Sample records for predicts recognition systems

  1. Early prediction of student goals and affect in narrative-centered learning environments

    NASA Astrophysics Data System (ADS)

    Lee, Sunyoung

    Recent years have seen a growing recognition of the role of goal and affect recognition in intelligent tutoring systems. Goal recognition is the task of inferring users' goals from a sequence of observations of their actions. Because of the uncertainty inherent in every facet of human computer interaction, goal recognition is challenging, particularly in contexts in which users can perform many actions in any order, as is the case with intelligent tutoring systems. Affect recognition is the task of identifying the emotional state of a user from a variety of physical cues, which are produced in response to affective changes in the individual. Accurately recognizing student goals and affect states could contribute to more effective and motivating interactions in intelligent tutoring systems. By exploiting knowledge of student goals and affect states, intelligent tutoring systems can dynamically modify their behavior to better support individual students. To create effective interactions in intelligent tutoring systems, goal and affect recognition models should satisfy two key requirements. First, because incorrectly predicted goals and affect states could significantly diminish the effectiveness of interactive systems, goal and affect recognition models should provide accurate predictions of user goals and affect states. When observations of users' activities become available, recognizers should make accurate early" predictions. Second, goal and affect recognition models should be highly efficient so they can operate in real time. To address key issues, we present an inductive approach to recognizing student goals and affect states in intelligent tutoring systems by learning goals and affect recognition models. Our work focuses on goal and affect recognition in an important new class of intelligent tutoring systems, narrative-centered learning environments. We report the results of empirical studies of induced recognition models from observations of students' interactions in narrative-centered learning environments. Experimental results suggest that induced models can make accurate early predictions of student goals and affect states, and they are sufficiently efficient to meet the real-time performance requirements of interactive learning environments.

  2. Using pattern recognition as a method for predicting extreme events in natural and socio-economic systems

    NASA Astrophysics Data System (ADS)

    Intriligator, M.

    2011-12-01

    Vladimir (Volodya) Keilis-Borok has pioneered the use of pattern recognition as a technique for analyzing and forecasting developments in natural as well as socio-economic systems. Keilis-Borok's work on predicting earthquakes and landslides using this technique as a leading geophysicist has been recognized around the world. Keilis-Borok has also been a world leader in the application of pattern recognition techniques to the analysis and prediction of socio-economic systems. He worked with Allan Lichtman of American University in using such techniques to predict presidential elections in the U.S. Keilis-Borok and I have worked together with others on the use of pattern recognition techniques to analyze and to predict socio-economic systems. We have used this technique to study the pattern of macroeconomic indicators that would predict the end of an economic recession in the U.S. We have also worked with officers in the Los Angeles Police Department to use this technique to predict surges of homicides in Los Angeles.

  3. A Single-System Model Predicts Recognition Memory and Repetition Priming in Amnesia

    PubMed Central

    Kessels, Roy P.C.; Wester, Arie J.; Shanks, David R.

    2014-01-01

    We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with amnesia categorized pictures of objects at study and then, at test, identified fragmented versions of studied (old) and nonstudied (new) objects (providing a measure of priming), and made a recognition memory judgment (old vs new) for each object. Numerous results in the amnesic patients were predicted in advance by the single-system model, as follows: (1) deficits in recognition memory and priming were evident relative to a control group; (2) items judged as old were identified at greater levels of fragmentation than items judged new, regardless of whether the items were actually old or new; and (3) the magnitude of the priming effect (the identification advantage for old vs new items) overall was greater than that of items judged new. Model evidence measures also favored the single-system model over two formal multiple-systems models. The findings support the single-system model, which explains the pattern of recognition and priming in amnesia primarily as a reduction in the strength of a single dimension of memory strength, rather than a selective explicit memory system deficit. PMID:25122896

  4. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy.

    PubMed

    Kominami, Yoko; Yoshida, Shigeto; Tanaka, Shinji; Sanomura, Yoji; Hirakawa, Tsubasa; Raytchev, Bisser; Tamaki, Toru; Koide, Tetsusi; Kaneda, Kazufumi; Chayama, Kazuaki

    2016-03-01

    It is necessary to establish cost-effective examinations and treatments for diminutive colorectal tumors that consider the treatment risk and surveillance interval after treatment. The Preservation and Incorporation of Valuable Endoscopic Innovations (PIVI) committee of the American Society for Gastrointestinal Endoscopy published a statement recommending the establishment of endoscopic techniques that practice the resect and discard strategy. The aims of this study were to evaluate whether our newly developed real-time image recognition system can predict histologic diagnoses of colorectal lesions depicted on narrow-band imaging and to satisfy some problems with the PIVI recommendations. We enrolled 41 patients who had undergone endoscopic resection of 118 colorectal lesions (45 nonneoplastic lesions and 73 neoplastic lesions). We compared the results of real-time image recognition system analysis with that of narrow-band imaging diagnosis and evaluated the correlation between image analysis and the pathological results. Concordance between the endoscopic diagnosis and diagnosis by a real-time image recognition system with a support vector machine output value was 97.5% (115/118). Accuracy between the histologic findings of diminutive colorectal lesions (polyps) and diagnosis by a real-time image recognition system with a support vector machine output value was 93.2% (sensitivity, 93.0%; specificity, 93.3%; positive predictive value (PPV), 93.0%; and negative predictive value, 93.3%). Although further investigation is necessary to establish our computer-aided diagnosis system, this real-time image recognition system may satisfy the PIVI recommendations and be useful for predicting the histology of colorectal tumors. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  5. Global similarity predicts dissociation of classification and recognition: evidence questioning the implicit-explicit learning distinction in amnesia.

    PubMed

    Jamieson, Randall K; Holmes, Signy; Mewhort, D J K

    2010-11-01

    Dissociation of classification and recognition in amnesia is widely taken to imply 2 functional systems: an implicit procedural-learning system that is spared in amnesia and an explicit episodic-learning system that is compromised. We argue that both tasks reflect the global similarity of probes to memory. In classification, subjects sort unstudied grammatical exemplars from lures, whereas in recognition, they sort studied grammatical exemplars from lures. Hence, global similarity is necessarily greater in recognition than in classification. Moreover, a grammatical exemplar's similarity to studied exemplars is a nonlinear function of the integrity of the data in memory. Assuming that data integrity is better for control subjects than for subjects with amnesia, the nonlinear relation combined with the advantage for recognition over classification predicts the dissociation of recognition and classification. To illustrate the dissociation of recognition and classification in healthy undergraduates, we manipulated study time to vary the integrity of the data in memory and brought the dissociation under experimental control. We argue that the dissociation reflects a general cost in memory rather than a selective impairment of separate procedural and episodic systems. (c) 2010 APA, all rights reserved

  6. Speech Clarity Index (Ψ): A Distance-Based Speech Quality Indicator and Recognition Rate Prediction for Dysarthric Speakers with Cerebral Palsy

    NASA Astrophysics Data System (ADS)

    Kayasith, Prakasith; Theeramunkong, Thanaruk

    It is a tedious and subjective task to measure severity of a dysarthria by manually evaluating his/her speech using available standard assessment methods based on human perception. This paper presents an automated approach to assess speech quality of a dysarthric speaker with cerebral palsy. With the consideration of two complementary factors, speech consistency and speech distinction, a speech quality indicator called speech clarity index (Ψ) is proposed as a measure of the speaker's ability to produce consistent speech signal for a certain word and distinguished speech signal for different words. As an application, it can be used to assess speech quality and forecast speech recognition rate of speech made by an individual dysarthric speaker before actual exhaustive implementation of an automatic speech recognition system for the speaker. The effectiveness of Ψ as a speech recognition rate predictor is evaluated by rank-order inconsistency, correlation coefficient, and root-mean-square of difference. The evaluations had been done by comparing its predicted recognition rates with ones predicted by the standard methods called the articulatory and intelligibility tests based on the two recognition systems (HMM and ANN). The results show that Ψ is a promising indicator for predicting recognition rate of dysarthric speech. All experiments had been done on speech corpus composed of speech data from eight normal speakers and eight dysarthric speakers.

  7. Boost OCR accuracy using iVector based system combination approach

    NASA Astrophysics Data System (ADS)

    Peng, Xujun; Cao, Huaigu; Natarajan, Prem

    2015-01-01

    Optical character recognition (OCR) is a challenging task because most existing preprocessing approaches are sensitive to writing style, writing material, noises and image resolution. Thus, a single recognition system cannot address all factors of real document images. In this paper, we describe an approach to combine diverse recognition systems by using iVector based features, which is a newly developed method in the field of speaker verification. Prior to system combination, document images are preprocessed and text line images are extracted with different approaches for each system, where iVector is transformed from a high-dimensional supervector of each text line and is used to predict the accuracy of OCR. We merge hypotheses from multiple recognition systems according to the overlap ratio and the predicted OCR score of text line images. We present evaluation results on an Arabic document database where the proposed method is compared against the single best OCR system using word error rate (WER) metric.

  8. 75 FR 54915 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Sensory System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Sensory System for Critical Infrastructure Defect Recognition, Visualization and... Critical Infrastructure Defect Recognition, Visualization and Failure Prediction ('Sensory System'') has...

  9. Models of Recognition, Repetition Priming, and Fluency : Exploring a New Framework

    ERIC Educational Resources Information Center

    Berry, Christopher J.; Shanks, David R.; Speekenbrink, Maarten; Henson, Richard N. A.

    2012-01-01

    We present a new modeling framework for recognition memory and repetition priming based on signal detection theory. We use this framework to specify and test the predictions of 4 models: (a) a single-system (SS) model, in which one continuous memory signal drives recognition and priming; (b) a multiple-systems-1 (MS1) model, in which completely…

  10. A Locomotion Intent Prediction System Based on Multi-Sensor Fusion

    PubMed Central

    Chen, Baojun; Zheng, Enhao; Wang, Qining

    2014-01-01

    Locomotion intent prediction is essential for the control of powered lower-limb prostheses to realize smooth locomotion transitions. In this research, we develop a multi-sensor fusion based locomotion intent prediction system, which can recognize current locomotion mode and detect locomotion transitions in advance. Seven able-bodied subjects were recruited for this research. Signals from two foot pressure insoles and three inertial measurement units (one on the thigh, one on the shank and the other on the foot) are measured. A two-level recognition strategy is used for the recognition with linear discriminate classifier. Six kinds of locomotion modes and ten kinds of locomotion transitions are tested in this study. Recognition accuracy during steady locomotion periods (i.e., no locomotion transitions) is 99.71% ± 0.05% for seven able-bodied subjects. During locomotion transition periods, all the transitions are correctly detected and most of them can be detected before transiting to new locomotion modes. No significant deterioration in recognition performance is observed in the following five hours after the system is trained, and small number of experiment trials are required to train reliable classifiers. PMID:25014097

  11. A locomotion intent prediction system based on multi-sensor fusion.

    PubMed

    Chen, Baojun; Zheng, Enhao; Wang, Qining

    2014-07-10

    Locomotion intent prediction is essential for the control of powered lower-limb prostheses to realize smooth locomotion transitions. In this research, we develop a multi-sensor fusion based locomotion intent prediction system, which can recognize current locomotion mode and detect locomotion transitions in advance. Seven able-bodied subjects were recruited for this research. Signals from two foot pressure insoles and three inertial measurement units (one on the thigh, one on the shank and the other on the foot) are measured. A two-level recognition strategy is used for the recognition with linear discriminate classifier. Six kinds of locomotion modes and ten kinds of locomotion transitions are tested in this study. Recognition accuracy during steady locomotion periods (i.e., no locomotion transitions) is 99.71% ± 0.05% for seven able-bodied subjects. During locomotion transition periods, all the transitions are correctly detected and most of them can be detected before transiting to new locomotion modes. No significant deterioration in recognition performance is observed in the following five hours after the system is trained, and small number of experiment trials are required to train reliable classifiers.

  12. What happens to the motor theory of perception when the motor system is damaged?

    PubMed

    Stasenko, Alena; Garcea, Frank E; Mahon, Bradford Z

    2013-09-01

    Motor theories of perception posit that motor information is necessary for successful recognition of actions. Perhaps the most well known of this class of proposals is the motor theory of speech perception, which argues that speech recognition is fundamentally a process of identifying the articulatory gestures (i.e. motor representations) that were used to produce the speech signal. Here we review neuropsychological evidence from patients with damage to the motor system, in the context of motor theories of perception applied to both manual actions and speech. Motor theories of perception predict that patients with motor impairments will have impairments for action recognition. Contrary to that prediction, the available neuropsychological evidence indicates that recognition can be spared despite profound impairments to production. These data falsify strong forms of the motor theory of perception, and frame new questions about the dynamical interactions that govern how information is exchanged between input and output systems.

  13. What happens to the motor theory of perception when the motor system is damaged?

    PubMed Central

    Stasenko, Alena; Garcea, Frank E.; Mahon, Bradford Z.

    2016-01-01

    Motor theories of perception posit that motor information is necessary for successful recognition of actions. Perhaps the most well known of this class of proposals is the motor theory of speech perception, which argues that speech recognition is fundamentally a process of identifying the articulatory gestures (i.e. motor representations) that were used to produce the speech signal. Here we review neuropsychological evidence from patients with damage to the motor system, in the context of motor theories of perception applied to both manual actions and speech. Motor theories of perception predict that patients with motor impairments will have impairments for action recognition. Contrary to that prediction, the available neuropsychological evidence indicates that recognition can be spared despite profound impairments to production. These data falsify strong forms of the motor theory of perception, and frame new questions about the dynamical interactions that govern how information is exchanged between input and output systems. PMID:26823687

  14. A state-based approach to trend recognition and failure prediction for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Nelson, Kyle S.; Hadden, George D.

    1992-01-01

    A state-based reasoning approach to trend recognition and failure prediction for the Altitude Determination, and Control System (ADCS) of the Space Station Freedom (SSF) is described. The problem domain is characterized by features (e.g., trends and impending failures) that develop over a variety of time spans, anywhere from several minutes to several years. Our state-based reasoning approach, coupled with intelligent data screening, allows features to be tracked as they develop in a time-dependent manner. That is, each state machine has the ability to encode a time frame for the feature it detects. As features are detected, they are recorded and can be used as input to other state machines, creating a hierarchical feature recognition scheme. Furthermore, each machine can operate independently of the others, allowing simultaneous tracking of features. State-based reasoning was implemented in the trend recognition and the prognostic modules of a prototype Space Station Freedom Maintenance and Diagnostic System (SSFMDS) developed at Honeywell's Systems and Research Center.

  15. Global Similarity Predicts Dissociation of Classification and Recognition: Evidence Questioning the Implicit-Explicit Learning Distinction in Amnesia

    ERIC Educational Resources Information Center

    Jamieson, Randall K.; Holmes, Signy; Mewhort, D. J. K.

    2010-01-01

    Dissociation of classification and recognition in amnesia is widely taken to imply 2 functional systems: an implicit procedural-learning system that is spared in amnesia and an explicit episodic-learning system that is compromised. We argue that both tasks reflect the global similarity of probes to memory. In classification, subjects sort…

  16. Sentence Recognition Prediction for Hearing-impaired Listeners in Stationary and Fluctuation Noise With FADE

    PubMed Central

    Schädler, Marc René; Warzybok, Anna; Meyer, Bernd T.; Brand, Thomas

    2016-01-01

    To characterize the individual patient’s hearing impairment as obtained with the matrix sentence recognition test, a simulation Framework for Auditory Discrimination Experiments (FADE) is extended here using the Attenuation and Distortion (A+D) approach by Plomp as a blueprint for setting the individual processing parameters. FADE has been shown to predict the outcome of both speech recognition tests and psychoacoustic experiments based on simulations using an automatic speech recognition system requiring only few assumptions. It builds on the closed-set matrix sentence recognition test which is advantageous for testing individual speech recognition in a way comparable across languages. Individual predictions of speech recognition thresholds in stationary and in fluctuating noise were derived using the audiogram and an estimate of the internal level uncertainty for modeling the individual Plomp curves fitted to the data with the Attenuation (A-) and Distortion (D-) parameters of the Plomp approach. The “typical” audiogram shapes from Bisgaard et al with or without a “typical” level uncertainty and the individual data were used for individual predictions. As a result, the individualization of the level uncertainty was found to be more important than the exact shape of the individual audiogram to accurately model the outcome of the German Matrix test in stationary or fluctuating noise for listeners with hearing impairment. The prediction accuracy of the individualized approach also outperforms the (modified) Speech Intelligibility Index approach which is based on the individual threshold data only. PMID:27604782

  17. Impact of severity of drug use on discrete emotions recognition in polysubstance abusers.

    PubMed

    Fernández-Serrano, María José; Lozano, Oscar; Pérez-García, Miguel; Verdejo-García, Antonio

    2010-06-01

    Neuropsychological studies support the association between severity of drug intake and alterations in specific cognitive domains and neural systems, but there is disproportionately less research on the neuropsychology of emotional alterations associated with addiction. One of the key aspects of adaptive emotional functioning potentially relevant to addiction progression and treatment is the ability to recognize basic emotions in the faces of others. Therefore, the aims of this study were: (i) to examine facial emotion recognition in abstinent polysubstance abusers, and (ii) to explore the association between patterns of quantity and duration of use of several drugs co-abused (including alcohol, cannabis, cocaine, heroin and MDMA) and the ability to identify discrete facial emotional expressions portraying basic emotions. We compared accuracy of emotion recognition of facial expressions portraying six basic emotions (measured with the Ekman Faces Test) between polysubstance abusers (PSA, n=65) and non-drug using comparison individuals (NDCI, n=30), and used regression models to explore the association between quantity and duration of use of the different drugs co-abused and indices of recognition of each of the six emotions, while controlling for relevant socio-demographic and affect-related confounders. Results showed: (i) that PSA had significantly poorer recognition than NDCI for facial expressions of anger, disgust, fear and sadness; (ii) that measures of quantity and duration of drugs used significantly predicted poorer discrete emotions recognition: quantity of cocaine use predicted poorer anger recognition, and duration of cocaine use predicted both poorer anger and fear recognition. Severity of cocaine use also significantly predicted overall recognition accuracy. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Human Activity Recognition from Smart-Phone Sensor Data using a Multi-Class Ensemble Learning in Home Monitoring.

    PubMed

    Ghose, Soumya; Mitra, Jhimli; Karunanithi, Mohan; Dowling, Jason

    2015-01-01

    Home monitoring of chronically ill or elderly patient can reduce frequent hospitalisations and hence provide improved quality of care at a reduced cost to the community, therefore reducing the burden on the healthcare system. Activity recognition of such patients is of high importance in such a design. In this work, a system for automatic human physical activity recognition from smart-phone inertial sensors data is proposed. An ensemble of decision trees framework is adopted to train and predict the multi-class human activity system. A comparison of our proposed method with a multi-class traditional support vector machine shows significant improvement in activity recognition accuracies.

  19. Exploring Techniques for Vision Based Human Activity Recognition: Methods, Systems, and Evaluation

    PubMed Central

    Xu, Xin; Tang, Jinshan; Zhang, Xiaolong; Liu, Xiaoming; Zhang, Hong; Qiu, Yimin

    2013-01-01

    With the wide applications of vision based intelligent systems, image and video analysis technologies have attracted the attention of researchers in the computer vision field. In image and video analysis, human activity recognition is an important research direction. By interpreting and understanding human activities, we can recognize and predict the occurrence of crimes and help the police or other agencies react immediately. In the past, a large number of papers have been published on human activity recognition in video and image sequences. In this paper, we provide a comprehensive survey of the recent development of the techniques, including methods, systems, and quantitative evaluation of the performance of human activity recognition. PMID:23353144

  20. Application of pattern recognition techniques to crime analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, C.F.; Cox, L.A. Jr.; Chappell, G.A.

    1976-08-15

    The initial goal was to evaluate the capabilities of current pattern recognition techniques when applied to existing computerized crime data. Performance was to be evaluated both in terms of the system's capability to predict crimes and to optimize police manpower allocation. A relation was sought to predict the crime's susceptibility to solution, based on knowledge of the crime type, location, time, etc. The preliminary results of this work are discussed. They indicate that automatic crime analysis involving pattern recognition techniques is feasible, and that efforts to determine optimum variables and techniques are warranted. 47 figures (RWR)

  1. Sentence Recognition Prediction for Hearing-impaired Listeners in Stationary and Fluctuation Noise With FADE: Empowering the Attenuation and Distortion Concept by Plomp With a Quantitative Processing Model.

    PubMed

    Kollmeier, Birger; Schädler, Marc René; Warzybok, Anna; Meyer, Bernd T; Brand, Thomas

    2016-09-07

    To characterize the individual patient's hearing impairment as obtained with the matrix sentence recognition test, a simulation Framework for Auditory Discrimination Experiments (FADE) is extended here using the Attenuation and Distortion (A+D) approach by Plomp as a blueprint for setting the individual processing parameters. FADE has been shown to predict the outcome of both speech recognition tests and psychoacoustic experiments based on simulations using an automatic speech recognition system requiring only few assumptions. It builds on the closed-set matrix sentence recognition test which is advantageous for testing individual speech recognition in a way comparable across languages. Individual predictions of speech recognition thresholds in stationary and in fluctuating noise were derived using the audiogram and an estimate of the internal level uncertainty for modeling the individual Plomp curves fitted to the data with the Attenuation (A-) and Distortion (D-) parameters of the Plomp approach. The "typical" audiogram shapes from Bisgaard et al with or without a "typical" level uncertainty and the individual data were used for individual predictions. As a result, the individualization of the level uncertainty was found to be more important than the exact shape of the individual audiogram to accurately model the outcome of the German Matrix test in stationary or fluctuating noise for listeners with hearing impairment. The prediction accuracy of the individualized approach also outperforms the (modified) Speech Intelligibility Index approach which is based on the individual threshold data only. © The Author(s) 2016.

  2. A Compact Methodology to Understand, Evaluate, and Predict the Performance of Automatic Target Recognition

    PubMed Central

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Chen, Yiping; Zhuang, Zhaowen; Cheng, Yongqiang; Deng, Bin; Wang, Liandong; Zeng, Yonghu; Gao, Lei

    2014-01-01

    This paper offers a compacted mechanism to carry out the performance evaluation work for an automatic target recognition (ATR) system: (a) a standard description of the ATR system's output is suggested, a quantity to indicate the operating condition is presented based on the principle of feature extraction in pattern recognition, and a series of indexes to assess the output in different aspects are developed with the application of statistics; (b) performance of the ATR system is interpreted by a quality factor based on knowledge of engineering mathematics; (c) through a novel utility called “context-probability” estimation proposed based on probability, performance prediction for an ATR system is realized. The simulation result shows that the performance of an ATR system can be accounted for and forecasted by the above-mentioned measures. Compared to existing technologies, the novel method can offer more objective performance conclusions for an ATR system. These conclusions may be helpful in knowing the practical capability of the tested ATR system. At the same time, the generalization performance of the proposed method is good. PMID:24967605

  3. Automatic Speech Recognition Predicts Speech Intelligibility and Comprehension for Listeners with Simulated Age-Related Hearing Loss

    ERIC Educational Resources Information Center

    Fontan, Lionel; Ferrané, Isabelle; Farinas, Jérôme; Pinquier, Julien; Tardieu, Julien; Magnen, Cynthia; Gaillard, Pascal; Aumont, Xavier; Füllgrabe, Christian

    2017-01-01

    Purpose: The purpose of this article is to assess speech processing for listeners with simulated age-related hearing loss (ARHL) and to investigate whether the observed performance can be replicated using an automatic speech recognition (ASR) system. The long-term goal of this research is to develop a system that will assist…

  4. Do Recognition and Priming Index a Unitary Knowledge Base? Comment on Shanks et al. (2003)

    ERIC Educational Resources Information Center

    Runger, Dennis; Nagy, Gabriel; Frensch, Peter A.

    2009-01-01

    Whether sequence learning entails a single or multiple memory systems is a moot issue. Recently, D. R. Shanks, L. Wilkinson, and S. Channon advanced a single-system model that predicts a perfect correlation between true (i.e., error free) response time priming and recognition. The Shanks model is contrasted with a dual-process model that…

  5. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition

    PubMed Central

    Melvin, Iain; Ie, Eugene; Kuang, Rui; Weston, Jason; Stafford, William Noble; Leslie, Christina

    2007-01-01

    Background Predicting a protein's structural class from its amino acid sequence is a fundamental problem in computational biology. Much recent work has focused on developing new representations for protein sequences, called string kernels, for use with support vector machine (SVM) classifiers. However, while some of these approaches exhibit state-of-the-art performance at the binary protein classification problem, i.e. discriminating between a particular protein class and all other classes, few of these studies have addressed the real problem of multi-class superfamily or fold recognition. Moreover, there are only limited software tools and systems for SVM-based protein classification available to the bioinformatics community. Results We present a new multi-class SVM-based protein fold and superfamily recognition system and web server called SVM-Fold, which can be found at . Our system uses an efficient implementation of a state-of-the-art string kernel for sequence profiles, called the profile kernel, where the underlying feature representation is a histogram of inexact matching k-mer frequencies. We also employ a novel machine learning approach to solve the difficult multi-class problem of classifying a sequence of amino acids into one of many known protein structural classes. Binary one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores that are not comparable, so that standard "one-vs-all" classification fails to perform well. Moreover, SVMs for classes at different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not try to combine these multiple predictions. To deal with these problems, our method learns relative weights between one-vs-the-rest classifiers and encodes information about the protein structural hierarchy for multi-class prediction. In large-scale benchmark results based on the SCOP database, our code weighting approach significantly improves on the standard one-vs-all method for both the superfamily and fold prediction in the remote homology setting and on the fold recognition problem. Moreover, our code weight learning algorithm strongly outperforms nearest-neighbor methods based on PSI-BLAST in terms of prediction accuracy on every structure classification problem we consider. Conclusion By combining state-of-the-art SVM kernel methods with a novel multi-class algorithm, the SVM-Fold system delivers efficient and accurate protein fold and superfamily recognition. PMID:17570145

  6. Self-Assessed Hearing Handicap in Older Adults With Poorer-Than-Predicted Speech Recognition in Noise.

    PubMed

    Eckert, Mark A; Matthews, Lois J; Dubno, Judy R

    2017-01-01

    Even older adults with relatively mild hearing loss report hearing handicap, suggesting that hearing handicap is not completely explained by reduced speech audibility. We examined the extent to which self-assessed ratings of hearing handicap using the Hearing Handicap Inventory for the Elderly (HHIE; Ventry & Weinstein, 1982) were significantly associated with measures of speech recognition in noise that controlled for differences in speech audibility. One hundred sixty-two middle-aged and older adults had HHIE total scores that were significantly associated with audibility-adjusted measures of speech recognition for low-context but not high-context sentences. These findings were driven by HHIE items involving negative feelings related to communication difficulties that also captured variance in subjective ratings of effort and frustration that predicted speech recognition. The average pure-tone threshold accounted for some of the variance in the association between the HHIE and audibility-adjusted speech recognition, suggesting an effect of central and peripheral auditory system decline related to elevated thresholds. The accumulation of difficult listening experiences appears to produce a self-assessment of hearing handicap resulting from (a) reduced audibility of stimuli, (b) declines in the central and peripheral auditory system function, and (c) additional individual variation in central nervous system function.

  7. Self-Assessed Hearing Handicap in Older Adults With Poorer-Than-Predicted Speech Recognition in Noise

    PubMed Central

    Matthews, Lois J.; Dubno, Judy R.

    2017-01-01

    Purpose Even older adults with relatively mild hearing loss report hearing handicap, suggesting that hearing handicap is not completely explained by reduced speech audibility. Method We examined the extent to which self-assessed ratings of hearing handicap using the Hearing Handicap Inventory for the Elderly (HHIE; Ventry & Weinstein, 1982) were significantly associated with measures of speech recognition in noise that controlled for differences in speech audibility. Results One hundred sixty-two middle-aged and older adults had HHIE total scores that were significantly associated with audibility-adjusted measures of speech recognition for low-context but not high-context sentences. These findings were driven by HHIE items involving negative feelings related to communication difficulties that also captured variance in subjective ratings of effort and frustration that predicted speech recognition. The average pure-tone threshold accounted for some of the variance in the association between the HHIE and audibility-adjusted speech recognition, suggesting an effect of central and peripheral auditory system decline related to elevated thresholds. Conclusion The accumulation of difficult listening experiences appears to produce a self-assessment of hearing handicap resulting from (a) reduced audibility of stimuli, (b) declines in the central and peripheral auditory system function, and (c) additional individual variation in central nervous system function. PMID:28060993

  8. Does morality have a biological basis? An empirical test of the factors governing moral sentiments relating to incest.

