Validity of the MCAT in Predicting Performance in the First Two Years of Medical School.
ERIC Educational Resources Information Center
Jones, Robert F.; Thomae-Forgues, Maria
1984-01-01
The first systematic summary of predictive validity research on the new Medical College Admission Test (MCAT) is presented. The results show that MCAT scores have significant predictive validity with respect to first- and second-year medical school course grades. Further directions for MCAT validity research are described. (Author/MLW)
Choo, Min Soo; Jeong, Seong Jin; Cho, Sung Yong; Yoo, Changwon; Jeong, Chang Wook; Ku, Ja Hyeon; Oh, Seung-June
2017-04-01
We aimed to externally validate the prediction model we developed for having bladder outlet obstruction (BOO) and requiring prostatic surgery using 2 independent data sets from tertiary referral centers, and also aimed to validate a mobile app for using this model through usability testing. Formulas and nomograms predicting whether a subject has BOO and needs prostatic surgery were validated with an external validation cohort from Seoul National University Bundang Hospital and Seoul Metropolitan Government-Seoul National University Boramae Medical Center between January 2004 and April 2015. A smartphone-based app was developed, and 8 young urologists were enrolled for usability testing to identify any human factor issues of the app. A total of 642 patients were included in the external validation cohort. No significant differences were found in the baseline characteristics of major parameters between the original (n=1,179) and the external validation cohort, except for the maximal flow rate. Predictions of requiring prostatic surgery in the validation cohort showed a sensitivity of 80.6%, a specificity of 73.2%, a positive predictive value of 49.7%, and a negative predictive value of 92.0%, and area under receiver operating curve of 0.84. The calibration plot indicated that the predictions have good correspondence. The decision curve showed also a high net benefit. Similar evaluation results using the external validation cohort were seen in the predictions of having BOO. Overall results of the usability test demonstrated that the app was user-friendly with no major human factor issues. External validation of these newly developed a prediction model demonstrated a moderate level of discrimination, adequate calibration, and high net benefit gains for predicting both having BOO and requiring prostatic surgery. Also a smartphone app implementing the prediction model was user-friendly with no major human factor issue.
Validity and validation of expert (Q)SAR systems.
Hulzebos, E; Sijm, D; Traas, T; Posthumus, R; Maslankiewicz, L
2005-08-01
At a recent workshop in Setubal (Portugal) principles were drafted to assess the suitability of (quantitative) structure-activity relationships ((Q)SARs) for assessing the hazards and risks of chemicals. In the present study we applied some of the Setubal principles to test the validity of three (Q)SAR expert systems and validate the results. These principles include a mechanistic basis, the availability of a training set and validation. ECOSAR, BIOWIN and DEREK for Windows have a mechanistic or empirical basis. ECOSAR has a training set for each QSAR. For half of the structural fragments the number of chemicals in the training set is >4. Based on structural fragments and log Kow, ECOSAR uses linear regression to predict ecotoxicity. Validating ECOSAR for three 'valid' classes results in predictivity of > or = 64%. BIOWIN uses (non-)linear regressions to predict the probability of biodegradability based on fragments and molecular weight. It has a large training set and predicts non-ready biodegradability well. DEREK for Windows predictions are supported by a mechanistic rationale and literature references. The structural alerts in this program have been developed with a training set of positive and negative toxicity data. However, to support the prediction only a limited number of chemicals in the training set is presented to the user. DEREK for Windows predicts effects by 'if-then' reasoning. The program predicts best for mutagenicity and carcinogenicity. Each structural fragment in ECOSAR and DEREK for Windows needs to be evaluated and validated separately.
Comparison of the Incremental Validity of the Old and New MCAT.
ERIC Educational Resources Information Center
Wolf, Fredric M.; And Others
The predictive and incremental validity of both the Old and New Medical College Admission Test (MCAT) was examined and compared with a sample of over 300 medical students. Results of zero order and incremental validity coefficients, as well as prediction models resulting from all possible subsets regression analyses using Mallow's Cp criterion,…
Validation of the Economic and Health Outcomes Model of Type 2 Diabetes Mellitus (ECHO-T2DM).
Willis, Michael; Johansen, Pierre; Nilsson, Andreas; Asseburg, Christian
2017-03-01
The Economic and Health Outcomes Model of Type 2 Diabetes Mellitus (ECHO-T2DM) was developed to address study questions pertaining to the cost-effectiveness of treatment alternatives in the care of patients with type 2 diabetes mellitus (T2DM). Naturally, the usefulness of a model is determined by the accuracy of its predictions. A previous version of ECHO-T2DM was validated against actual trial outcomes and the model predictions were generally accurate. However, there have been recent upgrades to the model, which modify model predictions and necessitate an update of the validation exercises. The objectives of this study were to extend the methods available for evaluating model validity, to conduct a formal model validation of ECHO-T2DM (version 2.3.0) in accordance with the principles espoused by the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) and the Society for Medical Decision Making (SMDM), and secondarily to evaluate the relative accuracy of four sets of macrovascular risk equations included in ECHO-T2DM. We followed the ISPOR/SMDM guidelines on model validation, evaluating face validity, verification, cross-validation, and external validation. Model verification involved 297 'stress tests', in which specific model inputs were modified systematically to ascertain correct model implementation. Cross-validation consisted of a comparison between ECHO-T2DM predictions and those of the seminal National Institutes of Health model. In external validation, study characteristics were entered into ECHO-T2DM to replicate the clinical results of 12 studies (including 17 patient populations), and model predictions were compared to observed values using established statistical techniques as well as measures of average prediction error, separately for the four sets of macrovascular risk equations supported in ECHO-T2DM. Sub-group analyses were conducted for dependent vs. independent outcomes and for microvascular vs. macrovascular vs. mortality endpoints. All stress tests were passed. ECHO-T2DM replicated the National Institutes of Health cost-effectiveness application with numerically similar results. In external validation of ECHO-T2DM, model predictions agreed well with observed clinical outcomes. For all sets of macrovascular risk equations, the results were close to the intercept and slope coefficients corresponding to a perfect match, resulting in high R 2 and failure to reject concordance using an F test. The results were similar for sub-groups of dependent and independent validation, with some degree of under-prediction of macrovascular events. ECHO-T2DM continues to match health outcomes in clinical trials in T2DM, with prediction accuracy similar to other leading models of T2DM.
Ban, Jong-Wook; Emparanza, José Ignacio; Urreta, Iratxe; Burls, Amanda
2016-01-01
Background Many new clinical prediction rules are derived and validated. But the design and reporting quality of clinical prediction research has been less than optimal. We aimed to assess whether design characteristics of validation studies were associated with the overestimation of clinical prediction rules’ performance. We also aimed to evaluate whether validation studies clearly reported important methodological characteristics. Methods Electronic databases were searched for systematic reviews of clinical prediction rule studies published between 2006 and 2010. Data were extracted from the eligible validation studies included in the systematic reviews. A meta-analytic meta-epidemiological approach was used to assess the influence of design characteristics on predictive performance. From each validation study, it was assessed whether 7 design and 7 reporting characteristics were properly described. Results A total of 287 validation studies of clinical prediction rule were collected from 15 systematic reviews (31 meta-analyses). Validation studies using case-control design produced a summary diagnostic odds ratio (DOR) 2.2 times (95% CI: 1.2–4.3) larger than validation studies using cohort design and unclear design. When differential verification was used, the summary DOR was overestimated by twofold (95% CI: 1.2 -3.1) compared to complete, partial and unclear verification. The summary RDOR of validation studies with inadequate sample size was 1.9 (95% CI: 1.2 -3.1) compared to studies with adequate sample size. Study site, reliability, and clinical prediction rule was adequately described in 10.1%, 9.4%, and 7.0% of validation studies respectively. Conclusion Validation studies with design shortcomings may overestimate the performance of clinical prediction rules. The quality of reporting among studies validating clinical prediction rules needs to be improved. PMID:26730980
Navarro, Juan-José; Lara, Laura
2017-01-01
Dynamic Assessment (DA) has been shown to have more predictive value than conventional tests for academic performance. However, in relation to reading difficulties, further research is needed to determine the predictive validity of DA for specific aspects of the different processes involved in reading and the differential validity of DA for different subgroups of students with an academic disadvantage. This paper analyzes the implementation of a DA device that evaluates processes involved in reading (EDPL) among 60 students with reading comprehension difficulties between 9 and 16 years of age, of whom 20 have intellectual disabilities, 24 have reading-related learning disabilities, and 16 have socio-cultural disadvantages. We specifically analyze the predictive validity of the EDPL device over attitude toward reading, and the use of dialogue/participation strategies in reading activities in the classroom during the implementation stage. We also analyze if the EDPL device provides additional information to that obtained with a conventionally applied personal-social adjustment scale (APSL). Results showed that dynamic scores, obtained from the implementation of the EDPL device, significantly predict the studied variables. Moreover, dynamic scores showed a significant incremental validity in relation to predictions based on an APSL scale. In relation to differential validity, the results indicated the superior predictive validity for DA for students with intellectual disabilities and reading disabilities than for students with socio-cultural disadvantages. Furthermore, the role of metacognition and its relation to the processes of personal-social adjustment in explaining the results is discussed.
Navarro, Juan-José; Lara, Laura
2017-01-01
Dynamic Assessment (DA) has been shown to have more predictive value than conventional tests for academic performance. However, in relation to reading difficulties, further research is needed to determine the predictive validity of DA for specific aspects of the different processes involved in reading and the differential validity of DA for different subgroups of students with an academic disadvantage. This paper analyzes the implementation of a DA device that evaluates processes involved in reading (EDPL) among 60 students with reading comprehension difficulties between 9 and 16 years of age, of whom 20 have intellectual disabilities, 24 have reading-related learning disabilities, and 16 have socio-cultural disadvantages. We specifically analyze the predictive validity of the EDPL device over attitude toward reading, and the use of dialogue/participation strategies in reading activities in the classroom during the implementation stage. We also analyze if the EDPL device provides additional information to that obtained with a conventionally applied personal-social adjustment scale (APSL). Results showed that dynamic scores, obtained from the implementation of the EDPL device, significantly predict the studied variables. Moreover, dynamic scores showed a significant incremental validity in relation to predictions based on an APSL scale. In relation to differential validity, the results indicated the superior predictive validity for DA for students with intellectual disabilities and reading disabilities than for students with socio-cultural disadvantages. Furthermore, the role of metacognition and its relation to the processes of personal-social adjustment in explaining the results is discussed. PMID:28243215
Do Implicit Attitudes Predict Actual Voting Behavior Particularly for Undecided Voters?
Friese, Malte; Smith, Colin Tucker; Plischke, Thomas; Bluemke, Matthias; Nosek, Brian A.
2012-01-01
The prediction of voting behavior of undecided voters poses a challenge to psychologists and pollsters. Recently, researchers argued that implicit attitudes would predict voting behavior particularly for undecided voters whereas explicit attitudes would predict voting behavior particularly for decided voters. We tested this assumption in two studies in two countries with distinct political systems in the context of real political elections. Results revealed that (a) explicit attitudes predicted voting behavior better than implicit attitudes for both decided and undecided voters, and (b) implicit attitudes predicted voting behavior better for decided than undecided voters. We propose that greater elaboration of attitudes produces stronger convergence between implicit and explicit attitudes resulting in better predictive validity of both, and less incremental validity of implicit over explicit attitudes for the prediction of voting behavior. However, greater incremental predictive validity of implicit over explicit attitudes may be associated with less elaboration. PMID:22952898
Assessing the validity of sales self-efficacy: a cautionary tale.
Gupta, Nina; Ganster, Daniel C; Kepes, Sven
2013-07-01
We developed a focused, context-specific measure of sales self-efficacy and assessed its incremental validity against the broad Big 5 personality traits with department store salespersons, using (a) both a concurrent and a predictive design and (b) both objective sales measures and supervisory ratings of performance. We found that in the concurrent study, sales self-efficacy predicted objective and subjective measures of job performance more than did the Big 5 measures. Significant differences between the predictability of subjective and objective measures of performance were not observed. Predictive validity coefficients were generally lower than concurrent validity coefficients. The results suggest that there are different dynamics operating in concurrent and predictive designs and between broad and contextualized measures; they highlight the importance of distinguishing between these designs and measures in meta-analyses. The results also point to the value of focused, context-specific personality predictors in selection research. PsycINFO Database Record (c) 2013 APA, all rights reserved.
How to test validity in orthodontic research: a mixed dentition analysis example.
Donatelli, Richard E; Lee, Shin-Jae
2015-02-01
The data used to test the validity of a prediction method should be different from the data used to generate the prediction model. In this study, we explored whether an independent data set is mandatory for testing the validity of a new prediction method and how validity can be tested without independent new data. Several validation methods were compared in an example using the data from a mixed dentition analysis with a regression model. The validation errors of real mixed dentition analysis data and simulation data were analyzed for increasingly large data sets. The validation results of both the real and the simulation studies demonstrated that the leave-1-out cross-validation method had the smallest errors. The largest errors occurred in the traditional simple validation method. The differences between the validation methods diminished as the sample size increased. The leave-1-out cross-validation method seems to be an optimal validation method for improving the prediction accuracy in a data set with limited sample sizes. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
O'Connor, Peter; Nguyen, Jessica; Anglim, Jeromy
2017-01-01
In this study, we investigated the validity of the Trait Emotional Intelligence Questionnaire-Short Form (TEIQue-SF; Petrides, 2009) in the context of task-induced stress. We used a total sample of 225 volunteers to investigate (a) the incremental validity of the TEIQue-SF over other predictors of coping with task-induced stress, and (b) the construct validity of the TEIQue-SF by examining the mechanisms via which scores from the TEIQue-SF predict coping outcomes. Results demonstrated that the TEIQue-SF possessed incremental validity over the Big Five personality traits in the prediction of emotion-focused coping. Results also provided support for the construct validity of the TEIQue-SF by demonstrating that this measure predicted adaptive coping via emotion-focused channels. Specifically, results showed that, following a task stressor, the TEIQue-SF predicted low negative affect and high task performance via high levels of emotion-focused coping. Consistent with the purported theoretical nature of the trait emotional intelligence (EI) construct, trait EI as assessed by the TEIQue-SF primarily enhances affect and performance in stressful situations by regulating negative emotions.
Status and plans for the ANOPP/HSR prediction system
NASA Technical Reports Server (NTRS)
Nolan, Sandra K.
1992-01-01
ANOPP is a comprehensive prediction system which was developed and validated by NASA. Because ANOPP is a system prediction program, it allows aerospace industry researchers to create trade-off studies with a variety of aircraft noise problems. The extensive validation of ANOPP allows the program results to be used as a benchmark for testing other prediction codes.
The Kuder Occupational Interest Inventory as a Moderator of Its Predictive Validity.
ERIC Educational Resources Information Center
Hansen, Chris J.; Zytowski, Donald G.
1979-01-01
A measure of the extent to which the Kuder Occupational Interest Survey (KOIS) was predictive of occupational membership for an individual was correlated with KOIS item and scale scores. Results indicated that the KOIS was a moderator of its own predictive validity. (Author/JKS)
Shetty, N; Løvendahl, P; Lund, M S; Buitenhuis, A J
2017-01-01
The present study explored the effectiveness of Fourier transform mid-infrared (FT-IR) spectral profiles as a predictor for dry matter intake (DMI) and residual feed intake (RFI). The partial least squares regression method was used to develop the prediction models. The models were validated using different external test sets, one randomly leaving out 20% of the records (validation A), the second randomly leaving out 20% of cows (validation B), and a third (for DMI prediction models) randomly leaving out one cow (validation C). The data included 1,044 records from 140 cows; 97 were Danish Holstein and 43 Danish Jersey. Results showed better accuracies for validation A compared with other validation methods. Milk yield (MY) contributed largely to DMI prediction; MY explained 59% of the variation and the validated model error root mean square error of prediction (RMSEP) was 2.24kg. The model was improved by adding live weight (LW) as an additional predictor trait, where the accuracy R 2 increased from 0.59 to 0.72 and error RMSEP decreased from 2.24 to 1.83kg. When only the milk FT-IR spectral profile was used in DMI prediction, a lower prediction ability was obtained, with R 2 =0.30 and RMSEP=2.91kg. However, once the spectral information was added, along with MY and LW as predictors, model accuracy improved and R 2 increased to 0.81 and RMSEP decreased to 1.49kg. Prediction accuracies of RFI changed throughout lactation. The RFI prediction model for the early-lactation stage was better compared with across lactation or mid- and late-lactation stages, with R 2 =0.46 and RMSEP=1.70. The most important spectral wavenumbers that contributed to DMI and RFI prediction models included fat, protein, and lactose peaks. Comparable prediction results were obtained when using infrared-predicted fat, protein, and lactose instead of full spectra, indicating that FT-IR spectral data do not add significant new information to improve DMI and RFI prediction models. Therefore, in practice, if full FT-IR spectral data are not stored, it is possible to achieve similar DMI or RFI prediction results based on standard milk control data. For DMI, the milk fat region was responsible for the major variation in milk spectra; for RFI, the major variation in milk spectra was within the milk protein region. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Dimitrov, Borislav D; Motterlini, Nicola; Fahey, Tom
2015-01-01
Objective Estimating calibration performance of clinical prediction rules (CPRs) in systematic reviews of validation studies is not possible when predicted values are neither published nor accessible or sufficient or no individual participant or patient data are available. Our aims were to describe a simplified approach for outcomes prediction and calibration assessment and evaluate its functionality and validity. Study design and methods: Methodological study of systematic reviews of validation studies of CPRs: a) ABCD2 rule for prediction of 7 day stroke; and b) CRB-65 rule for prediction of 30 day mortality. Predicted outcomes in a sample validation study were computed by CPR distribution patterns (“derivation model”). As confirmation, a logistic regression model (with derivation study coefficients) was applied to CPR-based dummy variables in the validation study. Meta-analysis of validation studies provided pooled estimates of “predicted:observed” risk ratios (RRs), 95% confidence intervals (CIs), and indexes of heterogeneity (I2) on forest plots (fixed and random effects models), with and without adjustment of intercepts. The above approach was also applied to the CRB-65 rule. Results Our simplified method, applied to ABCD2 rule in three risk strata (low, 0–3; intermediate, 4–5; high, 6–7 points), indicated that predictions are identical to those computed by univariate, CPR-based logistic regression model. Discrimination was good (c-statistics =0.61–0.82), however, calibration in some studies was low. In such cases with miscalibration, the under-prediction (RRs =0.73–0.91, 95% CIs 0.41–1.48) could be further corrected by intercept adjustment to account for incidence differences. An improvement of both heterogeneities and P-values (Hosmer-Lemeshow goodness-of-fit test) was observed. Better calibration and improved pooled RRs (0.90–1.06), with narrower 95% CIs (0.57–1.41) were achieved. Conclusion Our results have an immediate clinical implication in situations when predicted outcomes in CPR validation studies are lacking or deficient by describing how such predictions can be obtained by everyone using the derivation study alone, without any need for highly specialized knowledge or sophisticated statistics. PMID:25931829
Development of estrogen receptor beta binding prediction model using large sets of chemicals.
Sakkiah, Sugunadevi; Selvaraj, Chandrabose; Gong, Ping; Zhang, Chaoyang; Tong, Weida; Hong, Huixiao
2017-11-03
We developed an ER β binding prediction model to facilitate identification of chemicals specifically bind ER β or ER α together with our previously developed ER α binding model. Decision Forest was used to train ER β binding prediction model based on a large set of compounds obtained from EADB. Model performance was estimated through 1000 iterations of 5-fold cross validations. Prediction confidence was analyzed using predictions from the cross validations. Informative chemical features for ER β binding were identified through analysis of the frequency data of chemical descriptors used in the models in the 5-fold cross validations. 1000 permutations were conducted to assess the chance correlation. The average accuracy of 5-fold cross validations was 93.14% with a standard deviation of 0.64%. Prediction confidence analysis indicated that the higher the prediction confidence the more accurate the predictions. Permutation testing results revealed that the prediction model is unlikely generated by chance. Eighteen informative descriptors were identified to be important to ER β binding prediction. Application of the prediction model to the data from ToxCast project yielded very high sensitivity of 90-92%. Our results demonstrated ER β binding of chemicals could be accurately predicted using the developed model. Coupling with our previously developed ER α prediction model, this model could be expected to facilitate drug development through identification of chemicals that specifically bind ER β or ER α .
Daetwyler, Hans D; Calus, Mario P L; Pong-Wong, Ricardo; de Los Campos, Gustavo; Hickey, John M
2013-02-01
The genomic prediction of phenotypes and breeding values in animals and plants has developed rapidly into its own research field. Results of genomic prediction studies are often difficult to compare because data simulation varies, real or simulated data are not fully described, and not all relevant results are reported. In addition, some new methods have been compared only in limited genetic architectures, leading to potentially misleading conclusions. In this article we review simulation procedures, discuss validation and reporting of results, and apply benchmark procedures for a variety of genomic prediction methods in simulated and real example data. Plant and animal breeding programs are being transformed by the use of genomic data, which are becoming widely available and cost-effective to predict genetic merit. A large number of genomic prediction studies have been published using both simulated and real data. The relative novelty of this area of research has made the development of scientific conventions difficult with regard to description of the real data, simulation of genomes, validation and reporting of results, and forward in time methods. In this review article we discuss the generation of simulated genotype and phenotype data, using approaches such as the coalescent and forward in time simulation. We outline ways to validate simulated data and genomic prediction results, including cross-validation. The accuracy and bias of genomic prediction are highlighted as performance indicators that should be reported. We suggest that a measure of relatedness between the reference and validation individuals be reported, as its impact on the accuracy of genomic prediction is substantial. A large number of methods were compared in example simulated and real (pine and wheat) data sets, all of which are publicly available. In our limited simulations, most methods performed similarly in traits with a large number of quantitative trait loci (QTL), whereas in traits with fewer QTL variable selection did have some advantages. In the real data sets examined here all methods had very similar accuracies. We conclude that no single method can serve as a benchmark for genomic prediction. We recommend comparing accuracy and bias of new methods to results from genomic best linear prediction and a variable selection approach (e.g., BayesB), because, together, these methods are appropriate for a range of genetic architectures. An accompanying article in this issue provides a comprehensive review of genomic prediction methods and discusses a selection of topics related to application of genomic prediction in plants and animals.
Daetwyler, Hans D.; Calus, Mario P. L.; Pong-Wong, Ricardo; de los Campos, Gustavo; Hickey, John M.
2013-01-01
The genomic prediction of phenotypes and breeding values in animals and plants has developed rapidly into its own research field. Results of genomic prediction studies are often difficult to compare because data simulation varies, real or simulated data are not fully described, and not all relevant results are reported. In addition, some new methods have been compared only in limited genetic architectures, leading to potentially misleading conclusions. In this article we review simulation procedures, discuss validation and reporting of results, and apply benchmark procedures for a variety of genomic prediction methods in simulated and real example data. Plant and animal breeding programs are being transformed by the use of genomic data, which are becoming widely available and cost-effective to predict genetic merit. A large number of genomic prediction studies have been published using both simulated and real data. The relative novelty of this area of research has made the development of scientific conventions difficult with regard to description of the real data, simulation of genomes, validation and reporting of results, and forward in time methods. In this review article we discuss the generation of simulated genotype and phenotype data, using approaches such as the coalescent and forward in time simulation. We outline ways to validate simulated data and genomic prediction results, including cross-validation. The accuracy and bias of genomic prediction are highlighted as performance indicators that should be reported. We suggest that a measure of relatedness between the reference and validation individuals be reported, as its impact on the accuracy of genomic prediction is substantial. A large number of methods were compared in example simulated and real (pine and wheat) data sets, all of which are publicly available. In our limited simulations, most methods performed similarly in traits with a large number of quantitative trait loci (QTL), whereas in traits with fewer QTL variable selection did have some advantages. In the real data sets examined here all methods had very similar accuracies. We conclude that no single method can serve as a benchmark for genomic prediction. We recommend comparing accuracy and bias of new methods to results from genomic best linear prediction and a variable selection approach (e.g., BayesB), because, together, these methods are appropriate for a range of genetic architectures. An accompanying article in this issue provides a comprehensive review of genomic prediction methods and discusses a selection of topics related to application of genomic prediction in plants and animals. PMID:23222650
Debray, Thomas P A; Vergouwe, Yvonne; Koffijberg, Hendrik; Nieboer, Daan; Steyerberg, Ewout W; Moons, Karel G M
2015-03-01
It is widely acknowledged that the performance of diagnostic and prognostic prediction models should be assessed in external validation studies with independent data from "different but related" samples as compared with that of the development sample. We developed a framework of methodological steps and statistical methods for analyzing and enhancing the interpretation of results from external validation studies of prediction models. We propose to quantify the degree of relatedness between development and validation samples on a scale ranging from reproducibility to transportability by evaluating their corresponding case-mix differences. We subsequently assess the models' performance in the validation sample and interpret the performance in view of the case-mix differences. Finally, we may adjust the model to the validation setting. We illustrate this three-step framework with a prediction model for diagnosing deep venous thrombosis using three validation samples with varying case mix. While one external validation sample merely assessed the model's reproducibility, two other samples rather assessed model transportability. The performance in all validation samples was adequate, and the model did not require extensive updating to correct for miscalibration or poor fit to the validation settings. The proposed framework enhances the interpretation of findings at external validation of prediction models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Assessing Discriminative Performance at External Validation of Clinical Prediction Models
Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W.
2016-01-01
Introduction External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. Methods We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. Results The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. Conclusion The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients. PMID:26881753
Propeller aircraft interior noise model utilization study and validation
NASA Technical Reports Server (NTRS)
Pope, L. D.
1984-01-01
Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.
Optimal test selection for prediction uncertainty reduction
Mullins, Joshua; Mahadevan, Sankaran; Urbina, Angel
2016-12-02
Economic factors and experimental limitations often lead to sparse and/or imprecise data used for the calibration and validation of computational models. This paper addresses resource allocation for calibration and validation experiments, in order to maximize their effectiveness within given resource constraints. When observation data are used for model calibration, the quality of the inferred parameter descriptions is directly affected by the quality and quantity of the data. This paper characterizes parameter uncertainty within a probabilistic framework, which enables the uncertainty to be systematically reduced with additional data. The validation assessment is also uncertain in the presence of sparse and imprecisemore » data; therefore, this paper proposes an approach for quantifying the resulting validation uncertainty. Since calibration and validation uncertainty affect the prediction of interest, the proposed framework explores the decision of cost versus importance of data in terms of the impact on the prediction uncertainty. Often, calibration and validation tests may be performed for different input scenarios, and this paper shows how the calibration and validation results from different conditions may be integrated into the prediction. Then, a constrained discrete optimization formulation that selects the number of tests of each type (calibration or validation at given input conditions) is proposed. Furthermore, the proposed test selection methodology is demonstrated on a microelectromechanical system (MEMS) example.« less
Test-Retest Reliability and Predictive Validity of the Implicit Association Test in Children
ERIC Educational Resources Information Center
Rae, James R.; Olson, Kristina R.
2018-01-01
The Implicit Association Test (IAT) is increasingly used in developmental research despite minimal evidence of whether children's IAT scores are reliable across time or predictive of behavior. When test-retest reliability and predictive validity have been assessed, the results have been mixed, and because these studies have differed on many…
Validity Evidence for Games as Assessment Environments. CRESST Report 773
ERIC Educational Resources Information Center
Delacruz, Girlie C.; Chung, Gregory K. W. K.; Baker, Eva L.
2010-01-01
This study provides empirical evidence of a highly specific use of games in education--the assessment of the learner. Linear regressions were used to examine the predictive and convergent validity of a math game as assessment of mathematical understanding. Results indicate that prior knowledge significantly predicts game performance. Results also…
Yen, Po-Yin; Sousa, Karen H; Bakken, Suzanne
2014-01-01
Background In a previous study, we developed the Health Information Technology Usability Evaluation Scale (Health-ITUES), which is designed to support customization at the item level. Such customization matches the specific tasks/expectations of a health IT system while retaining comparability at the construct level, and provides evidence of its factorial validity and internal consistency reliability through exploratory factor analysis. Objective In this study, we advanced the development of Health-ITUES to examine its construct validity and predictive validity. Methods The health IT system studied was a web-based communication system that supported nurse staffing and scheduling. Using Health-ITUES, we conducted a cross-sectional study to evaluate users’ perception toward the web-based communication system after system implementation. We examined Health-ITUES's construct validity through first and second order confirmatory factor analysis (CFA), and its predictive validity via structural equation modeling (SEM). Results The sample comprised 541 staff nurses in two healthcare organizations. The CFA (n=165) showed that a general usability factor accounted for 78.1%, 93.4%, 51.0%, and 39.9% of the explained variance in ‘Quality of Work Life’, ‘Perceived Usefulness’, ‘Perceived Ease of Use’, and ‘User Control’, respectively. The SEM (n=541) supported the predictive validity of Health-ITUES, explaining 64% of the variance in intention for system use. Conclusions The results of CFA and SEM provide additional evidence for the construct and predictive validity of Health-ITUES. The customizability of Health-ITUES has the potential to support comparisons at the construct level, while allowing variation at the item level. We also illustrate application of Health-ITUES across stages of system development. PMID:24567081
van Soest, Johan; Meldolesi, Elisa; van Stiphout, Ruud; Gatta, Roberto; Damiani, Andrea; Valentini, Vincenzo; Lambin, Philippe; Dekker, Andre
2017-09-01
Multiple models have been developed to predict pathologic complete response (pCR) in locally advanced rectal cancer patients. Unfortunately, validation of these models normally omit the implications of cohort differences on prediction model performance. In this work, we will perform a prospective validation of three pCR models, including information whether this validation will target transferability or reproducibility (cohort differences) of the given models. We applied a novel methodology, the cohort differences model, to predict whether a patient belongs to the training or to the validation cohort. If the cohort differences model performs well, it would suggest a large difference in cohort characteristics meaning we would validate the transferability of the model rather than reproducibility. We tested our method in a prospective validation of three existing models for pCR prediction in 154 patients. Our results showed a large difference between training and validation cohort for one of the three tested models [Area under the Receiver Operating Curve (AUC) cohort differences model: 0.85], signaling the validation leans towards transferability. Two out of three models had a lower AUC for validation (0.66 and 0.58), one model showed a higher AUC in the validation cohort (0.70). We have successfully applied a new methodology in the validation of three prediction models, which allows us to indicate if a validation targeted transferability (large differences between training/validation cohort) or reproducibility (small cohort differences). © 2017 American Association of Physicists in Medicine.
Validation and Inter-comparison Against Observations of GODAE Ocean View Ocean Prediction Systems
NASA Astrophysics Data System (ADS)
Xu, J.; Davidson, F. J. M.; Smith, G. C.; Lu, Y.; Hernandez, F.; Regnier, C.; Drevillon, M.; Ryan, A.; Martin, M.; Spindler, T. D.; Brassington, G. B.; Oke, P. R.
2016-02-01
For weather forecasts, validation of forecast performance is done at the end user level as well as by the meteorological forecast centers. In the development of Ocean Prediction Capacity, the same level of care for ocean forecast performance and validation is needed. Herein we present results from a validation against observations of 6 Global Ocean Forecast Systems under the GODAE OceanView International Collaboration Network. These systems include the Global Ocean Ice Forecast System (GIOPS) developed by the Government of Canada, two systems PSY3 and PSY4 from the French Mercator-Ocean Ocean Forecasting Group, the FOAM system from UK met office, HYCOM-RTOFS from NOAA/NCEP/NWA of USA, and the Australian Bluelink-OceanMAPS system from the CSIRO, the Australian Meteorological Bureau and the Australian Navy.The observation data used in the comparison are sea surface temperature, sub-surface temperature, sub-surface salinity, sea level anomaly, and sea ice total concentration data. Results of the inter-comparison demonstrate forecast performance limits, strengths and weaknesses of each of the six systems. This work establishes validation protocols and routines by which all new prediction systems developed under the CONCEPTS Collaborative Network will be benchmarked prior to approval for operations. This includes anticipated delivery of CONCEPTS regional prediction systems over the next two years including a pan Canadian 1/12th degree resolution ice ocean prediction system and limited area 1/36th degree resolution prediction systems. The validation approach of comparing forecasts to observations at the time and location of the observation is called Class 4 metrics. It has been adopted by major international ocean prediction centers, and will be recommended to JCOMM-WMO as routine validation approach for operational oceanography worldwide.
Zhao, Lue Ping; Carlsson, Annelie; Larsson, Helena Elding; Forsander, Gun; Ivarsson, Sten A; Kockum, Ingrid; Ludvigsson, Johnny; Marcus, Claude; Persson, Martina; Samuelsson, Ulf; Örtqvist, Eva; Pyo, Chul-Woo; Bolouri, Hamid; Zhao, Michael; Nelson, Wyatt C; Geraghty, Daniel E; Lernmark, Åke
2017-11-01
It is of interest to predict possible lifetime risk of type 1 diabetes (T1D) in young children for recruiting high-risk subjects into longitudinal studies of effective prevention strategies. Utilizing a case-control study in Sweden, we applied a recently developed next generation targeted sequencing technology to genotype class II genes and applied an object-oriented regression to build and validate a prediction model for T1D. In the training set, estimated risk scores were significantly different between patients and controls (P = 8.12 × 10 -92 ), and the area under the curve (AUC) from the receiver operating characteristic (ROC) analysis was 0.917. Using the validation data set, we validated the result with AUC of 0.886. Combining both training and validation data resulted in a predictive model with AUC of 0.903. Further, we performed a "biological validation" by correlating risk scores with 6 islet autoantibodies, and found that the risk score was significantly correlated with IA-2A (Z-score = 3.628, P < 0.001). When applying this prediction model to the Swedish population, where the lifetime T1D risk ranges from 0.5% to 2%, we anticipate identifying approximately 20 000 high-risk subjects after testing all newborns, and this calculation would identify approximately 80% of all patients expected to develop T1D in their lifetime. Through both empirical and biological validation, we have established a prediction model for estimating lifetime T1D risk, using class II HLA. This prediction model should prove useful for future investigations to identify high-risk subjects for prevention research in high-risk populations. Copyright © 2017 John Wiley & Sons, Ltd.
Spörrle, Matthias; Strobel, Maria; Tumasjan, Andranik
2010-11-01
This research examines the incremental validity of irrational thinking as conceptualized by Albert Ellis to predict diverse aspects of subjective well-being while controlling for the influence of personality factors. Rational-emotive behavior therapy (REBT) argues that irrational beliefs result in maladaptive emotions leading to reduced well-being. Although there is some early scientific evidence for this relation, it has never been investigated whether this connection would still persist when statistically controlling for the Big Five personality factors, which were consistently found to be important determinants of well-being. Regression analyses revealed significant incremental validity of irrationality over personality factors when predicting life satisfaction, but not when predicting subjective happiness. Results are discussed with respect to conceptual differences between these two aspects of subjective well-being.
Observations on CFD Verification and Validation from the AIAA Drag Prediction Workshops
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.; Kleb, Bil; Vassberg, John C.
2014-01-01
The authors provide observations from the AIAA Drag Prediction Workshops that have spanned over a decade and from a recent validation experiment at NASA Langley. These workshops provide an assessment of the predictive capability of forces and moments, focused on drag, for transonic transports. It is very difficult to manage the consistency of results in a workshop setting to perform verification and validation at the scientific level, but it may be sufficient to assess it at the level of practice. Observations thus far: 1) due to simplifications in the workshop test cases, wind tunnel data are not necessarily the “correct” results that CFD should match, 2) an average of core CFD data are not necessarily a better estimate of the true solution as it is merely an average of other solutions and has many coupled sources of variation, 3) outlier solutions should be investigated and understood, and 4) the DPW series does not have the systematic build up and definition on both the computational and experimental side that is required for detailed verification and validation. Several observations regarding the importance of the grid, effects of physical modeling, benefits of open forums, and guidance for validation experiments are discussed. The increased variation in results when predicting regions of flow separation and increased variation due to interaction effects, e.g., fuselage and horizontal tail, point out the need for validation data sets for these important flow phenomena. Experiences with a recent validation experiment at NASA Langley are included to provide guidance on validation experiments.
ERIC Educational Resources Information Center
Kettler, Ryan J.; Elliott, Stephen N.; Davies, Michael; Griffin, Patrick
2012-01-01
This study addresses the predictive validity of results from a screening system of academic enablers, with a sample of Australian elementary school students, when the criterion variable is end-of-year achievement. The investigation included (a) comparing the predictive validity of a brief criterion-referenced nomination system with more…
Windhausen, Vanessa S; Atlin, Gary N; Hickey, John M; Crossa, Jose; Jannink, Jean-Luc; Sorrells, Mark E; Raman, Babu; Cairns, Jill E; Tarekegne, Amsal; Semagn, Kassa; Beyene, Yoseph; Grudloyma, Pichet; Technow, Frank; Riedelsheimer, Christian; Melchinger, Albrecht E
2012-11-01
Genomic prediction is expected to considerably increase genetic gains by increasing selection intensity and accelerating the breeding cycle. In this study, marker effects estimated in 255 diverse maize (Zea mays L.) hybrids were used to predict grain yield, anthesis date, and anthesis-silking interval within the diversity panel and testcross progenies of 30 F(2)-derived lines from each of five populations. Although up to 25% of the genetic variance could be explained by cross validation within the diversity panel, the prediction of testcross performance of F(2)-derived lines using marker effects estimated in the diversity panel was on average zero. Hybrids in the diversity panel could be grouped into eight breeding populations differing in mean performance. When performance was predicted separately for each breeding population on the basis of marker effects estimated in the other populations, predictive ability was low (i.e., 0.12 for grain yield). These results suggest that prediction resulted mostly from differences in mean performance of the breeding populations and less from the relationship between the training and validation sets or linkage disequilibrium with causal variants underlying the predicted traits. Potential uses for genomic prediction in maize hybrid breeding are discussed emphasizing the need of (1) a clear definition of the breeding scenario in which genomic prediction should be applied (i.e., prediction among or within populations), (2) a detailed analysis of the population structure before performing cross validation, and (3) larger training sets with strong genetic relationship to the validation set.
A calibration hierarchy for risk models was defined: from utopia to empirical data.
Van Calster, Ben; Nieboer, Daan; Vergouwe, Yvonne; De Cock, Bavo; Pencina, Michael J; Steyerberg, Ewout W
2016-06-01
Calibrated risk models are vital for valid decision support. We define four levels of calibration and describe implications for model development and external validation of predictions. We present results based on simulated data sets. A common definition of calibration is "having an event rate of R% among patients with a predicted risk of R%," which we refer to as "moderate calibration." Weaker forms of calibration only require the average predicted risk (mean calibration) or the average prediction effects (weak calibration) to be correct. "Strong calibration" requires that the event rate equals the predicted risk for every covariate pattern. This implies that the model is fully correct for the validation setting. We argue that this is unrealistic: the model type may be incorrect, the linear predictor is only asymptotically unbiased, and all nonlinear and interaction effects should be correctly modeled. In addition, we prove that moderate calibration guarantees nonharmful decision making. Finally, results indicate that a flexible assessment of calibration in small validation data sets is problematic. Strong calibration is desirable for individualized decision support but unrealistic and counter productive by stimulating the development of overly complex models. Model development and external validation should focus on moderate calibration. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Haddad, Khaled; Rahman, Ataur; A Zaman, Mohammad; Shrestha, Surendra
2013-03-01
SummaryIn regional hydrologic regression analysis, model selection and validation are regarded as important steps. Here, the model selection is usually based on some measurements of goodness-of-fit between the model prediction and observed data. In Regional Flood Frequency Analysis (RFFA), leave-one-out (LOO) validation or a fixed percentage leave out validation (e.g., 10%) is commonly adopted to assess the predictive ability of regression-based prediction equations. This paper develops a Monte Carlo Cross Validation (MCCV) technique (which has widely been adopted in Chemometrics and Econometrics) in RFFA using Generalised Least Squares Regression (GLSR) and compares it with the most commonly adopted LOO validation approach. The study uses simulated and regional flood data from the state of New South Wales in Australia. It is found that when developing hydrologic regression models, application of the MCCV is likely to result in a more parsimonious model than the LOO. It has also been found that the MCCV can provide a more realistic estimate of a model's predictive ability when compared with the LOO.
Double Cross-Validation in Multiple Regression: A Method of Estimating the Stability of Results.
ERIC Educational Resources Information Center
Rowell, R. Kevin
In multiple regression analysis, where resulting predictive equation effectiveness is subject to shrinkage, it is especially important to evaluate result replicability. Double cross-validation is an empirical method by which an estimate of invariance or stability can be obtained from research data. A procedure for double cross-validation is…
NASA Technical Reports Server (NTRS)
Seybert, A. F.; Wu, X. F.; Oswald, Fred B.
1992-01-01
Analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise radiated from the box. The FEM was used to predict the vibration, and the surface vibration was used as input to the BEM to predict the sound intensity and sound power. Vibration predicted by the FEM model was validated by experimental modal analysis. Noise predicted by the BEM was validated by sound intensity measurements. Three types of results are presented for the total radiated sound power: (1) sound power predicted by the BEM modeling using vibration data measured on the surface of the box; (2) sound power predicted by the FEM/BEM model; and (3) sound power measured by a sound intensity scan. The sound power predicted from the BEM model using measured vibration data yields an excellent prediction of radiated noise. The sound power predicted by the combined FEM/BEM model also gives a good prediction of radiated noise except for a shift of the natural frequencies that are due to limitations in the FEM model.
NASA Astrophysics Data System (ADS)
Steger, Stefan; Brenning, Alexander; Bell, Rainer; Petschko, Helene; Glade, Thomas
2016-06-01
Empirical models are frequently applied to produce landslide susceptibility maps for large areas. Subsequent quantitative validation results are routinely used as the primary criteria to infer the validity and applicability of the final maps or to select one of several models. This study hypothesizes that such direct deductions can be misleading. The main objective was to explore discrepancies between the predictive performance of a landslide susceptibility model and the geomorphic plausibility of subsequent landslide susceptibility maps while a particular emphasis was placed on the influence of incomplete landslide inventories on modelling and validation results. The study was conducted within the Flysch Zone of Lower Austria (1,354 km2) which is known to be highly susceptible to landslides of the slide-type movement. Sixteen susceptibility models were generated by applying two statistical classifiers (logistic regression and generalized additive model) and two machine learning techniques (random forest and support vector machine) separately for two landslide inventories of differing completeness and two predictor sets. The results were validated quantitatively by estimating the area under the receiver operating characteristic curve (AUROC) with single holdout and spatial cross-validation technique. The heuristic evaluation of the geomorphic plausibility of the final results was supported by findings of an exploratory data analysis, an estimation of odds ratios and an evaluation of the spatial structure of the final maps. The results showed that maps generated by different inventories, classifiers and predictors appeared differently while holdout validation revealed similar high predictive performances. Spatial cross-validation proved useful to expose spatially varying inconsistencies of the modelling results while additionally providing evidence for slightly overfitted machine learning-based models. However, the highest predictive performances were obtained for maps that explicitly expressed geomorphically implausible relationships indicating that the predictive performance of a model might be misleading in the case a predictor systematically relates to a spatially consistent bias of the inventory. Furthermore, we observed that random forest-based maps displayed spatial artifacts. The most plausible susceptibility map of the study area showed smooth prediction surfaces while the underlying model revealed a high predictive capability and was generated with an accurate landslide inventory and predictors that did not directly describe a bias. However, none of the presented models was found to be completely unbiased. This study showed that high predictive performances cannot be equated with a high plausibility and applicability of subsequent landslide susceptibility maps. We suggest that greater emphasis should be placed on identifying confounding factors and biases in landslide inventories. A joint discussion between modelers and decision makers of the spatial pattern of the final susceptibility maps in the field might increase their acceptance and applicability.
Jin, Yinji; Jin, Taixian; Lee, Sun-Mi
Pressure injury risk assessment is the first step toward preventing pressure injuries, but traditional assessment tools are time-consuming, resulting in work overload and fatigue for nurses. The objectives of the study were to build an automated pressure injury risk assessment system (Auto-PIRAS) that can assess pressure injury risk using data, without requiring nurses to collect or input additional data, and to evaluate the validity of this assessment tool. A retrospective case-control study and a system development study were conducted in a 1,355-bed university hospital in Seoul, South Korea. A total of 1,305 pressure injury patients and 5,220 nonpressure injury patients participated for the development of a risk scoring algorithm: 687 and 2,748 for the validation of the algorithm and 237 and 994 for validation after clinical implementation, respectively. A total of 4,211 pressure injury-related clinical variables were extracted from the electronic health record (EHR) systems to develop a risk scoring algorithm, which was validated and incorporated into the EHR. That program was further evaluated for predictive and concurrent validity. Auto-PIRAS, incorporated into the EHR system, assigned a risk assessment score of high, moderate, or low and displayed this on the Kardex nursing record screen. Risk scores were updated nightly according to 10 predetermined risk factors. The predictive validity measures of the algorithm validation stage were as follows: sensitivity = .87, specificity = .90, positive predictive value = .68, negative predictive value = .97, Youden index = .77, and the area under the receiver operating characteristic curve = .95. The predictive validity measures of the Braden Scale were as follows: sensitivity = .77, specificity = .93, positive predictive value = .72, negative predictive value = .95, Youden index = .70, and the area under the receiver operating characteristic curve = .85. The kappa of the Auto-PIRAS and Braden Scale risk classification result was .73. The predictive performance of the Auto-PIRAS was similar to Braden Scale assessments conducted by nurses. Auto-PIRAS is expected to be used as a system that assesses pressure injury risk automatically without additional data collection by nurses.
Predictive value and construct validity of the work functioning screener-healthcare (WFS-H).
Boezeman, Edwin J; Nieuwenhuijsen, Karen; Sluiter, Judith K
2016-05-25
To test the predictive value and convergent construct validity of a 6-item work functioning screener (WFS-H). Healthcare workers (249 nurses) completed a questionnaire containing the work functioning screener (WFS-H) and a work functioning instrument (NWFQ) measuring the following: cognitive aspects of task execution and general incidents, avoidance behavior, conflicts and irritation with colleagues, impaired contact with patients and their family, and level of energy and motivation. Productivity and mental health were also measured. Negative and positive predictive values, AUC values, and sensitivity and specificity were calculated to examine the predictive value of the screener. Correlation analysis was used to examine the construct validity. The screener had good predictive value, since the results showed that a negative screener score is a strong indicator of work functioning not hindered by mental health problems (negative predictive values: 94%-98%; positive predictive values: 21%-36%; AUC:.64-.82; sensitivity: 42%-76%; and specificity 85%-87%). The screener has good construct validity due to moderate, but significant (p<.001), associations with productivity (r=.51), mental health (r=.48), and distress (r=.47). The screener (WFS-H) had good predictive value and good construct validity. Its score offers occupational health professionals a helpful preliminary insight into the work functioning of healthcare workers.
The Predictive Validity of the Metropolitan Readiness Tests, 1976 Edition.
ERIC Educational Resources Information Center
Nagle, Richard J.
1979-01-01
A sample of 176 first-grade children was tested on the Metropolitan Readiness Tests, 1976 Edition (MRT), during the initial month of school and was retested eight months later on the Stanford Achievement Test. Results demonstrated substantial validity of the MRT for predicting first-grade achievement. (Author/CTM)
The Predictive Validity of Dynamic Assessment: A Review
ERIC Educational Resources Information Center
Caffrey, Erin; Fuchs, Douglas; Fuchs, Lynn S.
2008-01-01
The authors report on a mixed-methods review of 24 studies that explores the predictive validity of dynamic assessment (DA). For 15 of the studies, they conducted quantitative analyses using Pearson's correlation coefficients. They descriptively examined the remaining studies to determine if their results were consistent with findings from the…
The Predictive Validity of Projective Measures.
ERIC Educational Resources Information Center
Suinn, Richard M.; Oskamp, Stuart
Written for use by clinical practitioners as well as psychological researchers, this book surveys recent literature (1950-1965) on projective test validity by reviewing and critically evaluating studies which shed light on what may reliably be predicted from projective test results. Two major instruments are covered: the Rorschach and the Thematic…
Schleier, Jerome J.; Peterson, Robert K.D.; Irvine, Kathryn M.; Marshall, Lucy M.; Weaver, David K.; Preftakes, Collin J.
2012-01-01
One of the more effective ways of managing high densities of adult mosquitoes that vector human and animal pathogens is ultra-low-volume (ULV) aerosol applications of insecticides. The U.S. Environmental Protection Agency uses models that are not validated for ULV insecticide applications and exposure assumptions to perform their human and ecological risk assessments. Currently, there is no validated model that can accurately predict deposition of insecticides applied using ULV technology for adult mosquito management. In addition, little is known about the deposition and drift of small droplets like those used under conditions encountered during ULV applications. The objective of this study was to perform field studies to measure environmental concentrations of insecticides and to develop a validated model to predict the deposition of ULV insecticides. The final regression model was selected by minimizing the Bayesian Information Criterion and its prediction performance was evaluated using k-fold cross validation. Density of the formulation and the density and CMD interaction coefficients were the largest in the model. The results showed that as density of the formulation decreases, deposition increases. The interaction of density and CMD showed that higher density formulations and larger droplets resulted in greater deposition. These results are supported by the aerosol physics literature. A k-fold cross validation demonstrated that the mean square error of the selected regression model is not biased, and the mean square error and mean square prediction error indicated good predictive ability.
Veldhuijzen van Zanten, Sophie E M; Lane, Adam; Heymans, Martijn W; Baugh, Joshua; Chaney, Brooklyn; Hoffman, Lindsey M; Doughman, Renee; Jansen, Marc H A; Sanchez, Esther; Vandertop, William P; Kaspers, Gertjan J L; van Vuurden, Dannis G; Fouladi, Maryam; Jones, Blaise V; Leach, James
2017-08-01
We aimed to perform external validation of the recently developed survival prediction model for diffuse intrinsic pontine glioma (DIPG), and discuss its utility. The DIPG survival prediction model was developed in a cohort of patients from the Netherlands, United Kingdom and Germany, registered in the SIOPE DIPG Registry, and includes age <3 years, longer symptom duration and receipt of chemotherapy as favorable predictors, and presence of ring-enhancement on MRI as unfavorable predictor. Model performance was evaluated by analyzing the discrimination and calibration abilities. External validation was performed using an unselected cohort from the International DIPG Registry, including patients from United States, Canada, Australia and New Zealand. Basic comparison with the results of the original study was performed using descriptive statistics, and univariate- and multivariable regression analyses in the validation cohort. External validation was assessed following a variety of analyses described previously. Baseline patient characteristics and results from the regression analyses were largely comparable. Kaplan-Meier curves of the validation cohort reproduced separated groups of standard (n = 39), intermediate (n = 125), and high-risk (n = 78) patients. This discriminative ability was confirmed by similar values for the hazard ratios across these risk groups. The calibration curve in the validation cohort showed a symmetric underestimation of the predicted survival probabilities. In this external validation study, we demonstrate that the DIPG survival prediction model has acceptable cross-cohort calibration and is able to discriminate patients with short, average, and increased survival. We discuss how this clinico-radiological model may serve a useful role in current clinical practice.
Examining the Predictive Validity of NIH Peer Review Scores
Lindner, Mark D.; Nakamura, Richard K.
2015-01-01
The predictive validity of peer review at the National Institutes of Health (NIH) has not yet been demonstrated empirically. It might be assumed that the most efficient and expedient test of the predictive validity of NIH peer review would be an examination of the correlation between percentile scores from peer review and bibliometric indices of the publications produced from funded projects. The present study used a large dataset to examine the rationale for such a study, to determine if it would satisfy the requirements for a test of predictive validity. The results show significant restriction of range in the applications selected for funding. Furthermore, those few applications that are funded with slightly worse peer review scores are not selected at random or representative of other applications in the same range. The funding institutes also negotiate with applicants to address issues identified during peer review. Therefore, the peer review scores assigned to the submitted applications, especially for those few funded applications with slightly worse peer review scores, do not reflect the changed and improved projects that are eventually funded. In addition, citation metrics by themselves are not valid or appropriate measures of scientific impact. The use of bibliometric indices on their own to measure scientific impact would likely increase the inefficiencies and problems with replicability already largely attributed to the current over-emphasis on bibliometric indices. Therefore, retrospective analyses of the correlation between percentile scores from peer review and bibliometric indices of the publications resulting from funded grant applications are not valid tests of the predictive validity of peer review at the NIH. PMID:26039440
Performance of genomic prediction within and across generations in maritime pine.
Bartholomé, Jérôme; Van Heerwaarden, Joost; Isik, Fikret; Boury, Christophe; Vidal, Marjorie; Plomion, Christophe; Bouffier, Laurent
2016-08-11
Genomic selection (GS) is a promising approach for decreasing breeding cycle length in forest trees. Assessment of progeny performance and of the prediction accuracy of GS models over generations is therefore a key issue. A reference population of maritime pine (Pinus pinaster) with an estimated effective inbreeding population size (status number) of 25 was first selected with simulated data. This reference population (n = 818) covered three generations (G0, G1 and G2) and was genotyped with 4436 single-nucleotide polymorphism (SNP) markers. We evaluated the effects on prediction accuracy of both the relatedness between the calibration and validation sets and validation on the basis of progeny performance. Pedigree-based (best linear unbiased prediction, ABLUP) and marker-based (genomic BLUP and Bayesian LASSO) models were used to predict breeding values for three different traits: circumference, height and stem straightness. On average, the ABLUP model outperformed genomic prediction models, with a maximum difference in prediction accuracies of 0.12, depending on the trait and the validation method. A mean difference in prediction accuracy of 0.17 was found between validation methods differing in terms of relatedness. Including the progenitors in the calibration set reduced this difference in prediction accuracy to 0.03. When only genotypes from the G0 and G1 generations were used in the calibration set and genotypes from G2 were used in the validation set (progeny validation), prediction accuracies ranged from 0.70 to 0.85. This study suggests that the training of prediction models on parental populations can predict the genetic merit of the progeny with high accuracy: an encouraging result for the implementation of GS in the maritime pine breeding program.
Windhausen, Vanessa S.; Atlin, Gary N.; Hickey, John M.; Crossa, Jose; Jannink, Jean-Luc; Sorrells, Mark E.; Raman, Babu; Cairns, Jill E.; Tarekegne, Amsal; Semagn, Kassa; Beyene, Yoseph; Grudloyma, Pichet; Technow, Frank; Riedelsheimer, Christian; Melchinger, Albrecht E.
2012-01-01
Genomic prediction is expected to considerably increase genetic gains by increasing selection intensity and accelerating the breeding cycle. In this study, marker effects estimated in 255 diverse maize (Zea mays L.) hybrids were used to predict grain yield, anthesis date, and anthesis-silking interval within the diversity panel and testcross progenies of 30 F2-derived lines from each of five populations. Although up to 25% of the genetic variance could be explained by cross validation within the diversity panel, the prediction of testcross performance of F2-derived lines using marker effects estimated in the diversity panel was on average zero. Hybrids in the diversity panel could be grouped into eight breeding populations differing in mean performance. When performance was predicted separately for each breeding population on the basis of marker effects estimated in the other populations, predictive ability was low (i.e., 0.12 for grain yield). These results suggest that prediction resulted mostly from differences in mean performance of the breeding populations and less from the relationship between the training and validation sets or linkage disequilibrium with causal variants underlying the predicted traits. Potential uses for genomic prediction in maize hybrid breeding are discussed emphasizing the need of (1) a clear definition of the breeding scenario in which genomic prediction should be applied (i.e., prediction among or within populations), (2) a detailed analysis of the population structure before performing cross validation, and (3) larger training sets with strong genetic relationship to the validation set. PMID:23173094
2012-01-01
Background The purpose of this study was to examine the internal consistency, test-retest reliability, construct validity and predictive validity of a new German self-report instrument to assess the influence of social support and the physical environment on physical activity in adolescents. Methods Based on theoretical consideration, the short scales on social support and physical environment were developed and cross-validated in two independent study samples of 9 to 17 year-old girls and boys. The longitudinal sample of Study I (n = 196) was recruited from a German comprehensive school, and subjects in this study completed the questionnaire twice with a between-test interval of seven days. Cronbach’s alphas were computed to determine the internal consistency of the factors. Test-retest reliability of the latent factors was assessed using intra-class coefficients. Factorial validity of the scales was assessed using principle components analysis. Construct validity was determined using a cross-validation technique by performing confirmatory factor analysis with the independent nationwide cross-sectional sample of Study II (n = 430). Correlations between factors and three measures of physical activity (objectively measured moderate-to-vigorous physical activity (MVPA), self-reported habitual MVPA and self-reported recent MVPA) were calculated to determine the predictive validity of the instrument. Results Construct validity of the social support scale (two factors: parental support and peer support) and the physical environment scale (four factors: convenience, public recreation facilities, safety and private sport providers) was shown. Both scales had moderate test-retest reliability. The factors of the social support scale also had good internal consistency and predictive validity. Internal consistency and predictive validity of the physical environment scale were low to acceptable. Conclusions The results of this study indicate moderate to good reliability and construct validity of the social support scale and physical environment scale. Predictive validity was only confirmed for the social support scale but not for the physical environment scale. Hence, it remains unclear if a person’s physical environment has a direct or an indirect effect on physical activity behavior or a moderation function. PMID:22928865
Austin, Peter C.; van Klaveren, David; Vergouwe, Yvonne; Nieboer, Daan; Lee, Douglas S.; Steyerberg, Ewout W.
2017-01-01
Objective Validation of clinical prediction models traditionally refers to the assessment of model performance in new patients. We studied different approaches to geographic and temporal validation in the setting of multicenter data from two time periods. Study Design and Setting We illustrated different analytic methods for validation using a sample of 14,857 patients hospitalized with heart failure at 90 hospitals in two distinct time periods. Bootstrap resampling was used to assess internal validity. Meta-analytic methods were used to assess geographic transportability. Each hospital was used once as a validation sample, with the remaining hospitals used for model derivation. Hospital-specific estimates of discrimination (c-statistic) and calibration (calibration intercepts and slopes) were pooled using random effects meta-analysis methods. I2 statistics and prediction interval width quantified geographic transportability. Temporal transportability was assessed using patients from the earlier period for model derivation and patients from the later period for model validation. Results Estimates of reproducibility, pooled hospital-specific performance, and temporal transportability were on average very similar, with c-statistics of 0.75. Between-hospital variation was moderate according to I2 statistics and prediction intervals for c-statistics. Conclusion This study illustrates how performance of prediction models can be assessed in settings with multicenter data at different time periods. PMID:27262237
Choudhry, Shahid A.; Li, Jing; Davis, Darcy; Erdmann, Cole; Sikka, Rishi; Sutariya, Bharat
2013-01-01
Introduction: Preventing the occurrence of hospital readmissions is needed to improve quality of care and foster population health across the care continuum. Hospitals are being held accountable for improving transitions of care to avert unnecessary readmissions. Advocate Health Care in Chicago and Cerner (ACC) collaborated to develop all-cause, 30-day hospital readmission risk prediction models to identify patients that need interventional resources. Ideally, prediction models should encompass several qualities: they should have high predictive ability; use reliable and clinically relevant data; use vigorous performance metrics to assess the models; be validated in populations where they are applied; and be scalable in heterogeneous populations. However, a systematic review of prediction models for hospital readmission risk determined that most performed poorly (average C-statistic of 0.66) and efforts to improve their performance are needed for widespread usage. Methods: The ACC team incorporated electronic health record data, utilized a mixed-method approach to evaluate risk factors, and externally validated their prediction models for generalizability. Inclusion and exclusion criteria were applied on the patient cohort and then split for derivation and internal validation. Stepwise logistic regression was performed to develop two predictive models: one for admission and one for discharge. The prediction models were assessed for discrimination ability, calibration, overall performance, and then externally validated. Results: The ACC Admission and Discharge Models demonstrated modest discrimination ability during derivation, internal and external validation post-recalibration (C-statistic of 0.76 and 0.78, respectively), and reasonable model fit during external validation for utility in heterogeneous populations. Conclusions: The ACC Admission and Discharge Models embody the design qualities of ideal prediction models. The ACC plans to continue its partnership to further improve and develop valuable clinical models. PMID:24224068
The Predictive Validity of Savry Ratings for Assessing Youth Offenders in Singapore
Chu, Chi Meng; Goh, Mui Leng; Chong, Dominic
2015-01-01
Empirical support for the usage of the SAVRY has been reported in studies conducted in many Western contexts, but not in a Singaporean context. This study compared the predictive validity of the SAVRY ratings for violent and general recidivism against the Youth Level of Service/Case Management Inventory (YLS/CMI) ratings within the Singaporean context. Using a sample of 165 male young offenders (Mfollow-up = 4.54 years), results showed that the SAVRY Total Score and Summary Risk Rating, as well as YLS/CMI Total Score and Overall Risk Rating, predicted violent and general recidivism. SAVRY Protective Total Score was only significantly predictive of desistance from general recidivism, and did not show incremental predictive validity for violent and general recidivism over the SAVRY Total Score. Overall, the results suggest that the SAVRY is suited (to varying degrees) for assessing the risk of violent and general recidivism in young offenders within the Singaporean context, but might not be better than the YLS/CMI. PMID:27231403
Olondo, C; Legarda, F; Herranz, M; Idoeta, R
2017-04-01
This paper shows the procedure performed to validate the migration equation and the migration parameters' values presented in a previous paper (Legarda et al., 2011) regarding the migration of 137 Cs in Spanish mainland soils. In this paper, this model validation has been carried out checking experimentally obtained activity concentration values against those predicted by the model. This experimental data come from the measured vertical activity profiles of 8 new sampling points which are located in northern Spain. Before testing predicted values of the model, the uncertainty of those values has been assessed with the appropriate uncertainty analysis. Once establishing the uncertainty of the model, both activity concentration values, experimental versus model predicted ones, have been compared. Model validation has been performed analyzing its accuracy, studying it as a whole and also at different depth intervals. As a result, this model has been validated as a tool to predict 137 Cs behaviour in a Mediterranean environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chu, Chi Meng; Ng, Kynaston; Fong, June; Teoh, Jennifer
2012-04-01
Recent research suggested that the predictive validity of adult sexual offender risk assessment measures can be affected when used cross-culturally, but there is no published study on the predictive validity of risk assessment measures for youth who sexually offended in a non-Western context. This study compared the predictive validity of three youth risk assessment measures (i.e., the Estimate of Risk of Adolescent Sexual Offense Recidivism [ERASOR], the Juvenile Sex Offender Assessment Protocol-II [J-SOAP-II], and the Youth Level of Service/Case Management Inventory [YLS/CMI]) for sexual and nonviolent recidivism in a sample of 104 male youth who sexually offended within a Singaporean context (M (follow-up) = 1,637 days; SD (follow-up) = 491). Results showed that the ERASOR overall clinical rating and total score significantly predicted sexual recidivism but only the former significantly predicted time to sexual reoffense. All of the measures (i.e., the ERASOR overall clinical rating and total score, the J-SOAP-II total score, as well as the YLS/CMI) significantly predicted nonsexual recidivism and time to nonsexual reoffense for this sample of youth who sexually offended. Overall, the results suggest that the ERASOR appears to be suited for assessing youth who sexually offended in a non-Western context, but the J-SOAP-II and the YLS/CMI have limited utility for such a purpose.
2011-01-01
Background Computerized Clinical Records, which are incorporated in primary health care practice, have great potential for research. In order to use this information, data quality and reliability must be assessed to prevent compromising the validity of the results. The aim of this study is to validate the diagnosis of hypertension and diabetes mellitus in the computerized clinical records of primary health care, taking the diagnosis criteria established in the most prominently used clinical guidelines as the gold standard against which what measure the sensitivity, specificity, and determine the predictive values. The gold standard for diabetes mellitus was the diagnostic criteria established in 2003 American Diabetes Association Consensus Statement for diabetic subjects. The gold standard for hypertension was the diagnostic criteria established in the Joint National Committee published in 2003. Methods A cross-sectional multicentre validation study of diabetes mellitus and hypertension diagnoses in computerized clinical records of primary health care was carried out. Diagnostic criteria from the most prominently clinical practice guidelines were considered for standard reference. Sensitivity, specificity, positive and negative predictive values, and global agreement (with kappa index), were calculated. Results were shown overall and stratified by sex and age groups. Results The agreement for diabetes mellitus with the reference standard as determined by the guideline was almost perfect (κ = 0.990), with a sensitivity of 99.53%, a specificity of 99.49%, a positive predictive value of 91.23% and a negative predictive value of 99.98%. Hypertension diagnosis showed substantial agreement with the reference standard as determined by the guideline (κ = 0.778), the sensitivity was 85.22%, the specificity 96.95%, the positive predictive value 85.24%, and the negative predictive value was 96.95%. Sensitivity results were worse in patients who also had diabetes and in those aged 70 years or over. Conclusions Our results substantiate the validity of using diagnoses of diabetes and hypertension found within the computerized clinical records for epidemiologic studies. PMID:22035202
NASA Technical Reports Server (NTRS)
Seybert, A. F.; Wu, T. W.; Wu, X. F.
1994-01-01
This research report is presented in three parts. In the first part, acoustical analyses were performed on modes of vibration of the housing of a transmission of a gear test rig developed by NASA. The modes of vibration of the transmission housing were measured using experimental modal analysis. The boundary element method (BEM) was used to calculate the sound pressure and sound intensity on the surface of the housing and the radiation efficiency of each mode. The radiation efficiency of each of the transmission housing modes was then compared to theoretical results for a finite baffled plate. In the second part, analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise level radiated from the box. The FEM was used to predict the vibration, while the BEM was used to predict the sound intensity and total radiated sound power using surface vibration as the input data. Vibration predicted by the FEM model was validated by experimental modal analysis; noise predicted by the BEM was validated by measurements of sound intensity. Three types of results are presented for the total radiated sound power: sound power predicted by the BEM model using vibration data measured on the surface of the box; sound power predicted by the FEM/BEM model; and sound power measured by an acoustic intensity scan. In the third part, the structure used in part two was modified. A rib was attached to the top plate of the structure. The FEM and BEM were then used to predict structural vibration and radiated noise respectively. The predicted vibration and radiated noise were then validated through experimentation.
Seidenberg, Ruth; Schuh, Sabine K.; Exadaktylos, Aristomenis K.; Schechter, Clyde B.; Leichtle, Alexander B.; Hautz, Wolf E.
2018-01-01
Objective Patients presenting with suspected urinary tract infection are common in every day emergency practice. Urine flow cytometry has replaced microscopic urine evaluation in many emergency departments, but interpretation of the results remains challenging. The aim of this study was to develop and validate tools that predict urine culture growth out of urine flow cytometry parameter. Methods This retrospective study included all adult patients that presented in a large emergency department between January and July 2017 with a suspected urinary tract infection and had a urine flow cytometry as well as a urine culture obtained. The objective was to identify urine flow cytometry parameters that reliably predict urine culture growth and mixed flora growth. The data set was split into a training (70%) and a validation set (30%) and different decision-making approaches were developed and validated. Results Relevant urine culture growth (respectively mixed flora growth) was found in 40.2% (7.2% respectively) of the 613 patients included. The number of leukocytes and bacteria in flow cytometry were highly associated with urine culture growth, but mixed flora growth could not be sufficiently predicted from the urine flow cytometry parameters. A decision tree, predictive value figures, a nomogram, and a cut-off table to predict urine culture growth from bacteria and leukocyte count were developed, validated and compared. Conclusions Urine flow cytometry parameters are insufficient to predict mixed flora growth. However, the prediction of urine culture growth based on bacteria and leukocyte count is highly accurate and the developed tools should be used as part of the decision-making process of ordering a urine culture or starting an antibiotic therapy if a urogenital infection is suspected. PMID:29474463
Chen, L; Schenkel, F; Vinsky, M; Crews, D H; Li, C
2013-10-01
In beef cattle, phenotypic data that are difficult and/or costly to measure, such as feed efficiency, and DNA marker genotypes are usually available on a small number of animals of different breeds or populations. To achieve a maximal accuracy of genomic prediction using the phenotype and genotype data, strategies for forming a training population to predict genomic breeding values (GEBV) of the selection candidates need to be evaluated. In this study, we examined the accuracy of predicting GEBV for residual feed intake (RFI) based on 522 Angus and 395 Charolais steers genotyped on SNP with the Illumina Bovine SNP50 Beadchip for 3 training population forming strategies: within breed, across breed, and by pooling data from the 2 breeds (i.e., combined). Two other scenarios with the training and validation data split by birth year and by sire family within a breed were also investigated to assess the impact of genetic relationships on the accuracy of genomic prediction. Three statistical methods including the best linear unbiased prediction with the relationship matrix defined based on the pedigree (PBLUP), based on the SNP genotypes (GBLUP), and a Bayesian method (BayesB) were used to predict the GEBV. The results showed that the accuracy of the GEBV prediction was the highest when the prediction was within breed and when the validation population had greater genetic relationships with the training population, with a maximum of 0.58 for Angus and 0.64 for Charolais. The within-breed prediction accuracies dropped to 0.29 and 0.38, respectively, when the validation populations had a minimal pedigree link with the training population. When the training population of a different breed was used to predict the GEBV of the validation population, that is, across-breed genomic prediction, the accuracies were further reduced to 0.10 to 0.22, depending on the prediction method used. Pooling data from the 2 breeds to form the training population resulted in accuracies increased to 0.31 and 0.43, respectively, for the Angus and Charolais validation populations. The results suggested that the genetic relationship of selection candidates with the training population has a greater impact on the accuracy of GEBV using the Illumina Bovine SNP50 Beadchip. Pooling data from different breeds to form the training population will improve the accuracy of across breed genomic prediction for RFI in beef cattle.
Thirty-Year Stability and Predictive Validity of Vocational Interests
ERIC Educational Resources Information Center
Rottinghaus, Patrick J.; Coon, Kristin L.; Gaffey, Abigail R.; Zytowski, Donald G.
2007-01-01
This study reports a 30-year follow-up of 107 former high school juniors and seniors from a rural Midwestern community who completed the Kuder Occupational Interest Survey (KOIS) in 1975 and 2005. Absolute, intra-individual, and test-retest stability of interests, and predictive validity of occupations were examined. Results showed minor absolute…
Assessing Discriminative Performance at External Validation of Clinical Prediction Models.
Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W
2016-01-01
External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients.
NASA Astrophysics Data System (ADS)
Engel, Dave W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David L.; Thompson, Sandra E.
2016-05-01
Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.
Melfsen, Andreas; Hartung, Eberhard; Haeussermann, Angelika
2013-02-01
The robustness of in-line raw milk analysis with near-infrared spectroscopy (NIRS) was tested with respect to the prediction of the raw milk contents fat, protein and lactose. Near-infrared (NIR) spectra of raw milk (n = 3119) were acquired on three different farms during the milking process of 354 milkings over a period of six months. Calibration models were calculated for: a random data set of each farm (fully random internal calibration); first two thirds of the visits per farm (internal calibration); whole datasets of two of the three farms (external calibration), and combinations of external and internal datasets. Validation was done either on the remaining data set per farm (internal validation) or on data of the remaining farms (external validation). Excellent calibration results were obtained when fully randomised internal calibration sets were used for milk analysis. In this case, RPD values of around ten, five and three for the prediction of fat, protein and lactose content, respectively, were achieved. Farm internal calibrations achieved much poorer prediction results especially for the prediction of protein and lactose with RPD values of around two and one respectively. The prediction accuracy improved when validation was done on spectra of an external farm, mainly due to the higher sample variation in external calibration sets in terms of feeding diets and individual cow effects. The results showed that further improvements were achieved when additional farm information was added to the calibration set. One of the main requirements towards a robust calibration model is the ability to predict milk constituents in unknown future milk samples. The robustness and quality of prediction increases with increasing variation of, e.g., feeding and cow individual milk composition in the calibration model.
Bouarfa, Loubna; Atallah, Louis; Kwasnicki, Richard Mark; Pettitt, Claire; Frost, Gary; Yang, Guang-Zhong
2014-02-01
Accurate estimation of daily total energy expenditure (EE)is a prerequisite for assisted weight management and assessing certain health conditions. The use of wearable sensors for predicting free-living EE is challenged by consistent sensor placement, user compliance, and estimation methods used. This paper examines whether a single ear-worn accelerometer can be used for EE estimation under free-living conditions.An EE prediction model as first derived and validated in a controlled setting using healthy subjects involving different physical activities. Ten different activities were assessed showing a tenfold cross validation error of 0.24. Furthermore, the EE prediction model shows a mean absolute deviation(MAD) below 1.2 metabolic equivalent of tasks. The same model was applied to a free-living setting with a different population for further validation. The results were compared against those derived from doubly labeled water. In free-living settings, the predicted daily EE has a correlation of 0.74, p 0.008, and a MAD of 272 kcal day. These results demonstrate that laboratory-derived prediction models can be used to predict EE under free-living conditions [corrected].
Bogaerts, Stefan; Spreen, Marinus; Ter Horst, Paul; Gerlsma, Coby
2018-06-01
This study has examined the predictive validity of the Historical Clinical Future [ Historisch Klinisch Toekomst] Revised risk assessment scheme in a cohort of 347 forensic psychiatric patients, which were discharged between 2004 and 2008 from any of 12 highly secure forensic centers in the Netherlands. Predictive validity was measured 2 and 5 years after release. Official reconviction data obtained from the Dutch Ministry of Security and Justice were used as outcome measures. Violent reoffending within 2 and 5 years after discharge was assessed. With regard to violent reoffending, results indicated that the predictive validity of the Historical domain was modest for 2 (area under the curve [AUC] = .75) and 5 (AUC = .74) years. The predictive validity of the Clinical domain was marginal for 2 (admission: AUC = .62; discharge: AUC = .63) and 5 (admission: AUC = .69; discharge: AUC = .62) years after release. The predictive validity of the Future domain was modest (AUC = .71) for 2 years and low for 5 (AUC = .58) years. The total score of the instrument was modest for 2 years (AUC = .78) and marginal for 5 (AUC = .68) years. Finally, the Final Risk Judgment was modest for 2 years (AUC = .78) and marginal for 5 (AUC = .63) years time at risk. It is concluded that this risk assessment instrument appears to be a satisfactory instrument for risk assessment.
Hsiao, Pei-Chi; Yu, Wan-Hui; Lee, Shih-Chieh; Chen, Mei-Hsiang; Hsieh, Ching-Lin
2018-06-14
The responsiveness and predictive validity of the Tablet-based Symbol Digit Modalities Test (T-SDMT) are unknown, which limits the utility of the T-SDMT in both clinical and research settings. The purpose of this study was to examine the responsiveness and predictive validity of the T-SDMT in inpatients with stroke. A follow-up, repeated-assessments design. One rehabilitation unit at a local medical center. A total of 50 inpatients receiving rehabilitation completed T-SDMT assessments at admission to and discharge from a rehabilitation ward. The median follow-up period was 14 days. The Barthel index (BI) was assessed at discharge and was used as the criterion of the predictive validity. The mean changes in the T-SDMT scores between admission and discharge were statistically significant (paired t-test = 3.46, p = 0.001). The T-SDMT scores showed a nearly moderate standardized response mean (0.49). A moderate association (Pearson's r = 0.47) was found between the scores of the T-SDMT at admission and those of the BI at discharge, indicating good predictive validity of the T-SDMT. Our results support the responsiveness and predictive validity of the T-SDMT in patients with stroke receiving rehabilitation in hospitals. This study provides empirical evidence supporting the use of the T-SDMT as an outcome measure for assessing processingspeed in inpatients with stroke. The scores of the T-SDMT could be used to predict basic activities of daily living function in inpatients with stroke.
