediction Model in Xihu Depression of East China Sea

    NASA Astrophysics Data System (ADS)

    Yan, Weifeng; Duan, Feifei; Zhang, Le; Li, Ming

    2018-02-01

    There are different responses on each of logging data with the changes of formation characteristics and outliers caused by the existence of fractures. For this reason, the development of fractures in formation can be characterized by the fine analysis of logging curves. The well logs such as resistivity, sonic transit time, density, neutron porosity and gamma ray, which are classified as conventional well logs, are more sensitive to formation fractures. In view of traditional fracture prediction model, using the simple weighted average of different logging data to calculate the comprehensive fracture index, are more susceptible to subjective factors and exist a large deviation, a statistical method is introduced accordingly. Combining with responses of conventional logging data on the development of formation fracture, a prediction model based on membership function is established, and its essence is to analyse logging data with fuzzy mathematics theory. The fracture prediction results in a well formation in NX block of Xihu depression through two models are compared with that of imaging logging, which shows that the accuracy of fracture prediction model based on membership function is better than that of traditional model. Furthermore, the prediction results are highly consistent with imaging logs and can reflect the development of cracks much better. It can provide a reference for engineering practice.

  19. Risk prediction models for graft failure in kidney transplantation: a systematic review.

    PubMed

    Kaboré, Rémi; Haller, Maria C; Harambat, Jérôme; Heinze, Georg; Leffondré, Karen

    2017-04-01

    Risk prediction models are useful for identifying kidney recipients at high risk of graft failure, thus optimizing clinical care. Our objective was to systematically review the models that have been recently developed and validated to predict graft failure in kidney transplantation recipients. We used PubMed and Scopus to search for English, German and French language articles published in 2005-15. We selected studies that developed and validated a new risk prediction model for graft failure after kidney transplantation, or validated an existing model with or without updating the model. Data on recipient characteristics and predictors, as well as modelling and validation methods were extracted. In total, 39 articles met the inclusion criteria. Of these, 34 developed and validated a new risk prediction model and 5 validated an existing one with or without updating the model. The most frequently predicted outcome was graft failure, defined as dialysis, re-transplantation or death with functioning graft. Most studies used the Cox model. There was substantial variability in predictors used. In total, 25 studies used predictors measured at transplantation only, and 14 studies used predictors also measured after transplantation. Discrimination performance was reported in 87% of studies, while calibration was reported in 56%. Performance indicators were estimated using both internal and external validation in 13 studies, and using external validation only in 6 studies. Several prediction models for kidney graft failure in adults have been published. Our study highlights the need to better account for competing risks when applicable in such studies, and to adequately account for post-transplant measures of predictors in studies aiming at improving monitoring of kidney transplant recipients. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  20. Building and validation of a prognostic model for predicting extracorporeal circuit clotting in patients with continuous renal replacement therapy.

    PubMed

    Fu, Xia; Liang, Xinling; Song, Li; Huang, Huigen; Wang, Jing; Chen, Yuanhan; Zhang, Li; Quan, Zilin; Shi, Wei

    2014-04-01

    To develop a predictive model for circuit clotting in patients with continuous renal replacement therapy (CRRT). A total of 425 cases were selected. 302 cases were used to develop a predictive model of extracorporeal circuit life span during CRRT without citrate anticoagulation in 24 h, and 123 cases were used to validate the model. The prediction formula was developed using multivariate Cox proportional-hazards regression analysis, from which a risk score was assigned. The mean survival time of the circuit was 15.0 ± 1.3 h, and the rate of circuit clotting was 66.6 % during 24 h of CRRT. Five significant variables were assigned a predicting score according to the regression coefficient: insufficient blood flow, no anticoagulation, hematocrit ≥0.37, lactic acid of arterial blood gas analysis ≤3 mmol/L and APTT < 44.2 s. The Hosmer-Lemeshow test showed no significant difference between the predicted and actual circuit clotting (R (2) = 0.232; P = 0.301). A risk score that includes the five above-mentioned variables can be used to predict the likelihood of extracorporeal circuit clotting in patients undergoing CRRT.

  1. Personalized long-term prediction of cognitive function: Using sequential assessments to improve model performance.

    PubMed

    Chi, Chih-Lin; Zeng, Wenjun; Oh, Wonsuk; Borson, Soo; Lenskaia, Tatiana; Shen, Xinpeng; Tonellato, Peter J

    2017-12-01

    Prediction of onset and progression of cognitive decline and dementia is important both for understanding the underlying disease processes and for planning health care for populations at risk. Predictors identified in research studies are typically accessed at one point in time. In this manuscript, we argue that an accurate model for predicting cognitive status over relatively long periods requires inclusion of time-varying components that are sequentially assessed at multiple time points (e.g., in multiple follow-up visits). We developed a pilot model to test the feasibility of using either estimated or observed risk factors to predict cognitive status. We developed two models, the first using a sequential estimation of risk factors originally obtained from 8 years prior, then improved by optimization. This model can predict how cognition will change over relatively long time periods. The second model uses observed rather than estimated time-varying risk factors and, as expected, results in better prediction. This model can predict when newly observed data are acquired in a follow-up visit. Performances of both models that are evaluated in10-fold cross-validation and various patient subgroups show supporting evidence for these pilot models. Each model consists of multiple base prediction units (BPUs), which were trained using the same set of data. The difference in usage and function between the two models is the source of input data: either estimated or observed data. In the next step of model refinement, we plan to integrate the two types of data together to flexibly predict dementia status and changes over time, when some time-varying predictors are measured only once and others are measured repeatedly. Computationally, both data provide upper and lower bounds for predictive performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A Predictive Model of Daily Seismic Activity Induced by Mining, Developed with Data Mining Methods

    NASA Astrophysics Data System (ADS)

    Jakubowski, Jacek

    2014-12-01

    The article presents the development and evaluation of a predictive classification model of daily seismic energy emissions induced by longwall mining in sector XVI of the Piast coal mine in Poland. The model uses data on tremor energy, basic characteristics of the longwall face and mined output in this sector over the period from July 1987 to March 2011. The predicted binary variable is the occurrence of a daily sum of tremor seismic energies in a longwall that is greater than or equal to the threshold value of 105 J. Three data mining analytical methods were applied: logistic regression,neural networks, and stochastic gradient boosted trees. The boosted trees model was chosen as the best for the purposes of the prediction. The validation sample results showed its good predictive capability, taking the complex nature of the phenomenon into account. This may indicate the applied model's suitability for a sequential, short-term prediction of mining induced seismic activity.

  3. Experimental and modelling of Arthrospira platensis cultivation in open raceway ponds.

    PubMed

    Ranganathan, Panneerselvam; Amal, J C; Savithri, S; Haridas, Ajith

    2017-10-01

    In this study, the growth of Arthrospira platensis was studied in an open raceway pond. Furthermore, dynamic model for algae growth and CFD modelling of hydrodynamics in open raceway pond were developed. The dynamic behaviour of the algal system was developed by solving mass balance equations of various components, considering light intensity and gas-liquid mass transfer. A CFD modelling of the hydrodynamics of open raceway pond was developed by solving mass and momentum balance equations of the liquid medium. The prediction of algae concentration from the dynamic model was compared with the experimental data. The hydrodynamic behaviour of the open raceway pond was compared with the literature data for model validation. The model predictions match the experimental findings. Furthermore, the hydrodynamic behaviour and residence time distribution in our small raceway pond were predicted. These models can serve as a tool to assess the pond performance criteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Complexity of Developmental Predictions from Dual Process Models

    ERIC Educational Resources Information Center

    Stanovich, Keith E.; West, Richard F.; Toplak, Maggie E.

    2011-01-01

    Drawing developmental predictions from dual-process theories is more complex than is commonly realized. Overly simplified predictions drawn from such models may lead to premature rejection of the dual process approach as one of many tools for understanding cognitive development. Misleading predictions can be avoided by paying attention to several…

  5. Prediction of wastewater quality indicators at the inflow to the wastewater treatment plant using data mining methods

    NASA Astrophysics Data System (ADS)

    Szeląg, Bartosz; Barbusiński, Krzysztof; Studziński, Jan; Bartkiewicz, Lidia

    2017-11-01

    In the study, models developed using data mining methods are proposed for predicting wastewater quality indicators: biochemical and chemical oxygen demand, total suspended solids, total nitrogen and total phosphorus at the inflow to wastewater treatment plant (WWTP). The models are based on values measured in previous time steps and daily wastewater inflows. Also, independent prediction systems that can be used in case of monitoring devices malfunction are provided. Models of wastewater quality indicators were developed using MARS (multivariate adaptive regression spline) method, artificial neural networks (ANN) of the multilayer perceptron type combined with the classification model (SOM) and cascade neural networks (CNN). The lowest values of absolute and relative errors were obtained using ANN+SOM, whereas the MARS method produced the highest error values. It was shown that for the analysed WWTP it is possible to obtain continuous prediction of selected wastewater quality indicators using the two developed independent prediction systems. Such models can ensure reliable WWTP work when wastewater quality monitoring systems become inoperable, or are under maintenance.

  6. The development and testing of a skin tear risk assessment tool.

    PubMed

    Newall, Nelly; Lewin, Gill F; Bulsara, Max K; Carville, Keryln J; Leslie, Gavin D; Roberts, Pam A

    2017-02-01

    The aim of the present study is to develop a reliable and valid skin tear risk assessment tool. The six characteristics identified in a previous case control study as constituting the best risk model for skin tear development were used to construct a risk assessment tool. The ability of the tool to predict skin tear development was then tested in a prospective study. Between August 2012 and September 2013, 1466 tertiary hospital patients were assessed at admission and followed up for 10 days to see if they developed a skin tear. The predictive validity of the tool was assessed using receiver operating characteristic (ROC) analysis. When the tool was found not to have performed as well as hoped, secondary analyses were performed to determine whether a potentially better performing risk model could be identified. The tool was found to have high sensitivity but low specificity and therefore have inadequate predictive validity. Secondary analysis of the combined data from this and the previous case control study identified an alternative better performing risk model. The tool developed and tested in this study was found to have inadequate predictive validity. The predictive validity of an alternative, more parsimonious model now needs to be tested. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  7. The Physics of Boundary-Layer Aero-Optic Effects

    DTIC Science & Technology

    2012-09-01

    various models to predict aero-optical effects for both subsonic and supersonic Mach numbers, laser beam sizes and non- adiabatic walls. The developed...models to predict aero-optical effects for both subsonic and supersonic Mach numbers, laser beam sizes and non- adiabatic walls. The developed models were... Supersonic Facilities .................................................................................................... 8 3.3 2-D Wavefront Data

  8. Global Weather Prediction and High-End Computing at NASA

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Atlas, Robert; Yeh, Kao-San

    2003-01-01

    We demonstrate current capabilities of the NASA finite-volume General Circulation Model an high-resolution global weather prediction, and discuss its development path in the foreseeable future. This model can be regarded as a prototype of a future NASA Earth modeling system intended to unify development activities cutting across various disciplines within the NASA Earth Science Enterprise.

  9. Predicting the Risk of Attrition for Undergraduate Students with Time Based Modelling

    ERIC Educational Resources Information Center

    Chai, Kevin E. K.; Gibson, David

    2015-01-01

    Improving student retention is an important and challenging problem for universities. This paper reports on the development of a student attrition model for predicting which first year students are most at-risk of leaving at various points in time during their first semester of study. The objective of developing such a model is to assist…

  10. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors

    EPA Science Inventory

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently pu...

  11. Development of Single-Seed Near-Infrared Spectroscopic Predictions of Corn and Soybeans Constituents Using Bulk Teference Values and Mean Spectra

    USDA-ARS?s Scientific Manuscript database

    Near-Infrared reflectance spectroscopic prediction models were developed for common constituents of corn and soybeans using bulk reference values and mean spectra from single-seeds. The bulk reference model and a true single-seed model for soybean protein were compared to determine how well the bul...

  12. The application of molecular modelling in the safety assessment of chemicals: A case study on ligand-dependent PPARγ dysregulation.

    PubMed

    Al Sharif, Merilin; Tsakovska, Ivanka; Pajeva, Ilza; Alov, Petko; Fioravanzo, Elena; Bassan, Arianna; Kovarich, Simona; Yang, Chihae; Mostrag-Szlichtyng, Aleksandra; Vitcheva, Vessela; Worth, Andrew P; Richarz, Andrea-N; Cronin, Mark T D

    2017-12-01

    The aim of this paper was to provide a proof of concept demonstrating that molecular modelling methodologies can be employed as a part of an integrated strategy to support toxicity prediction consistent with the mode of action/adverse outcome pathway (MoA/AOP) framework. To illustrate the role of molecular modelling in predictive toxicology, a case study was undertaken in which molecular modelling methodologies were employed to predict the activation of the peroxisome proliferator-activated nuclear receptor γ (PPARγ) as a potential molecular initiating event (MIE) for liver steatosis. A stepwise procedure combining different in silico approaches (virtual screening based on docking and pharmacophore filtering, and molecular field analysis) was developed to screen for PPARγ full agonists and to predict their transactivation activity (EC 50 ). The performance metrics of the classification model to predict PPARγ full agonists were balanced accuracy=81%, sensitivity=85% and specificity=76%. The 3D QSAR model developed to predict EC 50 of PPARγ full agonists had the following statistical parameters: q 2 cv =0.610, N opt =7, SEP cv =0.505, r 2 pr =0.552. To support the linkage of PPARγ agonism predictions to prosteatotic potential, molecular modelling was combined with independently performed mechanistic mining of available in vivo toxicity data followed by ToxPrint chemotypes analysis. The approaches investigated demonstrated a potential to predict the MIE, to facilitate the process of MoA/AOP elaboration, to increase the scientific confidence in AOP, and to become a basis for 3D chemotype development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. A prediction model of compressor with variable-geometry diffuser based on elliptic equation and partial least squares

    PubMed Central

    Yang, Chuanlei; Wang, Yinyan; Wang, Hechun

    2018-01-01

    To achieve a much more extensive intake air flow range of the diesel engine, a variable-geometry compressor (VGC) is introduced into a turbocharged diesel engine. However, due to the variable diffuser vane angle (DVA), the prediction for the performance of the VGC becomes more difficult than for a normal compressor. In the present study, a prediction model comprising an elliptical equation and a PLS (partial least-squares) model was proposed to predict the performance of the VGC. The speed lines of the pressure ratio map and the efficiency map were fitted with the elliptical equation, and the coefficients of the elliptical equation were introduced into the PLS model to build the polynomial relationship between the coefficients and the relative speed, the DVA. Further, the maximal order of the polynomial was investigated in detail to reduce the number of sub-coefficients and achieve acceptable fit accuracy simultaneously. The prediction model was validated with sample data and in order to present the superiority of compressor performance prediction, the prediction results of this model were compared with those of the look-up table and back-propagation neural networks (BPNNs). The validation and comparison results show that the prediction accuracy of the new developed model is acceptable, and this model is much more suitable than the look-up table and the BPNN methods under the same condition in VGC performance prediction. Moreover, the new developed prediction model provides a novel and effective prediction solution for the VGC and can be used to improve the accuracy of the thermodynamic model for turbocharged diesel engines in the future. PMID:29410849

  14. A prediction model of compressor with variable-geometry diffuser based on elliptic equation and partial least squares.

    PubMed

    Li, Xu; Yang, Chuanlei; Wang, Yinyan; Wang, Hechun

    2018-01-01

    To achieve a much more extensive intake air flow range of the diesel engine, a variable-geometry compressor (VGC) is introduced into a turbocharged diesel engine. However, due to the variable diffuser vane angle (DVA), the prediction for the performance of the VGC becomes more difficult than for a normal compressor. In the present study, a prediction model comprising an elliptical equation and a PLS (partial least-squares) model was proposed to predict the performance of the VGC. The speed lines of the pressure ratio map and the efficiency map were fitted with the elliptical equation, and the coefficients of the elliptical equation were introduced into the PLS model to build the polynomial relationship between the coefficients and the relative speed, the DVA. Further, the maximal order of the polynomial was investigated in detail to reduce the number of sub-coefficients and achieve acceptable fit accuracy simultaneously. The prediction model was validated with sample data and in order to present the superiority of compressor performance prediction, the prediction results of this model were compared with those of the look-up table and back-propagation neural networks (BPNNs). The validation and comparison results show that the prediction accuracy of the new developed model is acceptable, and this model is much more suitable than the look-up table and the BPNN methods under the same condition in VGC performance prediction. Moreover, the new developed prediction model provides a novel and effective prediction solution for the VGC and can be used to improve the accuracy of the thermodynamic model for turbocharged diesel engines in the future.

  15. Framework for Smart Electronic Health Record- Linked Predictive Models to Optimize Care for Complex Digestive Diseases

    DTIC Science & Technology

    2013-08-01

    surgeries, hospitalizations, etc). Once our model is developed we hope to apply our model at an outside institution, specifically University of...to build predictive models with the hope of improving disease management. It is difficult to find these factors in EMR systems as the...death, surgeries, hospitalizations, etc.) Once our model is developed, we hope to apply the model to de-identified data set from the University of

  16. Development of a Risk Prediction Model and Clinical Risk Score for Isolated Tricuspid Valve Surgery.

    PubMed

    LaPar, Damien J; Likosky, Donald S; Zhang, Min; Theurer, Patty; Fonner, C Edwin; Kern, John A; Bolling, Stephen F; Drake, Daniel H; Speir, Alan M; Rich, Jeffrey B; Kron, Irving L; Prager, Richard L; Ailawadi, Gorav

    2018-02-01

    While tricuspid valve (TV) operations remain associated with high mortality (∼8-10%), no robust prediction models exist to support clinical decision-making. We developed a preoperative clinical risk model with an easily calculable clinical risk score (CRS) to predict mortality and major morbidity after isolated TV surgery. Multi-state Society of Thoracic Surgeons database records were evaluated for 2,050 isolated TV repair and replacement operations for any etiology performed at 50 hospitals (2002-2014). Parsimonious preoperative risk prediction models were developed using multi-level mixed effects regression to estimate mortality and composite major morbidity risk. Model results were utilized to establish a novel CRS for patients undergoing TV operations. Models were evaluated for discrimination and calibration. Operative mortality and composite major morbidity rates were 9% and 42%, respectively. Final regression models performed well (both P<0.001, AUC = 0.74 and 0.76) and included preoperative factors: age, gender, stroke, hemodialysis, ejection fraction, lung disease, NYHA class, reoperation and urgent or emergency status (all P<0.05). A simple CRS from 0-10+ was highly associated (P<0.001) with incremental increases in predicted mortality and major morbidity. Predicted mortality risk ranged from 2%-34% across CRS categories, while predicted major morbidity risk ranged from 13%-71%. Mortality and major morbidity after isolated TV surgery can be predicted using preoperative patient data from the STS Adult Cardiac Database. A simple clinical risk score predicts mortality and major morbidity after isolated TV surgery. This score may facilitate perioperative counseling and identification of suitable patients for TV surgery. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Ross River virus and Barmah Forest virus infections: a review of history, ecology, and predictive models, with implications for tropical northern Australia.

    PubMed

    Jacups, Susan P; Whelan, Peter I; Currie, Bart J

    2008-04-01

    The purpose of the present article is to present a review of the Ross River virus (RRV) and Barmah Forest virus (BFV) literature in relation to potential implications for future disease in tropical northern Australia. Ross River virus infection is the most common and most widespread arboviral disease in Australia, with an average of 4,800 national notifications annually. Of recent concern is the sudden rise in BFV infections; the 2005-2006 summer marked the largest BFV epidemic on record in Australia, with 1,895 notifications. Although not life-threatening, infection with either virus can cause arthritis, myalgia, and fatigue for 6 months or longer, resulting in substantial morbidity and economic impact. The geographic distribution of mosquito species and their seasonal activity is determined in large part by temperature and rainfall. Predictive models can be useful tools in providing early warning systems for epidemics of RRV and BFV infection. Various models have been developed to predict RRV outbreaks, but these appear to be mostly only regionally valid, being dependent on local ecological factors. Difficulties have arisen in developing useful models for the tropical northern parts of Australia, and to date no models have been developed for the Northern Territory. Only one model has been developed for predicting BFV infections using climate and tide variables. It is predicted that the exacerbation of current greenhouse conditions will result in longer periods of high mosquito activity in the tropical regions where RRV and BFV are already common. In addition, the endemic locations may expand further within temperate regions, and epidemics may become more frequent in those areas. Further development of predictive models should benefit public health planning by providing early warning systems of RRV and BFV infection outbreaks in different geographical locations.

  18. A calibration hierarchy for risk models was defined: from utopia to empirical data.

    PubMed

    Van Calster, Ben; Nieboer, Daan; Vergouwe, Yvonne; De Cock, Bavo; Pencina, Michael J; Steyerberg, Ewout W

    2016-06-01

    Calibrated risk models are vital for valid decision support. We define four levels of calibration and describe implications for model development and external validation of predictions. We present results based on simulated data sets. A common definition of calibration is "having an event rate of R% among patients with a predicted risk of R%," which we refer to as "moderate calibration." Weaker forms of calibration only require the average predicted risk (mean calibration) or the average prediction effects (weak calibration) to be correct. "Strong calibration" requires that the event rate equals the predicted risk for every covariate pattern. This implies that the model is fully correct for the validation setting. We argue that this is unrealistic: the model type may be incorrect, the linear predictor is only asymptotically unbiased, and all nonlinear and interaction effects should be correctly modeled. In addition, we prove that moderate calibration guarantees nonharmful decision making. Finally, results indicate that a flexible assessment of calibration in small validation data sets is problematic. Strong calibration is desirable for individualized decision support but unrealistic and counter productive by stimulating the development of overly complex models. Model development and external validation should focus on moderate calibration. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Rethinking Indian monsoon rainfall prediction in the context of recent global warming

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Xiang, Baoqiang; Li, Juan; Webster, Peter J.; Rajeevan, Madhavan N.; Liu, Jian; Ha, Kyung-Ja

    2015-05-01

    Prediction of Indian summer monsoon rainfall (ISMR) is at the heart of tropical climate prediction. Despite enormous progress having been made in predicting ISMR since 1886, the operational forecasts during recent decades (1989-2012) have little skill. Here we show, with both dynamical and physical-empirical models, that this recent failure is largely due to the models' inability to capture new predictability sources emerging during recent global warming, that is, the development of the central-Pacific El Nino-Southern Oscillation (CP-ENSO), the rapid deepening of the Asian Low and the strengthening of North and South Pacific Highs during boreal spring. A physical-empirical model that captures these new predictors can produce an independent forecast skill of 0.51 for 1989-2012 and a 92-year retrospective forecast skill of 0.64 for 1921-2012. The recent low skills of the dynamical models are attributed to deficiencies in capturing the developing CP-ENSO and anomalous Asian Low. The results reveal a considerable gap between ISMR prediction skill and predictability.

  20. Model Verification and Validation Concepts for a Probabilistic Fracture Assessment Model to Predict Cracking of Knife Edge Seals in the Space Shuttle Main Engine High Pressure Oxidizer

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Riha, David S.

    2013-01-01

    Physics-based models are routinely used to predict the performance of engineered systems to make decisions such as when to retire system components, how to extend the life of an aging system, or if a new design will be safe or available. Model verification and validation (V&V) is a process to establish credibility in model predictions. Ideally, carefully controlled validation experiments will be designed and performed to validate models or submodels. In reality, time and cost constraints limit experiments and even model development. This paper describes elements of model V&V during the development and application of a probabilistic fracture assessment model to predict cracking in space shuttle main engine high-pressure oxidizer turbopump knife-edge seals. The objective of this effort was to assess the probability of initiating and growing a crack to a specified failure length in specific flight units for different usage and inspection scenarios. The probabilistic fracture assessment model developed in this investigation combined a series of submodels describing the usage, temperature history, flutter tendencies, tooth stresses and numbers of cycles, fatigue cracking, nondestructive inspection, and finally the probability of failure. The analysis accounted for unit-to-unit variations in temperature, flutter limit state, flutter stress magnitude, and fatigue life properties. The investigation focused on the calculation of relative risk rather than absolute risk between the usage scenarios. Verification predictions were first performed for three units with known usage and cracking histories to establish credibility in the model predictions. Then, numerous predictions were performed for an assortment of operating units that had flown recently or that were projected for future flights. Calculations were performed using two NASA-developed software tools: NESSUS(Registered Trademark) for the probabilistic analysis, and NASGRO(Registered Trademark) for the fracture mechanics analysis. The goal of these predictions was to provide additional information to guide decisions on the potential of reusing existing and installed units prior to the new design certification.