    PubMed

    Lieberman, Debra; Tooby, John; Cosmides, Leda

    2003-04-22

    Kin-recognition systems have been hypothesized to exist in humans, and adaptively to regulate altruism and incest avoidance among close genetic kin. This latter function allows the architecture of the kin recognition system to be mapped by quantitatively matching individual variation in opposition to incest to individual variation in developmental parameters, such as family structure and co-residence patterns. Methodological difficulties that appear when subjects are asked to disclose incestuous inclinations can be circumvented by measuring their opposition to incest in third parties, i.e. morality. This method allows a direct test of Westermarck's original hypothesis that childhood co-residence with an opposite-sex individual predicts the strength of moral sentiments regarding third-party sibling incest. Results support Westermarck's hypothesis and the model of kin recognition that it implies. Co-residence duration objectively predicts genetic relatedness, making it a reliable cue to kinship. Co-residence duration predicts the strength of opposition to incest, even after controlling for relatedness and even when co-residing individuals are genetically unrelated. This undercuts kin-recognition models requiring matching to self (through, for example, major histocompatibility complex or phenotypic markers). Subjects' beliefs about relatedness had no effect after controlling for co-residence, indicating that systems regulating kin-relevant behaviours are non-conscious, and calibrated by co-residence, not belief.

  9. Does morality have a biological basis? An empirical test of the factors governing moral sentiments relating to incest.

    PubMed Central

    Lieberman, Debra; Tooby, John; Cosmides, Leda

    2003-01-01

    Kin-recognition systems have been hypothesized to exist in humans, and adaptively to regulate altruism and incest avoidance among close genetic kin. This latter function allows the architecture of the kin recognition system to be mapped by quantitatively matching individual variation in opposition to incest to individual variation in developmental parameters, such as family structure and co-residence patterns. Methodological difficulties that appear when subjects are asked to disclose incestuous inclinations can be circumvented by measuring their opposition to incest in third parties, i.e. morality. This method allows a direct test of Westermarck's original hypothesis that childhood co-residence with an opposite-sex individual predicts the strength of moral sentiments regarding third-party sibling incest. Results support Westermarck's hypothesis and the model of kin recognition that it implies. Co-residence duration objectively predicts genetic relatedness, making it a reliable cue to kinship. Co-residence duration predicts the strength of opposition to incest, even after controlling for relatedness and even when co-residing individuals are genetically unrelated. This undercuts kin-recognition models requiring matching to self (through, for example, major histocompatibility complex or phenotypic markers). Subjects' beliefs about relatedness had no effect after controlling for co-residence, indicating that systems regulating kin-relevant behaviours are non-conscious, and calibrated by co-residence, not belief. PMID:12737660

  10. Longitudinal changes in speech recognition in older persons.

    PubMed

    Dubno, Judy R; Lee, Fu-Shing; Matthews, Lois J; Ahlstrom, Jayne B; Horwitz, Amy R; Mills, John H

    2008-01-01

    Recognition of isolated monosyllabic words in quiet and recognition of key words in low- and high-context sentences in babble were measured in a large sample of older persons enrolled in a longitudinal study of age-related hearing loss. Repeated measures were obtained yearly or every 2 to 3 years. To control for concurrent changes in pure-tone thresholds and speech levels, speech-recognition scores were adjusted using an importance-weighted speech-audibility metric (AI). Linear-regression slope estimated the rate of change in adjusted speech-recognition scores. Recognition of words in quiet declined significantly faster with age than predicted by declines in speech audibility. As subjects aged, observed scores deviated increasingly from AI-predicted scores, but this effect did not accelerate with age. Rate of decline in word recognition was significantly faster for females than males and for females with high serum progesterone levels, whereas noise history had no effect. Rate of decline did not accelerate with age but increased with degree of hearing loss, suggesting that with more severe injury to the auditory system, impairments to auditory function other than reduced audibility resulted in faster declines in word recognition as subjects aged. Recognition of key words in low- and high-context sentences in babble did not decline significantly with age.

  11. Effective Prediction of Errors by Non-native Speakers Using Decision Tree for Speech Recognition-Based CALL System

    NASA Astrophysics Data System (ADS)

    Wang, Hongcui; Kawahara, Tatsuya

    CALL (Computer Assisted Language Learning) systems using ASR (Automatic Speech Recognition) for second language learning have received increasing interest recently. However, it still remains a challenge to achieve high speech recognition performance, including accurate detection of erroneous utterances by non-native speakers. Conventionally, possible error patterns, based on linguistic knowledge, are added to the lexicon and language model, or the ASR grammar network. However, this approach easily falls in the trade-off of coverage of errors and the increase of perplexity. To solve the problem, we propose a method based on a decision tree to learn effective prediction of errors made by non-native speakers. An experimental evaluation with a number of foreign students learning Japanese shows that the proposed method can effectively generate an ASR grammar network, given a target sentence, to achieve both better coverage of errors and smaller perplexity, resulting in significant improvement in ASR accuracy.

  12. Recognition of Atypical Symptoms of Acute Myocardial Infarction: Development and Validation of a Risk Scoring System.

    PubMed

    Li, Polly W C; Yu, Doris S F

    Atypical symptom presentation in patients with acute myocardial infarction (AMI) is associated with longer delay in care seeking and poorer prognosis. Symptom recognition in these patients is a challenging task. Our purpose in this risk prediction model development study was to develop and validate a risk scoring system for estimating cumulative risk for atypical AMI presentation. A consecutive sample was recruited for the developmental (n = 300) and validation (n = 97) cohorts. Symptom experience was measured with the validated Chinese version of the Symptoms of Acute Coronary Syndromes Inventory. Potential predictors were identified from the literature. Multivariable logistic regression was performed to identify significant predictors. A risk scoring system was then constructed by assigning weights to each significant predictor according to their b coefficients. Five independent predictors for atypical symptom presentation were older age (≥75 years), female gender, diabetes mellitus, history of AMI, and absence of hyperlipidemia. The Hosmer and Lemeshow test (χ6 = 4.47, P = .62) indicated that this predictive model was adequate to predict the outcome. Acceptable discrimination was demonstrated, with area under the receiver operating characteristic curve as 0.74 (95% confidence interval, 0.67-0.82) (P < .001). The predictive power of this risk scoring system was confirmed in the validation cohort. Atypical AMI presentation is common. A simple risk scoring system developed on the basis of the 5 identified predictors can raise awareness of atypical AMI presentation and promote symptom recognition by estimating the cumulative risk for an individual to present with atypical AMI symptoms.

  13. The role of visual imagery in the retention of information from sentences.

    PubMed

    Drose, G S; Allen, G L

    1994-01-01

    We conducted two experiments to evaluate a multiple-code model for sentence memory that posits both propositional and visual representational systems. Both sentences involved recognition memory. The results of Experiment 1 indicated that subjects' recognition memory for concrete sentences was superior to their recognition memory for abstract sentences. Instructions to use visual imagery to enhance recognition performance yielded no effects. Experiment 2 tested the prediction that interference by a visual task would differentially affect recognition memory for concrete sentences. Results showed the interference task to have had a detrimental effect on recognition memory for both concrete and abstract sentences. Overall, the evidence provided partial support for both a multiple-code model and a semantic integration model of sentence memory.

  14. Conformal Predictions in Multimedia Pattern Recognition

    ERIC Educational Resources Information Center

    Nallure Balasubramanian, Vineeth

    2010-01-01

    The fields of pattern recognition and machine learning are on a fundamental quest to design systems that can learn the way humans do. One important aspect of human intelligence that has so far not been given sufficient attention is the capability of humans to express when they are certain about a decision, or when they are not. Machine learning…

  15. Strategies for distant speech recognitionin reverberant environments

    NASA Astrophysics Data System (ADS)

    Delcroix, Marc; Yoshioka, Takuya; Ogawa, Atsunori; Kubo, Yotaro; Fujimoto, Masakiyo; Ito, Nobutaka; Kinoshita, Keisuke; Espi, Miquel; Araki, Shoko; Hori, Takaaki; Nakatani, Tomohiro

    2015-12-01

    Reverberation and noise are known to severely affect the automatic speech recognition (ASR) performance of speech recorded by distant microphones. Therefore, we must deal with reverberation if we are to realize high-performance hands-free speech recognition. In this paper, we review a recognition system that we developed at our laboratory to deal with reverberant speech. The system consists of a speech enhancement (SE) front-end that employs long-term linear prediction-based dereverberation followed by noise reduction. We combine our SE front-end with an ASR back-end that uses neural networks for acoustic and language modeling. The proposed system achieved top scores on the ASR task of the REVERB challenge. This paper describes the different technologies used in our system and presents detailed experimental results that justify our implementation choices and may provide hints for designing distant ASR systems.

  16. Development of precursors recognition methods in vector signals

    NASA Astrophysics Data System (ADS)

    Kapralov, V. G.; Elagin, V. V.; Kaveeva, E. G.; Stankevich, L. A.; Dremin, M. M.; Krylov, S. V.; Borovov, A. E.; Harfush, H. A.; Sedov, K. S.

    2017-10-01

    Precursor recognition methods in vector signals of plasma diagnostics are presented. Their requirements and possible options for their development are considered. In particular, the variants of using symbolic regression for building a plasma disruption prediction system are discussed. The initial data preparation using correlation analysis and symbolic regression is discussed. Special attention is paid to the possibility of using algorithms in real time.

  17. The Cortical Organization of Speech Processing: Feedback Control and Predictive Coding the Context of a Dual-Stream Model

    ERIC Educational Resources Information Center

    Hickok, Gregory

    2012-01-01

    Speech recognition is an active process that involves some form of predictive coding. This statement is relatively uncontroversial. What is less clear is the source of the prediction. The dual-stream model of speech processing suggests that there are two possible sources of predictive coding in speech perception: the motor speech system and the…

  18. Identification of Matra Region and Overlapping Characters for OCR of Printed Bengali Scripts

    NASA Astrophysics Data System (ADS)

    Goswami, Subhra Sundar

    One of the important reasons for poor recognition rate in optical character recognition (OCR) system is the error in character segmentation. In case of Bangla scripts, the errors occur due to several reasons, which include incorrect detection of matra (headline), over-segmentation and under-segmentation. We have proposed a robust method for detecting the headline region. Existence of overlapping characters (in under-segmented parts) in scanned printed documents is a major problem in designing an effective character segmentation procedure for OCR systems. In this paper, a predictive algorithm is developed for effectively identifying overlapping characters and then selecting the cut-borders for segmentation. Our method can be successfully used in achieving high recognition result.

  19. Non-parallel coevolution of sender and receiver in the acoustic communication system of treefrogs.

    PubMed

    Schul, Johannes; Bush, Sarah L

    2002-09-07

    Advertisement calls of closely related species often differ in quantitative features such as the repetition rate of signal units. These differences are important in species recognition. Current models of signal-receiver coevolution predict two possible patterns in the evolution of the mechanism used by receivers to recognize the call: (i) classical sexual selection models (Fisher process, good genes/indirect benefits, direct benefits models) predict that close relatives use qualitatively similar signal recognition mechanisms tuned to different values of a call parameter; and (ii) receiver bias models (hidden preference, pre-existing bias models) predict that if different signal recognition mechanisms are used by sibling species, evidence of an ancestral mechanism will persist in the derived species, and evidence of a pre-existing bias will be detectable in the ancestral species. We describe qualitatively different call recognition mechanisms in sibling species of treefrogs. Whereas Hyla chrysoscelis uses pulse rate to recognize male calls, Hyla versicolor uses absolute measurements of pulse duration and interval duration. We found no evidence of either hidden preferences or pre-existing biases. The results are compared with similar data from katydids (Tettigonia sp.). In both taxa, the data are not adequately explained by current models of signal-receiver coevolution.

  20. Multi-modal imaging predicts memory performance in normal aging and cognitive decline.

    PubMed

    Walhovd, K B; Fjell, A M; Dale, A M; McEvoy, L K; Brewer, J; Karow, D S; Salmon, D P; Fennema-Notestine, C

    2010-07-01

    This study (n=161) related morphometric MR imaging, FDG-PET and APOE genotype to memory scores in normal controls (NC), mild cognitive impairment (MCI) and Alzheimer's disease (AD). Stepwise regression analyses focused on morphometric and metabolic characteristics of the episodic memory network: hippocampus, entorhinal, parahippocampal, retrosplenial, posterior cingulate, precuneus, inferior parietal, and lateral orbitofrontal cortices. In NC, hippocampal metabolism predicted learning; entorhinal metabolism predicted recognition; and hippocampal metabolism predicted recall. In MCI, thickness of the entorhinal and precuneus cortices predicted learning, while parahippocampal metabolism predicted recognition. In AD, posterior cingulate cortical thickness predicted learning, while APOE genotype predicted recognition. In the total sample, hippocampal volume and metabolism, cortical thickness of the precuneus, and inferior parietal metabolism predicted learning; hippocampal volume and metabolism, parahippocampal thickness and APOE genotype predicted recognition. Imaging methods appear complementary and differentially sensitive to memory in health and disease. Medial temporal and parietal metabolism and morphometry best explained memory variance. Medial temporal characteristics were related to learning, recall and recognition, while parietal structures only predicted learning. Copyright 2008. Published by Elsevier Inc.

  1. Development of an optical character recognition pipeline for handwritten form fields from an electronic health record.

    PubMed

    Rasmussen, Luke V; Peissig, Peggy L; McCarty, Catherine A; Starren, Justin

    2012-06-01

    Although the penetration of electronic health records is increasing rapidly, much of the historical medical record is only available in handwritten notes and forms, which require labor-intensive, human chart abstraction for some clinical research. The few previous studies on automated extraction of data from these handwritten notes have focused on monolithic, custom-developed recognition systems or third-party systems that require proprietary forms. We present an optical character recognition processing pipeline, which leverages the capabilities of existing third-party optical character recognition engines, and provides the flexibility offered by a modular custom-developed system. The system was configured and run on a selected set of form fields extracted from a corpus of handwritten ophthalmology forms. The processing pipeline allowed multiple configurations to be run, with the optimal configuration consisting of the Nuance and LEADTOOLS engines running in parallel with a positive predictive value of 94.6% and a sensitivity of 13.5%. While limitations exist, preliminary experience from this project yielded insights on the generalizability and applicability of integrating multiple, inexpensive general-purpose third-party optical character recognition engines in a modular pipeline.

  2. Development of an optical character recognition pipeline for handwritten form fields from an electronic health record

    PubMed Central

    Peissig, Peggy L; McCarty, Catherine A; Starren, Justin

    2011-01-01

    Background Although the penetration of electronic health records is increasing rapidly, much of the historical medical record is only available in handwritten notes and forms, which require labor-intensive, human chart abstraction for some clinical research. The few previous studies on automated extraction of data from these handwritten notes have focused on monolithic, custom-developed recognition systems or third-party systems that require proprietary forms. Methods We present an optical character recognition processing pipeline, which leverages the capabilities of existing third-party optical character recognition engines, and provides the flexibility offered by a modular custom-developed system. The system was configured and run on a selected set of form fields extracted from a corpus of handwritten ophthalmology forms. Observations The processing pipeline allowed multiple configurations to be run, with the optimal configuration consisting of the Nuance and LEADTOOLS engines running in parallel with a positive predictive value of 94.6% and a sensitivity of 13.5%. Discussion While limitations exist, preliminary experience from this project yielded insights on the generalizability and applicability of integrating multiple, inexpensive general-purpose third-party optical character recognition engines in a modular pipeline. PMID:21890871

  3. Prediction of consonant recognition in quiet for listeners with normal and impaired hearing using an auditory model.

    PubMed

    Jürgens, Tim; Ewert, Stephan D; Kollmeier, Birger; Brand, Thomas

    2014-03-01

    Consonant recognition was assessed in normal-hearing (NH) and hearing-impaired (HI) listeners in quiet as a function of speech level using a nonsense logatome test. Average recognition scores were analyzed and compared to recognition scores of a speech recognition model. In contrast to commonly used spectral speech recognition models operating on long-term spectra, a "microscopic" model operating in the time domain was used. Variations of the model (accounting for hearing impairment) and different model parameters (reflecting cochlear compression) were tested. Using these model variations this study examined whether speech recognition performance in quiet is affected by changes in cochlear compression, namely, a linearization, which is often observed in HI listeners. Consonant recognition scores for HI listeners were poorer than for NH listeners. The model accurately predicted the speech reception thresholds of the NH and most HI listeners. A partial linearization of the cochlear compression in the auditory model, while keeping audibility constant, produced higher recognition scores and improved the prediction accuracy. However, including listener-specific information about the exact form of the cochlear compression did not improve the prediction further.

  4. Changing predictions, stable recognition: Children's representations of downward incline motion.

    PubMed

    Hast, Michael; Howe, Christine

    2017-11-01

    Various studies to-date have demonstrated children hold ill-conceived expressed beliefs about the physical world such as that one ball will fall faster than another because it is heavier. At the same time, they also demonstrate accurate recognition of dynamic events. How these representations relate is still unresolved. This study examined 5- to 11-year-olds' (N = 130) predictions and recognition of motion down inclines. Predictions were typically in error, matching previous work, but children largely recognized correct events as correct and rejected incorrect ones. The results also demonstrate while predictions change with increasing age, recognition shows signs of stability. The findings provide further support for a hybrid model of object representations and argue in favour of stable core cognition existing alongside developmental changes. Statement of contribution What is already known on this subject? Children's predictions of physical events show limitations in accuracy Their recognition of such events suggests children may use different knowledge sources in their reasoning What the present study adds? Predictions fluctuate more strongly than recognition, suggesting stable core cognition But recognition also shows some fluctuation, arguing for a hybrid model of knowledge representation. © 2017 The British Psychological Society.

  5. Automated information-analytical system for thunderstorm monitoring and early warning alarms using modern physical sensors and information technologies with elements of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Boldyreff, Anton S.; Bespalov, Dmitry A.; Adzhiev, Anatoly Kh.

    2017-05-01

    Methods of artificial intelligence are a good solution for weather phenomena forecasting. They allow to process a large amount of diverse data. Recirculation Neural Networks is implemented in the paper for the system of thunderstorm events prediction. Large amounts of experimental data from lightning sensors and electric field mills networks are received and analyzed. The average recognition accuracy of sensor signals is calculated. It is shown that Recirculation Neural Networks is a promising solution in the forecasting of thunderstorms and weather phenomena, characterized by the high efficiency of the recognition elements of the sensor signals, allows to compress images and highlight their characteristic features for subsequent recognition.

  6. Dynamic Learning Style Prediction Method Based on a Pattern Recognition Technique

    ERIC Educational Resources Information Center

    Yang, Juan; Huang, Zhi Xing; Gao, Yue Xiang; Liu, Hong Tao

    2014-01-01

    During the past decade, personalized e-learning systems and adaptive educational hypermedia systems have attracted much attention from researchers in the fields of computer science Aand education. The integration of learning styles into an intelligent system is a possible solution to the problems of "learning deviation" and…

  7. From Birdsong to Human Speech Recognition: Bayesian Inference on a Hierarchy of Nonlinear Dynamical Systems

    PubMed Central

    Yildiz, Izzet B.; von Kriegstein, Katharina; Kiebel, Stefan J.

    2013-01-01

    Our knowledge about the computational mechanisms underlying human learning and recognition of sound sequences, especially speech, is still very limited. One difficulty in deciphering the exact means by which humans recognize speech is that there are scarce experimental findings at a neuronal, microscopic level. Here, we show that our neuronal-computational understanding of speech learning and recognition may be vastly improved by looking at an animal model, i.e., the songbird, which faces the same challenge as humans: to learn and decode complex auditory input, in an online fashion. Motivated by striking similarities between the human and songbird neural recognition systems at the macroscopic level, we assumed that the human brain uses the same computational principles at a microscopic level and translated a birdsong model into a novel human sound learning and recognition model with an emphasis on speech. We show that the resulting Bayesian model with a hierarchy of nonlinear dynamical systems can learn speech samples such as words rapidly and recognize them robustly, even in adverse conditions. In addition, we show that recognition can be performed even when words are spoken by different speakers and with different accents—an everyday situation in which current state-of-the-art speech recognition models often fail. The model can also be used to qualitatively explain behavioral data on human speech learning and derive predictions for future experiments. PMID:24068902

  8. From birdsong to human speech recognition: bayesian inference on a hierarchy of nonlinear dynamical systems.

    PubMed

    Yildiz, Izzet B; von Kriegstein, Katharina; Kiebel, Stefan J

    2013-01-01

    Our knowledge about the computational mechanisms underlying human learning and recognition of sound sequences, especially speech, is still very limited. One difficulty in deciphering the exact means by which humans recognize speech is that there are scarce experimental findings at a neuronal, microscopic level. Here, we show that our neuronal-computational understanding of speech learning and recognition may be vastly improved by looking at an animal model, i.e., the songbird, which faces the same challenge as humans: to learn and decode complex auditory input, in an online fashion. Motivated by striking similarities between the human and songbird neural recognition systems at the macroscopic level, we assumed that the human brain uses the same computational principles at a microscopic level and translated a birdsong model into a novel human sound learning and recognition model with an emphasis on speech. We show that the resulting Bayesian model with a hierarchy of nonlinear dynamical systems can learn speech samples such as words rapidly and recognize them robustly, even in adverse conditions. In addition, we show that recognition can be performed even when words are spoken by different speakers and with different accents-an everyday situation in which current state-of-the-art speech recognition models often fail. The model can also be used to qualitatively explain behavioral data on human speech learning and derive predictions for future experiments.

  9. Strength Is in Numbers: Can Concordant Artificial Listeners Improve Prediction of Emotion from Speech?

    PubMed

    Martinelli, Eugenio; Mencattini, Arianna; Daprati, Elena; Di Natale, Corrado

    2016-01-01

    Humans can communicate their emotions by modulating facial expressions or the tone of their voice. Albeit numerous applications exist that enable machines to read facial emotions and recognize the content of verbal messages, methods for speech emotion recognition are still in their infancy. Yet, fast and reliable applications for emotion recognition are the obvious advancement of present 'intelligent personal assistants', and may have countless applications in diagnostics, rehabilitation and research. Taking inspiration from the dynamics of human group decision-making, we devised a novel speech emotion recognition system that applies, for the first time, a semi-supervised prediction model based on consensus. Three tests were carried out to compare this algorithm with traditional approaches. Labeling performances relative to a public database of spontaneous speeches are reported. The novel system appears to be fast, robust and less computationally demanding than traditional methods, allowing for easier implementation in portable voice-analyzers (as used in rehabilitation, research, industry, etc.) and for applications in the research domain (such as real-time pairing of stimuli to participants' emotional state, selective/differential data collection based on emotional content, etc.).

  10. A text-based data mining and toxicity prediction modeling system for a clinical decision support in radiation oncology: A preliminary study

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Chang, Kyung Hwan; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie

    2017-08-01

    The aim of this study is an integrated research for text-based data mining and toxicity prediction modeling system for clinical decision support system based on big data in radiation oncology as a preliminary research. The structured and unstructured data were prepared by treatment plans and the unstructured data were extracted by dose-volume data image pattern recognition of prostate cancer for research articles crawling through the internet. We modeled an artificial neural network to build a predictor model system for toxicity prediction of organs at risk. We used a text-based data mining approach to build the artificial neural network model for bladder and rectum complication predictions. The pattern recognition method was used to mine the unstructured toxicity data for dose-volume at the detection accuracy of 97.9%. The confusion matrix and training model of the neural network were achieved with 50 modeled plans (n = 50) for validation. The toxicity level was analyzed and the risk factors for 25% bladder, 50% bladder, 20% rectum, and 50% rectum were calculated by the artificial neural network algorithm. As a result, 32 plans could cause complication but 18 plans were designed as non-complication among 50 modeled plans. We integrated data mining and a toxicity modeling method for toxicity prediction using prostate cancer cases. It is shown that a preprocessing analysis using text-based data mining and prediction modeling can be expanded to personalized patient treatment decision support based on big data.

  11. Artificial neural network implementation of a near-ideal error prediction controller

    NASA Technical Reports Server (NTRS)

    Mcvey, Eugene S.; Taylor, Lynore Denise

    1992-01-01

    A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error responses be known for a particular input and modeled plant. These responses are used in the error prediction controller. An analysis was done on the general dynamic behavior that results from including a digital error predictor in a control loop and these were compared to those including the near-ideal Neural Network error predictor. This analysis was done for a second and third order system.

  12. Dissociable effects of surprising rewards on learning and memory.

    PubMed

    Rouhani, Nina; Norman, Kenneth A; Niv, Yael

    2018-03-19

    Reward-prediction errors track the extent to which rewards deviate from expectations, and aid in learning. How do such errors in prediction interact with memory for the rewarding episode? Existing findings point to both cooperative and competitive interactions between learning and memory mechanisms. Here, we investigated whether learning about rewards in a high-risk context, with frequent, large prediction errors, would give rise to higher fidelity memory traces for rewarding events than learning in a low-risk context. Experiment 1 showed that recognition was better for items associated with larger absolute prediction errors during reward learning. Larger prediction errors also led to higher rates of learning about rewards. Interestingly we did not find a relationship between learning rate for reward and recognition-memory accuracy for items, suggesting that these two effects of prediction errors were caused by separate underlying mechanisms. In Experiment 2, we replicated these results with a longer task that posed stronger memory demands and allowed for more learning. We also showed improved source and sequence memory for items within the high-risk context. In Experiment 3, we controlled for the difficulty of reward learning in the risk environments, again replicating the previous results. Moreover, this control revealed that the high-risk context enhanced item-recognition memory beyond the effect of prediction errors. In summary, our results show that prediction errors boost both episodic item memory and incremental reward learning, but the two effects are likely mediated by distinct underlying systems. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. The contribution of familiarity to recognition memory is a function of test format when using similar foils

    PubMed Central

    Migo, Ellen; Montaldi, Daniela; Norman, Kenneth A.; Quamme, Joel; Mayes, Andrew

    2010-01-01

    Patient Y.R., who suffered hippocampal damage that disrupted recollection but not familiarity, was impaired on a yes/no (YN) object recognition memory test with similar foils. However, she was not impaired on a forced-choice corresponding (FCC) version of the test that paired targets with corresponding similar foils (Holdstock et al. 2002). This dissociation is explained by the Complementary Learning Systems (CLS) neural-network model (Norman & O'Reilly 2003) if recollection is impaired but familiarity is preserved. The CLS model also predicts that participants relying exclusively on familiarity should be impaired on forced-choice non-corresponding (FCNC) tests, where targets are presented with foils similar to other targets. The present study tests these predictions for all three test formats (YN, FCC, FCNC) in normal participants using two variants of the remember/know procedure. As predicted, performance using familiarity alone was significantly worse than standard recognition on the YN and FCNC tests, but not on the FCC test. Recollection in the form of recall-to-reject was the major process driving YN recognition. This adds support to the interpretation of patient data according to which, hippocampal damage causes a recollection deficit that leads to poor performance on the YN test relative to FCC. PMID:19096990

  14. Multi-sensor physical activity recognition in free-living.

    PubMed

    Ellis, Katherine; Godbole, Suneeta; Kerr, Jacqueline; Lanckriet, Gert

    Physical activity monitoring in free-living populations has many applications for public health research, weight-loss interventions, context-aware recommendation systems and assistive technologies. We present a system for physical activity recognition that is learned from a free-living dataset of 40 women who wore multiple sensors for seven days. The multi-level classification system first learns low-level codebook representations for each sensor and uses a random forest classifier to produce minute-level probabilities for each activity class. Then a higher-level HMM layer learns patterns of transitions and durations of activities over time to smooth the minute-level predictions. [Formula: see text].

  15. A reciprocal model of face recognition and autistic traits: evidence from an individual differences perspective.

    PubMed

    Halliday, Drew W R; MacDonald, Stuart W S; Scherf, K Suzanne; Sherf, Suzanne K; Tanaka, James W

    2014-01-01

    Although not a core symptom of the disorder, individuals with autism often exhibit selective impairments in their face processing abilities. Importantly, the reciprocal connection between autistic traits and face perception has rarely been examined within the typically developing population. In this study, university participants from the social sciences, physical sciences, and humanities completed a battery of measures that assessed face, object and emotion recognition abilities, general perceptual-cognitive style, and sub-clinical autistic traits (the Autism Quotient (AQ)). We employed separate hierarchical multiple regression analyses to evaluate which factors could predict face recognition scores and AQ scores. Gender, object recognition performance, and AQ scores predicted face recognition behaviour. Specifically, males, individuals with more autistic traits, and those with lower object recognition scores performed more poorly on the face recognition test. Conversely, university major, gender and face recognition performance reliably predicted AQ scores. Science majors, males, and individuals with poor face recognition skills showed more autistic-like traits. These results suggest that the broader autism phenotype is associated with lower face recognition abilities, even among typically developing individuals.

  16. A Reciprocal Model of Face Recognition and Autistic Traits: Evidence from an Individual Differences Perspective

    PubMed Central

    Halliday, Drew W. R.; MacDonald, Stuart W. S.; Sherf, Suzanne K.; Tanaka, James W.