Prabhu, Roshan S; Press, Robert H; Boselli, Danielle M; Miller, Katherine R; Lankford, Scott P; McCammon, Robert J; Moeller, Benjamin J; Heinzerling, John H; Fasola, Carolina E; Patel, Kirtesh R; Asher, Anthony L; Sumrall, Ashley L; Curran, Walter J; Shu, Hui-Kuo G; Burri, Stuart H
2018-03-01
Patients treated with stereotactic radiosurgery (SRS) for brain metastases (BM) are at increased risk of distant brain failure (DBF). Two nomograms have been recently published to predict individualized risk of DBF after SRS. The goal of this study was to assess the external validity of these nomograms in an independent patient cohort. The records of consecutive patients with BM treated with SRS at Levine Cancer Institute and Emory University between 2005 and 2013 were reviewed. Three validation cohorts were generated based on the specific nomogram or recursive partitioning analysis (RPA) entry criteria: Wake Forest nomogram (n = 281), Canadian nomogram (n = 282), and Canadian RPA (n = 303) validation cohorts. Freedom from DBF at 1-year in the Wake Forest study was 30% compared with 50% in the validation cohort. The validation c-index for both the 6-month and 9-month freedom from DBF Wake Forest nomograms was 0.55, indicating poor discrimination ability, and the goodness-of-fit test for both nomograms was highly significant (p < 0.001), indicating poor calibration. The 1-year actuarial DBF in the Canadian nomogram study was 43.9% compared with 50.9% in the validation cohort. The validation c-index for the Canadian 1-year DBF nomogram was 0.56, and the goodness-of-fit test was also highly significant (p < 0.001). The validation accuracy and c-index of the Canadian RPA classification was 53% and 0.61, respectively. The Wake Forest and Canadian nomograms for predicting risk of DBF after SRS were found to have limited predictive ability in an independent bi-institutional validation cohort. These results reinforce the importance of validating predictive models in independent patient cohorts.
Can species distribution models really predict the expansion of invasive species?
Barbet-Massin, Morgane; Rome, Quentin; Villemant, Claire; Courchamp, Franck
2018-01-01
Predictive studies are of paramount importance for biological invasions, one of the biggest threats for biodiversity. To help and better prioritize management strategies, species distribution models (SDMs) are often used to predict the potential invasive range of introduced species. Yet, SDMs have been regularly criticized, due to several strong limitations, such as violating the equilibrium assumption during the invasion process. Unfortunately, validation studies-with independent data-are too scarce to assess the predictive accuracy of SDMs in invasion biology. Yet, biological invasions allow to test SDMs usefulness, by retrospectively assessing whether they would have accurately predicted the latest ranges of invasion. Here, we assess the predictive accuracy of SDMs in predicting the expansion of invasive species. We used temporal occurrence data for the Asian hornet Vespa velutina nigrithorax, a species native to China that is invading Europe with a very fast rate. Specifically, we compared occurrence data from the last stage of invasion (independent validation points) to the climate suitability distribution predicted from models calibrated with data from the early stage of invasion. Despite the invasive species not being at equilibrium yet, the predicted climate suitability of validation points was high. SDMs can thus adequately predict the spread of V. v. nigrithorax, which appears to be-at least partially-climatically driven. In the case of V. v. nigrithorax, SDMs predictive accuracy was slightly but significantly better when models were calibrated with invasive data only, excluding native data. Although more validation studies for other invasion cases are needed to generalize our results, our findings are an important step towards validating the use of SDMs in invasion biology.
Can species distribution models really predict the expansion of invasive species?
Rome, Quentin; Villemant, Claire; Courchamp, Franck
2018-01-01
Predictive studies are of paramount importance for biological invasions, one of the biggest threats for biodiversity. To help and better prioritize management strategies, species distribution models (SDMs) are often used to predict the potential invasive range of introduced species. Yet, SDMs have been regularly criticized, due to several strong limitations, such as violating the equilibrium assumption during the invasion process. Unfortunately, validation studies–with independent data–are too scarce to assess the predictive accuracy of SDMs in invasion biology. Yet, biological invasions allow to test SDMs usefulness, by retrospectively assessing whether they would have accurately predicted the latest ranges of invasion. Here, we assess the predictive accuracy of SDMs in predicting the expansion of invasive species. We used temporal occurrence data for the Asian hornet Vespa velutina nigrithorax, a species native to China that is invading Europe with a very fast rate. Specifically, we compared occurrence data from the last stage of invasion (independent validation points) to the climate suitability distribution predicted from models calibrated with data from the early stage of invasion. Despite the invasive species not being at equilibrium yet, the predicted climate suitability of validation points was high. SDMs can thus adequately predict the spread of V. v. nigrithorax, which appears to be—at least partially–climatically driven. In the case of V. v. nigrithorax, SDMs predictive accuracy was slightly but significantly better when models were calibrated with invasive data only, excluding native data. Although more validation studies for other invasion cases are needed to generalize our results, our findings are an important step towards validating the use of SDMs in invasion biology. PMID:29509789
Lindskog, Marcus; Winman, Anders; Juslin, Peter; Poom, Leo
2013-01-01
Two studies investigated the reliability and predictive validity of commonly used measures and models of Approximate Number System acuity (ANS). Study 1 investigated reliability by both an empirical approach and a simulation of maximum obtainable reliability under ideal conditions. Results showed that common measures of the Weber fraction (w) are reliable only when using a substantial number of trials, even under ideal conditions. Study 2 compared different purported measures of ANS acuity as for convergent and predictive validity in a within-subjects design and evaluated an adaptive test using the ZEST algorithm. Results showed that the adaptive measure can reduce the number of trials needed to reach acceptable reliability. Only direct tests with non-symbolic numerosity discriminations of stimuli presented simultaneously were related to arithmetic fluency. This correlation remained when controlling for general cognitive ability and perceptual speed. Further, the purported indirect measure of ANS acuity in terms of the Numeric Distance Effect (NDE) was not reliable and showed no sign of predictive validity. The non-symbolic NDE for reaction time was significantly related to direct w estimates in a direction contrary to the expected. Easier stimuli were found to be more reliable, but only harder (7:8 ratio) stimuli contributed to predictive validity. PMID:23964256
ERIC Educational Resources Information Center
Evans, Carla M.
2017-01-01
This study investigates the predictive validity and policy impact of Council for Accreditation of Educator Preparation minimum admission requirements in Standard 3.2 on teacher preparation programs (TPPs), their applicants, and the broader field of educator preparation. Undergraduate grade point average (GPA) and Graduate Record Examination (GRE)…
ERIC Educational Resources Information Center
Clemens, Nathan H.; Hagan-Burke, Shanna; Luo, Wen; Cerda, Carissa; Blakely, Alane; Frosch, Jennifer; Gamez-Patience, Brenda; Jones, Meredith
2015-01-01
This study examined the predictive validity of a computer-adaptive assessment for measuring kindergarten reading skills using the STAR Early Literacy (SEL) test. The findings showed that the results of SEL assessments administered during the fall, winter, and spring of kindergarten were moderate and statistically significant predictors of year-end…
ERIC Educational Resources Information Center
McGrath, Robert E. V.; Burkhart, Barry R.
1983-01-01
Assessed whether accounting for variables in the scoring of the Social Readjustment Rating Scale (SRRS) would improve the predictive validity of the inventory. Results from 107 sets of questionnaires showed that income and level of education are significant predictors of the capacity to cope with stress. (JAC)
Mitchell, Travis D.; Urli, Kristina E.; Breitenbach, Jacques; Yelverton, Chris
2007-01-01
Abstract Objective This study aimed to evaluate the validity of the sacral base pressure test in diagnosing sacroiliac joint dysfunction. It also determined the predictive powers of the test in determining which type of sacroiliac joint dysfunction was present. Methods This was a double-blind experimental study with 62 participants. The results from the sacral base pressure test were compared against a cluster of previously validated tests of sacroiliac joint dysfunction to determine its validity and predictive powers. The external rotation of the feet, occurring during the sacral base pressure test, was measured using a digital inclinometer. Results There was no statistically significant difference in the results of the sacral base pressure test between the types of sacroiliac joint dysfunction. In terms of the results of validity, the sacral base pressure test was useful in identifying positive values of sacroiliac joint dysfunction. It was fairly helpful in correctly diagnosing patients with negative test results; however, it had only a “slight” agreement with the diagnosis for κ interpretation. Conclusions In this study, the sacral base pressure test was not a valid test for determining the presence of sacroiliac joint dysfunction or the type of dysfunction present. Further research comparing the agreement of the sacral base pressure test or other sacroiliac joint dysfunction tests with a criterion standard of diagnosis is necessary. PMID:19674694
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi
2013-12-18
This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk® Simulation Moldflow® Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS® via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predictedmore » stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.« less
Mean Flow and Noise Prediction for a Separate Flow Jet With Chevron Mixers
NASA Technical Reports Server (NTRS)
Koch, L. Danielle; Bridges, James; Khavaran, Abbas
2004-01-01
Experimental and numerical results are presented here for a separate flow nozzle employing chevrons arranged in an alternating pattern on the core nozzle. Comparisons of these results demonstrate that the combination of the WIND/MGBK suite of codes can predict the noise reduction trends measured between separate flow jets with and without chevrons on the core nozzle. Mean flow predictions were validated against Particle Image Velocimetry (PIV), pressure, and temperature data, and noise predictions were validated against acoustic measurements recorded in the NASA Glenn Aeroacoustic Propulsion Lab. Comparisons are also made to results from the CRAFT code. The work presented here is part of an on-going assessment of the WIND/MGBK suite for use in designing the next generation of quiet nozzles for turbofan engines.
Systematic review of prediction models for delirium in the older adult inpatient.
Lindroth, Heidi; Bratzke, Lisa; Purvis, Suzanne; Brown, Roger; Coburn, Mark; Mrkobrada, Marko; Chan, Matthew T V; Davis, Daniel H J; Pandharipande, Pratik; Carlsson, Cynthia M; Sanders, Robert D
2018-04-28
To identify existing prognostic delirium prediction models and evaluate their validity and statistical methodology in the older adult (≥60 years) acute hospital population. Systematic review. PubMed, CINAHL, PsychINFO, SocINFO, Cochrane, Web of Science and Embase were searched from 1 January 1990 to 31 December 2016. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses and CHARMS Statement guided protocol development. age >60 years, inpatient, developed/validated a prognostic delirium prediction model. alcohol-related delirium, sample size ≤50. The primary performance measures were calibration and discrimination statistics. Two authors independently conducted search and extracted data. The synthesis of data was done by the first author. Disagreement was resolved by the mentoring author. The initial search resulted in 7,502 studies. Following full-text review of 192 studies, 33 were excluded based on age criteria (<60 years) and 27 met the defined criteria. Twenty-three delirium prediction models were identified, 14 were externally validated and 3 were internally validated. The following populations were represented: 11 medical, 3 medical/surgical and 13 surgical. The assessment of delirium was often non-systematic, resulting in varied incidence. Fourteen models were externally validated with an area under the receiver operating curve range from 0.52 to 0.94. Limitations in design, data collection methods and model metric reporting statistics were identified. Delirium prediction models for older adults show variable and typically inadequate predictive capabilities. Our review highlights the need for development of robust models to predict delirium in older inpatients. We provide recommendations for the development of such models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
A Case Study on a Combination NDVI Forecasting Model Based on the Entropy Weight Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shengzhi; Ming, Bo; Huang, Qiang
It is critically meaningful to accurately predict NDVI (Normalized Difference Vegetation Index), which helps guide regional ecological remediation and environmental managements. In this study, a combination forecasting model (CFM) was proposed to improve the performance of NDVI predictions in the Yellow River Basin (YRB) based on three individual forecasting models, i.e., the Multiple Linear Regression (MLR), Artificial Neural Network (ANN), and Support Vector Machine (SVM) models. The entropy weight method was employed to determine the weight coefficient for each individual model depending on its predictive performance. Results showed that: (1) ANN exhibits the highest fitting capability among the four orecastingmore » models in the calibration period, whilst its generalization ability becomes weak in the validation period; MLR has a poor performance in both calibration and validation periods; the predicted results of CFM in the calibration period have the highest stability; (2) CFM generally outperforms all individual models in the validation period, and can improve the reliability and stability of predicted results through combining the strengths while reducing the weaknesses of individual models; (3) the performances of all forecasting models are better in dense vegetation areas than in sparse vegetation areas.« less
Evaluation of a Computational Model of Situational Awareness
NASA Technical Reports Server (NTRS)
Burdick, Mark D.; Shively, R. Jay; Rutkewski, Michael (Technical Monitor)
2000-01-01
Although the use of the psychological construct of situational awareness (SA) assists researchers in creating a flight environment that is safer and more predictable, its true potential remains untapped until a valid means of predicting SA a priori becomes available. Previous work proposed a computational model of SA (CSA) that sought to Fill that void. The current line of research is aimed at validating that model. The results show that the model accurately predicted SA in a piloted simulation.
The Johns Hopkins Fall Risk Assessment Tool: A Study of Reliability and Validity.
Poe, Stephanie S; Dawson, Patricia B; Cvach, Maria; Burnett, Margaret; Kumble, Sowmya; Lewis, Maureen; Thompson, Carol B; Hill, Elizabeth E
Patient falls and fall-related injury remain a safety concern. The Johns Hopkins Fall Risk Assessment Tool (JHFRAT) was developed to facilitate early detection of risk for anticipated physiologic falls in adult inpatients. Psychometric properties in acute care settings have not yet been fully established; this study sought to fill that gap. Results indicate that the JHFRAT is reliable, with high sensitivity and negative predictive validity. Specificity and positive predictive validity were lower than expected.
Hibbard, S; Tang, P C; Latko, R; Park, J H; Munn, S; Bolz, S; Somerville, A
2000-12-01
Thematic Apperception Test (Murray, 1943) responses of 69 Asian American (hereafter, Asian) and 83 White students were coded for defenses according to the Defense Mechanism Manual (Cramer, 1991b) and studied for differential validity in predicting paper-and-pencil measures of relevant constructs. Three tests for differential validity were used: (a) differences between validity coefficients, (b) interactions between predictor and ethnicity in criterion prediction, and (c) differences between groups in mean prediction errors using a common regression equation. Modest differential validity was found. It was surprising that the DMM scales were slightly stronger predictors of their criteria among Asians than among Whites and when a common predictor was used, desirable criteria were overpredicted for Asians, whereas undesirable ones were overpredicted for Whites. The results were not affected by acculturation level or English vocabulary among the Asians.
LeDell, Erin; Petersen, Maya; van der Laan, Mark
In binary classification problems, the area under the ROC curve (AUC) is commonly used to evaluate the performance of a prediction model. Often, it is combined with cross-validation in order to assess how the results will generalize to an independent data set. In order to evaluate the quality of an estimate for cross-validated AUC, we obtain an estimate of its variance. For massive data sets, the process of generating a single performance estimate can be computationally expensive. Additionally, when using a complex prediction method, the process of cross-validating a predictive model on even a relatively small data set can still require a large amount of computation time. Thus, in many practical settings, the bootstrap is a computationally intractable approach to variance estimation. As an alternative to the bootstrap, we demonstrate a computationally efficient influence curve based approach to obtaining a variance estimate for cross-validated AUC.
Petersen, Maya; van der Laan, Mark
2015-01-01
In binary classification problems, the area under the ROC curve (AUC) is commonly used to evaluate the performance of a prediction model. Often, it is combined with cross-validation in order to assess how the results will generalize to an independent data set. In order to evaluate the quality of an estimate for cross-validated AUC, we obtain an estimate of its variance. For massive data sets, the process of generating a single performance estimate can be computationally expensive. Additionally, when using a complex prediction method, the process of cross-validating a predictive model on even a relatively small data set can still require a large amount of computation time. Thus, in many practical settings, the bootstrap is a computationally intractable approach to variance estimation. As an alternative to the bootstrap, we demonstrate a computationally efficient influence curve based approach to obtaining a variance estimate for cross-validated AUC. PMID:26279737
A cross-validation package driving Netica with python
Fienen, Michael N.; Plant, Nathaniel G.
2014-01-01
Bayesian networks (BNs) are powerful tools for probabilistically simulating natural systems and emulating process models. Cross validation is a technique to avoid overfitting resulting from overly complex BNs. Overfitting reduces predictive skill. Cross-validation for BNs is known but rarely implemented due partly to a lack of software tools designed to work with available BN packages. CVNetica is open-source, written in Python, and extends the Netica software package to perform cross-validation and read, rebuild, and learn BNs from data. Insights gained from cross-validation and implications on prediction versus description are illustrated with: a data-driven oceanographic application; and a model-emulation application. These examples show that overfitting occurs when BNs become more complex than allowed by supporting data and overfitting incurs computational costs as well as causing a reduction in prediction skill. CVNetica evaluates overfitting using several complexity metrics (we used level of discretization) and its impact on performance metrics (we used skill).
NASA Astrophysics Data System (ADS)
Shi, Tiezhu; Wang, Junjie; Chen, Yiyun; Wu, Guofeng
2016-10-01
Visible and near-infrared reflectance spectroscopy provides a beneficial tool for investigating soil heavy metal contamination. This study aimed to investigate mechanisms of soil arsenic prediction using laboratory based soil and leaf spectra, compare the prediction of arsenic content using soil spectra with that using rice plant spectra, and determine whether the combination of both could improve the prediction of soil arsenic content. A total of 100 samples were collected and the reflectance spectra of soils and rice plants were measured using a FieldSpec3 portable spectroradiometer (350-2500 nm). After eliminating spectral outliers, the reflectance spectra were divided into calibration (n = 62) and validation (n = 32) data sets using the Kennard-Stone algorithm. Genetic algorithm (GA) was used to select useful spectral variables for soil arsenic prediction. Thereafter, the GA-selected spectral variables of the soil and leaf spectra were individually and jointly employed to calibrate the partial least squares regression (PLSR) models using the calibration data set. The regression models were validated and compared using independent validation data set. Furthermore, the correlation coefficients of soil arsenic against soil organic matter, leaf arsenic and leaf chlorophyll were calculated, and the important wavelengths for PLSR modeling were extracted. Results showed that arsenic prediction using the leaf spectra (coefficient of determination in validation, Rv2 = 0.54; root mean square error in validation, RMSEv = 12.99 mg kg-1; and residual prediction deviation in validation, RPDv = 1.35) was slightly better than using the soil spectra (Rv2 = 0.42, RMSEv = 13.35 mg kg-1, and RPDv = 1.31). However, results also showed that the combinational use of soil and leaf spectra resulted in higher arsenic prediction (Rv2 = 0.63, RMSEv = 11.94 mg kg-1, RPDv = 1.47) compared with either soil or leaf spectra alone. Soil spectral bands near 480, 600, 670, 810, 1980, 2050 and 2290 nm, leaf spectral bands near 700, 890 and 900 nm in PLSR models were important wavelengths for soil arsenic prediction. Moreover, soil arsenic showed significantly positive correlations with soil organic matter (r = 0.62, p < 0.01) and leaf arsenic (r = 0.77, p < 0.01), and a significantly negative correlation with leaf chlorophyll (r = -0.67, p < 0.01). The results showed that the prediction of arsenic contents using soil and leaf spectra may be based on their relationships with soil organic matter and leaf chlorophyll contents, respectively. Although RPD of 1.47 was below the recommended RPD of >2 for soil analysis, arsenic prediction in agricultural soils can be improved by combining the leaf and soil spectra.
Systematic review of the concurrent and predictive validity of MRI biomarkers in OA
Hunter, D.J.; Zhang, W.; Conaghan, Philip G.; Hirko, K.; Menashe, L.; Li, L.; Reichmann, W.M.; Losina, E.
2012-01-01
SUMMARY Objective To summarize literature on the concurrent and predictive validity of MRI-based measures of osteoarthritis (OA) structural change. Methods An online literature search was conducted of the OVID, EMBASE, CINAHL, PsychInfo and Cochrane databases of articles published up to the time of the search, April 2009. 1338 abstracts obtained with this search were preliminarily screened for relevance by two reviewers. Of these, 243 were selected for data extraction for this analysis on validity as well as separate reviews on discriminate validity and diagnostic performance. Of these 142 manuscripts included data pertinent to concurrent validity and 61 manuscripts for the predictive validity review. For this analysis we extracted data on criterion (concurrent and predictive) validity from both longitudinal and cross-sectional studies for all synovial joint tissues as it relates to MRI measurement in OA. Results Concurrent validity of MRI in OA has been examined compared to symptoms, radiography, histology/pathology, arthroscopy, CT, and alignment. The relation of bone marrow lesions, synovitis and effusion to pain was moderate to strong. There was a weak or no relation of cartilage morphology or meniscal tears to pain. The relation of cartilage morphology to radiographic OA and radiographic joint space was inconsistent. There was a higher frequency of meniscal tears, synovitis and other features in persons with radiographic OA. The relation of cartilage to other constructs including histology and arthroscopy was stronger. Predictive validity of MRI in OA has been examined for ability to predict total knee replacement (TKR), change in symptoms, radiographic progression as well as MRI progression. Quantitative cartilage volume change and presence of cartilage defects or bone marrow lesions are potential predictors of TKR. Conclusion MRI has inherent strengths and unique advantages in its ability to visualize multiple individual tissue pathologies relating to pain and also predict clinical outcome. The complex disease of OA which involves an array of tissue abnormalities is best imaged using this imaging tool. PMID:21396463
Validation of NASA Thermal Ice Protection Computer Codes. Part 1; Program Overview
NASA Technical Reports Server (NTRS)
Miller, Dean; Bond, Thomas; Sheldon, David; Wright, William; Langhals, Tammy; Al-Khalil, Kamel; Broughton, Howard
1996-01-01
The Icing Technology Branch at NASA Lewis has been involved in an effort to validate two thermal ice protection codes developed at the NASA Lewis Research Center. LEWICE/Thermal (electrothermal deicing & anti-icing), and ANTICE (hot-gas & electrothermal anti-icing). The Thermal Code Validation effort was designated as a priority during a 1994 'peer review' of the NASA Lewis Icing program, and was implemented as a cooperative effort with industry. During April 1996, the first of a series of experimental validation tests was conducted in the NASA Lewis Icing Research Tunnel(IRT). The purpose of the April 96 test was to validate the electrothermal predictive capabilities of both LEWICE/Thermal, and ANTICE. A heavily instrumented test article was designed and fabricated for this test, with the capability of simulating electrothermal de-icing and anti-icing modes of operation. Thermal measurements were then obtained over a range of test conditions, for comparison with analytical predictions. This paper will present an overview of the test, including a detailed description of: (1) the validation process; (2) test article design; (3) test matrix development; and (4) test procedures. Selected experimental results will be presented for de-icing and anti-icing modes of operation. Finally, the status of the validation effort at this point will be summarized. Detailed comparisons between analytical predictions and experimental results are contained in the following two papers: 'Validation of NASA Thermal Ice Protection Computer Codes: Part 2- The Validation of LEWICE/Thermal' and 'Validation of NASA Thermal Ice Protection Computer Codes: Part 3-The Validation of ANTICE'
Patterson, Fiona; Lievens, Filip; Kerrin, Máire; Munro, Neil; Irish, Bill
2013-01-01
Background The selection methodology for UK general practice is designed to accommodate several thousand applicants per year and targets six core attributes identified in a multi-method job-analysis study Aim To evaluate the predictive validity of selection methods for entry into postgraduate training, comprising a clinical problem-solving test, a situational judgement test, and a selection centre. Design and setting A three-part longitudinal predictive validity study of selection into training for UK general practice. Method In sample 1, participants were junior doctors applying for training in general practice (n = 6824). In sample 2, participants were GP registrars 1 year into training (n = 196). In sample 3, participants were GP registrars sitting the licensing examination after 3 years, at the end of training (n = 2292). The outcome measures include: assessor ratings of performance in a selection centre comprising job simulation exercises (sample 1); supervisor ratings of trainee job performance 1 year into training (sample 2); and licensing examination results, including an applied knowledge examination and a 12-station clinical skills objective structured clinical examination (OSCE; sample 3). Results Performance ratings at selection predicted subsequent supervisor ratings of job performance 1 year later. Selection results also significantly predicted performance on both the clinical skills OSCE and applied knowledge examination for licensing at the end of training. Conclusion In combination, these longitudinal findings provide good evidence of the predictive validity of the selection methods, and are the first reported for entry into postgraduate training. Results show that the best predictor of work performance and training outcomes is a combination of a clinical problem-solving test, a situational judgement test, and a selection centre. Implications for selection methods for all postgraduate specialties are considered. PMID:24267856
Analysis of model development strategies: predicting ventral hernia recurrence.
Holihan, Julie L; Li, Linda T; Askenasy, Erik P; Greenberg, Jacob A; Keith, Jerrod N; Martindale, Robert G; Roth, J Scott; Liang, Mike K
2016-11-01
There have been many attempts to identify variables associated with ventral hernia recurrence; however, it is unclear which statistical modeling approach results in models with greatest internal and external validity. We aim to assess the predictive accuracy of models developed using five common variable selection strategies to determine variables associated with hernia recurrence. Two multicenter ventral hernia databases were used. Database 1 was randomly split into "development" and "internal validation" cohorts. Database 2 was designated "external validation". The dependent variable for model development was hernia recurrence. Five variable selection strategies were used: (1) "clinical"-variables considered clinically relevant, (2) "selective stepwise"-all variables with a P value <0.20 were assessed in a step-backward model, (3) "liberal stepwise"-all variables were included and step-backward regression was performed, (4) "restrictive internal resampling," and (5) "liberal internal resampling." Variables were included with P < 0.05 for the Restrictive model and P < 0.10 for the Liberal model. A time-to-event analysis using Cox regression was performed using these strategies. The predictive accuracy of the developed models was tested on the internal and external validation cohorts using Harrell's C-statistic where C > 0.70 was considered "reasonable". The recurrence rate was 32.9% (n = 173/526; median/range follow-up, 20/1-58 mo) for the development cohort, 36.0% (n = 95/264, median/range follow-up 20/1-61 mo) for the internal validation cohort, and 12.7% (n = 155/1224, median/range follow-up 9/1-50 mo) for the external validation cohort. Internal validation demonstrated reasonable predictive accuracy (C-statistics = 0.772, 0.760, 0.767, 0.757, 0.763), while on external validation, predictive accuracy dipped precipitously (C-statistic = 0.561, 0.557, 0.562, 0.553, 0.560). Predictive accuracy was equally adequate on internal validation among models; however, on external validation, all five models failed to demonstrate utility. Future studies should report multiple variable selection techniques and demonstrate predictive accuracy on external data sets for model validation. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, David W.; Reichardt, Thomas A.; Kulp, Thomas J.
Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensormore » level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.« less
van der Put, Claudia E; Bouwmeester-Landweer, Merian B R; Landsmeer-Beker, Eleonore A; Wit, Jan M; Dekker, Friedo W; Kousemaker, N Pieter J; Baartman, Herman E M
2017-08-01
For preventive purposes it is important to be able to identify families with a high risk of child maltreatment at an early stage. Therefore we developed an actuarial instrument for screening families with a newborn baby, the Instrument for identification of Parents At Risk for child Abuse and Neglect (IPARAN). The aim of this study was to assess the predictive validity of the IPARAN and to examine whether combining actuarial and clinical methods leads to an improvement of the predictive validity. We examined the predictive validity by calculating several performance indicators (i.e., sensitivity, specificity and the Area Under the receiver operating characteristic Curve [AUC]) in a sample of 4692 Dutch families with newborns. The outcome measure was a report of child maltreatment at Child Protection Services during a follow-up of 3 years. For 17 children (.4%) a report of maltreatment was registered. The predictive validity of the IPARAN was significantly better than chance (AUC=.700, 95% CI [.567-.832]), in contrast to a low value for clinical judgement of nurses of the Youth Health Care Centers (AUC=.591, 95% CI [.422-.759]). The combination of the IPARAN and clinical judgement resulted in the highest predictive validity (AUC=.720, 95% CI [.593-.847]), however, the difference between the methods did not reach statistical significance. The good predictive validity of the IPARAN in combination with clinical judgment of the nurse enables professionals to assess risks at an early stage and to make referrals to early intervention programs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hunt, Hillary R; Gross, Alan M
2009-11-01
Obesity is a world-wide health concern approaching epidemic proportions. Successful long-term treatment involves a combination of bariatric surgery, diet, and exercise. Social cognitive models, such as the Theory of Reasoned Action (TRA) and the Theory of Planned Behavior (TPB), are among the most commonly tested theories utilized in the prediction of exercise. As exercise is not a completely volitional behavior, it is hypothesized that the TPB is a superior theoretical model for the prediction of exercise intentions and behavior. This study tested validity of the TPB in a sample of bariatric patients and further validated its improvement over the TRA in predicting exercise adherence at different operative stages. Results generally confirmed research hypotheses. Superiority of the TPB model was validated in this sample of bariatric patients, and Perceived Behavioral Control emerged as the single-best predictor of both exercise intentions and self-reported behavior. Finally, results suggested that both subjective norms and attitudes toward exercise played a larger role in the prediction of intention and behavior than previously reported.
NASA Astrophysics Data System (ADS)
Johnston, Michael A.; Farrell, Damien; Nielsen, Jens Erik
2012-04-01
The exchange of information between experimentalists and theoreticians is crucial to improving the predictive ability of theoretical methods and hence our understanding of the related biology. However many barriers exist which prevent the flow of information between the two disciplines. Enabling effective collaboration requires that experimentalists can easily apply computational tools to their data, share their data with theoreticians, and that both the experimental data and computational results are accessible to the wider community. We present a prototype collaborative environment for developing and validating predictive tools for protein biophysical characteristics. The environment is built on two central components; a new python-based integration module which allows theoreticians to provide and manage remote access to their programs; and PEATDB, a program for storing and sharing experimental data from protein biophysical characterisation studies. We demonstrate our approach by integrating PEATSA, a web-based service for predicting changes in protein biophysical characteristics, into PEATDB. Furthermore, we illustrate how the resulting environment aids method development using the Potapov dataset of experimentally measured ΔΔGfold values, previously employed to validate and train protein stability prediction algorithms.
Yen, Po-Yin; Sousa, Karen H; Bakken, Suzanne
2014-10-01
In a previous study, we developed the Health Information Technology Usability Evaluation Scale (Health-ITUES), which is designed to support customization at the item level. Such customization matches the specific tasks/expectations of a health IT system while retaining comparability at the construct level, and provides evidence of its factorial validity and internal consistency reliability through exploratory factor analysis. In this study, we advanced the development of Health-ITUES to examine its construct validity and predictive validity. The health IT system studied was a web-based communication system that supported nurse staffing and scheduling. Using Health-ITUES, we conducted a cross-sectional study to evaluate users' perception toward the web-based communication system after system implementation. We examined Health-ITUES's construct validity through first and second order confirmatory factor analysis (CFA), and its predictive validity via structural equation modeling (SEM). The sample comprised 541 staff nurses in two healthcare organizations. The CFA (n=165) showed that a general usability factor accounted for 78.1%, 93.4%, 51.0%, and 39.9% of the explained variance in 'Quality of Work Life', 'Perceived Usefulness', 'Perceived Ease of Use', and 'User Control', respectively. The SEM (n=541) supported the predictive validity of Health-ITUES, explaining 64% of the variance in intention for system use. The results of CFA and SEM provide additional evidence for the construct and predictive validity of Health-ITUES. The customizability of Health-ITUES has the potential to support comparisons at the construct level, while allowing variation at the item level. We also illustrate application of Health-ITUES across stages of system development. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Gygi, Jasmin T.; Hagmann-von Arx, Priska; Schweizer, Florine; Grob, Alexander
2017-01-01
Intelligence is considered the strongest single predictor of scholastic achievement. However, little is known regarding the predictive validity of well-established intelligence tests for school grades. We analyzed the predictive validity of four widely used intelligence tests in German-speaking countries: The Intelligence and Development Scales (IDS), the Reynolds Intellectual Assessment Scales (RIAS), the Snijders-Oomen Nonverbal Intelligence Test (SON-R 6-40), and the Wechsler Intelligence Scale for Children (WISC-IV), which were individually administered to 103 children (Mage = 9.17 years) enrolled in regular school. School grades were collected longitudinally after 3 years (averaged school grades, mathematics, and language) and were available for 54 children (Mage = 11.77 years). All four tests significantly predicted averaged school grades. Furthermore, the IDS and the RIAS predicted both mathematics and language, while the SON-R 6-40 predicted mathematics. The WISC-IV showed no significant association with longitudinal scholastic achievement when mathematics and language were analyzed separately. The results revealed the predictive validity of currently used intelligence tests for longitudinal scholastic achievement in German-speaking countries and support their use in psychological practice, in particular for predicting averaged school grades. However, this conclusion has to be considered as preliminary due to the small sample of children observed. PMID:28348543
Hamadache, Mabrouk; Benkortbi, Othmane; Hanini, Salah; Amrane, Abdeltif; Khaouane, Latifa; Si Moussa, Cherif
2016-02-13
Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides. Copyright © 2015 Elsevier B.V. All rights reserved.
Gupta, Meenal; Moily, Nagaraj S; Kaur, Harpreet; Jajodia, Ajay; Jain, Sanjeev; Kukreti, Ritushree
2013-08-01
Atypical antipsychotic (AAP) drugs are the preferred choice of treatment for schizophrenia patients. Patients who do not show favorable response to AAP monotherapy are subjected to random prolonged therapeutic treatment with AAP multitherapy, typical antipsychotics or a combination of both. Therefore, prior identification of patients' response to drugs can be an important step in providing efficacious and safe therapeutic treatment. We thus attempted to elucidate a genetic signature which could predict patients' response to AAP monotherapy. Our logistic regression analyses indicated the probability that 76% patients carrying combination of four SNPs will not show favorable response to AAP therapy. The robustness of this prediction model was assessed using repeated 10-fold cross validation method, and the results across n-fold cross-validations (mean accuracy=71.91%; 95%CI=71.47-72.35) suggest high accuracy and reliability of the prediction model. Further validations of these results in large sample sets are likely to establish their clinical applicability. Copyright © 2013 Elsevier Inc. All rights reserved.
Impact of External Cue Validity on Driving Performance in Parkinson's Disease
Scally, Karen; Charlton, Judith L.; Iansek, Robert; Bradshaw, John L.; Moss, Simon; Georgiou-Karistianis, Nellie
2011-01-01
This study sought to investigate the impact of external cue validity on simulated driving performance in 19 Parkinson's disease (PD) patients and 19 healthy age-matched controls. Braking points and distance between deceleration point and braking point were analysed for red traffic signals preceded either by Valid Cues (correctly predicting signal), Invalid Cues (incorrectly predicting signal), and No Cues. Results showed that PD drivers braked significantly later and travelled significantly further between deceleration and braking points compared with controls for Invalid and No-Cue conditions. No significant group differences were observed for driving performance in response to Valid Cues. The benefit of Valid Cues relative to Invalid Cues and No Cues was significantly greater for PD drivers compared with controls. Trail Making Test (B-A) scores correlated with driving performance for PDs only. These results highlight the importance of external cues and higher cognitive functioning for driving performance in mild to moderate PD. PMID:21789275
Project Evaluation: Validation of a Scale and Analysis of Its Predictive Capacity
ERIC Educational Resources Information Center
Fernandes Malaquias, Rodrigo; de Oliveira Malaquias, Fernanda Francielle
2014-01-01
The objective of this study was to validate a scale for assessment of academic projects. As a complement, we examined its predictive ability by comparing the scores of advised/corrected projects based on the model and the final scores awarded to the work by an examining panel (approximately 10 months after the project design). Results of…
Aeroacoustic Validation of Installed Low Noise Propulsion for NASA's N+2 Supersonic Airliner
NASA Technical Reports Server (NTRS)
Bridges, James
2018-01-01
An aeroacoustic test was conducted at NASA Glenn Research Center on an integrated propulsion system designed to meet noise regulations of ICAO Chapter 4 with 10EPNdB cumulative margin. The test had two objectives: to demonstrate that the aircraft design did meet the noise goal, and to validate the acoustic design tools used in the design. Variations in the propulsion system design and its installation were tested and the results compared against predictions. Far-field arrays of microphones measured the acoustic spectral directivity, which was transformed to full scale as noise certification levels. Phased array measurements confirmed that the shielding of the installation model adequately simulated the full aircraft and provided data for validating RANS-based noise prediction tools. Particle image velocimetry confirmed that the flow field around the nozzle on the jet rig mimicked that of the full aircraft and produced flow data to validate the RANS solutions used in the noise predictions. The far-field acoustic measurements confirmed the empirical predictions for the noise. Results provided here detail the steps taken to ensure accuracy of the measurements and give insights into the physics of exhaust noise from installed propulsion systems in future supersonic vehicles.
Validation of Groundwater Models: Meaningful or Meaningless?
NASA Astrophysics Data System (ADS)
Konikow, L. F.
2003-12-01
Although numerical simulation models are valuable tools for analyzing groundwater systems, their predictive accuracy is limited. People who apply groundwater flow or solute-transport models, as well as those who make decisions based on model results, naturally want assurance that a model is "valid." To many people, model validation implies some authentication of the truth or accuracy of the model. History matching is often presented as the basis for model validation. Although such model calibration is a necessary modeling step, it is simply insufficient for model validation. Because of parameter uncertainty and solution non-uniqueness, declarations of validation (or verification) of a model are not meaningful. Post-audits represent a useful means to assess the predictive accuracy of a site-specific model, but they require the existence of long-term monitoring data. Model testing may yield invalidation, but that is an opportunity to learn and to improve the conceptual and numerical models. Examples of post-audits and of the application of a solute-transport model to a radioactive waste disposal site illustrate deficiencies in model calibration, prediction, and validation.
Bridges, Mindy Sittner; Catts, Hugh W.
2013-01-01
This study examined the usefulness and predictive validity of a dynamic screening of phonological awareness in two samples of kindergarten children. In one sample (n = 90), the predictive validity of the dynamic assessment was compared to a static version of the same screening measure. In the second sample (n = 96), the dynamic screening measure was compared to a commonly used screening tool, Dynamic Indicators of Basic Early Literacy Skills Initial Sound Fluency. Results showed that the dynamic screening measure uniquely predicted end-of-year reading achievement and outcomes in both samples. These results provide preliminary support for the usefulness of a dynamic screening measure of phonological awareness for kindergarten students. PMID:21571700
The predictive validity of the BioMedical Admissions Test for pre-clinical examination performance.
Emery, Joanne L; Bell, John F
2009-06-01
Some medical courses in the UK have many more applicants than places and almost all applicants have the highest possible previous and predicted examination grades. The BioMedical Admissions Test (BMAT) was designed to assist in the student selection process specifically for a number of 'traditional' medical courses with clear pre-clinical and clinical phases and a strong focus on science teaching in the early years. It is intended to supplement the information provided by examination results, interviews and personal statements. This paper reports on the predictive validity of the BMAT and its predecessor, the Medical and Veterinary Admissions Test. Results from the earliest 4 years of the test (2000-2003) were matched to the pre-clinical examination results of those accepted onto the medical course at the University of Cambridge. Correlation and logistic regression analyses were performed for each cohort. Section 2 of the test ('Scientific Knowledge') correlated more strongly with examination marks than did Section 1 ('Aptitude and Skills'). It also had a stronger relationship with the probability of achieving the highest examination class. The BMAT and its predecessor demonstrate predictive validity for the pre-clinical years of the medical course at the University of Cambridge. The test identifies important differences in skills and knowledge between candidates, not shown by their previous attainment, which predict their examination performance. It is thus a valid source of additional admissions information for medical courses with a strong scientific emphasis when previous attainment is very high.
Independent data validation of an in vitro method for ...
In vitro bioaccessibility assays (IVBA) estimate arsenic (As) relative bioavailability (RBA) in contaminated soils to improve the accuracy of site-specific human exposure assessments and risk calculations. For an IVBA assay to gain acceptance for use in risk assessment, it must be shown to reliably predict in vivo RBA that is determined in an established animal model. Previous studies correlating soil As IVBA with RBA have been limited by the use of few soil types as the source of As. Furthermore, the predictive value of As IVBA assays has not been validated using an independent set of As-contaminated soils. Therefore, the current study was undertaken to develop a robust linear model to predict As RBA in mice using an IVBA assay and to independently validate the predictive capability of this assay using a unique set of As-contaminated soils. Thirty-six As-contaminated soils varying in soil type, As contaminant source, and As concentration were included in this study, with 27 soils used for initial model development and nine soils used for independent model validation. The initial model reliably predicted As RBA values in the independent data set, with a mean As RBA prediction error of 5.3% (range 2.4 to 8.4%). Following validation, all 36 soils were used for final model development, resulting in a linear model with the equation: RBA = 0.59 * IVBA + 9.8 and R2 of 0.78. The in vivo-in vitro correlation and independent data validation presented here provide
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Callaghan, Michael E., E-mail: elspeth.raymond@health.sa.gov.au; Freemasons Foundation Centre for Men's Health, University of Adelaide; Urology Unit, Repatriation General Hospital, SA Health, Flinders Centre for Innovation in Cancer
Purpose: To identify, through a systematic review, all validated tools used for the prediction of patient-reported outcome measures (PROMs) in patients being treated with radiation therapy for prostate cancer, and provide a comparative summary of accuracy and generalizability. Methods and Materials: PubMed and EMBASE were searched from July 2007. Title/abstract screening, full text review, and critical appraisal were undertaken by 2 reviewers, whereas data extraction was performed by a single reviewer. Eligible articles had to provide a summary measure of accuracy and undertake internal or external validation. Tools were recommended for clinical implementation if they had been externally validated and foundmore » to have accuracy ≥70%. Results: The search strategy identified 3839 potential studies, of which 236 progressed to full text review and 22 were included. From these studies, 50 tools predicted gastrointestinal/rectal symptoms, 29 tools predicted genitourinary symptoms, 4 tools predicted erectile dysfunction, and no tools predicted quality of life. For patients treated with external beam radiation therapy, 3 tools could be recommended for the prediction of rectal toxicity, gastrointestinal toxicity, and erectile dysfunction. For patients treated with brachytherapy, 2 tools could be recommended for the prediction of urinary retention and erectile dysfunction. Conclusions: A large number of tools for the prediction of PROMs in prostate cancer patients treated with radiation therapy have been developed. Only a small minority are accurate and have been shown to be generalizable through external validation. This review provides an accessible catalogue of tools that are ready for clinical implementation as well as which should be prioritized for validation.« less
Symbolic control of visual attention: semantic constraints on the spatial distribution of attention.
Gibson, Bradley S; Scheutz, Matthias; Davis, Gregory J
2009-02-01
Humans routinely use spatial language to control the spatial distribution of attention. In so doing, spatial information may be communicated from one individual to another across opposing frames of reference, which in turn can lead to inconsistent mappings between symbols and directions (or locations). These inconsistencies may have important implications for the symbolic control of attention because they can be translated into differences in cue validity, a manipulation that is known to influence the focus of attention. This differential validity hypothesis was tested in Experiment 1 by comparing spatial word cues that were predicted to have high learned spatial validity ("above/below") and low learned spatial validity ("left/right"). Consistent with this prediction, when two measures of selective attention were used, the results indicated that attention was less focused in response to "left/right" cues than in response to "above/below" cues, even when the actual validity of each of the cues was equal. In addition, Experiment 2 predicted that spatial words such as "left/right" would have lower spatial validity than would other directional symbols that specify direction along the horizontal axis, such as "<--/-->" cues. The results were also consistent with this hypothesis. Altogether, the present findings demonstrate important semantic-based constraints on the spatial distribution of attention.
Neurocognition and community outcome in schizophrenia: long-term predictive validity.
Fujii, Daryl E; Wylie, A Michael
2003-02-01
The present study examined the predictive validity of neuropsychological measures to functional outcome in 26 schizophrenic patients 15-plus year post-testing. Outcome measures included score on the Resource Associated Functional Level Scale (RAFLS), number of state hospital admissions, and total duration of state hospital inpatient stay. Results of several stepwise multiple regressions revealed that verbal memory significantly predicted RAFLS score, accounting for nearly half of the variance. Trails B significantly predicted duration of state hospital inpatient status. Discussion focused on the utility of these measures for clinicians and system planners. Copyright 2002 Elsevier Science B.V.
Validation of a dye stain assay for vaginally inserted HEC-filled microbicide applicators
Katzen, Lauren L.; Fernández-Romero, José A.; Sarna, Avina; Murugavel, Kailapuri G.; Gawarecki, Daniel; Zydowsky, Thomas M.; Mensch, Barbara S.
2011-01-01
Background The reliability and validity of self-reports of vaginal microbicide use are questionable given the explicit understanding that participants are expected to comply with study protocols. Our objective was to optimize the Population Council's previously validated dye stain assay (DSA) and related procedures, and establish predictive values for the DSA's ability to identify vaginally inserted single-use, low-density polyethylene microbicide applicators filled with hydroxyethylcellulose gel. Methods Applicators, inserted by 252 female sex workers enrolled in a microbicide feasibility study in Southern India, served as positive controls for optimization and validation experiments. Prior to validation, optimal dye concentration and staining time were ascertained. Three validation experiments were conducted to determine sensitivity, specificity, negative predictive values and positive predictive values. Results The dye concentration of 0.05% (w/v) FD&C Blue No. 1 Granular Food Dye and staining time of five seconds were determined to be optimal and were used for the three validation experiments. There were a total of 1,848 possible applicator readings across validation experiments; 1,703 (92.2%) applicator readings were correct. On average, the DSA performed with 90.6% sensitivity, 93.9% specificity, and had a negative predictive value of 93.8% and a positive predictive value of 91.0%. No statistically significant differences between experiments were noted. Conclusions The DSA was optimized and successfully validated for use with single-use, low-density polyethylene applicators filled with hydroxyethylcellulose (HEC) gel. We recommend including the DSA in future microbicide trials involving vaginal gels in order to identify participants who have low adherence to dosing regimens. In doing so, we can develop strategies to improve adherence as well as investigate the association between product use and efficacy. PMID:21992983
Lee, Jason; Morishima, Toshitaka; Kunisawa, Susumu; Sasaki, Noriko; Otsubo, Tetsuya; Ikai, Hiroshi; Imanaka, Yuichi
2013-01-01
Stroke and other cerebrovascular diseases are a major cause of death and disability. Predicting in-hospital mortality in ischaemic stroke patients can help to identify high-risk patients and guide treatment approaches. Chart reviews provide important clinical information for mortality prediction, but are laborious and limiting in sample sizes. Administrative data allow for large-scale multi-institutional analyses but lack the necessary clinical information for outcome research. However, administrative claims data in Japan has seen the recent inclusion of patient consciousness and disability information, which may allow more accurate mortality prediction using administrative data alone. The aim of this study was to derive and validate models to predict in-hospital mortality in patients admitted for ischaemic stroke using administrative data. The sample consisted of 21,445 patients from 176 Japanese hospitals, who were randomly divided into derivation and validation subgroups. Multivariable logistic regression models were developed using 7- and 30-day and overall in-hospital mortality as dependent variables. Independent variables included patient age, sex, comorbidities upon admission, Japan Coma Scale (JCS) score, Barthel Index score, modified Rankin Scale (mRS) score, and admissions after hours and on weekends/public holidays. Models were developed in the derivation subgroup, and coefficients from these models were applied to the validation subgroup. Predictive ability was analysed using C-statistics; calibration was evaluated with Hosmer-Lemeshow χ(2) tests. All three models showed predictive abilities similar or surpassing that of chart review-based models. The C-statistics were highest in the 7-day in-hospital mortality prediction model, at 0.906 and 0.901 in the derivation and validation subgroups, respectively. For the 30-day in-hospital mortality prediction models, the C-statistics for the derivation and validation subgroups were 0.893 and 0.872, respectively; in overall in-hospital mortality prediction these values were 0.883 and 0.876. In this study, we have derived and validated in-hospital mortality prediction models for three different time spans using a large population of ischaemic stroke patients in a multi-institutional analysis. The recent inclusion of JCS, Barthel Index, and mRS scores in Japanese administrative data has allowed the prediction of in-hospital mortality with accuracy comparable to that of chart review analyses. The models developed using administrative data had consistently high predictive abilities for all models in both the derivation and validation subgroups. These results have implications in the role of administrative data in future mortality prediction analyses. Copyright © 2013 S. Karger AG, Basel.
Corron, Louise; Marchal, François; Condemi, Silvana; Chaumoître, Kathia; Adalian, Pascal
2017-01-01
Juvenile age estimation methods used in forensic anthropology generally lack methodological consistency and/or statistical validity. Considering this, a standard approach using nonparametric Multivariate Adaptive Regression Splines (MARS) models were tested to predict age from iliac biometric variables of male and female juveniles from Marseilles, France, aged 0-12 years. Models using unidimensional (length and width) and bidimensional iliac data (module and surface) were constructed on a training sample of 176 individuals and validated on an independent test sample of 68 individuals. Results show that MARS prediction models using iliac width, module and area give overall better and statistically valid age estimates. These models integrate punctual nonlinearities of the relationship between age and osteometric variables. By constructing valid prediction intervals whose size increases with age, MARS models take into account the normal increase of individual variability. MARS models can qualify as a practical and standardized approach for juvenile age estimation. © 2016 American Academy of Forensic Sciences.
Validation of behave fire behavior predictions in oak savannas
Grabner, Keith W.; Dwyer, John; Cutter, Bruce E.
1997-01-01
Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (short grass), Fuel Model 2 (timber and grass), Fuel Model 3 (tall grass), and Fuel Model 9 (hardwood litter). Also, a customized oak savanna fuel model (COSFM) was created and validated. Results indicate that standardized fuel model 2 and the COSFM reliably estimate mean rate-of-spread (MROS). The COSFM did not appreciably reduce MROS variation when compared to fuel model 2. Fuel models 1, 3, and 9 did not reliably predict MROS. Neither the standardized fuel models nor the COSFM adequately predicted flame lengths. We concluded that standardized fuel model 2 should be used with BEHAVE when predicting fire rates-of-spread in established oak savannas.
Testing Pearl Model In Three European Sites
NASA Astrophysics Data System (ADS)
Bouraoui, F.; Bidoglio, G.
The Plant Protection Product Directive (91/414/EEC) stresses the need of validated models to calculate predicted environmental concentrations. The use of models has become an unavoidable step before pesticide registration. In this context, European Commission, and in particular DGVI, set up a FOrum for the Co-ordination of pes- ticide fate models and their USe (FOCUS). In a complementary effort, DG research supported the APECOP project, with one of its objective being the validation and im- provement of existing pesticide fate models. The main topic of research presented here is the validation of the PEARL model for different sites in Europe. The PEARL model, actually used in the Dutch pesticide registration procedure, was validated in three well- instrumented sites: Vredepeel (the Netherlands), Brimstone (UK), and Lanna (Swe- den). A step-wise procedure was used for the validation of the PEARL model. First the water transport module was calibrated, and then the solute transport module, using tracer measurements keeping unchanged the water transport parameters. The Vrede- peel site is characterised by a sandy soil. Fourteen months of measurements were used for the calibration. Two pesticides were applied on the site: bentazone and etho- prophos. PEARL predictions were very satisfactory for both soil moisture content, and pesticide concentration in the soil profile. The Brimstone site is characterised by a cracking clay soil. The calibration was conducted on a time series measurement of 7 years. The validation consisted in comparing predictions and measurement of soil moisture at different soil depths, and in comparing the predicted and measured con- centration of isoproturon in the drainage water. The results, even if in good agreement with the measuremens, highlighted the limitation of the model when the preferential flow becomes a dominant process. PEARL did not reproduce well soil moisture pro- file during summer months, and also under-predicted the arrival of isoproturon to the drains. The Lanna site is characterised by s structured clay soil. PEARL was success- ful in predicting soil moisture profiles and the draining water. PEARL performed well in predicting the soil concentration of bentazone at different depth. However, since PEARL does not consider cracks in the soil, it did not predict well the peak concen- trations of bentazone in the drainage water. Along with the validation results for the three sites, a sensitivity analysis of the model is presented.
Gonnella, Joseph S; Erdmann, James B; Hojat, Mohammadreza
2004-04-01
Context It is important to establish the predictive validity of medical school grades. The strength of predictive validity and the ability to identify at-risk students in medical schools depends upon assessment systems such as number grades, pass/fail (P/F) or honours/pass/fail (H/P/F) systems. Objective This study was designed to examine the predictive validity of number grades in medical school, and to determine whether any important information is lost in a shift from number to P/F and H/P/F grading systems. Subjects The participants in this prospective, longitudinal study were 6656 medical students who studied at Jefferson Medical College over 3 decades. They were grouped into 10 deciles based on their number grades in Year 1 of medical school. Methods Participants were compared on academic accomplishments in Years 2 and 3 of medical school, medical school class rank, delayed graduation and attrition, performance on medical licensing examinations and clinical competence ratings in the first postgraduate year. Results Results supported the short- and longterm predictive validity of the number grades. Ratings of clinical competence beyond medical school were predicted by number grades in medical school. We demonstrated that small differences in number grades are statistically meaningful, and that important information for identifying students in need of remedial education is lost when students who narrowly meet faculty's expectations are included with the rest of the class in a broad 'pass' category. Conclusions The findings refute the argument that knowledge of sciences basic to medicine is not critical to subsequent performance in medical school and beyond if an appropriate evaluation system is used. Furthermore, the results of this study raise questions about abandoning number grades in favour of a pass/fail system. Consideration of these findings in policy decisions regarding assessment systems of medical students is recommended.
Sabel, Michael S.; Rice, John D.; Griffith, Kent A.; Lowe, Lori; Wong, Sandra L.; Chang, Alfred E.; Johnson, Timothy M.; Taylor, Jeremy M.G.
2013-01-01
Introduction To identify melanoma patients at sufficiently low risk of nodal metastases who could avoid SLN biopsy (SLNB). Several statistical models have been proposed based upon patient/tumor characteristics, including logistic regression, classification trees, random forests and support vector machines. We sought to validate recently published models meant to predict sentinel node status. Methods We queried our comprehensive, prospectively-collected melanoma database for consecutive melanoma patients undergoing SLNB. Prediction values were estimated based upon 4 published models, calculating the same reported metrics: negative predictive value (NPV), rate of negative predictions (RNP), and false negative rate (FNR). Results Logistic regression performed comparably with our data when considering NPV (89.4% vs. 93.6%); however the model’s specificity was not high enough to significantly reduce the rate of biopsies (SLN reduction rate of 2.9%). When applied to our data, the classification tree produced NPV and reduction in biopsies rates that were lower 87.7% vs. 94.1% and 29.8% vs. 14.3%, respectively. Two published models could not be applied to our data due to model complexity and the use of proprietary software. Conclusions Published models meant to reduce the SLNB rate among patients with melanoma either underperformed when applied to our larger dataset, or could not be validated. Differences in selection criteria and histopathologic interpretation likely resulted in underperformance. Development of statistical predictive models must be created in a clinically applicable manner to allow for both validation and ultimately clinical utility. PMID:21822550
Validation of the Social Appearance Anxiety Scale: factor, convergent, and divergent validity.
Levinson, Cheri A; Rodebaugh, Thomas L
2011-09-01
The Social Appearance Anxiety Scale (SAAS) was created to assess fear of overall appearance evaluation. Initial psychometric work indicated that the measure had a single-factor structure and exhibited excellent internal consistency, test-retest reliability, and convergent validity. In the current study, the authors further examined the factor, convergent, and divergent validity of the SAAS in two samples of undergraduates. In Study 1 (N = 323), the authors tested the factor structure, convergent, and divergent validity of the SAAS with measures of the Big Five personality traits, negative affect, fear of negative evaluation, and social interaction anxiety. In Study 2 (N = 118), participants completed a body evaluation that included measurements of height, weight, and body fat content. The SAAS exhibited excellent convergent and divergent validity with self-report measures (i.e., self-esteem, trait anxiety, ethnic identity, and sympathy), predicted state anxiety experienced during the body evaluation, and predicted body fat content. In both studies, results confirmed a single-factor structure as the best fit to the data. These results lend additional support for the use of the SAAS as a valid measure of social appearance anxiety.
VDA, a Method of Choosing a Better Algorithm with Fewer Validations
Kluger, Yuval
2011-01-01
The multitude of bioinformatics algorithms designed for performing a particular computational task presents end-users with the problem of selecting the most appropriate computational tool for analyzing their biological data. The choice of the best available method is often based on expensive experimental validation of the results. We propose an approach to design validation sets for method comparison and performance assessment that are effective in terms of cost and discrimination power. Validation Discriminant Analysis (VDA) is a method for designing a minimal validation dataset to allow reliable comparisons between the performances of different algorithms. Implementation of our VDA approach achieves this reduction by selecting predictions that maximize the minimum Hamming distance between algorithmic predictions in the validation set. We show that VDA can be used to correctly rank algorithms according to their performances. These results are further supported by simulations and by realistic algorithmic comparisons in silico. VDA is a novel, cost-efficient method for minimizing the number of validation experiments necessary for reliable performance estimation and fair comparison between algorithms. Our VDA software is available at http://sourceforge.net/projects/klugerlab/files/VDA/ PMID:22046256
Investigation of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams
NASA Technical Reports Server (NTRS)
Davis, Brian A.
2005-01-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical model. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. Excellent agreement is achieved between the predicted and measured results, thereby quantitatively validating the numerical tool.
ERIC Educational Resources Information Center
Boarnet, Marlon G.; Forsyth, Ann; Day, Kristen; Oakes, J. Michael
2011-01-01
The Irvine Minnesota Inventory (IMI) was designed to measure environmental features that may be associated with physical activity and particularly walking. This study assesses how well the IMI predicts physical activity and walking behavior and develops shortened, validated audit tools. A version of the IMI was used in the Twin Cities Walking…
Finite Element Model Development and Validation for Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.
Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Reid, Terry; Schifer, Nicholas; Briggs, Maxwell
2011-01-01
Past methods of predicting net heat input needed to be validated. Validation effort pursued with several paths including improving model inputs, using test hardware to provide validation data, and validating high fidelity models. Validation test hardware provided direct measurement of net heat input for comparison to predicted values. Predicted value of net heat input was 1.7 percent less than measured value and initial calculations of measurement uncertainty were 2.1 percent (under review). Lessons learned during validation effort were incorporated into convertor modeling approach which improved predictions of convertor efficiency.
Study on rapid valid acidity evaluation of apple by fiber optic diffuse reflectance technique
NASA Astrophysics Data System (ADS)
Liu, Yande; Ying, Yibin; Fu, Xiaping; Jiang, Xuesong
2004-03-01
Some issues related to nondestructive evaluation of valid acidity in intact apples by means of Fourier transform near infrared (FTNIR) (800-2631nm) method were addressed. A relationship was established between the diffuse reflectance spectra recorded with a bifurcated optic fiber and the valid acidity. The data were analyzed by multivariate calibration analysis such as partial least squares (PLS) analysis and principal component regression (PCR) technique. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influence of data preprocessing and different spectra treatments were also investigated. Models based on smoothing spectra were slightly worse than models based on derivative spectra and the best result was obtained when the segment length was 5 and the gap size was 10. Depending on data preprocessing and multivariate calibration technique, the best prediction model had a correlation efficient (0.871), a low RMSEP (0.0677), a low RMSEC (0.056) and a small difference between RMSEP and RMSEC by PLS analysis. The results point out the feasibility of FTNIR spectral analysis to predict the fruit valid acidity non-destructively. The ratio of data standard deviation to the root mean square error of prediction (SDR) is better to be less than 3 in calibration models, however, the results cannot meet the demand of actual application. Therefore, further study is required for better calibration and prediction.
Sebok, Angelia; Wickens, Christopher D
2017-03-01
The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.
Development and evaluation of an automated fall risk assessment system.
Lee, Ju Young; Jin, Yinji; Piao, Jinshi; Lee, Sun-Mi
2016-04-01
Fall risk assessment is the first step toward prevention, and a risk assessment tool with high validity should be used. This study aimed to develop and validate an automated fall risk assessment system (Auto-FallRAS) to assess fall risks based on electronic medical records (EMRs) without additional data collected or entered by nurses. This study was conducted in a 1335-bed university hospital in Seoul, South Korea. The Auto-FallRAS was developed using 4211 fall-related clinical data extracted from EMRs. Participants included fall patients and non-fall patients (868 and 3472 for the development study; 752 and 3008 for the validation study; and 58 and 232 for validation after clinical application, respectively). The system was evaluated for predictive validity and concurrent validity. The final 10 predictors were included in the logistic regression model for the risk-scoring algorithm. The results of the Auto-FallRAS were shown as high/moderate/low risk on the EMR screen. The predictive validity analyzed after clinical application of the Auto-FallRAS was as follows: sensitivity = 0.95, NPV = 0.97 and Youden index = 0.44. The validity of the Morse Fall Scale assessed by nurses was as follows: sensitivity = 0.68, NPV = 0.88 and Youden index = 0.28. This study found that the Auto-FallRAS results were better than were the nurses' predictions. The advantage of the Auto-FallRAS is that it automatically analyzes information and shows patients' fall risk assessment results without requiring additional time from nurses. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.
Schut, Henk; Stroebe, Margaret S.; Wilson, Stewart; Birrell, John
2016-01-01
Objective This study assessed the validity of the Indicator of Bereavement Adaptation Cruse Scotland (IBACS). Designed for use in clinical and non-clinical settings, the IBACS measures severity of grief symptoms and risk of developing complications. Method N = 196 (44 male, 152 female) help-seeking, bereaved Scottish adults participated at two timepoints: T1 (baseline) and T2 (after 18 months). Four validated assessment instruments were administered: CORE-R, ICG-R, IES-R, SCL-90-R. Discriminative ability was assessed using ROC curve analysis. Concurrent validity was tested through correlation analysis at T1. Predictive validity was assessed using correlation analyses and ROC curve analysis. Optimal IBACS cutoff values were obtained by calculating a maximal Youden index J in ROC curve analysis. Clinical implications were compared across instruments. Results ROC curve analysis results (AUC = .84, p < .01, 95% CI between .77 and .90) indicated the IBACS is a good diagnostic instrument for assessing complicated grief. Positive correlations (p < .01, 2-tailed) with all four instruments at T1 demonstrated the IBACS' concurrent validity, strongest with complicated grief measures (r = .82). Predictive validity was shown to be fair in T2 ROC curve analysis results (n = 67, AUC = .78, 95% CI between .65 and .92; p < .01). Predictive validity was also supported by stable positive correlations between IBACS and other instruments at T2. Clinical indications were found not to differ across instruments. Conclusions The IBACS offers effective grief symptom and risk assessment for use by non-clinicians. Indications are sufficient to support intake assessment for a stepped model of bereavement intervention. PMID:27741246
CheS-Mapper 2.0 for visual validation of (Q)SAR models
2014-01-01
Background Sound statistical validation is important to evaluate and compare the overall performance of (Q)SAR models. However, classical validation does not support the user in better understanding the properties of the model or the underlying data. Even though, a number of visualization tools for analyzing (Q)SAR information in small molecule datasets exist, integrated visualization methods that allow the investigation of model validation results are still lacking. Results We propose visual validation, as an approach for the graphical inspection of (Q)SAR model validation results. The approach applies the 3D viewer CheS-Mapper, an open-source application for the exploration of small molecules in virtual 3D space. The present work describes the new functionalities in CheS-Mapper 2.0, that facilitate the analysis of (Q)SAR information and allows the visual validation of (Q)SAR models. The tool enables the comparison of model predictions to the actual activity in feature space. The approach is generic: It is model-independent and can handle physico-chemical and structural input features as well as quantitative and qualitative endpoints. Conclusions Visual validation with CheS-Mapper enables analyzing (Q)SAR information in the data and indicates how this information is employed by the (Q)SAR model. It reveals, if the endpoint is modeled too specific or too generic and highlights common properties of misclassified compounds. Moreover, the researcher can use CheS-Mapper to inspect how the (Q)SAR model predicts activity cliffs. The CheS-Mapper software is freely available at http://ches-mapper.org. Graphical abstract Comparing actual and predicted activity values with CheS-Mapper.
Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do.
Zhao, Linlin; Wang, Wenyi; Sedykh, Alexander; Zhu, Hao
2017-06-30
Numerous chemical data sets have become available for quantitative structure-activity relationship (QSAR) modeling studies. However, the quality of different data sources may be different based on the nature of experimental protocols. Therefore, potential experimental errors in the modeling sets may lead to the development of poor QSAR models and further affect the predictions of new compounds. In this study, we explored the relationship between the ratio of questionable data in the modeling sets, which was obtained by simulating experimental errors, and the QSAR modeling performance. To this end, we used eight data sets (four continuous endpoints and four categorical endpoints) that have been extensively curated both in-house and by our collaborators to create over 1800 various QSAR models. Each data set was duplicated to create several new modeling sets with different ratios of simulated experimental errors (i.e., randomizing the activities of part of the compounds) in the modeling process. A fivefold cross-validation process was used to evaluate the modeling performance, which deteriorates when the ratio of experimental errors increases. All of the resulting models were also used to predict external sets of new compounds, which were excluded at the beginning of the modeling process. The modeling results showed that the compounds with relatively large prediction errors in cross-validation processes are likely to be those with simulated experimental errors. However, after removing a certain number of compounds with large prediction errors in the cross-validation process, the external predictions of new compounds did not show improvement. Our conclusion is that the QSAR predictions, especially consensus predictions, can identify compounds with potential experimental errors. But removing those compounds by the cross-validation procedure is not a reasonable means to improve model predictivity due to overfitting.
Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do
2017-01-01
Numerous chemical data sets have become available for quantitative structure–activity relationship (QSAR) modeling studies. However, the quality of different data sources may be different based on the nature of experimental protocols. Therefore, potential experimental errors in the modeling sets may lead to the development of poor QSAR models and further affect the predictions of new compounds. In this study, we explored the relationship between the ratio of questionable data in the modeling sets, which was obtained by simulating experimental errors, and the QSAR modeling performance. To this end, we used eight data sets (four continuous endpoints and four categorical endpoints) that have been extensively curated both in-house and by our collaborators to create over 1800 various QSAR models. Each data set was duplicated to create several new modeling sets with different ratios of simulated experimental errors (i.e., randomizing the activities of part of the compounds) in the modeling process. A fivefold cross-validation process was used to evaluate the modeling performance, which deteriorates when the ratio of experimental errors increases. All of the resulting models were also used to predict external sets of new compounds, which were excluded at the beginning of the modeling process. The modeling results showed that the compounds with relatively large prediction errors in cross-validation processes are likely to be those with simulated experimental errors. However, after removing a certain number of compounds with large prediction errors in the cross-validation process, the external predictions of new compounds did not show improvement. Our conclusion is that the QSAR predictions, especially consensus predictions, can identify compounds with potential experimental errors. But removing those compounds by the cross-validation procedure is not a reasonable means to improve model predictivity due to overfitting. PMID:28691113
Sousa, Bruno
2013-01-01
Objective To translate into Portuguese and evaluate the measuring properties of the Sunderland Scale and the Cubbin & Jackson Revised Scale, which are instruments for evaluating the risk of developing pressure ulcers during intensive care. Methods This study included the process of translation and adaptation of the scales to the Portuguese language, as well as the validation of these tools. To assess the reliability, Cronbach alpha values of 0.702 to 0.708 were identified for the Sunderland Scale and the Cubbin & Jackson Revised Scale, respectively. The validation criteria (predictive) were performed comparatively with the Braden Scale (gold standard), and the main measurements evaluated were sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve, which were calculated based on cutoff points. Results The Sunderland Scale exhibited 60% sensitivity, 86.7% specificity, 47.4% positive predictive value, 91.5% negative predictive value, and 0.86 for the area under the curve. The Cubbin & Jackson Revised Scale exhibited 73.3% sensitivity, 86.7% specificity, 52.4% positive predictive value, 94.2% negative predictive value, and 0.91 for the area under the curve. The Braden scale exhibited 100% sensitivity, 5.3% specificity, 17.4% positive predictive value, 100% negative predictive value, and 0.72 for the area under the curve. Conclusions Both tools demonstrated reliability and validity for this sample. The Cubbin & Jackson Revised Scale yielded better predictive values for the development of pressure ulcers during intensive care. PMID:23917975
Patterson, Fiona; Lievens, Filip; Kerrin, Máire; Munro, Neil; Irish, Bill
2013-11-01
The selection methodology for UK general practice is designed to accommodate several thousand applicants per year and targets six core attributes identified in a multi-method job-analysis study To evaluate the predictive validity of selection methods for entry into postgraduate training, comprising a clinical problem-solving test, a situational judgement test, and a selection centre. A three-part longitudinal predictive validity study of selection into training for UK general practice. In sample 1, participants were junior doctors applying for training in general practice (n = 6824). In sample 2, participants were GP registrars 1 year into training (n = 196). In sample 3, participants were GP registrars sitting the licensing examination after 3 years, at the end of training (n = 2292). The outcome measures include: assessor ratings of performance in a selection centre comprising job simulation exercises (sample 1); supervisor ratings of trainee job performance 1 year into training (sample 2); and licensing examination results, including an applied knowledge examination and a 12-station clinical skills objective structured clinical examination (OSCE; sample 3). Performance ratings at selection predicted subsequent supervisor ratings of job performance 1 year later. Selection results also significantly predicted performance on both the clinical skills OSCE and applied knowledge examination for licensing at the end of training. In combination, these longitudinal findings provide good evidence of the predictive validity of the selection methods, and are the first reported for entry into postgraduate training. Results show that the best predictor of work performance and training outcomes is a combination of a clinical problem-solving test, a situational judgement test, and a selection centre. Implications for selection methods for all postgraduate specialties are considered.
Domínguez, Evelia; Martín, Patricia; Martín-Albo, José; Núñez, Juan L; León, Jaime
2010-11-01
The aim of the present research was to translate and to analyze the psychometric properties of the Spanish version of the Satisfaction of Psychological Needs Scale, using a sample of 284 athletes (204 male and 78 female). Results of the confirmatory factor analysis confirmed the correlated three-factor structure of the scale. Furthermore, the results showed evidence of convergence validity with the Basic Psychological Needs in Exercise Scale. The predictive validity was tested using a structural equation model in which task orientation climate predicted the three basic psychological needs and these, in turn, intrinsic motivation. Likewise, we documented evidence of reliability, analyzed as internal consistency and temporal stability. Results partially support the use of the Spanish version of the scale in sports.
Role of learning potential in cognitive remediation: Construct and predictive validity.
Davidson, Charlie A; Johannesen, Jason K; Fiszdon, Joanna M
2016-03-01
The construct, convergent, discriminant, and predictive validity of Learning Potential (LP) was evaluated in a trial of cognitive remediation for adults with schizophrenia-spectrum disorders. LP utilizes a dynamic assessment approach to prospectively estimate an individual's learning capacity if provided the opportunity for specific related learning. LP was assessed in 75 participants at study entry, of whom 41 completed an eight-week cognitive remediation (CR) intervention, and 22 received treatment-as-usual (TAU). LP was assessed in a "test-train-test" verbal learning paradigm. Incremental predictive validity was assessed as the degree to which LP predicted memory skill acquisition above and beyond prediction by static verbal learning ability. Examination of construct validity confirmed that LP scores reflected use of trained semantic clustering strategy. LP scores correlated with executive functioning and education history, but not other demographics or symptom severity. Following the eight-week active phase, TAU evidenced little substantial change in skill acquisition outcomes, which related to static baseline verbal learning ability but not LP. For the CR group, LP significantly predicted skill acquisition in domains of verbal and visuospatial memory, but not auditory working memory. Furthermore, LP predicted skill acquisition incrementally beyond relevant background characteristics, symptoms, and neurocognitive abilities. Results suggest that LP assessment can significantly improve prediction of specific skill acquisition with cognitive training, particularly for the domain assessed, and thereby may prove useful in individualization of treatment. Published by Elsevier B.V.
Self-perceived Coparenting of Nonresident Fathers: Scale Development and Validation.
Dyer, W Justin; Fagan, Jay; Kaufman, Rebecca; Pearson, Jessica; Cabrera, Natasha
2017-11-16
This study reports on the development and validation of the Fatherhood Research and Practice Network coparenting perceptions scale for nonresident fathers. Although other measures of coparenting have been developed, this is the first measure developed specifically for low-income, nonresident fathers. Focus groups were conducted to determine various aspects of coparenting. Based on this, a scale was created and administered to 542 nonresident fathers. Participants also responded to items used to examine convergent and predictive validity (i.e., parental responsibility, contact with the mother, father self-efficacy and satisfaction, child behavior problems, and contact and engagement with the child). Factor analyses and reliability tests revealed three distinct and reliable perceived coparenting factors: undermining, alliance, and gatekeeping. Validity tests suggest substantial overlap between the undermining and alliance factors, though undermining was uniquely related to child behavior problems. The alliance and gatekeeping factors showed strong convergent validity and evidence for predictive validity. Taken together, results suggest this relatively short measure (11 items) taps into three coparenting dimensions significantly predictive of aspects of individual and family life. © 2017 Family Process Institute.
Improving the Validity of Activity of Daily Living Dependency Risk Assessment
Clark, Daniel O.; Stump, Timothy E.; Tu, Wanzhu; Miller, Douglas K.
2015-01-01
Objectives Efforts to prevent activity of daily living (ADL) dependency may be improved through models that assess older adults’ dependency risk. We evaluated whether cognition and gait speed measures improve the predictive validity of interview-based models. Method Participants were 8,095 self-respondents in the 2006 Health and Retirement Survey who were aged 65 years or over and independent in five ADLs. Incident ADL dependency was determined from the 2008 interview. Models were developed using random 2/3rd cohorts and validated in the remaining 1/3rd. Results Compared to a c-statistic of 0.79 in the best interview model, the model including cognitive measures had c-statistics of 0.82 and 0.80 while the best fitting gait speed model had c-statistics of 0.83 and 0.79 in the development and validation cohorts, respectively. Conclusion Two relatively brief models, one that requires an in-person assessment and one that does not, had excellent validity for predicting incident ADL dependency but did not significantly improve the predictive validity of the best fitting interview-based models. PMID:24652867
Validation of Accelerometer Prediction Equations in Children with Chronic Disease.
Stephens, Samantha; Takken, Tim; Esliger, Dale W; Pullenayegum, Eleanor; Beyene, Joseph; Tremblay, Mark; Schneiderman, Jane; Biggar, Doug; Longmuir, Pat; McCrindle, Brian; Abad, Audrey; Ignas, Dan; Van Der Net, Janjaap; Feldman, Brian
2016-02-01
The purpose of this study was to assess the criterion validity of existing accelerometer-based energy expenditure (EE) prediction equations among children with chronic conditions, and to develop new prediction equations. Children with congenital heart disease (CHD), cystic fibrosis (CF), dermatomyositis (JDM), juvenile arthritis (JA), inherited muscle disease (IMD), and hemophilia (HE) completed 7 tasks while EE was measured using indirect calorimetry with counts determined by accelerometer. Agreement between predicted EE and measured EE was assessed. Disease-specific equations and cut points were developed and cross-validated. In total, 196 subjects participated. One participant dropped out before testing due to time constraints, while 15 CHD, 32 CF, 31 JDM, 31 JA, 30 IMD, 28 HE, and 29 healthy controls completed the study. Agreement between predicted and measured EE varied across disease group and ranged from (ICC) .13-.46. Disease-specific prediction equations exhibited a range of results (ICC .62-.88) (SE 0.45-0.78). In conclusion, poor agreement was demonstrated using current prediction equations in children with chronic conditions. Disease-specific equations and cut points were developed.
Ban, Jong-Wook; Emparanza, José Ignacio; Urreta, Iratxe; Burls, Amanda
2016-01-01
Many new clinical prediction rules are derived and validated. But the design and reporting quality of clinical prediction research has been less than optimal. We aimed to assess whether design characteristics of validation studies were associated with the overestimation of clinical prediction rules' performance. We also aimed to evaluate whether validation studies clearly reported important methodological characteristics. Electronic databases were searched for systematic reviews of clinical prediction rule studies published between 2006 and 2010. Data were extracted from the eligible validation studies included in the systematic reviews. A meta-analytic meta-epidemiological approach was used to assess the influence of design characteristics on predictive performance. From each validation study, it was assessed whether 7 design and 7 reporting characteristics were properly described. A total of 287 validation studies of clinical prediction rule were collected from 15 systematic reviews (31 meta-analyses). Validation studies using case-control design produced a summary diagnostic odds ratio (DOR) 2.2 times (95% CI: 1.2-4.3) larger than validation studies using cohort design and unclear design. When differential verification was used, the summary DOR was overestimated by twofold (95% CI: 1.2 -3.1) compared to complete, partial and unclear verification. The summary RDOR of validation studies with inadequate sample size was 1.9 (95% CI: 1.2 -3.1) compared to studies with adequate sample size. Study site, reliability, and clinical prediction rule was adequately described in 10.1%, 9.4%, and 7.0% of validation studies respectively. Validation studies with design shortcomings may overestimate the performance of clinical prediction rules. The quality of reporting among studies validating clinical prediction rules needs to be improved.