  1. Developing and Testing a Model to Predict Outcomes of Organizational Change

    PubMed Central

    Gustafson, David H; Sainfort, François; Eichler, Mary; Adams, Laura; Bisognano, Maureen; Steudel, Harold

    2003-01-01

    Objective To test the effectiveness of a Bayesian model employing subjective probability estimates for predicting success and failure of health care improvement projects. Data Sources Experts' subjective assessment data for model development and independent retrospective data on 221 healthcare improvement projects in the United States, Canada, and the Netherlands collected between 1996 and 2000 for validation. Methods A panel of theoretical and practical experts and literature in organizational change were used to identify factors predicting the outcome of improvement efforts. A Bayesian model was developed to estimate probability of successful change using subjective estimates of likelihood ratios and prior odds elicited from the panel of experts. A subsequent retrospective empirical analysis of change efforts in 198 health care organizations was performed to validate the model. Logistic regression and ROC analysis were used to evaluate the model's performance using three alternative definitions of success. Data Collection For the model development, experts' subjective assessments were elicited using an integrative group process. For the validation study, a staff person intimately involved in each improvement project responded to a written survey asking questions about model factors and project outcomes. Results Logistic regression chi-square statistics and areas under the ROC curve demonstrated a high level of model performance in predicting success. Chi-square statistics were significant at the 0.001 level and areas under the ROC curve were greater than 0.84. Conclusions A subjective Bayesian model was effective in predicting the outcome of actual improvement projects. Additional prospective evaluations as well as testing the impact of this model as an intervention are warranted. PMID:12785571

  2. Improving Computational Efficiency of Prediction in Model-Based Prognostics Using the Unscented Transform

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Goebel, Kai Frank

    2010-01-01

    Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.

  3. High-Fidelity Multi-Rotor Unmanned Aircraft System Simulation Development for Trajectory Prediction Under Off-Nominal Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Foster, John V.; Hartman, David C.

    2017-01-01

    The NASA Unmanned Aircraft System (UAS) Traffic Management (UTM) project is conducting research to enable civilian low-altitude airspace and UAS operations. A goal of this project is to develop probabilistic methods to quantify risk during failures and off nominal flight conditions. An important part of this effort is the reliable prediction of feasible trajectories during off-nominal events such as control failure, atmospheric upsets, or navigation anomalies that can cause large deviations from the intended flight path or extreme vehicle upsets beyond the normal flight envelope. Few examples of high-fidelity modeling and prediction of off-nominal behavior for small UAS (sUAS) vehicles exist, and modeling requirements for accurately predicting flight dynamics for out-of-envelope or failure conditions are essentially undefined. In addition, the broad range of sUAS aircraft configurations already being fielded presents a significant modeling challenge, as these vehicles are often very different from one another and are likely to possess dramatically different flight dynamics and resultant trajectories and may require different modeling approaches to capture off-nominal behavior. NASA has undertaken an extensive research effort to define sUAS flight dynamics modeling requirements and develop preliminary high fidelity six degree-of-freedom (6-DOF) simulations capable of more closely predicting off-nominal flight dynamics and trajectories. This research has included a literature review of existing sUAS modeling and simulation work as well as development of experimental testing methods to measure and model key components of propulsion, airframe and control characteristics. The ultimate objective of these efforts is to develop tools to support UTM risk analyses and for the real-time prediction of off-nominal trajectories for use in the UTM Risk Assessment Framework (URAF). This paper focuses on modeling and simulation efforts for a generic quad-rotor configuration typical of many commercial vehicles in use today. An overview of relevant off-nominal multi-rotor behaviors will be presented to define modeling goals and to identify the prediction capability lacking in simplified models of multi-rotor performance. A description of recent NASA wind tunnel testing of multi-rotor propulsion and airframe components will be presented illustrating important experimental and data acquisition methods, and a description of preliminary propulsion and airframe models will be presented. Lastly, examples of predicted off-nominal flight dynamics and trajectories from the simulation will be presented.

  4. Progress of Aircraft System Noise Assessment with Uncertainty Quantification for the Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    Aircraft system noise predictions have been performed for NASA modeled hybrid wing body aircraft advanced concepts with 2025 entry-into-service technology assumptions. The system noise predictions developed over a period from 2009 to 2016 as a result of improved modeling of the aircraft concepts, design changes, technology development, flight path modeling, and the use of extensive integrated system level experimental data. In addition, the system noise prediction models and process have been improved in many ways. An additional process is developed here for quantifying the uncertainty with a 95% confidence level. This uncertainty applies only to the aircraft system noise prediction process. For three points in time during this period, the vehicle designs, technologies, and noise prediction process are documented. For each of the three predictions, and with the information available at each of those points in time, the uncertainty is quantified using the direct Monte Carlo method with 10,000 simulations. For the prediction of cumulative noise of an advanced aircraft at the conceptual level of design, the total uncertainty band has been reduced from 12.2 to 9.6 EPNL dB. A value of 3.6 EPNL dB is proposed as the lower limit of uncertainty possible for the cumulative system noise prediction of an advanced aircraft concept.

  5. Wave models for turbulent free shear flows

    NASA Technical Reports Server (NTRS)

    Liou, W. W.; Morris, P. J.

    1991-01-01

    New predictive closure models for turbulent free shear flows are presented. They are based on an instability wave description of the dominant large scale structures in these flows using a quasi-linear theory. Three model were developed to study the structural dynamics of turbulent motions of different scales in free shear flows. The local characteristics of the large scale motions are described using linear theory. Their amplitude is determined from an energy integral analysis. The models were applied to the study of an incompressible free mixing layer. In all cases, predictions are made for the development of the mean flow field. In the last model, predictions of the time dependent motion of the large scale structure of the mixing region are made. The predictions show good agreement with experimental observations.

  6. Coupling of the Models of Human Physiology and Thermal Comfort

    NASA Astrophysics Data System (ADS)

    Pokorny, J.; Jicha, M.

    2013-04-01

    A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  7. Application of GA-SVM method with parameter optimization for landslide development prediction

    NASA Astrophysics Data System (ADS)

    Li, X. Z.; Kong, J. M.

    2013-10-01

    Prediction of landslide development process is always a hot issue in landslide research. So far, many methods for landslide displacement series prediction have been proposed. Support vector machine (SVM) has been proved to be a novel algorithm with good performance. However, the performance strongly depends on the right selection of the parameters (C and γ) of SVM model. In this study, we presented an application of GA-SVM method with parameter optimization in landslide displacement rate prediction. We selected a typical large-scale landslide in some hydro - electrical engineering area of Southwest China as a case. On the basis of analyzing the basic characteristics and monitoring data of the landslide, a single-factor GA-SVM model and a multi-factor GA-SVM model of the landslide were built. Moreover, the models were compared with single-factor and multi-factor SVM models of the landslide. The results show that, the four models have high prediction accuracies, but the accuracies of GA-SVM models are slightly higher than those of SVM models and the accuracies of multi-factor models are slightly higher than those of single-factor models for the landslide prediction. The accuracy of the multi-factor GA-SVM models is the highest, with the smallest RSME of 0.0009 and the biggest RI of 0.9992.

  8. Achievement Emotions and Academic Performance: Longitudinal Models of Reciprocal Effects.

    PubMed

    Pekrun, Reinhard; Lichtenfeld, Stephanie; Marsh, Herbert W; Murayama, Kou; Goetz, Thomas

    2017-09-01

    A reciprocal effects model linking emotion and achievement over time is proposed. The model was tested using five annual waves of the Project for the Analysis of Learning and Achievement in Mathematics (PALMA) longitudinal study, which investigated adolescents' development in mathematics (Grades 5-9; N = 3,425 German students; mean starting age = 11.7 years; representative sample). Structural equation modeling showed that positive emotions (enjoyment, pride) positively predicted subsequent achievement (math end-of-the-year grades and test scores), and that achievement positively predicted these emotions, controlling for students' gender, intelligence, and family socioeconomic status. Negative emotions (anger, anxiety, shame, boredom, hopelessness) negatively predicted achievement, and achievement negatively predicted these emotions. The findings were robust across waves, achievement indicators, and school tracks, highlighting the importance of emotions for students' achievement and of achievement for the development of emotions. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  9. Development of novel in silico model for developmental toxicity assessment by using naïve Bayes classifier method.

    PubMed

    Zhang, Hui; Ren, Ji-Xia; Kang, Yan-Li; Bo, Peng; Liang, Jun-Yu; Ding, Lan; Kong, Wei-Bao; Zhang, Ji

    2017-08-01

    Toxicological testing associated with developmental toxicity endpoints are very expensive, time consuming and labor intensive. Thus, developing alternative approaches for developmental toxicity testing is an important and urgent task in the drug development filed. In this investigation, the naïve Bayes classifier was applied to develop a novel prediction model for developmental toxicity. The established prediction model was evaluated by the internal 5-fold cross validation and external test set. The overall prediction results for the internal 5-fold cross validation of the training set and external test set were 96.6% and 82.8%, respectively. In addition, four simple descriptors and some representative substructures of developmental toxicants were identified. Thus, we hope the established in silico prediction model could be used as alternative method for toxicological assessment. And these obtained molecular information could afford a deeper understanding on the developmental toxicants, and provide guidance for medicinal chemists working in drug discovery and lead optimization. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Prediction models for transfer of arsenic from soil to corn grain (Zea mays L.).

    PubMed

    Yang, Hua; Li, Zhaojun; Long, Jian; Liang, Yongchao; Xue, Jianming; Davis, Murray; He, Wenxiang

    2016-04-01

    In this study, the transfer of arsenic (As) from soil to corn grain was investigated in 18 soils collected from throughout China. The soils were treated with three concentrations of As and the transfer characteristics were investigated in the corn grain cultivar Zhengdan 958 in a greenhouse experiment. Through stepwise multiple-linear regression analysis, prediction models were developed combining the As bioconcentration factor (BCF) of Zhengdan 958 and soil pH, organic matter (OM) content, and cation exchange capacity (CEC). The possibility of applying the Zhengdan 958 model to other cultivars was tested through a cross-cultivar extrapolation approach. The results showed that the As concentration in corn grain was positively correlated with soil pH. When the prediction model was applied to non-model cultivars, the ratio ranges between the predicted and measured BCF values were within a twofold interval between predicted and measured values. The ratios were close to a 1:1 relationship between predicted and measured values. It was also found that the prediction model (Log [BCF]=0.064 pH-2.297) could effectively reduce the measured BCF variability for all non-model corn cultivars. The novel model is firstly developed for As concentration in crop grain from soil, which will be very useful for understanding the As risk in soil environment.

  11. Development of an aerobic capacity prediction model from one-mile run/walk performance in adolescents aged 13-16 years.

    PubMed

    Burns, Ryan D; Hannon, James C; Brusseau, Timothy A; Eisenman, Patricia A; Shultz, Barry B; Saint-Maurice, Pedro F; Welk, Gregory J; Mahar, Matthew T

    2016-01-01

    A popular algorithm to predict VO2Peak from the one-mile run/walk test (1MRW) includes body mass index (BMI), which manifests practical issues in school settings. The purpose of this study was to develop an aerobic capacity model from 1MRW in adolescents independent of BMI. Cardiorespiratory endurance data were collected on 90 adolescents aged 13-16 years. The 1MRW was administered on an outside track and a laboratory VO2Peak test was conducted using a maximal treadmill protocol. Multiple linear regression was employed to develop the prediction model. Results yielded the following algorithm: VO2Peak = 7.34 × (1MRW speed in m s(-1)) + 0.23 × (age × sex) + 17.75. The New Model displayed a multiple correlation and prediction error of R = 0.81, standard error of the estimate = 4.78 ml kg(-1) · min(-1), with measured VO2Peak and good criterion-referenced (CR) agreement into FITNESSGRAM's Healthy Fitness Zone (Kappa = 0.62; percentage agreement = 84.4%; Φ = 0.62). The New Model was validated using k-fold cross-validation and showed homoscedastic residuals across the range of predicted scores. The omission of BMI did not compromise accuracy of the model. In conclusion, the New Model displayed good predictive accuracy and good CR agreement with measured VO2Peak in adolescents aged 13-16 years.

  12. Varying execution discipline to increase performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, P.L.; Maccabe, A.B.

    1993-12-22

    This research investigates the relationship between execution discipline and performance. The hypothesis has two parts: 1. Different execution disciplines exhibit different performance for different computations, and 2. These differences can be effectively predicted by heuristics. A machine model is developed that can vary its execution discipline. That is, the model can execute a given program using either the control-driven, data-driven or demand-driven execution discipline. This model is referred to as a ``variable-execution-discipline`` machine. The instruction set for the model is the Program Dependence Web (PDW). The first part of the hypothesis will be tested by simulating the execution of themore » machine model on a suite of computations, based on the Livermore Fortran Kernel (LFK) Test (a.k.a. the Livermore Loops), using all three execution disciplines. Heuristics are developed to predict relative performance. These heuristics predict (a) the execution time under each discipline for one iteration of each loop and (b) the number of iterations taken by that loop; then the heuristics use those predictions to develop a prediction for the execution of the entire loop. Similar calculations are performed for branch statements. The second part of the hypothesis will be tested by comparing the results of the simulated execution with the predictions produced by the heuristics. If the hypothesis is supported, then the door is open for the development of machines that can vary execution discipline to increase performance.« less

  13. Developing a predictive tropospheric ozone model for Tabriz

    NASA Astrophysics Data System (ADS)

    Khatibi, Rahman; Naghipour, Leila; Ghorbani, Mohammad A.; Smith, Michael S.; Karimi, Vahid; Farhoudi, Reza; Delafrouz, Hadi; Arvanaghi, Hadi

    2013-04-01

    Predictive ozone models are becoming indispensable tools by providing a capability for pollution alerts to serve people who are vulnerable to the risks. We have developed a tropospheric ozone prediction capability for Tabriz, Iran, by using the following five modeling strategies: three regression-type methods: Multiple Linear Regression (MLR), Artificial Neural Networks (ANNs), and Gene Expression Programming (GEP); and two auto-regression-type models: Nonlinear Local Prediction (NLP) to implement chaos theory and Auto-Regressive Integrated Moving Average (ARIMA) models. The regression-type modeling strategies explain the data in terms of: temperature, solar radiation, dew point temperature, and wind speed, by regressing present ozone values to their past values. The ozone time series are available at various time intervals, including hourly intervals, from August 2010 to March 2011. The results for MLR, ANN and GEP models are not overly good but those produced by NLP and ARIMA are promising for the establishing a forecasting capability.

  14. Modeling the Endogenous Sunlight Inactivation Rates of Laboratory Strain and Wastewater E. coli and Enterococci Using Biological Weighting Functions.

    PubMed

    Silverman, Andrea I; Nelson, Kara L

    2016-11-15

    Models that predict sunlight inactivation rates of bacteria are valuable tools for predicting the fate of pathogens in recreational waters and designing natural wastewater treatment systems to meet disinfection goals. We developed biological weighting function (BWF)-based numerical models to estimate the endogenous sunlight inactivation rates of E. coli and enterococci. BWF-based models allow the prediction of inactivation rates under a range of environmental conditions that shift the magnitude or spectral distribution of sunlight irradiance (e.g., different times, latitudes, water absorbances, depth). Separate models were developed for laboratory strain bacteria cultured in the laboratory and indigenous organisms concentrated directly from wastewater. Wastewater bacteria were found to be 5-7 times less susceptible to full-spectrum simulated sunlight than the laboratory bacteria, highlighting the importance of conducting experiments with bacteria sourced directly from wastewater. The inactivation rate models fit experimental data well and were successful in predicting the inactivation rates of wastewater E. coli and enterococci measured in clear marine water by researchers from a different laboratory. Additional research is recommended to develop strategies to account for the effects of elevated water pH on predicted inactivation rates.

  15. Development of Modeling Capabilities for Launch Pad Acoustics and Ignition Transient Environment Prediction

    NASA Technical Reports Server (NTRS)

    West, Jeff; Strutzenberg, Louise L.; Putnam, Gabriel C.; Liever, Peter A.; Williams, Brandon R.

    2012-01-01

    This paper presents development efforts to establish modeling capabilities for launch vehicle liftoff acoustics and ignition transient environment predictions. Peak acoustic loads experienced by the launch vehicle occur during liftoff with strong interaction between the vehicle and the launch facility. Acoustic prediction engineering tools based on empirical models are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. Modeling approaches are needed that capture the important details of the plume flow environment including the ignition transient, identify the noise generation sources, and allow assessment of the effects of launch pad geometric details and acoustic mitigation measures such as water injection. This paper presents a status of the CFD tools developed by the MSFC Fluid Dynamics Branch featuring advanced multi-physics modeling capabilities developed towards this goal. Validation and application examples are presented along with an overview of application in the prediction of liftoff environments and the design of targeted mitigation measures such as launch pad configuration and sound suppression water placement.

  16. Using ensemble rainfall predictions in a countrywide flood forecasting model in Scotland

    NASA Astrophysics Data System (ADS)

    Cranston, M. D.; Maxey, R.; Tavendale, A. C. W.; Buchanan, P.

    2012-04-01

    Improving flood predictions for all sources of flooding is at the centre of flood risk management policy in Scotland. With the introduction of the Flood Risk Management (Scotland) Act providing a new statutory basis for SEPA's flood warning responsibilities, the pressures on delivering hydrological science developments in support of this legislation has increased. Specifically, flood forecasting capabilities need to develop in support of the need to reduce the impact of flooding through the provision of actively disseminated, reliable and timely flood warnings. Flood forecasting in Scotland has developed significantly in recent years (Cranston and Tavendale, 2012). The development of hydrological models to predict flooding at a catchment scale has relied upon the application of rainfall runoff models utilising raingauge, radar and quantitative precipitation forecasts in the short lead time (less than 6 hours). Single or deterministic forecasts based on highly uncertain rainfall predictions have led to the greatest operational difficulties when communicating flood risk with emergency responders, therefore the emergence of probability-based estimates offers the greatest opportunity for managing uncertain predictions. This paper presents operational application of a physical-conceptual distributed hydrological model on a countrywide basis across Scotland. Developed by CEH Wallingford for SEPA in 2011, Grid-to-Grid (G2G) principally runs in deterministic mode and employs radar and raingauge estimates of rainfall together with weather model predictions to produce forecast river flows, as gridded time-series at a resolution of 1km and for up to 5 days ahead (Cranston, et al., 2012). However the G2G model is now being run operationally using ensemble predictions of rainfall from the MOGREPS-R system to provide probabilistic flood forecasts. By presenting a range of flood predictions on a national scale through this approach, hydrologists are now able to consider an objective measure of the likelihood of flooding impacts to help with risk based emergency communication.

  17. 78 FR 70303 - Announcement of Requirements and Registration for the Predict the Influenza Season Challenge

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... public. Mathematical and statistical models can be useful in predicting the timing and impact of the... applying any mathematical, statistical, or other approach to predictive modeling. This challenge will... Services (HHS) region level(s) in the United States by developing mathematical and statistical models that...

  18. Modeling and Predicting Cancer from ToxCast Phase I Data

    EPA Science Inventory

    The ToxCast program is generating a diverse collection of in vitro cell free and cell based HTS data to be used for predictive modeling of in vivo toxicity. We are using this in vitro data, plus corresponding in vivo data from ToxRefDB, to develop models for prediction and priori...

  19. Mathematical modelling and numerical simulation of forces in milling process

    NASA Astrophysics Data System (ADS)

    Turai, Bhanu Murthy; Satish, Cherukuvada; Prakash Marimuthu, K.

    2018-04-01

    Machining of the material by milling induces forces, which act on the work piece material, tool and which in turn act on the machining tool. The forces involved in milling process can be quantified, mathematical models help to predict these forces. A lot of research has been carried out in this area in the past few decades. The current research aims at developing a mathematical model to predict forces at different levels which arise machining of Aluminium6061 alloy. Finite element analysis was used to develop a FE model to predict the cutting forces. Simulation was done for varying cutting conditions. Different experiments was designed using Taguchi method. A L9 orthogonal array was designed and the output was measure for the different experiments. The same was used to develop the mathematical model.

  20. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Astrophysics Data System (ADS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-05-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  1. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Technical Reports Server (NTRS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-01-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  2. Optimizing Blasting’s Air Overpressure Prediction Model using Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd

    2018-04-01

    Air overpressure (AOp) resulting from blasting can cause damage and nuisance to nearby civilians. Thus, it is important to be able to predict AOp accurately. In this study, 8 different Artificial Neural Network (ANN) were developed for the purpose of prediction of AOp. The ANN models were trained using different variants of Particle Swarm Optimization (PSO) algorithm. AOp predictions were also made using an empirical equation, as suggested by United States Bureau of Mines (USBM), to serve as a benchmark. In order to develop the models, 76 blasting operations in Hulu Langat were investigated. All the ANN models were found to outperform the USBM equation in three performance metrics; root mean square error (RMSE), mean absolute percentage error (MAPE) and coefficient of determination (R2). Using a performance ranking method, MSO-Rand-Mut was determined to be the best prediction model for AOp with a performance metric of RMSE=2.18, MAPE=1.73% and R2=0.97. The result shows that ANN models trained using PSO are capable of predicting AOp with great accuracy.

  3. Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models

    PubMed Central

    Battin-Leclerc, Frédérique; Blurock, Edward; Bounaceur, Roda; Fournet, René; Glaude, Pierre-Alexandre; Herbinet, Olivier; Sirjean, Baptiste; Warth, V.

    2013-01-01

    In the context of limiting the environmental impact of transportation, this paper reviews new directions which are being followed in the development of more predictive and more accurate detailed chemical kinetic models for the combustion of fuels. In the first part, the performance of current models, especially in terms of the prediction of pollutant formation, is evaluated. In the next parts, recent methods and ways to improve these models are described. An emphasis is given on the development of detailed models based on elementary reactions, on the production of the related thermochemical and kinetic parameters, and on the experimental techniques available to produce the data necessary to evaluate model predictions under well defined conditions. PMID:21597604

  4. Just-in-Time Correntropy Soft Sensor with Noisy Data for Industrial Silicon Content Prediction.

    PubMed

    Chen, Kun; Liang, Yu; Gao, Zengliang; Liu, Yi

    2017-08-08

    Development of accurate data-driven quality prediction models for industrial blast furnaces encounters several challenges mainly because the collected data are nonlinear, non-Gaussian, and uneven distributed. A just-in-time correntropy-based local soft sensing approach is presented to predict the silicon content in this work. Without cumbersome efforts for outlier detection, a correntropy support vector regression (CSVR) modeling framework is proposed to deal with the soft sensor development and outlier detection simultaneously. Moreover, with a continuous updating database and a clustering strategy, a just-in-time CSVR (JCSVR) method is developed. Consequently, more accurate prediction and efficient implementations of JCSVR can be achieved. Better prediction performance of JCSVR is validated on the online silicon content prediction, compared with traditional soft sensors.