    2014-01-01

    Although not a core symptom of the disorder, individuals with autism often exhibit selective impairments in their face processing abilities. Importantly, the reciprocal connection between autistic traits and face perception has rarely been examined within the typically developing population. In this study, university participants from the social sciences, physical sciences, and humanities completed a battery of measures that assessed face, object and emotion recognition abilities, general perceptual-cognitive style, and sub-clinical autistic traits (the Autism Quotient (AQ)). We employed separate hierarchical multiple regression analyses to evaluate which factors could predict face recognition scores and AQ scores. Gender, object recognition performance, and AQ scores predicted face recognition behaviour. Specifically, males, individuals with more autistic traits, and those with lower object recognition scores performed more poorly on the face recognition test. Conversely, university major, gender and face recognition performance reliably predicted AQ scores. Science majors, males, and individuals with poor face recognition skills showed more autistic-like traits. These results suggest that the broader autism phenotype is associated with lower face recognition abilities, even among typically developing individuals. PMID:24853862

  17. Specific acoustic models for spontaneous and dictated style in indonesian speech recognition

    NASA Astrophysics Data System (ADS)

    Vista, C. B.; Satriawan, C. H.; Lestari, D. P.; Widyantoro, D. H.

    2018-03-01

    The performance of an automatic speech recognition system is affected by differences in speech style between the data the model is originally trained upon and incoming speech to be recognized. In this paper, the usage of GMM-HMM acoustic models for specific speech styles is investigated. We develop two systems for the experiments; the first employs a speech style classifier to predict the speech style of incoming speech, either spontaneous or dictated, then decodes this speech using an acoustic model specifically trained for that speech style. The second system uses both acoustic models to recognise incoming speech and decides upon a final result by calculating a confidence score of decoding. Results show that training specific acoustic models for spontaneous and dictated speech styles confers a slight recognition advantage as compared to a baseline model trained on a mixture of spontaneous and dictated training data. In addition, the speech style classifier approach of the first system produced slightly more accurate results than the confidence scoring employed in the second system.

  18. TAL effector-DNA specificity.

    PubMed

    Scholze, Heidi; Boch, Jens

    2010-01-01

    TAL effectors are important virulence factors of bacterial plant pathogenic Xanthomonas, which infect a wide variety of plants including valuable crops like pepper, rice, and citrus. TAL proteins are translocated via the bacterial type III secretion system into host cells and induce transcription of plant genes by binding to target gene promoters. Members of the TAL effector family differ mainly in their central domain of tandemly arranged repeats of typically 34 amino acids each with hypervariable di-amino acids at positions 12 and 13. We recently showed that target DNA-recognition specificity of TAL effectors is encoded in a modular and clearly predictable mode. The repeats of TAL effectors feature a surprising one repeat-to-one-bp correlation with different repeat types exhibiting a different DNA base pair specificity. Accordingly, we predicted DNA specificities of TAL effectors and generated artificial TAL proteins with novel DNA recognition specificities. We describe here novel artificial TALs and discuss implications for the DNA recognition specificity. The unique TAL-DNA binding domain allows design of proteins with potentially any given DNA recognition specificity enabling many uses for biotechnology.

  19. Audibility-based predictions of speech recognition for children and adults with normal hearing.

    PubMed

    McCreery, Ryan W; Stelmachowicz, Patricia G

    2011-12-01

    This study investigated the relationship between audibility and predictions of speech recognition for children and adults with normal hearing. The Speech Intelligibility Index (SII) is used to quantify the audibility of speech signals and can be applied to transfer functions to predict speech recognition scores. Although the SII is used clinically with children, relatively few studies have evaluated SII predictions of children's speech recognition directly. Children have required more audibility than adults to reach maximum levels of speech understanding in previous studies. Furthermore, children may require greater bandwidth than adults for optimal speech understanding, which could influence frequency-importance functions used to calculate the SII. Speech recognition was measured for 116 children and 19 adults with normal hearing. Stimulus bandwidth and background noise level were varied systematically in order to evaluate speech recognition as predicted by the SII and derive frequency-importance functions for children and adults. Results suggested that children required greater audibility to reach the same level of speech understanding as adults. However, differences in performance between adults and children did not vary across frequency bands. © 2011 Acoustical Society of America

  20. Predictive codes of familiarity and context during the perceptual learning of facial identities

    NASA Astrophysics Data System (ADS)

    Apps, Matthew A. J.; Tsakiris, Manos

    2013-11-01

    Face recognition is a key component of successful social behaviour. However, the computational processes that underpin perceptual learning and recognition as faces transition from unfamiliar to familiar are poorly understood. In predictive coding, learning occurs through prediction errors that update stimulus familiarity, but recognition is a function of both stimulus and contextual familiarity. Here we show that behavioural responses on a two-option face recognition task can be predicted by the level of contextual and facial familiarity in a computational model derived from predictive-coding principles. Using fMRI, we show that activity in the superior temporal sulcus varies with the contextual familiarity in the model, whereas activity in the fusiform face area covaries with the prediction error parameter that updated facial familiarity. Our results characterize the key computations underpinning the perceptual learning of faces, highlighting that the functional properties of face-processing areas conform to the principles of predictive coding.

  1. The free-energy self: a predictive coding account of self-recognition.

    PubMed

    Apps, Matthew A J; Tsakiris, Manos

    2014-04-01

    Recognising and representing one's self as distinct from others is a fundamental component of self-awareness. However, current theories of self-recognition are not embedded within global theories of cortical function and therefore fail to provide a compelling explanation of how the self is processed. We present a theoretical account of the neural and computational basis of self-recognition that is embedded within the free-energy account of cortical function. In this account one's body is processed in a Bayesian manner as the most likely to be "me". Such probabilistic representation arises through the integration of information from hierarchically organised unimodal systems in higher-level multimodal areas. This information takes the form of bottom-up "surprise" signals from unimodal sensory systems that are explained away by top-down processes that minimise the level of surprise across the brain. We present evidence that this theoretical perspective may account for the findings of psychological and neuroimaging investigations into self-recognition and particularly evidence that representations of the self are malleable, rather than fixed as previous accounts of self-recognition might suggest. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The free-energy self: A predictive coding account of self-recognition

    PubMed Central

    Apps, Matthew A.J.; Tsakiris, Manos

    2013-01-01

    Recognising and representing one’s self as distinct from others is a fundamental component of self-awareness. However, current theories of self-recognition are not embedded within global theories of cortical function and therefore fail to provide a compelling explanation of how the self is processed. We present a theoretical account of the neural and computational basis of self-recognition that is embedded within the free-energy account of cortical function. In this account one’s body is processed in a Bayesian manner as the most likely to be “me”. Such probabilistic representation arises through the integration of information from hierarchically organised unimodal systems in higher-level multimodal areas. This information takes the form of bottom-up “surprise” signals from unimodal sensory systems that are explained away by top-down processes that minimise the level of surprise across the brain. We present evidence that this theoretical perspective may account for the findings of psychological and neuroimaging investigations into self-recognition and particularly evidence that representations of the self are malleable, rather than fixed as previous accounts of self-recognition might suggest. PMID:23416066

  3. The role of the thalamic nuclei in recognition memory accompanied by recall during encoding and retrieval: an fMRI study.

    PubMed

    Pergola, Giulio; Ranft, Alexander; Mathias, Klaus; Suchan, Boris

    2013-07-01

    The present functional imaging study aimed at investigating the contribution of the mediodorsal nucleus and the anterior nuclei of the thalamus with their related cortical networks to recognition memory and recall. Eighteen subjects performed associative picture encoding followed by a single item recognition test during the functional magnetic resonance imaging session. After scanning, subjects performed a cued recall test using the formerly recognized pictures as cues. This post-scanning test served to classify recognition trials according to subsequent recall performance. In general, single item recognition accompanied by successful recall of the associations elicited stronger activation in the mediodorsal nucleus of the thalamus and in the prefrontal cortices both during encoding and retrieval compared to recognition without recall. In contrast, the anterior nuclei of the thalamus were selectively active during the retrieval phase of recognition followed by recall. A correlational analysis showed that activation of the anterior thalamus during retrieval as assessed by measuring the percent signal changes predicted lower rates of recognition without recall. These findings show that the thalamus is critical for recognition accompanied by recall, and provide the first evidence of a functional segregation of the thalamic nuclei with respect to the memory retrieval phase. In particular, the mediodorsal thalamic-prefrontal cortical network is activated during successful encoding and retrieval of associations, which suggests a role of this system in recall and recollection. The activity of the anterior thalamic-temporal network selectively during retrieval predicts better memory performances across subjects and this confirms the paramount role of this network in recall and recollection. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Prediction-based dynamic load-sharing heuristics

    NASA Technical Reports Server (NTRS)

    Goswami, Kumar K.; Devarakonda, Murthy; Iyer, Ravishankar K.

    1993-01-01

    The authors present dynamic load-sharing heuristics that use predicted resource requirements of processes to manage workloads in a distributed system. A previously developed statistical pattern-recognition method is employed for resource prediction. While nonprediction-based heuristics depend on a rapidly changing system status, the new heuristics depend on slowly changing program resource usage patterns. Furthermore, prediction-based heuristics can be more effective since they use future requirements rather than just the current system state. Four prediction-based heuristics, two centralized and two distributed, are presented. Using trace driven simulations, they are compared against random scheduling and two effective nonprediction based heuristics. Results show that the prediction-based centralized heuristics achieve up to 30 percent better response times than the nonprediction centralized heuristic, and that the prediction-based distributed heuristics achieve up to 50 percent improvements relative to their nonprediction counterpart.

  5. POPISK: T-cell reactivity prediction using support vector machines and string kernels

    PubMed Central

    2011-01-01

    Background Accurate prediction of peptide immunogenicity and characterization of relation between peptide sequences and peptide immunogenicity will be greatly helpful for vaccine designs and understanding of the immune system. In contrast to the prediction of antigen processing and presentation pathway, the prediction of subsequent T-cell reactivity is a much harder topic. Previous studies of identifying T-cell receptor (TCR) recognition positions were based on small-scale analyses using only a few peptides and concluded different recognition positions such as positions 4, 6 and 8 of peptides with length 9. Large-scale analyses are necessary to better characterize the effect of peptide sequence variations on T-cell reactivity and design predictors of a peptide's T-cell reactivity (and thus immunogenicity). The identification and characterization of important positions influencing T-cell reactivity will provide insights into the underlying mechanism of immunogenicity. Results This work establishes a large dataset by collecting immunogenicity data from three major immunology databases. In order to consider the effect of MHC restriction, peptides are classified by their associated MHC alleles. Subsequently, a computational method (named POPISK) using support vector machine with a weighted degree string kernel is proposed to predict T-cell reactivity and identify important recognition positions. POPISK yields a mean 10-fold cross-validation accuracy of 68% in predicting T-cell reactivity of HLA-A2-binding peptides. POPISK is capable of predicting immunogenicity with scores that can also correctly predict the change in T-cell reactivity related to point mutations in epitopes reported in previous studies using crystal structures. Thorough analyses of the prediction results identify the important positions 4, 6, 8 and 9, and yield insights into the molecular basis for TCR recognition. Finally, we relate this finding to physicochemical properties and structural features of the MHC-peptide-TCR interaction. Conclusions A computational method POPISK is proposed to predict immunogenicity with scores which are useful for predicting immunogenicity changes made by single-residue modifications. The web server of POPISK is freely available at http://iclab.life.nctu.edu.tw/POPISK. PMID:22085524

  6. POPISK: T-cell reactivity prediction using support vector machines and string kernels.

    PubMed

    Tung, Chun-Wei; Ziehm, Matthias; Kämper, Andreas; Kohlbacher, Oliver; Ho, Shinn-Ying

    2011-11-15

    Accurate prediction of peptide immunogenicity and characterization of relation between peptide sequences and peptide immunogenicity will be greatly helpful for vaccine designs and understanding of the immune system. In contrast to the prediction of antigen processing and presentation pathway, the prediction of subsequent T-cell reactivity is a much harder topic. Previous studies of identifying T-cell receptor (TCR) recognition positions were based on small-scale analyses using only a few peptides and concluded different recognition positions such as positions 4, 6 and 8 of peptides with length 9. Large-scale analyses are necessary to better characterize the effect of peptide sequence variations on T-cell reactivity and design predictors of a peptide's T-cell reactivity (and thus immunogenicity). The identification and characterization of important positions influencing T-cell reactivity will provide insights into the underlying mechanism of immunogenicity. This work establishes a large dataset by collecting immunogenicity data from three major immunology databases. In order to consider the effect of MHC restriction, peptides are classified by their associated MHC alleles. Subsequently, a computational method (named POPISK) using support vector machine with a weighted degree string kernel is proposed to predict T-cell reactivity and identify important recognition positions. POPISK yields a mean 10-fold cross-validation accuracy of 68% in predicting T-cell reactivity of HLA-A2-binding peptides. POPISK is capable of predicting immunogenicity with scores that can also correctly predict the change in T-cell reactivity related to point mutations in epitopes reported in previous studies using crystal structures. Thorough analyses of the prediction results identify the important positions 4, 6, 8 and 9, and yield insights into the molecular basis for TCR recognition. Finally, we relate this finding to physicochemical properties and structural features of the MHC-peptide-TCR interaction. A computational method POPISK is proposed to predict immunogenicity with scores which are useful for predicting immunogenicity changes made by single-residue modifications. The web server of POPISK is freely available at http://iclab.life.nctu.edu.tw/POPISK.

  7. Fusion of multiscale wavelet-based fractal analysis on retina image for stroke prediction.

    PubMed

    Che Azemin, M Z; Kumar, Dinesh K; Wong, T Y; Wang, J J; Kawasaki, R; Mitchell, P; Arjunan, Sridhar P

    2010-01-01

    In this paper, we present a novel method of analyzing retinal vasculature using Fourier Fractal Dimension to extract the complexity of the retinal vasculature enhanced at different wavelet scales. Logistic regression was used as a fusion method to model the classifier for 5-year stroke prediction. The efficacy of this technique has been tested using standard pattern recognition performance evaluation, Receivers Operating Characteristics (ROC) analysis and medical prediction statistics, odds ratio. Stroke prediction model was developed using the proposed system.

  8. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  9. Temporal Sensitivity Measured Shortly After Cochlear Implantation Predicts 6-Month Speech Recognition Outcome.

    PubMed

    Erb, Julia; Ludwig, Alexandra Annemarie; Kunke, Dunja; Fuchs, Michael; Obleser, Jonas

    2018-04-24

    Psychoacoustic tests assessed shortly after cochlear implantation are useful predictors of the rehabilitative speech outcome. While largely independent, both spectral and temporal resolution tests are important to provide an accurate prediction of speech recognition. However, rapid tests of temporal sensitivity are currently lacking. Here, we propose a simple amplitude modulation rate discrimination (AMRD) paradigm that is validated by predicting future speech recognition in adult cochlear implant (CI) patients. In 34 newly implanted patients, we used an adaptive AMRD paradigm, where broadband noise was modulated at the speech-relevant rate of ~4 Hz. In a longitudinal study, speech recognition in quiet was assessed using the closed-set Freiburger number test shortly after cochlear implantation (t0) as well as the open-set Freiburger monosyllabic word test 6 months later (t6). Both AMRD thresholds at t0 (r = -0.51) and speech recognition scores at t0 (r = 0.56) predicted speech recognition scores at t6. However, AMRD and speech recognition at t0 were uncorrelated, suggesting that those measures capture partially distinct perceptual abilities. A multiple regression model predicting 6-month speech recognition outcome with deafness duration and speech recognition at t0 improved from adjusted R = 0.30 to adjusted R = 0.44 when AMRD threshold was added as a predictor. These findings identify AMRD thresholds as a reliable, nonredundant predictor above and beyond established speech tests for CI outcome. This AMRD test could potentially be developed into a rapid clinical temporal-resolution test to be integrated into the postoperative test battery to improve the reliability of speech outcome prognosis.

  10. Understanding environmental sounds in sentence context.

    PubMed

    Uddin, Sophia; Heald, Shannon L M; Van Hedger, Stephen C; Klos, Serena; Nusbaum, Howard C

    2018-03-01

    There is debate about how individuals use context to successfully predict and recognize words. One view argues that context supports neural predictions that make use of the speech motor system, whereas other views argue for a sensory or conceptual level of prediction. While environmental sounds can convey clear referential meaning, they are not linguistic signals, and are thus neither produced with the vocal tract nor typically encountered in sentence context. We compared the effect of spoken sentence context on recognition and comprehension of spoken words versus nonspeech, environmental sounds. In Experiment 1, sentence context decreased the amount of signal needed for recognition of spoken words and environmental sounds in similar fashion. In Experiment 2, listeners judged sentence meaning in both high and low contextually constraining sentence frames, when the final word was present or replaced with a matching environmental sound. Results showed that sentence constraint affected decision time similarly for speech and nonspeech, such that high constraint sentences (i.e., frame plus completion) were processed faster than low constraint sentences for speech and nonspeech. Linguistic context facilitates the recognition and understanding of nonspeech sounds in much the same way as for spoken words. This argues against a simple form of a speech-motor explanation of predictive coding in spoken language understanding, and suggests support for conceptual-level predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Strength Is in Numbers: Can Concordant Artificial Listeners Improve Prediction of Emotion from Speech?

    PubMed Central

    Martinelli, Eugenio; Mencattini, Arianna; Di Natale, Corrado

    2016-01-01

    Humans can communicate their emotions by modulating facial expressions or the tone of their voice. Albeit numerous applications exist that enable machines to read facial emotions and recognize the content of verbal messages, methods for speech emotion recognition are still in their infancy. Yet, fast and reliable applications for emotion recognition are the obvious advancement of present ‘intelligent personal assistants’, and may have countless applications in diagnostics, rehabilitation and research. Taking inspiration from the dynamics of human group decision-making, we devised a novel speech emotion recognition system that applies, for the first time, a semi-supervised prediction model based on consensus. Three tests were carried out to compare this algorithm with traditional approaches. Labeling performances relative to a public database of spontaneous speeches are reported. The novel system appears to be fast, robust and less computationally demanding than traditional methods, allowing for easier implementation in portable voice-analyzers (as used in rehabilitation, research, industry, etc.) and for applications in the research domain (such as real-time pairing of stimuli to participants’ emotional state, selective/differential data collection based on emotional content, etc.). PMID:27563724

  12. Syntactic Predictability in the Recognition of Carefully and Casually Produced Speech

    ERIC Educational Resources Information Center

    Viebahn, Malte C.; Ernestus, Mirjam; McQueen, James M.

    2015-01-01

    The present study investigated whether the recognition of spoken words is influenced by how predictable they are given their syntactic context and whether listeners assign more weight to syntactic predictability when acoustic-phonetic information is less reliable. Syntactic predictability was manipulated by varying the word order of past…

  13. Pattern recognition of satellite cloud imagery for improved weather prediction

    NASA Technical Reports Server (NTRS)

    Gautier, Catherine; Somerville, Richard C. J.; Volfson, Leonid B.

    1986-01-01

    The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products.

  14. Reduction of the dimension of neural network models in problems of pattern recognition and forecasting

    NASA Astrophysics Data System (ADS)

    Nasertdinova, A. D.; Bochkarev, V. V.

    2017-11-01

    Deep neural networks with a large number of parameters are a powerful tool for solving problems of pattern recognition, prediction and classification. Nevertheless, overfitting remains a serious problem in the use of such networks. A method of solving the problem of overfitting is proposed in this article. This method is based on reducing the number of independent parameters of a neural network model using the principal component analysis, and can be implemented using existing libraries of neural computing. The algorithm was tested on the problem of recognition of handwritten symbols from the MNIST database, as well as on the task of predicting time series (rows of the average monthly number of sunspots and series of the Lorentz system were used). It is shown that the application of the principal component analysis enables reducing the number of parameters of the neural network model when the results are good. The average error rate for the recognition of handwritten figures from the MNIST database was 1.12% (which is comparable to the results obtained using the "Deep training" methods), while the number of parameters of the neural network can be reduced to 130 times.

  15. Neural Correlates of Intentional Communication

    PubMed Central

    Noordzij, Matthijs L.; Newman-Norlund, Sarah E.; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C.; Toni, Ivan

    2010-01-01

    We know a great deal about the neurophysiological mechanisms supporting instrumental actions, i.e., actions designed to alter the physical state of the environment. In contrast, little is known about our ability to select communicative actions, i.e., actions directly designed to modify the mental state of another agent. We have recently provided novel empirical evidence for a mechanism in which a communicator selects his actions on the basis of a prediction of the communicative intentions that an addressee is most likely to attribute to those actions. The main novelty of those findings was that this prediction of intention recognition is cerebrally implemented within the intention recognition system of the communicator, is modulated by the ambiguity in meaning of the communicative acts, and not by their sensorimotor complexity. The characteristics of this predictive mechanism support the notion that human communicative abilities are distinct from both sensorimotor and linguistic processes. PMID:21151781

  16. Crozier's paradox revisited: maintenance of genetic recognition systems by disassortative mating.

    PubMed

    Holman, Luke; van Zweden, Jelle S; Linksvayer, Timothy A; d'Ettorre, Patrizia

    2013-09-27

    Organisms are predicted to behave more favourably towards relatives, and kin-biased cooperation has been found in all domains of life from bacteria to vertebrates. Cooperation based on genetic recognition cues is paradoxical because it disproportionately benefits individuals with common phenotypes, which should erode the required cue polymorphism. Theoretical models suggest that many recognition loci likely have some secondary function that is subject to diversifying selection, keeping them variable. Here, we use individual-based simulations to investigate the hypothesis that the dual use of recognition cues to facilitate social behaviour and disassortative mating (e.g. for inbreeding avoidance) can maintain cue diversity over evolutionary time. Our model shows that when organisms mate disassortatively with respect to their recognition cues, cooperation and recognition locus diversity can persist at high values, especially when outcrossed matings produce more surviving offspring. Mating system affects cue diversity via at least four distinct mechanisms, and its effects interact with other parameters such as population structure. Also, the attrition of cue diversity is less rapid when cooperation does not require an exact cue match. Using a literature review, we show that there is abundant empirical evidence that heritable recognition cues are simultaneously used in social and sexual behaviour. Our models show that mate choice is one possible resolution of the paradox of genetic kin recognition, and the literature review suggests that genetic recognition cues simultaneously inform assortative cooperation and disassortative mating in a large range of taxa. However, direct evidence is scant and there is substantial scope for future work.

  17. Visual Word Recognition Across the Adult Lifespan

    PubMed Central

    Cohen-Shikora, Emily R.; Balota, David A.

    2016-01-01

    The current study examines visual word recognition in a large sample (N = 148) across the adult lifespan and across a large set of stimuli (N = 1187) in three different lexical processing tasks (pronunciation, lexical decision, and animacy judgments). Although the focus of the present study is on the influence of word frequency, a diverse set of other variables are examined as the system ages and acquires more experience with language. Computational models and conceptual theories of visual word recognition and aging make differing predictions for age-related changes in the system. However, these have been difficult to assess because prior studies have produced inconsistent results, possibly due to sample differences, analytic procedures, and/or task-specific processes. The current study confronts these potential differences by using three different tasks, treating age and word variables as continuous, and exploring the influence of individual differences such as vocabulary, vision, and working memory. The primary finding is remarkable stability in the influence of a diverse set of variables on visual word recognition across the adult age spectrum. This pattern is discussed in reference to previous inconsistent findings in the literature and implications for current models of visual word recognition. PMID:27336629

  18. An application of artificial immune recognition system for prediction of diabetes following gestational diabetes.

    PubMed

    Lin, Hung-Chun; Su, Chao-Ton; Wang, Pa-Chun

    2011-06-01

    Diabetes mellitus (DM) is a disease prevalent in population and is not easily perceived in its initial stage but may sway a patient very seriously in later stage. In accordance with the estimation of World Health Organization (WHO), there will be 370 million diabetics which are 5.4% of the global people in 2030, so it becomes more and more important to predict whether a pregnant woman has or is likely to acquire diabetes. This study is conducted with the use of the machine learning-Artificial Immune Recognition System (AIRS)-to assist doctors in predicting pregnant women who have premonition of type 2 diabetes. AIRS is proposed by Andrew Watkins in 2001 and it makes use of the metaphor of the vertebrate immune system to recognize antigens, select clone, and memorize cells. Additionally, AIRS includes a mechanism, limited resource, to restrain the number of memory cells from increasing uncontrollably. It has also showed positive results on problems in which it was applied. The objective of this study is to investigate the feasibility in using AIRS to predict gestational diabetes mellitus (GDM) subsequent DM. The dataset of diabetes has imbalanced data, but the overall classification recall could still reach 62.8%, which is better than the traditional method, logistic regression, and the technique which is thought as one of the powerful classification approaches, support vector machines (SVM).

  19. A Joint Gaussian Process Model for Active Visual Recognition with Expertise Estimation in Crowdsourcing

    PubMed Central

    Long, Chengjiang; Hua, Gang; Kapoor, Ashish

    2015-01-01

    We present a noise resilient probabilistic model for active learning of a Gaussian process classifier from crowds, i.e., a set of noisy labelers. It explicitly models both the overall label noise and the expertise level of each individual labeler with two levels of flip models. Expectation propagation is adopted for efficient approximate Bayesian inference of our probabilistic model for classification, based on which, a generalized EM algorithm is derived to estimate both the global label noise and the expertise of each individual labeler. The probabilistic nature of our model immediately allows the adoption of the prediction entropy for active selection of data samples to be labeled, and active selection of high quality labelers based on their estimated expertise to label the data. We apply the proposed model for four visual recognition tasks, i.e., object category recognition, multi-modal activity recognition, gender recognition, and fine-grained classification, on four datasets with real crowd-sourced labels from the Amazon Mechanical Turk. The experiments clearly demonstrate the efficacy of the proposed model. In addition, we extend the proposed model with the Predictive Active Set Selection Method to speed up the active learning system, whose efficacy is verified by conducting experiments on the first three datasets. The results show our extended model can not only preserve a higher accuracy, but also achieve a higher efficiency. PMID:26924892

  20. Iris unwrapping using the Bresenham circle algorithm for real-time iris recognition

    NASA Astrophysics Data System (ADS)

    Carothers, Matthew T.; Ngo, Hau T.; Rakvic, Ryan N.; Broussard, Randy P.

    2015-02-01

    An efficient parallel architecture design for the iris unwrapping process in a real-time iris recognition system using the Bresenham Circle Algorithm is presented in this paper. Based on the characteristics of the model parameters this algorithm was chosen over the widely used polar conversion technique as the iris unwrapping model. The architecture design is parallelized to increase the throughput of the system and is suitable for processing an inputted image size of 320 × 240 pixels in real-time using Field Programmable Gate Array (FPGA) technology. Quartus software is used to implement, verify, and analyze the design's performance using the VHSIC Hardware Description Language. The system's predicted processing time is faster than the modern iris unwrapping technique used today∗.

  1. Speech recognition: Acoustic-phonetic knowledge acquisition and representation

    NASA Astrophysics Data System (ADS)

    Zue, Victor W.

    1988-09-01

    The long-term research goal is to develop and implement speaker-independent continuous speech recognition systems. It is believed that the proper utilization of speech-specific knowledge is essential for such advanced systems. This research is thus directed toward the acquisition, quantification, and representation, of acoustic-phonetic and lexical knowledge, and the application of this knowledge to speech recognition algorithms. In addition, we are exploring new speech recognition alternatives based on artificial intelligence and connectionist techniques. We developed a statistical model for predicting the acoustic realization of stop consonants in various positions in the syllable template. A unification-based grammatical formalism was developed for incorporating this model into the lexical access algorithm. We provided an information-theoretic justification for the hierarchical structure of the syllable template. We analyzed segmented duration for vowels and fricatives in continuous speech. Based on contextual information, we developed durational models for vowels and fricatives that account for over 70 percent of the variance, using data from multiple, unknown speakers. We rigorously evaluated the ability of human spectrogram readers to identify stop consonants spoken by many talkers and in a variety of phonetic contexts. Incorporating the declarative knowledge used by the readers, we developed a knowledge-based system for stop identification. We achieved comparable system performance to that to the readers.

  2. The cell monolayer trajectory from the system state point of view.

    PubMed

    Stys, Dalibor; Vanek, Jan; Nahlik, Tomas; Urban, Jan; Cisar, Petr

    2011-10-01

    Time-lapse microscopic movies are being increasingly utilized for understanding the derivation of cell states and predicting cell future. Often, fluorescence and other types of labeling are not available or desirable, and cell state-definitions based on observable structures must be used. We present the methodology for cell behavior recognition and prediction based on the short term cell recurrent behavior analysis. This approach has theoretical justification in non-linear dynamics theory. The methodology is based on the general stochastic systems theory which allows us to define the cell states, trajectory and the system itself. We introduce the usage of a novel image content descriptor based on information contribution (gain) by each image point for the cell state characterization as the first step. The linkage between the method and the general system theory is presented as a general frame for cell behavior interpretation. We also discuss extended cell description, system theory and methodology for future development. This methodology may be used for many practical purposes, ranging from advanced, medically relevant, precise cell culture diagnostics to very utilitarian cell recognition in a noisy or uneven image background. In addition, the results are theoretically justified.