Siedlecki, Sandra L; Albert, Nancy M
This article will describe how to assess interrater reliability and validity of risk assessment tools, using easy-to-follow formulas, and to provide calculations that demonstrate principles discussed. Clinical nurse specialists should be able to identify risk assessment tools that provide high-quality interrater reliability and the highest validity for predicting true events of importance to clinical settings. Making best practice recommendations for assessment tool use is critical to high-quality patient care and safe practices that impact patient outcomes and nursing resources. Optimal risk assessment tool selection requires knowledge about interrater reliability and tool validity. The clinical nurse specialist will understand the reliability and validity issues associated with risk assessment tools, and be able to evaluate tools using basic calculations. Risk assessment tools are developed to objectively predict quality and safety events and ultimately reduce the risk of event occurrence through preventive interventions. To ensure high-quality tool use, clinical nurse specialists must critically assess tool properties. The better the tool's ability to predict adverse events, the more likely that event risk is mediated. Interrater reliability and validity assessment is relatively an easy skill to master and will result in better decisions when selecting or making recommendations for risk assessment tool use.
Fang, Wen-Feng; Douglas, Ivor S.; Chen, Yu-Mu; Lin, Chiung-Yu; Kao, Hsu-Ching; Fang, Ying-Tang; Huang, Chi-Han; Chang, Ya-Ting; Huang, Kuo-Tung; Wang, Yi-His; Wang, Chin-Chou
2017-01-01
Background Sepsis-induced immune dysfunction ranging from cytokines storm to immunoparalysis impacts outcomes. Monitoring immune dysfunction enables better risk stratification and mortality prediction and is mandatory before widely application of immunoadjuvant therapies. We aimed to develop and validate a scoring system according to patients’ immune dysfunction status for 28-day mortality prediction. Methods A prospective observational study from a cohort of adult sepsis patients admitted to ICU between August 2013 and June 2016 at Kaohsiung Chang Gung Memorial Hospital in Taiwan. We evaluated immune dysfunction status through measurement of baseline plasma Cytokine levels, Monocyte human leukocyte-DR expression by flow cytometry, and stimulated immune response using post LPS stimulated cytokine elevation ratio. An immune dysfunction score was created for 28-day mortality prediction and was validated. Results A total of 151 patients were enrolled. Data of the first consecutive 106 septic patients comprised the training cohort, and of other 45 patients comprised the validation cohort. Among the 106 patients, 21 died and 85 were still alive on day 28 after ICU admission. (mortality rate, 19.8%). Independent predictive factors revealed via multivariate logistic regression analysis included segmented neutrophil-to-monocyte ratio, granulocyte-colony stimulating factor, interleukin-10, and monocyte human leukocyte antigen-antigen D–related levels, all of which were selected to construct the score, which predicted 28-day mortality with area under the curve of 0.853 and 0.789 in the training and validation cohorts, respectively. Conclusions The immune dysfunction scoring system developed here included plasma granulocyte-colony stimulating factor level, interleukin-10 level, serum segmented neutrophil-to-monocyte ratio, and monocyte human leukocyte antigen-antigen D–related expression appears valid and reproducible for predicting 28-day mortality. PMID:29073262
Read, Jennifer P; Merrill, Jennifer E; Kahler, Christopher W; Strong, David R
2007-11-01
Heavy drinking and associated consequences are widespread among U.S. college students. Recently, Read et al. (Read, J. P., Kahler, C. W., Strong, D., & Colder, C. R. (2006). Development and preliminary validation of the Young Adult Alcohol Consequences Questionnaire. Journal of Studies on Alcohol, 67, 169-178) developed the Young Adult Alcohol Consequences Questionnaire (YAACQ) to assess the broad range of consequences that may result from heavy drinking in the college milieu. In the present study, we sought to add to the psychometric validation of this measure by employing a prospective design to examine the test-retest reliability, concurrent validity, and predictive validity of the YAACQ. We also sought to examine the utility of the YAACQ administered early in the semester in the prediction of functional outcomes later in the semester, including the persistence of heavy drinking, and academic functioning. Ninety-two college students (48 females) completed a self-report assessment battery during the first weeks of the Fall semester, and approximately one week later. Additionally, 64 subjects (37 females) participated at an optional third time point at the end of the semester. Overall, the YAACQ demonstrated strong internal consistency, test-retest reliability, and concurrent and predictive validity. YAACQ scores also were predictive of both drinking frequency, and "binge" drinking frequency. YAACQ total scores at baseline were an early indicator of academic performance later in the semester, with greater number of total consequences experienced being negatively associated with end-of-semester grade point average. Specific YAACQ subscale scores (Impaired Control, Dependence Symptoms, Blackout Drinking) showed unique prediction of persistent drinking and academic outcomes.
Simplified Model to Predict Deflection and Natural Frequency of Steel Pole Structures
NASA Astrophysics Data System (ADS)
Balagopal, R.; Prasad Rao, N.; Rokade, R. P.
2018-04-01
Steel pole structures are suitable alternate to transmission line towers, due to difficulty encountered in finding land for the new right of way for installation of new lattice towers. The steel poles have tapered cross section and they are generally used for communication, power transmission and lighting purposes. Determination of deflection of steel pole is important to decide its functionality requirement. The excessive deflection of pole may affect the signal attenuation and short circuiting problems in communication/transmission poles. In this paper, a simplified method is proposed to determine both primary and secondary deflection based on dummy unit load/moment method. The predicted deflection from proposed method is validated with full scale experimental investigation conducted on 8 m and 30 m high lighting mast, 132 and 400 kV transmission pole and found to be in close agreement with each other. Determination of natural frequency is an important criterion to examine its dynamic sensitivity. A simplified semi-empirical method using the static deflection from the proposed method is formulated to determine its natural frequency. The natural frequency predicted from proposed method is validated with FE analysis results. Further the predicted results are validated with experimental results available in literature.
Predictive and concurrent validity of the Braden scale in long-term care: a meta-analysis.
Wilchesky, Machelle; Lungu, Ovidiu
2015-01-01
Pressure ulcer prevention is an important long-term care (LTC) quality indicator. While the Braden Scale is a recommended risk assessment tool, there is a paucity of information specifically pertaining to its validity within the LTC setting. We, therefore, undertook a systematic review and meta-analysis comparing Braden Scale predictive and concurrent validity within this context. We searched the Medline, EMBASE, PsychINFO and PubMed databases from 1985-2014 for studies containing the requisite information to analyze tool validity. Our initial search yielded 3,773 articles. Eleven datasets emanating from nine published studies describing 40,361 residents met all meta-analysis inclusion criteria and were analyzed using random effects models. Pooled sensitivity, specificity, positive predictive value (PPV), and negative predictive values were 86%, 38%, 28%, and 93%, respectively. Specificity was poorer in concurrent samples as compared with predictive samples (38% vs. 72%), while PPV was low in both sample types (25 and 37%). Though random effects model results showed that the Scale had good overall predictive ability [RR, 4.33; 95% CI, 3.28-5.72], none of the concurrent samples were found to have "optimal" sensitivity and specificity. In conclusion, the appropriateness of the Braden Scale in LTC is questionable given its low specificity and PPV, in particular in concurrent validity studies. Future studies should further explore the extent to which the apparent low validity of the Scale in LTC is due to the choice of cutoff point and/or preventive strategies implemented by LTC staff as a matter of course. © 2015 by the Wound Healing Society.
Validating Inertial Confinement Fusion (ICF) predictive capability using perturbed capsules
NASA Astrophysics Data System (ADS)
Schmitt, Mark; Magelssen, Glenn; Tregillis, Ian; Hsu, Scott; Bradley, Paul; Dodd, Evan; Cobble, James; Flippo, Kirk; Offerman, Dustin; Obrey, Kimberly; Wang, Yi-Ming; Watt, Robert; Wilke, Mark; Wysocki, Frederick; Batha, Steven
2009-11-01
Achieving ignition on NIF is a monumental step on the path toward utilizing fusion as a controlled energy source. Obtaining robust ignition requires accurate ICF models to predict the degradation of ignition caused by heterogeneities in capsule construction and irradiation. LANL has embarked on a project to induce controlled defects in capsules to validate our ability to predict their effects on fusion burn. These efforts include the validation of feature-driven hydrodynamics and mix in a convergent geometry. This capability is needed to determine the performance of capsules imploded under less-than-optimum conditions on future IFE facilities. LANL's recently initiated Defect Implosion Experiments (DIME) conducted at Rochester's Omega facility are providing input for these efforts. Recent simulation and experimental results will be shown.
NASA Technical Reports Server (NTRS)
Ling, Lisa
2014-01-01
For the purpose of performing safety analysis and risk assessment for a potential off-nominal atmospheric reentry resulting in vehicle breakup, a synthesis of trajectory propagation coupled with thermal analysis and the evaluation of node failure is required to predict the sequence of events, the timeline, and the progressive demise of spacecraft components. To provide this capability, the Simulation for Prediction of Entry Article Demise (SPEAD) analysis tool was developed. The software and methodology have been validated against actual flights, telemetry data, and validated software, and safety/risk analyses were performed for various programs using SPEAD. This report discusses the capabilities, modeling, validation, and application of the SPEAD analysis tool.
Blagus, Rok; Lusa, Lara
2015-11-04
Prediction models are used in clinical research to develop rules that can be used to accurately predict the outcome of the patients based on some of their characteristics. They represent a valuable tool in the decision making process of clinicians and health policy makers, as they enable them to estimate the probability that patients have or will develop a disease, will respond to a treatment, or that their disease will recur. The interest devoted to prediction models in the biomedical community has been growing in the last few years. Often the data used to develop the prediction models are class-imbalanced as only few patients experience the event (and therefore belong to minority class). Prediction models developed using class-imbalanced data tend to achieve sub-optimal predictive accuracy in the minority class. This problem can be diminished by using sampling techniques aimed at balancing the class distribution. These techniques include under- and oversampling, where a fraction of the majority class samples are retained in the analysis or new samples from the minority class are generated. The correct assessment of how the prediction model is likely to perform on independent data is of crucial importance; in the absence of an independent data set, cross-validation is normally used. While the importance of correct cross-validation is well documented in the biomedical literature, the challenges posed by the joint use of sampling techniques and cross-validation have not been addressed. We show that care must be taken to ensure that cross-validation is performed correctly on sampled data, and that the risk of overestimating the predictive accuracy is greater when oversampling techniques are used. Examples based on the re-analysis of real datasets and simulation studies are provided. We identify some results from the biomedical literature where the incorrect cross-validation was performed, where we expect that the performance of oversampling techniques was heavily overestimated.
Regional mapping of soil parent material by machine learning based on point data
NASA Astrophysics Data System (ADS)
Lacoste, Marine; Lemercier, Blandine; Walter, Christian
2011-10-01
A machine learning system (MART) has been used to predict soil parent material (SPM) at the regional scale with a 50-m resolution. The use of point-specific soil observations as training data was tested as a replacement for the soil maps introduced in previous studies, with the aim of generating a more even distribution of training data over the study area and reducing information uncertainty. The 27,020-km 2 study area (Brittany, northwestern France) contains mainly metamorphic, igneous and sedimentary substrates. However, superficial deposits (aeolian loam, colluvial and alluvial deposits) very often represent the actual SPM and are typically under-represented in existing geological maps. In order to calibrate the predictive model, a total of 4920 point soil descriptions were used as training data along with 17 environmental predictors (terrain attributes derived from a 50-m DEM, as well as emissions of K, Th and U obtained by means of airborne gamma-ray spectrometry, geological variables at the 1:250,000 scale and land use maps obtained by remote sensing). Model predictions were then compared: i) during SPM model creation to point data not used in model calibration (internal validation), ii) to the entire point dataset (point validation), and iii) to existing detailed soil maps (external validation). The internal, point and external validation accuracy rates were 56%, 81% and 54%, respectively. Aeolian loam was one of the three most closely predicted substrates. Poor prediction results were associated with uncommon materials and areas with high geological complexity, i.e. areas where existing maps used for external validation were also imprecise. The resultant predictive map turned out to be more accurate than existing geological maps and moreover indicated surface deposits whose spatial coverage is consistent with actual knowledge of the area. This method proves quite useful in predicting SPM within areas where conventional mapping techniques might be too costly or lengthy or where soil maps are insufficient for use as training data. In addition, this method allows producing repeatable and interpretable results, whose accuracy can be assessed objectively.
Validating spatiotemporal predictions of an important pest of small grains.
Merrill, Scott C; Holtzer, Thomas O; Peairs, Frank B; Lester, Philip J
2015-01-01
Arthropod pests are typically managed using tactics applied uniformly to the whole field. Precision pest management applies tactics under the assumption that within-field pest pressure differences exist. This approach allows for more precise and judicious use of scouting resources and management tactics. For example, a portion of a field delineated as attractive to pests may be selected to receive extra monitoring attention. Likely because of the high variability in pest dynamics, little attention has been given to developing precision pest prediction models. Here, multimodel synthesis was used to develop a spatiotemporal model predicting the density of a key pest of wheat, the Russian wheat aphid, Diuraphis noxia (Kurdjumov). Spatially implicit and spatially explicit models were synthesized to generate spatiotemporal pest pressure predictions. Cross-validation and field validation were used to confirm model efficacy. A strong within-field signal depicting aphid density was confirmed with low prediction errors. Results show that the within-field model predictions will provide higher-quality information than would be provided by traditional field scouting. With improvements to the broad-scale model component, the model synthesis approach and resulting tool could improve pest management strategy and provide a template for the development of spatially explicit pest pressure models. © 2014 Society of Chemical Industry.
Predicting non-melanoma skin cancer via a multi-parameterized artificial neural network.
Roffman, David; Hart, Gregory; Girardi, Michael; Ko, Christine J; Deng, Jun
2018-01-26
Ultraviolet radiation (UVR) exposure and family history are major associated risk factors for the development of non-melanoma skin cancer (NMSC). The objective of this study was to develop and validate a multi-parameterized artificial neural network based on available personal health information for early detection of NMSC with high sensitivity and specificity, even in the absence of known UVR exposure and family history. The 1997-2015 NHIS adult survey data used to train and validate our neural network (NN) comprised of 2,056 NMSC and 460,574 non-cancer cases. We extracted 13 parameters for our NN: gender, age, BMI, diabetic status, smoking status, emphysema, asthma, race, Hispanic ethnicity, hypertension, heart diseases, vigorous exercise habits, and history of stroke. This study yielded an area under the ROC curve of 0.81 and 0.81 for training and validation, respectively. Our results (training sensitivity 88.5% and specificity 62.2%, validation sensitivity 86.2% and specificity 62.7%) were comparable to a previous study of basal and squamous cell carcinoma prediction that also included UVR exposure and family history information. These results indicate that our NN is robust enough to make predictions, suggesting that we have identified novel associations and potential predictive parameters of NMSC.
Lazzari, Barbara; Caprera, Andrea; Cestaro, Alessandro; Merelli, Ivan; Del Corvo, Marcello; Fontana, Paolo; Milanesi, Luciano; Velasco, Riccardo; Stella, Alessandra
2009-06-29
Two complete genome sequences are available for Vitis vinifera Pinot noir. Based on the sequence and gene predictions produced by the IASMA, we performed an in silico detection of putative microRNA genes and of their targets, and collected the most reliable microRNA predictions in a web database. The application is available at http://www.itb.cnr.it/ptp/grapemirna/. The program FindMiRNA was used to detect putative microRNA genes in the grape genome. A very high number of predictions was retrieved, calling for validation. Nine parameters were calculated and, based on the grape microRNAs dataset available at miRBase, thresholds were defined and applied to FindMiRNA predictions having targets in gene exons. In the resulting subset, predictions were ranked according to precursor positions and sequence similarity, and to target identity. To further validate FindMiRNA predictions, comparisons to the Arabidopsis genome, to the grape Genoscope genome, and to the grape EST collection were performed. Results were stored in a MySQL database and a web interface was prepared to query the database and retrieve predictions of interest. The GrapeMiRNA database encompasses 5,778 microRNA predictions spanning the whole grape genome. Predictions are integrated with information that can be of use in selection procedures. Tools added in the web interface also allow to inspect predictions according to gene ontology classes and metabolic pathways of targets. The GrapeMiRNA database can be of help in selecting candidate microRNA genes to be validated.
Van de Weijer-Bergsma, Eva; Kroesbergen, Evelyn H; Prast, Emilie J; Van Luit, Johannes E H
2015-09-01
Working memory is an important predictor of academic performance, and of math performance in particular. Most working memory tasks depend on one-to-one administration by a testing assistant, which makes the use of such tasks in large-scale studies time-consuming and costly. Therefore, an online, self-reliant visual-spatial working memory task (the Lion game) was developed for primary school children (6-12 years of age). In two studies, the validity and reliability of the Lion game were investigated. The results from Study 1 (n = 442) indicated satisfactory six-week test-retest reliability, excellent internal consistency, and good concurrent and predictive validity. The results from Study 2 (n = 5,059) confirmed the results on the internal consistency and predictive validity of the Lion game. In addition, multilevel analysis revealed that classroom membership influenced Lion game scores. We concluded that the Lion game is a valid and reliable instrument for the online computerized and self-reliant measurement of visual-spatial working memory (i.e., updating).
van Stiphout, Ruud G P M; Valentini, Vincenzo; Buijsen, Jeroen; Lammering, Guido; Meldolesi, Elisa; van Soest, Johan; Leccisotti, Lucia; Giordano, Alessandro; Gambacorta, Maria A; Dekker, Andre; Lambin, Philippe
2014-11-01
To develop and externally validate a predictive model for pathologic complete response (pCR) for locally advanced rectal cancer (LARC) based on clinical features and early sequential (18)F-FDG PETCT imaging. Prospective data (i.a. THUNDER trial) were used to train (N=112, MAASTRO Clinic) and validate (N=78, Università Cattolica del S. Cuore) the model for pCR (ypT0N0). All patients received long-course chemoradiotherapy (CRT) and surgery. Clinical parameters were age, gender, clinical tumour (cT) stage and clinical nodal (cN) stage. PET parameters were SUVmax, SUVmean, metabolic tumour volume (MTV) and maximal tumour diameter, for which response indices between pre-treatment and intermediate scan were calculated. Using multivariate logistic regression, three probability groups for pCR were defined. The pCR rates were 21.4% (training) and 23.1% (validation). The selected predictive features for pCR were cT-stage, cN-stage, response index of SUVmean and maximal tumour diameter during treatment. The models' performances (AUC) were 0.78 (training) and 0.70 (validation). The high probability group for pCR resulted in 100% correct predictions for training and 67% for validation. The model is available on the website www.predictcancer.org. The developed predictive model for pCR is accurate and externally validated. This model may assist in treatment decisions during CRT to select complete responders for a wait-and-see policy, good responders for extra RT boost and bad responders for additional chemotherapy. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Construction of prediction intervals for Palmer Drought Severity Index using bootstrap
NASA Astrophysics Data System (ADS)
Beyaztas, Ufuk; Bickici Arikan, Bugrayhan; Beyaztas, Beste Hamiye; Kahya, Ercan
2018-04-01
In this study, we propose an approach based on the residual-based bootstrap method to obtain valid prediction intervals using monthly, short-term (three-months) and mid-term (six-months) drought observations. The effects of North Atlantic and Arctic Oscillation indexes on the constructed prediction intervals are also examined. Performance of the proposed approach is evaluated for the Palmer Drought Severity Index (PDSI) obtained from Konya closed basin located in Central Anatolia, Turkey. The finite sample properties of the proposed method are further illustrated by an extensive simulation study. Our results revealed that the proposed approach is capable of producing valid prediction intervals for future PDSI values.
Bösner, Stefan; Haasenritter, Jörg; Becker, Annette; Karatolios, Konstantinos; Vaucher, Paul; Gencer, Baris; Herzig, Lilli; Heinzel-Gutenbrunner, Monika; Schaefer, Juergen R; Abu Hani, Maren; Keller, Heidi; Sönnichsen, Andreas C; Baum, Erika; Donner-Banzhoff, Norbert
2010-09-07
Chest pain can be caused by various conditions, with life-threatening cardiac disease being of greatest concern. Prediction scores to rule out coronary artery disease have been developed for use in emergency settings. We developed and validated a simple prediction rule for use in primary care. We conducted a cross-sectional diagnostic study in 74 primary care practices in Germany. Primary care physicians recruited all consecutive patients who presented with chest pain (n = 1249) and recorded symptoms and findings for each patient (derivation cohort). An independent expert panel reviewed follow-up data obtained at six weeks and six months on symptoms, investigations, hospital admissions and medications to determine the presence or absence of coronary artery disease. Adjusted odds ratios of relevant variables were used to develop a prediction rule. We calculated measures of diagnostic accuracy for different cut-off values for the prediction scores using data derived from another prospective primary care study (validation cohort). The prediction rule contained five determinants (age/sex, known vascular disease, patient assumes pain is of cardiac origin, pain is worse during exercise, and pain is not reproducible by palpation), with the score ranging from 0 to 5 points. The area under the curve (receiver operating characteristic curve) was 0.87 (95% confidence interval [CI] 0.83-0.91) for the derivation cohort and 0.90 (95% CI 0.87-0.93) for the validation cohort. The best overall discrimination was with a cut-off value of 3 (positive result 3-5 points; negative result
Stone, Lisanne L; Janssens, Jan M A M; Vermulst, Ad A; Van Der Maten, Marloes; Engels, Rutger C M E; Otten, Roy
2015-01-01
The Strengths and Difficulties Questionnaire is one of the most employed screening instruments. Although there is a large research body investigating its psychometric properties, reliability and validity are not yet fully tested using modern techniques. Therefore, we investigate reliability, construct validity, measurement invariance, and predictive validity of the parent and teacher version in children aged 4-7. Besides, we intend to replicate previous studies by investigating test-retest reliability and criterion validity. In a Dutch community sample 2,238 teachers and 1,513 parents filled out questionnaires regarding problem behaviors and parenting, while 1,831 children reported on sociometric measures at T1. These children were followed-up during three consecutive years. Reliability was examined using Cronbach's alpha and McDonald's omega, construct validity was examined by Confirmatory Factor Analysis, and predictive validity was examined by calculating developmental profiles and linking these to measures of inadequate parenting, parenting stress and social preference. Further, mean scores and percentiles were examined in order to establish norms. Omega was consistently higher than alpha regarding reliability. The original five-factor structure was replicated, and measurement invariance was established on a configural level. Further, higher SDQ scores were associated with future indices of higher inadequate parenting, higher parenting stress and lower social preference. Finally, previous results on test-retest reliability and criterion validity were replicated. This study is the first to show SDQ scores are predictively valid, attesting to the feasibility of the SDQ as a screening instrument. Future research into predictive validity of the SDQ is warranted.
NASA Astrophysics Data System (ADS)
Larson, David J., Jr.; Casagrande, Louis G.; Di Marzio, Don; Levy, Alan; Carlson, Frederick M.; Lee, Taipao; Black, David R.; Wu, Jun; Dudley, Michael
1994-07-01
We have successfully validated theoretical models of seeded vertical Bridgman-Stockbarger CdZnTe crystal growth and post-solidification processing, using in-situ thermal monitoring and innovative material characterization techniques. The models predict the thermal gradients, interface shape, fluid flow and solute redistribution during solidification, as well as the distributions of accumulated excess stress that causes defect generation and redistribution. Data from the furnace and ampoule wall have validated predictions from the thermal model. Results are compared to predictions of the thermal and thermo-solutal models. We explain the measured initial, change-of-rate, and terminal compositional transients as well as the macrosegregation. Macro and micro-defect distributions have been imaged on CdZnTe wafers from 40 mm diameter boules. Superposition of topographic defect images and predicted excess stress patterns suggests the origin of some frequently encountered defects, particularly on a macro scale, to result from the applied and accumulated stress fields and the anisotropic nature of the CdZnTe crystal. Implications of these findings with respect to producibility are discussed.
Reimers, Anne K; Jekauc, Darko; Mess, Filip; Mewes, Nadine; Woll, Alexander
2012-08-29
The purpose of this study was to examine the internal consistency, test-retest reliability, construct validity and predictive validity of a new German self-report instrument to assess the influence of social support and the physical environment on physical activity in adolescents. Based on theoretical consideration, the short scales on social support and physical environment were developed and cross-validated in two independent study samples of 9 to 17 year-old girls and boys. The longitudinal sample of Study I (n = 196) was recruited from a German comprehensive school, and subjects in this study completed the questionnaire twice with a between-test interval of seven days. Cronbach's alphas were computed to determine the internal consistency of the factors. Test-retest reliability of the latent factors was assessed using intra-class coefficients. Factorial validity of the scales was assessed using principle components analysis. Construct validity was determined using a cross-validation technique by performing confirmatory factor analysis with the independent nationwide cross-sectional sample of Study II (n = 430). Correlations between factors and three measures of physical activity (objectively measured moderate-to-vigorous physical activity (MVPA), self-reported habitual MVPA and self-reported recent MVPA) were calculated to determine the predictive validity of the instrument. Construct validity of the social support scale (two factors: parental support and peer support) and the physical environment scale (four factors: convenience, public recreation facilities, safety and private sport providers) was shown. Both scales had moderate test-retest reliability. The factors of the social support scale also had good internal consistency and predictive validity. Internal consistency and predictive validity of the physical environment scale were low to acceptable. The results of this study indicate moderate to good reliability and construct validity of the social support scale and physical environment scale. Predictive validity was only confirmed for the social support scale but not for the physical environment scale. Hence, it remains unclear if a person's physical environment has a direct or an indirect effect on physical activity behavior or a moderation function.
NASA Astrophysics Data System (ADS)
Pradhan, Biswajeet
2013-02-01
The purpose of the present study is to compare the prediction performances of three different approaches such as decision tree (DT), support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) for landslide susceptibility mapping at Penang Hill area, Malaysia. The necessary input parameters for the landslide susceptibility assessments were obtained from various sources. At first, landslide locations were identified by aerial photographs and field surveys and a total of 113 landslide locations were constructed. The study area contains 340,608 pixels while total 8403 pixels include landslides. The landslide inventory was randomly partitioned into two subsets: (1) part 1 that contains 50% (4000 landslide grid cells) was used in the training phase of the models; (2) part 2 is a validation dataset 50% (4000 landslide grid cells) for validation of three models and to confirm its accuracy. The digitally processed images of input parameters were combined in GIS. Finally, landslide susceptibility maps were produced, and the performances were assessed and discussed. Total fifteen landslide susceptibility maps were produced using DT, SVM and ANFIS based models, and the resultant maps were validated using the landslide locations. Prediction performances of these maps were checked by receiver operating characteristics (ROC) by using both success rate curve and prediction rate curve. The validation results showed that, area under the ROC curve for the fifteen models produced using DT, SVM and ANFIS varied from 0.8204 to 0.9421 for success rate curve and 0.7580 to 0.8307 for prediction rate curves, respectively. Moreover, the prediction curves revealed that model 5 of DT has slightly higher prediction performance (83.07), whereas the success rate showed that model 5 of ANFIS has better prediction (94.21) capability among all models. The results of this study showed that landslide susceptibility mapping in the Penang Hill area using the three approaches (e.g., DT, SVM and ANFIS) is viable. As far as the performance of the models are concerned, the results appeared to be quite satisfactory, i.e., the zones determined on the map being zones of relative susceptibility.
The Validity of Conscientiousness Is Overestimated in the Prediction of Job Performance
2015-01-01
Introduction Sensitivity analyses refer to investigations of the degree to which the results of a meta-analysis remain stable when conditions of the data or the analysis change. To the extent that results remain stable, one can refer to them as robust. Sensitivity analyses are rarely conducted in the organizational science literature. Despite conscientiousness being a valued predictor in employment selection, sensitivity analyses have not been conducted with respect to meta-analytic estimates of the correlation (i.e., validity) between conscientiousness and job performance. Methods To address this deficiency, we reanalyzed the largest collection of conscientiousness validity data in the personnel selection literature and conducted a variety of sensitivity analyses. Results Publication bias analyses demonstrated that the validity of conscientiousness is moderately overestimated (by around 30%; a correlation difference of about .06). The misestimation of the validity appears to be due primarily to suppression of small effects sizes in the journal literature. These inflated validity estimates result in an overestimate of the dollar utility of personnel selection by millions of dollars and should be of considerable concern for organizations. Conclusion The fields of management and applied psychology seldom conduct sensitivity analyses. Through the use of sensitivity analyses, this paper documents that the existing literature overestimates the validity of conscientiousness in the prediction of job performance. Our data show that effect sizes from journal articles are largely responsible for this overestimation. PMID:26517553
Foreman, K. Bo; Addison, Odessa; Kim, Han S.; Dibble, Leland E.
2010-01-01
Introduction Despite clear deficits in postural control, most clinical examination tools lack accuracy in identifying persons with Parkinson disease (PD) who have fallen or are at risk for falls. We assert that this is in part due to the lack of ecological validity of the testing. Methods To test this assertion, we examined the responsiveness and predictive validity of the Functional Gait Assessment (FGA), the Pull test, and the Timed up and Go (TUG) during clinically defined ON and OFF medication states. To address responsiveness, ON/OFF medication performance was compared. To address predictive validity, areas under the curve (AUC) of receiver operating characteristic (ROC) curves were compared. Comparisons were made using separate non-parametric tests. Results Thirty-six persons (24 male, 12 female) with PD (22 fallers, 14 non-fallers) participated. Only the FGA was able to detect differences between fallers and non-fallers for both ON/OFF medication testing. The predictive validity of the FGA and the TUG for fall identification was higher during OFF medication compared to ON medication testing. The predictive validity of the FGA was higher than the TUG and the Pull test during ON and OFF medication testing. Discussion In order to most accurately identify fallers, clinicians should test persons with PD in ecologically relevant conditions and tasks. In this study, interpretation of the OFF medication performance and use of the FGA provided more accurate prediction of those who would fall. PMID:21215674
Validation of the Beck Hopelessness Scale in patients with suicide risk.
Rueda-Jaimes, German Eduardo; Castro-Rueda, Vanessa Alexandra; Rangel-Martínez-Villalba, Andrés Mauricio; Moreno-Quijano, Catalina; Martinez-Salazar, Gustavo Adolfo; Camacho, Paul Anthony
Only a few scales have been validated in Spanish for the assessment of suicide risk, and none of them have achieved predictive validity. To determine the validity and reliability of the Beck Hopelessness Scale in patients with suicide risk attending the specialist clinic. The Beck Hopelessness Scale, reasons for living inventory, and the suicide behaviour questionnaire were applied in patients with suicide risk attending the psychiatric clinic and the emergency department. A new assessment was made 30 days later to determine the predictive validity of suicide or suicide attempt. The evaluation included a total of 244 patients, with a mean age of 30.7±13.2 years, and the majority were women. The internal consistency was .9 (Kuder-Richardson formula 20). Four dimensions were found which accounted for 50% of the variance. It was positively correlated with the suicidal behaviour questionnaire (Spearman .48, P<.001), number of suicide attempts (Spearman .25, P<.001), severity of suicide risk (Spearman .23, P<.001). The correlation with the reasons for living inventory was negative (Spearman -.52, P<.001). With a cut-off ≥12, the negative predictive value was 98.4% (95% CI: 94.2-99.8), and the positive predictive value was 14.8% (95% CI: 6.6-27.1). The Beck Hopelessness Scale in Colombian patients with suicidality shows results similar to the original version, with adequate reliability and moderate concurrent and predictive validity. Copyright © 2016 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.
Esbenshade, Adam J; Zhao, Zhiguo; Aftandilian, Catherine; Saab, Raya; Wattier, Rachel L; Beauchemin, Melissa; Miller, Tamara P; Wilkes, Jennifer J; Kelly, Michael J; Fernbach, Alison; Jeng, Michael; Schwartz, Cindy L; Dvorak, Christopher C; Shyr, Yu; Moons, Karl G M; Sulis, Maria-Luisa; Friedman, Debra L
2017-10-01
Pediatric oncology patients are at an increased risk of invasive bacterial infection due to immunosuppression. The risk of such infection in the absence of severe neutropenia (absolute neutrophil count ≥ 500/μL) is not well established and a validated prediction model for blood stream infection (BSI) risk offers clinical usefulness. A 6-site retrospective external validation was conducted using a previously published risk prediction model for BSI in febrile pediatric oncology patients without severe neutropenia: the Esbenshade/Vanderbilt (EsVan) model. A reduced model (EsVan2) excluding 2 less clinically reliable variables also was created using the initial EsVan model derivative cohort, and was validated using all 5 external validation cohorts. One data set was used only in sensitivity analyses due to missing some variables. From the 5 primary data sets, there were a total of 1197 febrile episodes and 76 episodes of bacteremia. The overall C statistic for predicting bacteremia was 0.695, with a calibration slope of 0.50 for the original model and a calibration slope of 1.0 when recalibration was applied to the model. The model performed better in predicting high-risk bacteremia (gram-negative or Staphylococcus aureus infection) versus BSI alone, with a C statistic of 0.801 and a calibration slope of 0.65. The EsVan2 model outperformed the EsVan model across data sets with a C statistic of 0.733 for predicting BSI and a C statistic of 0.841 for high-risk BSI. The results of this external validation demonstrated that the EsVan and EsVan2 models are able to predict BSI across multiple performance sites and, once validated and implemented prospectively, could assist in decision making in clinical practice. Cancer 2017;123:3781-3790. © 2017 American Cancer Society. © 2017 American Cancer Society.
Vidrine, Jennifer Irvin; Vidrine, Damon J; Costello, Tracy J; Mazas, Carlos; Cofta-Woerpel, Ludmila; Mejia, Luz Maria; Wetter, David W
2009-11-01
Much of the existing research on smoking outcome expectancies has been guided by the Smoking Consequences Questionnaire (SCQ ). Although the original version of the SCQ has been modified over time for use in different populations, none of the existing versions have been evaluated for use among Spanish-speaking Latino smokers in the United States. The present study evaluated the factor structure and predictive validity of the 3 previously validated versions of the SCQ--the original, the SCQ-Adult, and the SCQ-Spanish, which was developed with Spanish-speaking smokers in Spain--among Spanish-speaking Latino smokers in Texas. The SCQ-Spanish represented the least complex solution. Each of the SCQ-Spanish scales had good internal consistency, and the predictive validity of the SCQ-Spanish was partially supported. Nearly all the SCQ-Spanish scales predicted withdrawal severity even after controlling for demographics and dependence. Boredom Reduction predicted smoking relapse across the 5- and 12-week follow-up assessments in a multivariate model that also controlled for demographics and dependence. Our results support use of the SCQ-Spanish with Spanish-speaking Latino smokers in the United States.
Kuncel, Nathan R; Hezlett, Sarah A; Ones, Deniz S
2004-01-01
This meta-analysis addresses the question of whether 1 general cognitive ability measure developed for predicting academic performance is valid for predicting performance in both educational and work domains. The validity of the Miller Analogies Test (MAT; W. S. Miller, 1960) for predicting 18 academic and work-related criteria was examined. MAT correlations with other cognitive tests (e.g., Raven's Matrices [J. C. Raven, 1965]; Graduate Record Examinations) also were meta-analyzed. The results indicate that the abilities measured by the MAT are shared with other cognitive ability instruments and that these abilities are generalizably valid predictors of academic and vocational criteria, as well as evaluations of career potential and creativity. These findings contradict the notion that intelligence at work is wholly different from intelligence at school, extending the voluminous literature that supports the broad importance of general cognitive ability (g).
Cross-validation pitfalls when selecting and assessing regression and classification models.
Krstajic, Damjan; Buturovic, Ljubomir J; Leahy, David E; Thomas, Simon
2014-03-29
We address the problem of selecting and assessing classification and regression models using cross-validation. Current state-of-the-art methods can yield models with high variance, rendering them unsuitable for a number of practical applications including QSAR. In this paper we describe and evaluate best practices which improve reliability and increase confidence in selected models. A key operational component of the proposed methods is cloud computing which enables routine use of previously infeasible approaches. We describe in detail an algorithm for repeated grid-search V-fold cross-validation for parameter tuning in classification and regression, and we define a repeated nested cross-validation algorithm for model assessment. As regards variable selection and parameter tuning we define two algorithms (repeated grid-search cross-validation and double cross-validation), and provide arguments for using the repeated grid-search in the general case. We show results of our algorithms on seven QSAR datasets. The variation of the prediction performance, which is the result of choosing different splits of the dataset in V-fold cross-validation, needs to be taken into account when selecting and assessing classification and regression models. We demonstrate the importance of repeating cross-validation when selecting an optimal model, as well as the importance of repeating nested cross-validation when assessing a prediction error.
Dynamic Simulation of Human Gait Model With Predictive Capability.
Sun, Jinming; Wu, Shaoli; Voglewede, Philip A
2018-03-01
In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.
NASA Astrophysics Data System (ADS)
Parkin, G.; O'Donnell, G.; Ewen, J.; Bathurst, J. C.; O'Connell, P. E.; Lavabre, J.
1996-02-01
Validation methods commonly used to test catchment models are not capable of demonstrating a model's fitness for making predictions for catchments where the catchment response is not known (including hypothetical catchments, and future conditions of existing catchments which are subject to land-use or climate change). This paper describes the first use of a new method of validation (Ewen and Parkin, 1996. J. Hydrol., 175: 583-594) designed to address these types of application; the method involves making 'blind' predictions of selected hydrological responses which are considered important for a particular application. SHETRAN (a physically based, distributed catchment modelling system) is tested on a small Mediterranean catchment. The test involves quantification of the uncertainty in four predicted features of the catchment response (continuous hydrograph, peak discharge rates, monthly runoff, and total runoff), and comparison of observations with the predicted ranges for these features. The results of this test are considered encouraging.
The Alcohol Relapse Situation Appraisal Questionnaire: Development and Validation
Martin, Rosemarie A.; MacKinnon, Selene M.; Johnson, Jennifer E.; Myers, Mark G.; Cook, Travis A. R.; Rohsenow, Damaris J.
2011-01-01
Background The role of cognitive appraisal of the threat of alcohol relapse has received little attention. A previous instrument, the Relapse Situation Appraisal Questionnaire (RSAQ), was developed to assess cocaine users’ primary appraisal of the threat of situations posing a high risk for cocaine relapse. The purpose of the present study was to modify the RSAQ in order to measure primary appraisal in situations involving a high risk for alcohol relapse. Methods The development and psychometric properties of this instrument, the Alcohol Relapse Situation Appraisal Questionnaire (A-RSAQ), were examined with two samples of abstinent adults with alcohol abuse or dependence. Factor structure and validity were examined in Study 1 (N=104). Confirmation of the factor structure and predictive validity were assessed in Study 2 (N=161). Results Results demonstrated construct, discriminant and predictive validity and reliability of the A-RSAQ. Discussion Results support the important role of primary appraisal of degree of risk in alcohol relapse situations. PMID:21237586
Lobo, Daniel; Morokuma, Junji; Levin, Michael
2016-09-01
Automated computational methods can infer dynamic regulatory network models directly from temporal and spatial experimental data, such as genetic perturbations and their resultant morphologies. Recently, a computational method was able to reverse-engineer the first mechanistic model of planarian regeneration that can recapitulate the main anterior-posterior patterning experiments published in the literature. Validating this comprehensive regulatory model via novel experiments that had not yet been performed would add in our understanding of the remarkable regeneration capacity of planarian worms and demonstrate the power of this automated methodology. Using the Michigan Molecular Interactions and STRING databases and the MoCha software tool, we characterized as hnf4 an unknown regulatory gene predicted to exist by the reverse-engineered dynamic model of planarian regeneration. Then, we used the dynamic model to predict the morphological outcomes under different single and multiple knock-downs (RNA interference) of hnf4 and its predicted gene pathway interactors β-catenin and hh Interestingly, the model predicted that RNAi of hnf4 would rescue the abnormal regenerated phenotype (tailless) of RNAi of hh in amputated trunk fragments. Finally, we validated these predictions in vivo by performing the same surgical and genetic experiments with planarian worms, obtaining the same phenotypic outcomes predicted by the reverse-engineered model. These results suggest that hnf4 is a regulatory gene in planarian regeneration, validate the computational predictions of the reverse-engineered dynamic model, and demonstrate the automated methodology for the discovery of novel genes, pathways and experimental phenotypes. michael.levin@tufts.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation
NASA Technical Reports Server (NTRS)
Edwards, Thomas A.; Flores, Jolen
1989-01-01
Computational fluid dynamics (CFD) research for hypersonic flows presents new problems in code validation because of the added complexity of the physical models. This paper surveys code validation procedures applicable to hypersonic flow models that include real gas effects. The current status of hypersonic CFD flow analysis is assessed with the Compressible Navier-Stokes (CNS) code as a case study. The methods of code validation discussed to beyond comparison with experimental data to include comparisons with other codes and formulations, component analyses, and estimation of numerical errors. Current results indicate that predicting hypersonic flows of perfect gases and equilibrium air are well in hand. Pressure, shock location, and integrated quantities are relatively easy to predict accurately, while surface quantities such as heat transfer are more sensitive to the solution procedure. Modeling transition to turbulence needs refinement, though preliminary results are promising.
Disentangling the Predictive Validity of High School Grades for Academic Success in University
ERIC Educational Resources Information Center
Vulperhorst, Jonne; Lutz, Christel; de Kleijn, Renske; van Tartwijk, Jan
2018-01-01
To refine selective admission models, we investigate which measure of prior achievement has the best predictive validity for academic success in university. We compare the predictive validity of three core high school subjects to the predictive validity of high school grade point average (GPA) for academic achievement in a liberal arts university…
Prediction of the space adaptation syndrome
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Homick, J. L.; Ryan, P.; Moseley, E. C.
1984-01-01
The univariate and multivariate relationships of provocative measures used to produce motion sickness symptoms were described. Normative subjects were used to develop and cross-validate sets of linear equations that optimally predict motion sickness in parabolic flights. The possibility of reducing the number of measurements required for prediction was assessed. After describing the variables verbally and statistically for 159 subjects, a factor analysis of 27 variables was completed to improve understanding of the relationships between variables and to reduce the number of measures for prediction purposes. The results of this analysis show that none of variables are significantly related to the responses to parabolic flights. A set of variables was selected to predict responses to KC-135 flights. A series of discriminant analyses were completed. Results indicate that low, moderate, or severe susceptibility could be correctly predicted 64 percent and 53 percent of the time on original and cross-validation samples, respectively. Both the factor analysis and the discriminant analysis provided no basis for reducing the number of tests.
Validity of a Manual Soft Tissue Profile Prediction Method Following Mandibular Setback Osteotomy
Kolokitha, Olga-Elpis
2007-01-01
Objectives The aim of this study was to determine the validity of a manual cephalometric method used for predicting the post-operative soft tissue profiles of patients who underwent mandibular setback surgery and compare it to a computerized cephalometric prediction method (Dentofacial Planner). Lateral cephalograms of 18 adults with mandibular prognathism taken at the end of pre-surgical orthodontics and approximately one year after surgery were used. Methods To test the validity of the manual method the prediction tracings were compared to the actual post-operative tracings. The Dentofacial Planner software was used to develop the computerized post-surgical prediction tracings. Both manual and computerized prediction printouts were analyzed by using the cephalometric system PORDIOS. Statistical analysis was performed by means of t-test. Results Comparison between manual prediction tracings and the actual post-operative profile showed that the manual method results in more convex soft tissue profiles; the upper lip was found in a more prominent position, upper lip thickness was increased and, the mandible and lower lip were found in a less posterior position than that of the actual profiles. Comparison between computerized and manual prediction methods showed that in the manual method upper lip thickness was increased, the upper lip was found in a more anterior position and the lower anterior facial height was increased as compared to the computerized prediction method. Conclusions Cephalometric simulation of post-operative soft tissue profile following orthodontic-surgical management of mandibular prognathism imposes certain limitations related to the methods implied. However, both manual and computerized prediction methods remain a useful tool for patient communication. PMID:19212468
Sa, Sha; Li, Jing; Li, Xiaodong; Li, Yongrui; Liu, Xiaoming; Wang, Defeng; Zhang, Huimao; Fu, Yu
2017-08-15
This study aimed to establish and evaluate the efficacy of a prediction model for colorectal cancer T-staging. T-staging was positively correlated with the level of carcinoembryonic antigen (CEA), expression of carbohydrate antigen 19-9 (CA19-9), wall deformity, blurred outer edges, fat infiltration, infiltration into the surrounding tissue, tumor size and wall thickness. Age, location, enhancement rate and enhancement homogeneity were negatively correlated with T-staging. The predictive results of the model were consistent with the pathological gold standard, and the kappa value was 0.805. The total accuracy of staging improved from 51.04% to 86.98% with the proposed model. The clinical, imaging and pathological data of 611 patients with colorectal cancer (419 patients in the training group and 192 patients in the validation group) were collected. A spearman correlation analysis was used to validate the relationship among these factors and pathological T-staging. A prediction model was trained with the random forest algorithm. T staging of the patients in the validation group was predicted by both prediction model and traditional method. The consistency, accuracy, sensitivity, specificity and area under the curve (AUC) were used to compare the efficacy of the two methods. The newly established comprehensive model can improve the predictive efficiency of preoperative colorectal cancer T-staging.
Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Turner, Travis L.
2001-01-01
This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.
Towards Bridging the Gaps in Holistic Transition Prediction via Numerical Simulations
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Duan, Lian; Chang, Chau-Lyan; Carpenter, Mark H.; Streett, Craig L.; Malik, Mujeeb R.
2013-01-01
The economic and environmental benefits of laminar flow technology via reduced fuel burn of subsonic and supersonic aircraft cannot be realized without minimizing the uncertainty in drag prediction in general and transition prediction in particular. Transition research under NASA's Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable "sufficiently" accurate transition prediction and practical transition control for future vehicle concepts. This paper provides a summary of selected research activities targeting the current gaps in high-fidelity transition prediction, specifically those related to the receptivity and laminar breakdown phases of crossflow induced transition in a subsonic swept-wing boundary layer. The results of direct numerical simulations are used to obtain an enhanced understanding of the laminar breakdown region as well as to validate reduced order prediction methods.
Hill, Mary C.; L. Foglia,; S. W. Mehl,; P. Burlando,
2013-01-01
Model adequacy is evaluated with alternative models rated using model selection criteria (AICc, BIC, and KIC) and three other statistics. Model selection criteria are tested with cross-validation experiments and insights for using alternative models to evaluate model structural adequacy are provided. The study is conducted using the computer codes UCODE_2005 and MMA (MultiModel Analysis). One recharge alternative is simulated using the TOPKAPI hydrological model. The predictions evaluated include eight heads and three flows located where ecological consequences and model precision are of concern. Cross-validation is used to obtain measures of prediction accuracy. Sixty-four models were designed deterministically and differ in representation of river, recharge, bedrock topography, and hydraulic conductivity. Results include: (1) What may seem like inconsequential choices in model construction may be important to predictions. Analysis of predictions from alternative models is advised. (2) None of the model selection criteria consistently identified models with more accurate predictions. This is a disturbing result that suggests to reconsider the utility of model selection criteria, and/or the cross-validation measures used in this work to measure model accuracy. (3) KIC displayed poor performance for the present regression problems; theoretical considerations suggest that difficulties are associated with wide variations in the sensitivity term of KIC resulting from the models being nonlinear and the problems being ill-posed due to parameter correlations and insensitivity. The other criteria performed somewhat better, and similarly to each other. (4) Quantities with high leverage are more difficult to predict. The results are expected to be generally applicable to models of environmental systems.
Müller, Martin; Seidenberg, Ruth; Schuh, Sabine K; Exadaktylos, Aristomenis K; Schechter, Clyde B; Leichtle, Alexander B; Hautz, Wolf E
2018-01-01
Patients presenting with suspected urinary tract infection are common in every day emergency practice. Urine flow cytometry has replaced microscopic urine evaluation in many emergency departments, but interpretation of the results remains challenging. The aim of this study was to develop and validate tools that predict urine culture growth out of urine flow cytometry parameter. This retrospective study included all adult patients that presented in a large emergency department between January and July 2017 with a suspected urinary tract infection and had a urine flow cytometry as well as a urine culture obtained. The objective was to identify urine flow cytometry parameters that reliably predict urine culture growth and mixed flora growth. The data set was split into a training (70%) and a validation set (30%) and different decision-making approaches were developed and validated. Relevant urine culture growth (respectively mixed flora growth) was found in 40.2% (7.2% respectively) of the 613 patients included. The number of leukocytes and bacteria in flow cytometry were highly associated with urine culture growth, but mixed flora growth could not be sufficiently predicted from the urine flow cytometry parameters. A decision tree, predictive value figures, a nomogram, and a cut-off table to predict urine culture growth from bacteria and leukocyte count were developed, validated and compared. Urine flow cytometry parameters are insufficient to predict mixed flora growth. However, the prediction of urine culture growth based on bacteria and leukocyte count is highly accurate and the developed tools should be used as part of the decision-making process of ordering a urine culture or starting an antibiotic therapy if a urogenital infection is suspected.
Sun, Jiangming; Carlsson, Lars; Ahlberg, Ernst; Norinder, Ulf; Engkvist, Ola; Chen, Hongming
2017-07-24
Conformal prediction has been proposed as a more rigorous way to define prediction confidence compared to other application domain concepts that have earlier been used for QSAR modeling. One main advantage of such a method is that it provides a prediction region potentially with multiple predicted labels, which contrasts to the single valued (regression) or single label (classification) output predictions by standard QSAR modeling algorithms. Standard conformal prediction might not be suitable for imbalanced data sets. Therefore, Mondrian cross-conformal prediction (MCCP) which combines the Mondrian inductive conformal prediction with cross-fold calibration sets has been introduced. In this study, the MCCP method was applied to 18 publicly available data sets that have various imbalance levels varying from 1:10 to 1:1000 (ratio of active/inactive compounds). Our results show that MCCP in general performed well on bioactivity data sets with various imbalance levels. More importantly, the method not only provides confidence of prediction and prediction regions compared to standard machine learning methods but also produces valid predictions for the minority class. In addition, a compound similarity based nonconformity measure was investigated. Our results demonstrate that although it gives valid predictions, its efficiency is much worse than that of model dependent metrics.
Fitzsimmons-Craft, Ellen E; Bardone-Cone, Anna M
2014-01-01
This study examined the one-year temporal stability and the predictive and incremental validity of the Body, Eating, and Exercise Comparison Measure (BEECOM) in a sample of 237 college women who completed study measures at two time points about one year apart. One-year temporal stability was high for the BEECOM total and subscale (i.e., Body, Eating, and Exercise Comparison Orientation) scores. Additionally, the BEECOM exhibited predictive validity in that it accounted for variance in body dissatisfaction and eating disorder symptomatology one year later. These findings held even after controlling for body mass index and existing measures of social comparison orientation. However, results regarding the incremental validity of the BEECOM, or its ability to predict change in these constructs over time, were more mixed. Overall, this study demonstrated additional psychometric properties of the BEECOM among college women, further establishing the usefulness of this measure for more comprehensively assessing eating disorder-related social comparison. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liu, Wen; Cheng, Ruochuan; Ma, Yunhai; Wang, Dan; Su, Yanjun; Diao, Chang; Zhang, Jianming; Qian, Jun; Liu, Jin
2018-05-03
Early preoperative diagnosis of central lymph node metastasis (CNM) is crucial to improve survival rates among patients with papillary thyroid carcinoma (PTC). Here, we analyzed clinical data from 2862 PTC patients and developed a scoring system using multivariable logistic regression and testified by the validation group. The predictive diagnostic effectiveness of the scoring system was evaluated based on consistency, discrimination ability, and accuracy. The scoring system considered seven variables: gender, age, tumor size, microcalcification, resistance index >0.7, multiple nodular lesions, and extrathyroid extension. The area under the receiver operating characteristic curve (AUC) was 0.742, indicating a good discrimination. Using 5 points as a diagnostic threshold, the validation results for validation group had an AUC of 0.758, indicating good discrimination and consistency in the scoring system. The sensitivity of this predictive model for preoperative diagnosis of CNM was 4 times higher than a direct ultrasound diagnosis. These data indicate that the CNM prediction model would improve preoperative diagnostic sensitivity for CNM in patients with papillary thyroid carcinoma.
Finding Furfural Hydrogenation Catalysts via Predictive Modelling
Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi
2010-01-01
Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (kH:kD=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R2=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model’s predictions, demonstrating the validity and value of predictive modelling in catalyst optimization. PMID:23193388
Rosellini, Anthony J.; Monahan, John; Street, Amy E.; Heeringa, Steven G.; Hill, Eric D.; Petukhova, Maria; Reis, Ben Y.; Sampson, Nancy A.; Bliese, Paul; Schoenbaum, Michael; Stein, Murray B.; Ursano, Robert; Kessler, Ronald C.
2016-01-01
BACKGROUND Although interventions exist to reduce violent crime, optimal implementation requires accurate targeting. We report the results of an attempt to develop an actuarial model using machine learning methods to predict future violent crimes among U.S. Army soldiers. METHODS A consolidated administrative database for all 975,057 soldiers in the U.S. Army in 2004-2009 was created in the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). 5,771 of these soldiers committed a first founded major physical violent crime (murder-manslaughter, kidnapping, aggravated arson, aggravated assault, robbery) over that time period. Temporally prior administrative records measuring socio-demographic, Army career, criminal justice, medical/pharmacy, and contextual variables were used to build an actuarial model for these crimes separately among men and women using machine learning methods (cross-validated stepwise regression; random forests; penalized regressions). The model was then validated in an independent 2011-2013 sample. RESULTS Key predictors were indicators of disadvantaged social/socio-economic status, early career stage, prior crime, and mental disorder treatment. Area under the receiver operating characteristic curve was .80-.82 in 2004-2009 and .77 in a 2011-2013 validation sample. 36.2-33.1% (male-female) of all administratively-recorded crimes were committed by the 5% of soldiers having highest predicted risk in 2004-2009 and an even higher proportion (50.5%) in the 2011-2013 validation sample. CONCLUSIONS Although these results suggest that the models could be used to target soldiers at high risk of violent crime perpetration for preventive interventions, final implementation decisions would require further validation and weighing of predicted effectiveness against intervention costs and competing risks. PMID:26436603
A Novel Admixture-Based Pharmacogenetic Approach to Refine Warfarin Dosing in Caribbean Hispanics
Claudio-Campos, Karla; Rivera-Miranda, Giselle; Bermúdez-Bosch, Luis; Renta, Jessicca Y.; Cadilla, Carmen L.; Cruz, Iadelisse; Feliu, Juan F.; Vergara, Cunegundo; Ruaño, Gualberto
2016-01-01
Aim This study is aimed at developing a novel admixture-adjusted pharmacogenomic approach to individually refine warfarin dosing in Caribbean Hispanic patients. Patients & Methods A multiple linear regression analysis of effective warfarin doses versus relevant genotypes, admixture, clinical and demographic factors was performed in 255 patients and further validated externally in another cohort of 55 individuals. Results The admixture-adjusted, genotype-guided warfarin dosing refinement algorithm developed in Caribbean Hispanics showed better predictability (R2 = 0.70, MAE = 0.72mg/day) than a clinical algorithm that excluded genotypes and admixture (R2 = 0.60, MAE = 0.99mg/day), and outperformed two prior pharmacogenetic algorithms in predicting effective dose in this population. For patients at the highest risk of adverse events, 45.5% of the dose predictions using the developed pharmacogenetic model resulted in ideal dose as compared with only 29% when using the clinical non-genetic algorithm (p<0.001). The admixture-driven pharmacogenetic algorithm predicted 58% of warfarin dose variance when externally validated in 55 individuals from an independent validation cohort (MAE = 0.89 mg/day, 24% mean bias). Conclusions Results supported our rationale to incorporate individual’s genotypes and unique admixture metrics into pharmacogenetic refinement models in order to increase predictability when expanding them to admixed populations like Caribbean Hispanics. Trial Registration ClinicalTrials.gov NCT01318057 PMID:26745506
Adaptation of clinical prediction models for application in local settings.
Kappen, Teus H; Vergouwe, Yvonne; van Klei, Wilton A; van Wolfswinkel, Leo; Kalkman, Cor J; Moons, Karel G M
2012-01-01
When planning to use a validated prediction model in new patients, adequate performance is not guaranteed. For example, changes in clinical practice over time or a different case mix than the original validation population may result in inaccurate risk predictions. To demonstrate how clinical information can direct updating a prediction model and development of a strategy for handling missing predictor values in clinical practice. A previously derived and validated prediction model for postoperative nausea and vomiting was updated using a data set of 1847 patients. The update consisted of 1) changing the definition of an existing predictor, 2) reestimating the regression coefficient of a predictor, and 3) adding a new predictor to the model. The updated model was then validated in a new series of 3822 patients. Furthermore, several imputation models were considered to handle real-time missing values, so that possible missing predictor values could be anticipated during actual model use. Differences in clinical practice between our local population and the original derivation population guided the update strategy of the prediction model. The predictive accuracy of the updated model was better (c statistic, 0.68; calibration slope, 1.0) than the original model (c statistic, 0.62; calibration slope, 0.57). Inclusion of logistical variables in the imputation models, besides observed patient characteristics, contributed to a strategy to deal with missing predictor values at the time of risk calculation. Extensive knowledge of local, clinical processes provides crucial information to guide the process of adapting a prediction model to new clinical practices.
Three-dimensional water droplet trajectory code validation using an ECS inlet geometry
NASA Technical Reports Server (NTRS)
Breer, Marlin D.; Goodman, Mark P.
1993-01-01
A task was completed under NASA contract, the purpose of which was to validate a three-dimensional particle trajectory code with existing test data obtained from the Icing Research Tunnel at NASA-LeRC. The geometry analyzed was a flush-mounted environmental control system (ECS) inlet. Results of the study indicated good overall agreement between analytical predictions and wind tunnel test results at most flight conditions. Difficulties were encountered when predicting impingement characteristics of the droplets less than or equal to 13.5 microns in diameter. This difficulty was corrected to some degree by modifications to a module of the particle trajectory code; however, additional modifications will be required to accurately predict impingement characteristics of smaller droplets.
The importance of measuring growth in response to intervention models: Testing a core assumption✩
Schatschneider, Christopher; Wagner, Richard K.; Crawford, Elizabeth C.
2011-01-01
A core assumption of response to instruction or intervention (RTI) models is the importance of measuring growth in achievement over time in response to effective instruction or intervention. Many RTI models actively monitor growth for identifying individuals who need different levels of intervention. A large-scale (N=23,438), two-year longitudinal study of first grade children was carried out to compare the predictive validity of measures of achievement status, growth in achievement, and their combination for predicting future reading achievement. The results indicate that under typical conditions, measures of growth do not make a contribution to prediction that is independent of measures of achievement status. These results question the validity of a core assumption of RTI models. PMID:22224065
Bittante, G; Ferragina, A; Cipolat-Gotet, C; Cecchinato, A
2014-10-01
Cheese yield is an important technological trait in the dairy industry. The aim of this study was to infer the genetic parameters of some cheese yield-related traits predicted using Fourier-transform infrared (FTIR) spectral analysis and compare the results with those obtained using an individual model cheese-producing procedure. A total of 1,264 model cheeses were produced using 1,500-mL milk samples collected from individual Brown Swiss cows, and individual measurements were taken for 10 traits: 3 cheese yield traits (fresh curd, curd total solids, and curd water as a percent of the weight of the processed milk), 4 milk nutrient recovery traits (fat, protein, total solids, and energy of the curd as a percent of the same nutrient in the processed milk), and 3 daily cheese production traits per cow (fresh curd, total solids, and water weight of the curd). Each unprocessed milk sample was analyzed using a MilkoScan FT6000 (Foss, Hillerød, Denmark) over the spectral range, from 5,000 to 900 wavenumber × cm(-1). The FTIR spectrum-based prediction models for the previously mentioned traits were developed using modified partial least-square regression. Cross-validation of the whole data set yielded coefficients of determination between the predicted and measured values in cross-validation of 0.65 to 0.95 for all traits, except for the recovery of fat (0.41). A 3-fold external validation was also used, in which the available data were partitioned into 2 subsets: a training set (one-third of the herds) and a testing set (two-thirds). The training set was used to develop calibration equations, whereas the testing subsets were used for external validation of the calibration equations and to estimate the heritabilities and genetic correlations of the measured and FTIR-predicted phenotypes. The coefficients of determination between the predicted and measured values in cross-validation results obtained from the training sets were very similar to those obtained from the whole data set, but the coefficient of determination of validation values for the external validation sets were much lower for all traits (0.30 to 0.73), and particularly for fat recovery (0.05 to 0.18), for the training sets compared with the full data set. For each testing subset, the (co)variance components for the measured and FTIR-predicted phenotypes were estimated using bivariate Bayesian analyses and linear models. The intraherd heritabilities for the predicted traits obtained from our internal cross-validation using the whole data set ranged from 0.085 for daily yield of curd solids to 0.576 for protein recovery, and were similar to those obtained from the measured traits (0.079 to 0.586, respectively). The heritabilities estimated from the testing data set used for external validation were more variable but similar (on average) to the corresponding values obtained from the whole data set. Moreover, the genetic correlations between the predicted and measured traits were high in general (0.791 to 0.996), and they were always higher than the corresponding phenotypic correlations (0.383 to 0.995), especially for the external validation subset. In conclusion, we herein report that application of the cross-validation technique to the whole data set tended to overestimate the predictive ability of FTIR spectra, give more precise phenotypic predictions than the calibrations obtained using smaller data sets, and yield genetic correlations similar to those obtained from the measured traits. Collectively, our findings indicate that FTIR predictions have the potential to be used as indicator traits for the rapid and inexpensive selection of dairy populations for improvement of cheese yield, milk nutrient recovery in curd, and daily cheese production per cow. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Weidhaas, Joanne B.; Li, Shu-Xia; Winter, Kathryn; Ryu, Janice; Jhingran, Anuja; Miller, Bridgette; Dicker, Adam P.; Gaffney, David
2009-01-01
Purpose To evaluate the potential of gene expression signatures to predict response to treatment in locally advanced cervical cancer treated with definitive chemotherapy and radiation. Experimental Design Tissue biopsies were collected from patients participating in Radiation Therapy Oncology Group (RTOG) 0128, a phase II trial evaluating the benefit of celecoxib in addition to cisplatin chemotherapy and radiation for locally advanced cervical cancer. Gene expression profiling was done and signatures of pretreatment, mid-treatment (before the first implant), and “changed” gene expression patterns between pre- and mid-treatment samples were determined. The ability of the gene signatures to predict local control versus local failure was evaluated. Two-group t test was done to identify the initial gene set separating these end points. Supervised classification methods were used to enrich the gene sets. The results were further validated by leave-one-out and 2-fold cross-validation. Results Twenty-two patients had suitable material from pretreatment samples for analysis, and 13 paired pre- and mid-treatment samples were obtained. The changed gene expression signatures between the pre- and mid-treatment biopsies predicted response to treatment, separating patients with local failures from those who achieved local control with a seven-gene signature. The in-sample prediction rate, leave-one-out prediction rate, and 2-fold prediction rate are 100% for this seven-gene signature. This signature was enriched for cell cycle genes. Conclusions Changed gene expression signatures during therapy in cervical cancer can predict outcome as measured by local control. After further validation, such findings could be applied to direct additional therapy for cervical cancer patients treated with chemotherapy and radiation. PMID:19509178
Nnoaham, Kelechi E.; Hummelshoj, Lone; Kennedy, Stephen H.; Jenkinson, Crispin; Zondervan, Krina T.
2012-01-01
Objective To generate and validate symptom-based models to predict endometriosis among symptomatic women prior to undergoing their first laparoscopy. Design Prospective, observational, two-phase study, in which women completed a 25-item questionnaire prior to surgery. Setting Nineteen hospitals in 13 countries. Patient(s) Symptomatic women (n = 1,396) scheduled for laparoscopy without a previous surgical diagnosis of endometriosis. Intervention(s) None. Main Outcome Measure(s) Sensitivity and specificity of endometriosis diagnosis predicted by symptoms and patient characteristics from optimal models developed using multiple logistic regression analyses in one data set (phase I), and independently validated in a second data set (phase II) by receiver operating characteristic (ROC) curve analysis. Result(s) Three hundred sixty (46.7%) women in phase I and 364 (58.2%) in phase II were diagnosed with endometriosis at laparoscopy. Menstrual dyschezia (pain on opening bowels) and a history of benign ovarian cysts most strongly predicted both any and stage III and IV endometriosis in both phases. Prediction of any-stage endometriosis, although improved by ultrasound scan evidence of cyst/nodules, was relatively poor (area under the curve [AUC] = 68.3). Stage III and IV disease was predicted with good accuracy (AUC = 84.9, sensitivity of 82.3% and specificity 75.8% at an optimal cut-off of 0.24). Conclusion(s) Our symptom-based models predict any-stage endometriosis relatively poorly and stage III and IV disease with good accuracy. Predictive tools based on such models could help to prioritize women for surgical investigation in clinical practice and thus contribute to reducing time to diagnosis. We invite other researchers to validate the key models in additional populations. PMID:22657249
Assessing the stability of human locomotion: a review of current measures
Bruijn, S. M.; Meijer, O. G.; Beek, P. J.; van Dieën, J. H.
2013-01-01
Falling poses a major threat to the steadily growing population of the elderly in modern-day society. A major challenge in the prevention of falls is the identification of individuals who are at risk of falling owing to an unstable gait. At present, several methods are available for estimating gait stability, each with its own advantages and disadvantages. In this paper, we review the currently available measures: the maximum Lyapunov exponent (λS and λL), the maximum Floquet multiplier, variability measures, long-range correlations, extrapolated centre of mass, stabilizing and destabilizing forces, foot placement estimator, gait sensitivity norm and maximum allowable perturbation. We explain what these measures represent and how they are calculated, and we assess their validity, divided up into construct validity, predictive validity in simple models, convergent validity in experimental studies, and predictive validity in observational studies. We conclude that (i) the validity of variability measures and λS is best supported across all levels, (ii) the maximum Floquet multiplier and λL have good construct validity, but negative predictive validity in models, negative convergent validity and (for λL) negative predictive validity in observational studies, (iii) long-range correlations lack construct validity and predictive validity in models and have negative convergent validity, and (iv) measures derived from perturbation experiments have good construct validity, but data are lacking on convergent validity in experimental studies and predictive validity in observational studies. In closing, directions for future research on dynamic gait stability are discussed. PMID:23516062
A whole blood gene expression-based signature for smoking status
2012-01-01
Background Smoking is the leading cause of preventable death worldwide and has been shown to increase the risk of multiple diseases including coronary artery disease (CAD). We sought to identify genes whose levels of expression in whole blood correlate with self-reported smoking status. Methods Microarrays were used to identify gene expression changes in whole blood which correlated with self-reported smoking status; a set of significant genes from the microarray analysis were validated by qRT-PCR in an independent set of subjects. Stepwise forward logistic regression was performed using the qRT-PCR data to create a predictive model whose performance was validated in an independent set of subjects and compared to cotinine, a nicotine metabolite. Results Microarray analysis of whole blood RNA from 209 PREDICT subjects (41 current smokers, 4 quit ≤ 2 months, 64 quit > 2 months, 100 never smoked; NCT00500617) identified 4214 genes significantly correlated with self-reported smoking status. qRT-PCR was performed on 1,071 PREDICT subjects across 256 microarray genes significantly correlated with smoking or CAD. A five gene (CLDND1, LRRN3, MUC1, GOPC, LEF1) predictive model, derived from the qRT-PCR data using stepwise forward logistic regression, had a cross-validated mean AUC of 0.93 (sensitivity=0.78; specificity=0.95), and was validated using 180 independent PREDICT subjects (AUC=0.82, CI 0.69-0.94; sensitivity=0.63; specificity=0.94). Plasma from the 180 validation subjects was used to assess levels of cotinine; a model using a threshold of 10 ng/ml cotinine resulted in an AUC of 0.89 (CI 0.81-0.97; sensitivity=0.81; specificity=0.97; kappa with expression model = 0.53). Conclusion We have constructed and validated a whole blood gene expression score for the evaluation of smoking status, demonstrating that clinical and environmental factors contributing to cardiovascular disease risk can be assessed by gene expression. PMID:23210427
Reliability and Validity of the Work and Well-Being Inventory (WBI) for Employees.
Vendrig, A A; Schaafsma, F G
2018-06-01
Purpose The purpose of this study is to measure the psychometric properties of the Work and Wellbeing Inventory (WBI) (in Dutch: VAR-2), a screening tool that is used within occupational health care and rehabilitation. Our research question focused on the reliability and validity of this inventory. Methods Over the years seven different samples of workers, patients and sick listed workers varying in size between 89 and 912 participants (total: 2514), were used to measure the test-retest reliability, the internal consistency, the construct and concurrent validity, and the criterion and predictive validity. Results The 13 scales displayed good internal consistency and test-retest reliability. The constructive validity of the WBI could clearly be demonstrated in both patients and healthy workers. Confirmative factor analyses revealed a CFI >.90 for all scales. The depression scale predicted future work absenteeism (>6 weeks) because of a common mental disorder in healthy workers. The job strain scale and the illness behavior scale predicted long term absenteeism (>3 months) in workers with short-term absenteeism. The illness behavior scale moderately predicted return to work in rehab patients attending an intensive multidisciplinary program. Conclusions The WBI is a valid and reliable tool for occupational health practitioners to screen for risk factors for prolonged or future sickness absence. With this tool they will have reliable indications for further advice and interventions to restore the work ability.
Su, G; Ma, P; Nielsen, U S; Aamand, G P; Wiggans, G; Guldbrandtsen, B; Lund, M S
2016-06-01
Small reference populations limit the accuracy of genomic prediction in numerically small breeds, such like Danish Jersey. The objective of this study was to investigate two approaches to improve genomic prediction by increasing size of reference population in Danish Jersey. The first approach was to include North American Jersey bulls in Danish Jersey reference population. The second was to genotype cows and use them as reference animals. The validation of genomic prediction was carried out on bulls and cows, respectively. In validation on bulls, about 300 Danish bulls (depending on traits) born in 2005 and later were used as validation data, and the reference populations were: (1) about 1050 Danish bulls, (2) about 1050 Danish bulls and about 1150 US bulls. In validation on cows, about 3000 Danish cows from 87 young half-sib families were used as validation data, and the reference populations were: (1) about 1250 Danish bulls, (2) about 1250 Danish bulls and about 1150 US bulls, (3) about 1250 Danish bulls and about 4800 cows, (4) about 1250 Danish bulls, 1150 US bulls and 4800 Danish cows. Genomic best linear unbiased prediction model was used to predict breeding values. De-regressed proofs were used as response variables. In the validation on bulls for eight traits, the joint DK-US bull reference population led to higher reliability of genomic prediction than the DK bull reference population for six traits, but not for fertility and longevity. Averaged over the eight traits, the gain was 3 percentage points. In the validation on cows for six traits (fertility and longevity were not available), the gain from inclusion of US bull in reference population was 6.6 percentage points in average over the six traits, and the gain from inclusion of cows was 8.2 percentage points. However, the gains from cows and US bulls were not accumulative. The total gain of including both US bulls and Danish cows was 10.5 percentage points. The results indicate that sharing reference data and including cows in reference population are efficient approaches to increase reliability of genomic prediction. Therefore, genomic selection is promising for numerically small population.
Nursing students' confidence in medication calculations predicts math exam performance.
Andrew, Sharon; Salamonson, Yenna; Halcomb, Elizabeth J
2009-02-01
The aim of this study was to examine the psychometric properties, including predictive validity, of the newly-developed nursing self-efficacy for mathematics (NSE-Math). The NSE-Math is a 12 item scale that comprises items related to mathematic and arithmetic concepts underpinning medication calculations. The NSE-Math instrument was administered to second year Bachelor of Nursing students enrolled in a nursing practice subject. Students' academic results for a compulsory medication calculation examination for this subject were collected. One-hundred and twelve students (73%) completed both the NSE-Math instrument and the drug calculation assessment task. The NSE-Math demonstrated two factors 'Confidence in application of mathematic concepts to nursing practice' and 'Confidence in arithmetic concepts' with 63.5% of variance explained. Cronbach alpha for the scale was 0.90. The NSE-Math demonstrated predictive validity with the medication calculation examination results (p=0.009). Psychometric testing suggests the NSE-Math is a valid measure of mathematics self-efficacy of second year nursing students.
External validation of a simple clinical tool used to predict falls in people with Parkinson disease
Duncan, Ryan P.; Cavanaugh, James T.; Earhart, Gammon M.; Ellis, Terry D.; Ford, Matthew P.; Foreman, K. Bo; Leddy, Abigail L.; Paul, Serene S.; Canning, Colleen G.; Thackeray, Anne; Dibble, Leland E.
2015-01-01
Background Assessment of fall risk in an individual with Parkinson disease (PD) is a critical yet often time consuming component of patient care. Recently a simple clinical prediction tool based only on fall history in the previous year, freezing of gait in the past month, and gait velocity <1.1 m/s was developed and accurately predicted future falls in a sample of individuals with PD. METHODS We sought to externally validate the utility of the tool by administering it to a different cohort of 171 individuals with PD. Falls were monitored prospectively for 6 months following predictor assessment. RESULTS The tool accurately discriminated future fallers from non-fallers (area under the curve [AUC] = 0.83; 95% CI 0.76 –0.89), comparable to the developmental study. CONCLUSION The results validated the utility of the tool for allowing clinicians to quickly and accurately identify an individual’s risk of an impending fall. PMID:26003412
Moon, Kyoung-Ja; Jin, Yinji; Jin, Taixian; Lee, Sun-Mi
2018-01-01
A key component of the delirium management is prevention and early detection. To develop an automated delirium risk assessment system (Auto-DelRAS) that automatically alerts health care providers of an intensive care unit (ICU) patient's delirium risk based only on data collected in an electronic health record (EHR) system, and to evaluate the clinical validity of this system. Cohort and system development designs were used. Medical and surgical ICUs in two university hospitals in Seoul, Korea. A total of 3284 patients for the development of Auto-DelRAS, 325 for external validation, 694 for validation after clinical applications. The 4211 data items were extracted from the EHR system and delirium was measured using CAM-ICU (Confusion Assessment Method for Intensive Care Unit). The potential predictors were selected and a logistic regression model was established to create a delirium risk scoring algorithm to construct the Auto-DelRAS. The Auto-DelRAS was evaluated at three months and one year after its application to clinical practice to establish the predictive validity of the system. Eleven predictors were finally included in the logistic regression model. The results of the Auto-DelRAS risk assessment were shown as high/moderate/low risk on a Kardex screen. The predictive validity, analyzed after the clinical application of Auto-DelRAS after one year, showed a sensitivity of 0.88, specificity of 0.72, positive predictive value of 0.53, negative predictive value of 0.94, and a Youden index of 0.59. A relatively high level of predictive validity was maintained with the Auto-DelRAS system, even one year after it was applied to clinical practice. Copyright © 2017. Published by Elsevier Ltd.
Validating the BISON fuel performance code to integral LWR experiments
Williamson, R. L.; Gamble, K. A.; Perez, D. M.; ...