  5. Just-in-Time Correntropy Soft Sensor with Noisy Data for Industrial Silicon Content Prediction

    PubMed Central

    Chen, Kun; Liang, Yu; Gao, Zengliang; Liu, Yi

    2017-01-01

    Development of accurate data-driven quality prediction models for industrial blast furnaces encounters several challenges mainly because the collected data are nonlinear, non-Gaussian, and uneven distributed. A just-in-time correntropy-based local soft sensing approach is presented to predict the silicon content in this work. Without cumbersome efforts for outlier detection, a correntropy support vector regression (CSVR) modeling framework is proposed to deal with the soft sensor development and outlier detection simultaneously. Moreover, with a continuous updating database and a clustering strategy, a just-in-time CSVR (JCSVR) method is developed. Consequently, more accurate prediction and efficient implementations of JCSVR can be achieved. Better prediction performance of JCSVR is validated on the online silicon content prediction, compared with traditional soft sensors. PMID:28786957

  6. Applicability of Monte Carlo cross validation technique for model development and validation using generalised least squares regression

    NASA Astrophysics Data System (ADS)

    Haddad, Khaled; Rahman, Ataur; A Zaman, Mohammad; Shrestha, Surendra

    2013-03-01

    SummaryIn regional hydrologic regression analysis, model selection and validation are regarded as important steps. Here, the model selection is usually based on some measurements of goodness-of-fit between the model prediction and observed data. In Regional Flood Frequency Analysis (RFFA), leave-one-out (LOO) validation or a fixed percentage leave out validation (e.g., 10%) is commonly adopted to assess the predictive ability of regression-based prediction equations. This paper develops a Monte Carlo Cross Validation (MCCV) technique (which has widely been adopted in Chemometrics and Econometrics) in RFFA using Generalised Least Squares Regression (GLSR) and compares it with the most commonly adopted LOO validation approach. The study uses simulated and regional flood data from the state of New South Wales in Australia. It is found that when developing hydrologic regression models, application of the MCCV is likely to result in a more parsimonious model than the LOO. It has also been found that the MCCV can provide a more realistic estimate of a model's predictive ability when compared with the LOO.

  7. Information-theoretic model selection for optimal prediction of stochastic dynamical systems from data

    NASA Astrophysics Data System (ADS)

    Darmon, David

    2018-03-01

    In the absence of mechanistic or phenomenological models of real-world systems, data-driven models become necessary. The discovery of various embedding theorems in the 1980s and 1990s motivated a powerful set of tools for analyzing deterministic dynamical systems via delay-coordinate embeddings of observations of their component states. However, in many branches of science, the condition of operational determinism is not satisfied, and stochastic models must be brought to bear. For such stochastic models, the tool set developed for delay-coordinate embedding is no longer appropriate, and a new toolkit must be developed. We present an information-theoretic criterion, the negative log-predictive likelihood, for selecting the embedding dimension for a predictively optimal data-driven model of a stochastic dynamical system. We develop a nonparametric estimator for the negative log-predictive likelihood and compare its performance to a recently proposed criterion based on active information storage. Finally, we show how the output of the model selection procedure can be used to compare candidate predictors for a stochastic system to an information-theoretic lower bound.

  8. Development of the NASA Digital Astronaut Project Muscle Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Pennline, James A.; Thompson, W. K.; Humphreys, B. T.; Ryder, J. W.; Ploutz-Snyder, L. L.; Mulugeta, L.

    2015-01-01

    This abstract describes development work performed on the NASA Digital Astronaut Project Muscle Model. Muscle atrophy is a known physiological response to exposure to a low gravity environment. The DAP muscle model computationally predicts the change in muscle structure and function vs. time in a reduced gravity environment. The spaceflight muscle model can then be used in biomechanical models of exercise countermeasures and spaceflight tasks to: 1) develop site specific bone loading input to the DAP bone adaptation model over the course of a mission; 2) predict astronaut performance of spaceflight tasks; 3) inform effectiveness of new exercise countermeasures concepts.

  9. Genetic determinants of freckle occurrence in the Spanish population: Towards ephelides prediction from human DNA samples.

    PubMed

    Hernando, Barbara; Ibañez, Maria Victoria; Deserio-Cuesta, Julio Alberto; Soria-Navarro, Raquel; Vilar-Sastre, Inca; Martinez-Cadenas, Conrado

    2018-03-01

    Prediction of human pigmentation traits, one of the most differentiable externally visible characteristics among individuals, from biological samples represents a useful tool in the field of forensic DNA phenotyping. In spite of freckling being a relatively common pigmentation characteristic in Europeans, little is known about the genetic basis of this largely genetically determined phenotype in southern European populations. In this work, we explored the predictive capacity of eight freckle and sunlight sensitivity-related genes in 458 individuals (266 non-freckled controls and 192 freckled cases) from Spain. Four loci were associated with freckling (MC1R, IRF4, ASIP and BNC2), and female sex was also found to be a predictive factor for having a freckling phenotype in our population. After identifying the most informative genetic variants responsible for human ephelides occurrence in our sample set, we developed a DNA-based freckle prediction model using a multivariate regression approach. Once developed, the capabilities of the prediction model were tested by a repeated 10-fold cross-validation approach. The proportion of correctly predicted individuals using the DNA-based freckle prediction model was 74.13%. The implementation of sex into the DNA-based freckle prediction model slightly improved the overall prediction accuracy by 2.19% (76.32%). Further evaluation of the newly-generated prediction model was performed by assessing the model's performance in a new cohort of 212 Spanish individuals, reaching a classification success rate of 74.61%. Validation of this prediction model may be carried out in larger populations, including samples from different European populations. Further research to validate and improve this newly-generated freckle prediction model will be needed before its forensic application. Together with DNA tests already validated for eye and hair colour prediction, this freckle prediction model may lead to a substantially more detailed physical description of unknown individuals from DNA found at the crime scene. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The DoE method as an efficient tool for modeling the behavior of monocrystalline Si-PV module

    NASA Astrophysics Data System (ADS)

    Kessaissia, Fatma Zohra; Zegaoui, Abdallah; Boutoubat, Mohamed; Allouache, Hadj; Aillerie, Michel; Charles, Jean-Pierre

    2018-05-01

    The objective of this paper is to apply the Design of Experiments (DoE) method to study and to obtain a predictive model of any marketed monocrystalline photovoltaic (mc-PV) module. This technique allows us to have a mathematical model that represents the predicted responses depending upon input factors and experimental data. Therefore, the DoE model for characterization and modeling of mc-PV module behavior can be obtained by just performing a set of experimental trials. The DoE model of the mc-PV panel evaluates the predictive maximum power, as a function of irradiation and temperature in a bounded domain of study for inputs. For the mc-PV panel, the predictive model for both one level and two levels were developed taking into account both influences of the main effect and the interactive effects on the considered factors. The DoE method is then implemented by developing a code under Matlab software. The code allows us to simulate, characterize, and validate the predictive model of the mc-PV panel. The calculated results were compared to the experimental data, errors were estimated, and an accurate validation of the predictive models was evaluated by the surface response. Finally, we conclude that the predictive models reproduce the experimental trials and are defined within a good accuracy.

  11. Novel Uses of In Vitro Data to Develop Quantitative Biological Activity Relationship Models for in Vivo Carcinogenicity Prediction.

    PubMed

    Pradeep, Prachi; Povinelli, Richard J; Merrill, Stephen J; Bozdag, Serdar; Sem, Daniel S

    2015-04-01

    The availability of large in vitro datasets enables better insight into the mode of action of chemicals and better identification of potential mechanism(s) of toxicity. Several studies have shown that not all in vitro assays can contribute as equal predictors of in vivo carcinogenicity for development of hybrid Quantitative Structure Activity Relationship (QSAR) models. We propose two novel approaches for the use of mechanistically relevant in vitro assay data in the identification of relevant biological descriptors and development of Quantitative Biological Activity Relationship (QBAR) models for carcinogenicity prediction. We demonstrate that in vitro assay data can be used to develop QBAR models for in vivo carcinogenicity prediction via two case studies corroborated with firm scientific rationale. The case studies demonstrate the similarities between QBAR and QSAR modeling in: (i) the selection of relevant descriptors to be used in the machine learning algorithm, and (ii) the development of a computational model that maps chemical or biological descriptors to a toxic endpoint. The results of both the case studies show: (i) improved accuracy and sensitivity which is especially desirable under regulatory requirements, and (ii) overall adherence with the OECD/REACH guidelines. Such mechanism based models can be used along with QSAR models for prediction of mechanistically complex toxic endpoints. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Testing an idealized dynamic cascade model of the development of serious violence in adolescence.

    PubMed

    Dodge, Kenneth A; Greenberg, Mark T; Malone, Patrick S

    2008-01-01

    A dynamic cascade model of development of serious adolescent violence was proposed and tested through prospective inquiry with 754 children (50% male; 43% African American) from 27 schools at 4 geographic sites followed annually from kindergarten through Grade 11 (ages 5-18). Self, parent, teacher, peer, observer, and administrative reports provided data. Partial least squares analyses revealed a cascade of prediction and mediation: An early social context of disadvantage predicts harsh-inconsistent parenting, which predicts social and cognitive deficits, which predicts conduct problem behavior, which predicts elementary school social and academic failure, which predicts parental withdrawal from supervision and monitoring, which predicts deviant peer associations, which ultimately predicts adolescent violence. Findings suggest targets for in-depth inquiry and preventive intervention.

  13. Development and external validation of a risk-prediction model to predict 5-year overall survival in advanced larynx cancer.

    PubMed

    Petersen, Japke F; Stuiver, Martijn M; Timmermans, Adriana J; Chen, Amy; Zhang, Hongzhen; O'Neill, James P; Deady, Sandra; Vander Poorten, Vincent; Meulemans, Jeroen; Wennerberg, Johan; Skroder, Carl; Day, Andrew T; Koch, Wayne; van den Brekel, Michiel W M

    2018-05-01

    TNM-classification inadequately estimates patient-specific overall survival (OS). We aimed to improve this by developing a risk-prediction model for patients with advanced larynx cancer. Cohort study. We developed a risk prediction model to estimate the 5-year OS rate based on a cohort of 3,442 patients with T3T4N0N+M0 larynx cancer. The model was internally validated using bootstrapping samples and externally validated on patient data from five external centers (n = 770). The main outcome was performance of the model as tested by discrimination, calibration, and the ability to distinguish risk groups based on tertiles from the derivation dataset. The model performance was compared to a model based on T and N classification only. We included age, gender, T and N classification, and subsite as prognostic variables in the standard model. After external validation, the standard model had a significantly better fit than a model based on T and N classification alone (C statistic, 0.59 vs. 0.55, P < .001). The model was able to distinguish well among three risk groups based on tertiles of the risk score. Adding treatment modality to the model did not decrease the predictive power. As a post hoc analysis, we tested the added value of comorbidity as scored by American Society of Anesthesiologists score in a subsample, which increased the C statistic to 0.68. A risk prediction model for patients with advanced larynx cancer, consisting of readily available clinical variables, gives more accurate estimations of the estimated 5-year survival rate when compared to a model based on T and N classification alone. 2c. Laryngoscope, 128:1140-1145, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.

    PubMed

    Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza

    2015-09-15

    The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. RANdom SAmple Consensus (RANSAC) algorithm for material-informatics: application to photovoltaic solar cells.

    PubMed

    Kaspi, Omer; Yosipof, Abraham; Senderowitz, Hanoch

    2017-06-06

    An important aspect of chemoinformatics and material-informatics is the usage of machine learning algorithms to build Quantitative Structure Activity Relationship (QSAR) models. The RANdom SAmple Consensus (RANSAC) algorithm is a predictive modeling tool widely used in the image processing field for cleaning datasets from noise. RANSAC could be used as a "one stop shop" algorithm for developing and validating QSAR models, performing outlier removal, descriptors selection, model development and predictions for test set samples using applicability domain. For "future" predictions (i.e., for samples not included in the original test set) RANSAC provides a statistical estimate for the probability of obtaining reliable predictions, i.e., predictions within a pre-defined number of standard deviations from the true values. In this work we describe the first application of RNASAC in material informatics, focusing on the analysis of solar cells. We demonstrate that for three datasets representing different metal oxide (MO) based solar cell libraries RANSAC-derived models select descriptors previously shown to correlate with key photovoltaic properties and lead to good predictive statistics for these properties. These models were subsequently used to predict the properties of virtual solar cells libraries highlighting interesting dependencies of PV properties on MO compositions.

  16. Derivation and validation of in-hospital mortality prediction models in ischaemic stroke patients using administrative data.

    PubMed

    Lee, Jason; Morishima, Toshitaka; Kunisawa, Susumu; Sasaki, Noriko; Otsubo, Tetsuya; Ikai, Hiroshi; Imanaka, Yuichi

    2013-01-01

    Stroke and other cerebrovascular diseases are a major cause of death and disability. Predicting in-hospital mortality in ischaemic stroke patients can help to identify high-risk patients and guide treatment approaches. Chart reviews provide important clinical information for mortality prediction, but are laborious and limiting in sample sizes. Administrative data allow for large-scale multi-institutional analyses but lack the necessary clinical information for outcome research. However, administrative claims data in Japan has seen the recent inclusion of patient consciousness and disability information, which may allow more accurate mortality prediction using administrative data alone. The aim of this study was to derive and validate models to predict in-hospital mortality in patients admitted for ischaemic stroke using administrative data. The sample consisted of 21,445 patients from 176 Japanese hospitals, who were randomly divided into derivation and validation subgroups. Multivariable logistic regression models were developed using 7- and 30-day and overall in-hospital mortality as dependent variables. Independent variables included patient age, sex, comorbidities upon admission, Japan Coma Scale (JCS) score, Barthel Index score, modified Rankin Scale (mRS) score, and admissions after hours and on weekends/public holidays. Models were developed in the derivation subgroup, and coefficients from these models were applied to the validation subgroup. Predictive ability was analysed using C-statistics; calibration was evaluated with Hosmer-Lemeshow χ(2) tests. All three models showed predictive abilities similar or surpassing that of chart review-based models. The C-statistics were highest in the 7-day in-hospital mortality prediction model, at 0.906 and 0.901 in the derivation and validation subgroups, respectively. For the 30-day in-hospital mortality prediction models, the C-statistics for the derivation and validation subgroups were 0.893 and 0.872, respectively; in overall in-hospital mortality prediction these values were 0.883 and 0.876. In this study, we have derived and validated in-hospital mortality prediction models for three different time spans using a large population of ischaemic stroke patients in a multi-institutional analysis. The recent inclusion of JCS, Barthel Index, and mRS scores in Japanese administrative data has allowed the prediction of in-hospital mortality with accuracy comparable to that of chart review analyses. The models developed using administrative data had consistently high predictive abilities for all models in both the derivation and validation subgroups. These results have implications in the role of administrative data in future mortality prediction analyses. Copyright © 2013 S. Karger AG, Basel.

  17. Exploration of Machine Learning Approaches to Predict Pavement Performance

    DOT National Transportation Integrated Search

    2018-03-23

    Machine learning (ML) techniques were used to model and predict pavement condition index (PCI) for various pavement types using a variety of input variables. The primary objective of this research was to develop and assess PCI predictive models for t...

  18. Predictive models of moth development

    USDA-ARS?s Scientific Manuscript database

    Degree-day models link ambient temperature to insect life-stages, making such models valuable tools in integrated pest management. These models increase management efficacy by predicting pest phenology. In Wisconsin, the top insect pest of cranberry production is the cranberry fruitworm, Acrobasis v...

  19. Development of a model for predicting reaction rate constants of organic chemicals with ozone at different temperatures.

    PubMed

    Li, Xuehua; Zhao, Wenxing; Li, Jing; Jiang, Jingqiu; Chen, Jianji; Chen, Jingwen

    2013-08-01

    To assess the persistence and fate of volatile organic compounds in the troposphere, the rate constants for the reaction with ozone (kO3) are needed. As kO3 values are only available for hundreds of compounds, and experimental determination of kO3 is costly and time-consuming, it is of importance to develop predictive models on kO3. In this study, a total of 379 logkO3 values at different temperatures were used to develop and validate a model for the prediction of kO3, based on quantum chemical descriptors, Dragon descriptors and structural fragments. Molecular descriptors were screened by stepwise multiple linear regression, and the model was constructed by partial least-squares regression. The cross validation coefficient QCUM(2) of the model is 0.836, and the external validation coefficient Qext(2) is 0.811, indicating that the model has high robustness and good predictive performance. The most significant descriptor explaining logkO3 is the BELm2 descriptor with connectivity information weighted atomic masses. kO3 increases with increasing BELm2, and decreases with increasing ionization potential. The applicability domain of the proposed model was visualized by the Williams plot. The developed model can be used to predict kO3 at different temperatures for a wide range of organic chemicals, including alkenes, cycloalkenes, haloalkenes, alkynes, oxygen-containing compounds, nitrogen-containing compounds (except primary amines) and aromatic compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Prediction of Flow Stress in Cadmium Using Constitutive Equation and Artificial Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Chakravartty, J. K.

    2013-10-01

    A model is developed to predict the constitutive flow behavior of cadmium during compression test using artificial neural network (ANN). The inputs of the neural network are strain, strain rate, and temperature, whereas flow stress is the output. Experimental data obtained from compression tests in the temperature range -30 to 70 °C, strain range 0.1 to 0.6, and strain rate range 10-3 to 1 s-1 are employed to develop the model. A three-layer feed-forward ANN is trained with Levenberg-Marquardt training algorithm. It has been shown that the developed ANN model can efficiently and accurately predict the deformation behavior of cadmium. This trained network could predict the flow stress better than a constitutive equation of the type.

  1. Small Engine Technology (SET) Task 23 ANOPP Noise Prediction for Small Engines, Wing Reflection Code

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth; Brown, Daniel; Golub, Robert A. (Technical Monitor)

    2000-01-01

    The work performed under Task 23 consisted of the development and demonstration of improvements for the NASA Aircraft Noise Prediction Program (ANOPP), specifically targeted to the modeling of engine noise enhancement due to wing reflection. This report focuses on development of the model and procedure to predict the effects of wing reflection, and the demonstration of the procedure, using a representative wing/engine configuration.

  2. Tampa Bay Water Clarity Model (TBWCM): As a Predictive Tool

    EPA Science Inventory

    The Tampa Bay Water Clarity Model was developed as a predictive tool for estimating the impact of changing nutrient loads on water clarity as measured by secchi depth. The model combines a physical mixing model with an irradiance model and nutrient cycling model. A 10 segment bi...

  3. Developing EHR-driven heart failure risk prediction models using CPXR(Log) with the probabilistic loss function.

    PubMed

    Taslimitehrani, Vahid; Dong, Guozhu; Pereira, Naveen L; Panahiazar, Maryam; Pathak, Jyotishman

    2016-04-01

    Computerized survival prediction in healthcare identifying the risk of disease mortality, helps healthcare providers to effectively manage their patients by providing appropriate treatment options. In this study, we propose to apply a classification algorithm, Contrast Pattern Aided Logistic Regression (CPXR(Log)) with the probabilistic loss function, to develop and validate prognostic risk models to predict 1, 2, and 5year survival in heart failure (HF) using data from electronic health records (EHRs) at Mayo Clinic. The CPXR(Log) constructs a pattern aided logistic regression model defined by several patterns and corresponding local logistic regression models. One of the models generated by CPXR(Log) achieved an AUC and accuracy of 0.94 and 0.91, respectively, and significantly outperformed prognostic models reported in prior studies. Data extracted from EHRs allowed incorporation of patient co-morbidities into our models which helped improve the performance of the CPXR(Log) models (15.9% AUC improvement), although did not improve the accuracy of the models built by other classifiers. We also propose a probabilistic loss function to determine the large error and small error instances. The new loss function used in the algorithm outperforms other functions used in the previous studies by 1% improvement in the AUC. This study revealed that using EHR data to build prediction models can be very challenging using existing classification methods due to the high dimensionality and complexity of EHR data. The risk models developed by CPXR(Log) also reveal that HF is a highly heterogeneous disease, i.e., different subgroups of HF patients require different types of considerations with their diagnosis and treatment. Our risk models provided two valuable insights for application of predictive modeling techniques in biomedicine: Logistic risk models often make systematic prediction errors, and it is prudent to use subgroup based prediction models such as those given by CPXR(Log) when investigating heterogeneous diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. eTOXlab, an open source modeling framework for implementing predictive models in production environments.

    PubMed

    Carrió, Pau; López, Oriol; Sanz, Ferran; Pastor, Manuel

    2015-01-01

    Computational models based in Quantitative-Structure Activity Relationship (QSAR) methodologies are widely used tools for predicting the biological properties of new compounds. In many instances, such models are used as a routine in the industry (e.g. food, cosmetic or pharmaceutical industry) for the early assessment of the biological properties of new compounds. However, most of the tools currently available for developing QSAR models are not well suited for supporting the whole QSAR model life cycle in production environments. We have developed eTOXlab; an open source modeling framework designed to be used at the core of a self-contained virtual machine that can be easily deployed in production environments, providing predictions as web services. eTOXlab consists on a collection of object-oriented Python modules with methods mapping common tasks of standard modeling workflows. This framework allows building and validating QSAR models as well as predicting the properties of new compounds using either a command line interface or a graphic user interface (GUI). Simple models can be easily generated by setting a few parameters, while more complex models can be implemented by overriding pieces of the original source code. eTOXlab benefits from the object-oriented capabilities of Python for providing high flexibility: any model implemented using eTOXlab inherits the features implemented in the parent model, like common tools and services or the automatic exposure of the models as prediction web services. The particular eTOXlab architecture as a self-contained, portable prediction engine allows building models with confidential information within corporate facilities, which can be safely exported and used for prediction without disclosing the structures of the training series. The software presented here provides full support to the specific needs of users that want to develop, use and maintain predictive models in corporate environments. The technologies used by eTOXlab (web services, VM, object-oriented programming) provide an elegant solution to common practical issues; the system can be installed easily in heterogeneous environments and integrates well with other software. Moreover, the system provides a simple and safe solution for building models with confidential structures that can be shared without disclosing sensitive information.

  5. Validation of asphalt mixture pavement skid prediction model and development of skid prediction model for surface treatments.

    DOT National Transportation Integrated Search

    2017-04-01

    Pavement skid resistance is primarily a function of the surface texture, which includes both microtexture and macrotexture. Earlier, under the Texas Department of Transportation (TxDOT) Research Project 0-5627, the researchers developed a method to p...

  6. Prediction of in vitro and in vivo oestrogen receptor activity using hierarchical clustering

    EPA Science Inventory

    In this study, hierarchical clustering classification models were developed to predict in vitro and in vivo oestrogen receptor (ER) activity. Classification models were developed for binding, agonist, and antagonist in vitro ER activity and for mouse in vivo uterotrophic ER bindi...

  7. Predicting Adaptive Response to Fadrozole Exposure:Computational Model of the Fathead MinnowsHypothalamic-Pituitary-Gonadal Axis

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic mathematical model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict doseresponse and time-course (...

  8. Questioning the Faith - Models and Prediction in Stream Restoration (Invited)

    NASA Astrophysics Data System (ADS)

    Wilcock, P.

    2013-12-01

    River management and restoration demand prediction at and beyond our present ability. Management questions, framed appropriately, can motivate fundamental advances in science, although the connection between research and application is not always easy, useful, or robust. Why is that? This presentation considers the connection between models and management, a connection that requires critical and creative thought on both sides. Essential challenges for managers include clearly defining project objectives and accommodating uncertainty in any model prediction. Essential challenges for the research community include matching the appropriate model to project duration, space, funding, information, and social constraints and clearly presenting answers that are actually useful to managers. Better models do not lead to better management decisions or better designs if the predictions are not relevant to and accepted by managers. In fact, any prediction may be irrelevant if the need for prediction is not recognized. The predictive target must be developed in an active dialog between managers and modelers. This relationship, like any other, can take time to develop. For example, large segments of stream restoration practice have remained resistant to models and prediction because the foundational tenet - that channels built to a certain template will be able to transport the supplied sediment with the available flow - has no essential physical connection between cause and effect. Stream restoration practice can be steered in a predictive direction in which project objectives are defined as predictable attributes and testable hypotheses. If stream restoration design is defined in terms of the desired performance of the channel (static or dynamic, sediment surplus or deficit), then channel properties that provide these attributes can be predicted and a basis exists for testing approximations, models, and predictions.