  3. Functional and computational analysis of amino acid patterns predictive of type III secretion system substrates in Pseudomonas syringae

    USDA-ARS?s Scientific Manuscript database

    Bacterial type III secretion systems (T3SSs) deliver proteins called effectors into eukaryotic cells. Although N-terminal amino acid sequences are required for translocation, the mechanism of substrate recognition by the T3SS is unknown. Almost all actively deployed T3SS substrates in the plant path...

  4. An In-Process Surface Roughness Recognition System in End Milling Operations

    ERIC Educational Resources Information Center

    Yang, Lieh-Dai; Chen, Joseph C.

    2004-01-01

    To develop an in-process quality control system, a sensor technique and a decision-making algorithm need to be applied during machining operations. Several sensor techniques have been used in the in-process prediction of quality characteristics in machining operations. For example, an accelerometer sensor can be used to monitor the vibration of…

  5. Processing environmental stimuli in paranoid schizophrenia: recognizing facial emotions and performing executive functions.

    PubMed

    Yu, Shao Hua; Zhu, Jun Peng; Xu, You; Zheng, Lei Lei; Chai, Hao; He, Wei; Liu, Wei Bo; Li, Hui Chun; Wang, Wei

    2012-12-01

    To study the contribution of executive function to abnormal recognition of facial expressions of emotion in schizophrenia patients. Abnormal recognition of facial expressions of emotion was assayed according to Japanese and Caucasian facial expressions of emotion (JACFEE), Wisconsin card sorting test (WCST), positive and negative symptom scale, and Hamilton anxiety and depression scale, respectively, in 88 paranoid schizophrenia patients and 75 healthy volunteers. Patients scored higher on the Positive and Negative Symptom Scale and the Hamilton Anxiety and Depression Scales, displayed lower JACFEE recognition accuracies and poorer WCST performances. The JACFEE recognition accuracy of contempt and disgust was negatively correlated with the negative symptom scale score while the recognition accuracy of fear was positively with the positive symptom scale score and the recognition accuracy of surprise was negatively with the general psychopathology score in patients. Moreover, the WCST could predict the JACFEE recognition accuracy of contempt, disgust, and sadness in patients, and the perseverative errors negatively predicted the recognition accuracy of sadness in healthy volunteers. The JACFEE recognition accuracy of sadness could predict the WCST categories in paranoid schizophrenia patients. Recognition accuracy of social-/moral emotions, such as contempt, disgust and sadness is related to the executive function in paranoid schizophrenia patients, especially when regarding sadness. Copyright © 2012 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  6. Spoken Idiom Recognition: Meaning Retrieval and Word Expectancy

    ERIC Educational Resources Information Center

    Tabossi, Patrizia; Fanari, Rachele; Wolf, Kinou

    2005-01-01

    This study investigates recognition of spoken idioms occurring in neutral contexts. Experiment 1 showed that both predictable and non-predictable idiom meanings are available at string offset. Yet, only predictable idiom meanings are active halfway through a string and remain active after the string's literal conclusion. Experiment 2 showed that…

  7. Prediction of TF target sites based on atomistic models of protein-DNA complexes

    PubMed Central

    Angarica, Vladimir Espinosa; Pérez, Abel González; Vasconcelos, Ana T; Collado-Vides, Julio; Contreras-Moreira, Bruno

    2008-01-01

    Background The specific recognition of genomic cis-regulatory elements by transcription factors (TFs) plays an essential role in the regulation of coordinated gene expression. Studying the mechanisms determining binding specificity in protein-DNA interactions is thus an important goal. Most current approaches for modeling TF specific recognition rely on the knowledge of large sets of cognate target sites and consider only the information contained in their primary sequence. Results Here we describe a structure-based methodology for predicting sequence motifs starting from the coordinates of a TF-DNA complex. Our algorithm combines information regarding the direct and indirect readout of DNA into an atomistic statistical model, which is used to estimate the interaction potential. We first measure the ability of our method to correctly estimate the binding specificities of eight prokaryotic and eukaryotic TFs that belong to different structural superfamilies. Secondly, the method is applied to two homology models, finding that sampling of interface side-chain rotamers remarkably improves the results. Thirdly, the algorithm is compared with a reference structural method based on contact counts, obtaining comparable predictions for the experimental complexes and more accurate sequence motifs for the homology models. Conclusion Our results demonstrate that atomic-detail structural information can be feasibly used to predict TF binding sites. The computational method presented here is universal and might be applied to other systems involving protein-DNA recognition. PMID:18922190

  8. Emotional facial expressions differentially influence predictions and performance for face recognition.

    PubMed

    Nomi, Jason S; Rhodes, Matthew G; Cleary, Anne M

    2013-01-01

    This study examined how participants' predictions of future memory performance are influenced by emotional facial expressions. Participants made judgements of learning (JOLs) predicting the likelihood that they would correctly identify a face displaying a happy, angry, or neutral emotional expression in a future two-alternative forced-choice recognition test of identity (i.e., recognition that a person's face was seen before). JOLs were higher for studied faces with happy and angry emotional expressions than for neutral faces. However, neutral test faces with studied neutral expressions had significantly higher identity recognition rates than neutral test faces studied with happy or angry expressions. Thus, these data are the first to demonstrate that people believe happy and angry emotional expressions will lead to better identity recognition in the future relative to neutral expressions. This occurred despite the fact that neutral expressions elicited better identity recognition than happy and angry expressions. These findings contribute to the growing literature examining the interaction of cognition and emotion.

  9. Under what conditions is recognition spared relative to recall after selective hippocampal damage in humans?

    PubMed

    Holdstock, J S; Mayes, A R; Roberts, N; Cezayirli, E; Isaac, C L; O'Reilly, R C; Norman, K A

    2002-01-01

    The claim that recognition memory is spared relative to recall after focal hippocampal damage has been disputed in the literature. We examined this claim by investigating object and object-location recall and recognition memory in a patient, YR, who has adult-onset selective hippocampal damage. Our aim was to identify the conditions under which recognition was spared relative to recall in this patient. She showed unimpaired forced-choice object recognition but clearly impaired recall, even when her control subjects found the object recognition task to be numerically harder than the object recall task. However, on two other recognition tests, YR's performance was not relatively spared. First, she was clearly impaired at an equivalently difficult yes/no object recognition task, but only when targets and foils were very similar. Second, YR was clearly impaired at forced-choice recognition of object-location associations. This impairment was also unrelated to difficulty because this task was no more difficult than the forced-choice object recognition task for control subjects. The clear impairment of yes/no, but not of forced-choice, object recognition after focal hippocampal damage, when targets and foils are very similar, is predicted by the neural network-based Complementary Learning Systems model of recognition. This model postulates that recognition is mediated by hippocampally dependent recollection and cortically dependent familiarity; thus hippocampal damage should not impair item familiarity. The model postulates that familiarity is ineffective when very similar targets and foils are shown one at a time and subjects have to identify which items are old (yes/no recognition). In contrast, familiarity is effective in discriminating which of similar targets and foils, seen together, is old (forced-choice recognition). Independent evidence from the remember/know procedure also indicates that YR's familiarity is normal. The Complementary Learning Systems model can also accommodate the clear impairment of forced-choice object-location recognition memory if it incorporates the view that the most complete convergence of spatial and object information, represented in different cortical regions, occurs in the hippocampus.

  10. Unconstrained face detection and recognition based on RGB-D camera for the visually impaired

    NASA Astrophysics Data System (ADS)

    Zhao, Xiangdong; Wang, Kaiwei; Yang, Kailun; Hu, Weijian

    2017-02-01

    It is highly important for visually impaired people (VIP) to be aware of human beings around themselves, so correctly recognizing people in VIP assisting apparatus provide great convenience. However, in classical face recognition technology, faces used in training and prediction procedures are usually frontal, and the procedures of acquiring face images require subjects to get close to the camera so that frontal face and illumination guaranteed. Meanwhile, labels of faces are defined manually rather than automatically. Most of the time, labels belonging to different classes need to be input one by one. It prevents assisting application for VIP with these constraints in practice. In this article, a face recognition system under unconstrained environment is proposed. Specifically, it doesn't require frontal pose or uniform illumination as required by previous algorithms. The attributes of this work lie in three aspects. First, a real time frontal-face synthesizing enhancement is implemented, and frontal faces help to increase recognition rate, which is proved with experiment results. Secondly, RGB-D camera plays a significant role in our system, from which both color and depth information are utilized to achieve real time face tracking which not only raises the detection rate but also gives an access to label faces automatically. Finally, we propose to use neural networks to train a face recognition system, and Principal Component Analysis (PCA) is applied to pre-refine the input data. This system is expected to provide convenient help for VIP to get familiar with others, and make an access for them to recognize people when the system is trained enough.

  11. The cingulo-opercular network provides word-recognition benefit.

    PubMed

    Vaden, Kenneth I; Kuchinsky, Stefanie E; Cute, Stephanie L; Ahlstrom, Jayne B; Dubno, Judy R; Eckert, Mark A

    2013-11-27

    Recognizing speech in difficult listening conditions requires considerable focus of attention that is often demonstrated by elevated activity in putative attention systems, including the cingulo-opercular network. We tested the prediction that elevated cingulo-opercular activity provides word-recognition benefit on a subsequent trial. Eighteen healthy, normal-hearing adults (10 females; aged 20-38 years) performed word recognition (120 trials) in multi-talker babble at +3 and +10 dB signal-to-noise ratios during a sparse sampling functional magnetic resonance imaging (fMRI) experiment. Blood oxygen level-dependent (BOLD) contrast was elevated in the anterior cingulate cortex, anterior insula, and frontal operculum in response to poorer speech intelligibility and response errors. These brain regions exhibited significantly greater correlated activity during word recognition compared with rest, supporting the premise that word-recognition demands increased the coherence of cingulo-opercular network activity. Consistent with an adaptive control network explanation, general linear mixed model analyses demonstrated that increased magnitude and extent of cingulo-opercular network activity was significantly associated with correct word recognition on subsequent trials. These results indicate that elevated cingulo-opercular network activity is not simply a reflection of poor performance or error but also supports word recognition in difficult listening conditions.

  12. Frontotemporal Functional Connectivity and Executive Functions Contribute to Episodic Memory Performance

    PubMed Central

    Blankenship, Tashauna L.; O'Neill, Meagan; Deater-Deckard, Kirby; Diana, Rachel A.; Bell, Martha Ann

    2016-01-01

    The contributions of hemispheric-specific electrophysiology (electroencephalogram or EEG) and independent executive functions (inhibitory control, working memory, cognitive flexibility) to episodic memory performance were examined using abstract paintings. Right hemisphere frontotemporal functional connectivity during encoding and retrieval, measured via EEG alpha coherence, statistically predicted performance on recency but not recognition judgments for the abstract paintings. Theta coherence, however, did not predict performance. Likewise, cognitive flexibility statistically predicted performance on recency judgments, but not recognition. These findings suggest that recognition and recency operate via separate electrophysiological and executive mechanisms. PMID:27388478

  13. Cultural differences in self-recognition: the early development of autonomous and related selves?

    PubMed

    Ross, Josephine; Yilmaz, Mandy; Dale, Rachel; Cassidy, Rose; Yildirim, Iraz; Suzanne Zeedyk, M

    2017-05-01

    Fifteen- to 18-month-old infants from three nationalities were observed interacting with their mothers and during two self-recognition tasks. Scottish interactions were characterized by distal contact, Zambian interactions by proximal contact, and Turkish interactions by a mixture of contact strategies. These culturally distinct experiences may scaffold different perspectives on self. In support, Scottish infants performed best in a task requiring recognition of the self in an individualistic context (mirror self-recognition), whereas Zambian infants performed best in a task requiring recognition of the self in a less individualistic context (body-as-obstacle task). Turkish infants performed similarly to Zambian infants on the body-as-obstacle task, but outperformed Zambians on the mirror self-recognition task. Verbal contact (a distal strategy) was positively related to mirror self-recognition and negatively related to passing the body-as-obstacle task. Directive action and speech (proximal strategies) were negatively related to mirror self-recognition. Self-awareness performance was best predicted by cultural context; autonomous settings predicted success in mirror self-recognition, and related settings predicted success in the body-as-obstacle task. These novel data substantiate the idea that cultural factors may play a role in the early expression of self-awareness. More broadly, the results highlight the importance of moving beyond the mark test, and designing culturally sensitive tests of self-awareness. © 2016 John Wiley & Sons Ltd.

  14. Locally linear regression for pose-invariant face recognition.

    PubMed

    Chai, Xiujuan; Shan, Shiguang; Chen, Xilin; Gao, Wen

    2007-07-01

    The variation of facial appearance due to the viewpoint (/pose) degrades face recognition systems considerably, which is one of the bottlenecks in face recognition. One of the possible solutions is generating virtual frontal view from any given nonfrontal view to obtain a virtual gallery/probe face. Following this idea, this paper proposes a simple, but efficient, novel locally linear regression (LLR) method, which generates the virtual frontal view from a given nonfrontal face image. We first justify the basic assumption of the paper that there exists an approximate linear mapping between a nonfrontal face image and its frontal counterpart. Then, by formulating the estimation of the linear mapping as a prediction problem, we present the regression-based solution, i.e., globally linear regression. To improve the prediction accuracy in the case of coarse alignment, LLR is further proposed. In LLR, we first perform dense sampling in the nonfrontal face image to obtain many overlapped local patches. Then, the linear regression technique is applied to each small patch for the prediction of its virtual frontal patch. Through the combination of all these patches, the virtual frontal view is generated. The experimental results on the CMU PIE database show distinct advantage of the proposed method over Eigen light-field method.

  15. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments.

    PubMed

    Baldominos, Alejandro; Saez, Yago; Isasi, Pedro

    2018-04-23

    Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures.

  16. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments

    PubMed Central

    2018-01-01

    Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures. PMID:29690587

  17. Recognition memory strength is predicted by pupillary responses at encoding while fixation patterns distinguish recollection from familiarity.

    PubMed

    Kafkas, Alexandros; Montaldi, Daniela

    2011-10-01

    Thirty-five healthy participants incidentally encoded a set of man-made and natural object pictures, while their pupil response and eye movements were recorded. At retrieval, studied and new stimuli were rated as novel, familiar (strong, moderate, or weak), or recollected. We found that both pupil response and fixation patterns at encoding predict later recognition memory strength. The extent of pupillary response accompanying incidental encoding was found to be predictive of subsequent memory. In addition, the number of fixations was also predictive of later recognition memory strength, suggesting that the accumulation of greater visual detail, even for single objects, is critical for the creation of a strong memory. Moreover, fixation patterns at encoding distinguished between recollection and familiarity at retrieval, with more dispersed fixations predicting familiarity and more clustered fixations predicting recollection. These data reveal close links between the autonomic control of pupil responses and eye movement patterns on the one hand and memory encoding on the other. Moreover, the data illustrate quantitative as well as qualitative differences in the incidental visual processing of stimuli, which are differentially predictive of the strength and the kind of memory experienced at recognition.

  18. Autonomous target recognition using remotely sensed surface vibration measurements

    NASA Astrophysics Data System (ADS)

    Geurts, James; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.; Barr, Dallas N.

    1993-09-01

    The remotely measured surface vibration signatures of tactical military ground vehicles are investigated for use in target classification and identification friend or foe (IFF) systems. The use of remote surface vibration sensing by a laser radar reduces the effects of partial occlusion, concealment, and camouflage experienced by automatic target recognition systems using traditional imagery in a tactical battlefield environment. Linear Predictive Coding (LPC) efficiently represents the vibration signatures and nearest neighbor classifiers exploit the LPC feature set using a variety of distortion metrics. Nearest neighbor classifiers achieve an 88 percent classification rate in an eight class problem, representing a classification performance increase of thirty percent from previous efforts. A novel confidence figure of merit is implemented to attain a 100 percent classification rate with less than 60 percent rejection. The high classification rates are achieved on a target set which would pose significant problems to traditional image-based recognition systems. The targets are presented to the sensor in a variety of aspects and engine speeds at a range of 1 kilometer. The classification rates achieved demonstrate the benefits of using remote vibration measurement in a ground IFF system. The signature modeling and classification system can also be used to identify rotary and fixed-wing targets.

  19. Forms Of Memory For Representation Of Visual Objects

    DTIC Science & Technology

    1991-02-14

    description system that functions independently of the episodic memory system that is damaged in amnesia and supports explicit remembering. Miscellaneous...well as semantic and functional information about an object, are preserved in the episodic system. 4. Priming and recognition of depth-cued, 3D objects A...requirement should serve to enhance an object’s distinctiveness in episodic memory . We also predicted robust priming for symmetric objects; this is because

  20. Acquired prosopagnosia without word recognition deficits.

    PubMed

    Susilo, Tirta; Wright, Victoria; Tree, Jeremy J; Duchaine, Bradley

    2015-01-01

    It has long been suggested that face recognition relies on specialized mechanisms that are not involved in visual recognition of other object categories, including those that require expert, fine-grained discrimination at the exemplar level such as written words. But according to the recently proposed many-to-many theory of object recognition (MTMT), visual recognition of faces and words are carried out by common mechanisms [Behrmann, M., & Plaut, D. C. ( 2013 ). Distributed circuits, not circumscribed centers, mediate visual recognition. Trends in Cognitive Sciences, 17, 210-219]. MTMT acknowledges that face and word recognition are lateralized, but posits that the mechanisms that predominantly carry out face recognition still contribute to word recognition and vice versa. MTMT makes a key prediction, namely that acquired prosopagnosics should exhibit some measure of word recognition deficits. We tested this prediction by assessing written word recognition in five acquired prosopagnosic patients. Four patients had lesions limited to the right hemisphere while one had bilateral lesions with more pronounced lesions in the right hemisphere. The patients completed a total of seven word recognition tasks: two lexical decision tasks and five reading aloud tasks totalling more than 1200 trials. The performances of the four older patients (3 female, age range 50-64 years) were compared to those of 12 older controls (8 female, age range 56-66 years), while the performances of the younger prosopagnosic (male, 31 years) were compared to those of 14 younger controls (9 female, age range 20-33 years). We analysed all results at the single-patient level using Crawford's t-test. Across seven tasks, four prosopagnosics performed as quickly and accurately as controls. Our results demonstrate that acquired prosopagnosia can exist without word recognition deficits. These findings are inconsistent with a key prediction of MTMT. They instead support the hypothesis that face recognition is carried out by specialized mechanisms that do not contribute to recognition of written words.

  1. Extrinsic Cognitive Load Impairs Spoken Word Recognition in High- and Low-Predictability Sentences.

    PubMed

    Hunter, Cynthia R; Pisoni, David B

    Listening effort (LE) induced by speech degradation reduces performance on concurrent cognitive tasks. However, a converse effect of extrinsic cognitive load on recognition of spoken words in sentences has not been shown. The aims of the present study were to (a) examine the impact of extrinsic cognitive load on spoken word recognition in a sentence recognition task and (b) determine whether cognitive load and/or LE needed to understand spectrally degraded speech would differentially affect word recognition in high- and low-predictability sentences. Downstream effects of speech degradation and sentence predictability on the cognitive load task were also examined. One hundred twenty young adults identified sentence-final spoken words in high- and low-predictability Speech Perception in Noise sentences. Cognitive load consisted of a preload of short (low-load) or long (high-load) sequences of digits, presented visually before each spoken sentence and reported either before or after identification of the sentence-final word. LE was varied by spectrally degrading sentences with four-, six-, or eight-channel noise vocoding. Level of spectral degradation and order of report (digits first or words first) were between-participants variables. Effects of cognitive load, sentence predictability, and speech degradation on accuracy of sentence-final word identification as well as recall of preload digit sequences were examined. In addition to anticipated main effects of sentence predictability and spectral degradation on word recognition, we found an effect of cognitive load, such that words were identified more accurately under low load than high load. However, load differentially affected word identification in high- and low-predictability sentences depending on the level of sentence degradation. Under severe spectral degradation (four-channel vocoding), the effect of cognitive load on word identification was present for high-predictability sentences but not for low-predictability sentences. Under mild spectral degradation (eight-channel vocoding), the effect of load was present for low-predictability sentences but not for high-predictability sentences. There were also reliable downstream effects of speech degradation and sentence predictability on recall of the preload digit sequences. Long digit sequences were more easily recalled following spoken sentences that were less spectrally degraded. When digits were reported after identification of sentence-final words, short digit sequences were recalled more accurately when the spoken sentences were predictable. Extrinsic cognitive load can impair recognition of spectrally degraded spoken words in a sentence recognition task. Cognitive load affected word identification in both high- and low-predictability sentences, suggesting that load may impact both context use and lower-level perceptual processes. Consistent with prior work, LE also had downstream effects on memory for visual digit sequences. Results support the proposal that extrinsic cognitive load and LE induced by signal degradation both draw on a central, limited pool of cognitive resources that is used to recognize spoken words in sentences under adverse listening conditions.

  2. Studies on a Novel Neuro-dynamic Model for Prediction Learning of Fluctuated Data Streams: Beyond Dichotomy between Probabilistic and Deterministic Models

    DTIC Science & Technology

    2014-11-04

    learning by robots as well as video image understanding by accumulated learning of the exemplars are discussed. 15. SUBJECT TERMS Cognitive ...learning to predict perceptual streams or encountering events by acquiring internal models is indispensable for intelligent or cognitive systems because...various cognitive functions are based on this compentency including goal-directed planning, mental simulation and recognition of the current situation

  3. Intelligent Automatic Right-Left Sign Lamp Based on Brain Signal Recognition System

    NASA Astrophysics Data System (ADS)

    Winda, A.; Sofyan; Sthevany; Vincent, R. S.

    2017-12-01

    Comfort as a part of the human factor, plays important roles in nowadays advanced automotive technology. Many of the current technologies go in the direction of automotive driver assistance features. However, many of the driver assistance features still require physical movement by human to enable the features. In this work, the proposed method is used in order to make certain feature to be functioning without any physical movement, instead human just need to think about it in their mind. In this work, brain signal is recorded and processed in order to be used as input to the recognition system. Right-Left sign lamp based on the brain signal recognition system can potentially replace the button or switch of the specific device in order to make the lamp work. The system then will decide whether the signal is ‘Right’ or ‘Left’. The decision of the Right-Left side of brain signal recognition will be sent to a processing board in order to activate the automotive relay, which will be used to activate the sign lamp. Furthermore, the intelligent system approach is used to develop authorized model based on the brain signal. Particularly Support Vector Machines (SVMs)-based classification system is used in the proposed system to recognize the Left-Right of the brain signal. Experimental results confirm the effectiveness of the proposed intelligent Automatic brain signal-based Right-Left sign lamp access control system. The signal is processed by Linear Prediction Coefficient (LPC) and Support Vector Machines (SVMs), and the resulting experiment shows the training and testing accuracy of 100% and 80%, respectively.

  4. A Unified Framework for Activity Recognition-Based Behavior Analysis and Action Prediction in Smart Homes

    PubMed Central

    Fatima, Iram; Fahim, Muhammad; Lee, Young-Koo; Lee, Sungyoung

    2013-01-01

    In recent years, activity recognition in smart homes is an active research area due to its applicability in many applications, such as assistive living and healthcare. Besides activity recognition, the information collected from smart homes has great potential for other application domains like lifestyle analysis, security and surveillance, and interaction monitoring. Therefore, discovery of users common behaviors and prediction of future actions from past behaviors become an important step towards allowing an environment to provide personalized service. In this paper, we develop a unified framework for activity recognition-based behavior analysis and action prediction. For this purpose, first we propose kernel fusion method for accurate activity recognition and then identify the significant sequential behaviors of inhabitants from recognized activities of their daily routines. Moreover, behaviors patterns are further utilized to predict the future actions from past activities. To evaluate the proposed framework, we performed experiments on two real datasets. The results show a remarkable improvement of 13.82% in the accuracy on average of recognized activities along with the extraction of significant behavioral patterns and precise activity predictions with 6.76% increase in F-measure. All this collectively help in understanding the users” actions to gain knowledge about their habits and preferences. PMID:23435057

  5. Comparison of an Electromagnetic Middle Ear Implant and Hearing Aid Word Recognition Performance to Word Recognition Performance Obtained Under Earphones.

    PubMed

    Chang, C Y Joseph; Spearman, Michael; Spearman, Brian; McCraney, Anna; Glasscock, Michael E

    2017-10-01

    To report the results of patients with the Maxum middle ear implant (MEI) and compare word recognition scores (WRS) and speech perception gap (SP Gap) of Maxum versus optimally fit hearing aids (HA). Case series with chart review. Single, private otology clinic. Eleven ears, in nine adult patients (two women; average age 62.7 yr). Twelve consecutive ears with moderate to severe sensorineural hearing loss (SNHL) underwent implantation of the Maxum system. One patient was not included due to inadequate preoperative testing. Primary outcome measures included word recognition score (WRS) and SP Gap (maximum word understanding [PB max] - WRSaided) improvement compared with HAs. The average Maxum WRS was 64.7% (range, 28-94%), a 41.6% improvement (range, 10-66%) over HAs (p < 0.001). The average Maxum SP Gap was 6.6% (range, -8 to 24%), a 41.6% improvement (range, 10-66%) over HAs (p < 0.001). These data demonstrate that the Maxum provides superior WRS than HAs for patients with significant aided SP Gaps. There is a significant, very strong correlation between Maxum WRS and PB max (r = 0.85, p = 0.001). This implies that PB max may reasonably predict WRS outcomes with Maxum before implantation, and the SP Gap can reasonably predict the degree of additional potential benefit with Maxum. In advising patients who may be candidates for both a CI and MEI, PB max and SP Gap measurements will provide useful predictive information to help clinicians counsel patients on their choice of hearing technology. 4.

  6. Reading as Active Sensing: A Computational Model of Gaze Planning in Word Recognition

    PubMed Central

    Ferro, Marcello; Ognibene, Dimitri; Pezzulo, Giovanni; Pirrelli, Vito

    2010-01-01

    We offer a computational model of gaze planning during reading that consists of two main components: a lexical representation network, acquiring lexical representations from input texts (a subset of the Italian CHILDES database), and a gaze planner, designed to recognize written words by mapping strings of characters onto lexical representations. The model implements an active sensing strategy that selects which characters of the input string are to be fixated, depending on the predictions dynamically made by the lexical representation network. We analyze the developmental trajectory of the system in performing the word recognition task as a function of both increasing lexical competence, and correspondingly increasing lexical prediction ability. We conclude by discussing how our approach can be scaled up in the context of an active sensing strategy applied to a robotic setting. PMID:20577589

  7. Reading as active sensing: a computational model of gaze planning in word recognition.

    PubMed

    Ferro, Marcello; Ognibene, Dimitri; Pezzulo, Giovanni; Pirrelli, Vito

    2010-01-01

    WE OFFER A COMPUTATIONAL MODEL OF GAZE PLANNING DURING READING THAT CONSISTS OF TWO MAIN COMPONENTS: a lexical representation network, acquiring lexical representations from input texts (a subset of the Italian CHILDES database), and a gaze planner, designed to recognize written words by mapping strings of characters onto lexical representations. The model implements an active sensing strategy that selects which characters of the input string are to be fixated, depending on the predictions dynamically made by the lexical representation network. We analyze the developmental trajectory of the system in performing the word recognition task as a function of both increasing lexical competence, and correspondingly increasing lexical prediction ability. We conclude by discussing how our approach can be scaled up in the context of an active sensing strategy applied to a robotic setting.