2016-03-24
BISON is a modern finite element-based nuclear fuel performance code that has been under development at the Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. Code validation is underway and is the subject of this study. A brief overview of BISON’s computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described, followed by a summary of the experimental data used to datemore » for validation of Light Water Reactor (LWR) fuel. Validation comparisons focus on fuel centerline temperature, fission gas release, and rod diameter both before and following fuel-clad mechanical contact. Comparisons for 35 LWR rods are consolidated to provide an overall view of how the code is predicting physical behavior, with a few select validation cases discussed in greater detail. Our results demonstrate that 1) fuel centerline temperature comparisons through all phases of fuel life are very reasonable with deviations between predictions and experimental data within ±10% for early life through high burnup fuel and only slightly out of these bounds for power ramp experiments, 2) accuracy in predicting fission gas release appears to be consistent with state-of-the-art modeling and with the involved uncertainties and 3) comparison of rod diameter results indicates a tendency to overpredict clad diameter reduction early in life, when clad creepdown dominates, and more significantly overpredict the diameter increase late in life, when fuel expansion controls the mechanical response. In the initial rod diameter comparisons they were unsatisfactory and have lead to consideration of additional separate effects experiments to better understand and predict clad and fuel mechanical behavior. Results from this study are being used to define priorities for ongoing code development and validation activities.« less
Yahya, Noorazrul; Ebert, Martin A; Bulsara, Max; Kennedy, Angel; Joseph, David J; Denham, James W
2016-08-01
Most predictive models are not sufficiently validated for prospective use. We performed independent external validation of published predictive models for urinary dysfunctions following radiotherapy of the prostate. Multivariable models developed to predict atomised and generalised urinary symptoms, both acute and late, were considered for validation using a dataset representing 754 participants from the TROG 03.04-RADAR trial. Endpoints and features were harmonised to match the predictive models. The overall performance, calibration and discrimination were assessed. 14 models from four publications were validated. The discrimination of the predictive models in an independent external validation cohort, measured using the area under the receiver operating characteristic (ROC) curve, ranged from 0.473 to 0.695, generally lower than in internal validation. 4 models had ROC >0.6. Shrinkage was required for all predictive models' coefficients ranging from -0.309 (prediction probability was inverse to observed proportion) to 0.823. Predictive models which include baseline symptoms as a feature produced the highest discrimination. Two models produced a predicted probability of 0 and 1 for all patients. Predictive models vary in performance and transferability illustrating the need for improvements in model development and reporting. Several models showed reasonable potential but efforts should be increased to improve performance. Baseline symptoms should always be considered as potential features for predictive models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Direct Validation of Differential Prediction.
ERIC Educational Resources Information Center
Lunneborg, Clifford E.
Using academic achievement data for 655 University students, direct validation of differential predictions based on a battery of aptitude/achievement measures selected for their differential prediction efficiency was attempted. In the cross-validation of the prediction of actual differences among five academic area GPA's, this set of differential…
2014-01-01
Background The UK Clinical Aptitude Test (UKCAT) was designed to address issues identified with traditional methods of selection. This study aims to examine the predictive validity of the UKCAT and compare this to traditional selection methods in the senior years of medical school. This was a follow-up study of two cohorts of students from two medical schools who had previously taken part in a study examining the predictive validity of the UKCAT in first year. Methods The sample consisted of 4th and 5th Year students who commenced their studies at the University of Aberdeen or University of Dundee medical schools in 2007. Data collected were: demographics (gender and age group), UKCAT scores; Universities and Colleges Admissions Service (UCAS) form scores; admission interview scores; Year 4 and 5 degree examination scores. Pearson’s correlations were used to examine the relationships between admissions variables, examination scores, gender and age group, and to select variables for multiple linear regression analysis to predict examination scores. Results Ninety-nine and 89 students at Aberdeen medical school from Years 4 and 5 respectively, and 51 Year 4 students in Dundee, were included in the analysis. Neither UCAS form nor interview scores were statistically significant predictors of examination performance. Conversely, the UKCAT yielded statistically significant validity coefficients between .24 and .36 in four of five assessments investigated. Multiple regression analysis showed the UKCAT made a statistically significant unique contribution to variance in examination performance in the senior years. Conclusions Results suggest the UKCAT appears to predict performance better in the later years of medical school compared to earlier years and provides modest supportive evidence for the UKCAT’s role in student selection within these institutions. Further research is needed to assess the predictive validity of the UKCAT against professional and behavioural outcomes as the cohort commences working life. PMID:24762134
NASA Astrophysics Data System (ADS)
Gariano, Stefano Luigi; Brunetti, Maria Teresa; Iovine, Giulio; Melillo, Massimo; Peruccacci, Silvia; Terranova, Oreste Giuseppe; Vennari, Carmela; Guzzetti, Fausto
2015-04-01
Prediction of rainfall-induced landslides can rely on empirical rainfall thresholds. These are obtained from the analysis of past rainfall events that have (or have not) resulted in slope failures. Accurate prediction requires reliable thresholds, which need to be validated before their use in operational landslide warning systems. Despite the clear relevance of validation, only a few studies have addressed the problem, and have proposed and tested robust validation procedures. We propose a validation procedure that allows for the definition of optimal thresholds for early warning purposes. The validation is based on contingency table, skill scores, and receiver operating characteristic (ROC) analysis. To establish the optimal threshold, which maximizes the correct landslide predictions and minimizes the incorrect predictions, we propose an index that results from the linear combination of three weighted skill scores. Selection of the optimal threshold depends on the scope and the operational characteristics of the early warning system. The choice is made by selecting appropriately the weights, and by searching for the optimal (maximum) value of the index. We discuss weakness in the validation procedure caused by the inherent lack of information (epistemic uncertainty) on landslide occurrence typical of large study areas. When working at the regional scale, landslides may have occurred and may have not been reported. This results in biases and variations in the contingencies and the skill scores. We introduce two parameters to represent the unknown proportion of rainfall events (above and below the threshold) for which landslides occurred and went unreported. We show that even a very small underestimation in the number of landslides can result in a significant decrease in the performance of a threshold measured by the skill scores. We show that the variations in the skill scores are different for different uncertainty of events above or below the threshold. This has consequences in the ROC analysis. We applied the proposed procedure to a catalogue of rainfall conditions that have resulted in landslides, and to a set of rainfall events that - presumably - have not resulted in landslides, in Sicily, in the period 2002-2012. First, we determined regional event duration-cumulated event (ED) rainfall thresholds for shallow landslide occurrence using 200 rainfall conditions that have resulted in 223 shallow landslides in Sicily in the period 2002-2011. Next, we validated the thresholds using 29 rainfall conditions that have triggered 42 shallow landslides in Sicily in 2012, and 1250 rainfall events that presumably have not resulted in landslides in the same year. We performed a back analysis simulating the use of the thresholds in a hypothetical landslide warning system operating in 2012.
Optical diagnosis of malaria infection in human plasma using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Bilal, Muhammad; Saleem, Muhammad; Amanat, Samina Tufail; Shakoor, Huma Abdul; Rashid, Rashad; Mahmood, Arshad; Ahmed, Mushtaq
2015-01-01
We present the prediction of malaria infection in human plasma using Raman spectroscopy. Raman spectra of malaria-infected samples are compared with those of healthy and dengue virus infected ones for disease recognition. Raman spectra were acquired using a laser at 532 nm as an excitation source and 10 distinct spectral signatures that statistically differentiated malaria from healthy and dengue-infected cases were found. A multivariate regression model has been developed that utilized Raman spectra of 20 malaria-infected, 10 non-malarial with fever, 10 healthy, and 6 dengue-infected samples to optically predict the malaria infection. The model yields the correlation coefficient r2 value of 0.981 between the predicted values and clinically known results of trainee samples, and the root mean square error in cross validation was found to be 0.09; both these parameters validated the model. The model was further blindly tested for 30 unknown suspected samples and found to be 86% accurate compared with the clinical results, with the inaccuracy due to three samples which were predicted in the gray region. Standard deviation and root mean square error in prediction for unknown samples were found to be 0.150 and 0.149, which are accepted for the clinical validation of the model.
A Novel Admixture-Based Pharmacogenetic Approach to Refine Warfarin Dosing in Caribbean Hispanics.
Duconge, Jorge; Ramos, Alga S; Claudio-Campos, Karla; Rivera-Miranda, Giselle; Bermúdez-Bosch, Luis; Renta, Jessicca Y; Cadilla, Carmen L; Cruz, Iadelisse; Feliu, Juan F; Vergara, Cunegundo; Ruaño, Gualberto
2016-01-01
This study is aimed at developing a novel admixture-adjusted pharmacogenomic approach to individually refine warfarin dosing in Caribbean Hispanic patients. A multiple linear regression analysis of effective warfarin doses versus relevant genotypes, admixture, clinical and demographic factors was performed in 255 patients and further validated externally in another cohort of 55 individuals. The admixture-adjusted, genotype-guided warfarin dosing refinement algorithm developed in Caribbean Hispanics showed better predictability (R2 = 0.70, MAE = 0.72mg/day) than a clinical algorithm that excluded genotypes and admixture (R2 = 0.60, MAE = 0.99mg/day), and outperformed two prior pharmacogenetic algorithms in predicting effective dose in this population. For patients at the highest risk of adverse events, 45.5% of the dose predictions using the developed pharmacogenetic model resulted in ideal dose as compared with only 29% when using the clinical non-genetic algorithm (p<0.001). The admixture-driven pharmacogenetic algorithm predicted 58% of warfarin dose variance when externally validated in 55 individuals from an independent validation cohort (MAE = 0.89 mg/day, 24% mean bias). Results supported our rationale to incorporate individual's genotypes and unique admixture metrics into pharmacogenetic refinement models in order to increase predictability when expanding them to admixed populations like Caribbean Hispanics. ClinicalTrials.gov NCT01318057.
The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing
Weber, Kirsten; Lau, Ellen F.; Stillerman, Benjamin; Kuperberg, Gina R.
2016-01-01
Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions—a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment. PMID:27010386
The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing.
Weber, Kirsten; Lau, Ellen F; Stillerman, Benjamin; Kuperberg, Gina R
2016-01-01
Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions-a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment.
Majumdar, Subhabrata; Basak, Subhash C
2018-04-26
Proper validation is an important aspect of QSAR modelling. External validation is one of the widely used validation methods in QSAR where the model is built on a subset of the data and validated on the rest of the samples. However, its effectiveness for datasets with a small number of samples but large number of predictors remains suspect. Calculating hundreds or thousands of molecular descriptors using currently available software has become the norm in QSAR research, owing to computational advances in the past few decades. Thus, for n chemical compounds and p descriptors calculated for each molecule, the typical chemometric dataset today has high value of p but small n (i.e. n < p). Motivated by the evidence of inadequacies of external validation in estimating the true predictive capability of a statistical model in recent literature, this paper performs an extensive and comparative study of this method with several other validation techniques. We compared four validation methods: leave-one-out, K-fold, external and multi-split validation, using statistical models built using the LASSO regression, which simultaneously performs variable selection and modelling. We used 300 simulated datasets and one real dataset of 95 congeneric amine mutagens for this evaluation. External validation metrics have high variation among different random splits of the data, hence are not recommended for predictive QSAR models. LOO has the overall best performance among all validation methods applied in our scenario. Results from external validation are too unstable for the datasets we analyzed. Based on our findings, we recommend using the LOO procedure for validating QSAR predictive models built on high-dimensional small-sample data. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Wang, Wenyi; Kim, Marlene T.; Sedykh, Alexander
2015-01-01
Purpose Experimental Blood–Brain Barrier (BBB) permeability models for drug molecules are expensive and time-consuming. As alternative methods, several traditional Quantitative Structure-Activity Relationship (QSAR) models have been developed previously. In this study, we aimed to improve the predictivity of traditional QSAR BBB permeability models by employing relevant public bio-assay data in the modeling process. Methods We compiled a BBB permeability database consisting of 439 unique compounds from various resources. The database was split into a modeling set of 341 compounds and a validation set of 98 compounds. Consensus QSAR modeling workflow was employed on the modeling set to develop various QSAR models. A five-fold cross-validation approach was used to validate the developed models, and the resulting models were used to predict the external validation set compounds. Furthermore, we used previously published membrane transporter models to generate relevant transporter profiles for target compounds. The transporter profiles were used as additional biological descriptors to develop hybrid QSAR BBB models. Results The consensus QSAR models have R2=0.638 for fivefold cross-validation and R2=0.504 for external validation. The consensus model developed by pooling chemical and transporter descriptors showed better predictivity (R2=0.646 for five-fold cross-validation and R2=0.526 for external validation). Moreover, several external bio-assays that correlate with BBB permeability were identified using our automatic profiling tool. Conclusions The BBB permeability models developed in this study can be useful for early evaluation of new compounds (e.g., new drug candidates). The combination of chemical and biological descriptors shows a promising direction to improve the current traditional QSAR models. PMID:25862462
The Validity of Conscientiousness Is Overestimated in the Prediction of Job Performance.
Kepes, Sven; McDaniel, Michael A
2015-01-01
Sensitivity analyses refer to investigations of the degree to which the results of a meta-analysis remain stable when conditions of the data or the analysis change. To the extent that results remain stable, one can refer to them as robust. Sensitivity analyses are rarely conducted in the organizational science literature. Despite conscientiousness being a valued predictor in employment selection, sensitivity analyses have not been conducted with respect to meta-analytic estimates of the correlation (i.e., validity) between conscientiousness and job performance. To address this deficiency, we reanalyzed the largest collection of conscientiousness validity data in the personnel selection literature and conducted a variety of sensitivity analyses. Publication bias analyses demonstrated that the validity of conscientiousness is moderately overestimated (by around 30%; a correlation difference of about .06). The misestimation of the validity appears to be due primarily to suppression of small effects sizes in the journal literature. These inflated validity estimates result in an overestimate of the dollar utility of personnel selection by millions of dollars and should be of considerable concern for organizations. The fields of management and applied psychology seldom conduct sensitivity analyses. Through the use of sensitivity analyses, this paper documents that the existing literature overestimates the validity of conscientiousness in the prediction of job performance. Our data show that effect sizes from journal articles are largely responsible for this overestimation.
Chirico, Nicola; Gramatica, Paola
2011-09-26
The main utility of QSAR models is their ability to predict activities/properties for new chemicals, and this external prediction ability is evaluated by means of various validation criteria. As a measure for such evaluation the OECD guidelines have proposed the predictive squared correlation coefficient Q(2)(F1) (Shi et al.). However, other validation criteria have been proposed by other authors: the Golbraikh-Tropsha method, r(2)(m) (Roy), Q(2)(F2) (Schüürmann et al.), Q(2)(F3) (Consonni et al.). In QSAR studies these measures are usually in accordance, though this is not always the case, thus doubts can arise when contradictory results are obtained. It is likely that none of the aforementioned criteria is the best in every situation, so a comparative study using simulated data sets is proposed here, using threshold values suggested by the proponents or those widely used in QSAR modeling. In addition, a different and simple external validation measure, the concordance correlation coefficient (CCC), is proposed and compared with other criteria. Huge data sets were used to study the general behavior of validation measures, and the concordance correlation coefficient was shown to be the most restrictive. On using simulated data sets of a more realistic size, it was found that CCC was broadly in agreement, about 96% of the time, with other validation measures in accepting models as predictive, and in almost all the examples it was the most precautionary. The proposed concordance correlation coefficient also works well on real data sets, where it seems to be more stable, and helps in making decisions when the validation measures are in conflict. Since it is conceptually simple, and given its stability and restrictiveness, we propose the concordance correlation coefficient as a complementary, or alternative, more prudent measure of a QSAR model to be externally predictive.
Lange, Rael T; Brickell, Tracey A; French, Louis M
2015-01-01
The purpose of this study was to examine the clinical utility of two validity scales designed for use with the Neurobehavioral Symptom Inventory (NSI) and the PTSD Checklist-Civilian Version (PCL-C); the Mild Brain Injury Atypical Symptoms Scale (mBIAS) and Validity-10 scale. Participants were 63 U.S. military service members (age: M = 31.9 years, SD = 12.5; 90.5% male) who sustained a mild traumatic brain injury (MTBI) and were prospectively enrolled from Walter Reed National Military Medical Center. Participants were divided into two groups based on the validity scales of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF): (a) symptom validity test (SVT)-Fail (n = 24) and (b) SVT-Pass (n = 39). Participants were evaluated on average 19.4 months postinjury (SD = 27.6). Participants in the SVT-Fail group had significantly higher scores (p < .05) on the mBIAS (d = 0.85), Validity-10 (d = 1.89), NSI (d = 2.23), and PCL-C (d = 2.47), and the vast majority of the MMPI-2-RF scales (d = 0.69 to d = 2.47). Sensitivity, specificity, and predictive power values were calculated across the range of mBIAS and Validity-10 scores to determine the optimal cutoff to detect symptom exaggeration. For the mBIAS, a cutoff score of ≥8 was considered optimal, which resulted in low sensitivity (.17), high specificity (1.0), high positive predictive power (1.0), and moderate negative predictive power (.69). For the Validity-10 scale, a cutoff score of ≥13 was considered optimal, which resulted in moderate-high sensitivity (.63), high specificity (.97), and high positive (.93) and negative predictive power (.83). These findings provide strong support for the use of the Validity-10 as a tool to screen for symptom exaggeration when administering the NSI and PCL-C. The mBIAS, however, was not a reliable tool for this purpose and failed to identify the vast majority of people who exaggerated symptoms.
Wilson, Richard; Goodacre, Steve W; Klingbajl, Marcin; Kelly, Anne-Maree; Rainer, Tim; Coats, Tim; Holloway, Vikki; Townend, Will; Crane, Steve
2014-01-01
Background and objective Risk-adjusted mortality rates can be used as a quality indicator if it is assumed that the discrepancy between predicted and actual mortality can be attributed to the quality of healthcare (ie, the model has attributional validity). The Development And Validation of Risk-adjusted Outcomes for Systems of emergency care (DAVROS) model predicts 7-day mortality in emergency medical admissions. We aimed to test this assumption by evaluating the attributional validity of the DAVROS risk-adjustment model. Methods We selected cases that had the greatest discrepancy between observed mortality and predicted probability of mortality from seven hospitals involved in validation of the DAVROS risk-adjustment model. Reviewers at each hospital assessed hospital records to determine whether the discrepancy between predicted and actual mortality could be explained by the healthcare provided. Results We received 232/280 (83%) completed review forms relating to 179 unexpected deaths and 53 unexpected survivors. The healthcare system was judged to have potentially contributed to 10/179 (8%) of the unexpected deaths and 26/53 (49%) of the unexpected survivors. Failure of the model to appropriately predict risk was judged to be responsible for 135/179 (75%) of the unexpected deaths and 2/53 (4%) of the unexpected survivors. Some 10/53 (19%) of the unexpected survivors died within a few months of the 7-day period of model prediction. Conclusions We found little evidence that deaths occurring in patients with a low predicted mortality from risk-adjustment could be attributed to the quality of healthcare provided. PMID:23605036
An Empiric HIV Risk Scoring Tool to Predict HIV-1 Acquisition in African Women.
Balkus, Jennifer E; Brown, Elizabeth; Palanee, Thesla; Nair, Gonasagrie; Gafoor, Zakir; Zhang, Jingyang; Richardson, Barbra A; Chirenje, Zvavahera M; Marrazzo, Jeanne M; Baeten, Jared M
2016-07-01
To develop and validate an HIV risk assessment tool to predict HIV acquisition among African women. Data were analyzed from 3 randomized trials of biomedical HIV prevention interventions among African women (VOICE, HPTN 035, and FEM-PrEP). We implemented standard methods for the development of clinical prediction rules to generate a risk-scoring tool to predict HIV acquisition over the course of 1 year. Performance of the score was assessed through internal and external validations. The final risk score resulting from multivariable modeling included age, married/living with a partner, partner provides financial or material support, partner has other partners, alcohol use, detection of a curable sexually transmitted infection, and herpes simplex virus 2 serostatus. Point values for each factor ranged from 0 to 2, with a maximum possible total score of 11. Scores ≥5 were associated with HIV incidence >5 per 100 person-years and identified 91% of incident HIV infections from among only 64% of women. The area under the curve (AUC) for predictive ability of the score was 0.71 (95% confidence interval [CI]: 0.68 to 0.74), indicating good predictive ability. Risk score performance was generally similar with internal cross-validation (AUC = 0.69; 95% CI: 0.66 to 0.73) and external validation in HPTN 035 (AUC = 0.70; 95% CI: 0.65 to 0.75) and FEM-PrEP (AUC = 0.58; 95% CI: 0.51 to 0.65). A discrete set of characteristics that can be easily assessed in clinical and research settings was predictive of HIV acquisition over 1 year. The use of a validated risk score could improve efficiency of recruitment into HIV prevention research and inform scale-up of HIV prevention strategies in women at highest risk.
Unsteady Aerodynamic Validation Experiences From the Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chawlowski, Pawel
2014-01-01
The AIAA Aeroelastic Prediction Workshop (AePW) was held in April 2012, bringing together communities of aeroelasticians, computational fluid dynamicists and experimentalists. The extended objective was to assess the state of the art in computational aeroelastic methods as practical tools for the prediction of static and dynamic aeroelastic phenomena. As a step in this process, workshop participants analyzed unsteady aerodynamic and weakly-coupled aeroelastic cases. Forced oscillation and unforced system experiments and computations have been compared for three configurations. This paper emphasizes interpretation of the experimental data, computational results and their comparisons from the perspective of validation of unsteady system predictions. The issues examined in detail are variability introduced by input choices for the computations, post-processing, and static aeroelastic modeling. The final issue addressed is interpreting unsteady information that is present in experimental data that is assumed to be steady, and the resulting consequences on the comparison data sets.
Prediction of muscle activation for an eye movement with finite element modeling.
Karami, Abbas; Eghtesad, Mohammad; Haghpanah, Seyyed Arash
2017-10-01
In this paper, a 3D finite element (FE) modeling is employed in order to predict extraocular muscles' activation and investigate force coordination in various motions of the eye orbit. A continuum constitutive hyperelastic model is employed for material description in dynamic modeling of the extraocular muscles (EOMs). Two significant features of this model are accurate mass modeling with FE method and stimulating EOMs for motion through muscle activation parameter. In order to validate the eye model, a forward dynamics simulation of the eye motion is carried out by variation of the muscle activation. Furthermore, to realize muscle activation prediction in various eye motions, two different tracking-based inverse controllers are proposed. The performance of these two inverse controllers is investigated according to their resulted muscle force magnitude and muscle force coordination. The simulation results are compared with the available experimental data and the well-known existing neurological laws. The comparison authenticates both the validation and the prediction results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aust, Frederik; Edwards, Jerri D.
2015-01-01
Introduction The Useful Field of View Test (UFOV®) is a cognitive measure that predicts older adults’ ability to perform a range of everyday activities. However, little is known about the individual contribution of each subtest to these predictions and the underlying constructs of UFOV performance remain a topic of debate. Method We investigated the incremental validity of UFOV subtests for the prediction of Instrumental Activities of Daily Living (IADL) performance in two independent datasets, the SKILL (n = 828) and ACTIVE (n = 2426) studies. We, then, explored the cognitive and visual abilities assessed by UFOV using a range of neuropsychological and vision tests administered in the SKILL study. Results In the four subtest variant of UFOV, only subtests 2 and 3 consistently made independent contributions to the prediction of IADL performance across three different behavioral measures. In all cases, the incremental validity of UFOV subtests 1 and 4 was negligible. Furthermore, we found that UFOV was related to processing speed, general non-speeded cognition, and visual function; the omission of subtests 1 and 4 from the test score did not affect these associations. Conclusions UFOV subtests 1 and 4 appear to be of limited use to predict IADL and possibly other everyday activities. Future experimental research should investigate if shortening the UFOV by omitting these subtests is a reliable and valid assessment approach. PMID:26782018
Louis Simonet, Martine; Kossovsky, Michel P; Chopard, Pierre; Sigaud, Philippe; Perneger, Thomas V; Gaspoz, Jean-Michel
2008-01-01
Background Early identification of patients who need post-acute care (PAC) may improve discharge planning. The purposes of the study were to develop and validate a score predicting discharge to a post-acute care (PAC) facility and to determine its best assessment time. Methods We conducted a prospective study including 349 (derivation cohort) and 161 (validation cohort) consecutive patients in a general internal medicine service of a teaching hospital. We developed logistic regression models predicting discharge to a PAC facility, based on patient variables measured on admission (day 1) and on day 3. The value of each model was assessed by its area under the receiver operating characteristics curve (AUC). A simple numerical score was derived from the best model, and was validated in a separate cohort. Results Prediction of discharge to a PAC facility was as accurate on day 1 (AUC: 0.81) as on day 3 (AUC: 0.82). The day-3 model was more parsimonious, with 5 variables: patient's partner inability to provide home help (4 pts); inability to self-manage drug regimen (4 pts); number of active medical problems on admission (1 pt per problem); dependency in bathing (4 pts) and in transfers from bed to chair (4 pts) on day 3. A score ≥ 8 points predicted discharge to a PAC facility with a sensitivity of 87% and a specificity of 63%, and was significantly associated with inappropriate hospital days due to discharge delays. Internal and external validations confirmed these results. Conclusion A simple score computed on the 3rd hospital day predicted discharge to a PAC facility with good accuracy. A score > 8 points should prompt early discharge planning. PMID:18647410
Mills, Jeremy F; Gray, Andrew L
2013-11-01
This study is an initial validation study of the Two-Tiered Violence Risk Estimates instrument (TTV), a violence risk appraisal instrument designed to support an integrated-actuarial approach to violence risk assessment. The TTV was scored retrospectively from file information on a sample of violent offenders. Construct validity was examined by comparing the TTV with instruments that have shown utility to predict violence that were prospectively scored: The Historical-Clinical-Risk Management-20 (HCR-20) and Lifestyle Criminality Screening Form (LCSF). Predictive validity was examined through a long-term follow-up of 12.4 years with a sample of 78 incarcerated offenders. Results show the TTV to be highly correlated with the HCR-20 and LCSF. The base rate for violence over the follow-up period was 47.4%, and the TTV was equally predictive of violent recidivism relative to the HCR-20 and LCSF. Discussion centers on the advantages of an integrated-actuarial approach to the assessment of violence risk.
Validity of one-repetition maximum predictive equations in men with spinal cord injury.
Ribeiro Neto, F; Guanais, P; Dornelas, E; Coutinho, A C B; Costa, R R G
2017-10-01
Cross-sectional study. The study aimed (a) to test the cross-validation of current one-repetition maximum (1RM) predictive equations in men with spinal cord injury (SCI); (b) to compare the current 1RM predictive equations to a newly developed equation based on the 4- to 12-repetition maximum test (4-12RM). SARAH Rehabilitation Hospital Network, Brasilia, Brazil. Forty-five men aged 28.0 years with SCI between C6 and L2 causing complete motor impairment were enrolled in the study. Volunteers were tested, in a random order, in 1RM test or 4-12RM with 2-3 interval days. Multiple regression analysis was used to generate an equation for predicting 1RM. There were no significant differences between 1RM test and the current predictive equations. ICC values were significant and were classified as excellent for all current predictive equations. The predictive equation of Lombardi presented the best Bland-Altman results (0.5 kg and 12.8 kg for mean difference and interval range around the differences, respectively). The two created equation models for 1RM demonstrated the same and a high adjusted R 2 (0.971, P<0.01), but different SEE of measured 1RM (2.88 kg or 5.4% and 2.90 kg or 5.5%). All 1RM predictive equations are accurate to assess individuals with SCI at the bench press exercise. However, the predictive equation of Lombardi presented the best associated cross-validity results. A specific 1RM prediction equation was also elaborated for individuals with SCI. The created equation should be tested in order to verify whether it presents better accuracy than the current ones.
Li, Xiaochuan; Bai, Xuedong; Wu, Yaohong; Ruan, Dike
2016-03-15
To construct and validate a model to predict responsible nerve roots in lumbar degenerative disease with diagnostic doubt (DD). From January 2009-January 2013, 163 patients with DD were assigned to the construction (n = 106) or validation sample (n = 57) according to different admission times to hospital. Outcome was assessed according to the Japanese Orthopedic Association (JOA) recovery rate as excellent, good, fair, and poor. The first two results were considered as effective clinical outcome (ECO). Baseline patient and clinical characteristics were considered as secondary variables. A multivariate logistic regression model was used to construct a model with the ECO as a dependent variable and other factors as explanatory variables. The odds ratios (ORs) of each risk factor were adjusted and transformed into a scoring system. Area under the curve (AUC) was calculated and validated in both internal and external samples. Moreover, calibration plot and predictive ability of this scoring system were also tested for further validation. Patients with DD with ECOs in both construction and validation models were around 76 % (76.4 and 75.5 % respectively). more preoperative visual analog pain scale (VAS) score (OR = 1.56, p < 0.01), stenosis levels of L4/5 or L5/S1 (OR = 1.44, p = 0.04), stenosis locations with neuroforamen (OR = 1.95, p = 0.01), neurological deficit (OR = 1.62, p = 0.01), and more VAS improvement of selective nerve route block (SNRB) (OR = 3.42, p = 0.02). the internal area under the curve (AUC) was 0.85, and the external AUC was 0.72, with a good calibration plot of prediction accuracy. Besides, the predictive ability of ECOs was not different from the actual results (p = 0.532). We have constructed and validated a predictive model for confirming responsible nerve roots in patients with DD. The associated risk factors were preoperative VAS score, stenosis levels of L4/5 or L5/S1, stenosis locations with neuroforamen, neurological deficit, and VAS improvement of SNRB. A tool such as this is beneficial in the preoperative counseling of patients, shared surgical decision making, and ultimately improving safety in spine surgery.
Developing and validating risk prediction models in an individual participant data meta-analysis
2014-01-01
Background Risk prediction models estimate the risk of developing future outcomes for individuals based on one or more underlying characteristics (predictors). We review how researchers develop and validate risk prediction models within an individual participant data (IPD) meta-analysis, in order to assess the feasibility and conduct of the approach. Methods A qualitative review of the aims, methodology, and reporting in 15 articles that developed a risk prediction model using IPD from multiple studies. Results The IPD approach offers many opportunities but methodological challenges exist, including: unavailability of requested IPD, missing patient data and predictors, and between-study heterogeneity in methods of measurement, outcome definitions and predictor effects. Most articles develop their model using IPD from all available studies and perform only an internal validation (on the same set of data). Ten of the 15 articles did not allow for any study differences in baseline risk (intercepts), potentially limiting their model’s applicability and performance in some populations. Only two articles used external validation (on different data), including a novel method which develops the model on all but one of the IPD studies, tests performance in the excluded study, and repeats by rotating the omitted study. Conclusions An IPD meta-analysis offers unique opportunities for risk prediction research. Researchers can make more of this by allowing separate model intercept terms for each study (population) to improve generalisability, and by using ‘internal-external cross-validation’ to simultaneously develop and validate their model. Methodological challenges can be reduced by prospectively planned collaborations that share IPD for risk prediction. PMID:24397587
Lionte, Catalina; Sorodoc, Victorita; Jaba, Elisabeta; Botezat, Alina
2017-01-01
Abstract Acute poisoning with drugs and nonpharmaceutical agents represents an important challenge in the emergency department (ED). The objective is to create and validate a risk-prediction nomogram for use in the ED to predict the risk of in-hospital mortality in adults from acute poisoning with drugs and nonpharmaceutical agents. This was a prospective cohort study involving adults with acute poisoning from drugs and nonpharmaceutical agents admitted to a tertiary referral center for toxicology between January and December 2015 (derivation cohort) and between January and June 2016 (validation cohort). We used a program to generate nomograms based on binary logistic regression predictive models. We included variables that had significant associations with death. Using regression coefficients, we calculated scores for each variable, and estimated the event probability. Model validation was performed using bootstrap to quantify our modeling strategy and using receiver operator characteristic (ROC) analysis. The nomogram was tested on a separate validation cohort using ROC analysis and goodness-of-fit tests. Data from 315 patients aged 18 to 91 years were analyzed (n = 180 in the derivation cohort; n = 135 in the validation cohort). In the final model, the following variables were significantly associated with mortality: age, laboratory test results (lactate, potassium, MB isoenzyme of creatine kinase), electrocardiogram parameters (QTc interval), and echocardiography findings (E wave velocity deceleration time). Sex was also included to use the same model for men and women. The resulting nomogram showed excellent survival/mortality discrimination (area under the curve [AUC] 0.976, 95% confidence interval [CI] 0.954–0.998, P < 0.0001 for the derivation cohort; AUC 0.957, 95% CI 0.892–1, P < 0.0001 for the validation cohort). This nomogram provides more precise, rapid, and simple risk-analysis information for individual patients acutely exposed to drugs and nonpharmaceutical agents, and accurately estimates the probability of in-hospital death, exclusively using the results of objective tests available in the ED. PMID:28328838
Reddy, Linda A; Fabiano, Gregory A; Dudek, Christopher M; Hsu, Louis
2013-12-01
The present study examined the validity of a teacher observation measure, the Classroom Strategies Scale--Observer Form (CSS), as a predictor of student performance on statewide tests of mathematics and English language arts. The CSS is a teacher practice observational measure that assesses evidence-based instructional and behavioral management practices in elementary school. A series of two-level hierarchical generalized linear models were fitted to data of a sample of 662 third- through fifth-grade students to assess whether CSS Part 2 Instructional Strategy and Behavioral Management Strategy scale discrepancy scores (i.e., ∑ |recommended frequency--frequency ratings|) predicted statewide mathematics and English language arts proficiency scores when percentage of minority students in schools was controlled. Results indicated that the Instructional Strategy scale discrepancy scores significantly predicted mathematics and English language arts proficiency scores: Relatively larger discrepancies on observer ratings of what teachers did versus what should have been done were associated with lower proficiency scores. Results offer initial evidence of the predictive validity of the CSS Part 2 Instructional Strategy discrepancy scores on student academic outcomes. PsycINFO Database Record (c) 2013 APA, all rights reserved.
A Unified Model of Performance: Validation of its Predictions across Different Sleep/Wake Schedules
Ramakrishnan, Sridhar; Wesensten, Nancy J.; Balkin, Thomas J.; Reifman, Jaques
2016-01-01
Study Objectives: Historically, mathematical models of human neurobehavioral performance developed on data from one sleep study were limited to predicting performance in similar studies, restricting their practical utility. We recently developed a unified model of performance (UMP) to predict the effects of the continuum of sleep loss—from chronic sleep restriction (CSR) to total sleep deprivation (TSD) challenges—and validated it using data from two studies of one laboratory. Here, we significantly extended this effort by validating the UMP predictions across a wide range of sleep/wake schedules from different studies and laboratories. Methods: We developed the UMP on psychomotor vigilance task (PVT) lapse data from one study encompassing four different CSR conditions (7 d of 3, 5, 7, and 9 h of sleep/night), and predicted performance in five other studies (from four laboratories), including different combinations of TSD (40 to 88 h), CSR (2 to 6 h of sleep/night), control (8 to 10 h of sleep/night), and nap (nocturnal and diurnal) schedules. Results: The UMP accurately predicted PVT performance trends across 14 different sleep/wake conditions, yielding average prediction errors between 7% and 36%, with the predictions lying within 2 standard errors of the measured data 87% of the time. In addition, the UMP accurately predicted performance impairment (average error of 15%) for schedules (TSD and naps) not used in model development. Conclusions: The unified model of performance can be used as a tool to help design sleep/wake schedules to optimize the extent and duration of neurobehavioral performance and to accelerate recovery after sleep loss. Citation: Ramakrishnan S, Wesensten NJ, Balkin TJ, Reifman J. A unified model of performance: validation of its predictions across different sleep/wake schedules. SLEEP 2016;39(1):249–262. PMID:26518594
Ben Hassen, Manel; Bartholomé, Jérôme; Valè, Giampiero; Cao, Tuong-Vi; Ahmadi, Nourollah
2018-05-09
Developing rice varieties adapted to alternate wetting and drying water management is crucial for the sustainability of irrigated rice cropping systems. Here we report the first study exploring the feasibility of breeding rice for adaptation to alternate wetting and drying using genomic prediction methods that account for genotype by environment interactions. Two breeding populations (a reference panel of 284 accessions and a progeny population of 97 advanced lines) were evaluated under alternate wetting and drying and continuous flooding management systems. The predictive ability of genomic prediction for response variables (index of relative performance and the slope of the joint regression) and for multi-environment genomic prediction models were compared. For the three traits considered (days to flowering, panicle weight and nitrogen-balance index), significant genotype by environment interactions were observed in both populations. In cross validation, predictive ability for the index was on average lower (0.31) than that of the slope of the joint regression (0.64) whatever the trait considered. Similar results were found for progeny validation. Both cross-validation and progeny validation experiments showed that the performance of multi-environment models predicting unobserved phenotypes of untested entrees was similar to the performance of single environment models with differences in predictive ability ranging from -6% to 4% depending on the trait and on the statistical model concerned. The predictive ability of multi-environment models predicting unobserved phenotypes of entrees evaluated under both water management systems outperformed single environment models by an average of 30%. Practical implications for breeding rice for adaptation to alternate wetting and drying system are discussed. Copyright © 2018, G3: Genes, Genomes, Genetics.
Adderley, N J; Mallett, S; Marshall, T; Ghosh, S; Rayman, G; Bellary, S; Coleman, J; Akiboye, F; Toulis, K A; Nirantharakumar, K
2018-06-01
To temporally and externally validate our previously developed prediction model, which used data from University Hospitals Birmingham to identify inpatients with diabetes at high risk of adverse outcome (mortality or excessive length of stay), in order to demonstrate its applicability to other hospital populations within the UK. Temporal validation was performed using data from University Hospitals Birmingham and external validation was performed using data from both the Heart of England NHS Foundation Trust and Ipswich Hospital. All adult inpatients with diabetes were included. Variables included in the model were age, gender, ethnicity, admission type, intensive therapy unit admission, insulin therapy, albumin, sodium, potassium, haemoglobin, C-reactive protein, estimated GFR and neutrophil count. Adverse outcome was defined as excessive length of stay or death. Model discrimination in the temporal and external validation datasets was good. In temporal validation using data from University Hospitals Birmingham, the area under the curve was 0.797 (95% CI 0.785-0.810), sensitivity was 70% (95% CI 67-72) and specificity was 75% (95% CI 74-76). In external validation using data from Heart of England NHS Foundation Trust, the area under the curve was 0.758 (95% CI 0.747-0.768), sensitivity was 73% (95% CI 71-74) and specificity was 66% (95% CI 65-67). In external validation using data from Ipswich, the area under the curve was 0.736 (95% CI 0.711-0.761), sensitivity was 63% (95% CI 59-68) and specificity was 69% (95% CI 67-72). These results were similar to those for the internally validated model derived from University Hospitals Birmingham. The prediction model to identify patients with diabetes at high risk of developing an adverse event while in hospital performed well in temporal and external validation. The externally validated prediction model is a novel tool that can be used to improve care pathways for inpatients with diabetes. Further research to assess clinical utility is needed. © 2018 Diabetes UK.
Eisenbarth, Hedwig; Osterheider, Michael; Nedopil, Norbert; Stadtland, Cornelis
2012-01-01
A clear and structured approach to evidence-based and gender-specific risk assessment of violence in female offenders is high on political and mental health agendas. However, most data on the factors involved in risk-assessment instruments are based on data of male offenders. The aim of the present study was to validate the use of the Psychopathy Checklist Revised (PCL-R), the HCR-20 and the Violence Risk Appraisal Guide (VRAG) for the prediction of recidivism in German female offenders. This study is part of the Munich Prognosis Project (MPP). It focuses on a subsample of female delinquents (n = 80) who had been referred for forensic-psychiatric evaluation prior to sentencing. The mean time at risk was 8 years (SD = 5 years; range: 1-18 years). During this time, 31% (n = 25) of the female offenders were reconvicted, 5% (n = 4) for violent and 26% (n = 21) for non-violent re-offenses. The predictive validity of the PCL-R for general recidivism was calculated. Analysis with receiver-operating characteristics revealed that the PCL-R total score, the PCL-R antisocial lifestyle factor, the PCL-R lifestyle factor and the PCL-R impulsive and irresponsible behavioral style factor had a moderate predictive validity for general recidivism (area under the curve, AUC = 0.66, p = 0.02). The VRAG has also demonstrated predictive validity (AUC = 0.72, p = 0.02), whereas the HCR-20 showed no predictive validity. These results appear to provide the first evidence that the PCL-R total score and the antisocial lifestyle factor are predictive for general female recidivism, as has been shown consistently for male recidivists. The implications of these findings for crime prevention, prognosis in women, and future research are discussed. Copyright © 2012 John Wiley & Sons, Ltd.
Oulas, Anastasis; Karathanasis, Nestoras; Louloupi, Annita; Pavlopoulos, Georgios A; Poirazi, Panayiota; Kalantidis, Kriton; Iliopoulos, Ioannis
2015-01-01
Computational methods for miRNA target prediction are currently undergoing extensive review and evaluation. There is still a great need for improvement of these tools and bioinformatics approaches are looking towards high-throughput experiments in order to validate predictions. The combination of large-scale techniques with computational tools will not only provide greater credence to computational predictions but also lead to the better understanding of specific biological questions. Current miRNA target prediction tools utilize probabilistic learning algorithms, machine learning methods and even empirical biologically defined rules in order to build models based on experimentally verified miRNA targets. Large-scale protein downregulation assays and next-generation sequencing (NGS) are now being used to validate methodologies and compare the performance of existing tools. Tools that exhibit greater correlation between computational predictions and protein downregulation or RNA downregulation are considered the state of the art. Moreover, efficiency in prediction of miRNA targets that are concurrently verified experimentally provides additional validity to computational predictions and further highlights the competitive advantage of specific tools and their efficacy in extracting biologically significant results. In this review paper, we discuss the computational methods for miRNA target prediction and provide a detailed comparison of methodologies and features utilized by each specific tool. Moreover, we provide an overview of current state-of-the-art high-throughput methods used in miRNA target prediction.
Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, Vi H.; Pastor-Perez, Albert; Singer, Brett C.
2013-04-01
VENT-II is a computer program designed to provide detailed analysis of natural draft and induced draft combustion appliance vent-systems (i.e., furnace or water heater). This program is capable of predicting house depressurization thresholds that lead to backdrafting and spillage of combustion appliances; however, validation reports of the program being applied for this purpose are not readily available. The purpose of this report is to assess VENT-II’s ability to predict combustion gas spillage events due to house depressurization by comparing VENT-II simulated results with experimental data for four appliance configurations. The results show that VENT-II correctly predicts depressurizations resulting in spillagemore » for natural draft appliances operating in cold and mild outdoor conditions, but not for hot conditions. In the latter case, the predicted depressurizations depend on whether the vent section is defined as part of the vent connector or the common vent when setting up the model. Overall, the VENTII solver requires further investigation before it can be used reliably to predict spillage caused by depressurization over a full year of weather conditions, especially where hot conditions occur.« less
NASA Technical Reports Server (NTRS)
Moes, Timothy R.
2009-01-01
The principal objective of the Supersonics Project is to develop and validate multidisciplinary physics-based predictive design, analysis and optimization capabilities for supersonic vehicles. For aircraft, the focus will be on eliminating the efficiency, environmental and performance barriers to practical supersonic flight. Previous flight projects found that a shaped sonic boom could propagate all the way to the ground (F-5 SSBD experiment) and validated design tools for forebody shape modifications (F-5 SSBD and Quiet Spike experiments). The current project, Lift and Nozzle Change Effects on Tail Shock (LaNCETS) seeks to obtain flight data to develop and validate design tools for low-boom tail shock modifications. Attempts will be made to alter the shock structure of NASA's NF-15B TN/837 by changing the lift distribution by biasing the canard positions, changing the plume shape by under- and over-expanding the nozzles, and changing the plume shape using thrust vectoring. Additional efforts will measure resulting shocks with a probing aircraft (F-15B TN/836) and use the results to validate and update predictive tools. Preliminary flight results are presented and are available to provide truth data for developing and validating the CFD tools required to design low-boom supersonic aircraft.
Granholm, Anders; Perner, Anders; Krag, Mette; Hjortrup, Peter Buhl; Haase, Nicolai; Holst, Lars Broksø; Marker, Søren; Collet, Marie Oxenbøll; Jensen, Aksel Karl Georg; Møller, Morten Hylander
2017-03-09
Mortality prediction scores are widely used in intensive care units (ICUs) and in research, but their predictive value deteriorates as scores age. Existing mortality prediction scores are imprecise and complex, which increases the risk of missing data and decreases the applicability bedside in daily clinical practice. We propose the development and validation of a new, simple and updated clinical prediction rule: the Simplified Mortality Score for use in the Intensive Care Unit (SMS-ICU). During the first phase of the study, we will develop and internally validate a clinical prediction rule that predicts 90-day mortality on ICU admission. The development sample will comprise 4247 adult critically ill patients acutely admitted to the ICU, enrolled in 5 contemporary high-quality ICU studies/trials. The score will be developed using binary logistic regression analysis with backward stepwise elimination of candidate variables, and subsequently be converted into a point-based clinical prediction rule. The general performance, discrimination and calibration of the score will be evaluated, and the score will be internally validated using bootstrapping. During the second phase of the study, the score will be externally validated in a fully independent sample consisting of 3350 patients included in the ongoing Stress Ulcer Prophylaxis in the Intensive Care Unit trial. We will compare the performance of the SMS-ICU to that of existing scores. We will use data from patients enrolled in studies/trials already approved by the relevant ethical committees and this study requires no further permissions. The results will be reported in accordance with the Transparent Reporting of multivariate prediction models for Individual Prognosis Or Diagnosis (TRIPOD) statement, and submitted to a peer-reviewed journal. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Roth, Christian J; Becher, Tobias; Frerichs, Inéz; Weiler, Norbert; Wall, Wolfgang A
2017-04-01
Providing optimal personalized mechanical ventilation for patients with acute or chronic respiratory failure is still a challenge within a clinical setting for each case anew. In this article, we integrate electrical impedance tomography (EIT) monitoring into a powerful patient-specific computational lung model to create an approach for personalizing protective ventilatory treatment. The underlying computational lung model is based on a single computed tomography scan and able to predict global airflow quantities, as well as local tissue aeration and strains for any ventilation maneuver. For validation, a novel "virtual EIT" module is added to our computational lung model, allowing to simulate EIT images based on the patient's thorax geometry and the results of our numerically predicted tissue aeration. Clinically measured EIT images are not used to calibrate the computational model. Thus they provide an independent method to validate the computational predictions at high temporal resolution. The performance of this coupling approach has been tested in an example patient with acute respiratory distress syndrome. The method shows good agreement between computationally predicted and clinically measured airflow data and EIT images. These results imply that the proposed framework can be used for numerical prediction of patient-specific responses to certain therapeutic measures before applying them to an actual patient. In the long run, definition of patient-specific optimal ventilation protocols might be assisted by computational modeling. NEW & NOTEWORTHY In this work, we present a patient-specific computational lung model that is able to predict global and local ventilatory quantities for a given patient and any selected ventilation protocol. For the first time, such a predictive lung model is equipped with a virtual electrical impedance tomography module allowing real-time validation of the computed results with the patient measurements. First promising results obtained in an acute respiratory distress syndrome patient show the potential of this approach for personalized computationally guided optimization of mechanical ventilation in future. Copyright © 2017 the American Physiological Society.
Experimental validation of predicted cancer genes using FRET
NASA Astrophysics Data System (ADS)
Guala, Dimitri; Bernhem, Kristoffer; Ait Blal, Hammou; Jans, Daniel; Lundberg, Emma; Brismar, Hjalmar; Sonnhammer, Erik L. L.
2018-07-01
Huge amounts of data are generated in genome wide experiments, designed to investigate diseases with complex genetic causes. Follow up of all potential leads produced by such experiments is currently cost prohibitive and time consuming. Gene prioritization tools alleviate these constraints by directing further experimental efforts towards the most promising candidate targets. Recently a gene prioritization tool called MaxLink was shown to outperform other widely used state-of-the-art prioritization tools in a large scale in silico benchmark. An experimental validation of predictions made by MaxLink has however been lacking. In this study we used Fluorescence Resonance Energy Transfer, an established experimental technique for detection of protein-protein interactions, to validate potential cancer genes predicted by MaxLink. Our results provide confidence in the use of MaxLink for selection of new targets in the battle with polygenic diseases.
Predictive validity of cannabis consumption measures: Results from a national longitudinal study.
Buu, Anne; Hu, Yi-Han; Pampati, Sanjana; Arterberry, Brooke J; Lin, Hsien-Chang
2017-10-01
Validating the utility of cannabis consumption measures for predicting later cannabis related symptomatology or progression to cannabis use disorder (CUD) is crucial for prevention and intervention work that may use consumption measures for quick screening. This study examined whether cannabis use quantity and frequency predicted CUD symptom counts, progression to onset of CUD, and persistence of CUD. Data from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) at Wave 1 (2001-2002) and Wave 2 (2004-2005) were used to identify three risk samples: (1) current cannabis users at Wave 1 who were at risk for having CUD symptoms at Wave 2; (2) current users without lifetime CUD who were at risk for incident CUD; and (3) current users with past-year CUD who were at risk for persistent CUD. Logistic regression and zero-inflated Poisson models were used to examine the longitudinal effect of cannabis consumption on CUD outcomes. Higher frequency of cannabis use predicted lower likelihood of being symptom-free but it did not predict the severity of CUD symptomatology. Higher frequency of cannabis use also predicted higher likelihood of progression to onset of CUD and persistence of CUD. Cannabis use quantity, however, did not predict any of the developmental stages of CUD symptomatology examined in this study. This study has provided a new piece of evidence to support the predictive validity of cannabis use frequency based on national longitudinal data. The result supports the common practice of including frequency items in cannabis screening tools. Copyright © 2017 Elsevier Ltd. All rights reserved.
Van Iddekinge, Chad H; Putka, Dan J; Campbell, John P
2011-01-01
Although vocational interests have a long history in vocational psychology, they have received extremely limited attention within the recent personnel selection literature. We reconsider some widely held beliefs concerning the (low) validity of interests for predicting criteria important to selection researchers, and we review theory and empirical evidence that challenge such beliefs. We then describe the development and validation of an interests-based selection measure. Results of a large validation study (N = 418) reveal that interests predicted a diverse set of criteria—including measures of job knowledge, job performance, and continuance intentions—with corrected, cross-validated Rs that ranged from .25 to .46 across the criteria (mean R = .31). Interests also provided incremental validity beyond measures of general cognitive aptitude and facets of the Big Five personality dimensions in relation to each criterion. Furthermore, with a couple exceptions, the interest scales were associated with small to medium subgroup differences, which in most cases favored women and racial minorities. Taken as a whole, these results appear to call into question the prevailing thought that vocational interests have limited usefulness for selection.
Keogh, Claire; Wallace, Emma; O’Brien, Kirsty K.; Galvin, Rose; Smith, Susan M.; Lewis, Cliona; Cummins, Anthony; Cousins, Grainne; Dimitrov, Borislav D.; Fahey, Tom
2014-01-01
PURPOSE We describe the methodology used to create a register of clinical prediction rules relevant to primary care. We also summarize the rules included in the register according to various characteristics. METHODS To identify relevant articles, we searched the MEDLINE database (PubMed) for the years 1980 to 2009 and supplemented the results with searches of secondary sources (books on clinical prediction rules) and personal resources (eg, experts in the field). The rules described in relevant articles were classified according to their clinical domain, the stage of development, and the clinical setting in which they were studied. RESULTS Our search identified clinical prediction rules reported between 1965 and 2009. The largest share of rules (37.2%) were retrieved from PubMed. The number of published rules increased substantially over the study decades. We included 745 articles in the register; many contained more than 1 clinical prediction rule study (eg, both a derivation study and a validation study), resulting in 989 individual studies. In all, 434 unique rules had gone through derivation; however, only 54.8% had been validated and merely 2.8% had undergone analysis of their impact on either the process or outcome of clinical care. The rules most commonly pertained to cardiovascular disease, respiratory, and musculoskeletal conditions. They had most often been studied in the primary care or emergency department settings. CONCLUSIONS Many clinical prediction rules have been derived, but only about half have been validated and few have been assessed for clinical impact. This lack of thorough evaluation for many rules makes it difficult to retrieve and identify those that are ready for use at the point of patient care. We plan to develop an international web-based register of clinical prediction rules and computer-based clinical decision support systems. PMID:25024245
NASA Astrophysics Data System (ADS)
Gariano, S. L.; Brunetti, M. T.; Iovine, G.; Melillo, M.; Peruccacci, S.; Terranova, O.; Vennari, C.; Guzzetti, F.
2015-01-01
Empirical rainfall thresholds are tools to forecast the possible occurrence of rainfall-induced shallow landslides. Accurate prediction of landslide occurrence requires reliable thresholds, which need to be properly validated before their use in operational warning systems. We exploited a catalogue of 200 rainfall conditions that have resulted in at least 223 shallow landslides in Sicily, southern Italy, in the 11-year period 2002-2011, to determine regional event duration-cumulated event rainfall (ED) thresholds for shallow landslide occurrence. We computed ED thresholds for different exceedance probability levels and determined the uncertainty associated to the thresholds using a consolidated bootstrap nonparametric technique. We further determined subregional thresholds, and we studied the role of lithology and seasonal periods in the initiation of shallow landslides in Sicily. Next, we validated the regional rainfall thresholds using 29 rainfall conditions that have resulted in 42 shallow landslides in Sicily in 2012. We based the validation on contingency tables, skill scores, and a receiver operating characteristic (ROC) analysis for thresholds at different exceedance probability levels, from 1% to 50%. Validation of rainfall thresholds is hampered by lack of information on landslide occurrence. Therefore, we considered the effects of variations in the contingencies and the skill scores caused by lack of information. Based on the results obtained, we propose a general methodology for the objective identification of a threshold that provides an optimal balance between maximization of correct predictions and minimization of incorrect predictions, including missed and false alarms. We expect that the methodology will increase the reliability of rainfall thresholds, fostering the operational use of validated rainfall thresholds in operational early warning system for regional shallow landslide forecasting.
Cost Minimization Using an Artificial Neural Network Sleep Apnea Prediction Tool for Sleep Studies
Teferra, Rahel A.; Grant, Brydon J. B.; Mindel, Jesse W.; Siddiqi, Tauseef A.; Iftikhar, Imran H.; Ajaz, Fatima; Aliling, Jose P.; Khan, Meena S.; Hoffmann, Stephen P.
2014-01-01
Rationale: More than a million polysomnograms (PSGs) are performed annually in the United States to diagnose obstructive sleep apnea (OSA). Third-party payers now advocate a home sleep test (HST), rather than an in-laboratory PSG, as the diagnostic study for OSA regardless of clinical probability, but the economic benefit of this approach is not known. Objectives: We determined the diagnostic performance of OSA prediction tools including the newly developed OSUNet, based on an artificial neural network, and performed a cost-minimization analysis when the prediction tools are used to identify patients who should undergo HST. Methods: The OSUNet was trained to predict the presence of OSA in a derivation group of patients who underwent an in-laboratory PSG (n = 383). Validation group 1 consisted of in-laboratory PSG patients (n = 149). The network was trained further in 33 patients who underwent HST and then was validated in a separate group of 100 HST patients (validation group 2). Likelihood ratios (LRs) were compared with two previously published prediction tools. The total costs from the use of the three prediction tools and the third-party approach within a clinical algorithm were compared. Measurements and Main Results: The OSUNet had a higher +LR in all groups compared with the STOP-BANG and the modified neck circumference (MNC) prediction tools. The +LRs for STOP-BANG, MNC, and OSUNet in validation group 1 were 1.1 (1.0–1.2), 1.3 (1.1–1.5), and 2.1 (1.4–3.1); and in validation group 2 they were 1.4 (1.1–1.7), 1.7 (1.3–2.2), and 3.4 (1.8–6.1), respectively. With an OSA prevalence less than 52%, the use of all three clinical prediction tools resulted in cost savings compared with the third-party approach. Conclusions: The routine requirement of an HST to diagnose OSA regardless of clinical probability is more costly compared with the use of OSA clinical prediction tools that identify patients who should undergo this procedure when OSA is expected to be present in less than half of the population. With OSA prevalence less than 40%, the OSUNet offers the greatest savings, which are substantial when the number of sleep studies done annually is considered. PMID:25068704
Chu, Chi Meng; Hoo, Eric; Daffern, Michael; Tan, Jolie
2012-01-01
Aggressive behavior in incarcerated youth presents a significant problem for staff, co-residents and the functioning of the institution. This study aimed to examine the predictive validity of an empirically validated measure, designed to appraise the risk of imminent aggression within institutionalized adult psychiatric patients (Dynamic Appraisal of Situational Aggression; DASA), in adolescent male and female offenders. The supervising staff members on the residential units rated the DASA daily for 49 youth (29 males and 20 females) over two months. The results showed that DASA total scores significantly predicted institutional aggression in the following 24 and 48 hrs; however, the predictive validity of the DASA for institutional aggression was, at best, modest. Further analyses on male and female subsamples revealed that the DASA total scores only predicted imminent institutional aggression in the male subsample. Item analyses showed that negative attitudes, anger when requests are denied, and unwillingness to follow instructions predicted institutional aggression more strongly as compared with other behavioral manifestations of an irritable and unstable mental state as assessed by the DASA. PMID:25999797
Ng, Hui Wen; Doughty, Stephen W; Luo, Heng; Ye, Hao; Ge, Weigong; Tong, Weida; Hong, Huixiao
2015-12-21
Some chemicals in the environment possess the potential to interact with the endocrine system in the human body. Multiple receptors are involved in the endocrine system; estrogen receptor α (ERα) plays very important roles in endocrine activity and is the most studied receptor. Understanding and predicting estrogenic activity of chemicals facilitates the evaluation of their endocrine activity. Hence, we have developed a decision forest classification model to predict chemical binding to ERα using a large training data set of 3308 chemicals obtained from the U.S. Food and Drug Administration's Estrogenic Activity Database. We tested the model using cross validations and external data sets of 1641 chemicals obtained from the U.S. Environmental Protection Agency's ToxCast project. The model showed good performance in both internal (92% accuracy) and external validations (∼ 70-89% relative balanced accuracies), where the latter involved the validations of the model across different ER pathway-related assays in ToxCast. The important features that contribute to the prediction ability of the model were identified through informative descriptor analysis and were related to current knowledge of ER binding. Prediction confidence analysis revealed that the model had both high prediction confidence and accuracy for most predicted chemicals. The results demonstrated that the model constructed based on the large training data set is more accurate and robust for predicting ER binding of chemicals than the published models that have been developed using much smaller data sets. The model could be useful for the evaluation of ERα-mediated endocrine activity potential of environmental chemicals.
Towards personalized therapy for multiple sclerosis: prediction of individual treatment response.
Kalincik, Tomas; Manouchehrinia, Ali; Sobisek, Lukas; Jokubaitis, Vilija; Spelman, Tim; Horakova, Dana; Havrdova, Eva; Trojano, Maria; Izquierdo, Guillermo; Lugaresi, Alessandra; Girard, Marc; Prat, Alexandre; Duquette, Pierre; Grammond, Pierre; Sola, Patrizia; Hupperts, Raymond; Grand'Maison, Francois; Pucci, Eugenio; Boz, Cavit; Alroughani, Raed; Van Pesch, Vincent; Lechner-Scott, Jeannette; Terzi, Murat; Bergamaschi, Roberto; Iuliano, Gerardo; Granella, Franco; Spitaleri, Daniele; Shaygannejad, Vahid; Oreja-Guevara, Celia; Slee, Mark; Ampapa, Radek; Verheul, Freek; McCombe, Pamela; Olascoaga, Javier; Amato, Maria Pia; Vucic, Steve; Hodgkinson, Suzanne; Ramo-Tello, Cristina; Flechter, Shlomo; Cristiano, Edgardo; Rozsa, Csilla; Moore, Fraser; Luis Sanchez-Menoyo, Jose; Laura Saladino, Maria; Barnett, Michael; Hillert, Jan; Butzkueven, Helmut
2017-09-01
Timely initiation of effective therapy is crucial for preventing disability in multiple sclerosis; however, treatment response varies greatly among patients. Comprehensive predictive models of individual treatment response are lacking. Our aims were: (i) to develop predictive algorithms for individual treatment response using demographic, clinical and paraclinical predictors in patients with multiple sclerosis; and (ii) to evaluate accuracy, and internal and external validity of these algorithms. This study evaluated 27 demographic, clinical and paraclinical predictors of individual response to seven disease-modifying therapies in MSBase, a large global cohort study. Treatment response was analysed separately for disability progression, disability regression, relapse frequency, conversion to secondary progressive disease, change in the cumulative disease burden, and the probability of treatment discontinuation. Multivariable survival and generalized linear models were used, together with the principal component analysis to reduce model dimensionality and prevent overparameterization. Accuracy of the individual prediction was tested and its internal validity was evaluated in a separate, non-overlapping cohort. External validity was evaluated in a geographically distinct cohort, the Swedish Multiple Sclerosis Registry. In the training cohort (n = 8513), the most prominent modifiers of treatment response comprised age, disease duration, disease course, previous relapse activity, disability, predominant relapse phenotype and previous therapy. Importantly, the magnitude and direction of the associations varied among therapies and disease outcomes. Higher probability of disability progression during treatment with injectable therapies was predominantly associated with a greater disability at treatment start and the previous therapy. For fingolimod, natalizumab or mitoxantrone, it was mainly associated with lower pretreatment relapse activity. The probability of disability regression was predominantly associated with pre-baseline disability, therapy and relapse activity. Relapse incidence was associated with pretreatment relapse activity, age and relapsing disease course, with the strength of these associations varying among therapies. Accuracy and internal validity (n = 1196) of the resulting predictive models was high (>80%) for relapse incidence during the first year and for disability outcomes, moderate for relapse incidence in Years 2-4 and for the change in the cumulative disease burden, and low for conversion to secondary progressive disease and treatment discontinuation. External validation showed similar results, demonstrating high external validity for disability and relapse outcomes, moderate external validity for cumulative disease burden and low external validity for conversion to secondary progressive disease and treatment discontinuation. We conclude that demographic, clinical and paraclinical information helps predict individual response to disease-modifying therapies at the time of their commencement. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Quantitative validation of carbon-fiber laminate low velocity impact simulations
English, Shawn A.; Briggs, Timothy M.; Nelson, Stacy M.
2015-09-26
Simulations of low velocity impact with a flat cylindrical indenter upon a carbon fiber fabric reinforced polymer laminate are rigorously validated. Comparison of the impact energy absorption between the model and experiment is used as the validation metric. Additionally, non-destructive evaluation, including ultrasonic scans and three-dimensional computed tomography, provide qualitative validation of the models. The simulations include delamination, matrix cracks and fiber breaks. An orthotropic damage and failure constitutive model, capable of predicting progressive damage and failure, is developed in conjunction and described. An ensemble of simulations incorporating model parameter uncertainties is used to predict a response distribution which ismore » then compared to experimental output using appropriate statistical methods. Lastly, the model form errors are exposed and corrected for use in an additional blind validation analysis. The result is a quantifiable confidence in material characterization and model physics when simulating low velocity impact in structures of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mbah, Chamberlain, E-mail: chamberlain.mbah@ugent.be; Department of Mathematical Modeling, Statistics, and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent; Thierens, Hubert
Purpose: To identify the main causes underlying the failure of prediction models for radiation therapy toxicity to replicate. Methods and Materials: Data were used from two German cohorts, Individual Radiation Sensitivity (ISE) (n=418) and Mammary Carcinoma Risk Factor Investigation (MARIE) (n=409), of breast cancer patients with similar characteristics and radiation therapy treatments. The toxicity endpoint chosen was telangiectasia. The LASSO (least absolute shrinkage and selection operator) logistic regression method was used to build a predictive model for a dichotomized endpoint (Radiation Therapy Oncology Group/European Organization for the Research and Treatment of Cancer score 0, 1, or ≥2). Internal areas undermore » the receiver operating characteristic curve (inAUCs) were calculated by a naïve approach whereby the training data (ISE) were also used for calculating the AUC. Cross-validation was also applied to calculate the AUC within the same cohort, a second type of inAUC. Internal AUCs from cross-validation were calculated within ISE and MARIE separately. Models trained on one dataset (ISE) were applied to a test dataset (MARIE) and AUCs calculated (exAUCs). Results: Internal AUCs from the naïve approach were generally larger than inAUCs from cross-validation owing to overfitting the training data. Internal AUCs from cross-validation were also generally larger than the exAUCs, reflecting heterogeneity in the predictors between cohorts. The best models with largest inAUCs from cross-validation within both cohorts had a number of common predictors: hypertension, normalized total boost, and presence of estrogen receptors. Surprisingly, the effect (coefficient in the prediction model) of hypertension on telangiectasia incidence was positive in ISE and negative in MARIE. Other predictors were also not common between the 2 cohorts, illustrating that overcoming overfitting does not solve the problem of replication failure of prediction models completely. Conclusions: Overfitting and cohort heterogeneity are the 2 main causes of replication failure of prediction models across cohorts. Cross-validation and similar techniques (eg, bootstrapping) cope with overfitting, but the development of validated predictive models for radiation therapy toxicity requires strategies that deal with cohort heterogeneity.« less
Sainz de Baranda, Pilar; Rodríguez-Iniesta, María; Ayala, Francisco; Santonja, Fernando; Cejudo, Antonio
2014-07-01
To examine the criterion-related validity of the horizontal hip joint angle (H-HJA) test and vertical hip joint angle (V-HJA) test for estimating hamstring flexibility measured through the passive straight-leg raise (PSLR) test using contemporary statistical measures. Validity study. Controlled laboratory environment. One hundred thirty-eight professional trampoline gymnasts (61 women and 77 men). Hamstring flexibility. Each participant performed 2 trials of H-HJA, V-HJA, and PSLR tests in a randomized order. The criterion-related validity of H-HJA and V-HJA tests was measured through the estimation equation, typical error of the estimate (TEEST), validity correlation (β), and their respective confidence limits. The findings from this study suggest that although H-HJA and V-HJA tests showed moderate to high validity scores for estimating hamstring flexibility (standardized TEEST = 0.63; β = 0.80), the TEEST statistic reported for both tests was not narrow enough for clinical purposes (H-HJA = 10.3 degrees; V-HJA = 9.5 degrees). Subsequently, the predicted likely thresholds for the true values that were generated were too wide (H-HJA = predicted value ± 13.2 degrees; V-HJA = predicted value ± 12.2 degrees). The results suggest that although the HJA test showed moderate to high validity scores for estimating hamstring flexibility, the prediction intervals between the HJA and PSLR tests are not strong enough to suggest that clinicians and sport medicine practitioners should use the HJA and PSLR tests interchangeably as gold standard measurement tools to evaluate and detect short hamstring muscle flexibility.
Facultative Stabilization Pond: Measuring Biological Oxygen Demand using Mathematical Approaches
NASA Astrophysics Data System (ADS)
Wira S, Ihsan; Sunarsih, Sunarsih
2018-02-01
Pollution is a man-made phenomenon. Some pollutants which discharged directly to the environment could create serious pollution problems. Untreated wastewater will cause contamination and even pollution on the water body. Biological Oxygen Demand (BOD) is the amount of oxygen required for the oxidation by bacteria. The higher the BOD concentration, the greater the organic matter would be. The purpose of this study was to predict the value of BOD contained in wastewater. Mathematical modeling methods were chosen in this study to depict and predict the BOD values contained in facultative wastewater stabilization ponds. Measurements of sampling data were carried out to validate the model. The results of this study indicated that a mathematical approach can be applied to predict the BOD contained in the facultative wastewater stabilization ponds. The model was validated using Absolute Means Error with 10% tolerance limit, and AME for model was 7.38% (< 10%), so the model is valid. Furthermore, a mathematical approach can also be applied to illustrate and predict the contents of wastewater.
Predictive Validity of Explicit and Implicit Threat Overestimation in Contamination Fear
Green, Jennifer S.; Teachman, Bethany A.
2012-01-01
We examined the predictive validity of explicit and implicit measures of threat overestimation in relation to contamination-fear outcomes using structural equation modeling. Undergraduate students high in contamination fear (N = 56) completed explicit measures of contamination threat likelihood and severity, as well as looming vulnerability cognitions, in addition to an implicit measure of danger associations with potential contaminants. Participants also completed measures of contamination-fear symptoms, as well as subjective distress and avoidance during a behavioral avoidance task, and state looming vulnerability cognitions during an exposure task. The latent explicit (but not implicit) threat overestimation variable was a significant and unique predictor of contamination fear symptoms and self-reported affective and cognitive facets of contamination fear. On the contrary, the implicit (but not explicit) latent measure predicted behavioral avoidance (at the level of a trend). Results are discussed in terms of differential predictive validity of implicit versus explicit markers of threat processing and multiple fear response systems. PMID:24073390
A summary and evaluation of semi-empirical methods for the prediction of helicopter rotor noise
NASA Technical Reports Server (NTRS)
Pegg, R. J.
1979-01-01
Existing prediction techniques are compiled and described. The descriptions include input and output parameter lists, required equations and graphs, and the range of validity for each part of the prediction procedures. Examples are provided illustrating the analysis procedure and the degree of agreement with experimental results.
Driving and Low Vision: Validity of Assessments for Predicting Performance of Drivers
ERIC Educational Resources Information Center
Strong, J. Graham; Jutai, Jeffrey W.; Russell-Minda, Elizabeth; Evans, Mal
2008-01-01
The authors conducted a systematic review to examine whether vision-related assessments can predict the driving performance of individuals who have low vision. The results indicate that measures of visual field, contrast sensitivity, cognitive and attention-based tests, and driver screening tools have variable utility for predicting real-world…
Coughtrie, A R; Borman, D J; Sleigh, P A
2013-06-01
Flow in a gas-lift digester with a central draft-tube was investigated using computational fluid dynamics (CFD) and different turbulence closure models. The k-ω Shear-Stress-Transport (SST), Renormalization-Group (RNG) k-∊, Linear Reynolds-Stress-Model (RSM) and Transition-SST models were tested for a gas-lift loop reactor under Newtonian flow conditions validated against published experimental work. The results identify that flow predictions within the reactor (where flow is transitional) are particularly sensitive to the turbulence model implemented; the Transition-SST model was found to be the most robust for capturing mixing behaviour and predicting separation reliably. Therefore, Transition-SST is recommended over k-∊ models for use in comparable mixing problems. A comparison of results obtained using multiphase Euler-Lagrange and singlephase approaches are presented. The results support the validity of the singlephase modelling assumptions in obtaining reliable predictions of the reactor flow. Solver independence of results was verified by comparing two independent finite-volume solvers (Fluent-13.0sp2 and OpenFOAM-2.0.1). Copyright © 2013 Elsevier Ltd. All rights reserved.
Schultz, I Z; Crook, J; Berkowitz, J; Milner, R; Meloche, G R
2005-09-01
This paper reports on the predictive validity of a Psychosocial Risk for Occupational Disability Scale in the workers' compensation environment using a paper and pencil version of a previously validated multimethod instrument on a new, subacute sample of workers with low back pain. A cohort longitudinal study design with a randomly selected cohort off work for 4-6 weeks was applied. The questionnaire was completed by 111 eligible workers at 4-6 weeks following injury. Return to work status data at three months was obtained from 100 workers. Sixty-four workers had returned to work (RTW) and 36 had not (NRTW). Stepwise backward elimination resulted in a model with these predictors: Expectations of Recovery, SF-36 Vitality, SF-36 Mental Health, and Waddell Symptoms. The correct classification of RTW/NRTW was 79%, with sensitivity (NRTW) of 61% and specificity (RTW) of 89%. The area under the ROC curve was 84%. New evidence for predictive validity for the Psychosocial Risk-for-Disability Instrument was provided. The instrument can be useful and practical for prediction of return to work outcomes in the subacute stage after low back injury in the workers' compensation context.
Validation of Fatigue Modeling Predictions in Aviation Operations
NASA Technical Reports Server (NTRS)
Gregory, Kevin; Martinez, Siera; Flynn-Evans, Erin
2017-01-01
Bio-mathematical fatigue models that predict levels of alertness and performance are one potential tool for use within integrated fatigue risk management approaches. A number of models have been developed that provide predictions based on acute and chronic sleep loss, circadian desynchronization, and sleep inertia. Some are publicly available and gaining traction in settings such as commercial aviation as a means of evaluating flight crew schedules for potential fatigue-related risks. Yet, most models have not been rigorously evaluated and independently validated for the operations to which they are being applied and many users are not fully aware of the limitations in which model results should be interpreted and applied.
Validation of FAST Model Sleep Estimates with Actigraph Measured Sleep in Locomotive Engineers
DOT National Transportation Integrated Search
2012-04-01
This report presents the results of a study to validate the AutoSleep sleep prediction algorithm, which is a component of the Fatigue Avoidance Scheduling Tool (FAST). Researchers collected work and sleep data from 41 locomotive engineers by using ac...
QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling
Rossman, Timothy; Kushvaha, Vinod; Dragomir-Daescu, Dan
2015-01-01
Quantitative computed tomography-based finite element models of proximal femora must be validated with cadaveric experiments before using them to assess fracture risk in osteoporotic patients. During validation it is essential to carefully assess whether the boundary condition modeling matches the experimental conditions. This study evaluated proximal femur stiffness results predicted by six different boundary condition methods on a sample of 30 cadaveric femora and compared the predictions with experimental data. The average stiffness varied by 280% among the six boundary conditions. Compared with experimental data the predictions ranged from overestimating the average stiffness by 65% to underestimating it by 41%. In addition we found that the boundary condition that distributed the load to the contact surfaces similar to the expected contact mechanics predictions had the best agreement with experimental stiffness. We concluded that boundary conditions modeling introduced large variations in proximal femora stiffness predictions. PMID:25804260
NASA Astrophysics Data System (ADS)
Scherb, Anke; Papakosta, Panagiota; Straub, Daniel
2014-05-01
Wildfires cause severe damages to ecosystems, socio-economic assets, and human lives in the Mediterranean. To facilitate coping with wildfire risks, an understanding of the factors influencing wildfire occurrence and behavior (e.g. human activity, weather conditions, topography, fuel loads) and their interaction is of importance, as is the implementation of this knowledge in improved wildfire hazard and risk prediction systems. In this project, a probabilistic wildfire risk prediction model is developed, with integrated fire occurrence and fire propagation probability and potential impact prediction on natural and cultivated areas. Bayesian Networks (BNs) are used to facilitate the probabilistic modeling. The final BN model is a spatial-temporal prediction system at the meso scale (1 km2 spatial and 1 day temporal resolution). The modeled consequences account for potential restoration costs and production losses referred to forests, agriculture, and (semi-) natural areas. BNs and a geographic information system (GIS) are coupled within this project to support a semi-automated BN model parameter learning and the spatial-temporal risk prediction. The coupling also enables the visualization of prediction results by means of daily maps. The BN parameters are learnt for Cyprus with data from 2006-2009. Data from 2010 is used as validation data set. A special focus is put on the performance evaluation of the BN for fire occurrence, which is modeled as binary classifier and thus, could be validated by means of Receiver Operator Characteristic (ROC) curves. With the final best models, AUC values of more than 70% for validation could be achieved, which indicates potential for reliable prediction performance via BN. Maps of selected days in 2010 are shown to illustrate final prediction results. The resulting system can be easily expanded to predict additional expected damages in the mesoscale (e.g. building and infrastructure damages). The system can support planning of preventive measures (e.g. state resources allocation for wildfire prevention and preparedness) and assist recuperation plans of damaged areas.
Risk prediction models of breast cancer: a systematic review of model performances.
Anothaisintawee, Thunyarat; Teerawattananon, Yot; Wiratkapun, Chollathip; Kasamesup, Vijj; Thakkinstian, Ammarin
2012-05-01
The number of risk prediction models has been increasingly developed, for estimating about breast cancer in individual women. However, those model performances are questionable. We therefore have conducted a study with the aim to systematically review previous risk prediction models. The results from this review help to identify the most reliable model and indicate the strengths and weaknesses of each model for guiding future model development. We searched MEDLINE (PubMed) from 1949 and EMBASE (Ovid) from 1974 until October 2010. Observational studies which constructed models using regression methods were selected. Information about model development and performance were extracted. Twenty-five out of 453 studies were eligible. Of these, 18 developed prediction models and 7 validated existing prediction models. Up to 13 variables were included in the models and sample sizes for each study ranged from 550 to 2,404,636. Internal validation was performed in four models, while five models had external validation. Gail and Rosner and Colditz models were the significant models which were subsequently modified by other scholars. Calibration performance of most models was fair to good (expected/observe ratio: 0.87-1.12), but discriminatory accuracy was poor to fair both in internal validation (concordance statistics: 0.53-0.66) and in external validation (concordance statistics: 0.56-0.63). Most models yielded relatively poor discrimination in both internal and external validation. This poor discriminatory accuracy of existing models might be because of a lack of knowledge about risk factors, heterogeneous subtypes of breast cancer, and different distributions of risk factors across populations. In addition the concordance statistic itself is insensitive to measure the improvement of discrimination. Therefore, the new method such as net reclassification index should be considered to evaluate the improvement of the performance of a new develop model.