  9. Development and validation of a 10-year-old child ligamentous cervical spine finite element model.

    PubMed

    Dong, Liqiang; Li, Guangyao; Mao, Haojie; Marek, Stanley; Yang, King H

    2013-12-01

    Although a number of finite element (FE) adult cervical spine models have been developed to understand the injury mechanisms of the neck in automotive related crash scenarios, there have been fewer efforts to develop a child neck model. In this study, a 10-year-old ligamentous cervical spine FE model was developed for application in the improvement of pediatric safety related to motor vehicle crashes. The model geometry was obtained from medical scans and meshed using a multi-block approach. Appropriate properties based on review of literature in conjunction with scaling were assigned to different parts of the model. Child tensile force-deformation data in three segments, Occipital-C2 (C0-C2), C4-C5 and C6-C7, were used to validate the cervical spine model and predict failure forces and displacements. Design of computer experiments was performed to determine failure properties for intervertebral discs and ligaments needed to set up the FE model. The model-predicted ultimate displacements and forces were within the experimental range. The cervical spine FE model was validated in flexion and extension against the child experimental data in three segments, C0-C2, C4-C5 and C6-C7. Other model predictions were found to be consistent with the experimental responses scaled from adult data. The whole cervical spine model was also validated in tension, flexion and extension against the child experimental data. This study provided methods for developing a child ligamentous cervical spine FE model and to predict soft tissue failures in tension.

  10. Short Term Single Station GNSS TEC Prediction Using Radial Basis Function Neural Network

    NASA Astrophysics Data System (ADS)

    Muslim, Buldan; Husin, Asnawi; Efendy, Joni

    2018-04-01

    TEC prediction models for 24 hours ahead have been developed from JOG2 GPS TEC data during 2016. Eleven month of TEC data were used as a training model of the radial basis function neural network (RBFNN) and 1 month of last data (December 2016) is used for the RBFNN model testing. The RBFNN inputs are the previous 24 hour TEC data and the minimum of Dst index during the previous 24 hours. Outputs of the model are 24 ahead TEC prediction. Comparison of model prediction show that the RBFNN model is able to predict the next 24 hours TEC is more accurate than the TEC GIM model.

  11. Refining metabolic models and accounting for regulatory effects.

    PubMed

    Kim, Joonhoon; Reed, Jennifer L

    2014-10-01

    Advances in genome-scale metabolic modeling allow us to investigate and engineer metabolism at a systems level. Metabolic network reconstructions have been made for many organisms and computational approaches have been developed to convert these reconstructions into predictive models. However, due to incomplete knowledge these reconstructions often have missing or extraneous components and interactions, which can be identified by reconciling model predictions with experimental data. Recent studies have provided methods to further improve metabolic model predictions by incorporating transcriptional regulatory interactions and high-throughput omics data to yield context-specific metabolic models. Here we discuss recent approaches for resolving model-data discrepancies and building context-specific metabolic models. Once developed highly accurate metabolic models can be used in a variety of biotechnology applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Simulation and Prediction of Warm Season Drought in North America

    NASA Technical Reports Server (NTRS)

    Wang, Hailan; Chang, Yehui; Schubert, Siegfried D.; Koster, Randal D.

    2018-01-01

    This presentation presents our recent work on model simulation and prediction of warm season drought in North America. The emphasis will be on the contribution from the leading modes of subseasonal atmospheric circulation variability, which are often present in the form of stationary Rossby waves. Here we take advantage of the results from observations, reanalyses, and simulations and reforecasts performed using the NASA Goddard Earth Observing System (GEOS-5) atmospheric and coupled General Circulation Model (GCM). Our results show that stationary Rossby waves play a key role in Northern Hemisphere (NH) atmospheric circulation and surface meteorology variability on subseasonal timescales. In particular, such waves have been crucial to the development of recent short-term warm season heat waves and droughts over North America (e.g. the 1988, 1998, and 2012 summer droughts) and northern Eurasia (e.g., the 2003 summer heat wave over Europe and the 2010 summer drought and heat wave over Russia). Through an investigation of the physical processes by which these waves lead to the development of warm season drought in North America, it is further found that these waves can serve as a potential source of drought predictability. In order to properly represent their effect and exploit this source of predictability, a model needs to correctly simulate the Northern Hemisphere (NH) mean jet streams and be able to predict the sources of these waves. Given the NASA GEOS-5 AGCM deficiency in simulating the NH jet streams and tropical convection during boreal summer, an approach has been developed to artificially remove much of model mean biases, which leads to considerable improvement in model simulation and prediction of stationary Rossby waves and drought development in North America. Our study points to the need to identify key model biases that limit model simulation and prediction of regional climate extremes, and diagnose the origin of these biases so as to inform modeling group for model improvement.

  13. ToxiM: A Toxicity Prediction Tool for Small Molecules Developed Using Machine Learning and Chemoinformatics Approaches.

    PubMed

    Sharma, Ashok K; Srivastava, Gopal N; Roy, Ankita; Sharma, Vineet K

    2017-01-01

    The experimental methods for the prediction of molecular toxicity are tedious and time-consuming tasks. Thus, the computational approaches could be used to develop alternative methods for toxicity prediction. We have developed a tool for the prediction of molecular toxicity along with the aqueous solubility and permeability of any molecule/metabolite. Using a comprehensive and curated set of toxin molecules as a training set, the different chemical and structural based features such as descriptors and fingerprints were exploited for feature selection, optimization and development of machine learning based classification and regression models. The compositional differences in the distribution of atoms were apparent between toxins and non-toxins, and hence, the molecular features were used for the classification and regression. On 10-fold cross-validation, the descriptor-based, fingerprint-based and hybrid-based classification models showed similar accuracy (93%) and Matthews's correlation coefficient (0.84). The performances of all the three models were comparable (Matthews's correlation coefficient = 0.84-0.87) on the blind dataset. In addition, the regression-based models using descriptors as input features were also compared and evaluated on the blind dataset. Random forest based regression model for the prediction of solubility performed better ( R 2 = 0.84) than the multi-linear regression (MLR) and partial least square regression (PLSR) models, whereas, the partial least squares based regression model for the prediction of permeability (caco-2) performed better ( R 2 = 0.68) in comparison to the random forest and MLR based regression models. The performance of final classification and regression models was evaluated using the two validation datasets including the known toxins and commonly used constituents of health products, which attests to its accuracy. The ToxiM web server would be a highly useful and reliable tool for the prediction of toxicity, solubility, and permeability of small molecules.

  14. ToxiM: A Toxicity Prediction Tool for Small Molecules Developed Using Machine Learning and Chemoinformatics Approaches

    PubMed Central

    Sharma, Ashok K.; Srivastava, Gopal N.; Roy, Ankita; Sharma, Vineet K.

    2017-01-01

    The experimental methods for the prediction of molecular toxicity are tedious and time-consuming tasks. Thus, the computational approaches could be used to develop alternative methods for toxicity prediction. We have developed a tool for the prediction of molecular toxicity along with the aqueous solubility and permeability of any molecule/metabolite. Using a comprehensive and curated set of toxin molecules as a training set, the different chemical and structural based features such as descriptors and fingerprints were exploited for feature selection, optimization and development of machine learning based classification and regression models. The compositional differences in the distribution of atoms were apparent between toxins and non-toxins, and hence, the molecular features were used for the classification and regression. On 10-fold cross-validation, the descriptor-based, fingerprint-based and hybrid-based classification models showed similar accuracy (93%) and Matthews's correlation coefficient (0.84). The performances of all the three models were comparable (Matthews's correlation coefficient = 0.84–0.87) on the blind dataset. In addition, the regression-based models using descriptors as input features were also compared and evaluated on the blind dataset. Random forest based regression model for the prediction of solubility performed better (R2 = 0.84) than the multi-linear regression (MLR) and partial least square regression (PLSR) models, whereas, the partial least squares based regression model for the prediction of permeability (caco-2) performed better (R2 = 0.68) in comparison to the random forest and MLR based regression models. The performance of final classification and regression models was evaluated using the two validation datasets including the known toxins and commonly used constituents of health products, which attests to its accuracy. The ToxiM web server would be a highly useful and reliable tool for the prediction of toxicity, solubility, and permeability of small molecules. PMID:29249969

  15. On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design.

    PubMed

    Roy, Kunal; Mitra, Indrani

    2011-07-01

    Quantitative structure-activity relationships (QSARs) have important applications in drug discovery research, environmental fate modeling, property prediction, etc. Validation has been recognized as a very important step for QSAR model development. As one of the important objectives of QSAR modeling is to predict activity/property/toxicity of new chemicals falling within the domain of applicability of the developed models and QSARs are being used for regulatory decisions, checking reliability of the models and confidence of their predictions is a very important aspect, which can be judged during the validation process. One prime application of a statistically significant QSAR model is virtual screening for molecules with improved potency based on the pharmacophoric features and the descriptors appearing in the QSAR model. Validated QSAR models may also be utilized for design of focused libraries which may be subsequently screened for the selection of hits. The present review focuses on various metrics used for validation of predictive QSAR models together with an overview of the application of QSAR models in the fields of virtual screening and focused library design for diverse series of compounds with citation of some recent examples.

  16. A prediction model for early death in non-small cell lung cancer patients following curative-intent chemoradiotherapy.

    PubMed

    Jochems, Arthur; El-Naqa, Issam; Kessler, Marc; Mayo, Charles S; Jolly, Shruti; Matuszak, Martha; Faivre-Finn, Corinne; Price, Gareth; Holloway, Lois; Vinod, Shalini; Field, Matthew; Barakat, Mohamed Samir; Thwaites, David; de Ruysscher, Dirk; Dekker, Andre; Lambin, Philippe

    2018-02-01

    Early death after a treatment can be seen as a therapeutic failure. Accurate prediction of patients at risk for early mortality is crucial to avoid unnecessary harm and reducing costs. The goal of our work is two-fold: first, to evaluate the performance of a previously published model for early death in our cohorts. Second, to develop a prognostic model for early death prediction following radiotherapy. Patients with NSCLC treated with chemoradiotherapy or radiotherapy alone were included in this study. Four different cohorts from different countries were available for this work (N = 1540). The previous model used age, gender, performance status, tumor stage, income deprivation, no previous treatment given (yes/no) and body mass index to make predictions. A random forest model was developed by learning on the Maastro cohort (N = 698). The new model used performance status, age, gender, T and N stage, total tumor volume (cc), total tumor dose (Gy) and chemotherapy timing (none, sequential, concurrent) to make predictions. Death within 4 months of receiving the first radiotherapy fraction was used as the outcome. Early death rates ranged from 6 to 11% within the four cohorts. The previous model performed with AUC values ranging from 0.54 to 0.64 on the validation cohorts. Our newly developed model had improved AUC values ranging from 0.62 to 0.71 on the validation cohorts. Using advanced machine learning methods and informative variables, prognostic models for early mortality can be developed. Development of accurate prognostic tools for early mortality is important to inform patients about treatment options and optimize care.

  17. Developing a tuberculosis transmission model that accounts for changes in population health.

    PubMed

    Oxlade, Olivia; Schwartzman, Kevin; Benedetti, Andrea; Pai, Madhukar; Heymann, Jody; Menzies, Dick

    2011-01-01

    Simulation models are useful in policy planning for tuberculosis (TB) control. To accurately assess interventions, important modifiers of the epidemic should be accounted for in evaluative models. Improvements in population health were associated with the declining TB epidemic in the pre-antibiotic era and may be relevant today. The objective of this study was to develop and validate a TB transmission model that accounted for changes in population health. We developed a deterministic TB transmission model, using reported data from the pre-antibiotic era in England. Change in adjusted life expectancy, used as a proxy for general health, was used to determine the rate of change of key epidemiological parameters. Predicted outcomes included risk of TB infection and TB mortality. The model was validated in the setting of the Netherlands and then applied to modern Peru. The model, developed in the setting of England, predicted TB trends in the Netherlands very accurately. The R(2) value for correlation between observed and predicted data was 0.97 and 0.95 for TB infection and mortality, respectively. In Peru, the predicted decline in incidence prior to the expansion of "Directly Observed Treatment Short Course" (The DOTS strategy) was 3.7% per year (observed = 3.9% per year). After DOTS expansion, the predicted decline was very similar to the observed decline of 5.8% per year. We successfully developed and validated a TB model, which uses a proxy for population health to estimate changes in key epidemiology parameters. Population health contributed significantly to improvement in TB outcomes observed in Peru. Changing population health should be incorporated into evaluative models for global TB control.

  18. Using Modeling and Simulation to Predict Operator Performance and Automation-Induced Complacency With Robotic Automation: A Case Study and Empirical Validation.

    PubMed

    Wickens, Christopher D; Sebok, Angelia; Li, Huiyang; Sarter, Nadine; Gacy, Andrew M

    2015-09-01

    The aim of this study was to develop and validate a computational model of the automation complacency effect, as operators work on a robotic arm task, supported by three different degrees of automation. Some computational models of complacency in human-automation interaction exist, but those are formed and validated within the context of fairly simplified monitoring failures. This research extends model validation to a much more complex task, so that system designers can establish, without need for human-in-the-loop (HITL) experimentation, merits and shortcomings of different automation degrees. We developed a realistic simulation of a space-based robotic arm task that could be carried out with three different levels of trajectory visualization and execution automation support. Using this simulation, we performed HITL testing. Complacency was induced via several trials of correctly performing automation and then was assessed on trials when automation failed. Following a cognitive task analysis of the robotic arm operation, we developed a multicomponent model of the robotic operator and his or her reliance on automation, based in part on visual scanning. The comparison of model predictions with empirical results revealed that the model accurately predicted routine performance and predicted the responses to these failures after complacency developed. However, the scanning models do not account for the entire attention allocation effects of complacency. Complacency modeling can provide a useful tool for predicting the effects of different types of imperfect automation. The results from this research suggest that focus should be given to supporting situation awareness in automation development. © 2015, Human Factors and Ergonomics Society.

  19. Predicting BRCA1 and BRCA2 gene mutation carriers: comparison of LAMBDA, BRCAPRO, Myriad II, and modified Couch models.

    PubMed

    Lindor, Noralane M; Lindor, Rachel A; Apicella, Carmel; Dowty, James G; Ashley, Amanda; Hunt, Katherine; Mincey, Betty A; Wilson, Marcia; Smith, M Cathie; Hopper, John L

    2007-01-01

    Models have been developed to predict the probability that a person carries a detectable germline mutation in the BRCA1 or BRCA2 genes. Their relative performance in a clinical setting is unclear. To compare the performance characteristics of four BRCA1/BRCA2 gene mutation prediction models: LAMBDA, based on a checklist and scores developed from data on Ashkenazi Jewish (AJ) women; BRCAPRO, a Bayesian computer program; modified Couch tables based on regression analyses; and Myriad II tables collated by Myriad Genetics Laboratories. Family cancer history data were analyzed from 200 probands from the Mayo Clinic Familial Cancer Program, in a multispecialty tertiary care group practice. All probands had clinical testing for BRCA1 and BRCA2 mutations conducted in a single laboratory. For each model, performance was assessed by the area under the receiver operator characteristic curve (ROC) and by tests of accuracy and dispersion. Cases "missed" by one or more models (model predicted less than 10% probability of mutation when a mutation was actually found) were compared across models. All models gave similar areas under the ROC curve of 0.71 to 0.76. All models except LAMBDA substantially under-predicted the numbers of carriers. All models were too dispersed. In terms of ranking, all prediction models performed reasonably well with similar performance characteristics. Model predictions were widely discrepant for some families. Review of cancer family histories by an experienced clinician continues to be vital to ensure that critical elements are not missed and that the most appropriate risk prediction figures are provided.

  20. Comparative analysis of predictive models for nongenotoxic hepatocarcinogenicity using both toxicogenomics and quantitative structure-activity relationships.

    PubMed

    Liu, Zhichao; Kelly, Reagan; Fang, Hong; Ding, Don; Tong, Weida

    2011-07-18

    The primary testing strategy to identify nongenotoxic carcinogens largely relies on the 2-year rodent bioassay, which is time-consuming and labor-intensive. There is an increasing effort to develop alternative approaches to prioritize the chemicals for, supplement, or even replace the cancer bioassay. In silico approaches based on quantitative structure-activity relationships (QSAR) are rapid and inexpensive and thus have been investigated for such purposes. A slightly more expensive approach based on short-term animal studies with toxicogenomics (TGx) represents another attractive option for this application. Thus, the primary questions are how much better predictive performance using short-term TGx models can be achieved compared to that of QSAR models, and what length of exposure is sufficient for high quality prediction based on TGx. In this study, we developed predictive models for rodent liver carcinogenicity using gene expression data generated from short-term animal models at different time points and QSAR. The study was focused on the prediction of nongenotoxic carcinogenicity since the genotoxic chemicals can be inexpensively removed from further development using various in vitro assays individually or in combination. We identified 62 chemicals whose hepatocarcinogenic potential was available from the National Center for Toxicological Research liver cancer database (NCTRlcdb). The gene expression profiles of liver tissue obtained from rats treated with these chemicals at different time points (1 day, 3 days, and 5 days) are available from the Gene Expression Omnibus (GEO) database. Both TGx and QSAR models were developed on the basis of the same set of chemicals using the same modeling approach, a nearest-centroid method with a minimum redundancy and maximum relevancy-based feature selection with performance assessed using compound-based 5-fold cross-validation. We found that the TGx models outperformed QSAR in every aspect of modeling. For example, the TGx models' predictive accuracy (0.77, 0.77, and 0.82 for the 1-day, 3-day, and 5-day models, respectively) was much higher for an independent validation set than that of a QSAR model (0.55). Permutation tests confirmed the statistical significance of the model's prediction performance. The study concluded that a short-term 5-day TGx animal model holds the potential to predict nongenotoxic hepatocarcinogenicity. © 2011 American Chemical Society

  1. THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability

    PubMed Central

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; Wallcraft, A.; Iredell, M.; Black, T.; da Silva, AM; Clune, T.; Ferraro, R.; Li, P.; Kelley, M.; Aleinov, I.; Balaji, V.; Zadeh, N.; Jacob, R.; Kirtman, B.; Giraldo, F.; McCarren, D.; Sandgathe, S.; Peckham, S.; Dunlap, R.

    2017-01-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model. PMID:29568125

  2. THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability.

    PubMed

    Theurich, Gerhard; DeLuca, C; Campbell, T; Liu, F; Saint, K; Vertenstein, M; Chen, J; Oehmke, R; Doyle, J; Whitcomb, T; Wallcraft, A; Iredell, M; Black, T; da Silva, A M; Clune, T; Ferraro, R; Li, P; Kelley, M; Aleinov, I; Balaji, V; Zadeh, N; Jacob, R; Kirtman, B; Giraldo, F; McCarren, D; Sandgathe, S; Peckham, S; Dunlap, R

    2016-07-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS ® ); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.

  3. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    NASA Technical Reports Server (NTRS)

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; hide

    2016-01-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users.The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.

  4. Evaluation of wave runup predictions from numerical and parametric models

    USGS Publications Warehouse

    Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.

    2014-01-01

    Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.

  5. Predictive Monitoring for Improved Management of Glucose Levels

    PubMed Central

    Reifman, Jaques; Rajaraman, Srinivasan; Gribok, Andrei; Ward, W. Kenneth

    2007-01-01

    Background Recent developments and expected near-future improvements in continuous glucose monitoring (CGM) devices provide opportunities to couple them with mathematical forecasting models to produce predictive monitoring systems for early, proactive glycemia management of diabetes mellitus patients before glucose levels drift to undesirable levels. This article assesses the feasibility of data-driven models to serve as the forecasting engine of predictive monitoring systems. Methods We investigated the capabilities of data-driven autoregressive (AR) models to (1) capture the correlations in glucose time-series data, (2) make accurate predictions as a function of prediction horizon, and (3) be made portable from individual to individual without any need for model tuning. The investigation is performed by employing CGM data from nine type 1 diabetic subjects collected over a continuous 5-day period. Results With CGM data serving as the gold standard, AR model-based predictions of glucose levels assessed over nine subjects with Clarke error grid analysis indicated that, for a 30-minute prediction horizon, individually tuned models yield 97.6 to 100.0% of data in the clinically acceptable zones A and B, whereas cross-subject, portable models yield 95.8 to 99.7% of data in zones A and B. Conclusions This study shows that, for a 30-minute prediction horizon, data-driven AR models provide sufficiently-accurate and clinically-acceptable estimates of glucose levels for timely, proactive therapy and should be considered as the modeling engine for predictive monitoring of patients with type 1 diabetes mellitus. It also suggests that AR models can be made portable from individual to individual with minor performance penalties, while greatly reducing the burden associated with model tuning and data collection for model development. PMID:19885110

  6. Comparison of time series models for predicting campylobacteriosis risk in New Zealand.

    PubMed

    Al-Sakkaf, A; Jones, G

    2014-05-01

    Predicting campylobacteriosis cases is a matter of considerable concern in New Zealand, after the number of the notified cases was the highest among the developed countries in 2006. Thus, there is a need to develop a model or a tool to predict accurately the number of campylobacteriosis cases as the Microbial Risk Assessment Model used to predict the number of campylobacteriosis cases failed to predict accurately the number of actual cases. We explore the appropriateness of classical time series modelling approaches for predicting campylobacteriosis. Finding the most appropriate time series model for New Zealand data has additional practical considerations given a possible structural change, that is, a specific and sudden change in response to the implemented interventions. A univariate methodological approach was used to predict monthly disease cases using New Zealand surveillance data of campylobacteriosis incidence from 1998 to 2009. The data from the years 1998 to 2008 were used to model the time series with the year 2009 held out of the data set for model validation. The best two models were then fitted to the full 1998-2009 data and used to predict for each month of 2010. The Holt-Winters (multiplicative) and ARIMA (additive) intervention models were considered the best models for predicting campylobacteriosis in New Zealand. It was noticed that the prediction by an additive ARIMA with intervention was slightly better than the prediction by a Holt-Winter multiplicative method for the annual total in year 2010, the former predicting only 23 cases less than the actual reported cases. It is confirmed that classical time series techniques such as ARIMA with intervention and Holt-Winters can provide a good prediction performance for campylobacteriosis risk in New Zealand. The results reported by this study are useful to the New Zealand Health and Safety Authority's efforts in addressing the problem of the campylobacteriosis epidemic. © 2013 Blackwell Verlag GmbH.

  7. A model for predicting thermal properties of asphalt mixtures from their constituents

    NASA Astrophysics Data System (ADS)

    Keller, Merlin; Roche, Alexis; Lavielle, Marc

    Numerous theoretical and experimental approaches have been developed to predict the effective thermal conductivity of composite materials such as polymers, foams, epoxies, soils and concrete. None of such models have been applied to asphalt concrete. This study attempts to develop a model to predict the thermal conductivity of asphalt concrete from its constituents that will contribute to the asphalt industry by reducing costs and saving time on laboratory testing. The necessity to do the laboratory testing would be no longer required when a mix for the pavement is created with desired thermal properties at the design stage by selecting correct constituents. This thesis investigated six existing predictive models for applicability to asphalt mixtures, and four standard mathematical techniques were used to develop a regression model to predict the effective thermal conductivity. The effective thermal conductivities of 81 asphalt specimens were used as the response variables, and the thermal conductivities and volume fractions of their constituents were used as the predictors. The conducted statistical analyses showed that the measured values of thermal conductivities of the mixtures are affected by the bitumen and aggregate content, but not by the air content. Contrarily, the predicted data for some investigated models are highly sensitive to air voids, but not to bitumen and/or aggregate content. Additionally, the comparison of the experimental with analytical data showed that none of the existing models gave satisfactory results; on the other hand, two regression models (Exponential 1* and Linear 3*) are promising for asphalt concrete.

  8. Prediction of Tensile Strength of Friction Stir Weld Joints with Adaptive Neuro-Fuzzy Inference System (ANFIS) and Neural Network

    NASA Technical Reports Server (NTRS)

    Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.