  8. Age-Related Differences in Lexical Access Relate to Speech Recognition in Noise

    PubMed Central

    Carroll, Rebecca; Warzybok, Anna; Kollmeier, Birger; Ruigendijk, Esther

    2016-01-01

    Vocabulary size has been suggested as a useful measure of “verbal abilities” that correlates with speech recognition scores. Knowing more words is linked to better speech recognition. How vocabulary knowledge translates to general speech recognition mechanisms, how these mechanisms relate to offline speech recognition scores, and how they may be modulated by acoustical distortion or age, is less clear. Age-related differences in linguistic measures may predict age-related differences in speech recognition in noise performance. We hypothesized that speech recognition performance can be predicted by the efficiency of lexical access, which refers to the speed with which a given word can be searched and accessed relative to the size of the mental lexicon. We tested speech recognition in a clinical German sentence-in-noise test at two signal-to-noise ratios (SNRs), in 22 younger (18–35 years) and 22 older (60–78 years) listeners with normal hearing. We also assessed receptive vocabulary, lexical access time, verbal working memory, and hearing thresholds as measures of individual differences. Age group, SNR level, vocabulary size, and lexical access time were significant predictors of individual speech recognition scores, but working memory and hearing threshold were not. Interestingly, longer accessing times were correlated with better speech recognition scores. Hierarchical regression models for each subset of age group and SNR showed very similar patterns: the combination of vocabulary size and lexical access time contributed most to speech recognition performance; only for the younger group at the better SNR (yielding about 85% correct speech recognition) did vocabulary size alone predict performance. Our data suggest that successful speech recognition in noise is mainly modulated by the efficiency of lexical access. This suggests that older adults’ poorer performance in the speech recognition task may have arisen from reduced efficiency in lexical access; with an average vocabulary size similar to that of younger adults, they were still slower in lexical access. PMID:27458400

  9. Age-Related Differences in Lexical Access Relate to Speech Recognition in Noise.

    PubMed

    Carroll, Rebecca; Warzybok, Anna; Kollmeier, Birger; Ruigendijk, Esther

    2016-01-01

    Vocabulary size has been suggested as a useful measure of "verbal abilities" that correlates with speech recognition scores. Knowing more words is linked to better speech recognition. How vocabulary knowledge translates to general speech recognition mechanisms, how these mechanisms relate to offline speech recognition scores, and how they may be modulated by acoustical distortion or age, is less clear. Age-related differences in linguistic measures may predict age-related differences in speech recognition in noise performance. We hypothesized that speech recognition performance can be predicted by the efficiency of lexical access, which refers to the speed with which a given word can be searched and accessed relative to the size of the mental lexicon. We tested speech recognition in a clinical German sentence-in-noise test at two signal-to-noise ratios (SNRs), in 22 younger (18-35 years) and 22 older (60-78 years) listeners with normal hearing. We also assessed receptive vocabulary, lexical access time, verbal working memory, and hearing thresholds as measures of individual differences. Age group, SNR level, vocabulary size, and lexical access time were significant predictors of individual speech recognition scores, but working memory and hearing threshold were not. Interestingly, longer accessing times were correlated with better speech recognition scores. Hierarchical regression models for each subset of age group and SNR showed very similar patterns: the combination of vocabulary size and lexical access time contributed most to speech recognition performance; only for the younger group at the better SNR (yielding about 85% correct speech recognition) did vocabulary size alone predict performance. Our data suggest that successful speech recognition in noise is mainly modulated by the efficiency of lexical access. This suggests that older adults' poorer performance in the speech recognition task may have arisen from reduced efficiency in lexical access; with an average vocabulary size similar to that of younger adults, they were still slower in lexical access.

  10. An eye on reactor and computer control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, J.; Knee, B.

    1992-01-01

    At ORNL computer software has been developed to make possible an improved eye-gaze measurement technology. Such an inovation could be the basis for advanced eye-gaze systems that may have applications in reactor control, software development, cognitive engineering, evaluation of displays, prediction of mental workloads, and military target recognition.

  11. Automatic Speech Recognition Predicts Speech Intelligibility and Comprehension for Listeners With Simulated Age-Related Hearing Loss.

    PubMed

    Fontan, Lionel; Ferrané, Isabelle; Farinas, Jérôme; Pinquier, Julien; Tardieu, Julien; Magnen, Cynthia; Gaillard, Pascal; Aumont, Xavier; Füllgrabe, Christian

    2017-09-18

    The purpose of this article is to assess speech processing for listeners with simulated age-related hearing loss (ARHL) and to investigate whether the observed performance can be replicated using an automatic speech recognition (ASR) system. The long-term goal of this research is to develop a system that will assist audiologists/hearing-aid dispensers in the fine-tuning of hearing aids. Sixty young participants with normal hearing listened to speech materials mimicking the perceptual consequences of ARHL at different levels of severity. Two intelligibility tests (repetition of words and sentences) and 1 comprehension test (responding to oral commands by moving virtual objects) were administered. Several language models were developed and used by the ASR system in order to fit human performances. Strong significant positive correlations were observed between human and ASR scores, with coefficients up to .99. However, the spectral smearing used to simulate losses in frequency selectivity caused larger declines in ASR performance than in human performance. Both intelligibility and comprehension scores for listeners with simulated ARHL are highly correlated with the performances of an ASR-based system. In the future, it needs to be determined if the ASR system is similarly successful in predicting speech processing in noise and by older people with ARHL.

  12. Acceptance threshold hypothesis is supported by chemical similarity of cuticular hydrocarbons in a stingless bee, Melipona asilvai.

    PubMed

    Nascimento, D L; Nascimento, F S

    2012-11-01

    The ability to discriminate nestmates from non-nestmates in insect societies is essential to protect colonies from conspecific invaders. The acceptance threshold hypothesis predicts that organisms whose recognition systems classify recipients without errors should optimize the balance between acceptance and rejection. In this process, cuticular hydrocarbons play an important role as cues of recognition in social insects. The aims of this study were to determine whether guards exhibit a restrictive level of rejection towards chemically distinct individuals, becoming more permissive during the encounters with either nestmate or non-nestmate individuals bearing chemically similar profiles. The study demonstrates that Melipona asilvai (Hymenoptera: Apidae: Meliponini) guards exhibit a flexible system of nestmate recognition according to the degree of chemical similarity between the incoming forager and its own cuticular hydrocarbons profile. Guards became less restrictive in their acceptance rates when they encounter non-nestmates with highly similar chemical profiles, which they probably mistake for nestmates, hence broadening their acceptance level.

  13. The differential influences of parenting and child narrative coherence on the development of emotion recognition.

    PubMed

    Berzenski, Sara R; Yates, Tuppett M

    2017-10-01

    The ability to recognize and label emotions serves as a building block by which children make sense of the world and learn how to interact with social partners. However, the timing and salience of influences on emotion recognition development are not fully understood. Path analyses evaluated the contributions of parenting and child narrative coherence to the development of emotion recognition across ages 4 through 8 in a diverse (50% female; 46% Hispanic, 18.4% Black, 11.2% White, .4% Asian, 24.0% multiracial) longitudinally followed sample of 250 caregiver-child dyads. Parenting behaviors during interactions (i.e., support, instructional quality, intrusiveness, and hostility) and children's narrative coherence during the MacArthur Story Stem Battery were observed at ages 4 and 6. Emotion recognition increased from age 4 to 8. Parents' supportive presence at age 4 and instructional quality at age 6 predicted increased emotion recognition at 8, beyond initial levels of emotion recognition and child cognitive ability. There were no significant effects of negative parenting (i.e., intrusiveness or hostility) at 4 or 6 on emotion recognition. Child narrative coherence at ages 4 and 6 predicted increased emotion recognition at 8. Emotion recognition at age 4 predicted increased parent instructional quality and decreased intrusiveness at 6. These findings clarify whether and when familial and child factors influence emotion recognition development. Influences on emotion recognition development emerged as differentially salient across time periods, such that there is a need to develop and implement targeted interventions to promote positive parenting skills and children's narrative coherence at specific ages. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. A Prospective Examination of Clinician and Supervisor Turnover Within the Context of Implementation of Evidence-Based Practices in a Publicly-Funded Mental Health System.

    PubMed

    Beidas, Rinad S; Marcus, Steven; Wolk, Courtney Benjamin; Powell, Byron; Aarons, Gregory A; Evans, Arthur C; Hurford, Matthew O; Hadley, Trevor; Adams, Danielle R; Walsh, Lucia M; Babbar, Shaili; Barg, Frances; Mandell, David S

    2016-09-01

    Staff turnover rates in publicly-funded mental health settings are high. We investigated staff and organizational predictors of turnover in a sample of individuals working in an urban public mental health system that has engaged in a system-level effort to implement evidence-based practices. Additionally, we interviewed staff to understand reasons for turnover. Greater staff burnout predicted increased turnover, more openness toward new practices predicted retention, and more professional recognition predicted increased turnover. Staff reported leaving their organizations because of personal, organizational, and financial reasons; just over half of staff that left their organization stayed in the public mental health sector. Implications include an imperative to focus on turnover, with a particular emphasis on ameliorating staff burnout.

  15. The Role of Perceptual Load in Object Recognition

    ERIC Educational Resources Information Center

    Lavie, Nilli; Lin, Zhicheng; Zokaei, Nahid; Thoma, Volker

    2009-01-01

    Predictions from perceptual load theory (Lavie, 1995, 2005) regarding object recognition across the same or different viewpoints were tested. Results showed that high perceptual load reduces distracter recognition levels despite always presenting distracter objects from the same view. They also showed that the levels of distracter recognition were…

  16. Dispatcher Recognition of Stroke Using the National Academy Medical Priority Dispatch System

    PubMed Central

    Buck, Brian H; Starkman, Sidney; Eckstein, Marc; Kidwell, Chelsea S; Haines, Jill; Huang, Rainy; Colby, Daniel; Saver, Jeffrey L

    2009-01-01

    Background Emergency Medical Dispatchers (EMDs) play an important role in optimizing stroke care if they are able to accurately identify calls regarding acute cerebrovascular disease. This study was undertaken to assess the diagnostic accuracy of the current national protocol guiding dispatcher questioning of 911 callers to identify stroke, QA Guide v 11.1 of the National Academy Medical Priority Dispatch System (MPDS). Methods We identified all Los Angeles Fire Department paramedic transports of patients to UCLA Medical Center during the 12 month period from January to December 2005 in a prospectively maintained database. Dispatcher-assigned MPDS codes for each of these patient transports were abstracted from the paramedic run sheets and compared to final hospital discharge diagnosis. Results Among 3474 transported patients, 96 (2.8%) had a final diagnosis of stroke or transient ischemic attack. Dispatchers assigned a code of potential stroke to 44.8% of patients with a final discharge diagnosis of stroke or TIA. Dispatcher identification of stroke showed a sensitivity of 0.41, specificity of 0.96, positive predictive value of 0.45, and negative predictive value of 0.95. Conclusions Dispatcher recognition of stroke calls using the widely employed MPDS algorithm is suboptimal, with failure to identify more than half of stroke patients as likely stroke. Revisions to the current national dispatcher structured interview and complaint identification algorithm for stroke may facilitate more accurate recognition of stroke by EMDs. PMID:19390065

  17. Forward modelling requires intention recognition and non-impoverished predictions.

    PubMed

    de Ruiter, Jan P; Cummins, Chris

    2013-08-01

    We encourage Pickering & Garrod (P&G) to implement this promising theory in a computational model. The proposed theory crucially relies on having an efficient and reliable mechanism for early intention recognition. Furthermore, the generation of impoverished predictions is incompatible with a number of key phenomena that motivated P&G's theory. Explaining these phenomena requires fully specified perceptual predictions in both comprehension and production.

  18. Microscopic prediction of speech recognition for listeners with normal hearing in noise using an auditory model.

    PubMed

    Jürgens, Tim; Brand, Thomas

    2009-11-01

    This study compares the phoneme recognition performance in speech-shaped noise of a microscopic model for speech recognition with the performance of normal-hearing listeners. "Microscopic" is defined in terms of this model twofold. First, the speech recognition rate is predicted on a phoneme-by-phoneme basis. Second, microscopic modeling means that the signal waveforms to be recognized are processed by mimicking elementary parts of human's auditory processing. The model is based on an approach by Holube and Kollmeier [J. Acoust. Soc. Am. 100, 1703-1716 (1996)] and consists of a psychoacoustically and physiologically motivated preprocessing and a simple dynamic-time-warp speech recognizer. The model is evaluated while presenting nonsense speech in a closed-set paradigm. Averaged phoneme recognition rates, specific phoneme recognition rates, and phoneme confusions are analyzed. The influence of different perceptual distance measures and of the model's a-priori knowledge is investigated. The results show that human performance can be predicted by this model using an optimal detector, i.e., identical speech waveforms for both training of the recognizer and testing. The best model performance is yielded by distance measures which focus mainly on small perceptual distances and neglect outliers.

  19. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance

    PubMed Central

    Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.

    2015-01-01

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887

  20. Does aging impair first impression accuracy? Differentiating emotion recognition from complex social inferences.

    PubMed

    Krendl, Anne C; Rule, Nicholas O; Ambady, Nalini

    2014-09-01

    Young adults can be surprisingly accurate at making inferences about people from their faces. Although these first impressions have important consequences for both the perceiver and the target, it remains an open question whether first impression accuracy is preserved with age. Specifically, could age differences in impressions toward others stem from age-related deficits in accurately detecting complex social cues? Research on aging and impression formation suggests that young and older adults show relative consensus in their first impressions, but it is unknown whether they differ in accuracy. It has been widely shown that aging disrupts emotion recognition accuracy, and that these impairments may predict deficits in other social judgments, such as detecting deceit. However, it is unclear whether general impression formation accuracy (e.g., emotion recognition accuracy, detecting complex social cues) relies on similar or distinct mechanisms. It is important to examine this question to evaluate how, if at all, aging might affect overall accuracy. Here, we examined whether aging impaired first impression accuracy in predicting real-world outcomes and categorizing social group membership. Specifically, we studied whether emotion recognition accuracy and age-related cognitive decline (which has been implicated in exacerbating deficits in emotion recognition) predict first impression accuracy. Our results revealed that emotion recognition accuracy did not predict first impression accuracy, nor did age-related cognitive decline impair it. These findings suggest that domains of social perception outside of emotion recognition may rely on mechanisms that are relatively unimpaired by aging. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. Patterns of evolution at the gametophytic self-incompatibility Sorbus aucuparia (Pyrinae) S pollen genes support the non-self recognition by multiple factors model.

    PubMed

    Aguiar, Bruno; Vieira, Jorge; Cunha, Ana E; Fonseca, Nuno A; Reboiro-Jato, David; Reboiro-Jato, Miguel; Fdez-Riverola, Florentino; Raspé, Olivier; Vieira, Cristina P

    2013-05-01

    S-RNase-based gametophytic self-incompatibility evolved once before the split of the Asteridae and Rosidae. In Prunus (tribe Amygdaloideae of Rosaceae), the self-incompatibility S-pollen is a single F-box gene that presents the expected evolutionary signatures. In Malus and Pyrus (subtribe Pyrinae of Rosaceae), however, clusters of F-box genes (called SFBBs) have been described that are expressed in pollen only and are linked to the S-RNase gene. Although polymorphic, SFBB genes present levels of diversity lower than those of the S-RNase gene. They have been suggested as putative S-pollen genes, in a system of non-self recognition by multiple factors. Subsets of allelic products of the different SFBB genes interact with non-self S-RNases, marking them for degradation, and allowing compatible pollinations. This study performed a detailed characterization of SFBB genes in Sorbus aucuparia (Pyrinae) to address three predictions of the non-self recognition by multiple factors model. As predicted, the number of SFBB genes was large to account for the many S-RNase specificities. Secondly, like the S-RNase gene, the SFBB genes were old. Thirdly, amino acids under positive selection-those that could be involved in specificity determination-were identified when intra-haplotype SFBB genes were analysed using codon models. Overall, the findings reported here support the non-self recognition by multiple factors model.

  2. The prediction of human exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyev, V.V.; Salamov, A.A.; Lawrence, C.B.

    1994-12-31

    Discriminant analysis is applied to the problem of recognition 5`-, internal and 3`-exons in human DNA sequences. Specific recognition functions were developed for revealing exons of particular types. The method based on a splice site prediction algorithm that uses the linear Fisher discriminant to combine the information about significant triplet frequencies of various functional parts of splice site regions and preferences of oligonucleotide in protein coding and nation regions. The accuracy of our splice site recognition function is about 97%. A discriminant function for 5`-exon prediction includes hexanucleotide composition of upstream region, triplet composition around the ATG codon, ORF codingmore » potential, donor splice site potential and composition of downstream introit region. For internal exon prediction, we combine in a discriminant function the characteristics describing the 5`- intron region, donor splice site, coding region, acceptor splice site and Y-intron region for each open reading frame flanked by GT and AG base pairs. The accuracy of precise internal exon recognition on a test set of 451 exon and 246693 pseudoexon sequences is 77% with a specificity of 79% and a level of pseudoexon ORF prediction of 99.96%. The recognition quality computed at the level of individual nucleotides is 89%, for exon sequences and 98% for intron sequences. A discriminant function for 3`-exon prediction includes octanucleolide composition of upstream nation region, triplet composition around the stop codon, ORF coding potential, acceptor splice site potential and hexanucleotide composition of downstream region. We unite these three discriminant functions in exon predicting program FEX (find exons). FEX exactly predicts 70% of 1016 exons from the test of 181 complete genes with specificity 73%, and 89% exons are exactly or partially predicted. On the average, 85% of nucleotides were predicted accurately with specificity 91%.« less

  3. Improved dense trajectories for action recognition based on random projection and Fisher vectors

    NASA Astrophysics Data System (ADS)

    Ai, Shihui; Lu, Tongwei; Xiong, Yudian

    2018-03-01

    As an important application of intelligent monitoring system, the action recognition in video has become a very important research area of computer vision. In order to improve the accuracy rate of the action recognition in video with improved dense trajectories, one advanced vector method is introduced. Improved dense trajectories combine Fisher Vector with Random Projection. The method realizes the reduction of the characteristic trajectory though projecting the high-dimensional trajectory descriptor into the low-dimensional subspace based on defining and analyzing Gaussian mixture model by Random Projection. And a GMM-FV hybrid model is introduced to encode the trajectory feature vector and reduce dimension. The computational complexity is reduced by Random Projection which can drop Fisher coding vector. Finally, a Linear SVM is used to classifier to predict labels. We tested the algorithm in UCF101 dataset and KTH dataset. Compared with existed some others algorithm, the result showed that the method not only reduce the computational complexity but also improved the accuracy of action recognition.

  4. Deafblindness, ontological security, and social recognition.

    PubMed

    Danermark, Berth D; Möller, Kerstin

    2008-11-01

    Trust, ontological security, and social recognition are discussed in relation to self-identity among people with acquired deafblindness. To date the phenomenon has not been elaborated in the context of deafblindness. When a person with deafblindness interacts with the social and material environment, the reliability, constancy, and predictability of his or her relations is crucial for maintaining or achieving ontological security or a general and fairly persistent feeling of well-being. When these relations fundamentally change, the impact on ontological security will be very negative. The construction of social recognition through the interaction between the self and others is embodied across three dimensions: at the individual level, at the legal systems level, and at the normative or value level. The relationship between trust and ontological security on the one hand and social recognition on the other hand is discussed. It is argued that these basic processes affecting personality development have to be identified and acknowledged in the interactions people with deafblindness experience. Some implications for the rehabilitation of people with acquired deafblindness are presented and illustrated.

  5. The memory state heuristic: A formal model based on repeated recognition judgments.

    PubMed

    Castela, Marta; Erdfelder, Edgar

    2017-02-01

    The recognition heuristic (RH) theory predicts that, in comparative judgment tasks, if one object is recognized and the other is not, the recognized one is chosen. The memory-state heuristic (MSH) extends the RH by assuming that choices are not affected by recognition judgments per se, but by the memory states underlying these judgments (i.e., recognition certainty, uncertainty, or rejection certainty). Specifically, the larger the discrepancy between memory states, the larger the probability of choosing the object in the higher state. The typical RH paradigm does not allow estimation of the underlying memory states because it is unknown whether the objects were previously experienced or not. Therefore, we extended the paradigm by repeating the recognition task twice. In line with high threshold models of recognition, we assumed that inconsistent recognition judgments result from uncertainty whereas consistent judgments most likely result from memory certainty. In Experiment 1, we fitted 2 nested multinomial models to the data: an MSH model that formalizes the relation between memory states and binary choices explicitly and an approximate model that ignores the (unlikely) possibility of consistent guesses. Both models provided converging results. As predicted, reliance on recognition increased with the discrepancy in the underlying memory states. In Experiment 2, we replicated these results and found support for choice consistency predictions of the MSH. Additionally, recognition and choice latencies were in agreement with the MSH in both experiments. Finally, we validated critical parameters of our MSH model through a cross-validation method and a third experiment. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    PubMed

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  7. Effect of chemical compounds on electronic tongue response to citrus juices

    USDA-ARS?s Scientific Manuscript database

    The electronic tongue system mimics the process of taste detection by human taste buds and recognition by the brain, hence helping in prediction of taste. With this unique capability, the electronic tongue has been used for taste detection of a wide range of food products. As a preliminary step in p...

  8. Fifth International Symposium on Liquid Space Propulsion

    NASA Technical Reports Server (NTRS)

    Garcia, R. (Compiler)

    2005-01-01

    Contents include the fiollowing: Theme: Life-life Combustion Devices Technology. Technical Sessions: International Perspectives. System Level Effects. Component Level Processes. Material Considerations. Design Environments -- Predictions. Injector Design Technology. Design Environments -- Measurements. Panel Discussion: Views on future research and development needs and Symposium observations. Aquarium Welcome and Southern Belle Riverboat Recognition Banquet evening events.

  9. The Two-Systems Account of Theory of Mind: Testing the Links to Social- Perceptual and Cognitive Abilities

    PubMed Central

    Meinhardt-Injac, Bozana; Daum, Moritz M.; Meinhardt, Günter; Persike, Malte

    2018-01-01

    According to the two-systems account of theory of mind (ToM), understanding mental states of others involves both fast social-perceptual processes, as well as slower, reflexive cognitive operations (Frith and Frith, 2008; Apperly and Butterfill, 2009). To test the respective roles of specific abilities in either of these processes we administered 15 experimental procedures to a large sample of 343 participants, testing ability in face recognition and holistic perception, language, and reasoning. ToM was measured by a set of tasks requiring ability to track and to infer complex emotional and mental states of others from faces, eyes, spoken language, and prosody. We used structural equation modeling to test the relative strengths of a social-perceptual (face processing related) and reflexive-cognitive (language and reasoning related) path in predicting ToM ability. The two paths accounted for 58% of ToM variance, thus validating a general two-systems framework. Testing specific predictor paths revealed language and face recognition as strong and significant predictors of ToM. For reasoning, there were neither direct nor mediated effects, albeit reasoning was strongly associated with language. Holistic face perception also failed to show a direct link with ToM ability, while there was a mediated effect via face recognition. These results highlight the respective roles of face recognition and language for the social brain, and contribute closer empirical specification of the general two-systems account. PMID:29445336

  10. The recognition and modification sites for the bacterial type I restriction systems KpnAI, StySEAI, StySENI and StySGI

    PubMed Central

    Kasarjian, Julie K. A.; Hidaka, Masumi; Horiuchi, Takashi; Iida, Masatake; Ryu, Junichi

    2004-01-01

    Using an in vivo plasmid transformation method, we have determined the DNA sequences recognized by the KpnAI, StySEAI, StySENI and StySGI R-M systems from Klebsiella oxytoca strain M5a1, Salmonella eastbourne, Salmonella enteritidis and Salmonella gelsenkirchen, respectively. These type I restriction-modification systems were originally identified using traditional phage assay, and described here is the plasmid transformation test and computer program used to determine their DNA recognition sequences. For this test, we constructed two sets of plasmids, pL and pE, that contain phage lambda and Escherichia coli K-12 chromosomal DNA fragments, respectively. Further, using the methylation sensitivities of various known type II restriction enzymes, we identified the target adenines for methylation (listed in bold italics below as A or T in case of the complementary strand). The recognition sequence and methylation sites are GAA(6N)TGCC (KpnAI), ACA(6N)TYCA (StySEAI), CGA(6N)TACC (StySENI) and TAAC(7N)RTCG (StySGI). These DNA recognition sequences all have a typical type I bipartite pattern and represent three novel specificities and one isoschizomer (StySENI). For confirmation, oligonucleotides containing each of the predicted sequences were synthesized, cloned into plasmid pMECA and transformed into each strain, resulting in a large reduction in efficiency of transformation (EOT). PMID:15199175

  11. A two-stage clinical decision support system for early recognition and stratification of patients with sepsis: an observational cohort study.

    PubMed

    Amland, Robert C; Lyons, Jason J; Greene, Tracy L; Haley, James M

    2015-10-01

    To examine the diagnostic accuracy of a two-stage clinical decision support system for early recognition and stratification of patients with sepsis. Observational cohort study employing a two-stage sepsis clinical decision support to recognise and stratify patients with sepsis. The stage one component was comprised of a cloud-based clinical decision support with 24/7 surveillance to detect patients at risk of sepsis. The cloud-based clinical decision support delivered notifications to the patients' designated nurse, who then electronically contacted a provider. The second stage component comprised a sepsis screening and stratification form integrated into the patient electronic health record, essentially an evidence-based decision aid, used by providers to assess patients at bedside. Urban, 284 acute bed community hospital in the USA; 16,000 hospitalisations annually. Data on 2620 adult patients were collected retrospectively in 2014 after the clinical decision support was implemented. 'Suspected infection' was the established gold standard to assess clinical decision support clinimetric performance. A sepsis alert activated on 417 (16%) of 2620 adult patients hospitalised. Applying 'suspected infection' as standard, the patient population characteristics showed 72% sensitivity and 73% positive predictive value. A postalert screening conducted by providers at bedside of 417 patients achieved 81% sensitivity and 94% positive predictive value. Providers documented against 89% patients with an alert activated by clinical decision support and completed 75% of bedside screening and stratification of patients with sepsis within one hour from notification. A clinical decision support binary alarm system with cross-checking functionality improves early recognition and facilitates stratification of patients with sepsis.

  12. Remembering the snake in the grass: Threat enhances recognition but not source memory.

    PubMed

    Meyer, Miriam Magdalena; Bell, Raoul; Buchner, Axel

    2015-12-01

    Research on the influence of emotion on source memory has yielded inconsistent findings. The object-based framework (Mather, 2007) predicts that negatively arousing stimuli attract attention, resulting in enhanced within-object binding, and, thereby, enhanced source memory for intrinsic context features of emotional stimuli. To test this prediction, we presented pictures of threatening and harmless animals, the color of which had been experimentally manipulated. In a memory test, old-new recognition for the animals and source memory for their color was assessed. In all 3 experiments, old-new recognition was better for the more threatening material, which supports previous reports of an emotional memory enhancement. This recognition advantage was due to the emotional properties of the stimulus material, and not specific for snake stimuli. However, inconsistent with the prediction of the object-based framework, intrinsic source memory was not affected by emotion. (c) 2015 APA, all rights reserved).

  13. The Molecular Origin of Enthalpy/Entropy Compensation in Biomolecular Recognition.

    PubMed

    Fox, Jerome M; Zhao, Mengxia; Fink, Michael J; Kang, Kyungtae; Whitesides, George M

    2018-05-20

    Biomolecular recognition can be stubborn; changes in the structures of associating molecules, or the environments in which they associate, often yield compensating changes in enthalpies and entropies of binding and no net change in affinities. This phenomenon-termed enthalpy/entropy (H/S) compensation-hinders efforts in biomolecular design, and its incidence-often a surprise to experimentalists-makes interactions between biomolecules difficult to predict. Although characterizing H/S compensation requires experimental care, it is unquestionably a real phenomenon that has, from an engineering perspective, useful physical origins. Studying H/S compensation can help illuminate the still-murky roles of water and dynamics in biomolecular recognition and self-assembly. This review summarizes known sources of H/ S compensation (real and perceived) and lays out a conceptual framework for understanding and dissecting-and, perhaps, avoiding or exploiting-this phenomenon in biophysical systems.

  14. Software tool for data mining and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Ye, Chenzhou; Chen, Nianyi

    2002-03-01

    A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.

  15. A prospective examination of clinician and supervisor turnover within the context of implementation of evidence-based practices in a publicly-funded mental health system

    PubMed Central

    Marcus, Steven; Wolk, Courtney Benjamin; Powell, Byron; Aarons, Gregory A.; Evans, Arthur C.; Hurford, Matthew O.; Hadley, Trevor; Adams, Danielle R.; Walsh, Lucia M.; Babbar, Shaili; Barg, Frances; Mandell, David S.

    2015-01-01

    Staff turnover rates in publicly-funded mental health settings are high. We investigated staff and organizational predictors of turnover in a sample of individuals working in an urban public mental health system that has engaged in a system-level effort to implement evidence-based practices. Additionally, we interviewed staff to understand reasons for turnover. Greater staff burnout predicted increased turnover, more openness toward new practices predicted retention, and more professional recognition predicted increased turnover. Staff reported leaving their organizations because of personal, organizational, and financial reasons; just over half of staff that left their organization stayed in the public mental health sector. Implications include an imperative to focus on turnover, with a particular emphasis on ameliorating staff burnout. PMID:26179469

  16. Recognition ROCS Are Curvilinear--Or Are They? On Premature Arguments against the Two-High-Threshold Model of Recognition

    ERIC Educational Resources Information Center

    Broder, Arndt; Schutz, Julia

    2009-01-01

    Recent reviews of recognition receiver operating characteristics (ROCs) claim that their curvilinear shape rules out threshold models of recognition. However, the shape of ROCs based on confidence ratings is not diagnostic to refute threshold models, whereas ROCs based on experimental bias manipulations are. Also, fitting predicted frequencies to…

  17. Signed reward prediction errors drive declarative learning

    PubMed Central

    Naert, Lien; Janssens, Clio; Talsma, Durk; Van Opstal, Filip; Verguts, Tom

    2018-01-01

    Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning–a quintessentially human form of learning–remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; “better-than-expected” signals) during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli. PMID:29293493

  18. Signed reward prediction errors drive declarative learning.

    PubMed

    De Loof, Esther; Ergo, Kate; Naert, Lien; Janssens, Clio; Talsma, Durk; Van Opstal, Filip; Verguts, Tom

    2018-01-01

    Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning-a quintessentially human form of learning-remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; "better-than-expected" signals) during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli.