Roozenbeek, Bob; Lingsma, Hester F.; Lecky, Fiona E.; Lu, Juan; Weir, James; Butcher, Isabella; McHugh, Gillian S.; Murray, Gordon D.; Perel, Pablo; Maas, Andrew I.R.; Steyerberg, Ewout W.
2012-01-01
Objective The International Mission on Prognosis and Analysis of Clinical Trials (IMPACT) and Corticoid Randomisation After Significant Head injury (CRASH) prognostic models predict outcome after traumatic brain injury (TBI) but have not been compared in large datasets. The objective of this is study is to validate externally and compare the IMPACT and CRASH prognostic models for prediction of outcome after moderate or severe TBI. Design External validation study. Patients We considered 5 new datasets with a total of 9036 patients, comprising three randomized trials and two observational series, containing prospectively collected individual TBI patient data. Measurements Outcomes were mortality and unfavourable outcome, based on the Glasgow Outcome Score (GOS) at six months after injury. To assess performance, we studied the discrimination of the models (by AUCs), and calibration (by comparison of the mean observed to predicted outcomes and calibration slopes). Main Results The highest discrimination was found in the TARN trauma registry (AUCs between 0.83 and 0.87), and the lowest discrimination in the Pharmos trial (AUCs between 0.65 and 0.71). Although differences in predictor effects between development and validation populations were found (calibration slopes varying between 0.58 and 1.53), the differences in discrimination were largely explained by differences in case-mix in the validation studies. Calibration was good, the fraction of observed outcomes generally agreed well with the mean predicted outcome. No meaningful differences were noted in performance between the IMPACT and CRASH models. More complex models discriminated slightly better than simpler variants. Conclusions Since both the IMPACT and the CRASH prognostic models show good generalizability to more recent data, they are valid instruments to quantify prognosis in TBI. PMID:22511138
Lasaponara, Stefano; Chica, Ana B; Lecce, Francesca; Lupianez, Juan; Doricchi, Fabrizio
2011-07-01
Several studies have proved that the reliability of endogenous spatial cues linearly modulates the reaction time advantage in the processing of targets at validly cued vs. invalidly cued locations, i.e. the "validity effect". This would imply that with non-predictive cues, no "validity effect" should be observed. However, contrary to this prediction, one could hypothesize that attentional benefits by valid cuing (i.e. the RT advantage for validly vs. neutrally cued targets) can still be maintained with non-predictive cues, if the brain were endowed with mechanisms allowing the selective reduction in costs of reorienting from invalidly cued locations (i.e. the reduction of the RT disadvantage for invalidly vs. neutrally cued targets). This separated modulation of attentional benefits and costs would be adaptive in uncertain contexts where cues predict at chance level the location of targets. Through the joint recording of manual reaction times and event-related cerebral potentials (ERPs), we have found that this is the case and that relying on non-predictive endogenous cues results in abatement of attentional costs and the difference in the amplitude of the P1 brain responses evoked by invalidly vs. neutrally cued targets. In contrast, the use of non-predictive cues leaves unaffected attentional benefits and the difference in the amplitude of the N1 responses evoked by validly vs. neutrally cued targets. At the individual level, the drop in costs with non-predictive cues was matched with equivalent lateral biases in RTs to neutrally and invalidly cued targets presented in the left and right visual field. During the cue period, the drop in costs with non-predictive cues was preceded by reduction of the Early Directing Attention Negativity (EDAN) on posterior occipital sites and by enhancement of the frontal Anterior Directing Attention Negativity (ADAN) correlated to preparatory voluntary orienting. These findings demonstrate, for the first time, that the segregation of mechanisms regulating attentional benefits and costs helps efficiency of orienting in "uncertain" visual spatial contexts characterized by poor probabilistic association between cues and targets. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Lane, Kathleen Lynne; Oakes, Wendy P.; Ennis, Robin Parks; Cox, Meredith Lucille; Schatschneider, Christopher; Lambert, Warren
2013-01-01
This study reports findings from a validation study of the Student Risk Screening Scale for use with 9th- through 12th-grade students (N = 1854) attending a rural fringe school. Results indicated high internal consistency, test-retest stability, and inter-rater reliability. Predictive validity was established across two academic years, with Spring…
Ravikumar, Balaguru; Parri, Elina; Timonen, Sanna; Airola, Antti; Wennerberg, Krister
2017-01-01
Due to relatively high costs and labor required for experimental profiling of the full target space of chemical compounds, various machine learning models have been proposed as cost-effective means to advance this process in terms of predicting the most potent compound-target interactions for subsequent verification. However, most of the model predictions lack direct experimental validation in the laboratory, making their practical benefits for drug discovery or repurposing applications largely unknown. Here, we therefore introduce and carefully test a systematic computational-experimental framework for the prediction and pre-clinical verification of drug-target interactions using a well-established kernel-based regression algorithm as the prediction model. To evaluate its performance, we first predicted unmeasured binding affinities in a large-scale kinase inhibitor profiling study, and then experimentally tested 100 compound-kinase pairs. The relatively high correlation of 0.77 (p < 0.0001) between the predicted and measured bioactivities supports the potential of the model for filling the experimental gaps in existing compound-target interaction maps. Further, we subjected the model to a more challenging task of predicting target interactions for such a new candidate drug compound that lacks prior binding profile information. As a specific case study, we used tivozanib, an investigational VEGF receptor inhibitor with currently unknown off-target profile. Among 7 kinases with high predicted affinity, we experimentally validated 4 new off-targets of tivozanib, namely the Src-family kinases FRK and FYN A, the non-receptor tyrosine kinase ABL1, and the serine/threonine kinase SLK. Our sub-sequent experimental validation protocol effectively avoids any possible information leakage between the training and validation data, and therefore enables rigorous model validation for practical applications. These results demonstrate that the kernel-based modeling approach offers practical benefits for probing novel insights into the mode of action of investigational compounds, and for the identification of new target selectivities for drug repurposing applications. PMID:28787438
An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.
Nemati, Shamim; Holder, Andre; Razmi, Fereshteh; Stanley, Matthew D; Clifford, Gari D; Buchman, Timothy G
2018-04-01
Sepsis is among the leading causes of morbidity, mortality, and cost overruns in critically ill patients. Early intervention with antibiotics improves survival in septic patients. However, no clinically validated system exists for real-time prediction of sepsis onset. We aimed to develop and validate an Artificial Intelligence Sepsis Expert algorithm for early prediction of sepsis. Observational cohort study. Academic medical center from January 2013 to December 2015. Over 31,000 admissions to the ICUs at two Emory University hospitals (development cohort), in addition to over 52,000 ICU patients from the publicly available Medical Information Mart for Intensive Care-III ICU database (validation cohort). Patients who met the Third International Consensus Definitions for Sepsis (Sepsis-3) prior to or within 4 hours of their ICU admission were excluded, resulting in roughly 27,000 and 42,000 patients within our development and validation cohorts, respectively. None. High-resolution vital signs time series and electronic medical record data were extracted. A set of 65 features (variables) were calculated on hourly basis and passed to the Artificial Intelligence Sepsis Expert algorithm to predict onset of sepsis in the proceeding T hours (where T = 12, 8, 6, or 4). Artificial Intelligence Sepsis Expert was used to predict onset of sepsis in the proceeding T hours and to produce a list of the most significant contributing factors. For the 12-, 8-, 6-, and 4-hour ahead prediction of sepsis, Artificial Intelligence Sepsis Expert achieved area under the receiver operating characteristic in the range of 0.83-0.85. Performance of the Artificial Intelligence Sepsis Expert on the development and validation cohorts was indistinguishable. Using data available in the ICU in real-time, Artificial Intelligence Sepsis Expert can accurately predict the onset of sepsis in an ICU patient 4-12 hours prior to clinical recognition. A prospective study is necessary to determine the clinical utility of the proposed sepsis prediction model.
Oren, Carmel; Kennet-Cohen, Tamar; Turvall, Elliot; Allalouf, Avi
2014-01-01
The Psychometric Entrance Test (PET), used for admission to higher education in Israel together with the Matriculation (Bagrut), had in the past one general (total) score in which the weights for its domains: Verbal, Quantitative and English, were 2:2:1, respectively. In 2011, two additional total scores were introduced, with different weights for the Verbal and the Quantitative domains. This study compares the predictive validity of the three general scores of PET, and demonstrates validity in terms of utility. 100,863 freshmen students of all Israeli universities over the classes of 2005-2009. Regression weights and correlations of the predictors with FYGPA were computed. Simulations based on these results supplied the utility estimates. On average, PET is slightly more predictive than the Bagrut; using them both yields a better tool than either of them alone. Assigning differential weights to the components in the respective schools further improves the validity. The introduction of the new general scores of PET is validated by gathering and analyzing evidence based on relations of test scores to other variables. The utility of using the test can be demonstrated in ways different from correlations.
Spatial and temporal predictions of agricultural land prices using DSM techniques.
NASA Astrophysics Data System (ADS)
Carré, F.; Grandgirard, D.; Diafas, I.; Reuter, H. I.; Julien, V.; Lemercier, B.
2009-04-01
Agricultural land prices highly impacts land accessibility to farmers and by consequence the evolution of agricultural landscapes (crop changes, land conversion to urban infrastructures…) which can turn to irreversible soil degradation. The economic value of agricultural land has been studied spatially, in every one of the 374 French Agricultural Counties, and temporally- from 1995 to 2007, by using data of the SAFER Institute. To this aim, agricultural land price was considered as a digital soil property. The spatial and temporal predictions were done using Digital Soil Mapping techniques combined with tools mainly used for studying temporal financial behaviors. For making both predictions, a first classification of the Agricultural Counties was done for the 1995-2006 periods (2007 was excluded and served as the date of prediction) using a fuzzy k-means clustering. The Agricultural Counties were then aggregated according to land price at the different times. The clustering allows for characterizing the counties by their memberships to each class centroid. The memberships were used for the spatial prediction, whereas the centroids were used for the temporal prediction. For the spatial prediction, from the 374 Agricultural counties, three fourths were used for modeling and one fourth for validating. Random sampling was done by class to ensure that all classes are represented by at least one county in the modeling and validation datasets. The prediction was done for each class by testing the relationships between the memberships and the following factors: (i) soil variable (organic matter from the French BDAT database), (ii) soil covariates (land use classes from CORINE LANDCOVER, bioclimatic zones from the WorldClim Database, landform attributes and landform classes from the SRTM, major roads and hydrographic densities from EUROSTAT, average field sizes estimated by automatic classification of remote sensed images) and (iii) socio-economic factors (population density, gross domestic product and its combination with the population density obtained from EUROSTAT). Linear (Generalized Linear Models) and non-linear models (neural network) were used for building the relationships. For the validation, the relationships were applied to the validation datasets. The RMSE and the coefficient of determination (from a linear regression) between predicted and actual memberships, and the contingency table between the predicted and actual allocation classes were used as validation criteria. The temporal prediction was done on the year 2007 from the centroid land prices characterizing the 1995-2006 period. For each class, the land prices of the time-series 1995-2006 were modeled using an Auto-Regressive Moving Average approach. For the validation, the models were applied to the year 2007. The RMSE between predicted and actual prices is used as the validation criteria. We then discussed the methods and the results of the spatial and temporal validation. Based on this methodology, an extrapolation will be tested on another European country with land price market similar to France (to be determined).
Simard, Marc; Sirois, Caroline; Candas, Bernard
2018-05-01
To validate and compare performance of an International Classification of Diseases, tenth revision (ICD-10) version of a combined comorbidity index merging conditions of Charlson and Elixhauser measures against individual measures in the prediction of 30-day mortality. To select a weight derivation method providing optimal performance across ICD-9 and ICD-10 coding systems. Using 2 adult population-based cohorts of patients with hospital admissions in ICD-9 (2005, n=337,367) and ICD-10 (2011, n=348,820), we validated a combined comorbidity index by predicting 30-day mortality with logistic regression. To appreciate performance of the Combined index and both individual measures, factors impacting indices performance such as population characteristics and weight derivation methods were accounted for. We applied 3 scoring methods (Van Walraven, Schneeweiss, and Charlson) and determined which provides best predictive values. Combined index [c-statistics: 0.853 (95% confidence interval: CI, 0.848-0.856)] performed better than original Charlson [0.841 (95% CI, 0.835-0.844)] or Elixhauser [0.841 (95% CI, 0.837-0.844)] measures on ICD-10 cohort. All weight derivation methods provided close high discrimination results for the Combined index (Van Walraven: 0.852, Schneeweiss: 0.851, Charlson: 0.849). Results were consistent across both coding systems. The Combined index remains valid with both ICD-9 and ICD-10 coding systems and the 3 weight derivation methods evaluated provided consistent high performance across those coding systems.
Sisic, Nedim; Jelicic, Mario; Pehar, Miran; Spasic, Miodrag; Sekulic, Damir
2016-01-01
In basketball, anthropometric status is an important factor when identifying and selecting talents, while agility is one of the most vital motor performances. The aim of this investigation was to evaluate the influence of anthropometric variables and power capacities on different preplanned agility performances. The participants were 92 high-level, junior-age basketball players (16-17 years of age; 187.6±8.72 cm in body height, 78.40±12.26 kg in body mass), randomly divided into a validation and cross-validation subsample. The predictors set consisted of 16 anthropometric variables, three tests of power-capacities (Sargent-jump, broad-jump and medicine-ball-throw) as predictors. The criteria were three tests of agility: a T-Shape-Test; a Zig-Zag-Test, and a test of running with a 180-degree turn (T180). Forward stepwise multiple regressions were calculated for validation subsamples and then cross-validated. Cross validation included correlations between observed and predicted scores, dependent samples t-test between predicted and observed scores; and Bland Altman graphics. Analysis of the variance identified centres being advanced in most of the anthropometric indices, and medicine-ball-throw (all at P<0.05); with no significant between-position-differences for other studied motor performances. Multiple regression models originally calculated for the validation subsample were then cross-validated, and confirmed for Zig-zag-Test (R of 0.71 and 0.72 for the validation and cross-validation subsample, respectively). Anthropometrics were not strongly related to agility performance, but leg length is found to be negatively associated with performance in basketball-specific agility. Power capacities are confirmed to be an important factor in agility. The results highlighted the importance of sport-specific tests when studying pre-planned agility performance in basketball. The improvement in power capacities will probably result in an improvement in agility in basketball athletes, while anthropometric indices should be used in order to identify those athletes who can achieve superior agility performance.
Assessing Predictive Validity of Pressure Ulcer Risk Scales- A Systematic Review and Meta-Analysis
PARK, Seong-Hi; LEE, Hea Shoon
2016-01-01
Background: The purpose of this study was to present a scientific reason for pressure ulcer risk scales: Cubbin& Jackson modified Braden, Norton, and Waterlow, as a nursing diagnosis tool by utilizing predictive validity of pressure sores. Methods: Articles published between 1966 and 2013 from periodicals indexed in the Ovid Medline, Embase, CINAHL, KoreaMed, NDSL, and other databases were selected using the key word “pressure ulcer”. QUADAS-II was applied for assessment for internal validity of the diagnostic studies. Selected studies were analyzed using meta-analysis with MetaDisc 1.4. Results: Seventeen diagnostic studies with high methodological quality, involving 5,185 patients, were included. In the results of the meta-analysis, sROC AUC of Braden, Norton, and Waterflow scale was over 0.7, showing moderate predictive validity, but they have limited interpretation due to significant differences between studies. In addition, Waterlow scale is insufficient as a screening tool owing to low sensitivity compared with other scales. Conclusion: The contemporary pressure ulcer risk scale is not suitable for uninform practice on patients under standardized criteria. Therefore, in order to provide more effective nursing care for bedsores, a new or modified pressure ulcer risk scale should be developed upon strength and weaknesses of existing tools. PMID:27114977
A new self-report inventory of dyslexia for students: criterion and construct validity.
Tamboer, Peter; Vorst, Harrie C M
2015-02-01
The validity of a Dutch self-report inventory of dyslexia was ascertained in two samples of students. Six biographical questions, 20 general language statements and 56 specific language statements were based on dyslexia as a multi-dimensional deficit. Dyslexia and non-dyslexia were assessed with two criteria: identification with test results (Sample 1) and classification using biographical information (both samples). Using discriminant analyses, these criteria were predicted with various groups of statements. All together, 11 discriminant functions were used to estimate classification accuracy of the inventory. In Sample 1, 15 statements predicted the test criterion with classification accuracy of 98%, and 18 statements predicted the biographical criterion with classification accuracy of 97%. In Sample 2, 16 statements predicted the biographical criterion with classification accuracy of 94%. Estimations of positive and negative predictive value were 89% and 99%. Items of various discriminant functions were factor analysed to find characteristic difficulties of students with dyslexia, resulting in a five-factor structure in Sample 1 and a four-factor structure in Sample 2. Answer bias was investigated with measures of internal consistency reliability. Less than 20 self-report items are sufficient to accurately classify students with and without dyslexia. This supports the usefulness of self-assessment of dyslexia as a valid alternative to diagnostic test batteries. Copyright © 2015 John Wiley & Sons, Ltd.
Pothula, Venu M.; Yuan, Stanley C.; Maerz, David A.; Montes, Lucresia; Oleszkiewicz, Stephen M.; Yusupov, Albert; Perline, Richard
2015-01-01
Background Advanced predictive analytical techniques are being increasingly applied to clinical risk assessment. This study compared a neural network model to several other models in predicting the length of stay (LOS) in the cardiac surgical intensive care unit (ICU) based on pre-incision patient characteristics. Methods Thirty six variables collected from 185 cardiac surgical patients were analyzed for contribution to ICU LOS. The Automatic Linear Modeling (ALM) module of IBM-SPSS software identified 8 factors with statistically significant associations with ICU LOS; these factors were also analyzed with the Artificial Neural Network (ANN) module of the same software. The weighted contributions of each factor (“trained” data) were then applied to data for a “new” patient to predict ICU LOS for that individual. Results Factors identified in the ALM model were: use of an intra-aortic balloon pump; O2 delivery index; age; use of positive cardiac inotropic agents; hematocrit; serum creatinine ≥ 1.3 mg/deciliter; gender; arterial pCO2. The r2 value for ALM prediction of ICU LOS in the initial (training) model was 0.356, p <0.0001. Cross validation in prediction of a “new” patient yielded r2 = 0.200, p <0.0001. The same 8 factors analyzed with ANN yielded a training prediction r2 of 0.535 (p <0.0001) and a cross validation prediction r2 of 0.410, p <0.0001. Two additional predictive algorithms were studied, but they had lower prediction accuracies. Our validated neural network model identified the upper quartile of ICU LOS with an odds ratio of 9.8(p <0.0001). Conclusions ANN demonstrated a 2-fold greater accuracy than ALM in prediction of observed ICU LOS. This greater accuracy would be presumed to result from the capacity of ANN to capture nonlinear effects and higher order interactions. Predictive modeling may be of value in early anticipation of risks of post-operative morbidity and utilization of ICU facilities. PMID:26710254
McConnell, Bridget L.; Urushihara, Kouji; Miller, Ralph R.
2009-01-01
Three conditioned suppression experiments with rats investigated contrasting predictions made by the extended comparator hypothesis and acquisition-focused models of learning, specifically, modified SOP and the revised Rescorla-Wagner model, concerning retrospective revaluation. Two target cues (X and Y) were partially reinforced using a stimulus relative validity design (i.e., AX-Outcome/ BX-No outcome/ CY-Outcome/ DY-No outcome), and subsequently one of the companion cues for each target was extinguished in compound (BC-No outcome). In Experiment 1, which used spaced trials for relative validity training, greater suppression was observed to target cue Y for which the excitatory companion cue had been extinguished relative to target cue X for which the nonexcitatory companion cue had been extinguished. Experiment 2 replicated these results in a sensory preconditioning preparation. Experiment 3 massed the trials during relative validity training, and the opposite pattern of data was observed. The results are consistent with the predictions of the extended comparator hypothesis. Furthermore, this set of experiments is unique in being able to differentiate between these models without invoking higher-order comparator processes. PMID:20141324
Brady, Karen; Cracknell, Nina; Zulch, Helen; Mills, Daniel Simon
2018-01-01
Working dogs are selected based on predictions from tests that they will be able to perform specific tasks in often challenging environments. However, withdrawal from service in working dogs is still a big problem, bringing into question the reliability of the selection tests used to make these predictions. A systematic review was undertaken aimed at bringing together available information on the reliability and predictive validity of the assessment of behavioural characteristics used with working dogs to establish the quality of selection tests currently available for use to predict success in working dogs. The search procedures resulted in 16 papers meeting the criteria for inclusion. A large range of behaviour tests and parameters were used in the identified papers, and so behaviour tests and their underpinning constructs were grouped on the basis of their relationship with positive core affect (willingness to work, human-directed social behaviour, object-directed play tendencies) and negative core affect (human-directed aggression, approach withdrawal tendencies, sensitivity to aversives). We then examined the papers for reports of inter-rater reliability, within-session intra-rater reliability, test-retest validity and predictive validity. The review revealed a widespread lack of information relating to the reliability and validity of measures to assess behaviour and inconsistencies in terminologies, study parameters and indices of success. There is a need to standardise the reporting of these aspects of behavioural tests in order to improve the knowledge base of what characteristics are predictive of optimal performance in working dog roles, improving selection processes and reducing working dog redundancy. We suggest the use of a framework based on explaining the direct or indirect relationship of the test with core affect.
Engoren, Milo; Habib, Robert H; Dooner, John J; Schwann, Thomas A
2013-08-01
As many as 14 % of patients undergoing coronary artery bypass surgery are readmitted within 30 days. Readmission is usually the result of morbidity and may lead to death. The purpose of this study is to develop and compare statistical and genetic programming models to predict readmission. Patients were divided into separate Construction and Validation populations. Using 88 variables, logistic regression, genetic programs, and artificial neural nets were used to develop predictive models. Models were first constructed and tested on the Construction populations, then validated on the Validation population. Areas under the receiver operator characteristic curves (AU ROC) were used to compare the models. Two hundred and two patients (7.6 %) in the 2,644 patient Construction group and 216 (8.0 %) of the 2,711 patient Validation group were re-admitted within 30 days of CABG surgery. Logistic regression predicted readmission with AU ROC = .675 ± .021 in the Construction group. Genetic programs significantly improved the accuracy, AU ROC = .767 ± .001, p < .001). Artificial neural nets were less accurate with AU ROC = 0.597 ± .001 in the Construction group. Predictive accuracy of all three techniques fell in the Validation group. However, the accuracy of genetic programming (AU ROC = .654 ± .001) was still trivially but statistically non-significantly better than that of the logistic regression (AU ROC = .644 ± .020, p = .61). Genetic programming and logistic regression provide alternative methods to predict readmission that are similarly accurate.
Rosellini, A J; Monahan, J; Street, A E; Heeringa, S G; Hill, E D; Petukhova, M; Reis, B Y; Sampson, N A; Bliese, P; Schoenbaum, M; Stein, M B; Ursano, R J; Kessler, R C
2016-01-01
Although interventions exist to reduce violent crime, optimal implementation requires accurate targeting. We report the results of an attempt to develop an actuarial model using machine learning methods to predict future violent crimes among US Army soldiers. A consolidated administrative database for all 975 057 soldiers in the US Army in 2004-2009 was created in the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). Of these soldiers, 5771 committed a first founded major physical violent crime (murder-manslaughter, kidnapping, aggravated arson, aggravated assault, robbery) over that time period. Temporally prior administrative records measuring socio-demographic, Army career, criminal justice, medical/pharmacy, and contextual variables were used to build an actuarial model for these crimes separately among men and women using machine learning methods (cross-validated stepwise regression, random forests, penalized regressions). The model was then validated in an independent 2011-2013 sample. Key predictors were indicators of disadvantaged social/socioeconomic status, early career stage, prior crime, and mental disorder treatment. Area under the receiver-operating characteristic curve was 0.80-0.82 in 2004-2009 and 0.77 in the 2011-2013 validation sample. Of all administratively recorded crimes, 36.2-33.1% (male-female) were committed by the 5% of soldiers having the highest predicted risk in 2004-2009 and an even higher proportion (50.5%) in the 2011-2013 validation sample. Although these results suggest that the models could be used to target soldiers at high risk of violent crime perpetration for preventive interventions, final implementation decisions would require further validation and weighing of predicted effectiveness against intervention costs and competing risks.
Katz, Brian S.; McMullan, Jason T.; Sucharew, Heidi; Adeoye, Opeolu; Broderick, Joseph P.
2015-01-01
Background and Purpose We derived and validated the Cincinnati Prehospital Stroke Severity Scale (CPSSS) to identify patients with severe strokes and large vessel occlusion (LVO). Methods CPSSS was developed with regression tree analysis, objectivity, anticipated ease in administration by EMS personnel, and the presence of cortical signs. We derived and validated the tool using the two NINDS t-PA Stroke Study trials and IMS III Trial cohorts, respectively, to predict severe stroke [NIH stroke scale (NIHSS) ≥15] and LVO. Standard test characteristics were determined and receiver operator curves were generated and summarized by the area under the curve (AUC). Results CPSSS score ranges from 0-4; composed and scored by individual NIHSS items: 2 points for presence of conjugate gaze (NIHSS ≥1); 1 point for presence of arm weakness (NIHSS ≥2); and 1 point for presence abnormal level of consciousness (LOC) commands and questions (NIHSS LOC ≥1 each). In the derivation set, CPSSS had an AUC of 0.89; score ≥2 was 89% sensitive and 73% specific in identifying NIHSS ≥15. Validation results were similar with an AUC of 0.83; score ≥2 was 92% sensitive, 51% specific, a positive likelihood ratio (PLR) of 3.3 and a negative likelihood ratio (NLR) of 0.15 in predicting severe stroke. For 222/303 IMS III subjects with LVO, CPSSS had an AUC of 0.67; a score ≥2 was 83% sensitive, 40% specific, PLR of 1.4, and NLR of 0.4 in predicting LVO. Conclusions CPSSS can identify stroke patients with NIHSS ≥15 and LVO. Prospective prehospital validation is warranted. PMID:25899242
Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing.
Qiao, Pengwei; Lei, Mei; Yang, Sucai; Yang, Jun; Guo, Guanghui; Zhou, Xiaoyong
2018-06-01
Spatial interpolation method is the basis of soil heavy metal pollution assessment and remediation. The existing evaluation index for interpolation accuracy did not combine with actual situation. The selection of interpolation methods needs to be based on specific research purposes and research object characteristics. In this paper, As pollution in soils of Beijing was taken as an example. The prediction accuracy of ordinary kriging (OK) and inverse distance weighted (IDW) were evaluated based on the cross validation results and spatial distribution characteristics of influencing factors. The results showed that, under the condition of specific spatial correlation, the cross validation results of OK and IDW for every soil point and the prediction accuracy of spatial distribution trend are similar. But the prediction accuracy of OK for the maximum and minimum is less than IDW, while the number of high pollution areas identified by OK are less than IDW. It is difficult to identify the high pollution areas fully by OK, which shows that the smoothing effect of OK is obvious. In addition, with increasing of the spatial correlation of As concentration, the cross validation error of OK and IDW decreases, and the high pollution area identified by OK is approaching the result of IDW, which can identify the high pollution areas more comprehensively. However, because the semivariogram constructed by OK interpolation method is more subjective and requires larger number of soil samples, IDW is more suitable for spatial prediction of heavy metal pollution in soils.
NASA Astrophysics Data System (ADS)
Davis, Brian; Turner, Travis L.; Seelecke, Stefan
2005-05-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.
NASA Technical Reports Server (NTRS)
Davis, Brian; Turner, Travis L.; Seelecke, Stefan
2005-01-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.
Sabel, Michael S; Rice, John D; Griffith, Kent A; Lowe, Lori; Wong, Sandra L; Chang, Alfred E; Johnson, Timothy M; Taylor, Jeremy M G
2012-01-01
To identify melanoma patients at sufficiently low risk of nodal metastases who could avoid sentinel lymph node biopsy (SLNB), several statistical models have been proposed based upon patient/tumor characteristics, including logistic regression, classification trees, random forests, and support vector machines. We sought to validate recently published models meant to predict sentinel node status. We queried our comprehensive, prospectively collected melanoma database for consecutive melanoma patients undergoing SLNB. Prediction values were estimated based upon four published models, calculating the same reported metrics: negative predictive value (NPV), rate of negative predictions (RNP), and false-negative rate (FNR). Logistic regression performed comparably with our data when considering NPV (89.4 versus 93.6%); however, the model's specificity was not high enough to significantly reduce the rate of biopsies (SLN reduction rate of 2.9%). When applied to our data, the classification tree produced NPV and reduction in biopsy rates that were lower (87.7 versus 94.1 and 29.8 versus 14.3, respectively). Two published models could not be applied to our data due to model complexity and the use of proprietary software. Published models meant to reduce the SLNB rate among patients with melanoma either underperformed when applied to our larger dataset, or could not be validated. Differences in selection criteria and histopathologic interpretation likely resulted in underperformance. Statistical predictive models must be developed in a clinically applicable manner to allow for both validation and ultimately clinical utility.
Predictors of early growth in academic achievement: the head-toes-knees-shoulders task
McClelland, Megan M.; Cameron, Claire E.; Duncan, Robert; Bowles, Ryan P.; Acock, Alan C.; Miao, Alicia; Pratt, Megan E.
2014-01-01
Children's behavioral self-regulation and executive function (EF; including attentional or cognitive flexibility, working memory, and inhibitory control) are strong predictors of academic achievement. The present study examined the psychometric properties of a measure of behavioral self-regulation called the Head-Toes-Knees-Shoulders (HTKS) by assessing construct validity, including relations to EF measures, and predictive validity to academic achievement growth between prekindergarten and kindergarten. In the fall and spring of prekindergarten and kindergarten, 208 children (51% enrolled in Head Start) were assessed on the HTKS, measures of cognitive flexibility, working memory (WM), and inhibitory control, and measures of emergent literacy, mathematics, and vocabulary. For construct validity, the HTKS was significantly related to cognitive flexibility, working memory, and inhibitory control in prekindergarten and kindergarten. For predictive validity in prekindergarten, a random effects model indicated that the HTKS significantly predicted growth in mathematics, whereas a cognitive flexibility task significantly predicted growth in mathematics and vocabulary. In kindergarten, the HTKS was the only measure to significantly predict growth in all academic outcomes. An alternative conservative analytical approach, a fixed effects analysis (FEA) model, also indicated that growth in both the HTKS and measures of EF significantly predicted growth in mathematics over four time points between prekindergarten and kindergarten. Results demonstrate that the HTKS involves cognitive flexibility, working memory, and inhibitory control, and is substantively implicated in early achievement, with the strongest relations found for growth in achievement during kindergarten and associations with emergent mathematics. PMID:25071619
Li, Guowei; Thabane, Lehana; Delate, Thomas; Witt, Daniel M.; Levine, Mitchell A. H.; Cheng, Ji; Holbrook, Anne
2016-01-01
Objectives To construct and validate a prediction model for individual combined benefit and harm outcomes (stroke with no major bleeding, major bleeding with no stroke, neither event, or both) in patients with atrial fibrillation (AF) with and without warfarin therapy. Methods Using the Kaiser Permanente Colorado databases, we included patients newly diagnosed with AF between January 1, 2005 and December 31, 2012 for model construction and validation. The primary outcome was a prediction model of composite of stroke or major bleeding using polytomous logistic regression (PLR) modelling. The secondary outcome was a prediction model of all-cause mortality using the Cox regression modelling. Results We included 9074 patients with 4537 and 4537 warfarin users and non-users, respectively. In the derivation cohort (n = 4632), there were 136 strokes (2.94%), 280 major bleedings (6.04%) and 1194 deaths (25.78%) occurred. In the prediction models, warfarin use was not significantly associated with risk of stroke, but increased the risk of major bleeding and decreased the risk of death. Both the PLR and Cox models were robust, internally and externally validated, and with acceptable model performances. Conclusions In this study, we introduce a new methodology for predicting individual combined benefit and harm outcomes associated with warfarin therapy for patients with AF. Should this approach be validated in other patient populations, it has potential advantages over existing risk stratification approaches as a patient-physician aid for shared decision-making PMID:27513986
Miao, Hui; Hartman, Mikael; Bhoo-Pathy, Nirmala; Lee, Soo-Chin; Taib, Nur Aishah; Tan, Ern-Yu; Chan, Patrick; Moons, Karel G. M.; Wong, Hoong-Seam; Goh, Jeremy; Rahim, Siti Mastura; Yip, Cheng-Har; Verkooijen, Helena M.
2014-01-01
Background In Asia, up to 25% of breast cancer patients present with distant metastases at diagnosis. Given the heterogeneous survival probabilities of de novo metastatic breast cancer, individual outcome prediction is challenging. The aim of the study is to identify existing prognostic models for patients with de novo metastatic breast cancer and validate them in Asia. Materials and Methods We performed a systematic review to identify prediction models for metastatic breast cancer. Models were validated in 642 women with de novo metastatic breast cancer registered between 2000 and 2010 in the Singapore Malaysia Hospital Based Breast Cancer Registry. Survival curves for low, intermediate and high-risk groups according to each prognostic score were compared by log-rank test and discrimination of the models was assessed by concordance statistic (C-statistic). Results We identified 16 prediction models, seven of which were for patients with brain metastases only. Performance status, estrogen receptor status, metastatic site(s) and disease-free interval were the most common predictors. We were able to validate nine prediction models. The capacity of the models to discriminate between poor and good survivors varied from poor to fair with C-statistics ranging from 0.50 (95% CI, 0.48–0.53) to 0.63 (95% CI, 0.60–0.66). Conclusion The discriminatory performance of existing prediction models for de novo metastatic breast cancer in Asia is modest. Development of an Asian-specific prediction model is needed to improve prognostication and guide decision making. PMID:24695692
ERIC Educational Resources Information Center
Antshel, Kevin M.; Faraone, Stephen V.; Maglione, Katherine; Doyle, Alysa; Fried, Ronna; Seidman, Larry; Biederman, Joseph
2008-01-01
A study was conducted to establish the relationship between Attention-Deficit/Hyperactivity (ADHD) disorder and high-IQ children and whether ADHD has a high predictive value among youths with high-IQ. Results further supported the hypothesis for the predictive validity of ADHD in high-IQ youths.
Genomic prediction of reproduction traits for Merino sheep.
Bolormaa, S; Brown, D J; Swan, A A; van der Werf, J H J; Hayes, B J; Daetwyler, H D
2017-06-01
Economically important reproduction traits in sheep, such as number of lambs weaned and litter size, are expressed only in females and later in life after most selection decisions are made, which makes them ideal candidates for genomic selection. Accurate genomic predictions would lead to greater genetic gain for these traits by enabling accurate selection of young rams with high genetic merit. The aim of this study was to design and evaluate the accuracy of a genomic prediction method for female reproduction in sheep using daughter trait deviations (DTD) for sires and ewe phenotypes (when individual ewes were genotyped) for three reproduction traits: number of lambs born (NLB), litter size (LSIZE) and number of lambs weaned. Genomic best linear unbiased prediction (GBLUP), BayesR and pedigree BLUP analyses of the three reproduction traits measured on 5340 sheep (4503 ewes and 837 sires) with real and imputed genotypes for 510 174 SNPs were performed. The prediction of breeding values using both sire and ewe trait records was validated in Merino sheep. Prediction accuracy was evaluated by across sire family and random cross-validations. Accuracies of genomic estimated breeding values (GEBVs) were assessed as the mean Pearson correlation adjusted by the accuracy of the input phenotypes. The addition of sire DTD into the prediction analysis resulted in higher accuracies compared with using only ewe records in genomic predictions or pedigree BLUP. Using GBLUP, the average accuracy based on the combined records (ewes and sire DTD) was 0.43 across traits, but the accuracies varied by trait and type of cross-validations. The accuracies of GEBVs from random cross-validations (range 0.17-0.61) were higher than were those from sire family cross-validations (range 0.00-0.51). The GEBV accuracies of 0.41-0.54 for NLB and LSIZE based on the combined records were amongst the highest in the study. Although BayesR was not significantly different from GBLUP in prediction accuracy, it identified several candidate genes which are known to be associated with NLB and LSIZE. The approach provides a way to make use of all data available in genomic prediction for traits that have limited recording. © 2017 Stichting International Foundation for Animal Genetics.
Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation
NASA Technical Reports Server (NTRS)
Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.
2015-01-01
An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.
Genomic selection in sugar beet breeding populations.
Würschum, Tobias; Reif, Jochen C; Kraft, Thomas; Janssen, Geert; Zhao, Yusheng
2013-09-18
Genomic selection exploits dense genome-wide marker data to predict breeding values. In this study we used a large sugar beet population of 924 lines representing different germplasm types present in breeding populations: unselected segregating families and diverse lines from more advanced stages of selection. All lines have been intensively phenotyped in multi-location field trials for six agronomically important traits and genotyped with 677 SNP markers. We used ridge regression best linear unbiased prediction in combination with fivefold cross-validation and obtained high prediction accuracies for all except one trait. In addition, we investigated whether a calibration developed based on a training population composed of diverse lines is suited to predict the phenotypic performance within families. Our results show that the prediction accuracy is lower than that obtained within the diverse set of lines, but comparable to that obtained by cross-validation within the respective families. The results presented in this study suggest that a training population derived from intensively phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust calibration models for genomic selection. Taken together, our results indicate that genomic selection is a valuable tool and can thus complement the genomics toolbox in sugar beet breeding.
Predictive models of safety based on audit findings: Part 2: Measurement of model validity.
Hsiao, Yu-Lin; Drury, Colin; Wu, Changxu; Paquet, Victor
2013-07-01
Part 1 of this study sequence developed a human factors/ergonomics (HF/E) based classification system (termed HFACS-MA) for safety audit findings and proved its measurement reliability. In Part 2, we used the human error categories of HFACS-MA as predictors of future safety performance. Audit records and monthly safety incident reports from two airlines submitted to their regulatory authority were available for analysis, covering over 6.5 years. Two participants derived consensus results of HF/E errors from the audit reports using HFACS-MA. We adopted Neural Network and Poisson regression methods to establish nonlinear and linear prediction models respectively. These models were tested for the validity of prediction of the safety data, and only Neural Network method resulted in substantially significant predictive ability for each airline. Alternative predictions from counting of audit findings and from time sequence of safety data produced some significant results, but of much smaller magnitude than HFACS-MA. The use of HF/E analysis of audit findings provided proactive predictors of future safety performance in the aviation maintenance field. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
McDermott, A; Visentin, G; De Marchi, M; Berry, D P; Fenelon, M A; O'Connor, P M; Kenny, O A; McParland, S
2016-04-01
The aim of this study was to evaluate the effectiveness of mid-infrared spectroscopy in predicting milk protein and free amino acid (FAA) composition in bovine milk. Milk samples were collected from 7 Irish research herds and represented cows from a range of breeds, parities, and stages of lactation. Mid-infrared spectral data in the range of 900 to 5,000 cm(-1) were available for 730 milk samples; gold standard methods were used to quantify individual protein fractions and FAA of these samples with a view to predicting these gold standard protein fractions and FAA levels with available mid-infrared spectroscopy data. Separate prediction equations were developed for each trait using partial least squares regression; accuracy of prediction was assessed using both cross validation on a calibration data set (n=400 to 591 samples) and external validation on an independent data set (n=143 to 294 samples). The accuracy of prediction in external validation was the same irrespective of whether undertaken on the entire external validation data set or just within the Holstein-Friesian breed. The strongest coefficient of correlation obtained for protein fractions in external validation was 0.74, 0.69, and 0.67 for total casein, total β-lactoglobulin, and β-casein, respectively. Total proteins (i.e., total casein, total whey, and total lactoglobulin) were predicted with greater accuracy then their respective component traits; prediction accuracy using the infrared spectrum was superior to prediction using just milk protein concentration. Weak to moderate prediction accuracies were observed for FAA. The greatest coefficient of correlation in both cross validation and external validation was for Gly (0.75), indicating a moderate accuracy of prediction. Overall, the FAA prediction models overpredicted the gold standard values. Near-unity correlations existed between total casein and β-casein irrespective of whether the traits were based on the gold standard (0.92) or mid-infrared spectroscopy predictions (0.95). Weaker correlations among FAA were observed than the correlations among the protein fractions. Pearson correlations between gold standard protein fractions and the milk processing characteristics of rennet coagulation time, curd firming time, curd firmness, heat coagulating time, pH, and casein micelle size were weak to moderate and ranged from -0.48 (protein and pH) to 0.50 (total casein and a30). Pearson correlations between gold standard FAA and these milk processing characteristics were also weak to moderate and ranged from -0.60 (Val and pH) to 0.49 (Val and K20). Results from this study indicate that mid-infrared spectroscopy has the potential to predict protein fractions and some FAA in milk at a population level. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wickens, Christopher D; Sebok, Angelia; Li, Huiyang; Sarter, Nadine; Gacy, Andrew M
2015-09-01
The aim of this study was to develop and validate a computational model of the automation complacency effect, as operators work on a robotic arm task, supported by three different degrees of automation. Some computational models of complacency in human-automation interaction exist, but those are formed and validated within the context of fairly simplified monitoring failures. This research extends model validation to a much more complex task, so that system designers can establish, without need for human-in-the-loop (HITL) experimentation, merits and shortcomings of different automation degrees. We developed a realistic simulation of a space-based robotic arm task that could be carried out with three different levels of trajectory visualization and execution automation support. Using this simulation, we performed HITL testing. Complacency was induced via several trials of correctly performing automation and then was assessed on trials when automation failed. Following a cognitive task analysis of the robotic arm operation, we developed a multicomponent model of the robotic operator and his or her reliance on automation, based in part on visual scanning. The comparison of model predictions with empirical results revealed that the model accurately predicted routine performance and predicted the responses to these failures after complacency developed. However, the scanning models do not account for the entire attention allocation effects of complacency. Complacency modeling can provide a useful tool for predicting the effects of different types of imperfect automation. The results from this research suggest that focus should be given to supporting situation awareness in automation development. © 2015, Human Factors and Ergonomics Society.
Does rational selection of training and test sets improve the outcome of QSAR modeling?
Martin, Todd M; Harten, Paul; Young, Douglas M; Muratov, Eugene N; Golbraikh, Alexander; Zhu, Hao; Tropsha, Alexander
2012-10-22
Prior to using a quantitative structure activity relationship (QSAR) model for external predictions, its predictive power should be established and validated. In the absence of a true external data set, the best way to validate the predictive ability of a model is to perform its statistical external validation. In statistical external validation, the overall data set is divided into training and test sets. Commonly, this splitting is performed using random division. Rational splitting methods can divide data sets into training and test sets in an intelligent fashion. The purpose of this study was to determine whether rational division methods lead to more predictive models compared to random division. A special data splitting procedure was used to facilitate the comparison between random and rational division methods. For each toxicity end point, the overall data set was divided into a modeling set (80% of the overall set) and an external evaluation set (20% of the overall set) using random division. The modeling set was then subdivided into a training set (80% of the modeling set) and a test set (20% of the modeling set) using rational division methods and by using random division. The Kennard-Stone, minimal test set dissimilarity, and sphere exclusion algorithms were used as the rational division methods. The hierarchical clustering, random forest, and k-nearest neighbor (kNN) methods were used to develop QSAR models based on the training sets. For kNN QSAR, multiple training and test sets were generated, and multiple QSAR models were built. The results of this study indicate that models based on rational division methods generate better statistical results for the test sets than models based on random division, but the predictive power of both types of models are comparable.
Midorikawa, T; Ohta, M; Hikihara, Y; Torii, S; Sakamoto, S
2017-10-01
We aimed to develop regression-based prediction equations for estimating total and regional skeletal muscle mass (SMM) from measurements of lean soft tissue mass (LSTM) using dual-energy X-ray absorptiometry (DXA) and investigate the validity of these equations. In total, 144 healthy Japanese prepubertal children aged 6-12 years were divided into 2 groups: the model development group (62 boys and 38 girls) and the validation group (26 boys and 18 girls). Contiguous MRI images with a 1-cm slice thickness were obtained from the first cervical vertebra to the ankle joints as reference data. The SMM was calculated from the summation of the digitized cross-sectional areas. Total and regional LSTM was measured using DXA. Strong significant correlations were observed between the site-matched SMM (total, arms, trunk and legs) measured by MRI and the LSTM obtained by DXA in the model development group for both boys and girls (R 2 adj =0.86-0.97, P<0.01, standard error of the estimate (SEE)=0.08-0.44 kg). When these SMM prediction equations were applied to the validation group, the measured total (boys 9.47±2.21 kg; girls 8.18±2.62 kg) and regional SMM were very similar to the predicted values for both boys (total SMM 9.40±2.39 kg) and girls (total SMM 8.17±2.57 kg). The results of the Bland-Altman analysis for the validation group did not indicate any bias for either boys or girls with the exception of the arm region for the girls. These results suggest that the DXA-derived prediction equations are precise and accurate for the estimation of total and regional SMM in Japanese prepubertal boys and girls.
Predicting longshore gradients in longshore transport: the CERC formula compared to Delft3D
List, Jeffrey H.; Hanes, Daniel M.; Ruggiero, Peter
2007-01-01
The prediction of longshore transport gradients is critical for forecasting shoreline change. We employ simple test cases consisting of shoreface pits at varying distances from the shoreline to compare the longshore transport gradients predicted by the CERC formula against results derived from the process-based model Delft3D. Results show that while in some cases the two approaches give very similar results, in many cases the results diverge greatly. Although neither approach is validated with field data here, the Delft3D-based transport gradients provide much more consistent predictions of erosional and accretionary zones as the pit location varies across the shoreface.
Ouyang, Liwen; Apley, Daniel W; Mehrotra, Sanjay
2016-04-01
Electronic medical record (EMR) databases offer significant potential for developing clinical hypotheses and identifying disease risk associations by fitting statistical models that capture the relationship between a binary response variable and a set of predictor variables that represent clinical, phenotypical, and demographic data for the patient. However, EMR response data may be error prone for a variety of reasons. Performing a manual chart review to validate data accuracy is time consuming, which limits the number of chart reviews in a large database. The authors' objective is to develop a new design-of-experiments-based systematic chart validation and review (DSCVR) approach that is more powerful than the random validation sampling used in existing approaches. The DSCVR approach judiciously and efficiently selects the cases to validate (i.e., validate whether the response values are correct for those cases) for maximum information content, based only on their predictor variable values. The final predictive model will be fit using only the validation sample, ignoring the remainder of the unvalidated and unreliable error-prone data. A Fisher information based D-optimality criterion is used, and an algorithm for optimizing it is developed. The authors' method is tested in a simulation comparison that is based on a sudden cardiac arrest case study with 23 041 patients' records. This DSCVR approach, using the Fisher information based D-optimality criterion, results in a fitted model with much better predictive performance, as measured by the receiver operating characteristic curve and the accuracy in predicting whether a patient will experience the event, than a model fitted using a random validation sample. The simulation comparisons demonstrate that this DSCVR approach can produce predictive models that are significantly better than those produced from random validation sampling, especially when the event rate is low. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Armistead-Jehle, Patrick; Cooper, Douglas B; Grills, Chad E; Cole, Wesley R; Lippa, Sara M; Stegman, Robert L; Lange, Rael T
2018-04-01
Self-report measures are commonly relied upon in military healthcare environments to assess service members following a mild traumatic brain injury (mTBI). However, such instruments are susceptible to over-reporting and rarely include validity scales. This study evaluated the utility of the mild Brain Injury Atypical Symptoms scale (mBIAS) and the Neurobehavioral Symptom Inventory Validity-10 scale to detect symptom over-reporting. A total of 359 service members with a reported history of mTBI were separated into two symptom reporting groups based on MMPI-2-RF validity scales (i.e., non-over-reporting versus symptom over-reporting). The clinical utility of the mBIAS and Validity-10 as diagnostic indicators and screens of symptom over-reporting were evaluated by calculating sensitivity, specificity, positive test rate, positive predictive power (PPP), and negative predictive power (NPP) values. An mBIAS cut score of ≥10 was optimal as a diagnostic indicator, which resulted in high specificity and PPP; however, sensitivity was low. The utility of the mBIAS as a screening instrument was limited. A Validity-10 cut score of ≥33 was optimal as a diagnostic indicator. This resulted in very high specificity and PPP, but low sensitivity. A Validity-10 cut score of ≥7 was considered optimal as a screener, which resulted in moderate sensitivity, specificity, NPP, but relatively low PPP. Owing to low sensitivity, the current data suggests that both the mBIAS and Validity-10 are insufficient as stand-alone measures of symptom over-reporting. However, Validity-10 scores above the identified cut-off of ≥7should be taken as an indication that further evaluation to rule out symptom over-reporting is necessary.
Forcina, Alessandra; Rancoita, Paola M V; Marcatti, Magda; Greco, Raffaella; Lupo-Stanghellini, Maria Teresa; Carrabba, Matteo; Marasco, Vincenzo; Di Serio, Clelia; Bernardi, Massimo; Peccatori, Jacopo; Corti, Consuelo; Bondanza, Attilio; Ciceri, Fabio
2017-12-01
Infection-related mortality (IRM) is a substantial component of nonrelapse mortality (NRM) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). No scores have been developed to predict IRM before transplantation. Pretransplantation clinical and biochemical data were collected from a study cohort of 607 adult patients undergoing allo-HSCT between January 2009 and February 2017. In a training set of 273 patients, multivariate analysis revealed that age >60 years (P = .003), cytomegalovirus host/donor serostatus different from negative/negative (P < .001), pretransplantation IgA level <1.11 g/L (P = .004), and pretransplantation IgM level <.305 g/L (P = .028) were independent predictors of increased IRM. Based on these results, we developed and subsequently validated a 3-tiered weighted prognostic index for IRM in a retrospective set of patients (n = 219) and a prospective set of patients (n = 115). Patients were assigned to 3 different IRM risk classes based on this index score. The score significantly predicted IRM in the training set, retrospective validation set, and prospective validation set (P < .001, .044, and .011, respectively). In the training set, 100-day IRM was 5% for the low-risk group, 11% for the intermediate-riak group, and 16% for the high-risk groups. In the retrospective validation set, the respective 100-day IRM values were 7%, 17%, and 28%, and in the prospective set, they were 0%, 5%, and 7%. This score predicted also overall survival (P < .001 in the training set, P < 041 in the retrospective validation set, and P < .023 in the prospective validation set). Because pretransplantation levels of IgA/IgM can be modulated by the supplementation of enriched immunoglobulins, these results suggest the possibility of prophylactic interventional studies to improve transplantation outcomes. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Comparison of Aircraft Icing Growth Assessment Software
NASA Technical Reports Server (NTRS)
Wright, William; Potapczuk, Mark G.; Levinson, Laurie H.
2011-01-01
A research project is underway to produce computer software that can accurately predict ice growth under any meteorological conditions for any aircraft surface. An extensive comparison of the results in a quantifiable manner against the database of ice shapes that have been generated in the NASA Glenn Icing Research Tunnel (IRT) has been performed, including additional data taken to extend the database in the Super-cooled Large Drop (SLD) regime. The project shows the differences in ice shape between LEWICE 3.2.2, GlennICE, and experimental data. The project addresses the validation of the software against a recent set of ice-shape data in the SLD regime. This validation effort mirrors a similar effort undertaken for previous validations of LEWICE. Those reports quantified the ice accretion prediction capabilities of the LEWICE software. Several ice geometry features were proposed for comparing ice shapes in a quantitative manner. The resulting analysis showed that LEWICE compared well to the available experimental data.
Early Prediction of Intensive Care Unit-Acquired Weakness: A Multicenter External Validation Study.
Witteveen, Esther; Wieske, Luuk; Sommers, Juultje; Spijkstra, Jan-Jaap; de Waard, Monique C; Endeman, Henrik; Rijkenberg, Saskia; de Ruijter, Wouter; Sleeswijk, Mengalvio; Verhamme, Camiel; Schultz, Marcus J; van Schaik, Ivo N; Horn, Janneke
2018-01-01
An early diagnosis of intensive care unit-acquired weakness (ICU-AW) is often not possible due to impaired consciousness. To avoid a diagnostic delay, we previously developed a prediction model, based on single-center data from 212 patients (development cohort), to predict ICU-AW at 2 days after ICU admission. The objective of this study was to investigate the external validity of the original prediction model in a new, multicenter cohort and, if necessary, to update the model. Newly admitted ICU patients who were mechanically ventilated at 48 hours after ICU admission were included. Predictors were prospectively recorded, and the outcome ICU-AW was defined by an average Medical Research Council score <4. In the validation cohort, consisting of 349 patients, we analyzed performance of the original prediction model by assessment of calibration and discrimination. Additionally, we updated the model in this validation cohort. Finally, we evaluated a new prediction model based on all patients of the development and validation cohort. Of 349 analyzed patients in the validation cohort, 190 (54%) developed ICU-AW. Both model calibration and discrimination of the original model were poor in the validation cohort. The area under the receiver operating characteristics curve (AUC-ROC) was 0.60 (95% confidence interval [CI]: 0.54-0.66). Model updating methods improved calibration but not discrimination. The new prediction model, based on all patients of the development and validation cohort (total of 536 patients) had a fair discrimination, AUC-ROC: 0.70 (95% CI: 0.66-0.75). The previously developed prediction model for ICU-AW showed poor performance in a new independent multicenter validation cohort. Model updating methods improved calibration but not discrimination. The newly derived prediction model showed fair discrimination. This indicates that early prediction of ICU-AW is still challenging and needs further attention.
Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages
NASA Technical Reports Server (NTRS)
Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.
1999-01-01
The objectives were to create a capability to simulate curvilinear crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage and to validate with tests. Analysis methodology and software program (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically, while insuring continuous airworthiness, and to design more damage-tolerant aircraft for the next generation. Simulations of crack growth in fuselages were described. The crack tip opening angle (CTOA) fracture criterion, obtained from laboratory tests, was used to predict fracture behavior of fuselage panel tests. Geometrically nonlinear, elastic-plastic, thin shell finite element crack growth analyses were conducted. Comparisons of stress distributions, multiple stable crack growth history, and residual strength between measured and predicted results were made to assess the validity of the methodology. Incorporation of residual plastic deformations and tear strap failure was essential for accurate residual strength predictions. Issue related to predicting crack trajectory in fuselages were also discussed. A directional criterion, including T-stress and fracture toughness orthotropy, was developed. Curvilinear crack growth was simulated in coupon and fuselage panel tests. Both T-stress and fracture toughness orthotropy were essential to predict the observed crack paths. Flapping of fuselages were predicted. Measured and predicted results agreed reasonable well.
ERIC Educational Resources Information Center
Brown, James M.; Chang, Gerald
1982-01-01
The predictive validity of the Minnesota Reading Assessment (MRA) when used to project potential performance of postsecondary vocational-technical education students was examined. Findings confirmed the MRA to be a valid predictor, although the error in prediction varied between the criterion variables. (Author/GK)
Comparative Predictive Validity of the New MCAT Using Different Admissions Criteria.
ERIC Educational Resources Information Center
Golmon, Melton E.; Berry, Charles A.
1981-01-01
New Medical College Admission Test (MCAT) scores and undergraduate academic achievement were examined for their validity in predicting the performance of two select student populations at Northwestern University Medical School. The data support the hypothesis that New MCAT scores possess substantial predictive validity. (Author/MLW)
Prediction of adult height in girls: the Beunen-Malina-Freitas method.
Beunen, Gaston P; Malina, Robert M; Freitas, Duarte L; Thomis, Martine A; Maia, José A; Claessens, Albrecht L; Gouveia, Elvio R; Maes, Hermine H; Lefevre, Johan
2011-12-01
The purpose of this study was to validate and cross-validate the Beunen-Malina-Freitas method for non-invasive prediction of adult height in girls. A sample of 420 girls aged 10-15 years from the Madeira Growth Study were measured at yearly intervals and then 8 years later. Anthropometric dimensions (lengths, breadths, circumferences, and skinfolds) were measured; skeletal age was assessed using the Tanner-Whitehouse 3 method and menarcheal status (present or absent) was recorded. Adult height was measured and predicted using stepwise, forward, and maximum R (2) regression techniques. Multiple correlations, mean differences, standard errors of prediction, and error boundaries were calculated. A sample of the Leuven Longitudinal Twin Study was used to cross-validate the regressions. Age-specific coefficients of determination (R (2)) between predicted and measured adult height varied between 0.57 and 0.96, while standard errors of prediction varied between 1.1 and 3.9 cm. The cross-validation confirmed the validity of the Beunen-Malina-Freitas method in girls aged 12-15 years, but at lower ages the cross-validation was less consistent. We conclude that the Beunen-Malina-Freitas method is valid for the prediction of adult height in girls aged 12-15 years. It is applicable to European populations or populations of European ancestry.
Kaufman, Scott Barry; Quilty, Lena C.; Grazioplene, Rachael G.; Hirsh, Jacob B.; Gray, Jeremy R.; Peterson, Jordan B.; DeYoung, Colin G.
2014-01-01
Objective The Big Five personality dimension Openness/Intellect is the trait most closely associated with creativity and creative achievement. Little is known, however, regarding the discriminant validity of its two aspects— Openness to Experience (reflecting cognitive engagement with perception, fantasy, aesthetics, and emotions) and Intellect (reflecting cognitive engagement with abstract and semantic information, primarily through reasoning)— in relation to creativity. Method In four demographically diverse samples totaling 1035 participants, we investigated the independent predictive validity of Openness and Intellect by assessing the relations among cognitive ability, divergent thinking, personality, and creative achievement across the arts and sciences. Results and Conclusions We confirmed the hypothesis that whereas Openness predicts creative achievement in the arts, Intellect predicts creative achievement in the sciences. Inclusion of performance measures of general cognitive ability and divergent thinking indicated that the relation of Intellect to scientific creativity may be due at least in part to these abilities. Lastly, we found that Extraversion additionally predicted creative achievement in the arts, independently of Openness. Results are discussed in the context of dual-process theory. PMID:25487993
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.; Volino, R. J.; Corke, T. C.; Thomas, F. O.; Huang, J.; Lake, J. P.; King, P. I.
2007-01-01
A transport equation for the intermittency factor is employed to predict the transitional flows in low-pressure turbines. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub p) with the intermittency factor, gamma. Turbulent quantities are predicted using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The model had been previously validated against low-pressure turbine experiments with success. In this paper, the model is applied to predictions of three sets of recent low-pressure turbine experiments on the Pack B blade to further validate its predicting capabilities under various flow conditions. Comparisons of computational results with experimental data are provided. Overall, good agreement between the experimental data and computational results is obtained. The new model has been shown to have the capability of accurately predicting transitional flows under a wide range of low-pressure turbine conditions.
Journal Article: Infant Exposure to Dioxin-Like Compounds in Breast Milk
A simple, one-compartment, first-order pharmacokinetic model is used to predict the infant body burden of dioxin-like compounds that results from breast-feeding. Validation testing of the model showed a good match between predictions and measurements of dioxin toxic equivalents ...
Genomic selection in sugar beet breeding populations
2013-01-01
Background Genomic selection exploits dense genome-wide marker data to predict breeding values. In this study we used a large sugar beet population of 924 lines representing different germplasm types present in breeding populations: unselected segregating families and diverse lines from more advanced stages of selection. All lines have been intensively phenotyped in multi-location field trials for six agronomically important traits and genotyped with 677 SNP markers. Results We used ridge regression best linear unbiased prediction in combination with fivefold cross-validation and obtained high prediction accuracies for all except one trait. In addition, we investigated whether a calibration developed based on a training population composed of diverse lines is suited to predict the phenotypic performance within families. Our results show that the prediction accuracy is lower than that obtained within the diverse set of lines, but comparable to that obtained by cross-validation within the respective families. Conclusions The results presented in this study suggest that a training population derived from intensively phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust calibration models for genomic selection. Taken together, our results indicate that genomic selection is a valuable tool and can thus complement the genomics toolbox in sugar beet breeding. PMID:24047500
Sun, Xiyang; Miao, Jiacheng; Wang, You; Luo, Zhiyuan; Li, Guang
2017-01-01
An estimate on the reliability of prediction in the applications of electronic nose is essential, which has not been paid enough attention. An algorithm framework called conformal prediction is introduced in this work for discriminating different kinds of ginsengs with a home-made electronic nose instrument. Nonconformity measure based on k-nearest neighbors (KNN) is implemented separately as underlying algorithm of conformal prediction. In offline mode, the conformal predictor achieves a classification rate of 84.44% based on 1NN and 80.63% based on 3NN, which is better than that of simple KNN. In addition, it provides an estimate of reliability for each prediction. In online mode, the validity of predictions is guaranteed, which means that the error rate of region predictions never exceeds the significance level set by a user. The potential of this framework for detecting borderline examples and outliers in the application of E-nose is also investigated. The result shows that conformal prediction is a promising framework for the application of electronic nose to make predictions with reliability and validity. PMID:28805721
Validity of empirical models of exposure in asphalt paving
Burstyn, I; Boffetta, P; Burr, G; Cenni, A; Knecht, U; Sciarra, G; Kromhout, H
2002-01-01
Aims: To investigate the validity of empirical models of exposure to bitumen fume and benzo(a)pyrene, developed for a historical cohort study of asphalt paving in Western Europe. Methods: Validity was evaluated using data from the USA, Italy, and Germany not used to develop the original models. Correlation between observed and predicted exposures was examined. Bias and precision were estimated. Results: Models were imprecise. Furthermore, predicted bitumen fume exposures tended to be lower (-70%) than concentrations found during paving in the USA. This apparent bias might be attributed to differences between Western European and USA paving practices. Evaluation of the validity of the benzo(a)pyrene exposure model revealed a similar to expected effect of re-paving and a larger than expected effect of tar use. Overall, benzo(a)pyrene models underestimated exposures by 51%. Conclusions: Possible bias as a result of underestimation of the impact of coal tar on benzo(a)pyrene exposure levels must be explored in sensitivity analysis of the exposure–response relation. Validation of the models, albeit limited, increased our confidence in their applicability to exposure assessment in the historical cohort study of cancer risk among asphalt workers. PMID:12205236
Mares-García, Emma; Palazón-Bru, Antonio; Folgado-de la Rosa, David Manuel; Pereira-Expósito, Avelino; Martínez-Martín, Álvaro; Cortés-Castell, Ernesto; Gil-Guillén, Vicente Francisco
2017-01-01
Other studies have assessed nonadherence to proton pump inhibitors (PPIs), but none has developed a screening test for its detection. To construct and internally validate a predictive model for nonadherence to PPIs. This prospective observational study with a one-month follow-up was carried out in 2013 in Spain, and included 302 patients with a prescription for PPIs. The primary variable was nonadherence to PPIs (pill count). Secondary variables were gender, age, antidepressants, type of PPI, non-guideline-recommended prescription (NGRP) of PPIs, and total number of drugs. With the secondary variables, a binary logistic regression model to predict nonadherence was constructed and adapted to a points system. The ROC curve, with its area (AUC), was calculated and the optimal cut-off point was established. The points system was internally validated through 1,000 bootstrap samples and implemented in a mobile application (Android). The points system had three prognostic variables: total number of drugs, NGRP of PPIs, and antidepressants. The AUC was 0.87 (95% CI [0.83-0.91], p < 0.001). The test yielded a sensitivity of 0.80 (95% CI [0.70-0.87]) and a specificity of 0.82 (95% CI [0.76-0.87]). The three parameters were very similar in the bootstrap validation. A points system to predict nonadherence to PPIs has been constructed, internally validated and implemented in a mobile application. Provided similar results are obtained in external validation studies, we will have a screening tool to detect nonadherence to PPIs.
Comparing current definitions of return to work: a measurement approach.
Steenstra, I A; Lee, H; de Vroome, E M M; Busse, J W; Hogg-Johnson, S J
2012-09-01
Return-to-work (RTW) status is an often used outcome in work and health research. In low back pain, work is regarded as a normal activity a worker should return to in order to fully recover. Comparing outcomes across studies and even jurisdictions using different definitions of RTW can be challenging for readers in general and when performing a systematic review in particular. In this study, the measurement properties of previously defined RTW outcomes were examined with data from two studies from two countries. Data on RTW in low back pain (LBP) from the Canadian Early Claimant Cohort (ECC); a workers' compensation based study, and the Dutch Amsterdam Sherbrooke Evaluation (ASE) study were analyzed. Correlations between outcomes, differences in predictive validity when using different outcomes and construct validity when comparing outcomes to a functional status outcome were analyzed. In the ECC all definitions were highly correlated and performed similarly in predictive validity. When compared to functional status, RTW definitions in the ECC study performed fair to good on all time points. In the ASE study all definitions were highly correlated and performed similarly in predictive validity. The RTW definitions, however, failed to compare or compared poorly with functional status. Only one definition compared fairly on one time point. Differently defined outcomes are highly correlated, give similar results in prediction, but seem to differ in construct validity when compared to functional status depending on societal context or possibly birth cohort. Comparison of studies using different RTW definitions appears valid as long as RTW status is not considered as a measure of functional status.
Validity of a novel computerized screening test system for mild cognitive impairment.
Park, Jin-Hyuck; Jung, Minye; Kim, Jongbae; Park, Hae Yean; Kim, Jung-Ran; Park, Ji-Hyuk
2018-06-20
ABSTRACTBackground:The mobile screening test system for screening mild cognitive impairment (mSTS-MCI) was developed for clinical use. However, the clinical usefulness of mSTS-MCI to detect elderly with MCI from those who are cognitively healthy has yet to be validated. Moreover, the comparability between this system and traditional screening tests for MCI has not been evaluated. The purpose of this study was to examine the validity and reliability of the mSTS-MCI and confirm the cut-off scores to detect MCI. The data were collected from 107 healthy elderly people and 74 elderly people with MCI. Concurrent validity was examined using the Korean version of Montreal Cognitive Assessment (MoCA-K) as a gold standard test, and test-retest reliability was investigated using 30 of the study participants at four-week intervals. The sensitivity, specificity, positive predictive value, and negative predictive value (NPV) were confirmed through Receiver Operating Characteristic (ROC) analysis, and the cut-off scores for elderly people with MCI were identified. Concurrent validity showed statistically significant correlations between the mSTS-MCI and MoCA-K and test-rests reliability indicated high correlation. As a result of screening predictability, the mSTS-MCI had a higher NPV than the MoCA-K. The mSTS-MCI was identified as a system with a high degree of validity and reliability. In addition, the mSTS-MCI showed high screening predictability, indicating it can be used in the clinical field as a screening test system for mild cognitive impairment.
Hoshiko, M; Hara, K; Ishitake, T
2012-02-01
The validity of health impact assessment (HIA) predictions has not been accurately assessed to date. In recent years, legislative attempts to promote decentralization have been progressing in Japan, and Kurume was designated as a core city in April 2008. An HIA into the transition of Kurume to a core city was conducted before the event, but the recommendations were not accepted by city officials. The aim of this study was to examine the validity of predictions made in the HIA on Kurume by conducting a monitoring review into the accuracy of the predictions. Before Kurume was designated as a core city, the residents completed an online questionnaire and city officials were interviewed. The findings and recommendations were presented to the city administration. One year after the transition, a monitoring review was performed to clarify the accuracy of the HIA predictions by evaluating the correlation between the predictions and reality. Many of the HIA predictions were found to conflict with reality in Kurume. Prediction validity was evaluated for two groups: residents of Kurume and city officials. For the residents, 17% (2/12 items) of the predictions were found to be compatible, 58% (7/12) were incompatible and 25% (3/12) were difficult to evaluate. For city officials, the analysis was divided into those whose department was directly involved in tasks transferred to them (transfer tasks) and those whose department was not. For the city officials in departments responsible for conducting core city transfer tasks, 33% (3/9 items) of the predictions were found to be compatible, 33% (3/9) were incompatible and 33% (3/9) were difficult to evaluate. However, for the city officials whose responsibilities were unrelated to core city transfer tasks, 11% (1/9) of predictions were found to be compatible, 78% (7/9) were incompatible and 11% (1/9) were difficult to evaluate. Although it was possible to validate some of the HIA predictions, the results of this monitoring review found substantial discrepancies between the predictions and reality 1 year after the transition of Kurume to a core city. This suggests that the accuracy of HIA predictions may be called into question. However, it should be noted that the review was conducted very soon after the transition and the steering group was very small, which may explain why the HIA predictions were inaccurate. Further, long-term studies may be needed to assess the accuracy of HIA predictions in similar contexts. Copyright © 2011 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Sex-specific lean body mass predictive equations are accurate in the obese paediatric population
Jackson, Lanier B.; Henshaw, Melissa H.; Carter, Janet; Chowdhury, Shahryar M.
2015-01-01
Background The clinical assessment of lean body mass (LBM) is challenging in obese children. A sex-specific predictive equation for LBM derived from anthropometric data was recently validated in children. Aim The purpose of this study was to independently validate these predictive equations in the obese paediatric population. Subjects and methods Obese subjects aged 4–21 were analysed retrospectively. Predicted LBM (LBMp) was calculated using equations previously developed in children. Measured LBM (LBMm) was derived from dual-energy x-ray absorptiometry. Agreement was expressed as [(LBMm-LBMp)/LBMm] with 95% limits of agreement. Results Of 310 enrolled patients, 195 (63%) were females. The mean age was 11.8 ± 3.4 years and mean BMI Z-score was 2.3 ± 0.4. The average difference between LBMm and LBMp was −0.6% (−17.0%, 15.8%). Pearson’s correlation revealed a strong linear relationship between LBMm and LBMp (r=0.97, p<0.01). Conclusion This study validates the use of these clinically-derived sex-specific LBM predictive equations in the obese paediatric population. Future studies should use these equations to improve the ability to accurately classify LBM in obese children. PMID:26287383
Huchet, V; Pavan, S; Lochardet, A; Divanac'h, M L; Postollec, F; Thuault, D
2013-12-01
Molds are responsible for spoilage of bakery products during storage. A modeling approach to predict the effect of water activity (aw) and temperature on the appearance time of Aspergillus candidus was developed and validated on cakes. The gamma concept of Zwietering was adapted to model fungal growth, taking into account the impact of temperature and aw. We hypothesized that the same model could be used to calculate the time for mycelium to become visible (tv), by substituting the matrix parameter by tv. Cardinal values of A. candidus were determined on potato dextrose agar, and predicted tv were further validated by challenge-tests run on 51 pastries. Taking into account the aw dynamics recorded in pastries during reasonable conditions of storage, high correlation was shown between predicted and observed tv when the aw at equilibrium (after 14 days of storage) was used for modeling (Af = 1.072, Bf = 0.979). Validation studies on industrial cakes confirmed the experimental results and demonstrated the suitability of the model to predict tv in food as a function of aw and temperature. Copyright © 2013 Elsevier Ltd. All rights reserved.
Scherrer, Stephen R; Rideout, Brendan P; Giorli, Giacomo; Nosal, Eva-Marie; Weng, Kevin C
2018-01-01
Passive acoustic telemetry using coded transmitter tags and stationary receivers is a popular method for tracking movements of aquatic animals. Understanding the performance of these systems is important in array design and in analysis. Close proximity detection interference (CPDI) is a condition where receivers fail to reliably detect tag transmissions. CPDI generally occurs when the tag and receiver are near one another in acoustically reverberant settings. Here we confirm transmission multipaths reflected off the environment arriving at a receiver with sufficient delay relative to the direct signal cause CPDI. We propose a ray-propagation based model to estimate the arrival of energy via multipaths to predict CPDI occurrence, and we show how deeper deployments are particularly susceptible. A series of experiments were designed to develop and validate our model. Deep (300 m) and shallow (25 m) ranging experiments were conducted using Vemco V13 acoustic tags and VR2-W receivers. Probabilistic modeling of hourly detections was used to estimate the average distance a tag could be detected. A mechanistic model for predicting the arrival time of multipaths was developed using parameters from these experiments to calculate the direct and multipath path lengths. This model was retroactively applied to the previous ranging experiments to validate CPDI observations. Two additional experiments were designed to validate predictions of CPDI with respect to combinations of deployment depth and distance. Playback of recorded tags in a tank environment was used to confirm multipaths arriving after the receiver's blanking interval cause CPDI effects. Analysis of empirical data estimated the average maximum detection radius (AMDR), the farthest distance at which 95% of tag transmissions went undetected by receivers, was between 840 and 846 m for the deep ranging experiment across all factor permutations. From these results, CPDI was estimated within a 276.5 m radius of the receiver. These empirical estimations were consistent with mechanistic model predictions. CPDI affected detection at distances closer than 259-326 m from receivers. AMDR determined from the shallow ranging experiment was between 278 and 290 m with CPDI neither predicted nor observed. Results of validation experiments were consistent with mechanistic model predictions. Finally, we were able to predict detection/nondetection with 95.7% accuracy using the mechanistic model's criterion when simulating transmissions with and without multipaths. Close proximity detection interference results from combinations of depth and distance that produce reflected signals arriving after a receiver's blanking interval has ended. Deployment scenarios resulting in CPDI can be predicted with the proposed mechanistic model. For deeper deployments, sea-surface reflections can produce CPDI conditions, resulting in transmission rejection, regardless of the reflective properties of the seafloor.
External validation of the NUn score for predicting anastomotic leakage after oesophageal resection.
Paireder, Matthias; Jomrich, Gerd; Asari, Reza; Kristo, Ivan; Gleiss, Andreas; Preusser, Matthias; Schoppmann, Sebastian F
2017-08-29
Early detection of anastomotic leakage (AL) after oesophageal resection for malignancy is crucial. This retrospective study validates a risk score, predicting AL, which includes C-reactive protein, albumin and white cell count in patients undergoing oesophageal resection between 2003 and 2014. For validation of the NUn score a receiver operating characteristic (ROC) curve is estimated. Area under the ROC curve (AUC) is reported with 95% confidence interval (CI). Among 258 patients (79.5% male) 32 patients showed signs of anastomotic leakage (12.4%). NUn score in our data has a median of 9.3 (range 6.2-17.6). The odds ratio for AL was 1.31 (CI 1.03-1.67; p = 0.028). AUC for AL was 0.59 (CI 0.47-0.72). Using the original cutoff value of 10, the sensitivity was 45.2% an the specificity was 73.8%. This results in a positive predictive value of 19.4% and a negative predictive value of 90.6%. The proportion of variation in AL occurrence, which is explained by the NUn score, was 2.5% (PEV = 0.025). This study provides evidence for an external validation of a simple risk score for AL after oesophageal resection. In this cohort, the NUn score is not useful due to its poor discrimination.