    2015-01-01

    Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.

  9. Development of a model for predicting NASA/MSFC program success

    NASA Technical Reports Server (NTRS)

    Riggs, Jeffrey; Miller, Tracy; Finley, Rosemary

    1990-01-01

    Research conducted during the execution of a previous contract (NAS8-36955/0039) firmly established the feasibility of developing a tool to aid decision makers in predicting the potential success of proposed projects. The final report from that investigation contains an outline of the method to be applied in developing this Project Success Predictor Model. As a follow-on to the previous study, this report describes in detail the development of this model and includes full explanation of the data-gathering techniques used to poll expert opinion. The report includes the presentation of the model code itself.

  10. Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness

    PubMed Central

    Li, Jin; Tran, Maggie; Siwabessy, Justy

    2016-01-01

    Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to ‘small p and large n’ problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models. PMID:26890307

  11. Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness.

    PubMed

    Li, Jin; Tran, Maggie; Siwabessy, Justy

    2016-01-01

    Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia's marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to 'small p and large n' problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models.

  12. On-line prediction of the glucose concentration of CHO cell cultivations by NIR and Raman spectroscopy: Comparative scalability test with a shake flask model system.

    PubMed

    Kozma, Bence; Hirsch, Edit; Gergely, Szilveszter; Párta, László; Pataki, Hajnalka; Salgó, András

    2017-10-25

    In this study, near-infrared (NIR) and Raman spectroscopy were compared in parallel to predict the glucose concentration of Chinese hamster ovary cell cultivations. A shake flask model system was used to quickly generate spectra similar to bioreactor cultivations therefore accelerating the development of a working model prior to actual cultivations. Automated variable selection and several pre-processing methods were tested iteratively during model development using spectra from six shake flask cultivations. The target was to achieve the lowest error of prediction for the glucose concentration in two independent shake flasks. The best model was then used to test the scalability of the two techniques by predicting spectra of a 10l and a 100l scale bioreactor cultivation. The NIR spectroscopy based model could follow the trend of the glucose concentration but it was not sufficiently accurate for bioreactor monitoring. On the other hand, the Raman spectroscopy based model predicted the concentration of glucose in both cultivation scales sufficiently accurately with an error around 4mM (0.72g/l), that is satisfactory for the on-line bioreactor monitoring purposes of the biopharma industry. Therefore, the shake flask model system was proven to be suitable for scalable spectroscopic model development. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Evaluating Predictive Uncertainty of Hyporheic Exchange Modelling

    NASA Astrophysics Data System (ADS)

    Chow, R.; Bennett, J.; Dugge, J.; Wöhling, T.; Nowak, W.

    2017-12-01

    Hyporheic exchange is the interaction of water between rivers and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic fluxes have been attributed to the representation of heterogeneous subsurface properties. This research aims to evaluate which aspect of the subsurface representation - the spatial distribution of hydrofacies or the model for local-scale (within-facies) heterogeneity - most influences the predictive uncertainty. Also, we seek to identify data types that help reduce this uncertainty best. For this investigation, we conduct a modelling study of the Steinlach River meander, in Southwest Germany. The Steinlach River meander is an experimental site established in 2010 to monitor hyporheic exchange at the meander scale. We use HydroGeoSphere, a fully integrated surface water-groundwater model, to model hyporheic exchange and to assess the predictive uncertainty of hyporheic exchange transit times (HETT). A highly parameterized complex model is built and treated as `virtual reality', which is in turn modelled with simpler subsurface parameterization schemes (Figure). Then, we conduct Monte-Carlo simulations with these models to estimate the predictive uncertainty. Results indicate that: Uncertainty in HETT is relatively small for early times and increases with transit times. Uncertainty from local-scale heterogeneity is negligible compared to uncertainty in the hydrofacies distribution. Introducing more data to a poor model structure may reduce predictive variance, but does not reduce predictive bias. Hydraulic head observations alone cannot constrain the uncertainty of HETT, however an estimate of hyporheic exchange flux proves to be more effective at reducing this uncertainty. Figure: Approach for evaluating predictive model uncertainty. A conceptual model is first developed from the field investigations. A complex model (`virtual reality') is then developed based on that conceptual model. This complex model then serves as the basis to compare simpler model structures. Through this approach, predictive uncertainty can be quantified relative to a known reference solution.

  14. Classification of Breast Cancer Resistant Protein (BCRP) Inhibitors and Non-Inhibitors Using Machine Learning Approaches.

    PubMed

    Belekar, Vilas; Lingineni, Karthik; Garg, Prabha

    2015-01-01

    The breast cancer resistant protein (BCRP) is an important transporter and its inhibitors play an important role in cancer treatment by improving the oral bioavailability as well as blood brain barrier (BBB) permeability of anticancer drugs. In this work, a computational model was developed to predict the compounds as BCRP inhibitors or non-inhibitors. Various machine learning approaches like, support vector machine (SVM), k-nearest neighbor (k-NN) and artificial neural network (ANN) were used to develop the models. The Matthews correlation coefficients (MCC) of developed models using ANN, k-NN and SVM are 0.67, 0.71 and 0.77, and prediction accuracies are 85.2%, 88.3% and 90.8% respectively. The developed models were tested with a test set of 99 compounds and further validated with external set of 98 compounds. Distribution plot analysis and various machine learning models were also developed based on druglikeness descriptors. Applicability domain is used to check the prediction reliability of the new molecules.

  15. Investigation and Modeling of Cranberry Weather Stress.

    NASA Astrophysics Data System (ADS)

    Croft, Paul Joseph

    Cranberry bog weather conditions and weather-related stress were investigated for development of crop yield prediction models and models to predict daily weather conditions in the bog. Field investigations and data gathering were completed at the Rutgers University Blueberry/Cranberry Research Center experimental bogs in Chatsworth, New Jersey. Study indicated that although cranberries generally exhibit little or no stomatal response to changing atmospheric conditions, the evaluation of weather-related stress could be accomplished via use of micrometeorological data. Definition of weather -related stress was made by establishing critical thresholds of the frequencies of occurrence, and magnitudes of, temperature and precipitation in the bog based on values determined by a review of the literature and a grower questionnaire. Stress frequencies were correlated with cranberry yield to develop predictive models based on the previous season's yield, prior season data, prior and current season data, current season data; and prior and current season data through July 31 of the current season. The predictive ability of the prior season models was best and could be used in crop planning and production. Further examination of bog micrometeorological data permitted the isolation of those weather conditions conducive to cranberry scald and allowed for the institution of a pilot scald advisory program during the 1991 season. The micrometeorological data from the bog was also used to develop models to predict daily canopy temperature and precipitation, based on upper air data, for grower use. Models were developed for each month for maximum and minimum temperatures and for precipitation and generally performed well. The modeling of bog weather conditions is an important first step toward daily prediction of cranberry weather-related stress.

  16. Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression.

    PubMed

    Montesinos-López, Osval A; Montesinos-López, Abelardo; Crossa, José; Burgueño, Juan; Eskridge, Kent

    2015-08-18

    Most genomic-enabled prediction models developed so far assume that the response variable is continuous and normally distributed. The exception is the probit model, developed for ordered categorical phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit ordinal regression (BPOR) model, Bayesian logistic ordinal regression (BLOR) is implemented rarely in the context of genomic-enabled prediction [sample size (n) is much smaller than the number of parameters (p)]. For this reason, in this paper we propose a BLOR model using the Pólya-Gamma data augmentation approach that produces a Gibbs sampler with similar full conditional distributions of the BPOR model and with the advantage that the BPOR model is a particular case of the BLOR model. We evaluated the proposed model by using simulation and two real data sets. Results indicate that our BLOR model is a good alternative for analyzing ordinal data in the context of genomic-enabled prediction with the probit or logit link. Copyright © 2015 Montesinos-López et al.

  17. Foundations for computer simulation of a low pressure oil flooded single screw air compressor

    NASA Astrophysics Data System (ADS)

    Bein, T. W.

    1981-12-01

    The necessary logic to construct a computer model to predict the performance of an oil flooded, single screw air compressor is developed. The geometric variables and relationships used to describe the general single screw mechanism are developed. The governing equations to describe the processes are developed from their primary relationships. The assumptions used in the development are also defined and justified. The computer model predicts the internal pressure, temperature, and flowrates through the leakage paths throughout the compression cycle of the single screw compressor. The model uses empirical external values as the basis for the internal predictions. The computer values are compared to the empirical values, and conclusions are drawn based on the results. Recommendations are made for future efforts to improve the computer model and to verify some of the conclusions that are drawn.

  18. ANEMOS: Development of a next generation wind power forecasting system for the large-scale integration of onshore and offshore wind farms.

    NASA Astrophysics Data System (ADS)

    Kariniotakis, G.; Anemos Team

    2003-04-01

    Objectives: Accurate forecasting of the wind energy production up to two days ahead is recognized as a major contribution for reliable large-scale wind power integration. Especially, in a liberalized electricity market, prediction tools enhance the position of wind energy compared to other forms of dispatchable generation. ANEMOS, is a new 3.5 years R&D project supported by the European Commission, that resembles research organizations and end-users with an important experience on the domain. The project aims to develop advanced forecasting models that will substantially outperform current methods. Emphasis is given to situations like complex terrain, extreme weather conditions, as well as to offshore prediction for which no specific tools currently exist. The prediction models will be implemented in a software platform and installed for online operation at onshore and offshore wind farms by the end-users participating in the project. Approach: The paper presents the methodology of the project. Initially, the prediction requirements are identified according to the profiles of the end-users. The project develops prediction models based on both a physical and an alternative statistical approach. Research on physical models gives emphasis to techniques for use in complex terrain and the development of prediction tools based on CFD techniques, advanced model output statistics or high-resolution meteorological information. Statistical models (i.e. based on artificial intelligence) are developed for downscaling, power curve representation, upscaling for prediction at regional or national level, etc. A benchmarking process is set-up to evaluate the performance of the developed models and to compare them with existing ones using a number of case studies. The synergy between statistical and physical approaches is examined to identify promising areas for further improvement of forecasting accuracy. Appropriate physical and statistical prediction models are also developed for offshore wind farms taking into account advances in marine meteorology (interaction between wind and waves, coastal effects). The benefits from the use of satellite radar images for modeling local weather patterns are investigated. A next generation forecasting software, ANEMOS, will be developed to integrate the various models. The tool is enhanced by advanced Information Communication Technology (ICT) functionality and can operate both in stand alone, or remote mode, or be interfaced with standard Energy or Distribution Management Systems (EMS/DMS) systems. Contribution: The project provides an advanced technology for wind resource forecasting applicable in a large scale: at a single wind farm, regional or national level and for both interconnected and island systems. A major milestone is the on-line operation of the developed software by the participating utilities for onshore and offshore wind farms and the demonstration of the economic benefits. The outcome of the ANEMOS project will help consistently the increase of wind integration in two levels; in an operational level due to better management of wind farms, but also, it will contribute to increasing the installed capacity of wind farms. This is because accurate prediction of the resource reduces the risk of wind farm developers, who are then more willing to undertake new wind farm installations especially in a liberalized electricity market environment.

  19. Developing Risk Prediction Models for Kidney Injury and Assessing Incremental Value for Novel Biomarkers

    PubMed Central

    Kerr, Kathleen F.; Meisner, Allison; Thiessen-Philbrook, Heather; Coca, Steven G.

    2014-01-01

    The field of nephrology is actively involved in developing biomarkers and improving models for predicting patients’ risks of AKI and CKD and their outcomes. However, some important aspects of evaluating biomarkers and risk models are not widely appreciated, and statistical methods are still evolving. This review describes some of the most important statistical concepts for this area of research and identifies common pitfalls. Particular attention is paid to metrics proposed within the last 5 years for quantifying the incremental predictive value of a new biomarker. PMID:24855282

  20. The predictive performance of a path-dependent exotic-option credit risk model in the emerging market

    NASA Astrophysics Data System (ADS)

    Chen, Dar-Hsin; Chou, Heng-Chih; Wang, David; Zaabar, Rim

    2011-06-01

    Most empirical research of the path-dependent, exotic-option credit risk model focuses on developed markets. Taking Taiwan as an example, this study investigates the bankruptcy prediction performance of the path-dependent, barrier option model in the emerging market. We adopt Duan's (1994) [11], (2000) [12] transformed-data maximum likelihood estimation (MLE) method to directly estimate the unobserved model parameters, and compare the predictive ability of the barrier option model to the commonly adopted credit risk model, Merton's model. Our empirical findings show that the barrier option model is more powerful than Merton's model in predicting bankruptcy in the emerging market. Moreover, we find that the barrier option model predicts bankruptcy much better for highly-leveraged firms. Finally, our findings indicate that the prediction accuracy of the credit risk model can be improved by higher asset liquidity and greater financial transparency.

  1. Modeling methodology for the accurate and prompt prediction of symptomatic events in chronic diseases.

    PubMed

    Pagán, Josué; Risco-Martín, José L; Moya, José M; Ayala, José L

    2016-08-01

    Prediction of symptomatic crises in chronic diseases allows to take decisions before the symptoms occur, such as the intake of drugs to avoid the symptoms or the activation of medical alarms. The prediction horizon is in this case an important parameter in order to fulfill the pharmacokinetics of medications, or the time response of medical services. This paper presents a study about the prediction limits of a chronic disease with symptomatic crises: the migraine. For that purpose, this work develops a methodology to build predictive migraine models and to improve these predictions beyond the limits of the initial models. The maximum prediction horizon is analyzed, and its dependency on the selected features is studied. A strategy for model selection is proposed to tackle the trade off between conservative but robust predictive models, with respect to less accurate predictions with higher horizons. The obtained results show a prediction horizon close to 40min, which is in the time range of the drug pharmacokinetics. Experiments have been performed in a realistic scenario where input data have been acquired in an ambulatory clinical study by the deployment of a non-intrusive Wireless Body Sensor Network. Our results provide an effective methodology for the selection of the future horizon in the development of prediction algorithms for diseases experiencing symptomatic crises. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Multi-Model Combination techniques for Hydrological Forecasting: Application to Distributed Model Intercomparison Project Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajami, N K; Duan, Q; Gao, X

    2005-04-11

    This paper examines several multi-model combination techniques: the Simple Multi-model Average (SMA), the Multi-Model Super Ensemble (MMSE), Modified Multi-Model Super Ensemble (M3SE) and the Weighted Average Method (WAM). These model combination techniques were evaluated using the results from the Distributed Model Intercomparison Project (DMIP), an international project sponsored by the National Weather Service (NWS) Office of Hydrologic Development (OHD). All of the multi-model combination results were obtained using uncalibrated DMIP model outputs and were compared against the best uncalibrated as well as the best calibrated individual model results. The purpose of this study is to understand how different combination techniquesmore » affect the skill levels of the multi-model predictions. This study revealed that the multi-model predictions obtained from uncalibrated single model predictions are generally better than any single member model predictions, even the best calibrated single model predictions. Furthermore, more sophisticated multi-model combination techniques that incorporated bias correction steps work better than simple multi-model average predictions or multi-model predictions without bias correction.« less

  3. Analysis of Predicted Aircraft Wake Vortex Transport and Comparison with Experiment Volume II -- Appendixes

    DOT National Transportation Integrated Search

    1974-04-01

    A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...

  4. Predictive Model of Systemic Toxicity (SOT)

    EPA Science Inventory

    In an effort to ensure chemical safety in light of regulatory advances away from reliance on animal testing, USEPA and L’Oréal have collaborated to develop a quantitative systemic toxicity prediction model. Prediction of human systemic toxicity has proved difficult and remains a ...

  5. Ski jump takeoff performance predictions for a mixed-flow, remote-lift STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.

    1992-01-01

    A ski jump model was developed to predict ski jump takeoff performance for a short takeoff and vertical landing (STOVL) aircraft. The objective was to verify the model with results from a piloted simulation of a mixed flow, remote lift STOVL aircraft. The prediction model is discussed. The predicted results are compared with the piloted simulation results. The ski jump model can be utilized for basic research of other thrust vectoring STOVL aircraft performing a ski jump takeoff.

  6. Laser-Induced Thermal Damage of Skin

    DTIC Science & Technology

    1977-12-01

    identify by block number) Skin Burns Skin Model Laser Effects \\Thermal Predictions 20 ABSTRACT (Continue on reverse side it necessary and identify by...block number) A computerized model was developed for predicting thermal damage of skin by laser exposures. Thermal, optical, and physiological data are...presented for the model. Model predictions of extent of irreversible damage were compared with histologic determinations of the extent of damage

  7. Predicting outcome in severe traumatic brain injury using a simple prognostic model.

    PubMed

    Sobuwa, Simpiwe; Hartzenberg, Henry Benjamin; Geduld, Heike; Uys, Corrie

    2014-06-17

    Several studies have made it possible to predict outcome in severe traumatic brain injury (TBI) making it beneficial as an aid for clinical decision-making in the emergency setting. However, reliable predictive models are lacking for resource-limited prehospital settings such as those in developing countries like South Africa. To develop a simple predictive model for severe TBI using clinical variables in a South African prehospital setting. All consecutive patients admitted at two level-one centres in Cape Town, South Africa, for severe TBI were included. A binary logistic regression model was used, which included three predictor variables: oxygen saturation (SpO₂), Glasgow Coma Scale (GCS) and pupil reactivity. The Glasgow Outcome Scale was used to assess outcome on hospital discharge. A total of 74.4% of the outcomes were correctly predicted by the logistic regression model. The model demonstrated SpO₂ (p=0.019), GCS (p=0.001) and pupil reactivity (p=0.002) as independently significant predictors of outcome in severe TBI. Odds ratios of a good outcome were 3.148 (SpO₂ ≥ 90%), 5.108 (GCS 6 - 8) and 4.405 (pupils bilaterally reactive). This model is potentially useful for effective predictions of outcome in severe TBI.

  8. Determinants and development of a web-based child mortality prediction model in resource-limited settings: A data mining approach.

    PubMed

    Tesfaye, Brook; Atique, Suleman; Elias, Noah; Dibaba, Legesse; Shabbir, Syed-Abdul; Kebede, Mihiretu

    2017-03-01

    Improving child health and reducing child mortality rate are key health priorities in developing countries. This study aimed to identify determinant sand develop, a web-based child mortality prediction model in Ethiopian local language using classification data mining algorithm. Decision tree (using J48 algorithm) and rule induction (using PART algorithm) techniques were applied on 11,654 records of Ethiopian demographic and health survey data. Waikato Environment for Knowledge Analysis (WEKA) for windows version 3.6.8 was used to develop optimal models. 8157 (70%) records were randomly allocated to training group for model building while; the remaining 3496 (30%) records were allocated as the test group for model validation. The validation of the model was assessed using accuracy, sensitivity, specificity and area under Receiver Operating Characteristics (ROC) curve. Using Statistical Package for Social Sciences (SPSS) version 20.0; logistic regressions and Odds Ratio (OR) with 95% Confidence Interval (CI) was used to identify determinants of child mortality. The child mortality rate was 72 deaths per 1000 live births. Breast-feeding (AOR= 1.46, (95% CI [1.22. 1.75]), maternal education (AOR= 1.40, 95% CI [1.11, 1.81]), family planning (AOR= 1.21, [1.08, 1.43]), preceding birth interval (AOR= 4.90, [2.94, 8.15]), presence of diarrhea (AOR= 1.54, 95% CI [1.32, 1.66]), father's education (AOR= 1.4, 95% CI [1.04, 1.78]), low birth weight (AOR= 1.2, 95% CI [0.98, 1.51]) and, age of the mother at first birth (AOR= 1.42, [1.01-1.89]) were found to be determinants for child mortality. The J48 model had better performance, accuracy (94.3%), sensitivity (93.8%), specificity (94.3%), Positive Predictive Value (PPV) (92.2%), Negative Predictive Value (NPV) (94.5%) and, the area under ROC (94.8%). Subsequent to developing an optimal prediction model, we relied on this model to develop a web-based application system for child mortality prediction. In this study, nearly accurate results were obtained by employing decision tree and rule induction techniques. Determinants are identified and a web-based child mortality prediction model in Ethiopian local language is developed. Thus, the result obtained could support child health intervention programs in Ethiopia where trained human resource for health is limited. Advanced classification algorithms need to be tested to come up with optimal models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. High-Temperature Cast Aluminum for Efficient Engines

    NASA Astrophysics Data System (ADS)

    Bobel, Andrew C.

    Accurate thermodynamic databases are the foundation of predictive microstructure and property models. An initial assessment of the commercially available Thermo-Calc TCAL2 database and the proprietary aluminum database of QuesTek demonstrated a large degree of deviation with respect to equilibrium precipitate phase prediction in the compositional region of interest when compared to 3-D atom probe tomography (3DAPT) and transmission electron microscopy (TEM) experimental results. New compositional measurements of the Q-phase (Al-Cu-Mg-Si phase) led to a remodeling of the Q-phase thermodynamic description in the CALPHAD databases which has produced significant improvements in the phase prediction capabilities of the thermodynamic model. Due to the unique morphologies of strengthening precipitate phases commonly utilized in high-strength cast aluminum alloys, the development of new microstructural evolution models to describe both rod and plate particle growth was critical for accurate mechanistic strength models which rely heavily on precipitate size and shape. Particle size measurements through both 3DAPT and TEM experiments were used in conjunction with literature results of many alloy compositions to develop a physical growth model for the independent prediction of rod radii and rod length evolution. In addition a machine learning (ML) model was developed for the independent prediction of plate thickness and plate diameter evolution as a function of alloy composition, aging temperature, and aging time. The developed models are then compared with physical growth laws developed for spheres and modified for ellipsoidal morphology effects. Analysis of the effect of particle morphology on strength enhancement has been undertaken by modification of the Orowan-Ashby equation for 〈110〉 alpha-Al oriented finite rods in addition to an appropriate version for similarly oriented plates. A mechanistic strengthening model was developed for cast aluminum alloys containing both rod and plate-like precipitates. The model accurately accounts for the temperature dependence of particle nucleation and growth, solid solution strengthening, Si eutectic strength, and base aluminum yield strength. Strengthening model predictions of tensile yield strength are in excellent agreement with experimental observations over a wide range of aluminum alloy systems, aging temperatures, and test conditions. The developed models enable the prediction of the required particle morphology and volume fraction necessary to achieve target property goals in the design of future aluminum alloys. The effect of partitioning elements to the Q-phase was also considered for the potential to control the nucleation rate, reduce coarsening, and control the evolution of particle morphology. Elements were selected based on density functional theory (DFT) calculations showing the prevalence of certain elements to partition to the Q-phase. 3DAPT experiments were performed on Q-phase containing wrought alloys with these additions and show segregation of certain elements to the Q-phase with relative agreement to DFT predictions.

  10. The future of predictive microbiology: strategic research, innovative applications and great expectations.

    PubMed

    McMeekin, Tom; Bowman, John; McQuestin, Olivia; Mellefont, Lyndal; Ross, Tom; Tamplin, Mark

    2008-11-30

    This paper considers the future of predictive microbiology by exploring the balance that exists between science, applications and expectations. Attention is drawn to the development of predictive microbiology as a sub-discipline of food microbiology and of technologies that are required for its applications, including a recently developed biological indicator. As we move into the era of systems biology, in which physiological and molecular information will be increasingly available for incorporation into models, predictive microbiologists will be faced with new experimental and data handling challenges. Overcoming these hurdles may be assisted by interacting with microbiologists and mathematicians developing models to describe the microbial role in ecosystems other than food. Coupled with a commitment to maintain strategic research, as well as to develop innovative technologies, the future of predictive microbiology looks set to fulfil "great expectations".

  11. Development of structural and material clavicle response corridors under axial compression and three point bending loading for clavicle finite element model validation.