  19. The effect of implied orientation derived from verbal context on picture recognition.

    PubMed

    Stanfield, R A; Zwaan, R A

    2001-03-01

    Perceptual symbol systems assume an analogue relationship between a symbol and its referent, whereas amodal symbol systems assume an arbitrary relationship between a symbol and its referent. According to perceptual symbol theories, the complete representation of an object, called a simulation, should reflect physical characteristics of the object. Amodal theories, in contrast, do not make this prediction. We tested the hypothesis, derived from perceptual symbol theories, that people mentally represent the orientation of an object implied by a verbal description. Orientation (vertical-horizontal) was manipulated by having participants read a sentence that implicitly suggested a particular orientation for an object. Then recognition latencies to pictures of the object in each of the two orientations were measured. Pictures matching the orientation of the object implied by the sentence were responded to faster than pictures that did not match the orientation. This finding is interpreted as offering support for theories positing perceptual symbol systems.

  20. Age-related Effects on Word Recognition: Reliance on Cognitive Control Systems with Structural Declines in Speech-responsive Cortex

    PubMed Central

    Walczak, Adam; Ahlstrom, Jayne; Denslow, Stewart; Horwitz, Amy; Dubno, Judy R.

    2008-01-01

    Speech recognition can be difficult and effortful for older adults, even for those with normal hearing. Declining frontal lobe cognitive control has been hypothesized to cause age-related speech recognition problems. This study examined age-related changes in frontal lobe function for 15 clinically normal hearing adults (21–75 years) when they performed a word recognition task that was made challenging by decreasing word intelligibility. Although there were no age-related changes in word recognition, there were age-related changes in the degree of activity within left middle frontal gyrus (MFG) and anterior cingulate (ACC) regions during word recognition. Older adults engaged left MFG and ACC regions when words were most intelligible compared to younger adults who engaged these regions when words were least intelligible. Declining gray matter volume within temporal lobe regions responsive to word intelligibility significantly predicted left MFG activity, even after controlling for total gray matter volume, suggesting that declining structural integrity of brain regions responsive to speech leads to the recruitment of frontal regions when words are easily understood. Electronic supplementary material The online version of this article (doi:10.1007/s10162-008-0113-3) contains supplementary material, which is available to authorized users. PMID:18274825

  1. Personal recognition using hand shape and texture.

    PubMed

    Kumar, Ajay; Zhang, David

    2006-08-01

    This paper proposes a new bimodal biometric system using feature-level fusion of hand shape and palm texture. The proposed combination is of significance since both the palmprint and hand-shape images are proposed to be extracted from the single hand image acquired from a digital camera. Several new hand-shape features that can be used to represent the hand shape and improve the performance are investigated. The new approach for palmprint recognition using discrete cosine transform coefficients, which can be directly obtained from the camera hardware, is demonstrated. None of the prior work on hand-shape or palmprint recognition has given any attention on the critical issue of feature selection. Our experimental results demonstrate that while majority of palmprint or hand-shape features are useful in predicting the subjects identity, only a small subset of these features are necessary in practice for building an accurate model for identification. The comparison and combination of proposed features is evaluated on the diverse classification schemes; naive Bayes (normal, estimated, multinomial), decision trees (C4.5, LMT), k-NN, SVM, and FFN. Although more work remains to be done, our results to date indicate that the combination of selected hand-shape and palmprint features constitutes a promising addition to the biometrics-based personal recognition systems.

  2. End-to-End Multimodal Emotion Recognition Using Deep Neural Networks

    NASA Astrophysics Data System (ADS)

    Tzirakis, Panagiotis; Trigeorgis, George; Nicolaou, Mihalis A.; Schuller, Bjorn W.; Zafeiriou, Stefanos

    2017-12-01

    Automatic affect recognition is a challenging task due to the various modalities emotions can be expressed with. Applications can be found in many domains including multimedia retrieval and human computer interaction. In recent years, deep neural networks have been used with great success in determining emotional states. Inspired by this success, we propose an emotion recognition system using auditory and visual modalities. To capture the emotional content for various styles of speaking, robust features need to be extracted. To this purpose, we utilize a Convolutional Neural Network (CNN) to extract features from the speech, while for the visual modality a deep residual network (ResNet) of 50 layers. In addition to the importance of feature extraction, a machine learning algorithm needs also to be insensitive to outliers while being able to model the context. To tackle this problem, Long Short-Term Memory (LSTM) networks are utilized. The system is then trained in an end-to-end fashion where - by also taking advantage of the correlations of the each of the streams - we manage to significantly outperform the traditional approaches based on auditory and visual handcrafted features for the prediction of spontaneous and natural emotions on the RECOLA database of the AVEC 2016 research challenge on emotion recognition.

  3. Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features.

    PubMed

    Abbas, Qaisar; Fondon, Irene; Sarmiento, Auxiliadora; Jiménez, Soledad; Alemany, Pedro

    2017-11-01

    Diabetic retinopathy (DR) is leading cause of blindness among diabetic patients. Recognition of severity level is required by ophthalmologists to early detect and diagnose the DR. However, it is a challenging task for both medical experts and computer-aided diagnosis systems due to requiring extensive domain expert knowledge. In this article, a novel automatic recognition system for the five severity level of diabetic retinopathy (SLDR) is developed without performing any pre- and post-processing steps on retinal fundus images through learning of deep visual features (DVFs). These DVF features are extracted from each image by using color dense in scale-invariant and gradient location-orientation histogram techniques. To learn these DVF features, a semi-supervised multilayer deep-learning algorithm is utilized along with a new compressed layer and fine-tuning steps. This SLDR system was evaluated and compared with state-of-the-art techniques using the measures of sensitivity (SE), specificity (SP) and area under the receiving operating curves (AUC). On 750 fundus images (150 per category), the SE of 92.18%, SP of 94.50% and AUC of 0.924 values were obtained on average. These results demonstrate that the SLDR system is appropriate for early detection of DR and provide an effective treatment for prediction type of diabetes.

  4. Emotion recognition deficits as predictors of transition in individuals at clinical high risk for schizophrenia: a neurodevelopmental perspective.

    PubMed

    Corcoran, C M; Keilp, J G; Kayser, J; Klim, C; Butler, P D; Bruder, G E; Gur, R C; Javitt, D C

    2015-10-01

    Schizophrenia is characterized by profound and disabling deficits in the ability to recognize emotion in facial expression and tone of voice. Although these deficits are well documented in established schizophrenia using recently validated tasks, their predictive utility in at-risk populations has not been formally evaluated. The Penn Emotion Recognition and Discrimination tasks, and recently developed measures of auditory emotion recognition, were administered to 49 clinical high-risk subjects prospectively followed for 2 years for schizophrenia outcome, and 31 healthy controls, and a developmental cohort of 43 individuals aged 7-26 years. Deficit in emotion recognition in at-risk subjects was compared with deficit in established schizophrenia, and with normal neurocognitive growth curves from childhood to early adulthood. Deficits in emotion recognition significantly distinguished at-risk patients who transitioned to schizophrenia. By contrast, more general neurocognitive measures, such as attention vigilance or processing speed, were non-predictive. The best classification model for schizophrenia onset included both face emotion processing and negative symptoms, with accuracy of 96%, and area under the receiver-operating characteristic curve of 0.99. In a parallel developmental study, emotion recognition abilities were found to reach maturity prior to traditional age of risk for schizophrenia, suggesting they may serve as objective markers of early developmental insult. Profound deficits in emotion recognition exist in at-risk patients prior to schizophrenia onset. They may serve as an index of early developmental insult, and represent an effective target for early identification and remediation. Future studies investigating emotion recognition deficits at both mechanistic and predictive levels are strongly encouraged.

  5. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. Copyright © 2015 the authors 0270-6474/15/3513402-17$15.00/0.

  6. Top-down predictions in the cognitive brain

    PubMed Central

    Kveraga, Kestutis; Ghuman, Avniel S.; Bar, Moshe

    2007-01-01

    The human brain is not a passive organ simply waiting to be activated by external stimuli. Instead, it is proposed tat the brain continuously employs memory of past experiences to interpret sensory information and predict the immediately relevant future. This review concentrates on visual recognition as the model system for developing and testing ideas about the role and mechanisms of top-down predictions in the brain. We cover relevant behavioral, computational and neural aspects. These ideas are then extended to other domains. The basic elements of this proposal include analogical mapping, associative representations and the generation of predictions. Connections to a host of cognitive processes will be made and implications to several mental disorders will be proposed. PMID:17923222

  7. Automatic speech recognition using a predictive echo state network classifier.

    PubMed

    Skowronski, Mark D; Harris, John G

    2007-04-01

    We have combined an echo state network (ESN) with a competitive state machine framework to create a classification engine called the predictive ESN classifier. We derive the expressions for training the predictive ESN classifier and show that the model was significantly more noise robust compared to a hidden Markov model in noisy speech classification experiments by 8+/-1 dB signal-to-noise ratio. The simple training algorithm and noise robustness of the predictive ESN classifier make it an attractive classification engine for automatic speech recognition.

  8. CNN-SVM for Microvascular Morphological Type Recognition with Data Augmentation.

    PubMed

    Xue, Di-Xiu; Zhang, Rong; Feng, Hui; Wang, Ya-Lei

    2016-01-01

    This paper focuses on the problem of feature extraction and the classification of microvascular morphological types to aid esophageal cancer detection. We present a patch-based system with a hybrid SVM model with data augmentation for intraepithelial papillary capillary loop recognition. A greedy patch-generating algorithm and a specialized CNN named NBI-Net are designed to extract hierarchical features from patches. We investigate a series of data augmentation techniques to progressively improve the prediction invariance of image scaling and rotation. For classifier boosting, SVM is used as an alternative to softmax to enhance generalization ability. The effectiveness of CNN feature representation ability is discussed for a set of widely used CNN models, including AlexNet, VGG-16, and GoogLeNet. Experiments are conducted on the NBI-ME dataset. The recognition rate is up to 92.74% on the patch level with data augmentation and classifier boosting. The results show that the combined CNN-SVM model beats models of traditional features with SVM as well as the original CNN with softmax. The synthesis results indicate that our system is able to assist clinical diagnosis to a certain extent.

  9. On Predictive Understanding of Extreme Events: Pattern Recognition Approach; Prediction Algorithms; Applications to Disaster Preparedness

    NASA Astrophysics Data System (ADS)

    Keilis-Borok, V. I.; Soloviev, A.; Gabrielov, A.

    2011-12-01

    We describe a uniform approach to predicting different extreme events, also known as critical phenomena, disasters, or crises. The following types of such events are considered: strong earthquakes; economic recessions (their onset and termination); surges of unemployment; surges of crime; and electoral changes of the governing party. A uniform approach is possible due to the common feature of these events: each of them is generated by a certain hierarchical dissipative complex system. After a coarse-graining, such systems exhibit regular behavior patterns; we look among them for "premonitory patterns" that signal the approach of an extreme event. We introduce methodology, based on the optimal control theory, assisting disaster management in choosing optimal set of disaster preparedness measures undertaken in response to a prediction. Predictions with their currently realistic (limited) accuracy do allow preventing a considerable part of the damage by a hierarchy of preparedness measures. Accuracy of prediction should be known, but not necessarily high.

  10. What Process Mediates Predictions of Childhood IQ from Infant Habituation and Recognition Memory? Speculations on the Roles of Inhibition and Rate of Information Processing.

    ERIC Educational Resources Information Center

    McCall, Robert B.

    1994-01-01

    This editorial proposes that the dependent variables that predict childhood intelligence quotient (IQ) from habituation and recognition memory assessments made during infancy may primarily reflect individual differences in rate of information processing. Inhibition may be a stable thread in mental development. (Author/SLD)

  11. What Type of Vocabulary Knowledge Predicts Reading Comprehension: Word Meaning Recall or Word Meaning Recognition?

    ERIC Educational Resources Information Center

    Laufer, Batia; Aviad-Levitzky, Tami

    2017-01-01

    This study examined how well second language (L2) recall and recognition vocabulary tests correlated with a reading test, how well each vocabulary test discriminated between reading proficiency levels, and how accurate each test was in predicting reading proficiency when compared with corpus studies. A total of 116 college-level learners of…

  12. Word Recognition is Affected by the Meaning of Orthographic Neighbours: Evidence from Semantic Decision Tasks

    ERIC Educational Resources Information Center

    Boot, Inge; Pecher, Diane

    2008-01-01

    Many models of word recognition predict that neighbours of target words will be activated during word processing. Cascaded models can make the additional prediction that semantic features of those neighbours get activated before the target has been uniquely identified. In two semantic decision tasks neighbours that were congruent (i.e., from the…

  13. Objective Prediction of Hearing Aid Benefit Across Listener Groups Using Machine Learning: Speech Recognition Performance With Binaural Noise-Reduction Algorithms.

    PubMed

    Schädler, Marc R; Warzybok, Anna; Kollmeier, Birger

    2018-01-01

    The simulation framework for auditory discrimination experiments (FADE) was adopted and validated to predict the individual speech-in-noise recognition performance of listeners with normal and impaired hearing with and without a given hearing-aid algorithm. FADE uses a simple automatic speech recognizer (ASR) to estimate the lowest achievable speech reception thresholds (SRTs) from simulated speech recognition experiments in an objective way, independent from any empirical reference data. Empirical data from the literature were used to evaluate the model in terms of predicted SRTs and benefits in SRT with the German matrix sentence recognition test when using eight single- and multichannel binaural noise-reduction algorithms. To allow individual predictions of SRTs in binaural conditions, the model was extended with a simple better ear approach and individualized by taking audiograms into account. In a realistic binaural cafeteria condition, FADE explained about 90% of the variance of the empirical SRTs for a group of normal-hearing listeners and predicted the corresponding benefits with a root-mean-square prediction error of 0.6 dB. This highlights the potential of the approach for the objective assessment of benefits in SRT without prior knowledge about the empirical data. The predictions for the group of listeners with impaired hearing explained 75% of the empirical variance, while the individual predictions explained less than 25%. Possibly, additional individual factors should be considered for more accurate predictions with impaired hearing. A competing talker condition clearly showed one limitation of current ASR technology, as the empirical performance with SRTs lower than -20 dB could not be predicted.

  14. Objective Prediction of Hearing Aid Benefit Across Listener Groups Using Machine Learning: Speech Recognition Performance With Binaural Noise-Reduction Algorithms

    PubMed Central

    Schädler, Marc R.; Warzybok, Anna; Kollmeier, Birger

    2018-01-01

    The simulation framework for auditory discrimination experiments (FADE) was adopted and validated to predict the individual speech-in-noise recognition performance of listeners with normal and impaired hearing with and without a given hearing-aid algorithm. FADE uses a simple automatic speech recognizer (ASR) to estimate the lowest achievable speech reception thresholds (SRTs) from simulated speech recognition experiments in an objective way, independent from any empirical reference data. Empirical data from the literature were used to evaluate the model in terms of predicted SRTs and benefits in SRT with the German matrix sentence recognition test when using eight single- and multichannel binaural noise-reduction algorithms. To allow individual predictions of SRTs in binaural conditions, the model was extended with a simple better ear approach and individualized by taking audiograms into account. In a realistic binaural cafeteria condition, FADE explained about 90% of the variance of the empirical SRTs for a group of normal-hearing listeners and predicted the corresponding benefits with a root-mean-square prediction error of 0.6 dB. This highlights the potential of the approach for the objective assessment of benefits in SRT without prior knowledge about the empirical data. The predictions for the group of listeners with impaired hearing explained 75% of the empirical variance, while the individual predictions explained less than 25%. Possibly, additional individual factors should be considered for more accurate predictions with impaired hearing. A competing talker condition clearly showed one limitation of current ASR technology, as the empirical performance with SRTs lower than −20 dB could not be predicted. PMID:29692200

  15. Emotional dampening in persons with elevated blood pressure: affect dysregulation and risk for hypertension.

    PubMed

    McCubbin, James A; Loveless, James P; Graham, Jack G; Hall, Gabrielle A; Bart, Ryan M; Moore, DeWayne D; Merritt, Marcellus M; Lane, Richard D; Thayer, Julian F

    2014-02-01

    Persons with higher blood pressure have emotional dampening in some contexts. This may reflect interactive changes in central nervous system control of affect and autonomic function in the early stages of hypertension development. The purpose of this study is to determine the independence of cardiovascular emotional dampening from alexithymia to better understand the role of affect dysregulation in blood pressure elevations. Ninety-six normotensives were assessed for resting systolic and diastolic (DBP) blood pressure, recognition of emotions in faces and sentences using the Perception of Affect Task (PAT), alexithymia, anxiety, and defensiveness. Resting DBP significantly predicted PAT emotion recognition accuracy in men after adjustment for age, self-reported affect, and alexithymia. Cardiovascular emotional dampening is independent of alexithymia and affect in men. Dampened emotion recognition could potentially influence interpersonal communication and psychosocial distress, thereby further contributing to BP dysregulation and increased cardiovascular risk.

  16. Patterns of evolution at the gametophytic self-incompatibility Sorbus aucuparia (Pyrinae) S pollen genes support the non-self recognition by multiple factors model

    PubMed Central

    Aguiar, Bruno; Vieira, Jorge; Cunha, Ana E.; Fonseca, Nuno A.; Reboiro-Jato, David; Reboiro-Jato, Miguel; Fdez-Riverola, Florentino; Raspé, Olivier; Vieira, Cristina P.

    2013-01-01

    S-RNase-based gametophytic self-incompatibility evolved once before the split of the Asteridae and Rosidae. In Prunus (tribe Amygdaloideae of Rosaceae), the self-incompatibility S-pollen is a single F-box gene that presents the expected evolutionary signatures. In Malus and Pyrus (subtribe Pyrinae of Rosaceae), however, clusters of F-box genes (called SFBBs) have been described that are expressed in pollen only and are linked to the S-RNase gene. Although polymorphic, SFBB genes present levels of diversity lower than those of the S-RNase gene. They have been suggested as putative S-pollen genes, in a system of non-self recognition by multiple factors. Subsets of allelic products of the different SFBB genes interact with non-self S-RNases, marking them for degradation, and allowing compatible pollinations. This study performed a detailed characterization of SFBB genes in Sorbus aucuparia (Pyrinae) to address three predictions of the non-self recognition by multiple factors model. As predicted, the number of SFBB genes was large to account for the many S-RNase specificities. Secondly, like the S-RNase gene, the SFBB genes were old. Thirdly, amino acids under positive selection—those that could be involved in specificity determination—were identified when intra-haplotype SFBB genes were analysed using codon models. Overall, the findings reported here support the non-self recognition by multiple factors model. PMID:23606363

  17. PACS technologies and reliability: are we making things better or worse?

    NASA Astrophysics Data System (ADS)

    Horii, Steven C.; Redfern, Regina O.; Kundel, Harold L.; Nodine, Calvin F.

    2002-05-01

    In the process of installing picture archiving and communications (PACS) and speech recognition equipment, upgrading it, and working with previously stored digital image information, the authors encountered a number of problems. Examination of these difficulties illustrated the complex nature of our existing systems and how difficult it is, in many cases, to predict the behavior of these systems. This was found to be true even for our relatively small number of interconnected systems. The purpose of this paper is to illustrate some of the principles of understanding complex system interaction through examples from our experience. The work for this paper grew out of a number of studies we had carried out on our PACS over several years. The complex nature of our systems was evaluated through comparison of our operations with known examples of systems in other industries. Three scenarios: a network failure, a system software upgrade, and attempting to read media from an old archive showed that the major systems used in the radiology departments of many healthcare facilities (HIS, RIS, PACS, and speed recognition) are likely to interact in complex and often unpredictable ways. These interactions may be very difficult or impossible to predict, so that some plans should be made to overcome the negative aspects of the problems that result. Failures and problems, often unpredictable ones, are a likely side effect of having multiple information handling and processing systems interconnected and interoperating. Planning to avoid, or at least not be so vulnerable, to such difficulties is an important aspect of systems planning.

  18. The influence of combined cognitive plus social-cognitive training on amygdala response during face emotion recognition in schizophrenia.

    PubMed

    Hooker, Christine I; Bruce, Lori; Fisher, Melissa; Verosky, Sara C; Miyakawa, Asako; D'Esposito, Mark; Vinogradov, Sophia

    2013-08-30

    Both cognitive and social-cognitive deficits impact functional outcome in schizophrenia. Cognitive remediation studies indicate that targeted cognitive and/or social-cognitive training improves behavioral performance on trained skills. However, the neural effects of training in schizophrenia and their relation to behavioral gains are largely unknown. This study tested whether a 50-h intervention which included both cognitive and social-cognitive training would influence neural mechanisms that support social ccognition. Schizophrenia participants completed a computer-based intervention of either auditory-based cognitive training (AT) plus social-cognition training (SCT) (N=11) or non-specific computer games (CG) (N=11). Assessments included a functional magnetic resonance imaging (fMRI) task of facial emotion recognition, and behavioral measures of cognition, social cognition, and functional outcome. The fMRI results showed the predicted group-by-time interaction. Results were strongest for emotion recognition of happy, surprise and fear: relative to CG participants, AT+SCT participants showed a neural activity increase in bilateral amygdala, right putamen and right medial prefrontal cortex. Across all participants, pre-to-post intervention neural activity increase in these regions predicted behavioral improvement on an independent emotion perception measure (MSCEIT: Perceiving Emotions). Among AT+SCT participants alone, neural activity increase in right amygdala predicted behavioral improvement in emotion perception. The findings indicate that combined cognition and social-cognition training improves neural systems that support social-cognition skills. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Language comprehension warps the mirror neuron system.

    PubMed

    Zarr, Noah; Ferguson, Ryan; Glenberg, Arthur M

    2013-01-01

    Is the mirror neuron system (MNS) used in language understanding? According to embodied accounts of language comprehension, understanding sentences describing actions makes use of neural mechanisms of action control, including the MNS. Consequently, repeatedly comprehending sentences describing similar actions should induce adaptation of the MNS thereby warping its use in other cognitive processes such as action recognition and prediction. To test this prediction, participants read blocks of multiple sentences where each sentence in the block described transfer of objects in a direction away or toward the reader. Following each block, adaptation was measured by having participants predict the end-point of videotaped actions. The adapting sentences disrupted prediction of actions in the same direction, but (a) only for videos of biological motion, and (b) only when the effector implied by the language (e.g., the hand) matched the videos. These findings are signatures of the MNS.

  20. Language comprehension warps the mirror neuron system

    PubMed Central

    Zarr, Noah; Ferguson, Ryan; Glenberg, Arthur M.

    2013-01-01

    Is the mirror neuron system (MNS) used in language understanding? According to embodied accounts of language comprehension, understanding sentences describing actions makes use of neural mechanisms of action control, including the MNS. Consequently, repeatedly comprehending sentences describing similar actions should induce adaptation of the MNS thereby warping its use in other cognitive processes such as action recognition and prediction. To test this prediction, participants read blocks of multiple sentences where each sentence in the block described transfer of objects in a direction away or toward the reader. Following each block, adaptation was measured by having participants predict the end-point of videotaped actions. The adapting sentences disrupted prediction of actions in the same direction, but (a) only for videos of biological motion, and (b) only when the effector implied by the language (e.g., the hand) matched the videos. These findings are signatures of the MNS. PMID:24381553

  1. Identification of computer-generated facial composites.

    PubMed

    Kovera, M B; Penrod, S D; Pappas, C; Thill, D L

    1997-04-01

    Two studies examined the effectiveness of the Mac-a-Mug Pro, a computerized facial composite production system. In the first study, college freshmen prepared from memory composites of other students and faculty from their former high schools. Other students who had attended the same high schools could not recognize the composites of either students or faculty members when the composites of individuals known to them (n = 10) were mixed with composites of a large number (n = 40) of strangers. Neither preparer familiarity with the target, preparer-assessed composite quality, nor viewer familiarity predicted composite recognition. Study 2 indicated that naive witnesses who viewed the composites could not select the people depicted in the composites from photo lineups (1 target and 4 foils). The results raise questions about the efficacy of composite systems as tools to promote recognition of suspects in criminal contexts.

  2. Significance of parametric spectral ratio methods in detection and recognition of whispered speech

    NASA Astrophysics Data System (ADS)

    Mathur, Arpit; Reddy, Shankar M.; Hegde, Rajesh M.

    2012-12-01

    In this article the significance of a new parametric spectral ratio method that can be used to detect whispered speech segments within normally phonated speech is described. Adaptation methods based on the maximum likelihood linear regression (MLLR) are then used to realize a mismatched train-test style speech recognition system. This proposed parametric spectral ratio method computes a ratio spectrum of the linear prediction (LP) and the minimum variance distortion-less response (MVDR) methods. The smoothed ratio spectrum is then used to detect whispered segments of speech within neutral speech segments effectively. The proposed LP-MVDR ratio method exhibits robustness at different SNRs as indicated by the whisper diarization experiments conducted on the CHAINS and the cell phone whispered speech corpus. The proposed method also performs reasonably better than the conventional methods for whisper detection. In order to integrate the proposed whisper detection method into a conventional speech recognition engine with minimal changes, adaptation methods based on the MLLR are used herein. The hidden Markov models corresponding to neutral mode speech are adapted to the whispered mode speech data in the whispered regions as detected by the proposed ratio method. The performance of this method is first evaluated on whispered speech data from the CHAINS corpus. The second set of experiments are conducted on the cell phone corpus of whispered speech. This corpus is collected using a set up that is used commercially for handling public transactions. The proposed whisper speech recognition system exhibits reasonably better performance when compared to several conventional methods. The results shown indicate the possibility of a whispered speech recognition system for cell phone based transactions.

  3. Caffeine cravings impair memory and metacognition.

    PubMed

    Palmer, Matthew A; Sauer, James D; Ling, Angus; Riza, Joshua

    2017-10-01

    Cravings for food and other substances can impair cognition. We extended previous research by testing the effects of caffeine cravings on cued-recall and recognition memory tasks, and on the accuracy of judgements of learning (JOLs; predicted future recall) and feeling-of-knowing (FOK; predicted future recognition for items that cannot be recalled). Participants (N = 55) studied word pairs (POND-BOOK) and completed a cued-recall test and a recognition test. Participants made JOLs prior to the cued-recall test and FOK judgements prior to the recognition test. Participants were randomly allocated to a craving or control condition; we manipulated caffeine cravings via a combination of abstinence, cue exposure, and imagery. Cravings impaired memory performance on the cued-recall and recognition tasks. Cravings also impaired resolution (the ability to distinguish items that would be remembered from those that would not) for FOK judgements but not JOLs, and reduced calibration (correspondence between predicted and actual accuracy) for JOLs but not FOK judgements. Additional analysis of the cued-recall data suggested that cravings also reduced participants' ability to monitor the likely accuracy of answers during the cued-recall test. These findings add to prior research demonstrating that memory strength manipulations have systematically different effects on different types of metacognitive judgements.

  4. The Role of the Association in Recognition Memory.

    ERIC Educational Resources Information Center

    Underwood, Benton J.

    The purpose of the eight experiments was to assess the role which associations between two words played in recognition decisions. The evidence on weak associations established in the laboratory indicated that association was playing a small role, but that the recognition performance on pairs of words was highly predictable from frequency…

  5. The Development of Word Recognition in a Second Language.

    ERIC Educational Resources Information Center

    Muljani, D.; Koda, Keiko; Moates, Danny R.

    1998-01-01

    A study investigated differences in English word recognition in native speakers of Indonesian (an alphabetic language) and Chinese (a logographic languages) learning English as a Second Language. Results largely confirmed the hypothesis that an alphabetic first language would predict better word recognition in speakers of an alphabetic language,…

  6. 'It is Time to Prepare the Next patient' Real-Time Prediction of Procedure Duration in Laparoscopic Cholecystectomies.

    PubMed

    Guédon, Annetje C P; Paalvast, M; Meeuwsen, F C; Tax, D M J; van Dijke, A P; Wauben, L S G L; van der Elst, M; Dankelman, J; van den Dobbelsteen, J J

    2016-12-01

    Operating Room (OR) scheduling is crucial to allow efficient use of ORs. Currently, the predicted durations of surgical procedures are unreliable and the OR schedulers have to follow the progress of the procedures in order to update the daily planning accordingly. The OR schedulers often acquire the needed information through verbal communication with the OR staff, which causes undesired interruptions of the surgical process. The aim of this study was to develop a system that predicts in real-time the remaining procedure duration and to test this prediction system for reliability and usability in an OR. The prediction system was based on the activation pattern of one single piece of equipment, the electrosurgical device. The prediction system was tested during 21 laparoscopic cholecystectomies, in which the activation of the electrosurgical device was recorded and processed in real-time using pattern recognition methods. The remaining surgical procedure duration was estimated and the optimal timing to prepare the next patient for surgery was communicated to the OR staff. The mean absolute error was smaller for the prediction system (14 min) than for the OR staff (19 min). The OR staff doubted whether the prediction system could take all relevant factors into account but were positive about its potential to shorten waiting times for patients. The prediction system is a promising tool to automatically and objectively predict the remaining procedure duration, and thereby achieve optimal OR scheduling and streamline the patient flow from the nursing department to the OR.