McLernon, David J; Donnan, Peter T; Sullivan, Frank M; Roderick, Paul; Rosenberg, William M; Ryder, Steve D; Dillon, John F
2014-06-02
To derive and validate a clinical prediction model to estimate the risk of liver disease diagnosis following liver function tests (LFTs) and to convert the model to a simplified scoring tool for use in primary care. Population-based observational cohort study of patients in Tayside Scotland identified as having their LFTs performed in primary care and followed for 2 years. Biochemistry data were linked to secondary care, prescriptions and mortality data to ascertain baseline characteristics of the derivation cohort. A separate validation cohort was obtained from 19 general practices across the rest of Scotland to externally validate the final model. Primary care, Tayside, Scotland. Derivation cohort: LFT results from 310 511 patients. After exclusions (including: patients under 16 years, patients having initial LFTs measured in secondary care, bilirubin >35 μmol/L, liver complications within 6 weeks and history of a liver condition), the derivation cohort contained 95 977 patients with no clinically apparent liver condition. Validation cohort: after exclusions, this cohort contained 11 653 patients. Diagnosis of a liver condition within 2 years. From the derivation cohort (n=95 977), 481 (0.5%) were diagnosed with a liver disease. The model showed good discrimination (C-statistic=0.78). Given the low prevalence of liver disease, the negative predictive values were high. Positive predictive values were low but rose to 20-30% for high-risk patients. This study successfully developed and validated a clinical prediction model and subsequent scoring tool, the Algorithm for Liver Function Investigations (ALFI), which can predict liver disease risk in patients with no clinically obvious liver disease who had their initial LFTs taken in primary care. ALFI can help general practitioners focus referral on a small subset of patients with higher predicted risk while continuing to address modifiable liver disease risk factors in those at lower risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X; Wang, J; Hu, W
Purpose: The Varian RapidPlan™ is a commercial knowledge-based optimization process which uses a set of clinically used treatment plans to train a model that can predict individualized dose-volume objectives. The purpose of this study is to evaluate the performance of RapidPlan to generate intensity modulated radiation therapy (IMRT) plans for cervical cancer. Methods: Totally 70 IMRT plans for cervical cancer with varying clinical and physiological indications were enrolled in this study. These patients were all previously treated in our institution. There were two prescription levels usually used in our institution: 45Gy/25 fractions and 50.4Gy/28 fractions. 50 of these plans weremore » selected to train the RapidPlan model for predicting dose-volume constraints. After model training, this model was validated with 10 plans from training pool(internal validation) and additional other 20 new plans(external validation). All plans used for the validation were re-optimized with the original beam configuration and the generated priorities from RapidPlan were manually adjusted to ensure that re-optimized DVH located in the range of the model prediction. DVH quantitative analysis was performed to compare the RapidPlan generated and the original manual optimized plans. Results: For all the validation cases, RapidPlan based plans (RapidPlan) showed similar or superior results compared to the manual optimized ones. RapidPlan increased the result of D98% and homogeneity in both two validations. For organs at risk, the RapidPlan decreased mean doses of bladder by 1.25Gy/1.13Gy (internal/external validation) on average, with p=0.12/p<0.01. The mean dose of rectum and bowel were also decreased by an average of 2.64Gy/0.83Gy and 0.66Gy/1.05Gy,with p<0.01/ p<0.01and p=0.04/<0.01 for the internal/external validation, respectively. Conclusion: The RapidPlan model based cervical cancer plans shows ability to systematically improve the IMRT plan quality. It suggests that RapidPlan has great potential to make the treatment planning process more efficient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina
2011-01-01
The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address themore » issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the approach for representative pressurized water reactor and boiling water reactor safety analysis models to demonstrate its usage and applicability, (3) provides reference bias and uncertainty results based on a quality-assurance-controlled prerelease version of the Scale 6.1 code package and the ENDF/B-VII nuclear cross section data.« less
Measurement Techniques and Instruments Suitable for Life-prediction Testing of Photovoltaic Arrays
NASA Technical Reports Server (NTRS)
Noel, G. T.; Wood, V. E.; Mcginniss, V. D.; Hassell, J. A.; Richard, N. A.; Gaines, G. B.; Carmichael, D. C.
1979-01-01
The validation of a 20-year service life for low-cost photovoltaic arrays is a critical requirement in the Low-Cost Solar Array (LSA) Project. The validation is accomplished through accelerated life-prediction tests. A two-phase study was conducted to address the needs before such tests are carried out. The results and recommended techniques from the Phase 1 investigation are summarized in the appendix. Phase 2 of the study is covered in this report and consisted of experimental evaluations of three techniques selected from these recommended as a results of the Phase 1 findings. The three techniques evaluated were specular and nonspecular optical reflectometry, chemiluminescence measurements, and electric current noise measurements.
Hippisley-Cox, Julia; Coupland, Carol; Brindle, Peter
2014-01-01
Objectives To validate the performance of a set of risk prediction algorithms developed using the QResearch database, in an independent sample from general practices contributing to the Clinical Research Data Link (CPRD). Setting Prospective open cohort study using practices contributing to the CPRD database and practices contributing to the QResearch database. Participants The CPRD validation cohort consisted of 3.3 million patients, aged 25–99 years registered at 357 general practices between 1 Jan 1998 and 31 July 2012. The validation statistics for QResearch were obtained from the original published papers which used a one-third sample of practices separate to those used to derive the score. A cohort from QResearch was used to compare incidence rates and baseline characteristics and consisted of 6.8 million patients from 753 practices registered between 1 Jan 1998 and until 31 July 2013. Outcome measures Incident events relating to seven different risk prediction scores: QRISK2 (cardiovascular disease); QStroke (ischaemic stroke); QDiabetes (type 2 diabetes); QFracture (osteoporotic fracture and hip fracture); QKidney (moderate and severe kidney failure); QThrombosis (venous thromboembolism); QBleed (intracranial bleed and upper gastrointestinal haemorrhage). Measures of discrimination and calibration were calculated. Results Overall, the baseline characteristics of the CPRD and QResearch cohorts were similar though QResearch had higher recording levels for ethnicity and family history. The validation statistics for each of the risk prediction scores were very similar in the CPRD cohort compared with the published results from QResearch validation cohorts. For example, in women, the QDiabetes algorithm explained 50% of the variation within CPRD compared with 51% on QResearch and the receiver operator curve value was 0.85 on both databases. The scores were well calibrated in CPRD. Conclusions Each of the algorithms performed practically as well in the external independent CPRD validation cohorts as they had in the original published QResearch validation cohorts. PMID:25168040
Gu, Q; Ding, Y S; Zhang, T L
2010-05-01
We use approximate entropy and hydrophobicity patterns to predict G-protein-coupled receptors. Adaboost classifier is adopted as the prediction engine. A low homology dataset is used to validate the proposed method. Compared with the results reported, the successful rate is encouraging. The source code is written by Matlab.
NASA Astrophysics Data System (ADS)
Glocer, A.; Rastätter, L.; Kuznetsova, M.; Pulkkinen, A.; Singer, H. J.; Balch, C.; Weimer, D.; Welling, D.; Wiltberger, M.; Raeder, J.; Weigel, R. S.; McCollough, J.; Wing, S.
2016-07-01
We present the latest result of a community-wide space weather model validation effort coordinated among the Community Coordinated Modeling Center (CCMC), NOAA Space Weather Prediction Center (SWPC), model developers, and the broader science community. Validation of geospace models is a critical activity for both building confidence in the science results produced by the models and in assessing the suitability of the models for transition to operations. Indeed, a primary motivation of this work is supporting NOAA/SWPC's effort to select a model or models to be transitioned into operations. Our validation efforts focus on the ability of the models to reproduce a regional index of geomagnetic disturbance, the local K-index. Our analysis includes six events representing a range of geomagnetic activity conditions and six geomagnetic observatories representing midlatitude and high-latitude locations. Contingency tables, skill scores, and distribution metrics are used for the quantitative analysis of model performance. We consider model performance on an event-by-event basis, aggregated over events, at specific station locations, and separated into high-latitude and midlatitude domains. A summary of results is presented in this report, and an online tool for detailed analysis is available at the CCMC.
NASA Technical Reports Server (NTRS)
Glocer, A.; Rastaetter, L.; Kuznetsova, M.; Pulkkinen, A.; Singer, H. J.; Balch, C.; Weimer, D.; Welling, D.; Wiltberger, M.; Raeder, J.;
2016-01-01
We present the latest result of a community-wide space weather model validation effort coordinated among the Community Coordinated Modeling Center (CCMC), NOAA Space Weather Prediction Center (SWPC), model developers, and the broader science community. Validation of geospace models is a critical activity for both building confidence in the science results produced by the models and in assessing the suitability of the models for transition to operations. Indeed, a primary motivation of this work is supporting NOAA/SWPCs effort to select a model or models to be transitioned into operations. Our validation efforts focus on the ability of the models to reproduce a regional index of geomagnetic disturbance, the local K-index. Our analysis includes six events representing a range of geomagnetic activity conditions and six geomagnetic observatories representing midlatitude and high-latitude locations. Contingency tables, skill scores, and distribution metrics are used for the quantitative analysis of model performance. We consider model performance on an event-by-event basis, aggregated over events, at specific station locations, and separated into high-latitude and midlatitude domains. A summary of results is presented in this report, and an online tool for detailed analysis is available at the CCMC.
Casper, T. A.; Meyer, W. H.; Jackson, G. L.; ...
2010-12-08
We are exploring characteristics of ITER startup scenarios in similarity experiments conducted on the DIII-D Tokamak. In these experiments, we have validated scenarios for the ITER current ramp up to full current and developed methods to control the plasma parameters to achieve stability. Predictive simulations of ITER startup using 2D free-boundary equilibrium and 1D transport codes rely on accurate estimates of the electron and ion temperature profiles that determine the electrical conductivity and pressure profiles during the current rise. Here we present results of validation studies that apply the transport model used by the ITER team to DIII-D discharge evolutionmore » and comparisons with data from our similarity experiments.« less
Development and Validation of a Measure of Quality of Life for the Young Elderly in Sri Lanka.
de Silva, Sudirikku Hennadige Padmal; Jayasuriya, Anura Rohan; Rajapaksa, Lalini Chandika; de Silva, Ambepitiyawaduge Pubudu; Barraclough, Simon
2016-01-01
Sri Lanka has one of the fastest aging populations in the world. Measurement of quality of life (QoL) in the elderly needs instruments developed that encompass the sociocultural settings. An instrument was developed to measure QoL in the young elderly in Sri Lanka (QLI-YES), using accepted methods to generate and reduce items. The measure was validated using a community sample. Construct, criterion and predictive validity and reliability were tested. A first-order model of 24 items with 6 domains was found to have good fit indices (CMIN/df = 1.567, RMR = 0.05, CFI = 0.95, and RMSEA = 0.053). Both criterion and predictive validity were demonstrated. Good internal consistency reliability (Cronbach's α = 0.93) was shown. The development of the QLI-YES using a societal perspective relevant to the social and cultural beliefs has resulted in a robust and valid instrument to measure QoL for the young elderly in Sri Lanka. © 2015 APJPH.
Further Validation of a CFD Code for Calculating the Performance of Two-Stage Light Gas Guns
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.
2017-01-01
Earlier validations of a higher-order Godunov code for modeling the performance of two-stage light gas guns are reviewed. These validation comparisons were made between code predictions and experimental data from the NASA Ames 1.5" and 0.28" guns and covered muzzle velocities of 6.5 to 7.2 km/s. In the present report, five more series of code validation comparisons involving experimental data from the Ames 0.22" (1.28" pump tube diameter), 0.28", 0.50", 1.00" and 1.50" guns are presented. The total muzzle velocity range of the validation data presented herein is 3 to 11.3 km/s. The agreement between the experimental data and CFD results is judged to be very good. Muzzle velocities were predicted within 0.35 km/s for 74% of the cases studied with maximum differences being 0.5 km/s and for 4 out of 50 cases, 0.5 - 0.7 km/s.
Development and Validation of a Measure of Quality of Life for the Young Elderly in Sri Lanka
de Silva, Sudirikku Hennadige Padmal; Jayasuriya, Anura Rohan; Rajapaksa, Lalini Chandika; de Silva, Ambepitiyawaduge Pubudu; Barraclough, Simon
2016-01-01
Sri Lanka has one of the fastest aging populations in the world. Measurement of quality of life (QoL) in the elderly needs instruments developed that encompass the sociocultural settings. An instrument was developed to measure QoL in the young elderly in Sri Lanka (QLI-YES), using accepted methods to generate and reduce items. The measure was validated using a community sample. Construct, criterion and predictive validity and reliability were tested. A first-order model of 24 items with 6 domains was found to have good fit indices (CMIN/df = 1.567, RMR = 0.05, CFI = 0.95, and RMSEA = 0.053). Both criterion and predictive validity were demonstrated. Good internal consistency reliability (Cronbach’s α = 0.93) was shown. The development of the QLI-YES using a societal perspective relevant to the social and cultural beliefs has resulted in a robust and valid instrument to measure QoL for the young elderly in Sri Lanka. PMID:26712893
Shift Verification and Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Tara M.; Evans, Thomas M.; Davidson, Gregory G
2016-09-07
This documentation outlines the verification and validation of Shift for the Consortium for Advanced Simulation of Light Water Reactors (CASL). Five main types of problems were used for validation: small criticality benchmark problems; full-core reactor benchmarks for light water reactors; fixed-source coupled neutron-photon dosimetry benchmarks; depletion/burnup benchmarks; and full-core reactor performance benchmarks. We compared Shift results to measured data and other simulated Monte Carlo radiation transport code results, and found very good agreement in a variety of comparison measures. These include prediction of critical eigenvalue, radial and axial pin power distributions, rod worth, leakage spectra, and nuclide inventories over amore » burn cycle. Based on this validation of Shift, we are confident in Shift to provide reference results for CASL benchmarking.« less
Teachers' Grade Assignment and the Predictive Validity of Criterion-Referenced Grades
ERIC Educational Resources Information Center
Thorsen, Cecilia; Cliffordson, Christina
2012-01-01
Research has found that grades are the most valid instruments for predicting educational success. Why grades have better predictive validity than, for example, standardized tests is not yet fully understood. One possible explanation is that grades reflect not only subject-specific knowledge and skills but also individual differences in other…
Modelling Attempts to Predict Fretting-Fatigue Life on Turbine Components
2004-06-01
validation purposes life prediction is compared with experimental results . 1. THE PROBLEMATIC OF FRETTING/WEAR FATIGUE ON AEROENGINES 1.1. Damage...Furthermore, unlike real engine conditions, there are no additional vibrational loads exerted on the dummy due to the fact that the test is run
Study on Predicting Axial Load Capacity of CFST Columns
NASA Astrophysics Data System (ADS)
Ravi Kumar, H.; Muthu, K. U.; Kumar, N. S.
2017-11-01
This work presents an analytical study and experimental study on the behaviour and ultimate load carrying capacity of axially compressed self-compacting concrete-filled steel tubular columns. Results of tests conducted by various researchers on 213 samples concrete-filled steel tubular columns are reported and present authors experimental data are reported. Two theoretical equations were derived for the prediction of the ultimate axial load strength of concrete-filled steel tubular columns. The results from prediction were compared with the experimental data. Validation to the experimental results was made.
Li, Wen; Zhao, Li-Zhong; Ma, Dong-Wang; Wang, De-Zheng; Shi, Lei; Wang, Hong-Lei; Dong, Mo; Zhang, Shu-Yi; Cao, Lei; Zhang, Wei-Hua; Zhang, Xi-Peng; Zhang, Qing-Huai; Yu, Lin; Qin, Hai; Wang, Xi-Mo; Chen, Sam Li-Sheng
2018-05-01
We aimed to predict colorectal cancer (CRC) based on the demographic features and clinical correlates of personal symptoms and signs from Tianjin community-based CRC screening data.A total of 891,199 residents who were aged 60 to 74 and were screened in 2012 were enrolled. The Lasso logistic regression model was used to identify the predictors for CRC. Predictive validity was assessed by the receiver operating characteristic (ROC) curve. Bootstrapping method was also performed to validate this prediction model.CRC was best predicted by a model that included age, sex, education level, occupations, diarrhea, constipation, colon mucosa and bleeding, gallbladder disease, a stressful life event, family history of CRC, and a positive fecal immunochemical test (FIT). The area under curve (AUC) for the questionnaire with a FIT was 84% (95% CI: 82%-86%), followed by 76% (95% CI: 74%-79%) for a FIT alone, and 73% (95% CI: 71%-76%) for the questionnaire alone. With 500 bootstrap replications, the estimated optimism (<0.005) shows good discrimination in validation of prediction model.A risk prediction model for CRC based on a series of symptoms and signs related to enteric diseases in combination with a FIT was developed from first round of screening. The results of the current study are useful for increasing the awareness of high-risk subjects and for individual-risk-guided invitations or strategies to achieve mass screening for CRC.
Wieske, Luuk; Witteveen, Esther; Verhamme, Camiel; Dettling-Ihnenfeldt, Daniela S; van der Schaaf, Marike; Schultz, Marcus J; van Schaik, Ivo N; Horn, Janneke
2014-01-01
An early diagnosis of Intensive Care Unit-acquired weakness (ICU-AW) using muscle strength assessment is not possible in most critically ill patients. We hypothesized that development of ICU-AW can be predicted reliably two days after ICU admission, using patient characteristics, early available clinical parameters, laboratory results and use of medication as parameters. Newly admitted ICU patients mechanically ventilated ≥2 days were included in this prospective observational cohort study. Manual muscle strength was measured according to the Medical Research Council (MRC) scale, when patients were awake and attentive. ICU-AW was defined as an average MRC score <4. A prediction model was developed by selecting predictors from an a-priori defined set of candidate predictors, based on known risk factors. Discriminative performance of the prediction model was evaluated, validated internally and compared to the APACHE IV and SOFA score. Of 212 included patients, 103 developed ICU-AW. Highest lactate levels, treatment with any aminoglycoside in the first two days after admission and age were selected as predictors. The area under the receiver operating characteristic curve of the prediction model was 0.71 after internal validation. The new prediction model improved discrimination compared to the APACHE IV and the SOFA score. The new early prediction model for ICU-AW using a set of 3 easily available parameters has fair discriminative performance. This model needs external validation.
Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Reid, Terry V.; Schifer, Nicholas A.; Briggs, Maxwell H.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. Microporous bulk insulation is used in the ground support test hardware to minimize the loss of thermal energy from the electric heat source to the environment. The insulation package is characterized before operation to predict how much heat will be absorbed by the convertor and how much will be lost to the environment during operation. In an effort to validate these predictions, numerous tasks have been performed, which provided a more accurate value for net heat input into the ASCs. This test and modeling effort included: (a) making thermophysical property measurements of test setup materials to provide inputs to the numerical models, (b) acquiring additional test data that was collected during convertor tests to provide numerical models with temperature profiles of the test setup via thermocouple and infrared measurements, (c) using multidimensional numerical models (computational fluid dynamics code) to predict net heat input of an operating convertor, and (d) using validation test hardware to provide direct comparison of numerical results and validate the multidimensional numerical models used to predict convertor net heat input. This effort produced high fidelity ASC net heat input predictions, which were successfully validated using specially designed test hardware enabling measurement of heat transferred through a simulated Stirling cycle. The overall effort and results are discussed.
miREE: miRNA recognition elements ensemble
2011-01-01
Background Computational methods for microRNA target prediction are a fundamental step to understand the miRNA role in gene regulation, a key process in molecular biology. In this paper we present miREE, a novel microRNA target prediction tool. miREE is an ensemble of two parts entailing complementary but integrated roles in the prediction. The Ab-Initio module leverages upon a genetic algorithmic approach to generate a set of candidate sites on the basis of their microRNA-mRNA duplex stability properties. Then, a Support Vector Machine (SVM) learning module evaluates the impact of microRNA recognition elements on the target gene. As a result the prediction takes into account information regarding both miRNA-target structural stability and accessibility. Results The proposed method significantly improves the state-of-the-art prediction tools in terms of accuracy with a better balance between specificity and sensitivity, as demonstrated by the experiments conducted on several large datasets across different species. miREE achieves this result by tackling two of the main challenges of current prediction tools: (1) The reduced number of false positives for the Ab-Initio part thanks to the integration of a machine learning module (2) the specificity of the machine learning part, obtained through an innovative technique for rich and representative negative records generation. The validation was conducted on experimental datasets where the miRNA:mRNA interactions had been obtained through (1) direct validation where even the binding site is provided, or through (2) indirect validation, based on gene expression variations obtained from high-throughput experiments where the specific interaction is not validated in detail and consequently the specific binding site is not provided. Conclusions The coupling of two parts: a sensitive Ab-Initio module and a selective machine learning part capable of recognizing the false positives, leads to an improved balance between sensitivity and specificity. miREE obtains a reasonable trade-off between filtering false positives and identifying targets. miREE tool is available online at http://didattica-online.polito.it/eda/miREE/ PMID:22115078
Kloog, Itai; Nordio, Francesco; Coull, Brent A; Schwartz, Joel
2012-11-06
Satellite-derived aerosol optical depth (AOD) measurements have the potential to provide spatiotemporally resolved predictions of both long and short-term exposures, but previous studies have generally shown moderate predictive power and lacked detailed high spatio- temporal resolution predictions across large domains. We aimed at extending our previous work by validating our model in another region with different geographical and metrological characteristics, and incorporating fine scale land use regression and nonrandom missingness to better predict PM(2.5) concentrations for days with or without satellite AOD measures. We start by calibrating AOD data for 2000-2008 across the Mid-Atlantic. We used mixed models regressing PM(2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We used inverse probability weighting to account for nonrandom missingness of AOD, nested regions within days to capture spatial variation in the daily calibration, and introduced a penalization method that reduces the dimensionality of the large number of spatial and temporal predictors without selecting different predictors in different locations. We then take advantage of the association between grid-cell specific AOD values and PM(2.5) monitoring data, together with associations between AOD values in neighboring grid cells to develop grid cell predictions when AOD is missing. Finally to get local predictions (at the resolution of 50 m), we regressed the residuals from the predictions for each monitor from these previous steps against the local land use variables specific for each monitor. "Out-of-sample" 10-fold cross-validation was used to quantify the accuracy of our predictions at each step. For all days without AOD values, model performance was excellent (mean "out-of-sample" R(2) = 0.81, year-to-year variation 0.79-0.84). Upon removal of outliers in the PM(2.5) monitoring data, the results of the cross validation procedure was even better (overall mean "out of sample"R(2) of 0.85). Further, cross validation results revealed no bias in the predicted concentrations (Slope of observed vs predicted = 0.97-1.01). Our model allows one to reliably assess short-term and long-term human exposures in order to investigate both the acute and effects of ambient particles, respectively.
Validation of intensive care unit-acquired infection surveillance in the Italian SPIN-UTI network.
Masia, M D; Barchitta, M; Liperi, G; Cantù, A P; Alliata, E; Auxilia, F; Torregrossa, V; Mura, I; Agodi, A
2010-10-01
Validity is one of the most critical factors concerning surveillance of nosocomial infections (NIs). This article describes the first validation study of the Italian Nosocomial Infections Surveillance in Intensive Care Units (ICUs) project (SPIN-UTI) surveillance data. The objective was to validate infection data and thus to determine the sensitivity, specificity, and positive and negative predictive values of NI data reported on patients in the ICUs participating in the SPIN-UTI network. A validation study was performed at the end of the surveillance period. All medical records including all clinical and laboratory data were reviewed retrospectively by the trained physicians of the validation team and a positive predictive value (PPV), a negative predictive value (NPV), sensitivity and specificity were calculated. Eight ICUs (16.3%) were randomly chosen from all 49 SPIN-UTI ICUs for the validation study. In total, the validation team reviewed 832 patient charts (27.3% of the SPIN-UTI patients). The PPV was 83.5% and the NPV was 97.3%. The overall sensitivity was 82.3% and overall specificity was 97.2%. Over- and under-reporting of NIs were related to misinterpretation of the case definitions and deviations from the protocol despite previous training and instructions. The results of this study are useful to identify methodological problems within a surveillance system and have been used to plan retraining for surveillance personnel and to design and implement the second phase of the SPIN-UTI project. Copyright 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
English, Shawn A.; Briggs, Timothy M.; Nelson, Stacy M.
Simulations of low velocity impact with a flat cylindrical indenter upon a carbon fiber fabric reinforced polymer laminate are rigorously validated. Comparison of the impact energy absorption between the model and experiment is used as the validation metric. Additionally, non-destructive evaluation, including ultrasonic scans and three-dimensional computed tomography, provide qualitative validation of the models. The simulations include delamination, matrix cracks and fiber breaks. An orthotropic damage and failure constitutive model, capable of predicting progressive damage and failure, is developed in conjunction and described. An ensemble of simulations incorporating model parameter uncertainties is used to predict a response distribution which ismore » then compared to experimental output using appropriate statistical methods. Lastly, the model form errors are exposed and corrected for use in an additional blind validation analysis. The result is a quantifiable confidence in material characterization and model physics when simulating low velocity impact in structures of interest.« less
NASA Technical Reports Server (NTRS)
Bache, George
1993-01-01
Validation of CFD codes is a critical first step in the process of developing CFD design capability. The MSFC Pump Technology Team has recognized the importance of validation and has thus funded several experimental programs designed to obtain CFD quality validation data. The first data set to become available is for the SSME High Pressure Fuel Turbopump Impeller. LDV Data was taken at the impeller inlet (to obtain a reliable inlet boundary condition) and three radial positions at the impeller discharge. Our CFD code, TASCflow, is used within the Propulsion and Commercial Pump industry as a tool for pump design. The objective of this work, therefore, is to further validate TASCflow for application in pump design. TASCflow was used to predict flow at the impeller discharge for flowrates of 80, 100 and 115 percent of design flow. Comparison to data has been made with encouraging results.
Convergent and diagnostic validity of STAVUX, a word and pseudoword spelling test for adults.
Östberg, Per; Backlund, Charlotte; Lindström, Emma
2016-10-01
Few comprehensive spelling tests are available in Swedish, and none have been validated in adults with reading and writing disorders. The recently developed STAVUX test includes word and pseudoword spelling subtests with high internal consistency and adult norms stratified by education. This study evaluated the convergent and diagnostic validity of STAVUX in adults with dyslexia. Forty-six adults, 23 with dyslexia and 23 controls, took STAVUX together with a standard word-decoding test and a self-rated measure of spelling skills. STAVUX subtest scores showed moderate to strong correlations with word-decoding scores and predicted self-rated spelling skills. Word and pseudoword subtest scores both predicted dyslexia status. Receiver-operating characteristic (ROC) analysis showed excellent diagnostic discriminability. Sensitivity was 91% and specificity 96%. In conclusion, the results of this study support the convergent and diagnostic validity of STAVUX.
Brasil, Pedro Emmanuel Alvarenga Americano do; Xavier, Sergio Salles; Holanda, Marcelo Teixeira; Hasslocher-Moreno, Alejandro Marcel; Braga, José Ueleres
2016-01-01
With the globalization of Chagas disease, unexperienced health care providers may have difficulties in identifying which patients should be examined for this condition. This study aimed to develop and validate a diagnostic clinical prediction model for chronic Chagas disease. This diagnostic cohort study included consecutive volunteers suspected to have chronic Chagas disease. The clinical information was blindly compared to serological tests results, and a logistic regression model was fit and validated. The development cohort included 602 patients, and the validation cohort included 138 patients. The Chagas disease prevalence was 19.9%. Sex, age, referral from blood bank, history of living in a rural area, recognizing the kissing bug, systemic hypertension, number of siblings with Chagas disease, number of relatives with a history of stroke, ECG with low voltage, anterosuperior divisional block, pathologic Q wave, right bundle branch block, and any kind of extrasystole were included in the final model. Calibration and discrimination in the development and validation cohorts (ROC AUC 0.904 and 0.912, respectively) were good. Sensitivity and specificity analyses showed that specificity reaches at least 95% above the predicted 43% risk, while sensitivity is at least 95% below the predicted 7% risk. Net benefit decision curves favor the model across all thresholds. A nomogram and an online calculator (available at http://shiny.ipec.fiocruz.br:3838/pedrobrasil/chronic_chagas_disease_prediction/) were developed to aid in individual risk estimation.
NASA Astrophysics Data System (ADS)
Holland, C.
2013-10-01
Developing validated models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. This tutorial will present an overview of the key guiding principles and practices for state-of-the-art validation studies, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. The primary focus of the talk will be the development of quantiatve validation metrics, which are essential for moving beyond qualitative and subjective assessments of model performance and fidelity. Particular emphasis and discussion is given to (i) the need for utilizing synthetic diagnostics to enable quantitatively meaningful comparisons between simulation and experiment, and (ii) the importance of robust uncertainty quantification and its inclusion within the metrics. To illustrate these concepts, we first review the structure and key insights gained from commonly used ``global'' transport model metrics (e.g. predictions of incremental stored energy or radially-averaged temperature), as well as their limitations. Building upon these results, a new form of turbulent transport metrics is then proposed, which focuses upon comparisons of predicted local gradients and fluctuation characteristics against observation. We demonstrate the utility of these metrics by applying them to simulations and modeling of a newly developed ``validation database'' derived from the results of a systematic, multi-year turbulent transport validation campaign on the DIII-D tokamak, in which comprehensive profile and fluctuation measurements have been obtained from a wide variety of heating and confinement scenarios. Finally, we discuss extensions of these metrics and their underlying design concepts to other areas of plasma confinement research, including both magnetohydrodynamic stability and integrated scenario modeling. Supported by the US DOE under DE-FG02-07ER54917 and DE-FC02-08ER54977.
McDonald, Richard R.; Nelson, Jonathan M.; Fosness, Ryan L.; Nelson, Peter O.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan
2016-01-01
Two- and three-dimensional morphodynamic simulations are becoming common in studies of channel form and process. The performance of these simulations are often validated against measurements from laboratory studies. Collecting channel change information in natural settings for model validation is difficult because it can be expensive and under most channel forming flows the resulting channel change is generally small. Several channel restoration projects designed in part to armor large meanders with several large spurs constructed of wooden piles on the Kootenai River, ID, have resulted in rapid bed elevation change following construction. Monitoring of these restoration projects includes post- restoration (as-built) Digital Elevation Models (DEMs) as well as additional channel surveys following high channel forming flows post-construction. The resulting sequence of measured bathymetry provides excellent validation data for morphodynamic simulations at the reach scale of a real river. In this paper we test the performance a quasi-three-dimensional morphodynamic simulation against the measured elevation change. The resulting simulations predict the pattern of channel change reasonably well but many of the details such as the maximum scour are under predicted.
NASA Astrophysics Data System (ADS)
Datta, Abhishek; Zhou, Xiang; Su, Yuzhou; Parra, Lucas C.; Bikson, Marom
2013-06-01
Objective. During transcranial electrical stimulation, current passage across the scalp generates voltage across the scalp surface. The goal was to characterize these scalp voltages for the purpose of validating subject-specific finite element method (FEM) models of current flow. Approach. Using a recording electrode array, we mapped skin voltages resulting from low-intensity transcranial electrical stimulation. These voltage recordings were used to compare the predictions obtained from the high-resolution model based on the subject undergoing transcranial stimulation. Main results. Each of the four stimulation electrode configurations tested resulted in a distinct distribution of scalp voltages; these spatial maps were linear with applied current amplitude (0.1 to 1 mA) over low frequencies (1 to 10 Hz). The FEM model accurately predicted the distinct voltage distributions and correlated the induced scalp voltages with current flow through cortex. Significance. Our results provide the first direct model validation for these subject-specific modeling approaches. In addition, the monitoring of scalp voltages may be used to verify electrode placement to increase transcranial electrical stimulation safety and reproducibility.
Styczyńska-Soczka, Katarzyna; Zechini, Luigi; Zografos, Lysimachos
2017-04-01
Parkinson's disease is a growing threat to an ever-ageing population. Despite progress in our understanding of the molecular and cellular mechanisms underlying the disease, all therapeutics currently available only act to improve symptoms and do not stop the disease process. It is therefore imperative that more effective drug discovery methods and approaches are developed, validated, and used for the discovery of disease-modifying treatments for Parkinson's. Drug repurposing has been recognized as being equally as promising as de novo drug discovery in the field of neurodegeneration and Parkinson's disease specifically. In this work, we utilize a transgenic Drosophila model of Parkinson's disease, made by expressing human alpha-synuclein in the Drosophila brain, to validate two repurposed compounds: astemizole and ketoconazole. Both have been computationally predicted to have an ameliorative effect on Parkinson's disease, but neither had been tested using an in vivo model of the disease. After treating the flies in parallel, results showed that both drugs rescue the motor phenotype that is developed by the Drosophila model with age, but only ketoconazole treatment reversed the increased dopaminergic neuron death also observed in these models, which is a hallmark of Parkinson's disease. In addition to validating the predicted improvement in Parkinson's disease symptoms for both drugs and revealing the potential neuroprotective activity of ketoconazole, these results highlight the value of Drosophila models of Parkinson's disease as key tools in the context of in vivo drug discovery, drug repurposing, and prioritization of hits, especially when coupled with computational predictions.
Using support vector machine to predict beta- and gamma-turns in proteins.
Hu, Xiuzhen; Li, Qianzhong
2008-09-01
By using the composite vector with increment of diversity, position conservation scoring function, and predictive secondary structures to express the information of sequence, a support vector machine (SVM) algorithm for predicting beta- and gamma-turns in the proteins is proposed. The 426 and 320 nonhomologous protein chains described by Guruprasad and Rajkumar (Guruprasad and Rajkumar J. Biosci 2000, 25,143) are used for training and testing the predictive model of the beta- and gamma-turns, respectively. The overall prediction accuracy and the Matthews correlation coefficient in 7-fold cross-validation are 79.8% and 0.47, respectively, for the beta-turns. The overall prediction accuracy in 5-fold cross-validation is 61.0% for the gamma-turns. These results are significantly higher than the other algorithms in the prediction of beta- and gamma-turns using the same datasets. In addition, the 547 and 823 nonhomologous protein chains described by Fuchs and Alix (Fuchs and Alix Proteins: Struct Funct Bioinform 2005, 59, 828) are used for training and testing the predictive model of the beta- and gamma-turns, and better results are obtained. This algorithm may be helpful to improve the performance of protein turns' prediction. To ensure the ability of the SVM method to correctly classify beta-turn and non-beta-turn (gamma-turn and non-gamma-turn), the receiver operating characteristic threshold independent measure curves are provided. (c) 2008 Wiley Periodicals, Inc.
The stroke impairment assessment set: its internal consistency and predictive validity.
Tsuji, T; Liu, M; Sonoda, S; Domen, K; Chino, N
2000-07-01
To study the scale quality and predictive validity of the Stroke Impairment Assessment Set (SIAS) developed for stroke outcome research. Rasch analysis of the SIAS; stepwise multiple regression analysis to predict discharge functional independence measure (FIM) raw scores from demographic data, the SIAS scores, and the admission FIM scores; cross-validation of the prediction rule. Tertiary rehabilitation center in Japan. One hundred ninety stroke inpatients for the study of the scale quality and the predictive validity; a second sample of 116 stroke inpatients for the cross-validation study. Mean square fit statistics to study the degree of fit to the unidimensional model; logits to express item difficulties; discharge FIM scores for the study of predictive validity. The degree of misfit was acceptable except for the shoulder range of motion (ROM), pain, visuospatial function, and speech items; and the SIAS items could be arranged on a common unidimensional scale. The difficulty patterns were identical at admission and at discharge except for the deep tendon reflexes, ROM, and pain items. They were also similar for the right- and left-sided brain lesion groups except for the speech and visuospatial items. For the prediction of the discharge FIM scores, the independent variables selected were age, the SIAS total scores, and the admission FIM scores; and the adjusted R2 was .64 (p < .0001). Stability of the predictive equation was confirmed in the cross-validation sample (R2 = .68, p < .001). The unidimensionality of the SIAS was confirmed, and the SIAS total scores proved useful for stroke outcome prediction.
Validating computational predictions of night-time ventilation in Stanford's Y2E2 building
NASA Astrophysics Data System (ADS)
Chen, Chen; Lamberti, Giacomo; Gorle, Catherine
2017-11-01
Natural ventilation can significantly reduce building energy consumption, but robust design is a challenging task. We previously presented predictions of natural ventilation performance in Stanford's Y2E2 building using two models with different levels of fidelity, embedded in an uncertainty quantification framework to identify the dominant uncertain parameters and predict quantified confidence intervals. The results showed a slightly high cooling rate for the volume-averaged temperature, and the initial thermal mass temperature and window discharge coefficients were found to have an important influence on the results. To further investigate the potential role of these parameters on the observed discrepancies, the current study is performing additional measurements in the Y2E2 building. Wall temperatures are recorded throughout the nightflush using thermocouples; flow rates through windows are measured using hotwires; and spatial variability in the air temperature is explored. The measured wall temperatures are found the be within the range of our model assumptions, and the measured velocities agree reasonably well with our CFD predications. Considerable local variations in the indoor air temperature have been recorded, largely explaining the discrepancies in our earlier validation study. Future work will therefore focus on a local validation of the CFD results with the measurements. Center for Integrated Facility Engineering (CIFE).
Prevolnik, Maja; Škrlep, Martin; Janeš, Lucija; Velikonja-Bolta, Spela; Škorjanc, Dejan; Čandek-Potokar, Marjeta
2011-06-01
The capability of near infrared (NIR) spectroscopy was examined for the purposes of quality control of the traditional Slovenian dry-cured ham "Kraški pršut." Predictive models were developed for moisture, salt, protein, non-protein nitrogen, intramuscular fat and free amino acids in biceps femoris muscle (n = 135). The models' quality was assessed using statistical parameters: coefficient of determination (R(2)) and standard error (se) of cross-validation (CV) and external validation (EV). Residual predictive deviation (RPD) was also assessed. Best results were obtained for salt content and salt percentage in moisture/dry matter (R(CV)(2)>0.90, RPD>3.0), it was satisfactory for moisture, non-protein nitrogen, intramuscular fat and total free amino acids (R(CV)(2) = 0.75-0.90, RPD = 2.0-3.0), while not so for protein content and proteolysis index (R(CV)(2) = 0.65-0.75, RPD<2.0). Calibrations for individual free amino acids yielded R(CV)(2) from 0.40 to 0.90 and RPD from 1.3 to 2.9. Additional external validation of models on independent samples yielded comparable results. Based on the results, NIR spectroscopy can replace chemical methods in quality control of dry-cured ham. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tinnitus Screener: Results From the First 100 Participants in an Epidemiology Study.
Henry, James A; Griest, Susan; Austin, Don; Helt, Wendy; Gordon, Jane; Thielman, Emily; Theodoroff, Sarah M; Lewis, M Samantha; Blankenship, Cody; Zaugg, Tara L; Carlson, Kathleen
2016-06-01
In the Noise Outcomes in Servicemembers Epidemiology Study, Veterans recently separated from the military undergo comprehensive assessments to initiate long-term monitoring of their auditory function. We developed the Tinnitus Screener, a four-item algorithmic instrument that determines whether tinnitus is present and, if so, whether it is constant or intermittent, or whether only temporary tinnitus has been experienced. Predictive validity data are presented for the first 100 Noise Outcomes in Servicemembers Epidemiology Study participants. The Tinnitus Screener was administered to participants by telephone. In lieu of a gold standard for determining tinnitus presence, the predictive validity of the tinnitus category assigned to participants on the basis of the Screener results was assessed when the participants attended audiologic testing. Of the 100 participants, 67 screened positive for intermittent or constant tinnitus. Three were categorized as "temporary" tinnitus only, and 30 were categorized as "no tinnitus." Tinnitus categorization was predictively valid with 96 of the 100 participants. These results provide preliminary evidence that the Screener may be suitable for quickly determining essential parameters of reported tinnitus. We have since revised the instrument to differentiate acute from chronic tinnitus and to identify occasional tinnitus. We are also obtaining measures that will enable assessment of its test-retest reliability.
Sayegh, Philip; Arentoft, Alyssa; Thaler, Nicholas S.; Dean, Andy C.; Thames, April D.
2014-01-01
The current study examined whether self-rated education quality predicts Wide Range Achievement Test-4th Edition (WRAT-4) Word Reading subtest and neurocognitive performance, and aimed to establish this subtest's construct validity as an educational quality measure. In a community-based adult sample (N = 106), we tested whether education quality both increased the prediction of Word Reading scores beyond demographic variables and predicted global neurocognitive functioning after adjusting for WRAT-4. As expected, race/ethnicity and education predicted WRAT-4 reading performance. Hierarchical regression revealed that when including education quality, the amount of WRAT-4's explained variance increased significantly, with race/ethnicity and both education quality and years as significant predictors. Finally, WRAT-4 scores, but not education quality, predicted neurocognitive performance. Results support WRAT-4 Word Reading as a valid proxy measure for education quality and a key predictor of neurocognitive performance. Future research should examine these findings in larger, more diverse samples to determine their robust nature. PMID:25404004
NASA Astrophysics Data System (ADS)
Samadi; Wajizah, S.; Munawar, A. A.
2018-02-01
Feed plays an important factor in animal production. The purpose of this study is to apply NIRS method in determining feed values. NIRS spectra data were acquired for feed samples in wavelength range of 1000 - 2500 nm with 32 scans and 0.2 nm wavelength. Spectral data were corrected by de-trending (DT) and standard normal variate (SNV) methods. Prediction of in vitro dry matter digestibility (IVDMD) and in vitro organic matter digestibility (IVOMD) were established as model by using principal component regression (PCR) and validated using leave one out cross validation (LOOCV). Prediction performance was quantified using coefficient correlation (r) and residual predictive deviation (RPD) index. The results showed that IVDMD and IVOMD can be predicted by using SNV spectra data with r and RPD index: 0.93 and 2.78 for IVDMD ; 0.90 and 2.35 for IVOMD respectively. In conclusion, NIRS technique appears feasible to predict animal feed nutritive values.
Deep phenotyping to predict live birth outcomes in in vitro fertilization
Banerjee, Prajna; Choi, Bokyung; Shahine, Lora K.; Jun, Sunny H.; O’Leary, Kathleen; Lathi, Ruth B.; Westphal, Lynn M.; Wong, Wing H.; Yao, Mylene W. M.
2010-01-01
Nearly 75% of in vitro fertilization (IVF) treatments do not result in live births and patients are largely guided by a generalized age-based prognostic stratification. We sought to provide personalized and validated prognosis by using available clinical and embryo data from prior, failed treatments to predict live birth probabilities in the subsequent treatment. We generated a boosted tree model, IVFBT, by training it with IVF outcomes data from 1,676 first cycles (C1s) from 2003–2006, followed by external validation with 634 cycles from 2007–2008, respectively. We tested whether this model could predict the probability of having a live birth in the subsequent treatment (C2). By using nondeterministic methods to identify prognostic factors and their relative nonredundant contribution, we generated a prediction model, IVFBT, that was superior to the age-based control by providing over 1,000-fold improvement to fit new data (p < 0.05), and increased discrimination by receiver–operative characteristic analysis (area-under-the-curve, 0.80 vs. 0.68 for C1, 0.68 vs. 0.58 for C2). IVFBT provided predictions that were more accurate for ∼83% of C1 and ∼60% of C2 cycles that were out of the range predicted by age. Over half of those patients were reclassified to have higher live birth probabilities. We showed that data from a prior cycle could be used effectively to provide personalized and validated live birth probabilities in a subsequent cycle. Our approach may be replicated and further validated in other IVF clinics. PMID:20643955
Molecular Signature for Lymphatic Invasion Associated with Survival of Epithelial Ovarian Cancer.
Paik, E Sun; Choi, Hyun Jin; Kim, Tae-Joong; Lee, Jeong-Won; Kim, Byoung-Gie; Bae, Duk-Soo; Choi, Chel Hun
2018-04-01
We aimed to develop molecular classifier that can predict lymphatic invasion and their clinical significance in epithelial ovarian cancer (EOC) patients. We analyzed gene expression (mRNA, methylated DNA) in data from The Cancer Genome Atlas. To identify molecular signatures for lymphatic invasion, we found differentially expressed genes. The performance of classifier was validated by receiver operating characteristics analysis, logistic regression, linear discriminant analysis (LDA), and support vector machine (SVM). We assessed prognostic role of classifier using random survival forest (RSF) model and pathway deregulation score (PDS). For external validation,we analyzed microarray data from 26 EOC samples of Samsung Medical Center and curatedOvarianData database. We identified 21 mRNAs, and seven methylated DNAs from primary EOC tissues that predicted lymphatic invasion and created prognostic models. The classifier predicted lymphatic invasion well, which was validated by logistic regression, LDA, and SVM algorithm (C-index of 0.90, 0.71, and 0.74 for mRNA and C-index of 0.64, 0.68, and 0.69 for DNA methylation). Using RSF model, incorporating molecular data with clinical variables improved prediction of progression-free survival compared with using only clinical variables (p < 0.001 and p=0.008). Similarly, PDS enabled us to classify patients into high-risk and low-risk group, which resulted in survival difference in mRNA profiles (log-rank p-value=0.011). In external validation, gene signature was well correlated with prediction of lymphatic invasion and patients' survival. Molecular signature model predicting lymphatic invasion was well performed and also associated with survival of EOC patients.
Silvent, Jérémie; Gasse, Barbara; Mornet, Etienne; Sire, Jean-Yves
2014-01-01
ALPL encodes the tissue nonspecific alkaline phosphatase (TNSALP), which removes phosphate groups from various substrates. Its function is essential for bone and tooth mineralization. In humans, ALPL mutations lead to hypophosphatasia, a genetic disorder characterized by defective bone and/or tooth mineralization. To date, 275 ALPL mutations have been reported to cause hypophosphatasia, of which 204 were simple missense mutations. Molecular evolutionary analysis has proved to be an efficient method to highlight residues important for the protein function and to predict or validate sensitive positions for genetic disease. Here we analyzed 58 mammalian TNSALP to identify amino acids unchanged, or only substituted by residues sharing similar properties, through 220 millions years of mammalian evolution. We found 469 sensitive positions of the 524 residues of human TNSALP, which indicates a highly constrained protein. Any substitution occurring at one of these positions is predicted to lead to hypophosphatasia. We tested the 204 missense mutations resulting in hypophosphatasia against our predictive chart, and validated 99% of them. Most sensitive positions were located in functionally important regions of TNSALP (active site, homodimeric interface, crown domain, calcium site, …). However, some important positions are located in regions, the structure and/or biological function of which are still unknown. Our chart of sensitive positions in human TNSALP (i) enables to validate or invalidate at low cost any ALPL mutation, which would be suspected to be responsible for hypophosphatasia, by contrast with time consuming and expensive functional tests, and (ii) displays higher predictive power than in silico models of prediction. PMID:25023282
Development of a QSAR Model for Thyroperoxidase Inhbition ...
hyroid hormones (THs) are involved in multiple biological processes and are critical modulators of fetal development. Even moderate changes in maternal or fetal TH levels can produce irreversible neurological deficits in children, such as lower IQ. The enzyme thyroperoxidase (TPO) plays a key role in the synthesis of THs, and inhibition of TPO by xenobiotics results in decreased TH synthesis. Recently, a high-throughput screening assay for TPO inhibition (AUR-TPO) was developed and used to test the ToxCast Phase I and II chemicals. In the present study, we used the results from AUR-TPO to develop a Quantitative Structure-Activity Relationship (QSAR) model for TPO inhibition. The training set consisted of 898 discrete organic chemicals: 134 inhibitors and 764 non-inhibitors. A five times two-fold cross-validation of the model was performed, yielding a balanced accuracy of 78.7%. More recently, an additional ~800 chemicals were tested in the AUR-TPO assay. These data were used for a blinded external validation of the QSAR model, demonstrating a balanced accuracy of 85.7%. Overall, the cross- and external validation indicate a robust model with high predictive performance. Next, we used the QSAR model to predict 72,526 REACH pre-registered substances. The model could predict 49.5% (35,925) of the substances in its applicability domain and of these, 8,863 (24.7%) were predicted to be TPO inhibitors. Predictions from this screening can be used in a tiered approach to
A prediction scheme of tropical cyclone frequency based on lasso and random forest
NASA Astrophysics Data System (ADS)
Tan, Jinkai; Liu, Hexiang; Li, Mengya; Wang, Jun
2017-07-01
This study aims to propose a novel prediction scheme of tropical cyclone frequency (TCF) over the Western North Pacific (WNP). We concerned the large-scale meteorological factors inclusive of the sea surface temperature, sea level pressure, the Niño-3.4 index, the wind shear, the vorticity, the subtropical high, and the sea ice cover, since the chronic change of these factors in the context of climate change would cause a gradual variation of the annual TCF. Specifically, we focus on the correlation between the year-to-year increment of these factors and TCF. The least absolute shrinkage and selection operator (Lasso) method was used for variable selection and dimension reduction from 11 initial predictors. Then, a prediction model based on random forest (RF) was established by using the training samples (1978-2011) for calibration and the testing samples (2012-2016) for validation. The RF model presents a major variation and trend of TCF in the period of calibration, and also fitted well with the observed TCF in the period of validation though there were some deviations. The leave-one-out cross validation of the model exhibited most of the predicted TCF are in consistence with the observed TCF with a high correlation coefficient. A comparison between results of the RF model and the multiple linear regression (MLR) model suggested the RF is more practical and capable of giving reliable results of TCF prediction over the WNP.
NASA Technical Reports Server (NTRS)
Simanonok, K.; Mosely, E.; Charles, J.
1992-01-01
Nine preflight variables related to fluid, electrolyte, and cardiovascular status from 64 first-time Shuttle crewmembers were differentially weighted by discrimination analysis to predict the incidence and severity of each crewmember's space sickness as rated by NASA flight surgeons. The nine variables are serum uric acid, red cell count, environmental temperature at the launch site, serum phosphate, urine osmolality, serum thyroxine, sitting systolic blood pressure, calculated blood volume, and serum chloride. Using two methods of cross-validation on the original samples (jackknife and a stratefied random subsample), these variables enable the prediction of space sickness incidence (NONE or SICK) with 80 percent sickness and space severity (NONE, MILD, MODERATE, of SEVERE) with 59 percent success by one method of cross-validation and 67 percent by another method. Addition of a tenth variable, hours spent in the Weightlessness Environment Training Facility (WETF) did not improve the prediction of space sickness incidences but did improve the prediction of space sickness severity to 66 percent success by the first method of cross-validation of original samples and to 71 percent by the second method. Results to date suggest the presence of predisposing physiologic factors to space sickness that implicate fluid shift etiology. The data also suggest that prior exposure to fluid shift during WETF training may produce some circulatory pre-adaption to fluid shifts in weightlessness that results in a reduction of space sickness severity.
Validity of a manual soft tissue profile prediction method following mandibular setback osteotomy.
Kolokitha, Olga-Elpis
2007-10-01
The aim of this study was to determine the validity of a manual cephalometric method used for predicting the post-operative soft tissue profiles of patients who underwent mandibular setback surgery and compare it to a computerized cephalometric prediction method (Dentofacial Planner). Lateral cephalograms of 18 adults with mandibular prognathism taken at the end of pre-surgical orthodontics and approximately one year after surgery were used. To test the validity of the manual method the prediction tracings were compared to the actual post-operative tracings. The Dentofacial Planner software was used to develop the computerized post-surgical prediction tracings. Both manual and computerized prediction printouts were analyzed by using the cephalometric system PORDIOS. Statistical analysis was performed by means of t-test. Comparison between manual prediction tracings and the actual post-operative profile showed that the manual method results in more convex soft tissue profiles; the upper lip was found in a more prominent position, upper lip thickness was increased and, the mandible and lower lip were found in a less posterior position than that of the actual profiles. Comparison between computerized and manual prediction methods showed that in the manual method upper lip thickness was increased, the upper lip was found in a more anterior position and the lower anterior facial height was increased as compared to the computerized prediction method. Cephalometric simulation of post-operative soft tissue profile following orthodontic-surgical management of mandibular prognathism imposes certain limitations related to the methods implied. However, both manual and computerized prediction methods remain a useful tool for patient communication.
Multidimensional assessment of self-regulated learning with middle school math students.
Callan, Gregory L; Cleary, Timothy J
2018-03-01
This study examined the convergent and predictive validity of self-regulated learning (SRL) measures situated in mathematics. The sample included 100 eighth graders from a diverse, urban school district. Four measurement formats were examined including, 2 broad-based (i.e., self-report questionnaire and teacher ratings) and 2 task-specific measures (i.e., SRL microanalysis and behavioral traces). Convergent validity was examined across task-difficulty, and the predictive validity was examined across 3 mathematics outcomes: 2 measures of mathematical problem solving skill (i.e., practice session math problems, posttest math problems) and a global measure of mathematical skill (i.e., standardized math test). Correlation analyses were used to examine convergent validity and revealed medium correlations between measures within the same category (i.e., broad-based or task-specific). Relations between measurement classes were not statistically significant. Separate regressions examined the predictive validity of the SRL measures. While controlling all other predictors, a SRL microanalysis metacognitive-monitoring measure emerged as a significant predictor of all 3 outcomes and teacher ratings accounted for unique variance on 2 of the outcomes (i.e., posttest math problems and standardized math test). Results suggest that a multidimensional assessment approach should be considered by school psychologists interested in measuring SRL. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Subarachnoid hemorrhage admissions retrospectively identified using a prediction model
McIntyre, Lauralyn; Fergusson, Dean; Turgeon, Alexis; dos Santos, Marlise P.; Lum, Cheemun; Chassé, Michaël; Sinclair, John; Forster, Alan; van Walraven, Carl
2016-01-01
Objective: To create an accurate prediction model using variables collected in widely available health administrative data records to identify hospitalizations for primary subarachnoid hemorrhage (SAH). Methods: A previously established complete cohort of consecutive primary SAH patients was combined with a random sample of control hospitalizations. Chi-square recursive partitioning was used to derive and internally validate a model to predict the probability that a patient had primary SAH (due to aneurysm or arteriovenous malformation) using health administrative data. Results: A total of 10,322 hospitalizations with 631 having primary SAH (6.1%) were included in the study (5,122 derivation, 5,200 validation). In the validation patients, our recursive partitioning algorithm had a sensitivity of 96.5% (95% confidence interval [CI] 93.9–98.0), a specificity of 99.8% (95% CI 99.6–99.9), and a positive likelihood ratio of 483 (95% CI 254–879). In this population, patients meeting criteria for the algorithm had a probability of 45% of truly having primary SAH. Conclusions: Routinely collected health administrative data can be used to accurately identify hospitalized patients with a high probability of having a primary SAH. This algorithm may allow, upon validation, an easy and accurate method to create validated cohorts of primary SAH from either ruptured aneurysm or arteriovenous malformation. PMID:27629096
Mortazavi, Forough; Mousavi, Seyed Abbas; Chaman, Reza; Khosravi, Ahmad; Janke, Jill R.
2015-01-01
Background: The rate of exclusive breastfeeding in Iran is decreasing. The breastfeeding attrition prediction tools (BAPT) have been validated and used in predicting premature weaning. Objectives: We aimed to translate the BAPT into Farsi, assess its content validity, and examine its reliability and validity to identify exclusive breastfeeding discontinuation in Iran. Materials and Methods: The BAPT was translated into Farsi and the content validity of the Farsi version of the BAPT was assessed. It was administered to 356 pregnant women in the third trimester of pregnancy, who were residents of a city in northeast of Iran. The structural integrity of the four-factor model was assessed in confirmatory factor analysis (CFA) and exploratory factor analysis (EFA). Reliability was assessed using Cronbach’s alpha coefficient and item-subscale correlations. Validity was assessed using the known-group comparison (128 with vs. 228 without breastfeeding experience) and predictive validity (80 successes vs. 265 failures in exclusive breastfeeding). Results: The internal consistency of the whole instrument (49 items) was 0.775. CFA provided an acceptable fit to the a priori four-factor model (Chi-square/df = 1.8, Root Mean Square Error of Approximation (RMSEA) = 0.049, Standardized Root Mean Square Residual (SRMR) = 0.064, Comparative Fit Index (CFI) = 0.911). The difference in means of breastfeeding control (BFC) between the participants with and without breastfeeding experience was significant (P < 0.001). In addition, the total score of BAPT and the score of Breast Feeding Control (BFC) subscale were higher in women who were on exclusive breastfeeding than women who were not, at four months postpartum (P < 0.05). Conclusions: This study validated the Farsi version of BAPT. It is useful for researchers who want to use it in Iran to identify women at higher risks of Exclusive Breast Feeding (EBF) discontinuation. PMID:26019910
Predicting paclitaxel-induced neutropenia using the DMET platform.
Nieuweboer, Annemieke J M; Smid, Marcel; de Graan, Anne-Joy M; Elbouazzaoui, Samira; de Bruijn, Peter; Martens, John W; Mathijssen, Ron H J; van Schaik, Ron H N
2015-01-01
The use of paclitaxel in cancer treatment is limited by paclitaxel-induced neutropenia. We investigated the ability of genetic variation in drug-metabolizing enzymes and transporters to predict hematological toxicity. Using a discovery and validation approach, we identified a pharmacogenetic predictive model for neutropenia. For this, a drug-metabolizing enzymes and transporters plus DNA chip was used, which contains 1936 SNPs in 225 metabolic enzyme and drug-transporter genes. Our 10-SNP model in 279 paclitaxel-dosed patients reached 43% sensitivity in the validation cohort. Analysis in 3-weekly treated patients only resulted in improved sensitivity of 79%, with a specificity of 33%. None of our models reached statistical significance. Our drug-metabolizing enzymes and transporters-based SNP-models are currently of limited value for predicting paclitaxel-induced neutropenia in clinical practice. Original submitted 9 March 2015; Revision submitted 20 May 2015.
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
Bruner, L H; Carr, G J; Harbell, J W; Curren, R D
2002-06-01
An approach commonly used to measure new toxicity test method (NTM) performance in validation studies is to divide toxicity results into positive and negative classifications, and the identify true positive (TP), true negative (TN), false positive (FP) and false negative (FN) results. After this step is completed, the contingent probability statistics (CPS), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) are calculated. Although these statistics are widely used and often the only statistics used to assess the performance of toxicity test methods, there is little specific guidance in the validation literature on what values for these statistics indicate adequate performance. The purpose of this study was to begin developing data-based answers to this question by characterizing the CPS obtained from an NTM whose data have a completely random association with a reference test method (RTM). Determining the CPS of this worst-case scenario is useful because it provides a lower baseline from which the performance of an NTM can be judged in future validation studies. It also provides an indication of relationships in the CPS that help identify random or near-random relationships in the data. The results from this study of randomly associated tests show that the values obtained for the statistics vary significantly depending on the cut-offs chosen, that high values can be obtained for individual statistics, and that the different measures cannot be considered independently when evaluating the performance of an NTM. When the association between results of an NTM and RTM is random the sum of the complementary pairs of statistics (sensitivity + specificity, NPV + PPV) is approximately 1, and the prevalence (i.e., the proportion of toxic chemicals in the population of chemicals) and PPV are equal. Given that combinations of high sensitivity-low specificity or low specificity-high sensitivity (i.e., the sum of the sensitivity and specificity equal to approximately 1) indicate lack of predictive capacity, an NTM having these performance characteristics should be considered no better for predicting toxicity than by chance alone.
Metz, Zachary P; Ding, Tong; Baumler, David J
2018-01-01
Listeria monocytogenes is a microorganism of great concern for the food industry and the cause of human foodborne disease. Therefore, novel methods of control are needed, and systems biology is one such approach to identify them. Using a combination of computational techniques and laboratory methods, genome-scale metabolic models (GEMs) can be created, validated, and used to simulate growth environments and discern metabolic capabilities of microbes of interest, including L. monocytogenes. The objective of the work presented here was to generate GEMs for six different strains of L. monocytogenes, and to both qualitatively and quantitatively validate these GEMs with experimental data to examine the diversity of metabolic capabilities of numerous strains from the three different serovar groups most associated with foodborne outbreaks and human disease. Following qualitative validation, 57 of the 95 carbon sources tested experimentally were present in the GEMs, and; therefore, these were the compounds from which comparisons could be drawn. Of these 57 compounds, agreement between in silico predictions and in vitro results for carbon source utilization ranged from 80.7% to 91.2% between strains. Nutrient utilization agreement between in silico predictions and in vitro results were also conducted for numerous nitrogen, phosphorous, and sulfur sources. Additionally, quantitative validation showed that the L. monocytogenes GEMs were able to generate in silico predictions for growth rate and growth yield that were strongly and significantly (p < 0.0013 and p < 0.0015, respectively) correlated with experimental results. These findings are significant because they show that these GEMs for L. monocytogenes are comparable to published GEMs of other organisms for agreement between in silico predictions and in vitro results. Therefore, as with the other GEMs, namely those for Escherichia coli, Staphylococcus aureus, Vibrio vulnificus, and Salmonella spp., they can be used to determine new methods of growth control and disease treatment.
Predicting Blunt Cerebrovascular Injury in Pediatric Trauma: Validation of the “Utah Score”
Ravindra, Vijay M.; Bollo, Robert J.; Sivakumar, Walavan; Akbari, Hassan; Naftel, Robert P.; Limbrick, David D.; Jea, Andrew; Gannon, Stephen; Shannon, Chevis; Birkas, Yekaterina; Yang, George L.; Prather, Colin T.; Kestle, John R.
2017-01-01
Abstract Risk factors for blunt cerebrovascular injury (BCVI) may differ between children and adults, suggesting that children at low risk for BCVI after trauma receive unnecessary computed tomography angiography (CTA) and high-dose radiation. We previously developed a score for predicting pediatric BCVI based on retrospective cohort analysis. Our objective is to externally validate this prediction score with a retrospective multi-institutional cohort. We included patients who underwent CTA for traumatic cranial injury at four pediatric Level I trauma centers. Each patient in the validation cohort was scored using the “Utah Score” and classified as high or low risk. Before analysis, we defined a misclassification rate <25% as validating the Utah Score. Six hundred forty-five patients (mean age 8.6 ± 5.4 years; 63.4% males) underwent screening for BCVI via CTA. The validation cohort was 411 patients from three sites compared with the training cohort of 234 patients. Twenty-two BCVIs (5.4%) were identified in the validation cohort. The Utah Score was significantly associated with BCVIs in the validation cohort (odds ratio 8.1 [3.3, 19.8], p < 0.001) and discriminated well in the validation cohort (area under the curve 72%). When the Utah Score was applied to the validation cohort, the sensitivity was 59%, specificity was 85%, positive predictive value was 18%, and negative predictive value was 97%. The Utah Score misclassified 16.6% of patients in the validation cohort. The Utah Score for predicting BCVI in pediatric trauma patients was validated with a low misclassification rate using a large, independent, multicenter cohort. Its implementation in the clinical setting may reduce the use of CTA in low-risk patients. PMID:27297774
The Predictive Validity of Teacher Candidate Letters of Reference
ERIC Educational Resources Information Center
Mason, Richard W.; Schroeder, Mark P.
2014-01-01
Letters of reference are widely used as an essential part of the hiring process of newly licensed teachers. While the predictive validity of these letters of reference has been called into question it has never been empirically studied. The current study examined the predictive validity of the quality of letters of reference for forty-one student…
ERIC Educational Resources Information Center
Dowdy, Erin; Harrell-Williams, Leigh; Dever, Bridget V.; Furlong, Michael J.; Moore, Stephanie; Raines, Tara; Kamphaus, Randy W.
2016-01-01
Increasingly, schools are implementing school-based screening for risk of behavioral and emotional problems; hence, foundational evidence supporting the predictive validity of screening instruments is important to assess. This study examined the predictive validity of the Behavior Assessment System for Children-2 Behavioral and Emotional Screening…
ERIC Educational Resources Information Center
Kim, Jennifer Sun; Vanderwood, Michael L.; Lee, Catherine Y.
2016-01-01
This study examined the predictive validity of curriculum-based measures in reading for Spanish-speaking English learners (ELs) at various levels of English proficiency. Third-grade Spanish-speaking EL students were screened during the fall using DIBELS Oral Reading Fluency (DORF) and Daze. Predictive validity was examined in relation to spring…
Multivariate Models of Men's and Women's Partner Aggression
ERIC Educational Resources Information Center
O'Leary, K. Daniel; Smith Slep, Amy M.; O'Leary, Susan G.
2007-01-01
This exploratory study was designed to address how multiple factors drawn from varying focal models and ecological levels of influence might operate relative to each other to predict partner aggression, using data from 453 representatively sampled couples. The resulting cross-validated models predicted approximately 50% of the variance in men's…
Pat, Lucio; Ali, Bassam; Guerrero, Armando; Córdova, Atl V.; Garduza, José P.
2016-01-01
Attenuated total reflectance-Fourier transform infrared spectrometry and chemometrics model was used for determination of physicochemical properties (pH, redox potential, free acidity, electrical conductivity, moisture, total soluble solids (TSS), ash, and HMF) in honey samples. The reference values of 189 honey samples of different botanical origin were determined using Association Official Analytical Chemists, (AOAC), 1990; Codex Alimentarius, 2001, International Honey Commission, 2002, methods. Multivariate calibration models were built using partial least squares (PLS) for the measurands studied. The developed models were validated using cross-validation and external validation; several statistical parameters were obtained to determine the robustness of the calibration models: (PCs) optimum number of components principal, (SECV) standard error of cross-validation, (R 2 cal) coefficient of determination of cross-validation, (SEP) standard error of validation, and (R 2 val) coefficient of determination for external validation and coefficient of variation (CV). The prediction accuracy for pH, redox potential, electrical conductivity, moisture, TSS, and ash was good, while for free acidity and HMF it was poor. The results demonstrate that attenuated total reflectance-Fourier transform infrared spectrometry is a valuable, rapid, and nondestructive tool for the quantification of physicochemical properties of honey. PMID:28070445
Falasinnu, Titilola; Gilbert, Mark; Gustafson, Paul; Shoveller, Jean
2016-02-01
One component of effective sexually transmitted infections (STIs) control is ensuring those at highest risk of STIs have access to clinical services because terminating transmission in this group will prevent most future cases. Here, we describe the results of a validation study of a clinical prediction rule for identifying individuals at increased risk for chlamydia and gonorrhoea infection derived in Vancouver, British Columbia (BC), against a population of asymptomatic patients attending sexual health clinics in other geographical settings in BC. We examined electronic records (2000-2012) from clinic visits at seven sexual health clinics in geographical locations outside Vancouver. The model's calibration and discrimination were examined by the area under the receiver operating characteristic curve (AUC) and the Hosmer-Lemeshow (H-L) statistic, respectively. We also examined the sensitivity and proportion of patients that would need to be screened at different cut-offs of the risk score. The prevalence of infection was 5.3% (n=10 425) in the geographical validation population. The prediction rule showed good performance in this population (AUC, 0.69; H-L p=0.26). Possible risk scores ranged from -2 to 27. We identified a risk score cut-off point of ≥8 that detected cases with a sensitivity of 86% by screening 63% of the geographical validation population. The prediction rule showed good generalisability in STI clinics outside of Vancouver with improved discriminative performance compared with temporal validation. The prediction rule has the potential for augmenting triaging services in STI clinics and enhancing targeted testing in population-based screening programmes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Spence, Richard T; Chang, David C; Kaafarani, Haytham M A; Panieri, Eugenio; Anderson, Geoffrey A; Hutter, Matthew M
2018-02-01
Despite the existence of multiple validated risk assessment and quality benchmarking tools in surgery, their utility outside of high-income countries is limited. We sought to derive, validate and apply a scoring system that is both (1) feasible, and (2) reliably predicts mortality in a middle-income country (MIC) context. A 5-step methodology was used: (1) development of a de novo surgical outcomes database modeled around the American College of Surgeons' National Surgical Quality Improvement Program (ACS-NSQIP) in South Africa (SA dataset), (2) use of the resultant data to identify all predictors of in-hospital death with more than 90% capture indicating feasibility of collection, (3) use these predictors to derive and validate an integer-based score that reliably predicts in-hospital death in the 2012 ACS-NSQIP, (4) apply the score in the original SA dataset and demonstrate its performance, (5) identify threshold cutoffs of the score to prompt action and drive quality improvement. Following step one-three above, the 13 point Codman's score was derived and validated on 211,737 and 109,079 patients, respectively, and includes: age 65 (1), partially or completely dependent functional status (1), preoperative transfusions ≥4 units (1), emergency operation (2), sepsis or septic shock (2) American Society of Anesthesia score ≥3 (3) and operative procedure (1-3). Application of the score to 373 patients in the SA dataset showed good discrimination and calibration to predict an in-hospital death. A Codman Score of 8 is an optimal cutoff point for defining expected and unexpected deaths. We have designed a novel risk prediction score specific for a MIC context. The Codman Score can prove useful for both (1) preoperative decision-making and (2) benchmarking the quality of surgical care in MIC's.
Kim, Jung Kwon; Ha, Seung Beom; Jeon, Chan Hoo; Oh, Jong Jin; Cho, Sung Yong; Oh, Seung-June; Kim, Hyeon Hoe; Jeong, Chang Wook
2016-01-01
Purpose Shock-wave lithotripsy (SWL) is accepted as the first line treatment modality for uncomplicated upper urinary tract stones; however, validated prediction models with regards to stone-free rates (SFRs) are still needed. We aimed to develop nomograms predicting SFRs after the first and within the third session of SWL. Computed tomography (CT) information was also modeled for constructing nomograms. Materials and Methods From March 2006 to December 2013, 3028 patients were treated with SWL for ureter and renal stones at our three tertiary institutions. Four cohorts were constructed: Total-development, Total-validation, CT-development, and CT-validation cohorts. The nomograms were developed using multivariate logistic regression models with selected significant variables in a univariate logistic regression model. A C-index was used to assess the discrimination accuracy of nomograms and calibration plots were used to analyze the consistency of prediction. Results The SFR, after the first and within the third session, was 48.3% and 68.8%, respectively. Significant variables were sex, stone location, stone number, and maximal stone diameter in the Total-development cohort, and mean Hounsfield unit (HU) and grade of hydronephrosis (HN) were additional parameters in the CT-development cohort. The C-indices were 0.712 and 0.723 for after the first and within the third session of SWL in the Total-development cohort, and 0.755 and 0.756, in the CT-development cohort, respectively. The calibration plots showed good correspondences. Conclusions We constructed and validated nomograms to predict SFR after SWL. To the best of our knowledge, these are the first graphical nomograms to be modeled with CT information. These may be useful for patient counseling and treatment decision-making. PMID:26890006
Validation of the thermophysiological model by Fiala for prediction of local skin temperatures
NASA Astrophysics Data System (ADS)
Martínez, Natividad; Psikuta, Agnes; Kuklane, Kalev; Quesada, José Ignacio Priego; de Anda, Rosa María Cibrián Ortiz; Soriano, Pedro Pérez; Palmer, Rosario Salvador; Corberán, José Miguel; Rossi, René Michel; Annaheim, Simon
2016-12-01
The most complete and realistic physiological data are derived from direct measurements during human experiments; however, they present some limitations such as ethical concerns, time and cost burden. Thermophysiological models are able to predict human thermal response in a wide range of environmental conditions, but their use is limited due to lack of validation. The aim of this work was to validate the thermophysiological model by Fiala for prediction of local skin temperatures against a dedicated database containing 43 different human experiments representing a wide range of conditions. The validation was conducted based on root-mean-square deviation (rmsd) and bias. The thermophysiological model by Fiala showed a good precision when predicting core and mean skin temperature (rmsd 0.26 and 0.92 °C, respectively) and also local skin temperatures for most body sites (average rmsd for local skin temperatures 1.32 °C). However, an increased deviation of the predictions was observed for the forehead skin temperature (rmsd of 1.63 °C) and for the thigh during exercising exposures (rmsd of 1.41 °C). Possible reasons for the observed deviations are lack of information on measurement circumstances (hair, head coverage interference) or an overestimation of the sweat evaporative cooling capacity for the head and thigh, respectively. This work has highlighted the importance of collecting details about the clothing worn and how and where the sensors were attached to the skin for achieving more precise results in the simulations.
Word Memory Test Predicts Recovery in Claimants With Work-Related Head Injury.
Colangelo, Annette; Abada, Abigail; Haws, Calvin; Park, Joanne; Niemeläinen, Riikka; Gross, Douglas P
2016-05-01
To investigate the predictive validity of the Word Memory Test (WMT), a verbal memory neuropsychological test developed as a performance validity measure to assess memory, effort, and performance consistency. Cohort study with 1-year follow-up. Workers' compensation rehabilitation facility. Participants included workers' compensation claimants with work-related head injury (N=188; mean age, 44y; 161 men [85.6%]). Not applicable. Outcome measures for determining predictive validity included days to suspension of wage replacement benefits during the 1-year follow-up and work status at discharge in claimants undergoing rehabilitation. Analysis included multivariable Cox and logistic regression. Better WMT performance was significantly but weakly correlated with younger age (r=-.30), documented brain abnormality (r=.28), and loss of consciousness at the time of injury (r=.25). Claimants with documented brain abnormalities on diagnostic imaging scans performed better (∼9%) on the WMT than those without brain abnormalities. The WMT predicted days receiving benefits (adjusted hazard ratio, 1.13; 95% confidence interval, 1.04-1.24) and work status outcome at program discharge (adjusted odds ratio, 1.62; 95% confidence interval, 1.13-2.34). Our results provide evidence for the predictive validity of the WMT in workers' compensation claimants. Younger claimants and those with more severe brain injuries performed better on the WMT. It may be that financial incentives or other factors related to the compensation claim affected the performance. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
2013-01-01
Background An in silico vaccine discovery pipeline for eukaryotic pathogens typically consists of several computational tools to predict protein characteristics. The aim of the in silico approach to discovering subunit vaccines is to use predicted characteristics to identify proteins which are worthy of laboratory investigation. A major challenge is that these predictions are inherent with hidden inaccuracies and contradictions. This study focuses on how to reduce the number of false candidates using machine learning algorithms rather than relying on expensive laboratory validation. Proteins from Toxoplasma gondii, Plasmodium sp., and Caenorhabditis elegans were used as training and test datasets. Results The results show that machine learning algorithms can effectively distinguish expected true from expected false vaccine candidates (with an average sensitivity and specificity of 0.97 and 0.98 respectively), for proteins observed to induce immune responses experimentally. Conclusions Vaccine candidates from an in silico approach can only be truly validated in a laboratory. Given any in silico output and appropriate training data, the number of false candidates allocated for validation can be dramatically reduced using a pool of machine learning algorithms. This will ultimately save time and money in the laboratory. PMID:24180526
Jírová, Dagmar; Basketter, David; Liebsch, Manfred; Bendová, Hana; Kejlová, Kristina; Marriott, Marie; Kandárová, Helena
2010-02-01
Efforts to replace the rabbit skin irritation test have been underway for many years, encouraged by the EU Cosmetics Directive and REACH. Recently various in vitro tests have been developed, evaluated and validated. A key difficulty in confirming the validity of in vitro methods is that animal data are scarce and of limited utility for prediction of human effects, which adversely impacts their acceptance. This study examines whether in vivo or in vitro data most accurately predicted human effects. Using the 4-hr human patch test (HPT) we examined a number of chemicals whose EU classification of skin irritancy is known to be borderline, or where in vitro methods provided conflicting results. Of the 16 chemicals classified as irritants in the rabbit, only five substances were found to be significantly irritating to human skin. Concordance of the rabbit test with the 4-hr HPT was only 56%, whereas concordance of human epidermis models with human data was 76% (EpiDerm) and 70% (EPISKIN). The results confirm observations that rabbits overpredict skin effects in humans. Therefore, when validating in vitro methods, all available information, including human data, should be taken into account before making conclusions about their predictive capacity.
Prediction of ethanol in bottled Chinese rice wine by NIR spectroscopy
NASA Astrophysics Data System (ADS)
Ying, Yibin; Yu, Haiyan; Pan, Xingxiang; Lin, Tao
2006-10-01
To evaluate the applicability of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining ethanol concentration of Chinese rice wine in square brown glass bottle, transmission spectra of 100 bottled Chinese rice wine samples were collected in the spectral range of 350-1200 nm. Statistical equations were established between the reference data and VIS-NIR spectra by partial least squares (PLS) regression method. Performance of three kinds of mathematical treatment of spectra (original spectra, first derivative spectra and second derivative spectra) were also discussed. The PLS models of original spectra turned out better results, with higher correlation coefficient in calibration (R cal) of 0.89, lower root mean standard error of calibration (RMSEC) of 0.165, and lower root mean standard error of cross validation (RMSECV) of 0.179. Using original spectra, PLS models for ethanol concentration prediction were developed. The R cal and the correlation coefficient in validation (R val) were 0.928 and 0.875, respectively; and the RMSEC and the root mean standard error of validation (RMSEP) were 0.135 (%, v v -1) and 0.177 (%, v v -1), respectively. The results demonstrated that VIS-NIR spectroscopy could be used to predict ethanol concentration in bottled Chinese rice wine.
Testing the Validity of a Cognitive Behavioral Model for Gambling Behavior.
Raylu, Namrata; Oei, Tian Po S; Loo, Jasmine M Y; Tsai, Jung-Shun
2016-06-01
Currently, cognitive behavioral therapies appear to be one of the most studied treatments for gambling problems and studies show it is effective in treating gambling problems. However, cognitive behavior models have not been widely tested using statistical means. Thus, the aim of this study was to test the validity of the pathways postulated in the cognitive behavioral theory of gambling behavior using structural equation modeling (AMOS 20). Several questionnaires assessing a range of gambling specific variables (e.g., gambling urges, cognitions and behaviors) and gambling correlates (e.g., psychological states, and coping styles) were distributed to 969 participants from the community. Results showed that negative psychological states (i.e., depression, anxiety and stress) only directly predicted gambling behavior, whereas gambling urges predicted gambling behavior directly as well as indirectly via gambling cognitions. Avoidance coping predicted gambling behavior only indirectly via gambling cognitions. Negative psychological states were significantly related to gambling cognitions as well as avoidance coping. In addition, significant gender differences were also found. The results provided confirmation for the validity of the pathways postulated in the cognitive behavioral theory of gambling behavior. It also highlighted the importance of gender differences in conceptualizing gambling behavior.