    PubMed

    Zhang, Qi; Kindig, Matthew; Li, Zuoping; Crandall, Jeff R; Kerrigan, Jason R

    2014-08-22

    Clavicle injuries were frequently observed in automotive side and frontal crashes. Finite element (FE) models have been developed to understand the injury mechanism, although no clavicle loading response corridors yet exist in the literature to ensure the model response biofidelity. Moreover, the typically developed structural level (e.g., force-deflection) response corridors were shown to be insufficient for verifying the injury prediction capacity of FE model, which usually is based on strain related injury criteria. Therefore, the purpose of this study is to develop both the structural (force vs deflection) and material level (strain vs force) clavicle response corridors for validating FE models for injury risk modeling. 20 Clavicles were loaded to failure under loading conditions representative of side and frontal crashes respectively, half of which in axial compression, and the other half in three point bending. Both structural and material response corridors were developed for each loading condition. FE model that can accurately predict structural response and strain level provides a more useful tool in injury risk modeling and prediction. The corridor development method in this study could also be extended to develop corridors for other components of the human body. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Development of Algal Interspecies Correlation Estimation Models for Chemical Hazard Assessment

    EPA Science Inventory

    Web-based Interspecies Correlation Estimation (ICE) is an application developed to predict the acute toxicity of a chemical from 1 species to another taxon. Web-ICE models use the acute toxicity value for a surrogate species to predict effect values for other species, thus potent...

  13. Development and Application of In Vitro Models for Screening Drugs and Environmental Chemicals that Predict Toxicity in Animals and Humans

    EPA Pesticide Factsheets

    Development and Application of In Vitro Models for Screening Drugs and Environmental Chemicals that Predict Toxicity in Animals and Humans (Presented by James McKim, Ph.D., DABT, Founder and Chief Science Officer, CeeTox) (5/25/2012)

  14. HIGH TIME-RESOLVED COMPARISONS FOR IN-DEPTH PROBING OF CMAQ FINE-PARTICLES AND GAS PREDICTIONS

    EPA Science Inventory

    Model evaluation is important to develop confidence in models and develop an understanding of their predictions. Most comparisons in the U.S. involve time-integrated measurements of 24-hours or longer. Comparisons against continuous or semi-continuous particle and gaseous measur...

  15. Model development and applications at the USDA-ARS National Soil Erosion Research Laboratory

    USDA-ARS?s Scientific Manuscript database

    The United States Department of Agriculture (USDA) has a long history of development of soil erosion prediction technology, initially with empirical equations like the Universal Soil Loss Equation (USLE), and more recently with process-based models such as the Water Erosion Prediction Project (WEPP)...

  16. Predicting Adaptive Response to Fadrozole Exposure: Computational Model of the Fathead Minnow Hypothalamic-Pituitary-Gonadal Axis

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic mathematical model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course (...

  17. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.

    PubMed

    Park, Soo Hyun; Talebi, Mohammad; Amos, Ruth I J; Tyteca, Eva; Haddad, Paul R; Szucs, Roman; Pohl, Christopher A; Dolan, John W

    2017-11-10

    Quantitative Structure-Retention Relationships (QSRR) are used to predict retention times of compounds based only on their chemical structures encoded by molecular descriptors. The main concern in QSRR modelling is to build models with high predictive power, allowing reliable retention prediction for the unknown compounds across the chromatographic space. With the aim of enhancing the prediction power of the models, in this work, our previously proposed QSRR modelling approach called "federation of local models" is extended in ion chromatography to predict retention times of unknown ions, where a local model for each target ion (unknown) is created using only structurally similar ions from the dataset. A Tanimoto similarity (TS) score was utilised as a measure of structural similarity and training sets were developed by including ions that were similar to the target ion, as defined by a threshold value. The prediction of retention parameters (a- and b-values) in the linear solvent strength (LSS) model in ion chromatography, log k=a - blog[eluent], allows the prediction of retention times under all eluent concentrations. The QSRR models for a- and b-values were developed by a genetic algorithm-partial least squares method using the retention data of inorganic and small organic anions and larger organic cations (molecular mass up to 507) on four Thermo Fisher Scientific columns (AS20, AS19, AS11HC and CS17). The corresponding predicted retention times were calculated by fitting the predicted a- and b-values of the models into the LSS model equation. The predicted retention times were also plotted against the experimental values to evaluate the goodness of fit and the predictive power of the models. The application of a TS threshold of 0.6 was found to successfully produce predictive and reliable QSRR models (Q ext(F2) 2 >0.8 and Mean Absolute Error<0.1), and hence accurate retention time predictions with an average Mean Absolute Error of 0.2min. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  18. Classification tree models for predicting distributions of michigan stream fish from landscape variables

    USGS Publications Warehouse

    Steen, P.J.; Zorn, T.G.; Seelbach, P.W.; Schaeffer, J.S.

    2008-01-01

    Traditionally, fish habitat requirements have been described from local-scale environmental variables. However, recent studies have shown that studying landscape-scale processes improves our understanding of what drives species assemblages and distribution patterns across the landscape. Our goal was to learn more about constraints on the distribution of Michigan stream fish by examining landscape-scale habitat variables. We used classification trees and landscape-scale habitat variables to create and validate presence-absence models and relative abundance models for Michigan stream fishes. We developed 93 presence-absence models that on average were 72% correct in making predictions for an independent data set, and we developed 46 relative abundance models that were 76% correct in making predictions for independent data. The models were used to create statewide predictive distribution and abundance maps that have the potential to be used for a variety of conservation and scientific purposes. ?? Copyright by the American Fisheries Society 2008.

  19. A study of material damping in large space structures

    NASA Technical Reports Server (NTRS)

    Highsmith, A. L.; Allen, D. H.

    1989-01-01

    A constitutive model was developed for predicting damping as a function of damage in continuous fiber reinforced laminated composites. The damage model is a continuum formulation, and uses internal state variables to quantify damage and its subsequent effect on material response. The model is sensitive to the stacking sequence of the laminate. Given appropriate baseline data from unidirectional material, and damping as a function of damage in one crossply laminate, damage can be predicted as a function of damage in other crossply laminates. Agreement between theory and experiment was quite good. A micromechanics model was also developed for examining the influence of damage on damping. This model explicitly includes crack surfaces. The model provides reasonable predictions of bending stiffness as a function of damage. Damping predictions are not in agreement with the experiment. This is thought to be a result of dissipation mechanisms such as friction, which are not presently included in the analysis.

  20. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment.

    PubMed

    Li, Yinghui; Huang, Shuaijin; Qu, Xuexin

    2017-10-27

    The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter "Reservoir Area"). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area.

  1. The effect of solution nonideality on modeling transmembrane water transport and diffusion-limited intracellular ice formation during cryopreservation

    NASA Astrophysics Data System (ADS)

    Zhao, Gang; Takamatsu, Hiroshi; He, Xiaoming

    2014-04-01

    A new model was developed to predict transmembrane water transport and diffusion-limited ice formation in cells during freezing without the ideal-solution assumption that has been used in previous models. The model was applied to predict cell dehydration and intracellular ice formation (IIF) during cryopreservation of mouse oocytes and bovine carotid artery endothelial cells in aqueous sodium chloride (NaCl) solution with glycerol as the cryoprotectant or cryoprotective agent. A comparison of the predictions between the present model and the previously reported models indicated that the ideal-solution assumption results in under-prediction of the amount of intracellular ice at slow cooling rates (<50 K/min). In addition, the lower critical cooling rates for IIF that is lethal to cells predicted by the present model were much lower than those estimated with the ideal-solution assumption. This study represents the first investigation on how accounting for solution nonideality in modeling water transport across the cell membrane could affect the prediction of diffusion-limited ice formation in biological cells during freezing. Future studies are warranted to look at other assumptions alongside nonideality to further develop the model as a useful tool for optimizing the protocol of cell cryopreservation for practical applications.

  2. The effect of solution nonideality on modeling transmembrane water transport and diffusion-limited intracellular ice formation during cryopreservation.

    PubMed

    Zhao, Gang; Takamatsu, Hiroshi; He, Xiaoming

    2014-04-14

    A new model was developed to predict transmembrane water transport and diffusion-limited ice formation in cells during freezing without the ideal-solution assumption that has been used in previous models. The model was applied to predict cell dehydration and intracellular ice formation (IIF) during cryopreservation of mouse oocytes and bovine carotid artery endothelial cells in aqueous sodium chloride (NaCl) solution with glycerol as the cryoprotectant or cryoprotective agent. A comparison of the predictions between the present model and the previously reported models indicated that the ideal-solution assumption results in under-prediction of the amount of intracellular ice at slow cooling rates (<50 K/min). In addition, the lower critical cooling rates for IIF that is lethal to cells predicted by the present model were much lower than those estimated with the ideal-solution assumption. This study represents the first investigation on how accounting for solution nonideality in modeling water transport across the cell membrane could affect the prediction of diffusion-limited ice formation in biological cells during freezing. Future studies are warranted to look at other assumptions alongside nonideality to further develop the model as a useful tool for optimizing the protocol of cell cryopreservation for practical applications.

  3. Effects and detection of raw material variability on the performance of near-infrared calibration models for pharmaceutical products.

    PubMed

    Igne, Benoit; Shi, Zhenqi; Drennen, James K; Anderson, Carl A

    2014-02-01

    The impact of raw material variability on the prediction ability of a near-infrared calibration model was studied. Calibrations, developed from a quaternary mixture design comprising theophylline anhydrous, lactose monohydrate, microcrystalline cellulose, and soluble starch, were challenged by intentional variation of raw material properties. A design with two theophylline physical forms, three lactose particle sizes, and two starch manufacturers was created to test model robustness. Further challenges to the models were accomplished through environmental conditions. Along with full-spectrum partial least squares (PLS) modeling, variable selection by dynamic backward PLS and genetic algorithms was utilized in an effort to mitigate the effects of raw material variability. In addition to evaluating models based on their prediction statistics, prediction residuals were analyzed by analyses of variance and model diagnostics (Hotelling's T(2) and Q residuals). Full-spectrum models were significantly affected by lactose particle size. Models developed by selecting variables gave lower prediction errors and proved to be a good approach to limit the effect of changing raw material characteristics. Hotelling's T(2) and Q residuals provided valuable information that was not detectable when studying only prediction trends. Diagnostic statistics were demonstrated to be critical in the appropriate interpretation of the prediction of quality parameters. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Process Optimization of Dual-Laser Beam Welding of Advanced Al-Li Alloys Through Hot Cracking Susceptibility Modeling

    NASA Astrophysics Data System (ADS)

    Tian, Yingtao; Robson, Joseph D.; Riekehr, Stefan; Kashaev, Nikolai; Wang, Li; Lowe, Tristan; Karanika, Alexandra

    2016-07-01

    Laser welding of advanced Al-Li alloys has been developed to meet the increasing demand for light-weight and high-strength aerospace structures. However, welding of high-strength Al-Li alloys can be problematic due to the tendency for hot cracking. Finding suitable welding parameters and filler material for this combination currently requires extensive and costly trial and error experimentation. The present work describes a novel coupled model to predict hot crack susceptibility (HCS) in Al-Li welds. Such a model can be used to shortcut the weld development process. The coupled model combines finite element process simulation with a two-level HCS model. The finite element process model predicts thermal field data for the subsequent HCS hot cracking prediction. The model can be used to predict the influences of filler wire composition and welding parameters on HCS. The modeling results have been validated by comparing predictions with results from fully instrumented laser welds performed under a range of process parameters and analyzed using high-resolution X-ray tomography to identify weld defects. It is shown that the model is capable of accurately predicting the thermal field around the weld and the trend of HCS as a function of process parameters.

  5. A way forward for fire-caused tree mortality prediction: Modeling a physiological consequence of fire

    Treesearch

    Kathleen L. Kavanaugh; Matthew B. Dickinson; Anthony S. Bova

    2010-01-01

    Current operational methods for predicting tree mortality from fire injury are regression-based models that only indirectly consider underlying causes and, thus, have limited generality. A better understanding of the physiological consequences of tree heating and injury are needed to develop biophysical process models that can make predictions under changing or novel...

  6. Predicting diameters inside bark for 10 important hardwood species

    Treesearch

    Donald E. Hilt; Everette D. Rast; Herman J. Bailey

    1983-01-01

    General models for predicting DIB/DOB ratios up the stem, applicable over wide geographic areas, have been developed for 10 important hardwood species. Results indicate that the ratios either decrease or remain constant up the stem. Methods for adjusting the general models to local conditions are presented. The prediction models can be used in conjunction with optical...

  7. Predictability of gypsy moth defoliation in central hardwoods: a validation study

    Treesearch

    David E. Fosbroke; Ray R., Jr. Hicks

    1993-01-01

    A model for predicting gypsy moth defoliation in central hardwood forests based on stand characteristics was evaluated following a 5-year outbreak in Pennsylvania and Maryland. Study area stand characteristics were similar to those of the areas used to develop the model. Comparisons are made between model predictive capability in two physiographic provinces. The tested...

  8. Initial Comparison of Single Cylinder Stirling Engine Computer Model Predictions with Test Results

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.; Thieme, L. G.; Miao, D.

    1979-01-01

    A Stirling engine digital computer model developed at NASA Lewis Research Center was configured to predict the performance of the GPU-3 single-cylinder rhombic drive engine. Revisions to the basic equations and assumptions are discussed. Model predictions with the early results of the Lewis Research Center GPU-3 tests are compared.

  9. Testing and analysis of internal hardwood log defect prediction models

    Treesearch

    R. Edward Thomas

    2011-01-01

    The severity and location of internal defects determine the quality and value of lumber sawn from hardwood logs. Models have been developed to predict the size and position of internal defects based on external defect indicator measurements. These models were shown to predict approximately 80% of all internal knots based on external knot indicators. However, the size...

  10. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  11. Predictions of the pathological response to neoadjuvant chemotherapy in patients with primary breast cancer using a data mining technique.

    PubMed

    Takada, M; Sugimoto, M; Ohno, S; Kuroi, K; Sato, N; Bando, H; Masuda, N; Iwata, H; Kondo, M; Sasano, H; Chow, L W C; Inamoto, T; Naito, Y; Tomita, M; Toi, M

    2012-07-01

    Nomogram, a standard technique that utilizes multiple characteristics to predict efficacy of treatment and likelihood of a specific status of an individual patient, has been used for prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients. The aim of this study was to develop a novel computational technique to predict the pathological complete response (pCR) to NAC in primary breast cancer patients. A mathematical model using alternating decision trees, an epigone of decision tree, was developed using 28 clinicopathological variables that were retrospectively collected from patients treated with NAC (n = 150), and validated using an independent dataset from a randomized controlled trial (n = 173). The model selected 15 variables to predict the pCR with yielding area under the receiver operating characteristics curve (AUC) values of 0.766 [95 % confidence interval (CI)], 0.671-0.861, P value < 0.0001) in cross-validation using training dataset and 0.787 (95 % CI 0.716-0.858, P value < 0.0001) in the validation dataset. Among three subtypes of breast cancer, the luminal subgroup showed the best discrimination (AUC = 0.779, 95 % CI 0.641-0.917, P value = 0.0059). The developed model (AUC = 0.805, 95 % CI 0.716-0.894, P value < 0.0001) outperformed multivariate logistic regression (AUC = 0.754, 95 % CI 0.651-0.858, P value = 0.00019) of validation datasets without missing values (n = 127). Several analyses, e.g. bootstrap analysis, revealed that the developed model was insensitive to missing values and also tolerant to distribution bias among the datasets. Our model based on clinicopathological variables showed high predictive ability for pCR. This model might improve the prediction of the response to NAC in primary breast cancer patients.

  12. Application of the predicted heat strain model in development of localized, threshold-based heat stress management guidelines for the construction industry.

    PubMed

    Rowlinson, Steve; Jia, Yunyan Andrea

    2014-04-01

    Existing heat stress risk management guidelines recommended by international standards are not practical for the construction industry which needs site supervision staff to make instant managerial decisions to mitigate heat risks. The ability of the predicted heat strain (PHS) model [ISO 7933 (2004). Ergonomics of the thermal environment analytical determination and interpretation of heat stress using calculation of the predicted heat strain. Geneva: International Standard Organisation] to predict maximum allowable exposure time (D lim) has now enabled development of localized, action-triggering and threshold-based guidelines for implementation by lay frontline staff on construction sites. This article presents a protocol for development of two heat stress management tools by applying the PHS model to its full potential. One of the tools is developed to facilitate managerial decisions on an optimized work-rest regimen for paced work. The other tool is developed to enable workers' self-regulation during self-paced work.

  13. Predicting Ideological Prejudice

    PubMed Central

    Brandt, Mark J.

    2017-01-01

    A major shortcoming of current models of ideological prejudice is that although they can anticipate the direction of the association between participants’ ideology and their prejudice against a range of target groups, they cannot predict the size of this association. I developed and tested models that can make specific size predictions for this association. A quantitative model that used the perceived ideology of the target group as the primary predictor of the ideology-prejudice relationship was developed with a representative sample of Americans (N = 4,940) and tested against models using the perceived status of and choice to belong to the target group as predictors. In four studies (total N = 2,093), ideology-prejudice associations were estimated, and these observed estimates were compared with the models’ predictions. The model that was based only on perceived ideology was the most parsimonious with the smallest errors. PMID:28394693

  14. Predicting Software Suitability Using a Bayesian Belief Network

    NASA Technical Reports Server (NTRS)

    Beaver, Justin M.; Schiavone, Guy A.; Berrios, Joseph S.

    2005-01-01

    The ability to reliably predict the end quality of software under development presents a significant advantage for a development team. It provides an opportunity to address high risk components earlier in the development life cycle, when their impact is minimized. This research proposes a model that captures the evolution of the quality of a software product, and provides reliable forecasts of the end quality of the software being developed in terms of product suitability. Development team skill, software process maturity, and software problem complexity are hypothesized as driving factors of software product quality. The cause-effect relationships between these factors and the elements of software suitability are modeled using Bayesian Belief Networks, a machine learning method. This research presents a Bayesian Network for software quality, and the techniques used to quantify the factors that influence and represent software quality. The developed model is found to be effective in predicting the end product quality of small-scale software development efforts.

  15. Multi-model comparison highlights consistency in predicted effect of warming on a semi-arid shrub

    USGS Publications Warehouse

    Renwick, Katherine M.; Curtis, Caroline; Kleinhesselink, Andrew R.; Schlaepfer, Daniel R.; Bradley, Bethany A.; Aldridge, Cameron L.; Poulter, Benjamin; Adler, Peter B.

    2018-01-01

    A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance, and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi-model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species. To evaluate the climate sensitivity of A. tridentata, we developed four predictive models, two based on empirically derived spatial and temporal relationships, and two that applied mechanistic approaches to simulate sagebrush recruitment and growth. This approach enabled us to produce an aggregate index of climate change vulnerability and uncertainty based on the level of agreement between models. Despite large differences in model structure, predictions of sagebrush response to climate change were largely consistent. Performance, as measured by change in cover, growth, or recruitment, was predicted to decrease at the warmest sites, but increase throughout the cooler portions of sagebrush's range. A sensitivity analysis indicated that sagebrush performance responds more strongly to changes in temperature than precipitation. Most of the uncertainty in model predictions reflected variation among the ecological models, raising questions about the reliability of forecasts based on a single modeling approach. Our results highlight the value of a multi-model approach in forecasting climate change impacts and uncertainties and should help land managers to maximize the value of conservation investments.

  16. Validation of Models Used to Inform Colorectal Cancer Screening Guidelines: Accuracy and Implications.

    PubMed

    Rutter, Carolyn M; Knudsen, Amy B; Marsh, Tracey L; Doria-Rose, V Paul; Johnson, Eric; Pabiniak, Chester; Kuntz, Karen M; van Ballegooijen, Marjolein; Zauber, Ann G; Lansdorp-Vogelaar, Iris

    2016-07-01

    Microsimulation models synthesize evidence about disease processes and interventions, providing a method for predicting long-term benefits and harms of prevention, screening, and treatment strategies. Because models often require assumptions about unobservable processes, assessing a model's predictive accuracy is important. We validated 3 colorectal cancer (CRC) microsimulation models against outcomes from the United Kingdom Flexible Sigmoidoscopy Screening (UKFSS) Trial, a randomized controlled trial that examined the effectiveness of one-time flexible sigmoidoscopy screening to reduce CRC mortality. The models incorporate different assumptions about the time from adenoma initiation to development of preclinical and symptomatic CRC. Analyses compare model predictions to study estimates across a range of outcomes to provide insight into the accuracy of model assumptions. All 3 models accurately predicted the relative reduction in CRC mortality 10 years after screening (predicted hazard ratios, with 95% percentile intervals: 0.56 [0.44, 0.71], 0.63 [0.51, 0.75], 0.68 [0.53, 0.83]; estimated with 95% confidence interval: 0.56 [0.45, 0.69]). Two models with longer average preclinical duration accurately predicted the relative reduction in 10-year CRC incidence. Two models with longer mean sojourn time accurately predicted the number of screen-detected cancers. All 3 models predicted too many proximal adenomas among patients referred to colonoscopy. Model accuracy can only be established through external validation. Analyses such as these are therefore essential for any decision model. Results supported the assumptions that the average time from adenoma initiation to development of preclinical cancer is long (up to 25 years), and mean sojourn time is close to 4 years, suggesting the window for early detection and intervention by screening is relatively long. Variation in dwell time remains uncertain and could have important clinical and policy implications. © The Author(s) 2016.

  17. Predicting 30-day Hospital Readmission with Publicly Available Administrative Database. A Conditional Logistic Regression Modeling Approach.

    PubMed

    Zhu, K; Lou, Z; Zhou, J; Ballester, N; Kong, N; Parikh, P

    2015-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". Hospital readmissions raise healthcare costs and cause significant distress to providers and patients. It is, therefore, of great interest to healthcare organizations to predict what patients are at risk to be readmitted to their hospitals. However, current logistic regression based risk prediction models have limited prediction power when applied to hospital administrative data. Meanwhile, although decision trees and random forests have been applied, they tend to be too complex to understand among the hospital practitioners. Explore the use of conditional logistic regression to increase the prediction accuracy. We analyzed an HCUP statewide inpatient discharge record dataset, which includes patient demographics, clinical and care utilization data from California. We extracted records of heart failure Medicare beneficiaries who had inpatient experience during an 11-month period. We corrected the data imbalance issue with under-sampling. In our study, we first applied standard logistic regression and decision tree to obtain influential variables and derive practically meaning decision rules. We then stratified the original data set accordingly and applied logistic regression on each data stratum. We further explored the effect of interacting variables in the logistic regression modeling. We conducted cross validation to assess the overall prediction performance of conditional logistic regression (CLR) and compared it with standard classification models. The developed CLR models outperformed several standard classification models (e.g., straightforward logistic regression, stepwise logistic regression, random forest, support vector machine). For example, the best CLR model improved the classification accuracy by nearly 20% over the straightforward logistic regression model. Furthermore, the developed CLR models tend to achieve better sensitivity of more than 10% over the standard classification models, which can be translated to correct labeling of additional 400 - 500 readmissions for heart failure patients in the state of California over a year. Lastly, several key predictor identified from the HCUP data include the disposition location from discharge, the number of chronic conditions, and the number of acute procedures. It would be beneficial to apply simple decision rules obtained from the decision tree in an ad-hoc manner to guide the cohort stratification. It could be potentially beneficial to explore the effect of pairwise interactions between influential predictors when building the logistic regression models for different data strata. Judicious use of the ad-hoc CLR models developed offers insights into future development of prediction models for hospital readmissions, which can lead to better intuition in identifying high-risk patients and developing effective post-discharge care strategies. Lastly, this paper is expected to raise the awareness of collecting data on additional markers and developing necessary database infrastructure for larger-scale exploratory studies on readmission risk prediction.