  7. Automated System Checkout to Support Predictive Maintenance for the Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Deb, Somnath; Kulkarni, Deepak; Wang, Yao; Lau, Sonie (Technical Monitor)

    1998-01-01

    The Propulsion Checkout and Control System (PCCS) is a predictive maintenance software system. The real-time checkout procedures and diagnostics are designed to detect components that need maintenance based on their condition, rather than using more conventional approaches such as scheduled or reliability centered maintenance. Predictive maintenance can reduce turn-around time and cost and increase safety as compared to conventional maintenance approaches. Real-time sensor validation, limit checking, statistical anomaly detection, and failure prediction based on simulation models are employed. Multi-signal models, useful for testability analysis during system design, are used during the operational phase to detect and isolate degraded or failed components. The TEAMS-RT real-time diagnostic engine was developed to utilize the multi-signal models by Qualtech Systems, Inc. Capability of predicting the maintenance condition was successfully demonstrated with a variety of data, from simulation to actual operation on the Integrated Propulsion Technology Demonstrator (IPTD) at Marshall Space Flight Center (MSFC). Playback of IPTD valve actuations for feature recognition updates identified an otherwise undetectable Main Propulsion System 12 inch prevalve degradation. The algorithms were loaded into the Propulsion Checkout and Control System for further development and are the first known application of predictive Integrated Vehicle Health Management to an operational cryogenic testbed. The software performed successfully in real-time, meeting the required performance goal of 1 second cycle time.

  8. Predicting First Grade Achievement from Kindergarten Screening Measures: A Comparison of Child and Family Predictors.

    ERIC Educational Resources Information Center

    Bramlett, Ronald K.; Rowell, R. Kevin; Mandenberg, Kristi

    2000-01-01

    Compared the Parenting Stress Index (R. Abidon, 1990), the Behavior Assessment System for Children (C. Reynolds and R. Kamphaus, 1992), and an informal letter/number probe as predictors of first grade reading and mathematics achievement for 92 children early in the kindergarten year. Results show that number and letter recognition were the best…

  9. Safe trajectory estimation at a pedestrian crossing to assist visually impaired people.

    PubMed

    Alghamdi, Saleh; van Schyndel, Ron; Khalil, Ibrahim

    2012-01-01

    The aim of this paper is to present a service for blind and people with low vision to assist them to cross the street independently. The presented approach provides the user with significant information such as detection of pedestrian crossing signal from any point of view, when the pedestrian crossing signal light is green, the detection of dynamic and fixed obstacles, predictions of the movement of fellow pedestrians and information on objects which may intersect his path. Our approach is based on capturing multiple frames using a depth camera which is attached to a user's headgear. Currently a testbed system is built on a helmet and is connected to a laptop in the user's backpack. In this paper, we discussed efficiency of using Speeded-Up Robust Features (SURF) algorithm for object recognition for purposes of blind people assistance. The system predicts the movement of objects of interest to provide the user with information on the safest path to navigate and information on the surrounding area. Evaluation of this approach on real sequence video frames provides 90% of human detection and more than 80% for recognition of other related objects.

  10. Individual differences in forced-choice recognition memory: partitioning contributions of recollection and familiarity.

    PubMed

    Migo, Ellen M; Quamme, Joel R; Holmes, Selina; Bendell, Andrew; Norman, Kenneth A; Mayes, Andrew R; Montaldi, Daniela

    2014-01-01

    In forced-choice recognition memory, two different testing formats are possible under conditions of high target-foil similarity: Each target can be presented alongside foils similar to itself (forced-choice corresponding; FCC), or alongside foils similar to other targets (forced-choice noncorresponding; FCNC). Recent behavioural and neuropsychological studies suggest that FCC performance can be supported by familiarity whereas FCNC performance is supported primarily by recollection. In this paper, we corroborate this finding from an individual differences perspective. A group of older adults were given a test of FCC and FCNC recognition for object pictures, as well as standardized tests of recall, recognition, and IQ. Recall measures were found to predict FCNC, but not FCC performance, consistent with a critical role for recollection in FCNC only. After the common influence of recall was removed, standardized tests of recognition predicted FCC, but not FCNC performance. This is consistent with a contribution of only familiarity in FCC. Simulations show that a two-process model, where familiarity and recollection make separate contributions to recognition, is 10 times more likely to give these results than a single-process model. This evidence highlights the importance of recognition memory test design when examining the involvement of recollection and familiarity.

  11. Hierarchical singleton-type recurrent neural fuzzy networks for noisy speech recognition.

    PubMed

    Juang, Chia-Feng; Chiou, Chyi-Tian; Lai, Chun-Lung

    2007-05-01

    This paper proposes noisy speech recognition using hierarchical singleton-type recurrent neural fuzzy networks (HSRNFNs). The proposed HSRNFN is a hierarchical connection of two singleton-type recurrent neural fuzzy networks (SRNFNs), where one is used for noise filtering and the other for recognition. The SRNFN is constructed by recurrent fuzzy if-then rules with fuzzy singletons in the consequences, and their recurrent properties make them suitable for processing speech patterns with temporal characteristics. In n words recognition, n SRNFNs are created for modeling n words, where each SRNFN receives the current frame feature and predicts the next one of its modeling word. The prediction error of each SRNFN is used as recognition criterion. In filtering, one SRNFN is created, and each SRNFN recognizer is connected to the same SRNFN filter, which filters noisy speech patterns in the feature domain before feeding them to the SRNFN recognizer. Experiments with Mandarin word recognition under different types of noise are performed. Other recognizers, including multilayer perceptron (MLP), time-delay neural networks (TDNNs), and hidden Markov models (HMMs), are also tested and compared. These experiments and comparisons demonstrate good results with HSRNFN for noisy speech recognition tasks.

  12. Age differences in right-wing authoritarianism and their relation to emotion recognition.

    PubMed

    Ruffman, Ted; Wilson, Marc; Henry, Julie D; Dawson, Abigail; Chen, Yan; Kladnitski, Natalie; Myftari, Ella; Murray, Janice; Halberstadt, Jamin; Hunter, John A

    2016-03-01

    This study examined the correlates of right-wing authoritarianism (RWA) in older adults. Participants were given tasks measuring emotion recognition, executive functions and fluid IQ and questionnaires measuring RWA, perceived threat and social dominance orientation. Study 1 established higher age-related RWA across the age span in more than 2,600 New Zealanders. Studies 2 to 4 found that threat, education, social dominance and age all predicted unique variance in older adults' RWA, but the most consistent predictor was emotion recognition, predicting unique variance in older adults' RWA independent of all other variables. We argue that older adults' worse emotion recognition is associated with a more general change in social judgment. Expression of extreme attitudes (right- or left-wing) has the potential to antagonize others, but worse emotion recognition means that subtle signals will not be perceived, making the expression of extreme attitudes more likely. Our findings are consistent with other studies showing that worsening emotion recognition underlies age-related declines in verbosity, understanding of social gaffes, and ability to detect lies. Such results indicate that emotion recognition is a core social insight linked to many aspects of social cognition. (c) 2016 APA, all rights reserved).

  13. The Effect of Dynamic Pitch on Speech Recognition in Temporally Modulated Noise.

    PubMed

    Shen, Jing; Souza, Pamela E

    2017-09-18

    This study investigated the effect of dynamic pitch in target speech on older and younger listeners' speech recognition in temporally modulated noise. First, we examined whether the benefit from dynamic-pitch cues depends on the temporal modulation of noise. Second, we tested whether older listeners can benefit from dynamic-pitch cues for speech recognition in noise. Last, we explored the individual factors that predict the amount of dynamic-pitch benefit for speech recognition in noise. Younger listeners with normal hearing and older listeners with varying levels of hearing sensitivity participated in the study, in which speech reception thresholds were measured with sentences in nonspeech noise. The younger listeners benefited more from dynamic pitch for speech recognition in temporally modulated noise than unmodulated noise. Older listeners were able to benefit from the dynamic-pitch cues but received less benefit from noise modulation than the younger listeners. For those older listeners with hearing loss, the amount of hearing loss strongly predicted the dynamic-pitch benefit for speech recognition in noise. Dynamic-pitch cues aid speech recognition in noise, particularly when noise has temporal modulation. Hearing loss negatively affects the dynamic-pitch benefit to older listeners with significant hearing loss.

  14. The Effect of Dynamic Pitch on Speech Recognition in Temporally Modulated Noise

    PubMed Central

    Souza, Pamela E.

    2017-01-01

    Purpose This study investigated the effect of dynamic pitch in target speech on older and younger listeners' speech recognition in temporally modulated noise. First, we examined whether the benefit from dynamic-pitch cues depends on the temporal modulation of noise. Second, we tested whether older listeners can benefit from dynamic-pitch cues for speech recognition in noise. Last, we explored the individual factors that predict the amount of dynamic-pitch benefit for speech recognition in noise. Method Younger listeners with normal hearing and older listeners with varying levels of hearing sensitivity participated in the study, in which speech reception thresholds were measured with sentences in nonspeech noise. Results The younger listeners benefited more from dynamic pitch for speech recognition in temporally modulated noise than unmodulated noise. Older listeners were able to benefit from the dynamic-pitch cues but received less benefit from noise modulation than the younger listeners. For those older listeners with hearing loss, the amount of hearing loss strongly predicted the dynamic-pitch benefit for speech recognition in noise. Conclusions Dynamic-pitch cues aid speech recognition in noise, particularly when noise has temporal modulation. Hearing loss negatively affects the dynamic-pitch benefit to older listeners with significant hearing loss. PMID:28800370

  15. Formal implementation of a performance evaluation model for the face recognition system.

    PubMed

    Shin, Yong-Nyuo; Kim, Jason; Lee, Yong-Jun; Shin, Woochang; Choi, Jin-Young

    2008-01-01

    Due to usability features, practical applications, and its lack of intrusiveness, face recognition technology, based on information, derived from individuals' facial features, has been attracting considerable attention recently. Reported recognition rates of commercialized face recognition systems cannot be admitted as official recognition rates, as they are based on assumptions that are beneficial to the specific system and face database. Therefore, performance evaluation methods and tools are necessary to objectively measure the accuracy and performance of any face recognition system. In this paper, we propose and formalize a performance evaluation model for the biometric recognition system, implementing an evaluation tool for face recognition systems based on the proposed model. Furthermore, we performed evaluations objectively by providing guidelines for the design and implementation of a performance evaluation system, formalizing the performance test process.

  16. When moral identity symbolization motivates prosocial behavior: the role of recognition and moral identity internalization.

    PubMed

    Winterich, Karen Page; Aquino, Karl; Mittal, Vikas; Swartz, Richard

    2013-09-01

    This article examines the role of moral identity symbolization in motivating prosocial behaviors. We propose a 3-way interaction of moral identity symbolization, internalization, and recognition to predict prosocial behavior. When moral identity internalization is low, we hypothesize that high moral identity symbolization motivates recognized prosocial behavior due to the opportunity to present one's moral characteristics to others. In contrast, when moral identity internalization is high, prosocial behavior is motivated irrespective of the level of symbolization and recognition. Two studies provide support for this pattern examining volunteering of time. Our results provide a framework for predicting prosocial behavior by combining the 2 dimensions of moral identity with the situational factor of recognition. PsycINFO Database Record (c) 2013 APA, all rights reserved

  17. Generalization between canonical and non-canonical views in object recognition

    PubMed Central

    Ghose, Tandra; Liu, Zili

    2013-01-01

    Viewpoint generalization in object recognition is the process that allows recognition of a given 3D object from many different viewpoints despite variations in its 2D projections. We used the canonical view effects as a foundation to empirically test the validity of a major theory in object recognition, the view-approximation model (Poggio & Edelman, 1990). This model predicts that generalization should be better when an object is first seen from a non-canonical view and then a canonical view than when seen in the reversed order. We also manipulated object similarity to study the degree to which this view generalization was constrained by shape details and task instructions (object vs. image recognition). Old-new recognition performance for basic and subordinate level objects was measured in separate blocks. We found that for object recognition, view generalization between canonical and non-canonical views was comparable for basic level objects. For subordinate level objects, recognition performance was more accurate from non-canonical to canonical views than the other way around. When the task was changed from object recognition to image recognition, the pattern of the results reversed. Interestingly, participants responded “old” to “new” images of “old” objects with a substantially higher rate than to “new” objects, despite instructions to the contrary, thereby indicating involuntary view generalization. Our empirical findings are incompatible with the prediction of the view-approximation theory, and argue against the hypothesis that views are stored independently. PMID:23283692

  18. Phonological mismatch makes aided speech recognition in noise cognitively taxing.

    PubMed

    Rudner, Mary; Foo, Catharina; Rönnberg, Jerker; Lunner, Thomas

    2007-12-01

    The working memory framework for Ease of Language Understanding predicts that speech processing becomes more effortful, thus requiring more explicit cognitive resources, when there is mismatch between speech input and phonological representations in long-term memory. To test this prediction, we changed the compression release settings in the hearing instruments of experienced users and allowed them to train for 9 weeks with the new settings. After training, aided speech recognition in noise was tested with both the trained settings and orthogonal settings. We postulated that training would lead to acclimatization to the trained setting, which in turn would involve establishment of new phonological representations in long-term memory. Further, we postulated that after training, testing with orthogonal settings would give rise to phonological mismatch, associated with more explicit cognitive processing. Thirty-two participants (mean=70.3 years, SD=7.7) with bilateral sensorineural hearing loss (pure-tone average=46.0 dB HL, SD=6.5), bilaterally fitted for more than 1 year with digital, two-channel, nonlinear signal processing hearing instruments and chosen from the patient population at the Linköping University Hospital were randomly assigned to 9 weeks training with new, fast (40 ms) or slow (640 ms), compression release settings in both channels. Aided speech recognition in noise performance was tested according to a design with three within-group factors: test occasion (T1, T2), test setting (fast, slow), and type of noise (unmodulated, modulated) and one between-group factor: experience setting (fast, slow) for two types of speech materials-the highly constrained Hagerman sentences and the less-predictable Hearing in Noise Test (HINT). Complex cognitive capacity was measured using the reading span and letter monitoring tests. PREDICTION: We predicted that speech recognition in noise at T2 with mismatched experience and test settings would be associated with more explicit cognitive processing and thus stronger correlations with complex cognitive measures, as well as poorer performance if complex cognitive capacity was exceeded. Under mismatch conditions, stronger correlations were found between performance on speech recognition with the Hagerman sentences and reading span, along with poorer speech recognition for participants with low reading span scores. No consistent mismatch effect was found with HINT. The mismatch prediction generated by the working memory framework for Ease of Language Understanding is supported for speech recognition in noise with the highly constrained Hagerman sentences but not the less-predictable HINT.

  19. Formal Models of Word Recognition. Final Report.

    ERIC Educational Resources Information Center

    Travers, Jeffrey R.

    Existing mathematical models of word recognition are reviewed and a new theory is proposed in this research. The new theory integrates earlier proposals within a single framework, sacrificing none of the predictive power of the earlier proposals, but offering a gain in theoretical economy. The theory holds that word recognition is accomplished by…

  20. Testing Theories of Recognition Memory by Predicting Performance Across Paradigms

    ERIC Educational Resources Information Center

    Smith, David G.; Duncan, Matthew J. J.

    2004-01-01

    Signal-detection theory (SDT) accounts of recognition judgments depend on the assumption that recognition decisions result from a single familiarity-based process. However, fits of a hybrid SDT model, called dual-process theory (DPT), have provided evidence for the existence of a second, recollection-based process. In 2 experiments, the authors…

  1. Food brand recognition and BMI in preschoolers.

    PubMed

    Harrison, Kristen; Moorman, Jessica; Peralta, Mericarmen; Fayhee, Kally

    2017-07-01

    Children's food brand recognition predicts health-related outcomes such as preference for obesogenic foods and increased risk for overweight. However, it is uncertain to what degree food brand recognition acts as a proxy for other factors such as parental education and income, child vocabulary, child age, child race/ethnicity, parent healthy eating guidance, child commercial TV viewing, and child dietary intake, all of which may influence or be influenced by food brand recognition. U.S. preschoolers (N = 247, average age 56 months) were measured for BMI and completed the Peabody Picture Vocabulary Test plus recognition and recall measures for a selection of U.S. food brands. Parents completed measures of healthy eating guidance, child dietary intake, child commercial TV viewing, parent education, household income, parent BMI, and child age and race/ethnicity. Controlling these variables, child food brand recognition predicted higher child BMI percentile. Further, qualitative examination of children's incorrect answers to recall items demonstrated perceptual confusion between brand mascots and other fantasy characters to which children are exposed during the preschool years, extending theory on child consumer development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. DCT-based iris recognition.

    PubMed

    Monro, Donald M; Rakshit, Soumyadip; Zhang, Dexin

    2007-04-01

    This paper presents a novel iris coding method based on differences of discrete cosine transform (DCT) coefficients of overlapped angular patches from normalized iris images. The feature extraction capabilities of the DCT are optimized on the two largest publicly available iris image data sets, 2,156 images of 308 eyes from the CASIA database and 2,955 images of 150 eyes from the Bath database. On this data, we achieve 100 percent Correct Recognition Rate (CRR) and perfect Receiver-Operating Characteristic (ROC) Curves with no registered false accepts or rejects. Individual feature bit and patch position parameters are optimized for matching through a product-of-sum approach to Hamming distance calculation. For verification, a variable threshold is applied to the distance metric and the False Acceptance Rate (FAR) and False Rejection Rate (FRR) are recorded. A new worst-case metric is proposed for predicting practical system performance in the absence of matching failures, and the worst case theoretical Equal Error Rate (EER) is predicted to be as low as 2.59 x 10(-4) on the available data sets.

  3. Semantic Memory in the Clinical Progression of Alzheimer Disease.

    PubMed

    Tchakoute, Christophe T; Sainani, Kristin L; Henderson, Victor W

    2017-09-01

    Semantic memory measures may be useful in tracking and predicting progression of Alzheimer disease. We investigated relationships among semantic memory tasks and their 1-year predictive value in women with Alzheimer disease. We conducted secondary analyses of a randomized clinical trial of raloxifene in 42 women with late-onset mild-to-moderate Alzheimer disease. We assessed semantic memory with tests of oral confrontation naming, category fluency, semantic recognition and semantic naming, and semantic density in written narrative discourse. We measured global cognition (Alzheimer Disease Assessment Scale, cognitive subscale), dementia severity (Clinical Dementia Rating sum of boxes), and daily function (Activities of Daily Living Inventory) at baseline and 1 year. At baseline and 1 year, most semantic memory scores correlated highly or moderately with each other and with global cognition, dementia severity, and daily function. Semantic memory task performance at 1 year had worsened one-third to one-half standard deviation. Factor analysis of baseline test scores distinguished processes in semantic and lexical retrieval (semantic recognition, semantic naming, confrontation naming) from processes in lexical search (semantic density, category fluency). The semantic-lexical retrieval factor predicted global cognition at 1 year. Considered separately, baseline confrontation naming and category fluency predicted dementia severity, while semantic recognition and a composite of semantic recognition and semantic naming predicted global cognition. No individual semantic memory test predicted daily function. Semantic-lexical retrieval and lexical search may represent distinct aspects of semantic memory. Semantic memory processes are sensitive to cognitive decline and dementia severity in Alzheimer disease.

  4. General object recognition is specific: Evidence from novel and familiar objects.

    PubMed

    Richler, Jennifer J; Wilmer, Jeremy B; Gauthier, Isabel

    2017-09-01

    In tests of object recognition, individual differences typically correlate modestly but nontrivially across familiar categories (e.g. cars, faces, shoes, birds, mushrooms). In theory, these correlations could reflect either global, non-specific mechanisms, such as general intelligence (IQ), or more specific mechanisms. Here, we introduce two separate methods for effectively capturing category-general performance variation, one that uses novel objects and one that uses familiar objects. In each case, we show that category-general performance variance is unrelated to IQ, thereby implicating more specific mechanisms. The first approach examines three newly developed novel object memory tests (NOMTs). We predicted that NOMTs would exhibit more shared, category-general variance than familiar object memory tests (FOMTs) because novel objects, unlike familiar objects, lack category-specific environmental influences (e.g. exposure to car magazines or botany classes). This prediction held, and remarkably, virtually none of the substantial shared variance among NOMTs was explained by IQ. Also, while NOMTs correlated nontrivially with two FOMTs (faces, cars), these correlations were smaller than among NOMTs and no larger than between the face and car tests themselves, suggesting that the category-general variance captured by NOMTs is specific not only relative to IQ, but also, to some degree, relative to both face and car recognition. The second approach averaged performance across multiple FOMTs, which we predicted would increase category-general variance by averaging out category-specific factors. This prediction held, and as with NOMTs, virtually none of the shared variance among FOMTs was explained by IQ. Overall, these results support the existence of object recognition mechanisms that, though category-general, are specific relative to IQ and substantially separable from face and car recognition. They also add sensitive, well-normed NOMTs to the tools available to study object recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Metacognitive deficits predict future levels of negative symptoms in schizophrenia controlling for neurocognition, affect recognition, and self-expectation of goal attainment.

    PubMed

    Lysaker, Paul H; Kukla, Marina; Dubreucq, Julien; Gumley, Andrew; McLeod, Hamish; Vohs, Jenifer L; Buck, Kelly D; Minor, Kyle S; Luther, Lauren; Leonhardt, Bethany L; Belanger, Elizabeth A; Popolo, Raffaele; Dimaggio, Giancarlo

    2015-10-01

    The recalcitrance of negative symptoms in the face of pharmacologic treatment has spurred interest in understanding the psychological factors that contribute to their formation and persistence. Accordingly, this study investigated whether deficits in metacognition, or the ability to form integrated ideas about oneself, others, and the world, prospectively predicted levels of negative symptoms independent of deficits in neurocognition, affect recognition and defeatist beliefs. Participants were 53 adults with a schizophrenia spectrum disorder. Prior to entry into a rehabilitation program, all participants completed concurrent assessments of metacognition with the Metacognitive Assessment Scale-Abbreviated, negative symptoms with the Positive and Negative Syndrome Scale, neurocognition with the MATRICS battery, affect recognition with the Bell Lysaker Emotion Recognition Task, and one form of defeatist beliefs with the Recovery Assessment Scale. Negative symptoms were then reassessed one week, 9weeks, and 17weeks after entry into the program. A mixed effects regression model revealed that after controlling for baseline negative symptoms, a general index of neurocognition, defeatist beliefs and capacity for affect recognition, lower levels of metacognition predicted higher levels of negative symptoms across all subsequent time points. Poorer metacognition was able to predict later levels of elevated negative symptoms even after controlling for initial levels of negative symptoms. Results may suggest that metacognitive deficits are a risk factor for elevated levels of negative symptoms in the future. Clinical implications are also discussed. Published by Elsevier B.V.

  6. Automatic anatomy recognition using neural network learning of object relationships via virtual landmarks

    NASA Astrophysics Data System (ADS)

    Yan, Fengxia; Udupa, Jayaram K.; Tong, Yubing; Xu, Guoping; Odhner, Dewey; Torigian, Drew A.

    2018-03-01

    The recently developed body-wide Automatic Anatomy Recognition (AAR) methodology depends on fuzzy modeling of individual objects, hierarchically arranging objects, constructing an anatomy ensemble of these models, and a dichotomous object recognition-delineation process. The parent-to-offspring spatial relationship in the object hierarchy is crucial in the AAR method. We have found this relationship to be quite complex, and as such any improvement in capturing this relationship information in the anatomy model will improve the process of recognition itself. Currently, the method encodes this relationship based on the layout of the geometric centers of the objects. Motivated by the concept of virtual landmarks (VLs), this paper presents a new one-shot AAR recognition method that utilizes the VLs to learn object relationships by training a neural network to predict the pose and the VLs of an offspring object given the VLs of the parent object in the hierarchy. We set up two neural networks for each parent-offspring object pair in a body region, one for predicting the VLs and another for predicting the pose parameters. The VL-based learning/prediction method is evaluated on two object hierarchies involving 14 objects. We utilize 54 computed tomography (CT) image data sets of head and neck cancer patients and the associated object contours drawn by dosimetrists for routine radiation therapy treatment planning. The VL neural network method is found to yield more accurate object localization than the currently used simple AAR method.

  7. Orchestration of Molecular Information through Higher Order Chemical Recognition

    NASA Astrophysics Data System (ADS)

    Frezza, Brian M.

    Broadly defined, higher order chemical recognition is the process whereby discrete chemical building blocks capable of specifically binding to cognate moieties are covalently linked into oligomeric chains. These chains, or sequences, are then able to recognize and bind to their cognate sequences with a high degree of cooperativity. Principally speaking, DNA and RNA are the most readily obtained examples of this chemical phenomenon, and function via Watson-Crick cognate pairing: guanine pairs with cytosine and adenine with thymine (DNA) or uracil (RNA), in an anti-parallel manner. While the theoretical principles, techniques, and equations derived herein apply generally to any higher-order chemical recognition system, in practice we utilize DNA oligomers as a model-building material to experimentally investigate and validate our hypotheses. Historically, general purpose information processing has been a task limited to semiconductor electronics. Molecular computing on the other hand has been limited to ad hoc approaches designed to solve highly specific and unique computation problems, often involving components or techniques that cannot be applied generally in a manner suitable for precise and predictable engineering. Herein, we provide a fundamental framework for harnessing high-order recognition in a modular and programmable fashion to synthesize molecular information process networks of arbitrary construction and complexity. This document provides a solid foundation for routinely embedding computational capability into chemical and biological systems where semiconductor electronics are unsuitable for practical application.

  8. The role of perceptual load in object recognition.

    PubMed

    Lavie, Nilli; Lin, Zhicheng; Zokaei, Nahid; Thoma, Volker

    2009-10-01

    Predictions from perceptual load theory (Lavie, 1995, 2005) regarding object recognition across the same or different viewpoints were tested. Results showed that high perceptual load reduces distracter recognition levels despite always presenting distracter objects from the same view. They also showed that the levels of distracter recognition were unaffected by a change in the distracter object view under conditions of low perceptual load. These results were found both with repetition priming measures of distracter recognition and with performance on a surprise recognition memory test. The results support load theory proposals that distracter recognition critically depends on the level of perceptual load. The implications for the role of attention in object recognition theories are discussed. PsycINFO Database Record (c) 2009 APA, all rights reserved.

  9. Design method of ARM based embedded iris recognition system

    NASA Astrophysics Data System (ADS)

    Wang, Yuanbo; He, Yuqing; Hou, Yushi; Liu, Ting

    2008-03-01

    With the advantages of non-invasiveness, uniqueness, stability and low false recognition rate, iris recognition has been successfully applied in many fields. Up to now, most of the iris recognition systems are based on PC. However, a PC is not portable and it needs more power. In this paper, we proposed an embedded iris recognition system based on ARM. Considering the requirements of iris image acquisition and recognition algorithm, we analyzed the design method of the iris image acquisition module, designed the ARM processing module and its peripherals, studied the Linux platform and the recognition algorithm based on this platform, finally actualized the design method of ARM-based iris imaging and recognition system. Experimental results show that the ARM platform we used is fast enough to run the iris recognition algorithm, and the data stream can flow smoothly between the camera and the ARM chip based on the embedded Linux system. It's an effective method of using ARM to actualize portable embedded iris recognition system.

  10. Container-code recognition system based on computer vision and deep neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao

    2018-04-01

    Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.

  11. Not just the norm: exemplar-based models also predict face aftereffects.

    PubMed

    Ross, David A; Deroche, Mickael; Palmeri, Thomas J

    2014-02-01

    The face recognition literature has considered two competing accounts of how faces are represented within the visual system: Exemplar-based models assume that faces are represented via their similarity to exemplars of previously experienced faces, while norm-based models assume that faces are represented with respect to their deviation from an average face, or norm. Face identity aftereffects have been taken as compelling evidence in favor of a norm-based account over an exemplar-based account. After a relatively brief period of adaptation to an adaptor face, the perceived identity of a test face is shifted toward a face with attributes opposite to those of the adaptor, suggesting an explicit psychological representation of the norm. Surprisingly, despite near universal recognition that face identity aftereffects imply norm-based coding, there have been no published attempts to simulate the predictions of norm- and exemplar-based models in face adaptation paradigms. Here, we implemented and tested variations of norm and exemplar models. Contrary to common claims, our simulations revealed that both an exemplar-based model and a version of a two-pool norm-based model, but not a traditional norm-based model, predict face identity aftereffects following face adaptation.

  12. Not Just the Norm: Exemplar-Based Models also Predict Face Aftereffects

    PubMed Central

    Ross, David A.; Deroche, Mickael; Palmeri, Thomas J.