Select Methodology for Validating Advanced Satellite Measurement Systems
NASA Technical Reports Server (NTRS)
Larar, Allen M.; Zhou, Daniel K.; Liu, Xi; Smith, William L.
2008-01-01
Advanced satellite sensors are tasked with improving global measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Measurement system validation is crucial to achieving this goal and maximizing research and operational utility of resultant data. Field campaigns including satellite under-flights with well calibrated FTS sensors aboard high-altitude aircraft are an essential part of the validation task. This presentation focuses on an overview of validation methodology developed for assessment of high spectral resolution infrared systems, and includes results of preliminary studies performed to investigate the performance of the Infrared Atmospheric Sounding Interferometer (IASI) instrument aboard the MetOp-A satellite.
Callahan, Clara A; Hojat, Mohammadreza; Veloski, Jon; Erdmann, James B; Gonnella, Joseph S
2010-06-01
The Medical College Admission Test (MCAT) has undergone several revisions for content and validity since its inception. With another comprehensive review pending, this study examines changes in the predictive validity of the MCAT's three recent versions. Study participants were 7,859 matriculants in 36 classes entering Jefferson Medical College between 1970 and 2005; 1,728 took the pre-1978 version of the MCAT; 3,032 took the 1978-1991 version, and 3,099 took the post-1991 version. MCAT subtest scores were the predictors, and performance in medical school, attrition, scores on the medical licensing examinations, and ratings of clinical competence in the first year of residency were the criterion measures. No significant improvement in validity coefficients was observed for performance in medical school or residency. Validity coefficients for all three versions of the MCAT in predicting Part I/Step 1 remained stable (in the mid-0.40s, P < .01). A systematic decline was observed in the validity coefficients of the MCAT versions in predicting Part II/Step 2. It started at 0.47 for the pre-1978 version, decreased to between 0.42 and 0.40 for the 1978-1991 versions, and to 0.37 for the post-1991 version. Validity coefficients for the MCAT versions in predicting Part III/Step 3 remained near 0.30. These were generally larger for women than men. Although the findings support the short- and long-term predictive validity of the MCAT, opportunities to strengthen it remain. Subsequent revisions should increase the test's ability to predict performance on United States Medical Licensing Examination Step 2 and must minimize the differential validity for gender.
Landscape scale estimation of soil carbon stock using 3D modelling.
Veronesi, F; Corstanje, R; Mayr, T
2014-07-15
Soil C is the largest pool of carbon in the terrestrial biosphere, and yet the processes of C accumulation, transformation and loss are poorly accounted for. This, in part, is due to the fact that soil C is not uniformly distributed through the soil depth profile and most current landscape level predictions of C do not adequately account the vertical distribution of soil C. In this study, we apply a method based on simple soil specific depth functions to map the soil C stock in three-dimensions at landscape scale. We used soil C and bulk density data from the Soil Survey for England and Wales to map an area in the West Midlands region of approximately 13,948 km(2). We applied a method which describes the variation through the soil profile and interpolates this across the landscape using well established soil drivers such as relief, land cover and geology. The results indicate that this mapping method can effectively reproduce the observed variation in the soil profiles samples. The mapping results were validated using cross validation and an independent validation. The cross-validation resulted in an R(2) of 36% for soil C and 44% for BULKD. These results are generally in line with previous validated studies. In addition, an independent validation was undertaken, comparing the predictions against the National Soil Inventory (NSI) dataset. The majority of the residuals of this validation are between ± 5% of soil C. This indicates high level of accuracy in replicating topsoil values. In addition, the results were compared to a previous study estimating the carbon stock of the UK. We discuss the implications of our results within the context of soil C loss factors such as erosion and the impact on regional C process models. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tewari, Jagdish; Strong, Richard; Boulas, Pierre
2017-02-01
This article summarizes the development and validation of a Fourier transform near infrared spectroscopy (FT-NIR) method for the rapid at-line prediction of active pharmaceutical ingredient (API) in a powder blend to optimize small molecule formulations. The method was used to determine the blend uniformity end-point for a pharmaceutical solid dosage formulation containing a range of API concentrations. A set of calibration spectra from samples with concentrations ranging from 1% to 15% of API (w/w) were collected at-line from 4000 to 12,500 cm- 1. The ability of the FT-NIR method to predict API concentration in the blend samples was validated against a reference high performance liquid chromatography (HPLC) method. The prediction efficiency of four different types of multivariate data modeling methods such as partial least-squares 1 (PLS1), partial least-squares 2 (PLS2), principal component regression (PCR) and artificial neural network (ANN), were compared using relevant multivariate figures of merit. The prediction ability of the regression models were cross validated against results generated with the reference HPLC method. PLS1 and ANN showed excellent and superior prediction abilities when compared to PLS2 and PCR. Based upon these results and because of its decreased complexity compared to ANN, PLS1 was selected as the best chemometric method to predict blend uniformity at-line. The FT-NIR measurement and the associated chemometric analysis were implemented in the production environment for rapid at-line determination of the end-point of the small molecule blending operation. FIGURE 1: Correlation coefficient vs Rank plot FIGURE 2: FT-NIR spectra of different steps of Blend and final blend FIGURE 3: Predictions ability of PCR FIGURE 4: Blend uniformity predication ability of PLS2 FIGURE 5: Prediction efficiency of blend uniformity using ANN FIGURE 6: Comparison of prediction efficiency of chemometric models TABLE 1: Order of Addition for Blending Steps
Exploring Mouse Protein Function via Multiple Approaches.
Huang, Guohua; Chu, Chen; Huang, Tao; Kong, Xiangyin; Zhang, Yunhua; Zhang, Ning; Cai, Yu-Dong
2016-01-01
Although the number of available protein sequences is growing exponentially, functional protein annotations lag far behind. Therefore, accurate identification of protein functions remains one of the major challenges in molecular biology. In this study, we presented a novel approach to predict mouse protein functions. The approach was a sequential combination of a similarity-based approach, an interaction-based approach and a pseudo amino acid composition-based approach. The method achieved an accuracy of about 0.8450 for the 1st-order predictions in the leave-one-out and ten-fold cross-validations. For the results yielded by the leave-one-out cross-validation, although the similarity-based approach alone achieved an accuracy of 0.8756, it was unable to predict the functions of proteins with no homologues. Comparatively, the pseudo amino acid composition-based approach alone reached an accuracy of 0.6786. Although the accuracy was lower than that of the previous approach, it could predict the functions of almost all proteins, even proteins with no homologues. Therefore, the combined method balanced the advantages and disadvantages of both approaches to achieve efficient performance. Furthermore, the results yielded by the ten-fold cross-validation indicate that the combined method is still effective and stable when there are no close homologs are available. However, the accuracy of the predicted functions can only be determined according to known protein functions based on current knowledge. Many protein functions remain unknown. By exploring the functions of proteins for which the 1st-order predicted functions are wrong but the 2nd-order predicted functions are correct, the 1st-order wrongly predicted functions were shown to be closely associated with the genes encoding the proteins. The so-called wrongly predicted functions could also potentially be correct upon future experimental verification. Therefore, the accuracy of the presented method may be much higher in reality.
Exploring Mouse Protein Function via Multiple Approaches
Huang, Tao; Kong, Xiangyin; Zhang, Yunhua; Zhang, Ning
2016-01-01
Although the number of available protein sequences is growing exponentially, functional protein annotations lag far behind. Therefore, accurate identification of protein functions remains one of the major challenges in molecular biology. In this study, we presented a novel approach to predict mouse protein functions. The approach was a sequential combination of a similarity-based approach, an interaction-based approach and a pseudo amino acid composition-based approach. The method achieved an accuracy of about 0.8450 for the 1st-order predictions in the leave-one-out and ten-fold cross-validations. For the results yielded by the leave-one-out cross-validation, although the similarity-based approach alone achieved an accuracy of 0.8756, it was unable to predict the functions of proteins with no homologues. Comparatively, the pseudo amino acid composition-based approach alone reached an accuracy of 0.6786. Although the accuracy was lower than that of the previous approach, it could predict the functions of almost all proteins, even proteins with no homologues. Therefore, the combined method balanced the advantages and disadvantages of both approaches to achieve efficient performance. Furthermore, the results yielded by the ten-fold cross-validation indicate that the combined method is still effective and stable when there are no close homologs are available. However, the accuracy of the predicted functions can only be determined according to known protein functions based on current knowledge. Many protein functions remain unknown. By exploring the functions of proteins for which the 1st-order predicted functions are wrong but the 2nd-order predicted functions are correct, the 1st-order wrongly predicted functions were shown to be closely associated with the genes encoding the proteins. The so-called wrongly predicted functions could also potentially be correct upon future experimental verification. Therefore, the accuracy of the presented method may be much higher in reality. PMID:27846315
Cohen-Stavi, Chandra; Leventer-Roberts, Maya; Balicer, Ran D
2017-01-01
Objective To directly compare the performance and externally validate the three most studied prediction tools for osteoporotic fractures—QFracture, FRAX, and Garvan—using data from electronic health records. Design Retrospective cohort study. Setting Payer provider healthcare organisation in Israel. Participants 1 054 815 members aged 50 to 90 years for comparison between tools and cohorts of different age ranges, corresponding to those in each tools’ development study, for tool specific external validation. Main outcome measure First diagnosis of a major osteoporotic fracture (for QFracture and FRAX tools) and hip fractures (for all three tools) recorded in electronic health records from 2010 to 2014. Observed fracture rates were compared to probabilities predicted retrospectively as of 2010. Results The observed five year hip fracture rate was 2.7% and the rate for major osteoporotic fractures was 7.7%. The areas under the receiver operating curve (AUC) for hip fracture prediction were 82.7% for QFracture, 81.5% for FRAX, and 77.8% for Garvan. For major osteoporotic fractures, AUCs were 71.2% for QFracture and 71.4% for FRAX. All the tools underestimated the fracture risk, but the average observed to predicted ratios and the calibration slopes of FRAX were closest to 1. Tool specific validation analyses yielded hip fracture prediction AUCs of 88.0% for QFracture (among those aged 30-100 years), 81.5% for FRAX (50-90 years), and 71.2% for Garvan (60-95 years). Conclusions Both QFracture and FRAX had high discriminatory power for hip fracture prediction, with QFracture performing slightly better. This performance gap was more pronounced in previous studies, likely because of broader age inclusion criteria for QFracture validations. The simpler FRAX performed almost as well as QFracture for hip fracture prediction, and may have advantages if some of the input data required for QFracture are not available. However, both tools require calibration before implementation. PMID:28104610
Thomas, Reuben; Thomas, Russell S.; Auerbach, Scott S.; Portier, Christopher J.
2013-01-01
Background Several groups have employed genomic data from subchronic chemical toxicity studies in rodents (90 days) to derive gene-centric predictors of chronic toxicity and carcinogenicity. Genes are annotated to belong to biological processes or molecular pathways that are mechanistically well understood and are described in public databases. Objectives To develop a molecular pathway-based prediction model of long term hepatocarcinogenicity using 90-day gene expression data and to evaluate the performance of this model with respect to both intra-species, dose-dependent and cross-species predictions. Methods Genome-wide hepatic mRNA expression was retrospectively measured in B6C3F1 mice following subchronic exposure to twenty-six (26) chemicals (10 were positive, 2 equivocal and 14 negative for liver tumors) previously studied by the US National Toxicology Program. Using these data, a pathway-based predictor model for long-term liver cancer risk was derived using random forests. The prediction model was independently validated on test sets associated with liver cancer risk obtained from mice, rats and humans. Results Using 5-fold cross validation, the developed prediction model had reasonable predictive performance with the area under receiver-operator curve (AUC) equal to 0.66. The developed prediction model was then used to extrapolate the results to data associated with rat and human liver cancer. The extrapolated model worked well for both extrapolated species (AUC value of 0.74 for rats and 0.91 for humans). The prediction models implied a balanced interplay between all pathway responses leading to carcinogenicity predictions. Conclusions Pathway-based prediction models estimated from sub-chronic data hold promise for predicting long-term carcinogenicity and also for its ability to extrapolate results across multiple species. PMID:23737943
NASA Technical Reports Server (NTRS)
Beaumier, P.; Prieur, J.; Rahier, G.; Spiegel, P.; Demargne, A.; Tung, C.; Gallman, J. M.; Yu, Y. H.; Kube, R.; Vanderwall, B. G.
1995-01-01
The paper presents a status of theoretical tools of AFDD, DLR, NASA and ONERA for prediction of the effect of HHC on helicopter main rotor BVI noise. Aeroacoustic predictions from the four research centers, concerning a wind tunnel simulation of a typical descent flight case without and with HHC are presented and compared. The results include blade deformation, geometry of interacting vortices, sectional loads and noise. Acoustic predictions are compared to experimental data. An analysis of the results provides a first insight of the mechanisms by which HHC may affect BVI noise.
Hijazi, Ziad; Oldgren, Jonas; Lindbäck, Johan; Alexander, John H; Connolly, Stuart J; Eikelboom, John W; Ezekowitz, Michael D; Held, Claes; Hylek, Elaine M; Lopes, Renato D; Yusuf, Salim; Granger, Christopher B; Siegbahn, Agneta; Wallentin, Lars
2018-01-01
Abstract Aims In atrial fibrillation (AF), mortality remains high despite effective anticoagulation. A model predicting the risk of death in these patients is currently not available. We developed and validated a risk score for death in anticoagulated patients with AF including both clinical information and biomarkers. Methods and results The new risk score was developed and internally validated in 14 611 patients with AF randomized to apixaban vs. warfarin for a median of 1.9 years. External validation was performed in 8548 patients with AF randomized to dabigatran vs. warfarin for 2.0 years. Biomarker samples were obtained at study entry. Variables significantly contributing to the prediction of all-cause mortality were assessed by Cox-regression. Each variable obtained a weight proportional to the model coefficients. There were 1047 all-cause deaths in the derivation and 594 in the validation cohort. The most important predictors of death were N-terminal pro B-type natriuretic peptide, troponin-T, growth differentiation factor-15, age, and heart failure, and these were included in the ABC (Age, Biomarkers, Clinical history)-death risk score. The score was well-calibrated and yielded higher c-indices than a model based on all clinical variables in both the derivation (0.74 vs. 0.68) and validation cohorts (0.74 vs. 0.67). The reduction in mortality with apixaban was most pronounced in patients with a high ABC-death score. Conclusion A new biomarker-based score for predicting risk of death in anticoagulated AF patients was developed, internally and externally validated, and well-calibrated in two large cohorts. The ABC-death risk score performed well and may contribute to overall risk assessment in AF. ClinicalTrials.gov identifier NCT00412984 and NCT00262600 PMID:29069359
Carrión, Ricardo E.; Cornblatt, Barbara A.; Burton, Cynthia Z.; Tso, Ivy F; Auther, Andrea; Adelsheim, Steven; Calkins, Roderick; Carter, Cameron S.; Niendam, Tara; Taylor, Stephan F.; McFarlane, William R.
2016-01-01
Objective In the current issue, Cannon and colleagues, as part of the second phase of the North American Prodrome Longitudinal Study (NAPLS2), report on a risk calculator for the individualized prediction of developing a psychotic disorder in a 2-year period. The present study represents an external validation of the NAPLS2 psychosis risk calculator using an independent sample of subjects at clinical high risk for psychosis collected as part of the Early Detection, Intervention, and Prevention of Psychosis Program (EDIPPP). Methods 176 subjects with follow-up (from the total EDIPPP sample of 210) rated as clinical high-risk (CHR) based on the Structured Interview for Prodromal Syndromes were used to construct a new prediction model with the 6 significant predictor variables in the NAPLS2 psychosis risk calculator (unusual thoughts, suspiciousness, Symbol Coding, verbal learning, social functioning decline, baseline age, and family history). Discrimination performance was assessed with the area under the receiver operating curve (AUC). The NAPLS2 risk calculator was then used to generate a psychosis risk estimate for each case in the external validation sample. Results The external validation model showed good discrimination, with an AUC of 79% (95% CI 0.644–0.937). In addition, the personalized risk generated by the NAPLS calculator provided a solid estimation of the actual conversion outcome in the validation sample. Conclusions In the companion papers in this issue, two independent samples of CHR subjects converge to validate the NAPLS2 psychosis risk calculator. This prediction calculator represents a meaningful step towards early intervention and personalized treatment of psychotic disorders. PMID:27363511
Turusheva, Anna; Frolova, Elena; Bert, Vaes; Hegendoerfer, Eralda; Degryse, Jean-Marie
2017-07-01
Prediction models help to make decisions about further management in clinical practice. This study aims to develop a mortality risk score based on previously identified risk predictors and to perform internal and external validations. In a population-based prospective cohort study of 611 community-dwelling individuals aged 65+ in St. Petersburg (Russia), all-cause mortality risks over 2.5 years follow-up were determined based on the results obtained from anthropometry, medical history, physical performance tests, spirometry and laboratory tests. C-statistic, risk reclassification analysis, integrated discrimination improvement analysis, decision curves analysis, internal validation and external validation were performed. Older adults were at higher risk for mortality [HR (95%CI)=4.54 (3.73-5.52)] when two or more of the following components were present: poor physical performance, low muscle mass, poor lung function, and anemia. If anemia was combined with high C-reactive protein (CRP) and high B-type natriuretic peptide (BNP) was added the HR (95%CI) was slightly higher (5.81 (4.73-7.14)) even after adjusting for age, sex and comorbidities. Our models were validated in an external population of adults 80+. The extended model had a better predictive capacity for cardiovascular mortality [HR (95%CI)=5.05 (2.23-11.44)] compared to the baseline model [HR (95%CI)=2.17 (1.18-4.00)] in the external population. We developed and validated a new risk prediction score that may be used to identify older adults at higher risk for mortality in Russia. Additional studies need to determine which targeted interventions improve the outcomes of these at-risk individuals. Copyright © 2017 Elsevier B.V. All rights reserved.
Schuelke, Matthew J; Day, Eric Anthony; McEntire, Lauren E; Boatman, Jazmine Espejo; Wang, Xiaoqian; Kowollik, Vanessa; Boatman, Paul R
2009-07-01
The authors examined the relative criterion-related validity of knowledge structure coherence and two accuracy-based indices (closeness and correlation) as well as the utility of using a combination of knowledge structure indices in the prediction of skill acquisition and transfer. Findings from an aggregation of 5 independent samples (N = 958) whose participants underwent training on a complex computer simulation indicated that coherence and the accuracy-based indices yielded comparable zero-order predictive validities. Support for the incremental validity of using a combination of indices was mixed; the most, albeit small, gain came in pairing coherence and closeness when predicting transfer. After controlling for baseline skill, general mental ability, and declarative knowledge, only coherence explained a statistically significant amount of unique variance in transfer. Overall, the results suggested that the different indices largely overlap in their representation of knowledge organization, but that coherence better reflects adaptable aspects of knowledge organization important to skill transfer.
Ma, Baoshun; Ruwet, Vincent; Corieri, Patricia; Theunissen, Raf; Riethmuller, Michel; Darquenne, Chantal
2009-01-01
Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 μm aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy. PMID:20161301
Ma, Baoshun; Ruwet, Vincent; Corieri, Patricia; Theunissen, Raf; Riethmuller, Michel; Darquenne, Chantal
2009-05-01
Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 mum aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy.
Heron, Kristin E; Mason, Tyler B; Sutton, Tiphanie G; Myers, Taryn A
2015-09-01
Perceptions of physical appearance, or body image, can affect psychosocial functioning and quality of life (QOL). The present study evaluated the real-world predictive validity of the Body Image Quality of Life Inventory (BIQLI) using Ecological Momentary Assessment (EMA). College women reporting subclinical disordered eating/body dissatisfaction (N=131) completed the BIQLI and related measures. For one week they then completed five daily EMA surveys of mood, social interactions, stress, and eating behaviors on palmtop computers. Results showed better body image QOL was associated with less negative affect, less overwhelming emotions, more positive affect, more pleasant social interactions, and higher self-efficacy for handling stress. Lower body image QOL was marginally related to less overeating and lower loss of control over eating in daily life. To our knowledge, this is the first study to support the real-world predictive validity of the BIQLI by identifying social, affective, and behavioral correlates in everyday life using EMA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Qin, Li-Tang; Liu, Shu-Shen; Liu, Hai-Ling
2010-02-01
A five-variable model (model M2) was developed for the bioconcentration factors (BCFs) of nonpolar organic compounds (NPOCs) by using molecular electronegativity distance vector (MEDV) to characterize the structures of NPOCs and variable selection and modeling based on prediction (VSMP) to select the optimum descriptors. The estimated correlation coefficient (r (2)) and the leave-one-out cross-validation correlation coefficients (q (2)) of model M2 were 0.9271 and 0.9171, respectively. The model was externally validated by splitting the whole data set into a representative training set of 85 chemicals and a validation set of 29 chemicals. The results show that the main structural factors influencing the BCFs of NPOCs are -cCc, cCcc, -Cl, and -Br (where "-" refers to a single bond and "c" refers to a conjugated bond). The quantitative structure-property relationship (QSPR) model can effectively predict the BCFs of NPOCs, and the predictions of the model can also extend the current BCF database of experimental values.
Elfenbein, Hillary Anger; Barsade, Sigal G; Eisenkraft, Noah
2015-02-01
We examine the social perception of emotional intelligence (EI) through the use of observer ratings. Individuals frequently judge others' emotional abilities in real-world settings, yet we know little about the properties of such ratings. This article examines the social perception of EI and expands the evidence to evaluate its reliability and cross-judge agreement, as well as its convergent, divergent, and predictive validity. Three studies use real-world colleagues as observers and data from 2,521 participants. Results indicate significant consensus across observers about targets' EI, moderate but significant self-observer agreement, and modest but relatively consistent discriminant validity across the components of EI. Observer ratings significantly predicted interdependent task performance, even after controlling for numerous factors. Notably, predictive validity was greater for observer-rated than for self-rated or ability-tested EI. We discuss the minimal associations of observer ratings with ability-tested EI, study limitations, future directions, and practical implications. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Validity of parent's self-reported responses to home safety questions.
Osborne, Jodie M; Shibl, Rania; Cameron, Cate M; Kendrick, Denise; Lyons, Ronan A; Spinks, Anneliese B; Sipe, Neil; McClure, Roderick J
2016-09-01
The aim of the study was to describe the validity of parent's self-reported responses to questions on home safety practices for children of 2-4 years. A cross-sectional validation study compared parent's self-administered responses to items in the Home Injury Prevention Survey with home observations undertaken by trained researchers. The relationship between the questionnaire and observation results was assessed using percentage agreement, sensitivity, specificity, positive predictive value, negative predictive value and intraclass correlation coefficients. Percentage agreements ranged from 44% to 100% with 40 of the total 45 items scoring higher than 70%. Sensitivities ranged from 0% to 100%, with 27 items scoring at least 70%. Specificities also ranged from 0% to 100%, with 33 items scoring at least 70%. As such, the study identified a series of self-administered home safety questions that have sensitivities, specificities and predictive values sufficiently high to allow the information to be useful in research and injury prevention practice.
Duncan, Ryan P; Cavanaugh, James T; Earhart, Gammon M; Ellis, Terry D; Ford, Matthew P; Foreman, K Bo; Leddy, Abigail L; Paul, Serene S; Canning, Colleen G; Thackeray, Anne; Dibble, Leland E
2015-08-01
Assessment of fall risk in an individual with Parkinson disease (PD) is a critical yet often time consuming component of patient care. Recently a simple clinical prediction tool based only on fall history in the previous year, freezing of gait in the past month, and gait velocity <1.1 m/s was developed and accurately predicted future falls in a sample of individuals with PD. We sought to externally validate the utility of the tool by administering it to a different cohort of 171 individuals with PD. Falls were monitored prospectively for 6 months following predictor assessment. The tool accurately discriminated future fallers from non-fallers (area under the curve [AUC] = 0.83; 95% CI 0.76-0.89), comparable to the developmental study. The results validated the utility of the tool for allowing clinicians to quickly and accurately identify an individual's risk of an impending fall. Copyright © 2015 Elsevier Ltd. All rights reserved.
Briggs, Andrew H; Baker, Timothy; Risebrough, Nancy A; Chambers, Mike; Gonzalez-McQuire, Sebastian; Ismaila, Afisi S; Exuzides, Alex; Colby, Chris; Tabberer, Maggie; Muellerova, Hana; Locantore, Nicholas; Rutten van Mölken, Maureen P M H; Lomas, David A
2017-05-01
The recent joint International Society for Pharmacoeconomics and Outcomes Research / Society for Medical Decision Making Modeling Good Research Practices Task Force emphasized the importance of conceptualizing and validating models. We report a new model of chronic obstructive pulmonary disease (COPD) (part of the Galaxy project) founded on a conceptual model, implemented using a novel linked-equation approach, and internally validated. An expert panel developed a conceptual model including causal relationships between disease attributes, progression, and final outcomes. Risk equations describing these relationships were estimated using data from the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study, with costs estimated from the TOwards a Revolution in COPD Health (TORCH) study. Implementation as a linked-equation model enabled direct estimation of health service costs and quality-adjusted life years (QALYs) for COPD patients over their lifetimes. Internal validation compared 3 years of predicted cohort experience with ECLIPSE results. At 3 years, the Galaxy COPD model predictions of annual exacerbation rate and annual decline in forced expiratory volume in 1 second fell within the ECLIPSE data confidence limits, although 3-year overall survival was outside the observed confidence limits. Projections of the risk equations over time permitted extrapolation to patient lifetimes. Averaging the predicted cost/QALY outcomes for the different patients within the ECLIPSE cohort gives an estimated lifetime cost of £25,214 (undiscounted)/£20,318 (discounted) and lifetime QALYs of 6.45 (undiscounted/5.24 [discounted]) per ECLIPSE patient. A new form of model for COPD was conceptualized, implemented, and internally validated, based on a series of linked equations using epidemiological data (ECLIPSE) and cost data (TORCH). This Galaxy model predicts COPD outcomes from treatment effects on disease attributes such as lung function, exacerbations, symptoms, or exercise capacity; further external validation is required.
Comparing the accuracy of personality judgements by the self and knowledgeable others.
Kolar, D W; Funder, D C; Colvin, C R
1996-06-01
In this article we compare the accuracy of personality judgements by the self and by knowledgeable others. Self- and acquaintance judgements of general personality attributes were used to predict general, videotaped behavioral criteria. Results slightly favored the predictive validity of personality judgements made by single acquaintances over self-judgements, and significantly favored the aggregated personality judgements of two acquaintances over self-judgements. These findings imply that the most valid source for personality judgements that are relevant to patterns of overt behavior may not be self-reports but the consensus of the judgement of the community of one's peers.
Finite Element Model Development For Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.
NASA Technical Reports Server (NTRS)
Tai, H.; Wilson, J. W.; Maiden, D. L.
2003-01-01
The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain a relatively complete measurement set of the high-altitude radiation level environment, is described in this paper. The primary thrust is to characterize the atmospheric radiation and to define dose levels at high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring devices for protecting aircrews. With a few chosen routes, we can measure the experimental results and validate the AIR model predictions. Eventually, as more measurements are made, we gain more understanding about the hazardous radiation environment and acquire more confidence in the prediction models.
A simple risk scoring system for prediction of relapse after inpatient alcohol treatment.
Pedersen, Mads Uffe; Hesse, Morten
2009-01-01
Predicting relapse after alcoholism treatment can be useful in targeting patients for aftercare services. However, a valid and practical instrument for predicting relapse risk does not exist. Based on a prospective study of alcoholism treatment, we developed the Risk of Alcoholic Relapse Scale (RARS) using items taken from the Addiction Severity Index and some basic demographic information. The RARS was cross-validated using two non-overlapping samples, and tested for its ability to predict relapse across different models of treatment. The RARS predicted relapse to drinking within 6 months after alcoholism treatment in both the original and the validation sample, and in a second validation sample it predicted admission to new treatment 3 years after treatment. The RARS can identify patients at high risk of relapse who need extra aftercare and support after treatment.
Limb-Enhancer Genie: An accessible resource of accurate enhancer predictions in the developing limb
Monti, Remo; Barozzi, Iros; Osterwalder, Marco; ...
2017-08-21
Epigenomic mapping of enhancer-associated chromatin modifications facilitates the genome-wide discovery of tissue-specific enhancers in vivo. However, reliance on single chromatin marks leads to high rates of false-positive predictions. More sophisticated, integrative methods have been described, but commonly suffer from limited accessibility to the resulting predictions and reduced biological interpretability. Here we present the Limb-Enhancer Genie (LEG), a collection of highly accurate, genome-wide predictions of enhancers in the developing limb, available through a user-friendly online interface. We predict limb enhancers using a combination of > 50 published limb-specific datasets and clusters of evolutionarily conserved transcription factor binding sites, taking advantage ofmore » the patterns observed at previously in vivo validated elements. By combining different statistical models, our approach outperforms current state-of-the-art methods and provides interpretable measures of feature importance. Our results indicate that including a previously unappreciated score that quantifies tissue-specific nuclease accessibility significantly improves prediction performance. We demonstrate the utility of our approach through in vivo validation of newly predicted elements. Moreover, we describe general features that can guide the type of datasets to include when predicting tissue-specific enhancers genome-wide, while providing an accessible resource to the general biological community and facilitating the functional interpretation of genetic studies of limb malformations.« less
Predictive validity of pre-admission assessments on medical student performance
Dabaliz, Al-Awwab; Kaadan, Samy; Dabbagh, M. Marwan; Barakat, Abdulaziz; Shareef, Mohammad Abrar; Al-Tannir, Mohamad; Obeidat, Akef
2017-01-01
Objectives To examine the predictive validity of pre-admission variables on students’ performance in a medical school in Saudi Arabia. Methods In this retrospective study, we collected admission and college performance data for 737 students in preclinical and clinical years. Data included high school scores and other standardized test scores, such as those of the National Achievement Test and the General Aptitude Test. Additionally, we included the scores of the Test of English as a Foreign Language (TOEFL) and the International English Language Testing System (IELTS) exams. Those datasets were then compared with college performance indicators, namely the cumulative Grade Point Average (cGPA) and progress test, using multivariate linear regression analysis. Results In preclinical years, both the National Achievement Test (p=0.04, B=0.08) and TOEFL (p=0.017, B=0.01) scores were positive predictors of cGPA, whereas the General Aptitude Test (p=0.048, B=-0.05) negatively predicted cGPA. Moreover, none of the pre-admission variables were predictive of progress test performance in the same group. On the other hand, none of the pre-admission variables were predictive of cGPA in clinical years. Overall, cGPA strongly predict-ed students’ progress test performance (p<0.001 and B=19.02). Conclusions Only the National Achievement Test and TOEFL significantly predicted performance in preclinical years. However, these variables do not predict progress test performance, meaning that they do not predict the functional knowledge reflected in the progress test. We report various strengths and deficiencies in the current medical college admission criteria, and call for employing more sensitive and valid ones that predict student performance and functional knowledge, especially in the clinical years. PMID:29176032
Meertens, Linda J E; van Montfort, Pim; Scheepers, Hubertina C J; van Kuijk, Sander M J; Aardenburg, Robert; Langenveld, Josje; van Dooren, Ivo M A; Zwaan, Iris M; Spaanderman, Marc E A; Smits, Luc J M
2018-04-17
Prediction models may contribute to personalized risk-based management of women at high risk of spontaneous preterm delivery. Although prediction models are published frequently, often with promising results, external validation generally is lacking. We performed a systematic review of prediction models for the risk of spontaneous preterm birth based on routine clinical parameters. Additionally, we externally validated and evaluated the clinical potential of the models. Prediction models based on routinely collected maternal parameters obtainable during first 16 weeks of gestation were eligible for selection. Risk of bias was assessed according to the CHARMS guidelines. We validated the selected models in a Dutch multicenter prospective cohort study comprising 2614 unselected pregnant women. Information on predictors was obtained by a web-based questionnaire. Predictive performance of the models was quantified by the area under the receiver operating characteristic curve (AUC) and calibration plots for the outcomes spontaneous preterm birth <37 weeks and <34 weeks of gestation. Clinical value was evaluated by means of decision curve analysis and calculating classification accuracy for different risk thresholds. Four studies describing five prediction models fulfilled the eligibility criteria. Risk of bias assessment revealed a moderate to high risk of bias in three studies. The AUC of the models ranged from 0.54 to 0.67 and from 0.56 to 0.70 for the outcomes spontaneous preterm birth <37 weeks and <34 weeks of gestation, respectively. A subanalysis showed that the models discriminated poorly (AUC 0.51-0.56) for nulliparous women. Although we recalibrated the models, two models retained evidence of overfitting. The decision curve analysis showed low clinical benefit for the best performing models. This review revealed several reporting and methodological shortcomings of published prediction models for spontaneous preterm birth. Our external validation study indicated that none of the models had the ability to predict spontaneous preterm birth adequately in our population. Further improvement of prediction models, using recent knowledge about both model development and potential risk factors, is necessary to provide an added value in personalized risk assessment of spontaneous preterm birth. © 2018 The Authors Acta Obstetricia et Gynecologica Scandinavica published by John Wiley & Sons Ltd on behalf of Nordic Federation of Societies of Obstetrics and Gynecology (NFOG).
Numerical simulation of cavitating flows in shipbuilding
NASA Astrophysics Data System (ADS)
Bagaev, D.; Yegorov, S.; Lobachev, M.; Rudnichenko, A.; Taranov, A.
2018-05-01
The paper presents validation of numerical simulations of cavitating flows around different marine objects carried out at the Krylov State Research Centre (KSRC). Preliminary validation was done with reference to international test objects. The main part of the paper contains results of solving practical problems of ship propulsion design. The validation of numerical simulations by comparison with experimental data shows a good accuracy of the supercomputer technologies existing at Krylov State Research Centre for both hydrodynamic and cavitation characteristics prediction.
Kaneko, Hiromasa; Funatsu, Kimito
2013-09-23
We propose predictive performance criteria for nonlinear regression models without cross-validation. The proposed criteria are the determination coefficient and the root-mean-square error for the midpoints between k-nearest-neighbor data points. These criteria can be used to evaluate predictive ability after the regression models are updated, whereas cross-validation cannot be performed in such a situation. The proposed method is effective and helpful in handling big data when cross-validation cannot be applied. By analyzing data from numerical simulations and quantitative structural relationships, we confirm that the proposed criteria enable the predictive ability of the nonlinear regression models to be appropriately quantified.
NASA Technical Reports Server (NTRS)
Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris
2011-01-01
A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.
Family-Based Benchmarking of Copy Number Variation Detection Software.
Nutsua, Marcel Elie; Fischer, Annegret; Nebel, Almut; Hofmann, Sylvia; Schreiber, Stefan; Krawczak, Michael; Nothnagel, Michael
2015-01-01
The analysis of structural variants, in particular of copy-number variations (CNVs), has proven valuable in unraveling the genetic basis of human diseases. Hence, a large number of algorithms have been developed for the detection of CNVs in SNP array signal intensity data. Using the European and African HapMap trio data, we undertook a comparative evaluation of six commonly used CNV detection software tools, namely Affymetrix Power Tools (APT), QuantiSNP, PennCNV, GLAD, R-gada and VEGA, and assessed their level of pair-wise prediction concordance. The tool-specific CNV prediction accuracy was assessed in silico by way of intra-familial validation. Software tools differed greatly in terms of the number and length of the CNVs predicted as well as the number of markers included in a CNV. All software tools predicted substantially more deletions than duplications. Intra-familial validation revealed consistently low levels of prediction accuracy as measured by the proportion of validated CNVs (34-60%). Moreover, up to 20% of apparent family-based validations were found to be due to chance alone. Software using Hidden Markov models (HMM) showed a trend to predict fewer CNVs than segmentation-based algorithms albeit with greater validity. PennCNV yielded the highest prediction accuracy (60.9%). Finally, the pairwise concordance of CNV prediction was found to vary widely with the software tools involved. We recommend HMM-based software, in particular PennCNV, rather than segmentation-based algorithms when validity is the primary concern of CNV detection. QuantiSNP may be used as an additional tool to detect sets of CNVs not detectable by the other tools. Our study also reemphasizes the need for laboratory-based validation, such as qPCR, of CNVs predicted in silico.
ERIC Educational Resources Information Center
Meier, Scott T.
1991-01-01
Examined correlations among stress, anxiety, and depression scales in 129 college students, as well as ability of measures of depression and anxiety to add to predictive power of occupational stress for recognition memory task and self-reported physical symptoms. Results indicated that stress, depression, and anxiety measures were moderately to…
Predictive Validity of Career Decision-Making Profiles over Time among Chinese College Students
ERIC Educational Resources Information Center
Tian, Lin; Guan, Yanjun; Chen, Sylvia Xiaohua; Levin, Nimrod; Cai, Zijun; Chen, Pei; Zhu, Chengfeng; Fu, Ruchunyi; Wang, Yang; Zhang, Shu
2014-01-01
Two studies were conducted to validate the Chinese version of the Career Decision-Making Profiles (CDMP) questionnaire, a multidimensional measure of the way individuals make career decisions. Results of Study 1 showed that after dropping 1 item from the original CDMP scale, the 11-factor structure was supported among Chinese college students (N =…
Urine cell-based DNA methylation classifier for monitoring bladder cancer.
van der Heijden, Antoine G; Mengual, Lourdes; Ingelmo-Torres, Mercedes; Lozano, Juan J; van Rijt-van de Westerlo, Cindy C M; Baixauli, Montserrat; Geavlete, Bogdan; Moldoveanud, Cristian; Ene, Cosmin; Dinney, Colin P; Czerniak, Bogdan; Schalken, Jack A; Kiemeney, Lambertus A L M; Ribal, Maria J; Witjes, J Alfred; Alcaraz, Antonio
2018-01-01
Current standard methods used to detect and monitor bladder cancer (BC) are invasive or have low sensitivity. This study aimed to develop a urine methylation biomarker classifier for BC monitoring and validate this classifier in patients in follow-up for bladder cancer (PFBC). Voided urine samples ( N = 725) from BC patients, controls, and PFBC were prospectively collected in four centers. Finally, 626 urine samples were available for analysis. DNA was extracted from the urinary cells and bisulfite modificated, and methylation status was analyzed using pyrosequencing. Cytology was available from a subset of patients ( N = 399). In the discovery phase, seven selected genes from the literature ( CDH13 , CFTR , NID2 , SALL3 , TMEFF2 , TWIST1 , and VIM2 ) were studied in 111 BC and 57 control samples. This training set was used to develop a gene classifier by logistic regression and was validated in 458 PFBC samples (173 with recurrence). A three-gene methylation classifier containing CFTR , SALL3 , and TWIST1 was developed in the training set (AUC 0.874). The classifier achieved an AUC of 0.741 in the validation series. Cytology results were available for 308 samples from the validation set. Cytology achieved AUC 0.696 whereas the classifier in this subset of patients reached an AUC 0.768. Combining the methylation classifier with cytology results achieved an AUC 0.86 in the validation set, with a sensitivity of 96%, a specificity of 40%, and a positive and negative predictive value of 56 and 92%, respectively. The combination of the three-gene methylation classifier and cytology results has high sensitivity and high negative predictive value in a real clinical scenario (PFBC). The proposed classifier is a useful test for predicting BC recurrence and decrease the number of cystoscopies in the follow-up of BC patients. If only patients with a positive combined classifier result would be cystoscopied, 36% of all cystoscopies can be prevented.
Prediction models for successful external cephalic version: a systematic review.
Velzel, Joost; de Hundt, Marcella; Mulder, Frederique M; Molkenboer, Jan F M; Van der Post, Joris A M; Mol, Ben W; Kok, Marjolein
2015-12-01
To provide an overview of existing prediction models for successful ECV, and to assess their quality, development and performance. We searched MEDLINE, EMBASE and the Cochrane Library to identify all articles reporting on prediction models for successful ECV published from inception to January 2015. We extracted information on study design, sample size, model-building strategies and validation. We evaluated the phases of model development and summarized their performance in terms of discrimination, calibration and clinical usefulness. We collected different predictor variables together with their defined significance, in order to identify important predictor variables for successful ECV. We identified eight articles reporting on seven prediction models. All models were subjected to internal validation. Only one model was also validated in an external cohort. Two prediction models had a low overall risk of bias, of which only one showed promising predictive performance at internal validation. This model also completed the phase of external validation. For none of the models their impact on clinical practice was evaluated. The most important predictor variables for successful ECV described in the selected articles were parity, placental location, breech engagement and the fetal head being palpable. One model was assessed using discrimination and calibration using internal (AUC 0.71) and external validation (AUC 0.64), while two other models were assessed with discrimination and calibration, respectively. We found one prediction model for breech presentation that was validated in an external cohort and had acceptable predictive performance. This model should be used to council women considering ECV. Copyright © 2015. Published by Elsevier Ireland Ltd.
Transformational and transactional leadership: a meta-analytic test of their relative validity.
Judge, Timothy A; Piccolo, Ronald F
2004-10-01
This study provided a comprehensive examination of the full range of transformational, transactional, and laissez-faire leadership. Results (based on 626 correlations from 87 sources) revealed an overall validity of .44 for transformational leadership, and this validity generalized over longitudinal and multisource designs. Contingent reward (.39) and laissez-faire (-.37) leadership had the next highest overall relations; management by exception (active and passive) was inconsistently related to the criteria. Surprisingly, there were several criteria for which contingent reward leadership had stronger relations than did transformational leadership. Furthermore, transformational leadership was strongly correlated with contingent reward (.80) and laissez-faire (-.65) leadership. Transformational and contingent reward leadership generally predicted criteria controlling for the other leadership dimensions, although transformational leadership failed to predict leader job performance. (c) 2004 APA, all rights reserved
NASA Technical Reports Server (NTRS)
Lyle, Karen H.
2015-01-01
Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology demonstration via flight-testing. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. This publication summarizes results comparing analytical results with test data for two concepts subjected to representative entry, static loading. The level of agreement and ability to predict the load distribution is considered sufficient to enable analytical predictions to be used in the design process.
Desmarais, Sarah L.; Nicholls, Tonia L.; Wilson, Catherine M.; Brink, Johann
2012-01-01
The Short-Term Assessment of Risk and Treatability (START) is a relatively new structured professional judgment guide for the assessment and management of short-term risks associated with mental, substance use, and personality disorders. The scheme may be distinguished from other violence risk instruments because of its inclusion of 20 dynamic factors that are rated in terms of both vulnerability and strength. This study examined the reliability and validity of START assessments in predicting inpatient aggression. Research assistants completed START assessments for 120 male forensic psychiatric patients through review of hospital files. They additionally completed Historical-Clinical-Risk Management – 20 (HCR-20) and the Hare Psychopathy Checklist: Screening Version (PCL:SV) assessments. Outcome data was coded from hospital files for a 12-month follow-up period using the Overt Aggression Scale (OAS). START assessments evidenced excellent interrater reliability and demonstrated both predictive and incremental validity over the HCR-20 Historical subscale scores and PCL:SV total scores. Overall, results support the reliability and validity of START assessments, and use of the structured professional judgment approach more broadly, as well as the value of using dynamic risk and protective factors to assess violence risk. PMID:22250595
Validity of VO(2 max) in predicting blood volume: implications for the effect of fitness on aging
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Ludwig, D. A.
2000-01-01
A multiple regression model was constructed to investigate the premise that blood volume (BV) could be predicted using several anthropometric variables, age, and maximal oxygen uptake (VO(2 max)). To test this hypothesis, age, calculated body surface area (height/weight composite), percent body fat (hydrostatic weight), and VO(2 max) were regressed on to BV using data obtained from 66 normal healthy men. Results from the evaluation of the full model indicated that the most parsimonious result was obtained when age and VO(2 max) were regressed on BV expressed per kilogram body weight. The full model accounted for 52% of the total variance in BV per kilogram body weight. Both age and VO(2 max) were related to BV in the positive direction. Percent body fat contributed <1% to the explained variance in BV when expressed in absolute BV (ml) or as BV per kilogram body weight. When the model was cross validated on 41 new subjects and BV per kilogram body weight was reexpressed as raw BV, the results indicated that the statistical model would be stable under cross validation (e.g., predictive applications) with an accuracy of +/- 1,200 ml at 95% confidence. Our results support the hypothesis that BV is an increasing function of aerobic fitness and to a lesser extent the age of the subject. The results may have implication as to a mechanism by which aerobic fitness and activity may be protective against reduced BV associated with aging.
Husbands, Adrian; Mathieson, Alistair; Dowell, Jonathan; Cleland, Jennifer; MacKenzie, Rhoda
2014-04-23
The UK Clinical Aptitude Test (UKCAT) was designed to address issues identified with traditional methods of selection. This study aims to examine the predictive validity of the UKCAT and compare this to traditional selection methods in the senior years of medical school. This was a follow-up study of two cohorts of students from two medical schools who had previously taken part in a study examining the predictive validity of the UKCAT in first year. The sample consisted of 4th and 5th Year students who commenced their studies at the University of Aberdeen or University of Dundee medical schools in 2007. Data collected were: demographics (gender and age group), UKCAT scores; Universities and Colleges Admissions Service (UCAS) form scores; admission interview scores; Year 4 and 5 degree examination scores. Pearson's correlations were used to examine the relationships between admissions variables, examination scores, gender and age group, and to select variables for multiple linear regression analysis to predict examination scores. Ninety-nine and 89 students at Aberdeen medical school from Years 4 and 5 respectively, and 51 Year 4 students in Dundee, were included in the analysis. Neither UCAS form nor interview scores were statistically significant predictors of examination performance. Conversely, the UKCAT yielded statistically significant validity coefficients between .24 and .36 in four of five assessments investigated. Multiple regression analysis showed the UKCAT made a statistically significant unique contribution to variance in examination performance in the senior years. Results suggest the UKCAT appears to predict performance better in the later years of medical school compared to earlier years and provides modest supportive evidence for the UKCAT's role in student selection within these institutions. Further research is needed to assess the predictive validity of the UKCAT against professional and behavioural outcomes as the cohort commences working life.
Davis, Eric; Devlin, Sean; Cooper, Candice; Nhaissi, Melissa; Paulson, Jennifer; Wells, Deborah; Scaradavou, Andromachi; Giralt, Sergio; Papadopoulos, Esperanza; Kernan, Nancy A; Byam, Courtney; Barker, Juliet N
2018-05-01
A strategy to rapidly determine if a matched unrelated donor (URD) can be secured for allograft recipients is needed. We sought to validate the accuracy of (1) HapLogic match predictions and (2) a resultant novel Search Prognosis (SP) patient categorization that could predict 8/8 HLA-matched URD(s) likelihood at search initiation. Patient prognosis categories at search initiation were correlated with URD confirmatory typing results. HapLogic-based SP categorizations accurately predicted the likelihood of an 8/8 HLA-match in 830 patients (1530 donors tested). Sixty percent of patients had 8/8 URD(s) identified. Patient SP categories (217 very good, 104 good, 178 fair, 33 poor, 153 very poor, 145 futile) were associated with a marked progressive decrease in 8/8 URD identification and transplantation. Very good to good categories were highly predictive of identifying and receiving an 8/8 URD regardless of ancestry. Europeans in fair/poor categories were more likely to identify and receive an 8/8 URD compared with non-Europeans. In all ancestries very poor and futile categories predicted no 8/8 URDs. HapLogic permits URD search results to be predicted once patient HLA typing and ancestry is obtained, dramatically improving search efficiency. Poor, very poor, andfutile searches can be immediately recognized, thereby facilitating prompt pursuit of alternative donors. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Risk assessment for juvenile justice: a meta-analysis.
Schwalbe, Craig S
2007-10-01
Risk assessment instruments are increasingly employed by juvenile justice settings to estimate the likelihood of recidivism among delinquent juveniles. In concert with their increased use, validation studies documenting their predictive validity have increased in number. The purpose of this study was to assess the average predictive validity of juvenile justice risk assessment instruments and to identify risk assessment characteristics that are associated with higher predictive validity. A search of the published and grey literature yielded 28 studies that estimated the predictive validity of 28 risk assessment instruments. Findings of the meta-analysis were consistent with effect sizes obtained in larger meta-analyses of criminal justice risk assessment instruments and showed that brief risk assessment instruments had smaller effect sizes than other types of instruments. However, this finding is tentative owing to limitations of the literature.
Validation of asthma recording in electronic health records: a systematic review
Nissen, Francis; Quint, Jennifer K; Wilkinson, Samantha; Mullerova, Hana; Smeeth, Liam; Douglas, Ian J
2017-01-01
Objective To describe the methods used to validate asthma diagnoses in electronic health records and summarize the results of the validation studies. Background Electronic health records are increasingly being used for research on asthma to inform health services and health policy. Validation of the recording of asthma diagnoses in electronic health records is essential to use these databases for credible epidemiological asthma research. Methods We searched EMBASE and MEDLINE databases for studies that validated asthma diagnoses detected in electronic health records up to October 2016. Two reviewers independently assessed the full text against the predetermined inclusion criteria. Key data including author, year, data source, case definitions, reference standard, and validation statistics (including sensitivity, specificity, positive predictive value [PPV], and negative predictive value [NPV]) were summarized in two tables. Results Thirteen studies met the inclusion criteria. Most studies demonstrated a high validity using at least one case definition (PPV >80%). Ten studies used a manual validation as the reference standard; each had at least one case definition with a PPV of at least 63%, up to 100%. We also found two studies using a second independent database to validate asthma diagnoses. The PPVs of the best performing case definitions ranged from 46% to 58%. We found one study which used a questionnaire as the reference standard to validate a database case definition; the PPV of the case definition algorithm in this study was 89%. Conclusion Attaining high PPVs (>80%) is possible using each of the discussed validation methods. Identifying asthma cases in electronic health records is possible with high sensitivity, specificity or PPV, by combining multiple data sources, or by focusing on specific test measures. Studies testing a range of case definitions show wide variation in the validity of each definition, suggesting this may be important for obtaining asthma definitions with optimal validity. PMID:29238227
Ahadi, Alireza; Sablok, Gaurav; Hutvagner, Gyorgy
2017-04-07
MicroRNAs (miRNAs) are ∼19-22 nucleotides (nt) long regulatory RNAs that regulate gene expression by recognizing and binding to complementary sequences on mRNAs. The key step in revealing the function of a miRNA, is the identification of miRNA target genes. Recent biochemical advances including PAR-CLIP and HITS-CLIP allow for improved miRNA target predictions and are widely used to validate miRNA targets. Here, we present miRTar2GO, which is a model, trained on the common rules of miRNA-target interactions, Argonaute (Ago) CLIP-Seq data and experimentally validated miRNA target interactions. miRTar2GO is designed to predict miRNA target sites using more relaxed miRNA-target binding characteristics. More importantly, miRTar2GO allows for the prediction of cell-type specific miRNA targets. We have evaluated miRTar2GO against other widely used miRNA target prediction algorithms and demonstrated that miRTar2GO produced significantly higher F1 and G scores. Target predictions, binding specifications, results of the pathway analysis and gene ontology enrichment of miRNA targets are freely available at http://www.mirtar2go.org. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Alwaal, Amjad; Al-Qaoud, Talal M; Haddad, Richard L; Alzahrani, Tarek M; Delisle, Josee; Anidjar, Maurice
2015-01-01
Assessing the predictive validity of the LapSim simulator within a urology residency program. Twelve urology residents at McGill University were enrolled in the study between June 2008 and December 2011. The residents had weekly training on the LapSim that consisted of 3 tasks (cutting, clip-applying, and lifting and grasping). They underwent monthly assessment of their LapSim performance using total time, tissue damage and path length among other parameters as surrogates for their economy of movement and respect for tissue. The last residents' LapSim performance was compared with their first performance of radical nephrectomy on anesthetized porcine models in their 4(th) year of training. Two independent urologic surgeons rated the resident performance on the porcine models, and kappa test with standardized weight function was used to assess for inter-observer bias. Nonparametric spearman correlation test was used to compare each rater's cumulative score with the cumulative score obtained on the porcine models in order to test the predictive validity of the LapSim simulator. The kappa results demonstrated acceptable agreement between the two observers among all domains of the rating scale of performance except for confidence of movement and efficiency. In addition, poor predictive validity of the LapSim simulator was demonstrated. Predictive validity was not demonstrated for the LapSim simulator in the context of a urology residency training program.
Zhu, Yao; Han, Cheng-Tao; Zhang, Gui-Ming; Liu, Fang; Ding, Qiang; Xu, Jian-Feng; Vidal, Adriana C.; Freedland, Stephen J.; Ng, Chi-Fai; Ye, Ding-Wei
2015-01-01
To develop and externally validate a prostate health index (PHI)-based nomogram for predicting the presence of prostate cancer (PCa) at biopsy in Chinese men with prostate-specific antigen 4–10 ng/mL and normal digital rectal examination (DRE). 347 men were recruited from two hospitals between 2012 and 2014 to develop a PHI-based nomogram to predict PCa. To validate these results, we used a separate cohort of 230 men recruited at another center between 2008 and 2013. Receiver operator curves (ROC) were used to assess the ability to predict PCa. A nomogram was derived from the multivariable logistic regression model and its accuracy was assessed by the area under the ROC (AUC). PHI achieved the highest AUC of 0.839 in the development cohort compared to the other predictors (p < 0.001). Including age and prostate volume, a PHI-based nomogram was constructed and rendered an AUC of 0.877 (95% CI 0.813–0.938). The AUC of the nomogram in the validation cohort was 0.786 (95% CI 0.678–0.894). In clinical effectiveness analyses, the PHI-based nomogram reduced unnecessary biopsies from 42.6% to 27% using a 5% threshold risk of PCa to avoid biopsy with no increase in the number of missed cases relative to conventional biopsy decision. PMID:26471350
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Bin-Yan; He, Shi-Cheng; Zhu, Hai-Dong
PurposeWe aim to determine the predictors of new adjacent vertebral fractures (AVCFs) after percutaneous vertebroplasty (PVP) in patients with osteoporotic vertebral compression fractures (OVCFs) and to construct a risk prediction score to estimate a 2-year new AVCF risk-by-risk factor condition.Materials and MethodsPatients with OVCFs who underwent their first PVP between December 2006 and December 2013 at Hospital A (training cohort) and Hospital B (validation cohort) were included in this study. In training cohort, we assessed the independent risk predictors and developed the probability of new adjacent OVCFs (PNAV) score system using the Cox proportional hazard regression analysis. The accuracy ofmore » this system was then validated in both training and validation cohorts by concordance (c) statistic.Results421 patients (training cohort: n = 256; validation cohort: n = 165) were included in this study. In training cohort, new AVCFs after the first PVP treatment occurred in 33 (12.9%) patients. The independent risk factors were intradiscal cement leakage and preexisting old vertebral compression fracture(s). The estimated 2-year absolute risk of new AVCFs ranged from less than 4% in patients with neither independent risk factors to more than 45% in individuals with both factors.ConclusionsThe PNAV score is an objective and easy approach to predict the risk of new AVCFs.« less
NASA Astrophysics Data System (ADS)
Mashayekhi, Somayeh; Miles, Paul; Hussaini, M. Yousuff; Oates, William S.
2018-02-01
In this paper, fractional and non-fractional viscoelastic models for elastomeric materials are derived and analyzed in comparison to experimental results. The viscoelastic models are derived by expanding thermodynamic balance equations for both fractal and non-fractal media. The order of the fractional time derivative is shown to strongly affect the accuracy of the viscoelastic constitutive predictions. Model validation uses experimental data describing viscoelasticity of the dielectric elastomer Very High Bond (VHB) 4910. Since these materials are known for their broad applications in smart structures, it is important to characterize and accurately predict their behavior across a large range of time scales. Whereas integer order viscoelastic models can yield reasonable agreement with data, the model parameters often lack robustness in prediction at different deformation rates. Alternatively, fractional order models of viscoelasticity provide an alternative framework to more accurately quantify complex rate-dependent behavior. Prior research that has considered fractional order viscoelasticity lacks experimental validation and contains limited links between viscoelastic theory and fractional order derivatives. To address these issues, we use fractional order operators to experimentally validate fractional and non-fractional viscoelastic models in elastomeric solids using Bayesian uncertainty quantification. The fractional order model is found to be advantageous as predictions are significantly more accurate than integer order viscoelastic models for deformation rates spanning four orders of magnitude.
NASA Astrophysics Data System (ADS)
Mu, Wei; Qi, Jin; Lu, Hong; Schabath, Matthew; Balagurunathan, Yoganand; Tunali, Ilke; Gillies, Robert James
2018-02-01
Purpose: Investigate the ability of using complementary information provided by the fusion of PET/CT images to predict immunotherapy response in non-small cell lung cancer (NSCLC) patients. Materials and methods: We collected 64 patients diagnosed with primary NSCLC treated with anti PD-1 checkpoint blockade. Using PET/CT images, fused images were created following multiple methodologies, resulting in up to 7 different images for the tumor region. Quantitative image features were extracted from the primary image (PET/CT) and the fused images, which included 195 from primary images and 1235 features from the fusion images. Three clinical characteristics were also analyzed. We then used support vector machine (SVM) classification models to identify discriminant features that predict immunotherapy response at baseline. Results: A SVM built with 87 fusion features and 13 primary PET/CT features on validation dataset had an accuracy and area under the ROC curve (AUROC) of 87.5% and 0.82, respectively, compared to a model built with 113 original PET/CT features on validation dataset 78.12% and 0.68. Conclusion: The fusion features shows better ability to predict immunotherapy response prediction compared to individual image features.
Prediction of valid acidity in intact apples with Fourier transform near infrared spectroscopy.
Liu, Yan-De; Ying, Yi-Bin; Fu, Xia-Ping
2005-03-01
To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibration techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way.
Prediction of valid acidity in intact apples with Fourier transform near infrared spectroscopy*
Liu, Yan-de; Ying, Yi-bin; Fu, Xia-ping
2005-01-01
To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibration techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r 2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way. PMID:15682498
Translation and validation of the Canadian diabetes risk assessment questionnaire in China.
Guo, Jia; Shi, Zhengkun; Chen, Jyu-Lin; Dixon, Jane K; Wiley, James; Parry, Monica
2018-01-01
To adapt the Canadian Diabetes Risk Assessment Questionnaire for the Chinese population and to evaluate its psychometric properties. A cross-sectional study was conducted with a convenience sample of 194 individuals aged 35-74 years from October 2014 to April 2015. The Canadian Diabetes Risk Assessment Questionnaire was adapted and translated for the Chinese population. Test-retest reliability was conducted to measure stability. Criterion and convergent validity of the adapted questionnaire were assessed using 2-hr 75 g oral glucose tolerance tests and the Finnish Diabetes Risk Scores, respectively. Sensitivity and specificity were evaluated to establish its predictive validity. The test-retest reliability was 0.988. Adequate validity of the adapted questionnaire was demonstrated by positive correlations found between the scores and 2-hr 75 g oral glucose tolerance tests (r = .343, p < .001) and with the Finnish Diabetes Risk Scores (r = .738, p < .001). The area under receiver operating characteristic curve was 0.705 (95% CI .632, .778), demonstrating moderate diagnostic value at a cutoff score of 30. The sensitivity was 73%, with a positive predictive value of 57% and negative predictive value of 78%. Our results provided evidence supporting the translation consistency, content validity, convergent validity, criterion validity, sensitivity, and specificity of the translated Canadian Diabetes Risk Assessment Questionnaire with minor modifications. This paper provides clinical, practical, and methodological information on how to adapt a diabetes risk calculator between cultures for public health nurses. © 2017 Wiley Periodicals, Inc.
Stocco, G; Cipolat-Gotet, C; Bonfatti, V; Schiavon, S; Bittante, G; Cecchinato, A
2016-11-01
The aims of this study were (1) to assess variability in the major mineral components of buffalo milk, (2) to estimate the effect of certain environmental sources of variation on the major minerals during lactation, and (3) to investigate the possibility of using Fourier-transform infrared (FTIR) spectroscopy as an indirect, noninvasive tool for routine prediction of the mineral content of buffalo milk. A total of 173 buffaloes reared in 5 herds were sampled once during the morning milking. Milk samples were analyzed for Ca, P, K, and Mg contents within 3h of sample collection using inductively coupled plasma optical emission spectrometry. A Milkoscan FT2 (Foss, Hillerød, Denmark) was used to acquire milk spectra over the spectral range from 5,000 to 900 wavenumber/cm. Prediction models were built using a partial least square approach, and cross-validation was used to assess the prediction accuracy of FTIR. Prediction models were validated using a 4-fold random cross-validation, thus dividing the calibration-test set in 4 folds, using one of them to check the results (prediction models) and the remaining 3 to develop the calibration models. Buffalo milk minerals averaged 162, 117, 86, and 14.4mg/dL of milk for Ca, P, K, and Mg, respectively. Herd and days in milk were the most important sources of variation in the traits investigated. Parity slightly affected only Ca content. Coefficients of determination of cross-validation between the FTIR-predicted and the measured values were 0.71, 0.70, and 0.72 for Ca, Mg, and P, respectively, whereas prediction accuracy was lower for K (0.55). Our findings reveal FTIR to be an unsuitable tool when milk mineral content needs to be predicted with high accuracy. Predictions may play a role as indicator traits in selective breeding (if the additive genetic correlation between FTIR predictions and measures of milk minerals is high enough) or in monitoring the milk of buffalo populations for dairy industry purposes. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Predicting the ungauged basin: model validation and realism assessment
NASA Astrophysics Data System (ADS)
van Emmerik, Tim; Mulder, Gert; Eilander, Dirk; Piet, Marijn; Savenije, Hubert
2016-04-01
The hydrological decade on Predictions in Ungauged Basins (PUB) [1] led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of model outcome has not been discussed to a great extent. With this study [2] we aim to contribute to the discussion on how one can determine the value and validity of a hydrological model developed for an ungauged basin. As in many cases no local, or even regional, data are available, alternative methods should be applied. Using a PUB case study in a genuinely ungauged basin in southern Cambodia, we give several examples of how one can use different types of soft data to improve model design, calibrate and validate the model, and assess the realism of the model output. A rainfall-runoff model was coupled to an irrigation reservoir, allowing the use of additional and unconventional data. The model was mainly forced with remote sensing data, and local knowledge was used to constrain the parameters. Model realism assessment was done using data from surveys. This resulted in a successful reconstruction of the reservoir dynamics, and revealed the different hydrological characteristics of the two topographical classes. We do not present a generic approach that can be transferred to other ungauged catchments, but we aim to show how clever model design and alternative data acquisition can result in a valuable hydrological model for ungauged catchments. [1] Sivapalan, M., Takeuchi, K., Franks, S., Gupta, V., Karambiri, H., Lakshmi, V., et al. (2003). IAHS decade on predictions in ungauged basins (PUB), 2003-2012: shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 48, 857-880. doi: 10.1623/hysj.48.6.857.51421 [2] van Emmerik, T., Mulder, G., Eilander, D., Piet, M. and Savenije, H. (2015). Predicting the ungauged basin: model validation and realism assessment. Front. Earth Sci. 3:62. doi: 10.3389/feart.2015.00062
NASA Astrophysics Data System (ADS)
Singleton, V. L.; Gantzer, P.; Little, J. C.
2007-02-01
An existing linear bubble plume model was improved, and data collected from a full-scale diffuser installed in Spring Hollow Reservoir, Virginia, were used to validate the model. The depth of maximum plume rise was simulated well for two of the three diffuser tests. Temperature predictions deviated from measured profiles near the maximum plume rise height, but predicted dissolved oxygen profiles compared very well with observations. A sensitivity analysis was performed. The gas flow rate had the greatest effect on predicted plume rise height and induced water flow rate, both of which were directly proportional to gas flow rate. Oxygen transfer within the hypolimnion was independent of all parameters except initial bubble radius and was inversely proportional for radii greater than approximately 1 mm. The results of this work suggest that plume dynamics and oxygen transfer can successfully be predicted for linear bubble plumes using the discrete-bubble approach.
Strong claims and weak evidence: reassessing the predictive validity of the IAT.
Blanton, Hart; Jaccard, James; Klick, Jonathan; Mellers, Barbara; Mitchell, Gregory; Tetlock, Philip E
2009-05-01
The authors reanalyzed data from 2 influential studies-A. R. McConnell and J. M. Leibold and J. C. Ziegert and P. J. Hanges-that explore links between implicit bias and discriminatory behavior and that have been invoked to support strong claims about the predictive validity of the Implicit Association Test. In both of these studies, the inclusion of race Implicit Association Test scores in regression models reduced prediction errors by only tiny amounts, and Implicit Association Test scores did not permit prediction of individual-level behaviors. Furthermore, the results were not robust when the impact of rater reliability, statistical specifications, and/or outliers were taken into account, and reanalysis of A. R. McConnell & J. M. Leibold (2001) revealed a pattern of behavior consistent with a pro-Black behavioral bias, rather than the anti-Black bias suggested in the original study. (c) 2009 APA, all rights reserved.
Linear and nonlinear models for predicting fish bioconcentration factors for pesticides.
Yuan, Jintao; Xie, Chun; Zhang, Ting; Sun, Jinfang; Yuan, Xuejie; Yu, Shuling; Zhang, Yingbiao; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu
2016-08-01
This work is devoted to the applications of the multiple linear regression (MLR), multilayer perceptron neural network (MLP NN) and projection pursuit regression (PPR) to quantitative structure-property relationship analysis of bioconcentration factors (BCFs) of pesticides tested on Bluegill (Lepomis macrochirus). Molecular descriptors of a total of 107 pesticides were calculated with the DRAGON Software and selected by inverse enhanced replacement method. Based on the selected DRAGON descriptors, a linear model was built by MLR, nonlinear models were developed using MLP NN and PPR. The robustness of the obtained models was assessed by cross-validation and external validation using test set. Outliers were also examined and deleted to improve predictive power. Comparative results revealed that PPR achieved the most accurate predictions. This study offers useful models and information for BCF prediction, risk assessment, and pesticide formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of four statistical and machine learning methods for crash severity prediction.
Iranitalab, Amirfarrokh; Khattak, Aemal
2017-11-01
Crash severity prediction models enable different agencies to predict the severity of a reported crash with unknown severity or the severity of crashes that may be expected to occur sometime in the future. This paper had three main objectives: comparison of the performance of four statistical and machine learning methods including Multinomial Logit (MNL), Nearest Neighbor Classification (NNC), Support Vector Machines (SVM) and Random Forests (RF), in predicting traffic crash severity; developing a crash costs-based approach for comparison of crash severity prediction methods; and investigating the effects of data clustering methods comprising K-means Clustering (KC) and Latent Class Clustering (LCC), on the performance of crash severity prediction models. The 2012-2015 reported crash data from Nebraska, United States was obtained and two-vehicle crashes were extracted as the analysis data. The dataset was split into training/estimation (2012-2014) and validation (2015) subsets. The four prediction methods were trained/estimated using the training/estimation dataset and the correct prediction rates for each crash severity level, overall correct prediction rate and a proposed crash costs-based accuracy measure were obtained for the validation dataset. The correct prediction rates and the proposed approach showed NNC had the best prediction performance in overall and in more severe crashes. RF and SVM had the next two sufficient performances and MNL was the weakest method. Data clustering did not affect the prediction results of SVM, but KC improved the prediction performance of MNL, NNC and RF, while LCC caused improvement in MNL and RF but weakened the performance of NNC. Overall correct prediction rate had almost the exact opposite results compared to the proposed approach, showing that neglecting the crash costs can lead to misjudgment in choosing the right prediction method. Copyright © 2017 Elsevier Ltd. All rights reserved.
National IQs Predict Educational Attainment in Math, Reading and Science across 56 Nations
ERIC Educational Resources Information Center
Lynn, Richard; Mikk, Jaan
2009-01-01
The results of the 2006 PISA (Program for International Student Assessment) study of reading comprehension, mathematical ability, and science understanding administered to 15 year olds in 56 countries [OECD (2007). PISA 2006: Science Competencies for Tomorrow's World. Paris: OECD.] are examined to assess the predictive validity of the national IQs…
Predicting Performance during Clinical Years from the New Medical College Admission Test.
ERIC Educational Resources Information Center
Caroline, Jan D.; And Others
1983-01-01
The results of a predictive validity study of the new Medical College Admission Test (MCAT) using criteria from the clinical years of undergraduate medical education are discussed. The criteria included course grades and faculty ratings of clerks in internal medicine, surgery, obstetrics and gynecology, pediatrics, and psychiatry. (Author/MLW)
Predicting First-Quarter Test Scores from the New Medical College Admission Test.
ERIC Educational Resources Information Center
Cullen, Thomas J.; And Others
1980-01-01
The predictive validity of the new Medical College Admission Test as it relates to end-of-quarter examinations in anatomy, histology, physiology, biochemistry, and "ages of man" is presented. Results indicate that the Science Knowledge assessment areas of chemistry and physics and the Science Problems subtest were most useful in…
Temperament and problem solving in a population of adolescent guide dogs.
Bray, Emily E; Sammel, Mary D; Seyfarth, Robert M; Serpell, James A; Cheney, Dorothy L
2017-09-01
It is often assumed that measures of temperament within individuals are more correlated to one another than to measures of problem solving. However, the exact relationship between temperament and problem-solving tasks remains unclear because large-scale studies have typically focused on each independently. To explore this relationship, we tested 119 prospective adolescent guide dogs on a battery of 11 temperament and problem-solving tasks. We then summarized the data using both confirmatory factor analysis and exploratory principal components analysis. Results of confirmatory analysis revealed that a priori separation of tests as measuring either temperament or problem solving led to weak results, poor model fit, some construct validity, and no predictive validity. In contrast, results of exploratory analysis were best summarized by principal components that mixed temperament and problem-solving traits. These components had both construct and predictive validity (i.e., association with success in the guide dog training program). We conclude that there is complex interplay between tasks of "temperament" and "problem solving" and that the study of both together will be more informative than approaches that consider either in isolation.
NASA Technical Reports Server (NTRS)
McCloud, Peter L.
2010-01-01
Thermal Protection System (TPS) Cavity Heating is predicted using Computational Fluid Dynamics (CFD) on unstructured grids for both simplified cavities and actual cavity geometries. Validation was performed using comparisons to wind tunnel experimental results and CFD predictions using structured grids. Full-scale predictions were made for simplified and actual geometry configurations on the Space Shuttle Orbiter in a mission support timeframe.
ERIC Educational Resources Information Center
Gobbens, Robbert J. J.; van Assen, Marcel A. L. M.; Luijkx, Katrien G.; Schols, Jos M. G. A.
2012-01-01
Purpose: To assess the predictive validity of frailty and its domains (physical, psychological, and social), as measured by the Tilburg Frailty Indicator (TFI), for the adverse outcomes disability, health care utilization, and quality of life. Design and Methods: The predictive validity of the TFI was tested in a representative sample of 484…
Novel Approach for Prediction of Localized Necking in Case of Nonlinear Strain Paths
NASA Astrophysics Data System (ADS)
Drotleff, K.; Liewald, M.
2017-09-01
Rising customer expectations regarding design complexity and weight reduction of sheet metal components alongside with further reduced time to market implicate increased demand for process validation using numerical forming simulation. Formability prediction though often is still based on the forming limit diagram first presented in the 1960s. Despite many drawbacks in case of nonlinear strain paths and major advances in research in the recent years, the forming limit curve (FLC) is still one of the most commonly used criteria for assessing formability of sheet metal materials. Especially when forming complex part geometries nonlinear strain paths may occur, which cannot be predicted using the conventional FLC-Concept. In this paper a novel approach for calculation of FLCs for nonlinear strain paths is presented. Combining an interesting approach for prediction of FLC using tensile test data and IFU-FLC-Criterion a model for prediction of localized necking for nonlinear strain paths can be derived. Presented model is purely based on experimental tensile test data making it easy to calibrate for any given material. Resulting prediction of localized necking is validated using an experimental deep drawing specimen made of AA6014 material having a sheet thickness of 1.04 mm. The results are compared to IFU-FLC-Criterion based on data of pre-stretched Nakajima specimen.
Durá, Estrella; Andreu, Yolanda; Galdón, Maria José; Ibáñez, Elena; Pérez, Sandra; Ferrando, Maite; Murgui, Sergio; Martínez, Paula
2010-05-01
Emotional suppression has played an important role in the research on psychosocial factors related to cancer. It has been argued to be an important psychological factor predicting worse psychosocial adjustment in people with cancer and it may mediate health outcomes. The reference instrument in the research on emotional suppression is the Courtauld Emotional Control Scale (CECS). The present study analysed construct validity of a new Spanish adaptation of the CECS in a sample of 175 breast cancer patients. The results confirmed the proposal by Watson and Greer claiming that the CECS is composed of three subscales that measure different dimensions, but not independent, from emotional control. The present Spanish version of the CECS showed high internal consistency in each subseale as well as the total score. According to Derogatis (BSI-18) criteria, emotional suppression predicts clinically significant distress. In short, our results support the reliability, validity and utility of this Spanish adaptation of the CECS in clinical and research settings.
Donnon, Tyrone; Paolucci, Elizabeth Oddone; Violato, Claudio
2007-01-01
To conduct a meta-analysis of published studies to determine the predictive validity of the MCAT on medical school performance and medical board licensing examinations. The authors included all peer-reviewed published studies reporting empirical data on the relationship between MCAT scores and medical school performance or medical board licensing exam measures. Moderator variables, participant characteristics, and medical school performance/medical board licensing exam measures were extracted and reviewed separately by three reviewers using a standardized protocol. Medical school performance measures from 11 studies and medical board licensing examinations from 18 studies, for a total of 23 studies, were selected. A random-effects model meta-analysis of weighted effects sizes (r) resulted in (1) a predictive validity coefficient for the MCAT in the preclinical years of r = 0.39 (95% confidence interval [CI], 0.21-0.54) and on the USMLE Step 1 of r = 0.60 (95% CI, 0.50-0.67); and (2) the biological sciences subtest as the best predictor of medical school performance in the preclinical years (r = 0.32 95% CI, 0.21-0.42) and on the USMLE Step 1 (r = 0.48 95% CI, 0.41-0.54). The predictive validity of the MCAT ranges from small to medium for both medical school performance and medical board licensing exam measures. The medical profession is challenged to develop screening and selection criteria with improved validity that can supplement the MCAT as an important criterion for admission to medical schools.
Olivera, André Rodrigues; Roesler, Valter; Iochpe, Cirano; Schmidt, Maria Inês; Vigo, Álvaro; Barreto, Sandhi Maria; Duncan, Bruce Bartholow
2017-01-01
Type 2 diabetes is a chronic disease associated with a wide range of serious health complications that have a major impact on overall health. The aims here were to develop and validate predictive models for detecting undiagnosed diabetes using data from the Longitudinal Study of Adult Health (ELSA-Brasil) and to compare the performance of different machine-learning algorithms in this task. Comparison of machine-learning algorithms to develop predictive models using data from ELSA-Brasil. After selecting a subset of 27 candidate variables from the literature, models were built and validated in four sequential steps: (i) parameter tuning with tenfold cross-validation, repeated three times; (ii) automatic variable selection using forward selection, a wrapper strategy with four different machine-learning algorithms and tenfold cross-validation (repeated three times), to evaluate each subset of variables; (iii) error estimation of model parameters with tenfold cross-validation, repeated ten times; and (iv) generalization testing on an independent dataset. The models were created with the following machine-learning algorithms: logistic regression, artificial neural network, naïve Bayes, K-nearest neighbor and random forest. The best models were created using artificial neural networks and logistic regression. -These achieved mean areas under the curve of, respectively, 75.24% and 74.98% in the error estimation step and 74.17% and 74.41% in the generalization testing step. Most of the predictive models produced similar results, and demonstrated the feasibility of identifying individuals with highest probability of having undiagnosed diabetes, through easily-obtained clinical data.