  18. Clinical Nomograms to Predict Stone-Free Rates after Shock-Wave Lithotripsy: Development and Internal-Validation

    PubMed Central

    Kim, Jung Kwon; Ha, Seung Beom; Jeon, Chan Hoo; Oh, Jong Jin; Cho, Sung Yong; Oh, Seung-June; Kim, Hyeon Hoe; Jeong, Chang Wook

    2016-01-01

    Purpose Shock-wave lithotripsy (SWL) is accepted as the first line treatment modality for uncomplicated upper urinary tract stones; however, validated prediction models with regards to stone-free rates (SFRs) are still needed. We aimed to develop nomograms predicting SFRs after the first and within the third session of SWL. Computed tomography (CT) information was also modeled for constructing nomograms. Materials and Methods From March 2006 to December 2013, 3028 patients were treated with SWL for ureter and renal stones at our three tertiary institutions. Four cohorts were constructed: Total-development, Total-validation, CT-development, and CT-validation cohorts. The nomograms were developed using multivariate logistic regression models with selected significant variables in a univariate logistic regression model. A C-index was used to assess the discrimination accuracy of nomograms and calibration plots were used to analyze the consistency of prediction. Results The SFR, after the first and within the third session, was 48.3% and 68.8%, respectively. Significant variables were sex, stone location, stone number, and maximal stone diameter in the Total-development cohort, and mean Hounsfield unit (HU) and grade of hydronephrosis (HN) were additional parameters in the CT-development cohort. The C-indices were 0.712 and 0.723 for after the first and within the third session of SWL in the Total-development cohort, and 0.755 and 0.756, in the CT-development cohort, respectively. The calibration plots showed good correspondences. Conclusions We constructed and validated nomograms to predict SFR after SWL. To the best of our knowledge, these are the first graphical nomograms to be modeled with CT information. These may be useful for patient counseling and treatment decision-making. PMID:26890006

  19. Assessing Discriminative Performance at External Validation of Clinical Prediction Models

    PubMed Central

    Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W.

    2016-01-01

    Introduction External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. Methods We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. Results The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. Conclusion The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients. PMID:26881753

  20. Assessing Discriminative Performance at External Validation of Clinical Prediction Models.

    PubMed

    Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W

    2016-01-01

    External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients.

  1. Assessment of a remote sensing-based model for predicting malaria transmission risk in villages of Chiapas, Mexico

    NASA Technical Reports Server (NTRS)

    Beck, L. R.; Rodriguez, M. H.; Dister, S. W.; Rodriguez, A. D.; Washino, R. K.; Roberts, D. R.; Spanner, M. A.

    1997-01-01

    A blind test of two remote sensing-based models for predicting adult populations of Anopheles albimanus in villages, an indicator of malaria transmission risk, was conducted in southern Chiapas, Mexico. One model was developed using a discriminant analysis approach, while the other was based on regression analysis. The models were developed in 1992 for an area around Tapachula, Chiapas, using Landsat Thematic Mapper (TM) satellite data and geographic information system functions. Using two remotely sensed landscape elements, the discriminant model was able to successfully distinguish between villages with high and low An. albimanus abundance with an overall accuracy of 90%. To test the predictive capability of the models, multitemporal TM data were used to generate a landscape map of the Huixtla area, northwest of Tapachula, where the models were used to predict risk for 40 villages. The resulting predictions were not disclosed until the end of the test. Independently, An. albimanus abundance data were collected in the 40 randomly selected villages for which the predictions had been made. These data were subsequently used to assess the models' accuracies. The discriminant model accurately predicted 79% of the high-abundance villages and 50% of the low-abundance villages, for an overall accuracy of 70%. The regression model correctly identified seven of the 10 villages with the highest mosquito abundance. This test demonstrated that remote sensing-based models generated for one area can be used successfully in another, comparable area.

  2. Model‐Based Approach to Predict Adherence to Protocol During Antiobesity Trials

    PubMed Central

    Sharma, Vishnu D.; Combes, François P.; Vakilynejad, Majid; Lahu, Gezim; Lesko, Lawrence J.

    2017-01-01

    Abstract Development of antiobesity drugs is continuously challenged by high dropout rates during clinical trials. The objective was to develop a population pharmacodynamic model that describes the temporal changes in body weight, considering disease progression, lifestyle intervention, and drug effects. Markov modeling (MM) was applied for quantification and characterization of responder and nonresponder as key drivers of dropout rates, to ultimately support the clinical trial simulations and the outcome in terms of trial adherence. Subjects (n = 4591) from 6 Contrave® trials were included in this analysis. An indirect‐response model developed by van Wart et al was used as a starting point. Inclusion of drug effect was dose driven using a population dose‐ and time‐dependent pharmacodynamic (DTPD) model. Additionally, a population‐pharmacokinetic parameter‐ and data (PPPD)‐driven model was developed using the final DTPD model structure and final parameter estimates from a previously developed population pharmacokinetic model based on available Contrave® pharmacokinetic concentrations. Last, MM was developed to predict transition rate probabilities among responder, nonresponder, and dropout states driven by the pharmacodynamic effect resulting from the DTPD or PPPD model. Covariates included in the models and parameters were diabetes mellitus and race. The linked DTPD‐MM and PPPD‐MM was able to predict transition rates among responder, nonresponder, and dropout states well. The analysis concluded that body‐weight change is an important factor influencing dropout rates, and the MM depicted that overall a DTPD model‐driven approach provides a reasonable prediction of clinical trial outcome probabilities similar to a pharmacokinetic‐driven approach. PMID:28858397

  3. Jet Noise Modeling for Supersonic Business Jet Application

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2004-01-01

    This document describes the development of an improved predictive model for coannular jet noise, including noise suppression modifications applicable to small supersonic-cruise aircraft such as the Supersonic Business Jet (SBJ), for NASA Langley Research Center (LaRC). For such aircraft a wide range of propulsion and integration options are under consideration. Thus there is a need for very versatile design tools, including a noise prediction model. The approach used is similar to that used with great success by the Modern Technologies Corporation (MTC) in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research Program and in developing a more recent model for coannular nozzles over a wide range of conditions. If highly suppressed configurations are ultimately required, the 2DME model is expected to provide reasonable prediction for these smaller scales, although this has not been demonstrated. It is considered likely that more modest suppression approaches, such as dual stream nozzles featuring chevron or chute suppressors, perhaps in conjunction with inverted velocity profiles (IVP), will be sufficient for the SBJ.

  4. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    NASA Astrophysics Data System (ADS)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-05-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  5. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    NASA Astrophysics Data System (ADS)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-01-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  6. On the Space-Time Structure of Sheared Turbulence

    NASA Astrophysics Data System (ADS)

    de Maré, Martin; Mann, Jakob

    2016-09-01

    We develop a model that predicts all two-point correlations in high Reynolds number turbulent flow, in both space and time. This is accomplished by combining the design philosophies behind two existing models, the Mann spectral velocity tensor, in which isotropic turbulence is distorted according to rapid distortion theory, and Kristensen's longitudinal coherence model, in which eddies are simultaneously advected by larger eddies as well as decaying. The model is compared with data from both observations and large-eddy simulations and is found to predict spatial correlations comparable to the Mann spectral tensor and temporal coherence better than any known model. Within the developed framework, Lagrangian two-point correlations in space and time are also predicted, and the predictions are compared with measurements of isotropic turbulence. The required input to the models, which are formulated as spectral velocity tensors, can be estimated from measured spectra or be derived from the rate of dissipation of turbulent kinetic energy, the friction velocity and the mean shear of the flow. The developed models can, for example, be used in wind-turbine engineering, in applications such as lidar-assisted feed forward control and wind-turbine wake modelling.

  7. Development of a program to fit data to a new logistic model for microbial growth.

    PubMed

    Fujikawa, Hiroshi; Kano, Yoshihiro

    2009-06-01

    Recently we developed a mathematical model for microbial growth in food. The model successfully predicted microbial growth at various patterns of temperature. In this study, we developed a program to fit data to the model with a spread sheet program, Microsoft Excel. Users can instantly get curves fitted to the model by inputting growth data and choosing the slope portion of a curve. The program also could estimate growth parameters including the rate constant of growth and the lag period. This program would be a useful tool for analyzing growth data and further predicting microbial growth.

  8. Enhanced Fan Noise Modeling for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.; Stone, James R.

    2014-01-01

    This report describes work by consultants to Diversitech Inc. for the NASA Glenn Research Center (GRC) to revise the fan noise prediction procedure based on fan noise data obtained in the 9- by 15 Foot Low-Speed Wind Tunnel at GRC. The purpose of this task is to begin development of an enhanced, analytical, more physics-based, fan noise prediction method applicable to commercial turbofan propulsion systems. The method is to be suitable for programming into a computational model for eventual incorporation into NASA's current aircraft system noise prediction computer codes. The scope of this task is in alignment with the mission of the Propulsion 21 research effort conducted by the coalition of NASA, state government, industry, and academia to develop aeropropulsion technologies. A model for fan noise prediction was developed based on measured noise levels for the R4 rotor with several outlet guide vane variations and three fan exhaust areas. The model predicts the complete fan noise spectrum, including broadband noise, tones, and for supersonic tip speeds, combination tones. Both spectra and directivity are predicted. Good agreement with data was achieved for all fan geometries. Comparisons with data from a second fan, the ADP fan, also showed good agreement.

  9. Developing a NIR multispectral imaging for prediction and visualization of peanut protein content using variable selection algorithms

    NASA Astrophysics Data System (ADS)

    Cheng, Jun-Hu; Jin, Huali; Liu, Zhiwei

    2018-01-01

    The feasibility of developing a multispectral imaging method using important wavelengths from hyperspectral images selected by genetic algorithm (GA), successive projection algorithm (SPA) and regression coefficient (RC) methods for modeling and predicting protein content in peanut kernel was investigated for the first time. Partial least squares regression (PLSR) calibration model was established between the spectral data from the selected optimal wavelengths and the reference measured protein content ranged from 23.46% to 28.43%. The RC-PLSR model established using eight key wavelengths (1153, 1567, 1972, 2143, 2288, 2339, 2389 and 2446 nm) showed the best predictive results with the coefficient of determination of prediction (R2P) of 0.901, and root mean square error of prediction (RMSEP) of 0.108 and residual predictive deviation (RPD) of 2.32. Based on the obtained best model and image processing algorithms, the distribution maps of protein content were generated. The overall results of this study indicated that developing a rapid and online multispectral imaging system using the feature wavelengths and PLSR analysis is potential and feasible for determination of the protein content in peanut kernels.

  10. A model for prediction of color change after tooth bleaching based on CIELAB color space

    NASA Astrophysics Data System (ADS)

    Herrera, Luis J.; Santana, Janiley; Yebra, Ana; Rivas, María. José; Pulgar, Rosa; Pérez, María. M.

    2017-08-01

    An experimental study aiming to develop a model based on CIELAB color space for prediction of color change after a tooth bleaching procedure is presented. Multivariate linear regression models were obtained to predict the L*, a*, b* and W* post-bleaching values using the pre-bleaching L*, a*and b*values. Moreover, univariate linear regression models were obtained to predict the variation in chroma (C*), hue angle (h°) and W*. The results demonstrated that is possible to estimate color change when using a carbamide peroxide tooth-bleaching system. The models obtained can be applied in clinic to predict the colour change after bleaching.

  11. Prediction of physical workload in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Goldberg, Joseph H.

    1987-01-01

    The background, development, and application of a methodology to predict human energy expenditure and physical workload in low gravity environments, such as a Lunar or Martian base, is described. Based on a validated model to predict energy expenditures in Earth-based industrial jobs, the model relies on an elemental analysis of the proposed job. Because the job itself need not physically exist, many alternative job designs may be compared in their physical workload. The feasibility of using the model for prediction of low gravity work was evaluated by lowering body and load weights, while maintaining basal energy expenditure. Comparison of model results was made both with simulated low gravity energy expenditure studies and with reported Apollo 14 Lunar EVA expenditure. Prediction accuracy was very good for walking and for cart pulling on slopes less than 15 deg, but the model underpredicted the most difficult work conditions. This model was applied to example core sampling and facility construction jobs, as presently conceptualized for a Lunar or Martian base. Resultant energy expenditures and suggested work-rest cycles were well within the range of moderate work difficulty. Future model development requirements were also discussed.

  12. Outcome Trajectories in Extremely Preterm Infants

    PubMed Central

    Carlo, Waldemar A.; Tyson, Jon E.; Langer, John C.; Walsh, Michele C.; Parikh, Nehal A.; Das, Abhik; Van Meurs, Krisa P.; Shankaran, Seetha; Stoll, Barbara J.; Higgins, Rosemary D.

    2012-01-01

    OBJECTIVE: Methods are required to predict prognosis with changes in clinical course. Death or neurodevelopmental impairment in extremely premature neonates can be predicted at birth/admission to the ICU by considering gender, antenatal steroids, multiple birth, birth weight, and gestational age. Predictions may be improved by using additional information available later during the clinical course. Our objective was to develop serial predictions of outcome by using prognostic factors available over the course of NICU hospitalization. METHODS: Data on infants with birth weight ≤1.0 kg admitted to 18 large academic tertiary NICUs during 1998–2005 were used to develop multivariable regression models following stepwise variable selection. Models were developed by using all survivors at specific times during hospitalization (in delivery room [n = 8713], 7-day [n = 6996], 28-day [n = 6241], and 36-week postmenstrual age [n = 5118]) to predict death or death/neurodevelopmental impairment at 18 to 22 months. RESULTS: Prediction of death or neurodevelopmental impairment in extremely premature infants is improved by using information available later during the clinical course. The importance of birth weight declines, whereas the importance of respiratory illness severity increases with advancing postnatal age. The c-statistic in validation models ranged from 0.74 to 0.80 with misclassification rates ranging from 0.28 to 0.30. CONCLUSIONS: Dynamic models of the changing probability of individual outcome can improve outcome predictions in preterm infants. Various current and future scenarios can be modeled by input of different clinical possibilities to develop individual “outcome trajectories” and evaluate impact of possible morbidities on outcome. PMID:22689874

  13. Development and Validation of a New Air Carrier Block Time Prediction Model and Methodology

    NASA Astrophysics Data System (ADS)

    Litvay, Robyn Olson

    Commercial airline operations rely on predicted block times as the foundation for critical, successive decisions that include fuel purchasing, crew scheduling, and airport facility usage planning. Small inaccuracies in the predicted block times have the potential to result in huge financial losses, and, with profit margins for airline operations currently almost nonexistent, potentially negate any possible profit. Although optimization techniques have resulted in many models targeting airline operations, the challenge of accurately predicting and quantifying variables months in advance remains elusive. The objective of this work is the development of an airline block time prediction model and methodology that is practical, easily implemented, and easily updated. Research was accomplished, and actual U.S., domestic, flight data from a major airline was utilized, to develop a model to predict airline block times with increased accuracy and smaller variance in the actual times from the predicted times. This reduction in variance represents tens of millions of dollars (U.S.) per year in operational cost savings for an individual airline. A new methodology for block time prediction is constructed using a regression model as the base, as it has both deterministic and probabilistic components, and historic block time distributions. The estimation of the block times for commercial, domestic, airline operations requires a probabilistic, general model that can be easily customized for a specific airline’s network. As individual block times vary by season, by day, and by time of day, the challenge is to make general, long-term estimations representing the average, actual block times while minimizing the variation. Predictions of block times for the third quarter months of July and August of 2011 were calculated using this new model. The resulting, actual block times were obtained from the Research and Innovative Technology Administration, Bureau of Transportation Statistics (Airline On-time Performance Data, 2008-2011) for comparison and analysis. Future block times are shown to be predicted with greater accuracy, without exception and network-wide, for a major, U.S., domestic airline.

  14. Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Paul R., E-mail: pwest@stemina.co; Weir, April M.; Smith, Alan M.

    2010-08-15

    Teratogens, substances that may cause fetal abnormalities during development, are responsible for a significant number of birth defects. Animal models used to predict teratogenicity often do not faithfully correlate to human response. Here, we seek to develop a more predictive developmental toxicity model based on an in vitro method that utilizes both human embryonic stem (hES) cells and metabolomics to discover biomarkers of developmental toxicity. We developed a method where hES cells were dosed with several drugs of known teratogenicity then LC-MS analysis was performed to measure changes in abundance levels of small molecules in response to drug dosing. Statisticalmore » analysis was employed to select for specific mass features that can provide a prediction of the developmental toxicity of a substance. These molecules can serve as biomarkers of developmental toxicity, leading to better prediction of teratogenicity. In particular, our work shows a correlation between teratogenicity and changes of greater than 10% in the ratio of arginine to asymmetric dimethylarginine levels. In addition, this study resulted in the establishment of a predictive model based on the most informative mass features. This model was subsequently tested for its predictive accuracy in two blinded studies using eight drugs of known teratogenicity, where it correctly predicted the teratogenicity for seven of the eight drugs. Thus, our initial data shows that this platform is a robust alternative to animal and other in vitro models for the prediction of the developmental toxicity of chemicals that may also provide invaluable information about the underlying biochemical pathways.« less

  15. A new risk prediction model for critical care: the Intensive Care National Audit & Research Centre (ICNARC) model.

    PubMed

    Harrison, David A; Parry, Gareth J; Carpenter, James R; Short, Alasdair; Rowan, Kathy

    2007-04-01

    To develop a new model to improve risk prediction for admissions to adult critical care units in the UK. Prospective cohort study. The setting was 163 adult, general critical care units in England, Wales, and Northern Ireland, December 1995 to August 2003. Patients were 216,626 critical care admissions. None. The performance of different approaches to modeling physiologic measurements was evaluated, and the best methods were selected to produce a new physiology score. This physiology score was combined with other information relating to the critical care admission-age, diagnostic category, source of admission, and cardiopulmonary resuscitation before admission-to develop a risk prediction model. Modeling interactions between diagnostic category and physiology score enabled the inclusion of groups of admissions that are frequently excluded from risk prediction models. The new model showed good discrimination (mean c index 0.870) and fit (mean Shapiro's R 0.665, mean Brier's score 0.132) in 200 repeated validation samples and performed well when compared with recalibrated versions of existing published risk prediction models in the cohort of patients eligible for all models. The hypothesis of perfect fit was rejected for all models, including the Intensive Care National Audit & Research Centre (ICNARC) model, as is to be expected in such a large cohort. The ICNARC model demonstrated better discrimination and overall fit than existing risk prediction models, even following recalibration of these models. We recommend it be used to replace previously published models for risk adjustment in the UK.

  16. Development of a QSAR Model for Thyroperoxidase Inhbition ...

    EPA Pesticide Factsheets

    hyroid hormones (THs) are involved in multiple biological processes and are critical modulators of fetal development. Even moderate changes in maternal or fetal TH levels can produce irreversible neurological deficits in children, such as lower IQ. The enzyme thyroperoxidase (TPO) plays a key role in the synthesis of THs, and inhibition of TPO by xenobiotics results in decreased TH synthesis. Recently, a high-throughput screening assay for TPO inhibition (AUR-TPO) was developed and used to test the ToxCast Phase I and II chemicals. In the present study, we used the results from AUR-TPO to develop a Quantitative Structure-Activity Relationship (QSAR) model for TPO inhibition. The training set consisted of 898 discrete organic chemicals: 134 inhibitors and 764 non-inhibitors. A five times two-fold cross-validation of the model was performed, yielding a balanced accuracy of 78.7%. More recently, an additional ~800 chemicals were tested in the AUR-TPO assay. These data were used for a blinded external validation of the QSAR model, demonstrating a balanced accuracy of 85.7%. Overall, the cross- and external validation indicate a robust model with high predictive performance. Next, we used the QSAR model to predict 72,526 REACH pre-registered substances. The model could predict 49.5% (35,925) of the substances in its applicability domain and of these, 8,863 (24.7%) were predicted to be TPO inhibitors. Predictions from this screening can be used in a tiered approach to

  17. Descriptive modelling to predict deoxynivalenol in winter wheat in the Netherlands.

    PubMed

    Van Der Fels-Klerx, H J; Burgers, S L G E; Booij, C J H

    2010-05-01

    Predictions of deoxynivalenol (DON) content in wheat at harvest can be useful for decision-making by stakeholders of the wheat feed and food supply chain. The objective of the current research was to develop quantitative predictive models for DON in mature winter wheat in the Netherlands for two specific groups of end-users. One model was developed for use by farmers in underpinning Fusarium spp. disease management, specifically the application of fungicides around wheat flowering (model A). The second model was developed for industry and food safety authorities, and considered the entire wheat cultivation period (model B). Model development was based on observational data collected from 425 fields throughout the Netherlands between 2001 and 2008. For each field, agronomical information, climatic data and DON levels in mature wheat were collected. Using multiple regression analyses, the set of biological relevant variables that provided the highest statistical performance was selected. The two final models include the following variables: region, wheat resistance level, spraying, flowering date, several climatic variables in the different stages of wheat growing, and length of the period between flowering and harvesting (model B only). The percentages of variance accounted for were 64.4% and 65.6% for models A and B, respectively. Model validation showed high correlation between the predicted and observed DON levels. The two models may be applied by various groups of end-users to reduce DON contamination in wheat-derived feed and food products and, ultimately, reduce animal and consumer health risks.

  18. The development and validation of a novel model for predicting surgical complications in colorectal cancer of elderly patients: Results from 1008 cases.

    PubMed

    Shen, Zhanlong; Lin, Yuanpei; Ye, Yingjiang; Jiang, Kewei; Xie, Qiwei; Gao, Zhidong; Wang, Shan

    2018-04-01

    To establish predicting models of surgical complications in elderly colorectal cancer patients. Surgical complications are usually critical and lethal in the elderly patients. However, none of the current models are specifically designed to predict surgical complications in elderly colorectal cancer patients. Details of 1008 cases of elderly colorectal cancer patients (age ≥ 65) were collected retrospectively from January 1998 to December 2013. Seventy-six clinicopathological variables which might affect postoperative complications in elderly patients were recorded. Multivariate stepwise logistic regression analysis was used to develop the risk model equations. The performance of the developed model was evaluated by measures of calibration (Hosmer-Lemeshow test) and discrimination (the area under the receiver-operator characteristic curve, AUC). The AUC of our established Surgical Complication Score for Elderly Colorectal Cancer patients (SCSECC) model was 0.743 (sensitivity, 82.1%; specificity, 78.3%). There was no significant discrepancy between observed and predicted incidence rates of surgical complications (AUC, 0.820; P = .812). The Surgical Site Infection Score for Elderly Colorectal Cancer patients (SSISECC) model showed significantly better prediction power compared to the National Nosocomial Infections Surveillance index (NNIS) (AUC, 0.732; P ˂ 0.001) and Efficacy of Nosocomial Infection Control index (SENIC) (AUC; 0.686; P˂0.001) models. The SCSECC and SSISECC models show good prediction power for postoperative surgical complication morbidity and surgical site infection in elderly colorectal cancer patients. Copyright © 2018 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  19. Predicting stillbirth in a low resource setting.

    PubMed

    Kayode, Gbenga A; Grobbee, Diederick E; Amoakoh-Coleman, Mary; Adeleke, Ibrahim Taiwo; Ansah, Evelyn; de Groot, Joris A H; Klipstein-Grobusch, Kerstin

    2016-09-20

    Stillbirth is a major contributor to perinatal mortality and it is particularly common in low- and middle-income countries, where annually about three million stillbirths occur in the third trimester. This study aims to develop a prediction model for early detection of pregnancies at high risk of stillbirth. This retrospective cohort study examined 6,573 pregnant women who delivered at Federal Medical Centre Bida, a tertiary level of healthcare in Nigeria from January 2010 to December 2013. Descriptive statistics were performed and missing data imputed. Multivariable logistic regression was applied to examine the associations between selected candidate predictors and stillbirth. Discrimination and calibration were used to assess the model's performance. The prediction model was validated internally and over-optimism was corrected. We developed a prediction model for stillbirth that comprised maternal comorbidity, place of residence, maternal occupation, parity, bleeding in pregnancy, and fetal presentation. As a secondary analysis, we extended the model by including fetal growth rate as a predictor, to examine how beneficial ultrasound parameters would be for the predictive performance of the model. After internal validation, both calibration and discriminative performance of both the basic and extended model were excellent (i.e. C-statistic basic model = 0.80 (95 % CI 0.78-0.83) and extended model = 0.82 (95 % CI 0.80-0.83)). We developed a simple but informative prediction model for early detection of pregnancies with a high risk of stillbirth for early intervention in a low resource setting. Future research should focus on external validation of the performance of this promising model.