Analysis of Square Cup Deep-Drawing Test of Pure Titanium
NASA Astrophysics Data System (ADS)
Ogawa, Takaki; Ma, Ninshu; Ueyama, Minoru; Harada, Yasunori
2016-08-01
The prediction of formability of titunium is more difficult than steels since its strong anisotropy. If computer simulation can estimate the formability of titanium, we can select the optimal forming conditions. The purpose of this study was to acquire knowledge for the formability prediction by the computer simulation of the square cup deep-drawing of pure titanium. In this paper, the results of FEM analsis of pure titanium were compared with the experimental results to examine the analysis validity. We analyzed the formability of deepdrawing square cup of titanium by the FEM using solid elements. Compared the analysis results with the experimental results such as the forming shape, the punch load, and the thickness, the validity was confirmed. Further, through analyzing the change of the thickness around the forming corner, it was confirmed that the thickness increased to its maximum value during forming process at the stroke of 35mm more than the maximum stroke.
Martini, Alberto; Gupta, Akriti; Lewis, Sara C; Cumarasamy, Shivaram; Haines, Kenneth G; Briganti, Alberto; Montorsi, Francesco; Tewari, Ashutosh K
2018-04-19
To develop a nomogram for predicting side-specific extracapsular extension (ECE) for planning nerve-sparing radical prostatectomy. We retrospectively analysed data from 561 patients who underwent robot-assisted radical prostatectomy between February 2014 and October 2015. To develop a side-specific predictive model, we considered the prostatic lobes separately. Four variables were included: prostate-specific antigen; highest ipsilateral biopsy Gleason grade; highest ipsilateral percentage core involvement; and ECE on multiparametric magnetic resonance imaging (mpMRI). A multivariable logistic regression analysis was fitted to predict side-specific ECE. A nomogram was built based on the coefficients of the logit function. Internal validation was performed using 'leave-one-out' cross-validation. Calibration was graphically investigated. The decision curve analysis was used to evaluate the net clinical benefit. The study population consisted of 829 side-specific cases, after excluding negative biopsy observations (n = 293). ECE was reported on mpMRI and final pathology in 115 (14%) and 142 (17.1%) cases, respectively. Among these, mpMRI was able to predict ECE correctly in 57 (40.1%) cases. All variables in the model except highest percentage core involvement were predictors of ECE (all P ≤ 0.006). All variables were considered for inclusion in the nomogram. After internal validation, the area under the curve was 82.11%. The model demonstrated excellent calibration and improved clinical risk prediction, especially when compared with relying on mpMRI prediction of ECE alone. When retrospectively applying the nomogram-derived probability, using a 20% threshold for performing nerve-sparing, nine out of 14 positive surgical margins (PSMs) at the site of ECE resulted above the threshold. We developed an easy-to-use model for the prediction of side-specific ECE, and hope it serves as a tool for planning nerve-sparing radical prostatectomy and in the reduction of PSM in future series. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.
Kanai, Masashi; Okamoto, Kazuya; Yamamoto, Yosuke; Yoshioka, Akira; Hiramoto, Shuji; Nozaki, Akira; Nishikawa, Yoshitaka; Yamaguchi, Daisuke; Tomono, Teruko; Nakatsui, Masahiko; Baba, Mika; Morita, Tatsuya; Matsumoto, Shigemi; Kuroda, Tomohiro; Okuno, Yasushi; Muto, Manabu
2017-01-01
Background We aimed to develop an adaptable prognosis prediction model that could be applied at any time point during the treatment course for patients with cancer receiving chemotherapy, by applying time-series real-world big data. Methods Between April 2004 and September 2014, 4,997 patients with cancer who had received systemic chemotherapy were registered in a prospective cohort database at the Kyoto University Hospital. Of these, 2,693 patients with a death record were eligible for inclusion and divided into training (n = 1,341) and test (n = 1,352) cohorts. In total, 3,471,521 laboratory data at 115,738 time points, representing 40 laboratory items [e.g., white blood cell counts and albumin (Alb) levels] that were monitored for 1 year before the death event were applied for constructing prognosis prediction models. All possible prediction models comprising three different items from 40 laboratory items (40C3 = 9,880) were generated in the training cohort, and the model selection was performed in the test cohort. The fitness of the selected models was externally validated in the validation cohort from three independent settings. Results A prognosis prediction model utilizing Alb, lactate dehydrogenase, and neutrophils was selected based on a strong ability to predict death events within 1–6 months and a set of six prediction models corresponding to 1,2, 3, 4, 5, and 6 months was developed. The area under the curve (AUC) ranged from 0.852 for the 1 month model to 0.713 for the 6 month model. External validation supported the performance of these models. Conclusion By applying time-series real-world big data, we successfully developed a set of six adaptable prognosis prediction models for patients with cancer receiving chemotherapy. PMID:28837592
Aguiar, Fabio S; Almeida, Luciana L; Ruffino-Netto, Antonio; Kritski, Afranio Lineu; Mello, Fernanda Cq; Werneck, Guilherme L
2012-08-07
Tuberculosis (TB) remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART) model was generated and validated. The area under the ROC curve (AUC), sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear) and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with clinical suspicion of TB in tertiary health facilities in countries with limited resources.
Predicting prolonged dose titration in patients starting warfarin.
Finkelman, Brian S; French, Benjamin; Bershaw, Luanne; Brensinger, Colleen M; Streiff, Michael B; Epstein, Andrew E; Kimmel, Stephen E
2016-11-01
Patients initiating warfarin therapy generally experience a dose-titration period of weeks to months, during which time they are at higher risk of both thromboembolic and bleeding events. Accurate prediction of prolonged dose titration could help clinicians determine which patients might be better treated by alternative anticoagulants that, while more costly, do not require dose titration. A prediction model was derived in a prospective cohort of patients starting warfarin (n = 390), using Cox regression, and validated in an external cohort (n = 663) from a later time period. Prolonged dose titration was defined as a dose-titration period >12 weeks. Predictor variables were selected using a modified best subsets algorithm, using leave-one-out cross-validation to reduce overfitting. The final model had five variables: warfarin indication, insurance status, number of doctor's visits in the previous year, smoking status, and heart failure. The area under the ROC curve (AUC) in the derivation cohort was 0.66 (95%CI 0.60, 0.74) using leave-one-out cross-validation, but only 0.59 (95%CI 0.54, 0.64) in the external validation cohort, and varied across clinics. Including genetic factors in the model did not improve the area under the ROC curve (0.59; 95%CI 0.54, 0.65). Relative utility curves indicated that the model was unlikely to provide a clinically meaningful benefit compared with no prediction. Our results suggest that prolonged dose titration cannot be accurately predicted in warfarin patients using traditional clinical, social, and genetic predictors, and that accurate prediction will need to accommodate heterogeneities across clinical sites and over time. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Predicting the Individual Risk of Acute Severe Colitis at Diagnosis
Cesarini, Monica; Collins, Gary S.; Rönnblom, Anders; Santos, Antonieta; Wang, Lai Mun; Sjöberg, Daniel; Parkes, Miles; Keshav, Satish
2017-01-01
Abstract Background and Aims: Acute severe colitis [ASC] is associated with major morbidity. We aimed to develop and externally validate an index that predicted ASC within 3 years of diagnosis. Methods: The development cohort included patients aged 16–89 years, diagnosed with ulcerative colitis [UC] in Oxford and followed for 3 years. Primary outcome was hospitalization for ASC, excluding patients admitted within 1 month of diagnosis. Multivariable logistic regression examined the adjusted association of seven risk factors with ASC. Backwards elimination produced a parsimonious model that was simplified to create an easy-to-use index. External validation occurred in separate cohorts from Cambridge, UK, and Uppsala, Sweden. Results: The development cohort [Oxford] included 34/111 patients who developed ASC within a median 14 months [range 1–29]. The final model applied the sum of 1 point each for extensive disease, C-reactive protein [CRP] > 10mg/l, or haemoglobin < 12g/dl F or < 14g/dl M at diagnosis, to give a score from 0/3 to 3/3. This predicted a 70% risk of developing ASC within 3 years [score 3/3]. Validation cohorts included different proportions with ASC [Cambridge = 25/96; Uppsala = 18/298]. Of those scoring 3/3 at diagnosis, 18/18 [Cambridge] and 12/13 [Uppsala] subsequently developed ASC. Discriminant ability [c-index, where 1.0 = perfect discrimination] was 0.81 [Oxford], 0.95 [Cambridge], 0.97 [Uppsala]. Internal validation using bootstrapping showed good calibration, with similar predicted risk across all cohorts. A nomogram predicted individual risk. Conclusions: An index applied at diagnosis reliably predicts the risk of ASC within 3 years in different populations. Patients with a score 3/3 at diagnosis may merit early immunomodulator therapy. PMID:27647858
Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights.
Pasolli, Edoardo; Truong, Duy Tin; Malik, Faizan; Waldron, Levi; Segata, Nicola
2016-07-01
Shotgun metagenomic analysis of the human associated microbiome provides a rich set of microbial features for prediction and biomarker discovery in the context of human diseases and health conditions. However, the use of such high-resolution microbial features presents new challenges, and validated computational tools for learning tasks are lacking. Moreover, classification rules have scarcely been validated in independent studies, posing questions about the generality and generalization of disease-predictive models across cohorts. In this paper, we comprehensively assess approaches to metagenomics-based prediction tasks and for quantitative assessment of the strength of potential microbiome-phenotype associations. We develop a computational framework for prediction tasks using quantitative microbiome profiles, including species-level relative abundances and presence of strain-specific markers. A comprehensive meta-analysis, with particular emphasis on generalization across cohorts, was performed in a collection of 2424 publicly available metagenomic samples from eight large-scale studies. Cross-validation revealed good disease-prediction capabilities, which were in general improved by feature selection and use of strain-specific markers instead of species-level taxonomic abundance. In cross-study analysis, models transferred between studies were in some cases less accurate than models tested by within-study cross-validation. Interestingly, the addition of healthy (control) samples from other studies to training sets improved disease prediction capabilities. Some microbial species (most notably Streptococcus anginosus) seem to characterize general dysbiotic states of the microbiome rather than connections with a specific disease. Our results in modelling features of the "healthy" microbiome can be considered a first step toward defining general microbial dysbiosis. The software framework, microbiome profiles, and metadata for thousands of samples are publicly available at http://segatalab.cibio.unitn.it/tools/metaml.
Fonseca, Paula Jiménez; Carmona-Bayonas, Alberto; García, Ignacio Matos; Marcos, Rosana; Castañón, Eduardo; Antonio, Maite; Font, Carme; Biosca, Mercè; Blasco, Ana; Lozano, Rebeca; Ramchandani, Avinash; Beato, Carmen; de Castro, Eva Martínez; Espinosa, Javier; Martínez-García, Jerónimo; Ghanem, Ismael; Cubero, Jorge Hernando; Manrique, Isabel Aragón; Navalón, Francisco García; Sevillano, Elena; Manzano, Aránzazu; Virizuela, Juan; Garrido, Marcelo; Mondéjar, Rebeca; Arcusa, María Ángeles; Bonilla, Yaiza; Pérez, Quionia; Gallardo, Elena; del Carmen Soriano, Maria; Cardona, Mercè; Lasheras, Fernando Sánchez; Cruz, Juan Jesús; Ayala, Francisco
2016-01-01
Background: We sought to develop and externally validate a nomogram and web-based calculator to individually predict the development of serious complications in seemingly stable adult patients with solid tumours and episodes of febrile neutropenia (FN). Patients and methods: The data from the FINITE study (n=1133) and University of Salamanca Hospital (USH) FN registry (n=296) were used to develop and validate this tool. The main eligibility criterion was the presence of apparent clinical stability, defined as events without acute organ dysfunction, abnormal vital signs, or major infections. Discriminatory ability was measured as the concordance index and stratification into risk groups. Results: The rate of infection-related complications in the FINITE and USH series was 13.4% and 18.6%, respectively. The nomogram used the following covariates: Eastern Cooperative Group (ECOG) Performance Status ⩾2, chronic obstructive pulmonary disease, chronic cardiovascular disease, mucositis of grade ⩾2 (National Cancer Institute Common Toxicity Criteria), monocytes <200/mm3, and stress-induced hyperglycaemia. The nomogram predictions appeared to be well calibrated in both data sets (Hosmer–Lemeshow test, P>0.1). The concordance index was 0.855 and 0.831 in each series. Risk group stratification revealed a significant distinction in the proportion of complications. With a ⩾116-point cutoff, the nomogram yielded the following prognostic indices in the USH registry validation series: 66% sensitivity, 83% specificity, 3.88 positive likelihood ratio, 48% positive predictive value, and 91% negative predictive value. Conclusions: We have developed and externally validated a nomogram and web calculator to predict serious complications that can potentially impact decision-making in patients with seemingly stable FN. PMID:27187687
LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction
Huang, Li
2017-01-01
Predicting novel microRNA (miRNA)-disease associations is clinically significant due to miRNAs’ potential roles of diagnostic biomarkers and therapeutic targets for various human diseases. Previous studies have demonstrated the viability of utilizing different types of biological data to computationally infer new disease-related miRNAs. Yet researchers face the challenge of how to effectively integrate diverse datasets and make reliable predictions. In this study, we presented a computational model named Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction (LRSSLMDA), which projected miRNAs/diseases’ statistical feature profile and graph theoretical feature profile to a common subspace. It used Laplacian regularization to preserve the local structures of the training data and a L1-norm constraint to select important miRNA/disease features for prediction. The strength of dimensionality reduction enabled the model to be easily extended to much higher dimensional datasets than those exploited in this study. Experimental results showed that LRSSLMDA outperformed ten previous models: the AUC of 0.9178 in global leave-one-out cross validation (LOOCV) and the AUC of 0.8418 in local LOOCV indicated the model’s superior prediction accuracy; and the average AUC of 0.9181+/-0.0004 in 5-fold cross validation justified its accuracy and stability. In addition, three types of case studies further demonstrated its predictive power. Potential miRNAs related to Colon Neoplasms, Lymphoma, Kidney Neoplasms, Esophageal Neoplasms and Breast Neoplasms were predicted by LRSSLMDA. Respectively, 98%, 88%, 96%, 98% and 98% out of the top 50 predictions were validated by experimental evidences. Therefore, we conclude that LRSSLMDA would be a valuable computational tool for miRNA-disease association prediction. PMID:29253885
Bellón, Juan Ángel; de Dios Luna, Juan; King, Michael; Nazareth, Irwin; Motrico, Emma; GildeGómez-Barragán, María Josefa; Torres-González, Francisco; Montón-Franco, Carmen; Sánchez-Celaya, Marta; Díaz-Barreiros, Miguel Ángel; Vicens, Catalina; Moreno-Peral, Patricia
2017-01-01
Background Little is known about the risk of progressing to hazardous alcohol use in abstinent or low-risk drinkers. Aim To develop and validate a simple brief risk algorithm for the onset of hazardous alcohol drinking (HAD) over 12 months for use in primary care. Design and setting Prospective cohort study in 32 health centres from six Spanish provinces, with evaluations at baseline, 6 months, and 12 months. Method Forty-one risk factors were measured and multilevel logistic regression and inverse probability weighting were used to build the risk algorithm. The outcome was new occurrence of HAD during the study, as measured by the AUDIT. Results From the lists of 174 GPs, 3954 adult abstinent or low-risk drinkers were recruited. The ‘predictAL-10’ risk algorithm included just nine variables (10 questions): province, sex, age, cigarette consumption, perception of financial strain, having ever received treatment for an alcohol problem, childhood sexual abuse, AUDIT-C, and interaction AUDIT-C*Age. The c-index was 0.886 (95% CI = 0.854 to 0.918). The optimal cutoff had a sensitivity of 0.83 and specificity of 0.80. Excluding childhood sexual abuse from the model (the ‘predictAL-9’), the c-index was 0.880 (95% CI = 0.847 to 0.913), sensitivity 0.79, and specificity 0.81. There was no statistically significant difference between the c-indexes of predictAL-10 and predictAL-9. Conclusion The predictAL-10/9 is a simple and internally valid risk algorithm to predict the onset of hazardous alcohol drinking over 12 months in primary care attendees; it is a brief tool that is potentially useful for primary prevention of hazardous alcohol drinking. PMID:28360074
Nigatu, Yeshambel T; Liu, Yan; Wang, JianLi
2016-07-22
Multivariable risk prediction algorithms are useful for making clinical decisions and for health planning. While prediction algorithms for new onset of major depression in the primary care attendees in Europe and elsewhere have been developed, the performance of these algorithms in different populations is not known. The objective of this study was to validate the PredictD algorithm for new onset of major depressive episode (MDE) in the US general population. Longitudinal study design was conducted with approximate 3-year follow-up data from a nationally representative sample of the US general population. A total of 29,621 individuals who participated in Wave 1 and 2 of the US National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) and who did not have an MDE in the past year at Wave 1 were included. The PredictD algorithm was directly applied to the selected participants. MDE was assessed by the Alcohol Use Disorder and Associated Disabilities Interview Schedule, based on the DSM-IV criteria. Among the participants, 8 % developed an MDE over three years. The PredictD algorithm had acceptable discriminative power (C-statistics = 0.708, 95 % CI: 0.696, 0.720), but poor calibration (p < 0.001) with the NESARC data. In the European primary care attendees, the algorithm had a C-statistics of 0.790 (95 % CI: 0.767, 0.813) with a perfect calibration. The PredictD algorithm has acceptable discrimination, but the calibration capacity was poor in the US general population despite of re-calibration. Therefore, based on the results, at current stage, the use of PredictD in the US general population for predicting individual risk of MDE is not encouraged. More independent validation research is needed.
Morgan, Patrick; Nissi, Mikko J; Hughes, John; Mortazavi, Shabnam; Ellerman, Jutta
2017-07-01
Objectives The purpose of this study was to validate T2* mapping as an objective, noninvasive method for the prediction of acetabular cartilage damage. Methods This is the second step in the validation of T2*. In a previous study, we established a quantitative predictive model for identifying and grading acetabular cartilage damage. In this study, the model was applied to a second cohort of 27 consecutive hips to validate the model. A clinical 3.0-T imaging protocol with T2* mapping was used. Acetabular regions of interest (ROI) were identified on magnetic resonance and graded using the previously established model. Each ROI was then graded in a blinded fashion by arthroscopy. Accurate surgical location of ROIs was facilitated with a 2-dimensional map projection of the acetabulum. A total of 459 ROIs were studied. Results When T2* mapping and arthroscopic assessment were compared, 82% of ROIs were within 1 Beck group (of a total 6 possible) and 32% of ROIs were classified identically. Disease prediction based on receiver operating characteristic curve analysis demonstrated a sensitivity of 0.713 and a specificity of 0.804. Model stability evaluation required no significant changes to the predictive model produced in the initial study. Conclusions These results validate that T2* mapping provides statistically comparable information regarding acetabular cartilage when compared to arthroscopy. In contrast to arthroscopy, T2* mapping is quantitative, noninvasive, and can be used in follow-up. Unlike research quantitative magnetic resonance protocols, T2* takes little time and does not require a contrast agent. This may facilitate its use in the clinical sphere.
CME Arrival-time Validation of Real-time WSA-ENLIL+Cone Simulations at the CCMC/SWRC
NASA Astrophysics Data System (ADS)
Wold, A. M.; Mays, M. L.; Taktakishvili, A.; Jian, L.; Odstrcil, D.; MacNeice, P. J.
2016-12-01
The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations worldwide to model CME propagation, as such it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC/Space Weather Research Center (SWRC). The SWRC is a CCMC sub-team that provides space weather services to NASA robotic mission operators and science campaigns, and also prototypes new forecasting models and techniques. CCMC/SWRC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in-situ ICME shock observations near Earth (ACE, Wind), STEREO-A and B for simulations completed between March 2010 - July 2016 (over 1500 runs). We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For hits we compute the bias, RMSE, and average absolute CME arrival time error, and the dependence of these errors on CME input parameters. We compare the predicted geomagnetic storm strength (Kp index) to the CME arrival time error for Earth-directed CMEs. The predicted Kp index is computed using the WSA-ENLIL+Cone plasma parameters at Earth with a modified Newell et al. (2007) coupling function. We also explore the impact of the multi-spacecraft observations on the CME parameters used initialize the model by comparing model validation results before and after the STEREO-B communication loss (since September 2014) and STEREO-A side-lobe operations (August 2014-December 2015). This model validation exercise has significance for future space weather mission planning such as L5 missions.
Aandstad, Anders; Holtberget, Kristian; Hageberg, Rune; Holme, Ingar; Anderssen, Sigmund A
2014-02-01
Previous studies show that body composition is related to injury risk and physical performance in soldiers. Thus, valid methods for measuring body composition in military personnel are needed. The frequently used body mass index method is not a valid measure of body composition in soldiers, but reliability and validity of alternative field methods are less investigated in military personnel. Thus, we carried out test and retest of skinfold (SKF), single frequency bioelectrical impedance analysis (SF-BIA), and multifrequency bioelectrical impedance analysis measurements in 65 male and female soldiers. Several validated equations were used to predict percent body fat from these methods. Dual-energy X-ray absorptiometry was also measured, and acted as the criterion method. Results showed that SF-BIA was the most reliable method in both genders. In women, SF-BIA was also the most valid method, whereas SKF or a combination of SKF and SF-BIA produced the highest validity in men. Reliability and validity varied substantially among the equations examined. The best methods and equations produced test-retest 95% limits of agreement below ±1% points, whereas the corresponding validity figures were ±3.5% points. Each investigator and practitioner must consider whether such measurement errors are acceptable for its specific use. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
Predicting age groups of Twitter users based on language and metadata features
Morgan-Lopez, Antonio A.; Chew, Robert F.; Ruddle, Paul
2017-01-01
Health organizations are increasingly using social media, such as Twitter, to disseminate health messages to target audiences. Determining the extent to which the target audience (e.g., age groups) was reached is critical to evaluating the impact of social media education campaigns. The main objective of this study was to examine the separate and joint predictive validity of linguistic and metadata features in predicting the age of Twitter users. We created a labeled dataset of Twitter users across different age groups (youth, young adults, adults) by collecting publicly available birthday announcement tweets using the Twitter Search application programming interface. We manually reviewed results and, for each age-labeled handle, collected the 200 most recent publicly available tweets and user handles’ metadata. The labeled data were split into training and test datasets. We created separate models to examine the predictive validity of language features only, metadata features only, language and metadata features, and words/phrases from another age-validated dataset. We estimated accuracy, precision, recall, and F1 metrics for each model. An L1-regularized logistic regression model was conducted for each age group, and predicted probabilities between the training and test sets were compared for each age group. Cohen’s d effect sizes were calculated to examine the relative importance of significant features. Models containing both Tweet language features and metadata features performed the best (74% precision, 74% recall, 74% F1) while the model containing only Twitter metadata features were least accurate (58% precision, 60% recall, and 57% F1 score). Top predictive features included use of terms such as “school” for youth and “college” for young adults. Overall, it was more challenging to predict older adults accurately. These results suggest that examining linguistic and Twitter metadata features to predict youth and young adult Twitter users may be helpful for informing public health surveillance and evaluation research. PMID:28850620
Predicting age groups of Twitter users based on language and metadata features.
Morgan-Lopez, Antonio A; Kim, Annice E; Chew, Robert F; Ruddle, Paul
2017-01-01
Health organizations are increasingly using social media, such as Twitter, to disseminate health messages to target audiences. Determining the extent to which the target audience (e.g., age groups) was reached is critical to evaluating the impact of social media education campaigns. The main objective of this study was to examine the separate and joint predictive validity of linguistic and metadata features in predicting the age of Twitter users. We created a labeled dataset of Twitter users across different age groups (youth, young adults, adults) by collecting publicly available birthday announcement tweets using the Twitter Search application programming interface. We manually reviewed results and, for each age-labeled handle, collected the 200 most recent publicly available tweets and user handles' metadata. The labeled data were split into training and test datasets. We created separate models to examine the predictive validity of language features only, metadata features only, language and metadata features, and words/phrases from another age-validated dataset. We estimated accuracy, precision, recall, and F1 metrics for each model. An L1-regularized logistic regression model was conducted for each age group, and predicted probabilities between the training and test sets were compared for each age group. Cohen's d effect sizes were calculated to examine the relative importance of significant features. Models containing both Tweet language features and metadata features performed the best (74% precision, 74% recall, 74% F1) while the model containing only Twitter metadata features were least accurate (58% precision, 60% recall, and 57% F1 score). Top predictive features included use of terms such as "school" for youth and "college" for young adults. Overall, it was more challenging to predict older adults accurately. These results suggest that examining linguistic and Twitter metadata features to predict youth and young adult Twitter users may be helpful for informing public health surveillance and evaluation research.
Predicting active school travel: The role of planned behavior and habit strength
2012-01-01
Background Despite strong support for predictive validity of the theory of planned behavior (TPB) substantial variance in both intention and behavior is unaccounted for by the model’s predictors. The present study tested the extent to which habit strength augments the predictive validity of the TPB in relation to a currently under-researched behavior that has important health implications, namely children’s active school travel. Method Participants (N = 126 children aged 8–9 years; 59 % males) were sampled from five elementary schools in the west of Scotland and completed questionnaire measures of all TPB constructs in relation to walking to school and both walking and car/bus use habit. Over the subsequent week, commuting steps on school journeys were measured objectively using an accelerometer. Hierarchical multiple regressions were used to test the predictive utility of the TPB and habit strength in relation to both intention and subsequent behavior. Results The TPB accounted for 41 % and 10 % of the variance in intention and objectively measured behavior, respectively. Together, walking habit and car/bus habit significantly increased the proportion of explained variance in both intention and behavior by 6 %. Perceived behavioral control and both walking and car/bus habit independently predicted intention. Intention and car/bus habit independently predicted behavior. Conclusions The TPB significantly predicts children’s active school travel. However, habit strength augments the predictive validity of the model. The results indicate that school travel is controlled by both intentional and habitual processes. In practice, interventions could usefully decrease the habitual use of motorized transport for travel to school and increase children’s intention to walk (via increases in perceived behavioral control and walking habit, and decreases in car/bus habit). Further research is needed to identify effective strategies for changing these antecedents of children’s active school travel. PMID:22647194
A novel multi-target regression framework for time-series prediction of drug efficacy.
Li, Haiqing; Zhang, Wei; Chen, Ying; Guo, Yumeng; Li, Guo-Zheng; Zhu, Xiaoxin
2017-01-18
Excavating from small samples is a challenging pharmacokinetic problem, where statistical methods can be applied. Pharmacokinetic data is special due to the small samples of high dimensionality, which makes it difficult to adopt conventional methods to predict the efficacy of traditional Chinese medicine (TCM) prescription. The main purpose of our study is to obtain some knowledge of the correlation in TCM prescription. Here, a novel method named Multi-target Regression Framework to deal with the problem of efficacy prediction is proposed. We employ the correlation between the values of different time sequences and add predictive targets of previous time as features to predict the value of current time. Several experiments are conducted to test the validity of our method and the results of leave-one-out cross-validation clearly manifest the competitiveness of our framework. Compared with linear regression, artificial neural networks, and partial least squares, support vector regression combined with our framework demonstrates the best performance, and appears to be more suitable for this task.
A novel multi-target regression framework for time-series prediction of drug efficacy
Li, Haiqing; Zhang, Wei; Chen, Ying; Guo, Yumeng; Li, Guo-Zheng; Zhu, Xiaoxin
2017-01-01
Excavating from small samples is a challenging pharmacokinetic problem, where statistical methods can be applied. Pharmacokinetic data is special due to the small samples of high dimensionality, which makes it difficult to adopt conventional methods to predict the efficacy of traditional Chinese medicine (TCM) prescription. The main purpose of our study is to obtain some knowledge of the correlation in TCM prescription. Here, a novel method named Multi-target Regression Framework to deal with the problem of efficacy prediction is proposed. We employ the correlation between the values of different time sequences and add predictive targets of previous time as features to predict the value of current time. Several experiments are conducted to test the validity of our method and the results of leave-one-out cross-validation clearly manifest the competitiveness of our framework. Compared with linear regression, artificial neural networks, and partial least squares, support vector regression combined with our framework demonstrates the best performance, and appears to be more suitable for this task. PMID:28098186
Huang, Yanqi; He, Lan; Dong, Di; Yang, Caiyun; Liang, Cuishan; Chen, Xin; Ma, Zelan; Huang, Xiaomei; Yao, Su; Liang, Changhong; Tian, Jie; Liu, Zaiyi
2018-02-01
To develop and validate a radiomics prediction model for individualized prediction of perineural invasion (PNI) in colorectal cancer (CRC). After computed tomography (CT) radiomics features extraction, a radiomics signature was constructed in derivation cohort (346 CRC patients). A prediction model was developed to integrate the radiomics signature and clinical candidate predictors [age, sex, tumor location, and carcinoembryonic antigen (CEA) level]. Apparent prediction performance was assessed. After internal validation, independent temporal validation (separate from the cohort used to build the model) was then conducted in 217 CRC patients. The final model was converted to an easy-to-use nomogram. The developed radiomics nomogram that integrated the radiomics signature and CEA level showed good calibration and discrimination performance [Harrell's concordance index (c-index): 0.817; 95% confidence interval (95% CI): 0.811-0.823]. Application of the nomogram in validation cohort gave a comparable calibration and discrimination (c-index: 0.803; 95% CI: 0.794-0.812). Integrating the radiomics signature and CEA level into a radiomics prediction model enables easy and effective risk assessment of PNI in CRC. This stratification of patients according to their PNI status may provide a basis for individualized auxiliary treatment.
2013-01-01
Background Most UK medical schools use aptitude tests during student selection, but large-scale studies of predictive validity are rare. This study assesses the United Kingdom Clinical Aptitude Test (UKCAT), and its four sub-scales, along with measures of educational attainment, individual and contextual socio-economic background factors, as predictors of performance in the first year of medical school training. Methods A prospective study of 4,811 students in 12 UK medical schools taking the UKCAT from 2006 to 2008 as a part of the medical school application, for whom first year medical school examination results were available in 2008 to 2010. Results UKCAT scores and educational attainment measures (General Certificate of Education (GCE): A-levels, and so on; or Scottish Qualifications Authority (SQA): Scottish Highers, and so on) were significant predictors of outcome. UKCAT predicted outcome better in female students than male students, and better in mature than non-mature students. Incremental validity of UKCAT taking educational attainment into account was significant, but small. Medical school performance was also affected by sex (male students performing less well), ethnicity (non-White students performing less well), and a contextual measure of secondary schooling, students from secondary schools with greater average attainment at A-level (irrespective of public or private sector) performing less well. Multilevel modeling showed no differences between medical schools in predictive ability of the various measures. UKCAT sub-scales predicted similarly, except that Verbal Reasoning correlated positively with performance on Theory examinations, but negatively with Skills assessments. Conclusions This collaborative study in 12 medical schools shows the power of large-scale studies of medical education for answering previously unanswerable but important questions about medical student selection, education and training. UKCAT has predictive validity as a predictor of medical school outcome, particularly in mature applicants to medical school. UKCAT offers small but significant incremental validity which is operationally valuable where medical schools are making selection decisions based on incomplete measures of educational attainment. The study confirms the validity of using all the existing measures of educational attainment in full at the time of selection decision-making. Contextual measures provide little additional predictive value, except that students from high attaining secondary schools perform less well, an effect previously shown for UK universities in general. PMID:24229380
Measurement of COPD Severity Using a Survey-Based Score
Omachi, Theodore A.; Katz, Patricia P.; Yelin, Edward H.; Iribarren, Carlos; Blanc, Paul D.
2010-01-01
Background: A comprehensive survey-based COPD severity score has usefulness for epidemiologic and health outcomes research. We previously developed and validated the survey-based COPD Severity Score without using lung function or other physiologic measurements. In this study, we aimed to further validate the severity score in a different COPD cohort and using a combination of patient-reported and objective physiologic measurements. Methods: Using data from the Function, Living, Outcomes, and Work cohort study of COPD, we evaluated the concurrent and predictive validity of the COPD Severity Score among 1,202 subjects. The survey instrument is a 35-point score based on symptoms, medication and oxygen use, and prior hospitalization or intubation for COPD. Subjects were systemically assessed using structured telephone survey, spirometry, and 6-min walk testing. Results: We found evidence to support concurrent validity of the score. Higher COPD Severity Score values were associated with poorer FEV1 (r = −0.38), FEV1% predicted (r = −0.40), Body mass, Obstruction, Dyspnea, Exercise Index (r = 0.57), and distance walked in 6 min (r = −0.43) (P < .0001 in all cases). Greater COPD severity was also related to poorer generic physical health status (r = −0.49) and disease-specific health-related quality of life (r = 0.57) (P < .0001). The score also demonstrated predictive validity. It was also associated with a greater prospective risk of acute exacerbation of COPD defined as ED visits (hazard ratio [HR], 1.31; 95% CI, 1.24-1.39), hospitalizations (HR, 1.59; 95% CI, 1.44-1.75), and either measure of hospital-based care for COPD (HR, 1.34; 95% CI, 1.26-1.41) (P < .0001 in all cases). Conclusion: The COPD Severity Score is a valid survey-based measure of disease-specific severity, both in terms of concurrent and predictive validity. The score is a psychometrically sound instrument for use in epidemiologic and outcomes research in COPD. PMID:20040611
ASME V\\&V challenge problem: Surrogate-based V&V
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beghini, Lauren L.; Hough, Patricia D.
2015-12-18
The process of verification and validation can be resource intensive. From the computational model perspective, the resource demand typically arises from long simulation run times on multiple cores coupled with the need to characterize and propagate uncertainties. In addition, predictive computations performed for safety and reliability analyses have similar resource requirements. For this reason, there is a tradeoff between the time required to complete the requisite studies and the fidelity or accuracy of the results that can be obtained. At a high level, our approach is cast within a validation hierarchy that provides a framework in which we perform sensitivitymore » analysis, model calibration, model validation, and prediction. The evidence gathered as part of these activities is mapped into the Predictive Capability Maturity Model to assess credibility of the model used for the reliability predictions. With regard to specific technical aspects of our analysis, we employ surrogate-based methods, primarily based on polynomial chaos expansions and Gaussian processes, for model calibration, sensitivity analysis, and uncertainty quantification in order to reduce the number of simulations that must be done. The goal is to tip the tradeoff balance to improving accuracy without increasing the computational demands.« less
Risk prediction models for graft failure in kidney transplantation: a systematic review.
Kaboré, Rémi; Haller, Maria C; Harambat, Jérôme; Heinze, Georg; Leffondré, Karen
2017-04-01
Risk prediction models are useful for identifying kidney recipients at high risk of graft failure, thus optimizing clinical care. Our objective was to systematically review the models that have been recently developed and validated to predict graft failure in kidney transplantation recipients. We used PubMed and Scopus to search for English, German and French language articles published in 2005-15. We selected studies that developed and validated a new risk prediction model for graft failure after kidney transplantation, or validated an existing model with or without updating the model. Data on recipient characteristics and predictors, as well as modelling and validation methods were extracted. In total, 39 articles met the inclusion criteria. Of these, 34 developed and validated a new risk prediction model and 5 validated an existing one with or without updating the model. The most frequently predicted outcome was graft failure, defined as dialysis, re-transplantation or death with functioning graft. Most studies used the Cox model. There was substantial variability in predictors used. In total, 25 studies used predictors measured at transplantation only, and 14 studies used predictors also measured after transplantation. Discrimination performance was reported in 87% of studies, while calibration was reported in 56%. Performance indicators were estimated using both internal and external validation in 13 studies, and using external validation only in 6 studies. Several prediction models for kidney graft failure in adults have been published. Our study highlights the need to better account for competing risks when applicable in such studies, and to adequately account for post-transplant measures of predictors in studies aiming at improving monitoring of kidney transplant recipients. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Lingner, Thomas; Kataya, Amr R. A.; Reumann, Sigrun
2012-01-01
We recently developed the first algorithms specifically for plants to predict proteins carrying peroxisome targeting signals type 1 (PTS1) from genome sequences.1 As validated experimentally, the prediction methods are able to correctly predict unknown peroxisomal Arabidopsis proteins and to infer novel PTS1 tripeptides. The high prediction performance is primarily determined by the large number and sequence diversity of the underlying positive example sequences, which mainly derived from EST databases. However, a few constructs remained cytosolic in experimental validation studies, indicating sequencing errors in some ESTs. To identify erroneous sequences, we validated subcellular targeting of additional positive example sequences in the present study. Moreover, we analyzed the distribution of prediction scores separately for each orthologous group of PTS1 proteins, which generally resembled normal distributions with group-specific mean values. The cytosolic sequences commonly represented outliers of low prediction scores and were located at the very tail of a fitted normal distribution. Three statistical methods for identifying outliers were compared in terms of sensitivity and specificity.” Their combined application allows elimination of erroneous ESTs from positive example data sets. This new post-validation method will further improve the prediction accuracy of both PTS1 and PTS2 protein prediction models for plants, fungi, and mammals. PMID:22415050
Lingner, Thomas; Kataya, Amr R A; Reumann, Sigrun
2012-02-01
We recently developed the first algorithms specifically for plants to predict proteins carrying peroxisome targeting signals type 1 (PTS1) from genome sequences. As validated experimentally, the prediction methods are able to correctly predict unknown peroxisomal Arabidopsis proteins and to infer novel PTS1 tripeptides. The high prediction performance is primarily determined by the large number and sequence diversity of the underlying positive example sequences, which mainly derived from EST databases. However, a few constructs remained cytosolic in experimental validation studies, indicating sequencing errors in some ESTs. To identify erroneous sequences, we validated subcellular targeting of additional positive example sequences in the present study. Moreover, we analyzed the distribution of prediction scores separately for each orthologous group of PTS1 proteins, which generally resembled normal distributions with group-specific mean values. The cytosolic sequences commonly represented outliers of low prediction scores and were located at the very tail of a fitted normal distribution. Three statistical methods for identifying outliers were compared in terms of sensitivity and specificity." Their combined application allows elimination of erroneous ESTs from positive example data sets. This new post-validation method will further improve the prediction accuracy of both PTS1 and PTS2 protein prediction models for plants, fungi, and mammals.
Validation Results for LEWICE 2.0. [Supplement
NASA Technical Reports Server (NTRS)
Wright, William B.; Rutkowski, Adam
1999-01-01
Two CD-ROMs contain experimental ice shapes and code prediction used for validation of LEWICE 2.0 (see NASA/CR-1999-208690, CASI ID 19990021235). The data include ice shapes for both experiment and for LEWICE, all of the input and output files for the LEWICE cases, JPG files of all plots generated, an electronic copy of the text of the validation report, and a Microsoft Excel(R) spreadsheet containing all of the quantitative measurements taken. The LEWICE source code and executable are not contained on the discs.
External validation of anti-Müllerian hormone based prediction of live birth in assisted conception
2013-01-01
Background Chronological age and oocyte yield are independent determinants of live birth in assisted conception. Anti-Müllerian hormone (AMH) is strongly associated with oocyte yield after controlled ovarian stimulation. We have previously assessed the ability of AMH and age to independently predict live birth in an Italian assisted conception cohort. Herein we report the external validation of the nomogram in 822 UK first in vitro fertilization (IVF) cycles. Methods Retrospective cohort consisting of 822 patients undergoing their first IVF treatment cycle at Glasgow Centre for Reproductive Medicine. Analyses were restricted to women aged between 25 and 42 years of age. All women had an AMH measured prior to commencing their first IVF cycle. The performance of the model was assessed; discrimination by the area under the receiver operator curve (ROCAUC) and model calibration by the predicted probability versus observed probability. Results Live births occurred in 29.4% of the cohort. The observed and predicted outcomes showed no evidence of miscalibration (p = 0.188). The ROCAUC was 0.64 (95% CI: 0.60, 0.68), suggesting moderate and similar discrimination to the original model. The ROCAUC for a continuous model of age and AMH was 0.65 (95% CI 0.61, 0.69), suggesting that the original categories of AMH were appropriate. Conclusions We confirm by external validation that AMH and age are independent predictors of live birth. Although the confidence intervals for each category are wide, our results support the assessment of AMH in larger cohorts with detailed baseline phenotyping for live birth prediction. PMID:23294733
Oscar, T P
1999-12-01
Response surface models were developed and validated for effects of temperature (10 to 40 degrees C) and previous growth NaCl (0.5 to 4.5%) on lag time (lambda) and specific growth rate (mu) of Salmonella Typhimurium on cooked chicken breast. Growth curves for model development (n = 55) and model validation (n = 16) were fit to a two-phase linear growth model to obtain lambda and mu of Salmonella Typhimurium on cooked chicken breast. Response surface models for natural logarithm transformations of lambda and mu as a function of temperature and previous growth NaCl were obtained by regression analysis. Both lambda and mu of Salmonella Typhimurium were affected (P < 0.0001) by temperature but not by previous growth NaCl. Models were validated against data not used in their development. Mean absolute relative error of predictions (model accuracy) was 26.6% for lambda and 15.4% for mu. Median relative error of predictions (model bias) was 0.9% for lambda and 5.2% for mu. Results indicated that the models developed provided reliable predictions of lambda and mu of Salmonella Typhimurium on cooked chicken breast within the matrix of conditions modeled. In addition, results indicated that previous growth NaCl (0.5 to 4.5%) was not a major factor affecting subsequent growth kinetics of Salmonella Typhimurium on cooked chicken breast. Thus, inclusion of previous growth NaCl in predictive models may not significantly improve our ability to predict growth of Salmonella spp. on food subjected to temperature abuse.
Genomic selection across multiple breeding cycles in applied bread wheat breeding.
Michel, Sebastian; Ametz, Christian; Gungor, Huseyin; Epure, Doru; Grausgruber, Heinrich; Löschenberger, Franziska; Buerstmayr, Hermann
2016-06-01
We evaluated genomic selection across five breeding cycles of bread wheat breeding. Bias of within-cycle cross-validation and methods for improving the prediction accuracy were assessed. The prospect of genomic selection has been frequently shown by cross-validation studies using the same genetic material across multiple environments, but studies investigating genomic selection across multiple breeding cycles in applied bread wheat breeding are lacking. We estimated the prediction accuracy of grain yield, protein content and protein yield of 659 inbred lines across five independent breeding cycles and assessed the bias of within-cycle cross-validation. We investigated the influence of outliers on the prediction accuracy and predicted protein yield by its components traits. A high average heritability was estimated for protein content, followed by grain yield and protein yield. The bias of the prediction accuracy using populations from individual cycles using fivefold cross-validation was accordingly substantial for protein yield (17-712 %) and less pronounced for protein content (8-86 %). Cross-validation using the cycles as folds aimed to avoid this bias and reached a maximum prediction accuracy of [Formula: see text] = 0.51 for protein content, [Formula: see text] = 0.38 for grain yield and [Formula: see text] = 0.16 for protein yield. Dropping outlier cycles increased the prediction accuracy of grain yield to [Formula: see text] = 0.41 as estimated by cross-validation, while dropping outlier environments did not have a significant effect on the prediction accuracy. Independent validation suggests, on the other hand, that careful consideration is necessary before an outlier correction is undertaken, which removes lines from the training population. Predicting protein yield by multiplying genomic estimated breeding values of grain yield and protein content raised the prediction accuracy to [Formula: see text] = 0.19 for this derived trait.
Meertens, Linda Jacqueline Elisabeth; Scheepers, Hubertina Cj; De Vries, Raymond G; Dirksen, Carmen D; Korstjens, Irene; Mulder, Antonius Lm; Nieuwenhuijze, Marianne J; Nijhuis, Jan G; Spaanderman, Marc Ea; Smits, Luc Jm
2017-10-26
A number of first-trimester prediction models addressing important obstetric outcomes have been published. However, most models have not been externally validated. External validation is essential before implementing a prediction model in clinical practice. The objective of this paper is to describe the design of a study to externally validate existing first trimester obstetric prediction models, based upon maternal characteristics and standard measurements (eg, blood pressure), for the risk of pre-eclampsia (PE), gestational diabetes mellitus (GDM), spontaneous preterm birth (PTB), small-for-gestational-age (SGA) infants, and large-for-gestational-age (LGA) infants among Dutch pregnant women (Expect Study I). The results of a pilot study on the feasibility and acceptability of the recruitment process and the comprehensibility of the Pregnancy Questionnaire 1 are also reported. A multicenter prospective cohort study was performed in The Netherlands between July 1, 2013 and December 31, 2015. First trimester obstetric prediction models were systematically selected from the literature. Predictor variables were measured by the Web-based Pregnancy Questionnaire 1 and pregnancy outcomes were established using the Postpartum Questionnaire 1 and medical records. Information about maternal health-related quality of life, costs, and satisfaction with Dutch obstetric care was collected from a subsample of women. A pilot study was carried out before the official start of inclusion. External validity of the models will be evaluated by assessing discrimination and calibration. Based on the pilot study, minor improvements were made to the recruitment process and online Pregnancy Questionnaire 1. The validation cohort consists of 2614 women. Data analysis of the external validation study is in progress. This study will offer insight into the generalizability of existing, non-invasive first trimester prediction models for various obstetric outcomes in a Dutch obstetric population. An impact study for the evaluation of the best obstetric prediction models in the Dutch setting with respect to their effect on clinical outcomes, costs, and quality of life-Expect Study II-is being planned. Netherlands Trial Registry (NTR): NTR4143; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4143 (Archived by WebCite at http://www.webcitation.org/6t8ijtpd9). ©Linda Jacqueline Elisabeth Meertens, Hubertina CJ Scheepers, Raymond G De Vries, Carmen D Dirksen, Irene Korstjens, Antonius LM Mulder, Marianne J Nieuwenhuijze, Jan G Nijhuis, Marc EA Spaanderman, Luc JM Smits. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 26.10.2017.
Partin, Alan W; Van Neste, Leander; Klein, Eric A; Marks, Leonard S; Gee, Jason R; Troyer, Dean A; Rieger-Christ, Kimberly; Jones, J Stephen; Magi-Galluzzi, Cristina; Mangold, Leslie A; Trock, Bruce J; Lance, Raymond S; Bigley, Joseph W; Van Criekinge, Wim; Epstein, Jonathan I
2014-10-01
The DOCUMENT multicenter trial in the United States validated the performance of an epigenetic test as an independent predictor of prostate cancer risk to guide decision making for repeat biopsy. Confirming an increased negative predictive value could help avoid unnecessary repeat biopsies. We evaluated the archived, cancer negative prostate biopsy core tissue samples of 350 subjects from a total of 5 urological centers in the United States. All subjects underwent repeat biopsy within 24 months with a negative (controls) or positive (cases) histopathological result. Centralized blinded pathology evaluation of the 2 biopsy series was performed in all available subjects from each site. Biopsies were epigenetically profiled for GSTP1, APC and RASSF1 relative to the ACTB reference gene using quantitative methylation specific polymerase chain reaction. Predetermined analytical marker cutoffs were used to determine assay performance. Multivariate logistic regression was used to evaluate all risk factors. The epigenetic assay resulted in a negative predictive value of 88% (95% CI 85-91). In multivariate models correcting for age, prostate specific antigen, digital rectal examination, first biopsy histopathological characteristics and race the test proved to be the most significant independent predictor of patient outcome (OR 2.69, 95% CI 1.60-4.51). The DOCUMENT study validated that the epigenetic assay was a significant, independent predictor of prostate cancer detection in a repeat biopsy collected an average of 13 months after an initial negative result. Due to its 88% negative predictive value adding this epigenetic assay to other known risk factors may help decrease unnecessary repeat prostate biopsies. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, J; Pollom, E; Durkee, B
2015-06-15
Purpose: To predict response to radiation treatment using computational FDG-PET and CT images in locally advanced head and neck cancer (HNC). Methods: 68 patients with State III-IVB HNC treated with chemoradiation were included in this retrospective study. For each patient, we analyzed primary tumor and lymph nodes on PET and CT scans acquired both prior to and during radiation treatment, which led to 8 combinations of image datasets. From each image set, we extracted high-throughput, radiomic features of the following types: statistical, morphological, textural, histogram, and wavelet, resulting in a total of 437 features. We then performed unsupervised redundancy removalmore » and stability test on these features. To avoid over-fitting, we trained a logistic regression model with simultaneous feature selection based on least absolute shrinkage and selection operator (LASSO). To objectively evaluate the prediction ability, we performed 5-fold cross validation (CV) with 50 random repeats of stratified bootstrapping. Feature selection and model training was solely conducted on the training set and independently validated on the holdout test set. Receiver operating characteristic (ROC) curve of the pooled Result and the area under the ROC curve (AUC) was calculated as figure of merit. Results: For predicting local-regional recurrence, our model built on pre-treatment PET of lymph nodes achieved the best performance (AUC=0.762) on 5-fold CV, which compared favorably with node volume and SUVmax (AUC=0.704 and 0.449, p<0.001). Wavelet coefficients turned out to be the most predictive features. Prediction of distant recurrence showed a similar trend, in which pre-treatment PET features of lymph nodes had the highest AUC of 0.705. Conclusion: The radiomics approach identified novel imaging features that are predictive to radiation treatment response. If prospectively validated in larger cohorts, they could aid in risk-adaptive treatment of HNC.« less
Zornoza, R; Guerrero, C; Mataix-Solera, J; Scow, K M; Arcenegui, V; Mataix-Beneyto, J
2008-07-01
The potential of near infrared (NIR) reflectance spectroscopy to predict various physical, chemical and biochemical properties in Mediterranean soils from SE Spain was evaluated. Soil samples (n=393) were obtained by sampling thirteen locations during three years (2003-2005 period). These samples had a wide range of soil characteristics due to variations in land use, vegetation cover and specific climatic conditions. Biochemical properties also included microbial biomarkers based on phospholipid fatty acids (PLFA). Partial least squares (PLS) regression with cross validation was used to establish relationships between the NIR spectra and the reference data from physical, chemical and biochemical analyses. Based on the values of coefficient of determination (r(2)) and the ratio of standard deviation of validation set to root mean square error of cross validation (RPD), predicted results were evaluated as excellent (r(2)>0.90 and RPD>3) for soil organic carbon, Kjeldahl nitrogen, soil moisture, cation exchange capacity, microbial biomass carbon, basal soil respiration, acid phosphatase activity, β-glucosidase activity and PLFA biomarkers for total bacteria, Gram positive bacteria, actinomycetes, vesicular-arbuscular mycorrhizal fungi and total PLFA biomass. Good predictions (0.81
NASA Astrophysics Data System (ADS)
Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda
2018-05-01
This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.
NASA Astrophysics Data System (ADS)
Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda
2018-01-01
This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.
Burnham, S C; Faux, N G; Wilson, W; Laws, S M; Ames, D; Bedo, J; Bush, A I; Doecke, J D; Ellis, K A; Head, R; Jones, G; Kiiveri, H; Martins, R N; Rembach, A; Rowe, C C; Salvado, O; Macaulay, S L; Masters, C L; Villemagne, V L
2014-04-01
Dementia is a global epidemic with Alzheimer's disease (AD) being the leading cause. Early identification of patients at risk of developing AD is now becoming an international priority. Neocortical Aβ (extracellular β-amyloid) burden (NAB), as assessed by positron emission tomography (PET), represents one such marker for early identification. These scans are expensive and are not widely available, thus, there is a need for cheaper and more widely accessible alternatives. Addressing this need, a blood biomarker-based signature having efficacy for the prediction of NAB and which can be easily adapted for population screening is described. Blood data (176 analytes measured in plasma) and Pittsburgh Compound B (PiB)-PET measurements from 273 participants from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study were utilised. Univariate analysis was conducted to assess the difference of plasma measures between high and low NAB groups, and cross-validated machine-learning models were generated for predicting NAB. These models were applied to 817 non-imaged AIBL subjects and 82 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) for validation. Five analytes showed significant difference between subjects with high compared to low NAB. A machine-learning model (based on nine markers) achieved sensitivity and specificity of 80 and 82%, respectively, for predicting NAB. Validation using the ADNI cohort yielded similar results (sensitivity 79% and specificity 76%). These results show that a panel of blood-based biomarkers is able to accurately predict NAB, supporting the hypothesis for a relationship between a blood-based signature and Aβ accumulation, therefore, providing a platform for developing a population-based screen.
Williams, Stacey L.; Polaha, Jodi
2014-01-01
The purpose of this paper was to examine the validity of score interpretations of an instrument developed to measure parents’ perceptions of stigma about seeking mental health services for their children. The validity of the score interpretations of the instrument was tested in two studies. Study 1 examined confirmatory factor analysis (CFA) employing a split half approach, and construct and criterion validity using the entire sample of parents in rural Appalachia whose children were experiencing psychosocial concerns (N=347), while Study 2 further examined CFA, construct and criterion validity, as well as predictive validity of the scores on the new scale using a general sample of parents in rural Appalachia (N=184). Results of exploratory and confirmatory factor analyses revealed support for a two factor model of parents’ perceived stigma, which represented both self and public forms of stigma associated with seeking mental health services for their children, and correlated with existing measures of stigma and other psychosocial variables. Further, the new self and public stigma scale significantly predicted parents’ willingness to seek services for children. PMID:24749752
Schmidt, A F; Nielen, M; Withrow, S J; Selmic, L E; Burton, J H; Klungel, O H; Groenwold, R H H; Kirpensteijn, J
2016-03-01
Canine osteosarcoma is the most common bone cancer, and an important cause of mortality and morbidity, in large purebred dogs. Previously we constructed two multivariable models to predict a dog's 5-month or 1-year mortality risk after surgical treatment for osteosarcoma. According to the 5-month model, dogs with a relatively low risk of 5-month mortality benefited most from additional chemotherapy treatment. In the present study, we externally validated these results using an independent cohort study of 794 dogs. External performance of our prediction models showed some disagreement between observed and predicted risk, mean difference: -0.11 (95% confidence interval [95% CI]-0.29; 0.08) for 5-month risk and 0.25 (95%CI 0.10; 0.40) for 1-year mortality risk. After updating the intercept, agreement improved: -0.0004 (95%CI-0.16; 0.16) and -0.002 (95%CI-0.15; 0.15). The chemotherapy by predicted mortality risk interaction (P-value=0.01) showed that the chemotherapy compared to no chemotherapy effectiveness was modified by 5-month mortality risk: dogs with a relatively lower risk of mortality benefited most from additional chemotherapy. Chemotherapy effectiveness on 1-year mortality was not significantly modified by predicted risk (P-value=0.28). In conclusion, this external validation study confirmed that our multivariable risk prediction models can predict a patient's mortality risk and that dogs with a relatively lower risk of 5-month mortality seem to benefit most from chemotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Integrated multiscale biomaterials experiment and modelling: a perspective
Buehler, Markus J.; Genin, Guy M.
2016-01-01
Advances in multiscale models and computational power have enabled a broad toolset to predict how molecules, cells, tissues and organs behave and develop. A key theme in biological systems is the emergence of macroscale behaviour from collective behaviours across a range of length and timescales, and a key element of these models is therefore hierarchical simulation. However, this predictive capacity has far outstripped our ability to validate predictions experimentally, particularly when multiple hierarchical levels are involved. The state of the art represents careful integration of multiscale experiment and modelling, and yields not only validation, but also insights into deformation and relaxation mechanisms across scales. We present here a sampling of key results that highlight both challenges and opportunities for integrated multiscale experiment and modelling in biological systems. PMID:28981126
Ni, Zhi; Wu, Sean F
2010-09-01
This paper presents experimental validation of an alternate integral-formulation method (AIM) for predicting acoustic radiation from an arbitrary structure based on the particle velocities specified on a hypothetical surface enclosing the target source. Both the normal and tangential components of the particle velocity on this hypothetical surface are measured and taken as the input to AIM codes to predict the acoustic pressures in both exterior and interior regions. The results obtained are compared with the benchmark values measured by microphones at the same locations. To gain some insight into practical applications of AIM, laser Doppler anemometer (LDA) and double hotwire sensor (DHS) are used as measurement devices to collect the particle velocities in the air. Measurement limitations of using LDA and DHS are discussed.
Validation of Design and Analysis Techniques of Tailored Composite Structures
NASA Technical Reports Server (NTRS)
Jegley, Dawn C. (Technical Monitor); Wijayratne, Dulnath D.
2004-01-01
Aeroelasticity is the relationship between the elasticity of an aircraft structure and its aerodynamics. This relationship can cause instabilities such as flutter in a wing. Engineers have long studied aeroelasticity to ensure such instabilities do not become a problem within normal operating conditions. In recent decades structural tailoring has been used to take advantage of aeroelasticity. It is possible to tailor an aircraft structure to respond favorably to multiple different flight regimes such as takeoff, landing, cruise, 2-g pull up, etc. Structures can be designed so that these responses provide an aerodynamic advantage. This research investigates the ability to design and analyze tailored structures made from filamentary composites. Specifically the accuracy of tailored composite analysis must be verified if this design technique is to become feasible. To pursue this idea, a validation experiment has been performed on a small-scale filamentary composite wing box. The box is tailored such that its cover panels induce a global bend-twist coupling under an applied load. Two types of analysis were chosen for the experiment. The first is a closed form analysis based on a theoretical model of a single cell tailored box beam and the second is a finite element analysis. The predicted results are compared with the measured data to validate the analyses. The comparison of results show that the finite element analysis is capable of predicting displacements and strains to within 10% on the small-scale structure. The closed form code is consistently able to predict the wing box bending to 25% of the measured value. This error is expected due to simplifying assumptions in the closed form analysis. Differences between the closed form code representation and the wing box specimen caused large errors in the twist prediction. The closed form analysis prediction of twist has not been validated from this test.
Candela-Toha, Ángel; Pardo, María Carmen; Pérez, Teresa; Muriel, Alfonso; Zamora, Javier
2018-04-20
and objective Acute kidney injury (AKI) diagnosis is still based on serum creatinine and diuresis. However, increases in creatinine are typically delayed 48h or longer after injury. Our aim was to determine the utility of routine postoperative renal function blood tests, to predict AKI one or 2days in advance in a cohort of cardiac surgery patients. Using a prospective database, we selected a sample of patients who had undergone major cardiac surgery between January 2002 and December 2013. The ability of the parameters to predict AKI was based on Acute Kidney Injury Network serum creatinine criteria. A cohort of 3,962 cases was divided into 2groups of similar size, one being exploratory and the other a validation sample. The exploratory group was used to show primary objectives and the validation group to confirm results. The ability to predict AKI of several kidney function parameters measured in routine postoperative blood tests, was measured with time-dependent ROC curves. The primary endpoint was time from measurement to AKI diagnosis. AKI developed in 610 (30.8%) and 623 (31.4%) patients in the exploratory and validation samples, respectively. Estimated glomerular filtration rate using the MDRD-4 equation showed the best AKI prediction capacity, with values for the AUC ROC curves between 0.700 and 0.946. We obtained different cut-off values for estimated glomerular filtration rate depending on the degree of AKI severity and on the time elapsed between surgery and parameter measurement. Results were confirmed in the validation sample. Postoperative estimated glomerular filtration rate using the MDRD-4 equation showed good ability to predict AKI following cardiac surgery one or 2days in advance. Copyright © 2018 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
Cohen, Jérémie F.; Cohen, Robert; Levy, Corinne; Thollot, Franck; Benani, Mohamed; Bidet, Philippe; Chalumeau, Martin
2015-01-01
Background: Several clinical prediction rules for diagnosing group A streptococcal infection in children with pharyngitis are available. We aimed to compare the diagnostic accuracy of rules-based selective testing strategies in a prospective cohort of children with pharyngitis. Methods: We identified clinical prediction rules through a systematic search of MEDLINE and Embase (1975–2014), which we then validated in a prospective cohort involving French children who presented with pharyngitis during a 1-year period (2010–2011). We diagnosed infection with group A streptococcus using two throat swabs: one obtained for a rapid antigen detection test (StreptAtest, Dectrapharm) and one obtained for culture (reference standard). We validated rules-based selective testing strategies as follows: low risk of group A streptococcal infection, no further testing or antibiotic therapy needed; intermediate risk of infection, rapid antigen detection for all patients and antibiotic therapy for those with a positive test result; and high risk of infection, empiric antibiotic treatment. Results: We identified 8 clinical prediction rules, 6 of which could be prospectively validated. Sensitivity and specificity of rules-based selective testing strategies ranged from 66% (95% confidence interval [CI] 61–72) to 94% (95% CI 92–97) and from 40% (95% CI 35–45) to 88% (95% CI 85–91), respectively. Use of rapid antigen detection testing following the clinical prediction rule ranged from 24% (95% CI 21–27) to 86% (95% CI 84–89). None of the rules-based selective testing strategies achieved our diagnostic accuracy target (sensitivity and specificity > 85%). Interpretation: Rules-based selective testing strategies did not show sufficient diagnostic accuracy in this study population. The relevance of clinical prediction rules for determining which children with pharyngitis should undergo a rapid antigen detection test remains questionable. PMID:25487666
Adolescents' protection motivation and smoking behaviour.
Thrul, Johannes; Stemmler, Mark; Bühler, Anneke; Kuntsche, Emmanuel
2013-08-01
The protection motivation theory (PMT) is a well-known theory of behaviour change. This study tested the applicability of the sub-constructs of threat and coping appraisal in predicting adolescents' smoking-related behavioural intentions and smoking behaviour longitudinally. Adolescents (N = 494) aged 11-16 years and not currently smoking at baseline participated in the study. Predictive validity of PMT constructs was tested in a path analysis model. Self-efficacy significantly predicted behavioural intention at baseline, which significantly predicted behavioural intention at follow-up, which in turn predicted smoking behaviour at follow-up. The effect of self-efficacy on behavioural intention at follow-up was mediated by behavioural intention at baseline and the effect of self-efficacy on smoking behaviour was mediated by behavioural intention at baseline and follow-up. In conclusion, we found support for one part of the PMT, namely for the predictive validity of the coping appraisal construct self-efficacy in predicting adolescents' smoking-related behavioural intention and smoking behaviour. These results fail to support the appropriateness of the PMT's construct threat appraisal in longitudinally predicting adolescents' smoking as well as the applicability of communicating fear and negative information as preventive interventions for this target group.
The Predictive Validity of the ABFM's In-Training Examination.
O'Neill, Thomas R; Li, Zijia; Peabody, Michael R; Lybarger, Melanie; Royal, Kenneth; Puffer, James C
2015-05-01
Our objective was to examine the predictive validity of the American Board of Family Medicine's (ABFM) In-Training Examination (ITE) with regard to predicting outcomes on the ABFM certification examination. This study used a repeated measures design across three levels of medical training (PGY1--PGY2, PGY2--PGY3, and PGY3--initial certification) with three different cohorts (2010--2011, 2011--2012, and 2012--2013) to examine: (1) how well the residents' ITE scores correlated with their test scores in the following year, (2) what the typical score increase was across training years, and (3) what was the sensitivity, specificity, positive predictive value, and negative predictive value of the PGY3 scores with regard to predicting future results on the MC-FP Examination. ITE scores generally correlate at about .7 with the following year's ITE or with the following year's certification examination. The mean growth from PGY1 to PGY2 was 52 points, from PGY2 to PGY3 was 34 points, and from PGY3 to initial certification was 27 points. The sensitivity, specificity, positive predictive value, and negative predictive value were .91, .47, .96, and .27, respectively. The ITE is a useful predictor of future ITE and initial certification examination performance.
Friend, Margaret; Schmitt, Sara A.; Simpson, Adrianne M.
2017-01-01
Until recently, the challenges inherent in measuring comprehension have impeded our ability to predict the course of language acquisition. The present research reports on a longitudinal assessment of the convergent and predictive validity of the CDI: Words and Gestures and the Computerized Comprehension Task (CCT). The CDI: WG and the CCT evinced good convergent validity however the CCT better predicted subsequent parent reports of language production. Language sample data in the third year confirm this finding: the CCT accounted for 24% of the variance in unique word use. These studies provide evidence for the utility of a behavior-based approach to predicting the course of language acquisition into production. PMID:21928878
Experimental Validation of a Closed Brayton Cycle System Transient Simulation
NASA Technical Reports Server (NTRS)
Johnson, Paul K.; Hervol, David S.
2006-01-01
The Brayton Power Conversion Unit (BPCU) located at NASA Glenn Research Center (GRC) in Cleveland, Ohio was used to validate the results of a computational code known as Closed Cycle System Simulation (CCSS). Conversion system thermal transient behavior was the focus of this validation. The BPCU was operated at various steady state points and then subjected to transient changes involving shaft rotational speed and thermal energy input. These conditions were then duplicated in CCSS. Validation of the CCSS BPCU model provides confidence in developing future Brayton power system performance predictions, and helps to guide high power Brayton technology development.
Pfitzner-Eden, Franziska
2016-01-01
Teacher self-efficacy (TSE) is associated with a multitude of positive outcomes for teachers and students. However, the development of TSE is an under-researched area. Bandura (1997) proposed four sources of self-efficacy: mastery experiences, vicarious experiences, verbal persuasion, and physiological and affective states. This study introduces a first instrument to assess the four sources for TSE in line with Bandura's conception. Gathering evidence of convergent validity, the contribution that each source made to the development of TSE during a practicum at a school was explored for two samples of German preservice teachers. The first sample (N = 359) were beginning preservice teachers who completed an observation practicum. The second sample (N = 395) were advanced preservice teachers who completed a teaching practicum. The source measure showed good reliability, construct validity, and convergent validity. Latent true change modeling was applied to explore how the sources predicted changes in TSE. Three different models were compared. As expected, results showed that TSE changes in both groups were significantly predicted by mastery experiences, with a stronger relationship in the advanced group. Further, the results indicated that mastery experiences were largely informed by the other three sources to varying degrees depending on the type of practicum. Implications for the practice of teacher education are discussed in light of the results. PMID:27807422
Pfitzner-Eden, Franziska
2016-01-01
Teacher self-efficacy (TSE) is associated with a multitude of positive outcomes for teachers and students. However, the development of TSE is an under-researched area. Bandura (1997) proposed four sources of self-efficacy: mastery experiences, vicarious experiences, verbal persuasion, and physiological and affective states. This study introduces a first instrument to assess the four sources for TSE in line with Bandura's conception. Gathering evidence of convergent validity, the contribution that each source made to the development of TSE during a practicum at a school was explored for two samples of German preservice teachers. The first sample ( N = 359) were beginning preservice teachers who completed an observation practicum. The second sample ( N = 395) were advanced preservice teachers who completed a teaching practicum. The source measure showed good reliability, construct validity, and convergent validity. Latent true change modeling was applied to explore how the sources predicted changes in TSE. Three different models were compared. As expected, results showed that TSE changes in both groups were significantly predicted by mastery experiences, with a stronger relationship in the advanced group. Further, the results indicated that mastery experiences were largely informed by the other three sources to varying degrees depending on the type of practicum. Implications for the practice of teacher education are discussed in light of the results.
Cassana, Alessandra; Scialom, Silvia; Segura, Eddy R; Chacaltana, Alfonso
2015-07-01
Upper gastrointestinal bleeding is a major cause of hospitalization and the most prevalent emergency worldwide, with a mortality rate of up to 14%. In Peru, there have not been any studies on the use of the Glasgow-Blatchford Scoring System to predict mortality in upper gastrointestinal bleeding. The aim of this study is to perform an external validation of the Glasgow-Blatchford Scoring System and to establish the best cutoff for predicting mortality in upper gastrointestinal bleeding in a hospital of Lima, Peru. This was a longitudinal, retrospective, analytical validation study, with data from patients with a clinical and endoscopic diagnosis of upper gastrointestinal bleeding treated at the Gastrointestinal Hemorrhage Unit of the Hospital Nacional Edgardo Rebagliati Martins between June 2012 and December 2013. We calculated the area under the curve for the receiver operating characteristic of the Glasgow-Blatchford Scoring System to predict mortality with a 95% confidence interval. A total of 339 records were analyzed. 57.5% were male and the mean age (standard deviation) was 67.0 (15.7) years. The median of the Glasgow-Blatchford Scoring System obtained in the population was 12. The ROC analysis for death gave an area under the curve of 0.59 (95% CI 0.5-0.7). Stratifying by type of upper gastrointestinal bleeding resulted in an area under the curve of 0.66 (95% CI 0.53-0.78) for non-variceal type. In this population, the Glasgow-Blatchford Scoring System has no diagnostic validity for predicting mortality.
Cancer-related Concerns of Spouses of Women with Breast Cancer
Fletcher, Kristin A.; Lewis, Frances Marcus; Haberman, Mel R.
2009-01-01
Objective To describe spouses' reported cancer-related demands attributed to their wife's breast cancer and to test the construct and predictive validity of a brief standardized measure of these demands. Methods Cross-sectional and longitudinal data were obtained from 151 spouses of women newly diagnosed with non-metastatic breast cancer. Descriptive statistics were computed to describe spouses' dominant cancer-related demands and multivariate regression analyses tested the construct and predictive validity of the standardized measure. Results Five categories of spouses' cancer-related demands were identified, such as concerns about: spouses' own functioning; wife's well being and response to treatment; couples' sexual activities; the family's and children's well-being; and the spouses' role in supporting their wives. A 33-item short version of the standardized measure of cancer demands demonstrated construct and predictive validity that was comparable to a 123-item version of the same questionnaire. Greater numbers of illness demands occurred when spouses were more depressed and had less confidence in their ability to manage the impact of the cancer (F=18.08 (3, 103), p<.001). Predictive validity was established by the short form's ability to significantly predict the quality of marital communication and spouses' self-efficacy at a two-month interval. Conclusion The short-version of the standardized measure of cancer-related demands shows promise for future application in clinic settings. Additional testing of the questionnaire is warranted. Spouses' breast cancer-related demands deserve attention by providers. In the absence of assisting them, spouses' illness pressures have deleterious consequences for the quality of marital communication and spouses' self-confidence. PMID:20014184
Castellanos-Ryan, Natalie; O'Leary-Barrett, Maeve; Sully, Laura; Conrod, Patricia
2013-01-01
This study assessed the validity, sensitivity, and specificity of the Substance Use Risk Profile Scale (SURPS), a measure of personality risk factors for substance use and other behavioral problems in adolescence. The concurrent and predictive validity of the SURPS was tested in a sample of 1,162 adolescents (mean age: 13.7 years) using linear and logistic regressions, while its sensitivity and specificity were examined using the receiver operating characteristics curve analyses. Concurrent and predictive validity tests showed that all 4 brief scales-hopelessness (H), anxiety sensitivity (AS), impulsivity (IMP), and sensation seeking (SS)-were related, in theoretically expected ways, to measures of substance use and other behavioral and emotional problems. Results also showed that when using the 4 SURPS subscales to identify adolescents "at risk," one can identify a high number of those who developed problems (high sensitivity scores ranging from 72 to 91%). And, as predicted, because each scale is related to specific substance and mental health problems, good specificity was obtained when using the individual personality subscales (e.g., most adolescents identified at high risk by the IMP scale developed conduct or drug use problems within the next 18 months [a high specificity score of 70 to 80%]). The SURPS is a valuable tool for identifying adolescents at high risk for substance misuse and other emotional and behavioral problems. Implications of findings for the use of this measure in future research and prevention interventions are discussed. Copyright © 2012 by the Research Society on Alcoholism.
ERIC Educational Resources Information Center
Anderson, Daniel; Lai, Cheng-Fei; Nese, Joseph F. T.; Park, Bitnara Jasmine; Saez, Leilani; Jamgochian, Elisa; Alonzo, Julie; Tindal, Gerald
2010-01-01
In the following technical report, we present evidence of the technical adequacy of the easyCBM[R] math measures in grades K-2. In addition to reliability information, we present criterion-related validity evidence, both concurrent and predictive, and construct validity evidence. The results represent data gathered throughout the 2009/2010 school…
Mechanism reduction for multicomponent surrogates: A case study using toluene reference fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemeyer, Kyle E.; Sung, Chih-Jen
Strategies and recommendations for performing skeletal reductions of multicomponent surrogate fuels are presented, through the generation and validation of skeletal mechanisms for a three-component toluene reference fuel. Using the directed relation graph with error propagation and sensitivity analysis method followed by a further unimportant reaction elimination stage, skeletal mechanisms valid over comprehensive and high-temperature ranges of conditions were developed at varying levels of detail. These skeletal mechanisms were generated based on autoignition simulations, and validation using ignition delay predictions showed good agreement with the detailed mechanism in the target range of conditions. When validated using phenomena other than autoignition, suchmore » as perfectly stirred reactor and laminar flame propagation, tight error control or more restrictions on the reduction during the sensitivity analysis stage were needed to ensure good agreement. In addition, tight error limits were needed for close prediction of ignition delay when varying the mixture composition away from that used for the reduction. In homogeneous compression-ignition engine simulations, the skeletal mechanisms closely matched the point of ignition and accurately predicted species profiles for lean to stoichiometric conditions. Furthermore, the efficacy of generating a multicomponent skeletal mechanism was compared to combining skeletal mechanisms produced separately for neat fuel components; using the same error limits, the latter resulted in a larger skeletal mechanism size that also lacked important cross reactions between fuel components. Based on the present results, general guidelines for reducing detailed mechanisms for multicomponent fuels are discussed.« less
Mechanism reduction for multicomponent surrogates: A case study using toluene reference fuels
Niemeyer, Kyle E.; Sung, Chih-Jen
2014-11-01
Strategies and recommendations for performing skeletal reductions of multicomponent surrogate fuels are presented, through the generation and validation of skeletal mechanisms for a three-component toluene reference fuel. Using the directed relation graph with error propagation and sensitivity analysis method followed by a further unimportant reaction elimination stage, skeletal mechanisms valid over comprehensive and high-temperature ranges of conditions were developed at varying levels of detail. These skeletal mechanisms were generated based on autoignition simulations, and validation using ignition delay predictions showed good agreement with the detailed mechanism in the target range of conditions. When validated using phenomena other than autoignition, suchmore » as perfectly stirred reactor and laminar flame propagation, tight error control or more restrictions on the reduction during the sensitivity analysis stage were needed to ensure good agreement. In addition, tight error limits were needed for close prediction of ignition delay when varying the mixture composition away from that used for the reduction. In homogeneous compression-ignition engine simulations, the skeletal mechanisms closely matched the point of ignition and accurately predicted species profiles for lean to stoichiometric conditions. Furthermore, the efficacy of generating a multicomponent skeletal mechanism was compared to combining skeletal mechanisms produced separately for neat fuel components; using the same error limits, the latter resulted in a larger skeletal mechanism size that also lacked important cross reactions between fuel components. Based on the present results, general guidelines for reducing detailed mechanisms for multicomponent fuels are discussed.« less
Concordance and predictive value of two adverse drug event data sets.
Cami, Aurel; Reis, Ben Y
2014-08-22
Accurate prediction of adverse drug events (ADEs) is an important means of controlling and reducing drug-related morbidity and mortality. Since no single "gold standard" ADE data set exists, a range of different drug safety data sets are currently used for developing ADE prediction models. There is a critical need to assess the degree of concordance between these various ADE data sets and to validate ADE prediction models against multiple reference standards. We systematically evaluated the concordance of two widely used ADE data sets - Lexi-comp from 2010 and SIDER from 2012. The strength of the association between ADE (drug) counts in Lexi-comp and SIDER was assessed using Spearman rank correlation, while the differences between the two data sets were characterized in terms of drug categories, ADE categories and ADE frequencies. We also performed a comparative validation of the Predictive Pharmacosafety Networks (PPN) model using both ADE data sets. The predictive power of PPN using each of the two validation sets was assessed using the area under Receiver Operating Characteristic curve (AUROC). The correlations between the counts of ADEs and drugs in the two data sets were 0.84 (95% CI: 0.82-0.86) and 0.92 (95% CI: 0.91-0.93), respectively. Relative to an earlier snapshot of Lexi-comp from 2005, Lexi-comp 2010 and SIDER 2012 introduced a mean of 1,973 and 4,810 new drug-ADE associations per year, respectively. The difference between these two data sets was most pronounced for Nervous System and Anti-infective drugs, Gastrointestinal and Nervous System ADEs, and postmarketing ADEs. A minor difference of 1.1% was found in the AUROC of PPN when SIDER 2012 was used for validation instead of Lexi-comp 2010. In conclusion, the ADE and drug counts in Lexi-comp and SIDER data sets were highly correlated and the choice of validation set did not greatly affect the overall prediction performance of PPN. Our results also suggest that it is important to be aware of the differences that exist among ADE data sets, especially in modeling applications focused on specific drug and ADE categories.