  20. Mechanism - based translational pharmacokinetic - pharmacodynamic model to predict intraocular pressure lowering effect of drugs in patients with glaucoma or ocular hypertension.

    PubMed

    Durairaj, Chandrasekar; Shen, Jie; Cherukury, Madhu

    2014-08-01

    To develop a mechanism based translational pharmacokinetic-pharmacodynamic (PKPD) model in preclinical species and to predict the intraocular pressure (IOP) following drug treatment in patients with glaucoma or ocular hypertension (OHT). Baseline diurnal IOP of normotensive albino rabbits, beagle dogs and patients with glaucoma or OHT was collected from literature. In addition, diurnal IOP of patients treated with brimonidine or Xalatan® were also obtained from literature. Healthy normotensive New Zealand rabbits were topically treated with a single drop of 0.15% brimonidine tartrate and normotensive beagle dogs were treated with a single drop of Xalatan®. At pre-determined time intervals, IOP was measured and aqueous humor samples were obtained from a satellite group of animals. Population based PKPD modeling was performed to describe the IOP data and the chosen model was extended to predict the IOP in patients. Baseline IOP clearly depicts a distinctive circadian rhythm in rabbits versus human. An aqueous humor dynamics based physiological model was developed to describe the baseline diurnal IOP across species. Model was extended to incorporate the effect of drug administration on baseline IOP in rabbits and dogs. The translational model with substituted human aqueous humor dynamic parameters predicted IOP in patients following drug treatment. A physiology based mechanistic PKPD model was developed to describe the baseline and post-treatment IOP in animals. The preclinical PKPD model was successfully translated to predict IOP in patients with glaucoma or OHT and can be applied in assisting dose and treatment selection and predicting outcome of glaucoma clinical trials.

  1. Predicting drug-induced liver injury in human with Naïve Bayes classifier approach.

    PubMed

    Zhang, Hui; Ding, Lan; Zou, Yi; Hu, Shui-Qing; Huang, Hai-Guo; Kong, Wei-Bao; Zhang, Ji

    2016-10-01

    Drug-induced liver injury (DILI) is one of the major safety concerns in drug development. Although various toxicological studies assessing DILI risk have been developed, these methods were not sufficient in predicting DILI in humans. Thus, developing new tools and approaches to better predict DILI risk in humans has become an important and urgent task. In this study, we aimed to develop a computational model for assessment of the DILI risk with using a larger scale human dataset and Naïve Bayes classifier. The established Naïve Bayes prediction model was evaluated by 5-fold cross validation and an external test set. For the training set, the overall prediction accuracy of the 5-fold cross validation was 94.0 %. The sensitivity, specificity, positive predictive value and negative predictive value were 97.1, 89.2, 93.5 and 95.1 %, respectively. The test set with the concordance of 72.6 %, sensitivity of 72.5 %, specificity of 72.7 %, positive predictive value of 80.4 %, negative predictive value of 63.2 %. Furthermore, some important molecular descriptors related to DILI risk and some toxic/non-toxic fragments were identified. Thus, we hope the prediction model established here would be employed for the assessment of human DILI risk, and the obtained molecular descriptors and substructures should be taken into consideration in the design of new candidate compounds to help medicinal chemists rationally select the chemicals with the best prospects to be effective and safe.

  2. Model-Based Approach to Predict Adherence to Protocol During Antiobesity Trials.

    PubMed

    Sharma, Vishnu D; Combes, François P; Vakilynejad, Majid; Lahu, Gezim; Lesko, Lawrence J; Trame, Mirjam N

    2018-02-01

    Development of antiobesity drugs is continuously challenged by high dropout rates during clinical trials. The objective was to develop a population pharmacodynamic model that describes the temporal changes in body weight, considering disease progression, lifestyle intervention, and drug effects. Markov modeling (MM) was applied for quantification and characterization of responder and nonresponder as key drivers of dropout rates, to ultimately support the clinical trial simulations and the outcome in terms of trial adherence. Subjects (n = 4591) from 6 Contrave ® trials were included in this analysis. An indirect-response model developed by van Wart et al was used as a starting point. Inclusion of drug effect was dose driven using a population dose- and time-dependent pharmacodynamic (DTPD) model. Additionally, a population-pharmacokinetic parameter- and data (PPPD)-driven model was developed using the final DTPD model structure and final parameter estimates from a previously developed population pharmacokinetic model based on available Contrave ® pharmacokinetic concentrations. Last, MM was developed to predict transition rate probabilities among responder, nonresponder, and dropout states driven by the pharmacodynamic effect resulting from the DTPD or PPPD model. Covariates included in the models and parameters were diabetes mellitus and race. The linked DTPD-MM and PPPD-MM was able to predict transition rates among responder, nonresponder, and dropout states well. The analysis concluded that body-weight change is an important factor influencing dropout rates, and the MM depicted that overall a DTPD model-driven approach provides a reasonable prediction of clinical trial outcome probabilities similar to a pharmacokinetic-driven approach. © 2017, The Authors. The Journal of Clinical Pharmacology published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  3. Selection, calibration, and validation of models of tumor growth.

    PubMed

    Lima, E A B F; Oden, J T; Hormuth, D A; Yankeelov, T E; Almeida, R C

    2016-11-01

    This paper presents general approaches for addressing some of the most important issues in predictive computational oncology concerned with developing classes of predictive models of tumor growth. First, the process of developing mathematical models of vascular tumors evolving in the complex, heterogeneous, macroenvironment of living tissue; second, the selection of the most plausible models among these classes, given relevant observational data; third, the statistical calibration and validation of models in these classes, and finally, the prediction of key Quantities of Interest (QOIs) relevant to patient survival and the effect of various therapies. The most challenging aspects of this endeavor is that all of these issues often involve confounding uncertainties: in observational data, in model parameters, in model selection, and in the features targeted in the prediction. Our approach can be referred to as "model agnostic" in that no single model is advocated; rather, a general approach that explores powerful mixture-theory representations of tissue behavior while accounting for a range of relevant biological factors is presented, which leads to many potentially predictive models. Then representative classes are identified which provide a starting point for the implementation of OPAL, the Occam Plausibility Algorithm (OPAL) which enables the modeler to select the most plausible models (for given data) and to determine if the model is a valid tool for predicting tumor growth and morphology ( in vivo ). All of these approaches account for uncertainties in the model, the observational data, the model parameters, and the target QOI. We demonstrate these processes by comparing a list of models for tumor growth, including reaction-diffusion models, phase-fields models, and models with and without mechanical deformation effects, for glioma growth measured in murine experiments. Examples are provided that exhibit quite acceptable predictions of tumor growth in laboratory animals while demonstrating successful implementations of OPAL.

  4. Waste tyre pyrolysis: modelling of a moving bed reactor.

    PubMed

    Aylón, E; Fernández-Colino, A; Murillo, R; Grasa, G; Navarro, M V; García, T; Mastral, A M

    2010-12-01

    This paper describes the development of a new model for waste tyre pyrolysis in a moving bed reactor. This model comprises three different sub-models: a kinetic sub-model that predicts solid conversion in terms of reaction time and temperature, a heat transfer sub-model that calculates the temperature profile inside the particle and the energy flux from the surroundings to the tyre particles and, finally, a hydrodynamic model that predicts the solid flow pattern inside the reactor. These three sub-models have been integrated in order to develop a comprehensive reactor model. Experimental results were obtained in a continuous moving bed reactor and used to validate model predictions, with good approximation achieved between the experimental and simulated results. In addition, a parametric study of the model was carried out, which showed that tyre particle heating is clearly faster than average particle residence time inside the reactor. Therefore, this fast particle heating together with fast reaction kinetics enables total solid conversion to be achieved in this system in accordance with the predictive model. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Comparing statistical and machine learning classifiers: alternatives for predictive modeling in human factors research.

    PubMed

    Carnahan, Brian; Meyer, Gérard; Kuntz, Lois-Ann

    2003-01-01

    Multivariate classification models play an increasingly important role in human factors research. In the past, these models have been based primarily on discriminant analysis and logistic regression. Models developed from machine learning research offer the human factors professional a viable alternative to these traditional statistical classification methods. To illustrate this point, two machine learning approaches--genetic programming and decision tree induction--were used to construct classification models designed to predict whether or not a student truck driver would pass his or her commercial driver license (CDL) examination. The models were developed and validated using the curriculum scores and CDL exam performances of 37 student truck drivers who had completed a 320-hr driver training course. Results indicated that the machine learning classification models were superior to discriminant analysis and logistic regression in terms of predictive accuracy. Actual or potential applications of this research include the creation of models that more accurately predict human performance outcomes.

  6. Artificial neural network modelling of a large-scale wastewater treatment plant operation.

    PubMed

    Güçlü, Dünyamin; Dursun, Sükrü

    2010-11-01

    Artificial Neural Networks (ANNs), a method of artificial intelligence method, provide effective predictive models for complex processes. Three independent ANN models trained with back-propagation algorithm were developed to predict effluent chemical oxygen demand (COD), suspended solids (SS) and aeration tank mixed liquor suspended solids (MLSS) concentrations of the Ankara central wastewater treatment plant. The appropriate architecture of ANN models was determined through several steps of training and testing of the models. ANN models yielded satisfactory predictions. Results of the root mean square error, mean absolute error and mean absolute percentage error were 3.23, 2.41 mg/L and 5.03% for COD; 1.59, 1.21 mg/L and 17.10% for SS; 52.51, 44.91 mg/L and 3.77% for MLSS, respectively, indicating that the developed model could be efficiently used. The results overall also confirm that ANN modelling approach may have a great implementation potential for simulation, precise performance prediction and process control of wastewater treatment plants.

  7. Flash-point prediction for binary partially miscible mixtures of flammable solvents.

    PubMed

    Liaw, Horng-Jang; Lu, Wen-Hung; Gerbaud, Vincent; Chen, Chan-Cheng

    2008-05-30

    Flash point is the most important variable used to characterize fire and explosion hazard of liquids. Herein, partially miscible mixtures are presented within the context of liquid-liquid extraction processes. This paper describes development of a model for predicting the flash point of binary partially miscible mixtures of flammable solvents. To confirm the predictive efficacy of the derived flash points, the model was verified by comparing the predicted values with the experimental data for the studied mixtures: methanol+octane; methanol+decane; acetone+decane; methanol+2,2,4-trimethylpentane; and, ethanol+tetradecane. Our results reveal that immiscibility in the two liquid phases should not be ignored in the prediction of flash point. Overall, the predictive results of this proposed model describe the experimental data well. Based on this evidence, therefore, it appears reasonable to suggest potential application for our model in assessment of fire and explosion hazards, and development of inherently safer designs for chemical processes containing binary partially miscible mixtures of flammable solvents.

  8. A person based formula for allocating commissioning funds to general practices in England: development of a statistical model.

    PubMed

    Dixon, Jennifer; Smith, Peter; Gravelle, Hugh; Martin, Steve; Bardsley, Martin; Rice, Nigel; Georghiou, Theo; Dusheiko, Mark; Billings, John; Lorenzo, Michael De; Sanderson, Colin

    2011-11-22

    To develop a formula for allocating resources for commissioning hospital care to all general practices in England based on the health needs of the people registered in each practice Multivariate prospective statistical models were developed in which routinely collected electronic information from 2005-6 and 2006-7 on individuals and the areas in which they lived was used to predict their costs of hospital care in the next year, 2007-8. Data on individuals included all diagnoses recorded at any inpatient admission. Models were developed on a random sample of 5 million people and validated on a second random sample of 5 million people and a third sample of 5 million people drawn from a random sample of practices. All general practices in England as of 1 April 2007. All NHS inpatient admissions and outpatient attendances for individuals registered with a general practice on that date. All individuals registered with a general practice in England at 1 April 2007. Power of the statistical models to predict the costs of the individual patient or each practice's registered population for 2007-8 tested with a range of metrics (R(2) reported here). Comparisons of predicted costs in 2007-8 with actual costs incurred in the same year were calculated by individual and by practice. Models including person level information (age, sex, and ICD-10 codes diagnostic recorded) and a range of area level information (such as socioeconomic deprivation and supply of health facilities) were most predictive of costs. After accounting for person level variables, area level variables added little explanatory power. The best models for resource allocation could predict upwards of 77% of the variation in costs at practice level, and about 12% at the person level. With these models, the predicted costs of about a third of practices would exceed or undershoot the actual costs by 10% or more. Smaller practices were more likely to be in these groups. A model was developed that performed well by international standards, and could be used for allocations to practices for commissioning. The best formulas, however, could predict only about 12% of the variation in next year's costs of most inpatient and outpatient NHS care for each individual. Person-based diagnostic data significantly added to the predictive power of the models.

  9. Modeling ready biodegradability of fragrance materials.

    PubMed

    Ceriani, Lidia; Papa, Ester; Kovarich, Simona; Boethling, Robert; Gramatica, Paola

    2015-06-01

    In the present study, quantitative structure activity relationships were developed for predicting ready biodegradability of approximately 200 heterogeneous fragrance materials. Two classification methods, classification and regression tree (CART) and k-nearest neighbors (kNN), were applied to perform the modeling. The models were validated with multiple external prediction sets, and the structural applicability domain was verified by the leverage approach. The best models had good sensitivity (internal ≥80%; external ≥68%), specificity (internal ≥80%; external 73%), and overall accuracy (≥75%). Results from the comparison with BIOWIN global models, based on group contribution method, show that specific models developed in the present study perform better in prediction than BIOWIN6, in particular for the correct classification of not readily biodegradable fragrance materials. © 2015 SETAC.

  10. A Model for Predicting Student Performance on High-Stakes Assessment

    ERIC Educational Resources Information Center

    Dammann, Matthew Walter

    2010-01-01

    This research study examined the use of student achievement on reading and math state assessments to predict success on the science state assessment. Multiple regression analysis was utilized to test the prediction for all students in grades 5 and 8 in a mid-Atlantic state. The prediction model developed from the analysis explored the combined…

  11. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atienzar, Franck A., E-mail: franck.atienzar@ucb.com; Novik, Eric I.; Gerets, Helga H.

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine modelmore » along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.« less

  12. Development of a traffic noise prediction model for an urban environment.

    PubMed

    Sharma, Asheesh; Bodhe, G L; Schimak, G

    2014-01-01

    The objective of this study is to develop a traffic noise model under diverse traffic conditions in metropolitan cities. The model has been developed to calculate equivalent traffic noise based on four input variables i.e. equivalent traffic flow (Q e ), equivalent vehicle speed (S e ) and distance (d) and honking (h). The traffic data is collected and statistically analyzed in three different cases for 15-min during morning and evening rush hours. Case I represents congested traffic where equivalent vehicle speed is <30 km/h while case II represents free-flowing traffic where equivalent vehicle speed is >30 km/h and case III represents calm traffic where no honking is recorded. The noise model showed better results than earlier developed noise model for Indian traffic conditions. A comparative assessment between present and earlier developed noise model has also been presented in the study. The model is validated with measured noise levels and the correlation coefficients between measured and predicted noise levels were found to be 0.75, 0.83 and 0.86 for case I, II and III respectively. The noise model performs reasonably well under different traffic conditions and could be implemented for traffic noise prediction at other region as well.

  13. ABodyBuilder: Automated antibody structure prediction with data–driven accuracy estimation

    PubMed Central

    Leem, Jinwoo; Dunbar, James; Georges, Guy; Shi, Jiye; Deane, Charlotte M.

    2016-01-01

    ABSTRACT Computational modeling of antibody structures plays a critical role in therapeutic antibody design. Several antibody modeling pipelines exist, but no freely available methods currently model nanobodies, provide estimates of expected model accuracy, or highlight potential issues with the antibody's experimental development. Here, we describe our automated antibody modeling pipeline, ABodyBuilder, designed to overcome these issues. The algorithm itself follows the standard 4 steps of template selection, orientation prediction, complementarity-determining region (CDR) loop modeling, and side chain prediction. ABodyBuilder then annotates the ‘confidence’ of the model as a probability that a component of the antibody (e.g., CDRL3 loop) will be modeled within a root–mean square deviation threshold. It also flags structural motifs on the model that are known to cause issues during in vitro development. ABodyBuilder was tested on 4 separate datasets, including the 11 antibodies from the Antibody Modeling Assessment–II competition. ABodyBuilder builds models that are of similar quality to other methodologies, with sub–Angstrom predictions for the ‘canonical’ CDR loops. Its ability to model nanobodies, and rapidly generate models (∼30 seconds per model) widens its potential usage. ABodyBuilder can also help users in decision–making for the development of novel antibodies because it provides model confidence and potential sequence liabilities. ABodyBuilder is freely available at http://opig.stats.ox.ac.uk/webapps/abodybuilder. PMID:27392298

  14. Physiological time model for predicting adult emergence of western corn rootworm (Coleoptera: Chrysomelidae) in the Texas High Plains.

    PubMed

    Stevenson, Douglass E; Michels, Gerald J; Bible, John B; Jackman, John A; Harris, Marvin K

    2008-10-01

    Field observations at three locations in the Texas High Plains were used to develop and validate a degree-day phenology model to predict the onset and proportional emergence of adult Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) adults. Climatic data from the Texas High Plains Potential Evapotranspiration network were used with records of cumulative proportional adult emergence to determine the functional lower developmental temperature, optimum starting date, and the sum of degree-days for phenological events from onset to 99% adult emergence. The model base temperature, 10 degrees C (50 degrees F), corresponds closely to known physiological lower limits for development. The model uses a modified Gompertz equation, y = 96.5 x exp (-(exp(6.0 - 0.00404 x (x - 4.0), where x is cumulative heat (degree-days), to predict y, cumulative proportional emergence expressed as a percentage. The model starts degree-day accumulation on the date of corn, Zea mays L., emergence, and predictions correspond closely to corn phenological stages from tasseling to black layer development. Validation shows the model predicts cumulative proportional adult emergence within a satisfactory interval of 4.5 d. The model is flexible enough to accommodate early planting, late emergence, and the effects of drought and heat stress. The model provides corn producers ample lead time to anticipate and implement adult control practices.

  15. Novel method to predict body weight in children based on age and morphological facial features.

    PubMed

    Huang, Ziyin; Barrett, Jeffrey S; Barrett, Kyle; Barrett, Ryan; Ng, Chee M

    2015-04-01

    A new and novel approach of predicting the body weight of children based on age and morphological facial features using a three-layer feed-forward artificial neural network (ANN) model is reported. The model takes in four parameters, including age-based CDC-inferred median body weight and three facial feature distances measured from digital facial images. In this study, thirty-nine volunteer subjects with age ranging from 6-18 years old and BW ranging from 18.6-96.4 kg were used for model development and validation. The final model has a mean prediction error of 0.48, a mean squared error of 18.43, and a coefficient of correlation of 0.94. The model shows significant improvement in prediction accuracy over several age-based body weight prediction methods. Combining with a facial recognition algorithm that can detect, extract and measure the facial features used in this study, mobile applications that incorporate this body weight prediction method may be developed for clinical investigations where access to scales is limited. © 2014, The American College of Clinical Pharmacology.

  16. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    NASA Astrophysics Data System (ADS)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  17. The prediction of epidemics through mathematical modeling.

    PubMed

    Schaus, Catherine

    2014-01-01

    Mathematical models may be resorted to in an endeavor to predict the development of epidemics. The SIR model is one of the applications. Still too approximate, the use of statistics awaits more data in order to come closer to reality.

  18. A model for predicting air quality along highways.

    DOT National Transportation Integrated Search

    1973-01-01

    The subject of this report is an air quality prediction model for highways, AIRPOL Version 2, July 1973. AIRPOL has been developed by modifying the basic Gaussian approach to gaseous dispersion. The resultant model is smooth and continuous throughout...

  19. Prediction of high incidence of dengue in the Philippines.

    PubMed

    Buczak, Anna L; Baugher, Benjamin; Babin, Steven M; Ramac-Thomas, Liane C; Guven, Erhan; Elbert, Yevgeniy; Koshute, Phillip T; Velasco, John Mark S; Roque, Vito G; Tayag, Enrique A; Yoon, In-Kyu; Lewis, Sheri H

    2014-04-01

    Accurate prediction of dengue incidence levels weeks in advance of an outbreak may reduce the morbidity and mortality associated with this neglected disease. Therefore, models were developed to predict high and low dengue incidence in order to provide timely forewarnings in the Philippines. Model inputs were chosen based on studies indicating variables that may impact dengue incidence. The method first uses Fuzzy Association Rule Mining techniques to extract association rules from these historical epidemiological, environmental, and socio-economic data, as well as climate data indicating future weather patterns. Selection criteria were used to choose a subset of these rules for a classifier, thereby generating a Prediction Model. The models predicted high or low incidence of dengue in a Philippines province four weeks in advance. The threshold between high and low was determined relative to historical incidence data. Model accuracy is described by Positive Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, and Specificity computed on test data not previously used to develop the model. Selecting a model using the F0.5 measure, which gives PPV more importance than Sensitivity, gave these results: PPV = 0.780, NPV = 0.938, Sensitivity = 0.547, Specificity = 0.978. Using the F3 measure, which gives Sensitivity more importance than PPV, the selected model had PPV = 0.778, NPV = 0.948, Sensitivity = 0.627, Specificity = 0.974. The decision as to which model has greater utility depends on how the predictions will be used in a particular situation. This method builds prediction models for future dengue incidence in the Philippines and is capable of being modified for use in different situations; for diseases other than dengue; and for regions beyond the Philippines. The Philippines dengue prediction models predicted high or low incidence of dengue four weeks in advance of an outbreak with high accuracy, as measured by PPV, NPV, Sensitivity, and Specificity.

  20. Prediction of High Incidence of Dengue in the Philippines

    PubMed Central

    Buczak, Anna L.; Baugher, Benjamin; Babin, Steven M.; Ramac-Thomas, Liane C.; Guven, Erhan; Elbert, Yevgeniy; Koshute, Phillip T.; Velasco, John Mark S.; Roque, Vito G.; Tayag, Enrique A.; Yoon, In-Kyu; Lewis, Sheri H.

    2014-01-01

    Background Accurate prediction of dengue incidence levels weeks in advance of an outbreak may reduce the morbidity and mortality associated with this neglected disease. Therefore, models were developed to predict high and low dengue incidence in order to provide timely forewarnings in the Philippines. Methods Model inputs were chosen based on studies indicating variables that may impact dengue incidence. The method first uses Fuzzy Association Rule Mining techniques to extract association rules from these historical epidemiological, environmental, and socio-economic data, as well as climate data indicating future weather patterns. Selection criteria were used to choose a subset of these rules for a classifier, thereby generating a Prediction Model. The models predicted high or low incidence of dengue in a Philippines province four weeks in advance. The threshold between high and low was determined relative to historical incidence data. Principal Findings Model accuracy is described by Positive Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, and Specificity computed on test data not previously used to develop the model. Selecting a model using the F0.5 measure, which gives PPV more importance than Sensitivity, gave these results: PPV = 0.780, NPV = 0.938, Sensitivity = 0.547, Specificity = 0.978. Using the F3 measure, which gives Sensitivity more importance than PPV, the selected model had PPV = 0.778, NPV = 0.948, Sensitivity = 0.627, Specificity = 0.974. The decision as to which model has greater utility depends on how the predictions will be used in a particular situation. Conclusions This method builds prediction models for future dengue incidence in the Philippines and is capable of being modified for use in different situations; for diseases other than dengue; and for regions beyond the Philippines. The Philippines dengue prediction models predicted high or low incidence of dengue four weeks in advance of an outbreak with high accuracy, as measured by PPV, NPV, Sensitivity, and Specificity. PMID:24722434

Top