    2014-01-01

    The face recognition literature has considered two competing accounts of how faces are represented within the visual system: Exemplar-based models assume that faces are represented via their similarity to exemplars of previously experienced faces, while norm-based models assume that faces are represented with respect to their deviation from an average face, or norm. Face identity aftereffects have been taken as compelling evidence in favor of a norm-based account over an exemplar-based account. After a relatively brief period of adaptation to an adaptor face, the perceived identity of a test face is shifted towards a face with opposite attributes to the adaptor, suggesting an explicit psychological representation of the norm. Surprisingly, despite near universal recognition that face identity aftereffects imply norm-based coding, there have been no published attempts to simulate the predictions of norm- and exemplar-based models in face adaptation paradigms. Here we implemented and tested variations of norm and exemplar models. Contrary to common claims, our simulations revealed that both an exemplar-based model and a version of a two-pool norm-based model, but not a traditional norm-based model, predict face identity aftereffects following face adaptation. PMID:23690282

  13. Automated segmentation and recognition of the bone structure in non-contrast torso CT images using implicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Hayashi, T.; Han, M.; Chen, H.; Hara, T.; Fujita, H.; Yokoyama, R.; Kanematsu, M.; Hoshi, H.

    2009-02-01

    X-ray CT images have been widely used in clinical diagnosis in recent years. A modern CT scanner can generate about 1000 CT slices to show the details of all the human organs within 30 seconds. However, CT image interpretations (viewing 500-1000 slices of CT images manually in front of a screen or films for each patient) require a lot of time and energy. Therefore, computer-aided diagnosis (CAD) systems that can support CT image interpretations are strongly anticipated. Automated recognition of the anatomical structures in CT images is a basic pre-processing of the CAD system. The bone structure is a part of anatomical structures and very useful to act as the landmarks for predictions of the other different organ positions. However, the automated recognition of the bone structure is still a challenging issue. This research proposes an automated scheme for segmenting the bone regions and recognizing the bone structure in noncontrast torso CT images. The proposed scheme was applied to 48 torso CT cases and a subjective evaluation for the experimental results was carried out by an anatomical expert following the anatomical definition. The experimental results showed that the bone structure in 90% CT cases have been recognized correctly. For quantitative evaluation, automated recognition results were compared to manual inputs of bones of lower limb created by an anatomical expert on 10 randomly selected CT cases. The error (maximum distance in 3D) between the recognition results and manual inputs distributed from 3-8 mm in different parts of the bone regions.

  14. Experimental study on GMM-based speaker recognition

    NASA Astrophysics Data System (ADS)

    Ye, Wenxing; Wu, Dapeng; Nucci, Antonio

    2010-04-01

    Speaker recognition plays a very important role in the field of biometric security. In order to improve the recognition performance, many pattern recognition techniques have be explored in the literature. Among these techniques, the Gaussian Mixture Model (GMM) is proved to be an effective statistic model for speaker recognition and is used in most state-of-the-art speaker recognition systems. The GMM is used to represent the 'voice print' of a speaker through modeling the spectral characteristic of speech signals of the speaker. In this paper, we implement a speaker recognition system, which consists of preprocessing, Mel-Frequency Cepstrum Coefficients (MFCCs) based feature extraction, and GMM based classification. We test our system with TIDIGITS data set (325 speakers) and our own recordings of more than 200 speakers; our system achieves 100% correct recognition rate. Moreover, we also test our system under the scenario that training samples are from one language but test samples are from a different language; our system also achieves 100% correct recognition rate, which indicates that our system is language independent.

  15. Déjà vu experiences in healthy subjects are unrelated to laboratory tests of recollection and familiarity for word stimuli.

    PubMed

    O'Connor, Akira R; Moulin, Chris J A

    2013-01-01

    Recent neuropsychological and neuroscientific research suggests that people who experience more déjà vu display characteristic patterns in normal recognition memory. We conducted a large individual differences study (n = 206) to test these predictions using recollection and familiarity parameters recovered from a standard memory task. Participants reported déjà vu frequency and a number of its correlates, and completed a recognition memory task analogous to a Remember-Know procedure. The individual difference measures replicated an established correlation between déjà vu frequency and frequency of travel, and recognition performance showed well-established word frequency and accuracy effects. Contrary to predictions, no relationships were found between déjà vu frequency and recollection or familiarity memory parameters from the recognition test. We suggest that déjà vu in the healthy population reflects a mismatch between errant memory signaling and memory monitoring processes not easily characterized by standard recognition memory task performance.

  16. Déjà vu experiences in healthy subjects are unrelated to laboratory tests of recollection and familiarity for word stimuli

    PubMed Central

    O’Connor, Akira R.; Moulin, Chris J. A.

    2013-01-01

    Recent neuropsychological and neuroscientific research suggests that people who experience more déjà vu display characteristic patterns in normal recognition memory. We conducted a large individual differences study (n = 206) to test these predictions using recollection and familiarity parameters recovered from a standard memory task. Participants reported déjà vu frequency and a number of its correlates, and completed a recognition memory task analogous to a Remember-Know procedure. The individual difference measures replicated an established correlation between déjà vu frequency and frequency of travel, and recognition performance showed well-established word frequency and accuracy effects. Contrary to predictions, no relationships were found between déjà vu frequency and recollection or familiarity memory parameters from the recognition test. We suggest that déjà vu in the healthy population reflects a mismatch between errant memory signaling and memory monitoring processes not easily characterized by standard recognition memory task performance. PMID:24409159

  17. Metacognitive Influences on Study Time Allocation in an Associative Recognition Task: An Analysis of Adult Age Differences

    PubMed Central

    Hines, Jarrod C.; Touron, Dayna R.; Hertzog, Christopher

    2009-01-01

    The current study evaluated a metacognitive account of study time allocation, which argues that metacognitive monitoring of recognition test accuracy and latency influences subsequent strategic control and regulation. We examined judgments of learning (JOLs), recognition test confidence judgments (CJs), and subjective response time (RT) judgments by younger and older adults in an associative recognition task involving two study-test phases, with self-paced study in phase 2. Multilevel regression analyses assessed the degree to which age and metacognitive variables predicted phase 2 study time independent of actual test accuracy and RT. Outcomes supported the metacognitive account – JOLs and CJs predicted study time independent of recognition accuracy. For older adults with errant RT judgments, subjective retrieval fluency influenced response confidence as well as (mediated through confidence) subsequent study time allocation. Older adults studied items longer which had been assigned lower CJs, suggesting no age deficit in using memory monitoring to control learning. PMID:19485662

  18. Ignorance- versus evidence-based decision making: a decision time analysis of the recognition heuristic.

    PubMed

    Hilbig, Benjamin E; Pohl, Rüdiger F

    2009-09-01

    According to part of the adaptive toolbox notion of decision making known as the recognition heuristic (RH), the decision process in comparative judgments-and its duration-is determined by whether recognition discriminates between objects. By contrast, some recently proposed alternative models predict that choices largely depend on the amount of evidence speaking for each of the objects and that decision times thus depend on the evidential difference between objects, or the degree of conflict between options. This article presents 3 experiments that tested predictions derived from the RH against those from alternative models. All experiments used naturally recognized objects without teaching participants any information and thus provided optimal conditions for application of the RH. However, results supported the alternative, evidence-based models and often conflicted with the RH. Recognition was not the key determinant of decision times, whereas differences between objects with respect to (both positive and negative) evidence predicted effects well. In sum, alternative models that allow for the integration of different pieces of information may well provide a better account of comparative judgments. (c) 2009 APA, all rights reserved.

  19. Categorical Priming of Famous Person Recognition: A Hitherto Overlooked Methodological Factor Can Resolve a Long-Standing Debate

    ERIC Educational Resources Information Center

    Stone, Anna

    2008-01-01

    The Burton, Bruce and Johnston [Burton, A. M., Bruce, V., & Johnston, R. A. (1990). Understanding face recognition with an interactive activation model. "British Journal of Psychology," 81, 361-380] model of person recognition proposes that representations of known persons are connected by shared semantic attributes. This predicts that priming…

  20. Ignorance- versus Evidence-Based Decision Making: A Decision Time Analysis of the Recognition Heuristic

    ERIC Educational Resources Information Center

    Hilbig, Benjamin E.; Pohl, Rudiger F.

    2009-01-01

    According to part of the adaptive toolbox notion of decision making known as the recognition heuristic (RH), the decision process in comparative judgments--and its duration--is determined by whether recognition discriminates between objects. By contrast, some recently proposed alternative models predict that choices largely depend on the amount of…

  1. Behavioral and Neural Manifestations of Reward Memory in Carriers of Low-Expressing versus High-Expressing Genetic Variants of the Dopamine D2 Receptor

    PubMed Central

    Richter, Anni; Barman, Adriana; Wüstenberg, Torsten; Soch, Joram; Schanze, Denny; Deibele, Anna; Behnisch, Gusalija; Assmann, Anne; Klein, Marieke; Zenker, Martin; Seidenbecher, Constanze; Schott, Björn H.

    2017-01-01

    Dopamine is critically important in the neural manifestation of motivated behavior, and alterations in the human dopaminergic system have been implicated in the etiology of motivation-related psychiatric disorders, most prominently addiction. Patients with chronic addiction exhibit reduced dopamine D2 receptor (DRD2) availability in the striatum, and the DRD2 TaqIA (rs1800497) and C957T (rs6277) genetic polymorphisms have previously been linked to individual differences in striatal dopamine metabolism and clinical risk for alcohol and nicotine dependence. Here, we investigated the hypothesis that the variants of these polymorphisms would show increased reward-related memory formation, which has previously been shown to jointly engage the mesolimbic dopaminergic system and the hippocampus, as a potential intermediate phenotype for addiction memory. To this end, we performed functional magnetic resonance imaging (fMRI) in 62 young, healthy individuals genotyped for DRD2 TaqIA and C957T variants. Participants performed an incentive delay task, followed by a recognition memory task 24 h later. We observed effects of both genotypes on the overall recognition performance with carriers of low-expressing variants, namely TaqIA A1 carriers and C957T C homozygotes, showing better performance than the other genotype groups. In addition to the better memory performance, C957T C homozygotes also exhibited a response bias for cues predicting monetary reward. At the neural level, the C957T polymorphism was associated with a genotype-related modulation of right hippocampal and striatal fMRI responses predictive of subsequent recognition confidence for reward-predicting items. Our results indicate that genetic variations associated with DRD2 expression affect explicit memory, specifically for rewarded stimuli. We suggest that the relatively better memory for rewarded stimuli in carriers of low-expressing DRD2 variants may reflect an intermediate phenotype of addiction memory. PMID:28507526

  2. Effects of Power on Mental Rotation and Emotion Recognition in Women.

    PubMed

    Nissan, Tali; Shapira, Oren; Liberman, Nira

    2015-10-01

    Based on construal-level theory (CLT) and its view of power as an instance of social distance, we predicted that high, relative to low power would enhance women's mental-rotation performance and impede their emotion-recognition performance. The predicted effects of power emerged both when it was manipulated via a recall priming task (Study 1) and environmental cues (Studies 2 and 3). Studies 3 and 4 found evidence for mediation by construal level of the effect of power on emotion recognition but not on mental rotation. We discuss potential mediating mechanisms for these effects based on both the social distance/construal level and the approach/inhibition views of power. We also discuss implications for optimizing performance on mental rotation and emotion recognition in everyday life. © 2015 by the Society for Personality and Social Psychology, Inc.

  3. Multivariate predictors of music perception and appraisal by adult cochlear implant users.

    PubMed

    Gfeller, Kate; Oleson, Jacob; Knutson, John F; Breheny, Patrick; Driscoll, Virginia; Olszewski, Carol

    2008-02-01

    The research examined whether performance by adult cochlear implant recipients on a variety of recognition and appraisal tests derived from real-world music could be predicted from technological, demographic, and life experience variables, as well as speech recognition scores. A representative sample of 209 adults implanted between 1985 and 2006 participated. Using multiple linear regression models and generalized linear mixed models, sets of optimal predictor variables were selected that effectively predicted performance on a test battery that assessed different aspects of music listening. These analyses established the importance of distinguishing between the accuracy of music perception and the appraisal of musical stimuli when using music listening as an index of implant success. Importantly, neither device type nor processing strategy predicted music perception or music appraisal. Speech recognition performance was not a strong predictor of music perception, and primarily predicted music perception when the test stimuli included lyrics. Additionally, limitations in the utility of speech perception in predicting musical perception and appraisal underscore the utility of music perception as an alternative outcome measure for evaluating implant outcomes. Music listening background, residual hearing (i.e., hearing aid use), cognitive factors, and some demographic factors predicted several indices of perceptual accuracy or appraisal of music.

  4. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    PubMed Central

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-01-01

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. PMID:29172273

  5. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    PubMed

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-11-26

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. Creative Commons Attribution License

  6. Rapid and Iterative Estimation of Predictions of High School Graduation and Other Milestones

    ERIC Educational Resources Information Center

    Porter, Kristin E.; Balu, Rekha; Gunton, Brad; Pestronk, Jefferson; Cohen, Allison

    2016-01-01

    With the advent of data systems that allow for frequent or even real-time student data updates, and recognition that high school students often can move from being on-track to graduation to off-track in a matter of weeks, indicator analysis alone may not provide a complete picture to guide school leaders' actions. The authors of this paper suggest…

  7. PSPP: A Protein Structure Prediction Pipeline for Computing Clusters

    DTIC Science & Technology

    2009-07-01

    Evanseck JD, et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B 102...dimensional (3-D) protein structures are critical for the understanding of molecular mechanisms of living systems. Traditionally, X-ray crystallography...disordered proteins are often responsible for molecular recognition, molecular assembly, protein modifica- tion, and entropic chain activities in organisms [26

  8. Evaluation of Beef by Electronic Tongue System TS-5000Z: Flavor Assessment, Recognition and Chemical Compositions According to Its Correlation with Flavor.

    PubMed

    Zhang, Xinzhuang; Zhang, Yawei; Meng, Qingxiang; Li, Ning; Ren, Liping

    2015-01-01

    The aim of this study was to assess the ability of electronic tongue system TS-5000Z to evaluate meat quality based on flavor assessment, recognition and correlation with the meat chemical composition. Meat was sampled from eighteen beef cattle including 6 Wagyu breed cattle, 6 Angus breed cattle and 6 Simmental breed cattle. Chemical composition including dry matter, crude protein, fat, ash, cholesterol and taurine and flavor of the meat were measured. The results showed that different breed cattle had different chemical compositions and flavor, which contains sourness, umami, saltiness, bitterness, astringency, aftertaste from astringency, aftertaste from bitterness and aftertaste from umami, respectively. A principal component analysis (PCA) showed an easily visible separation between different breeds of cattle and indicated that TS-5000Z made a rapid identification of different breeds of cattle. In addition, TS-5000Z seemed to be used to predict the chemical composition according to its correlation with the flavor. In conclusion, TS-5000Z would be used as a rapid analytical tool to evaluate the beef quality both qualitatively and quantitatively, based on flavor assessment, recognition and chemical composition according to its correlation with flavor.

  9. Multimedia Classifier

    NASA Astrophysics Data System (ADS)

    Costache, G. N.; Gavat, I.

    2004-09-01

    Along with the aggressive growing of the amount of digital data available (text, audio samples, digital photos and digital movies joined all in the multimedia domain) the need for classification, recognition and retrieval of this kind of data became very important. In this paper will be presented a system structure to handle multimedia data based on a recognition perspective. The main processing steps realized for the interesting multimedia objects are: first, the parameterization, by analysis, in order to obtain a description based on features, forming the parameter vector; second, a classification, generally with a hierarchical structure to make the necessary decisions. For audio signals, both speech and music, the derived perceptual features are the melcepstral (MFCC) and the perceptual linear predictive (PLP) coefficients. For images, the derived features are the geometric parameters of the speaker mouth. The hierarchical classifier consists generally in a clustering stage, based on the Kohonnen Self-Organizing Maps (SOM) and a final stage, based on a powerful classification algorithm called Support Vector Machines (SVM). The system, in specific variants, is applied with good results in two tasks: the first, is a bimodal speech recognition which uses features obtained from speech signal fused to features obtained from speaker's image and the second is a music retrieval from large music database.

  10. Jellyfish prediction of occurrence from remote sensing data and a non-linear pattern recognition approach

    NASA Astrophysics Data System (ADS)

    Albajes-Eizagirre, Anton; Romero, Laia; Soria-Frisch, Aureli; Vanhellemont, Quinten

    2011-11-01

    Impact of jellyfish in human activities has been increasingly reported worldwide in recent years. Segments such as tourism, water sports and leisure, fisheries and aquaculture are commonly damaged when facing blooms of gelatinous zooplankton. Hence the prediction of the appearance and disappearance of jellyfish in our coasts, which is not fully understood from its biological point of view, has been approached as a pattern recognition problem in the paper presented herein, where a set of potential ecological cues was selected to test their usefulness for prediction. Remote sensing data was used to describe environmental conditions that could support the occurrence of jellyfish blooms with the aim of capturing physical-biological interactions: forcing, coastal morphology, food availability, and water mass characteristics are some of the variables that seem to exert an effect on jellyfish accumulation on the shoreline, under specific spatial and temporal windows. A data-driven model based on computational intelligence techniques has been designed and implemented to predict jellyfish events on the beach area as a function of environmental conditions. Data from 2009 over the NW Mediterranean continental shelf have been used to train and test this prediction protocol. Standard level 2 products are used from MODIS (NASA OceanColor) and MERIS (ESA - FRS data). The procedure for designing the analysis system can be described as following. The aforementioned satellite data has been used as feature set for the performance evaluation. Ground truth has been extracted from visual observations by human agents on different beach sites along the Catalan area. After collecting the evaluation data set, the performance between different computational intelligence approaches have been compared. The outperforming one in terms of its generalization capability has been selected for prediction recall. Different tests have been conducted in order to assess the prediction capability of the resulting system in operational conditions. This includes taking into account several types of features with different distances in both the spatial and temporal domains with respect to prediction time and site. Moreover the generalization capability has been measured via cross-fold validation. The implementation and performance evaluation results are detailed in the present communication together with the feature extraction from satellite data. To the best of our knowledge the developed application constitutes the first implementation of an automate system for the prediction of jellyfish appearance founded on remote sensing technologies.

  11. Individual differences in forced-choice recognition memory: Partitioning contributions of recollection and familiarity

    PubMed Central

    Migo, Ellen M.; Quamme, Joel R.; Holmes, Selina; Bendell, Andrew; Norman, Kenneth A.; Mayes, Andrew R.; Montaldi, Daniela

    2014-01-01

    In forced-choice recognition memory, two different testing formats are possible under conditions of high target-foil similarity: each target can be presented alongside foils similar to itself (forced-choice corresponding; FCC), or alongside foils similar to other targets (forced-choice non-corresponding; FCNC).Recent behavioural and neuropsychological studies suggest that FCC performance can be supported by familiarity whereas FCNC performance is supported primarily by recollection. In this paper, we corroborate this finding from an individual differences perspective. A group of older adults were given a test of FCC and FCNC recognition for object pictures, as well as standardised tests of recall, recognition and IQ. Recall measures were found to predict FCNC, but not FCC performance, consistent with a critical role for recollection in FCNC only. After the common influence of recall was removed, standardised tests of recognition predicted FCC, but not FCNC performance. This is consistent with a contribution of only familiarity in FCC. Simulations show that a two process model, where familiarity and recollection make separate contributions to recognition, is ten times more likely to give these results than a single-process model. This evidence highlights the importance of recognition memory test design when examining the involvement of recollection and familiarity. PMID:24796268

  12. Application of infrared uncooled cameras in surveillance systems

    NASA Astrophysics Data System (ADS)

    Dulski, R.; Bareła, J.; Trzaskawka, P.; PiÄ tkowski, T.

    2013-10-01

    The recent necessity to protect military bases, convoys and patrols gave serious impact to the development of multisensor security systems for perimeter protection. One of the most important devices used in such systems are IR cameras. The paper discusses technical possibilities and limitations to use uncooled IR camera in a multi-sensor surveillance system for perimeter protection. Effective ranges of detection depend on the class of the sensor used and the observed scene itself. Application of IR camera increases the probability of intruder detection regardless of the time of day or weather conditions. It also simultaneously decreased the false alarm rate produced by the surveillance system. The role of IR cameras in the system was discussed as well as technical possibilities to detect human being. Comparison of commercially available IR cameras, capable to achieve desired ranges was done. The required spatial resolution for detection, recognition and identification was calculated. The simulation of detection ranges was done using a new model for predicting target acquisition performance which uses the Targeting Task Performance (TTP) metric. Like its predecessor, the Johnson criteria, the new model bounds the range performance with image quality. The scope of presented analysis is limited to the estimation of detection, recognition and identification ranges for typical thermal cameras with uncooled microbolometer focal plane arrays. This type of cameras is most widely used in security systems because of competitive price to performance ratio. Detection, recognition and identification range calculations were made, and the appropriate results for the devices with selected technical specifications were compared and discussed.

  13. Adding Recognition Discriminability Index to the Delayed Recall Is Useful to Predict Conversion from Mild Cognitive Impairment to Alzheimer's Disease in the Alzheimer's Disease Neuroimaging Initiative.

    PubMed

    Russo, María J; Campos, Jorge; Vázquez, Silvia; Sevlever, Gustavo; Allegri, Ricardo F

    2017-01-01

    Background: Ongoing research is focusing on the identification of those individuals with mild cognitive impairment (MCI) who are most likely to convert to Alzheimer's disease (AD). We investigated whether recognition memory tasks in combination with delayed recall measure of episodic memory and CSF biomarkers can predict MCI to AD conversion at 24-month follow-up. Methods: A total of 397 amnestic-MCI subjects from Alzheimer's disease Neuroimaging Initiative were included. Logistic regression modeling was done to assess the predictive value of all RAVLT measures, risk factors such as age, sex, education, APOE genotype, and CSF biomarkers for progression to AD. Estimating adjusted odds ratios was used to determine which variables would produce an optimal predictive model, and whether adding tests of interaction between the RAVLT Delayed Recall and recognition measures (traditional score and d-prime) would improve prediction of the conversion from a-MCI to AD. Results: 112 (28.2%) subjects developed dementia and 285 (71.8%) subjects did not. Of the all included variables, CSF Aβ1-42 levels, RAVLT Delayed Recall, and the combination of RAVLT Delayed Recall and d-prime were predictive of progression to AD (χ 2 = 38.23, df = 14, p < 0.001). Conclusions: The combination of RAVLT Delayed Recall and d-prime measures may be predictor of conversion from MCI to AD in the ADNI cohort, especially in combination with amyloid biomarkers. A predictive model to help identify individuals at-risk for dementia should include not only traditional episodic memory measures (delayed recall or recognition), but also additional variables (d-prime) that allow the homogenization of the assessment procedures in the diagnosis of MCI.

  14. Adding Recognition Discriminability Index to the Delayed Recall Is Useful to Predict Conversion from Mild Cognitive Impairment to Alzheimer's Disease in the Alzheimer's Disease Neuroimaging Initiative

    PubMed Central

    Russo, María J.; Campos, Jorge; Vázquez, Silvia; Sevlever, Gustavo; Allegri, Ricardo F.; Weiner, Michael W.

    2017-01-01

    Background: Ongoing research is focusing on the identification of those individuals with mild cognitive impairment (MCI) who are most likely to convert to Alzheimer's disease (AD). We investigated whether recognition memory tasks in combination with delayed recall measure of episodic memory and CSF biomarkers can predict MCI to AD conversion at 24-month follow-up. Methods: A total of 397 amnestic-MCI subjects from Alzheimer's disease Neuroimaging Initiative were included. Logistic regression modeling was done to assess the predictive value of all RAVLT measures, risk factors such as age, sex, education, APOE genotype, and CSF biomarkers for progression to AD. Estimating adjusted odds ratios was used to determine which variables would produce an optimal predictive model, and whether adding tests of interaction between the RAVLT Delayed Recall and recognition measures (traditional score and d-prime) would improve prediction of the conversion from a-MCI to AD. Results: 112 (28.2%) subjects developed dementia and 285 (71.8%) subjects did not. Of the all included variables, CSF Aβ1-42 levels, RAVLT Delayed Recall, and the combination of RAVLT Delayed Recall and d-prime were predictive of progression to AD (χ2 = 38.23, df = 14, p < 0.001). Conclusions: The combination of RAVLT Delayed Recall and d-prime measures may be predictor of conversion from MCI to AD in the ADNI cohort, especially in combination with amyloid biomarkers. A predictive model to help identify individuals at-risk for dementia should include not only traditional episodic memory measures (delayed recall or recognition), but also additional variables (d-prime) that allow the homogenization of the assessment procedures in the diagnosis of MCI. PMID:28344552

  15. Experimental evidence for chick discrimination without recognition in a brood parasite host.

    PubMed

    Grim, Tomás

    2007-02-07

    Recognition is considered a critical basis for discriminatory behaviours in animals. Theoretically, recognition and discrimination of parasitic chicks are not predicted to evolve in hosts of brood parasitic birds that evict nest-mates. Yet, an earlier study showed that host reed warblers (Acrocephalus scirpaceus) of an evicting parasite, the common cuckoo (Cuculus canorus), can avoid the costs of prolonged care for unrelated young by deserting the cuckoo chick before it fledges. Desertion was not based on specific recognition of the parasite because hosts accept any chick cross-fostered into their nests. Thus, the mechanism of this adaptive host response remains enigmatic. Here, I show experimentally that the cue triggering this 'discrimination without recognition' behaviour is the duration of parental care. Neither the intensity of brood care nor the presence of a single-chick in the nest could explain desertions. Hosts responded similarly to foreign chicks, whether heterospecific or experimental conspecifics. The proposed mechanism of discrimination strikingly differs from those found in other parasite-host systems because hosts do not need an internal recognition template of the parasite's appearance to effectively discriminate. Thus, host defences against parasitic chicks may be based upon mechanisms qualitatively different from those operating against parasitic eggs. I also demonstrate that this discriminatory mechanism is non-costly in terms of recognition errors. Comparative data strongly suggest that parasites cannot counter-evolve any adaptation to mitigate effects of this host defence. These findings have crucial implications for the process and end-result of host-parasite arms races and our understanding of the cognitive basis of discriminatory mechanisms in general.

  16. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.

    PubMed

    Zhu, Jianwei; Zhang, Haicang; Li, Shuai Cheng; Wang, Chao; Kong, Lupeng; Sun, Shiwei; Zheng, Wei-Mou; Bu, Dongbo

    2017-12-01

    Accurate recognition of protein fold types is a key step for template-based prediction of protein structures. The existing approaches to fold recognition mainly exploit the features derived from alignments of query protein against templates. These approaches have been shown to be successful for fold recognition at family level, but usually failed at superfamily/fold levels. To overcome this limitation, one of the key points is to explore more structurally informative features of proteins. Although residue-residue contacts carry abundant structural information, how to thoroughly exploit these information for fold recognition still remains a challenge. In this study, we present an approach (called DeepFR) to improve fold recognition at superfamily/fold levels. The basic idea of our approach is to extract fold-specific features from predicted residue-residue contacts of proteins using deep convolutional neural network (DCNN) technique. Based on these fold-specific features, we calculated similarity between query protein and templates, and then assigned query protein with fold type of the most similar template. DCNN has showed excellent performance in image feature extraction and image recognition; the rational underlying the application of DCNN for fold recognition is that contact likelihood maps are essentially analogy to images, as they both display compositional hierarchy. Experimental results on the LINDAHL dataset suggest that even using the extracted fold-specific features alone, our approach achieved success rate comparable to the state-of-the-art approaches. When further combining these features with traditional alignment-related features, the success rate of our approach increased to 92.3%, 82.5% and 78.8% at family, superfamily and fold levels, respectively, which is about 18% higher than the state-of-the-art approach at fold level, 6% higher at superfamily level and 1% higher at family level. An independent assessment on SCOP_TEST dataset showed consistent performance improvement, indicating robustness of our approach. Furthermore, bi-clustering results of the extracted features are compatible with fold hierarchy of proteins, implying that these features are fold-specific. Together, these results suggest that the features extracted from predicted contacts are orthogonal to alignment-related features, and the combination of them could greatly facilitate fold recognition at superfamily/fold levels and template-based prediction of protein structures. Source code of DeepFR is freely available through https://github.com/zhujianwei31415/deepfr, and a web server is available through http://protein.ict.ac.cn/deepfr. zheng@itp.ac.cn or dbu@ict.ac.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Tailoring molecular specificity toward a crystal facet: a lesson from biorecognition toward Pt{111}.

    PubMed

    Ruan, Lingyan; Ramezani-Dakhel, Hadi; Chiu, Chin-Yi; Zhu, Enbo; Li, Yujing; Heinz, Hendrik; Huang, Yu

    2013-02-13

    Surfactants with preferential adsorption to certain crystal facets have been widely employed to manipulate morphologies of colloidal nanocrystals, while mechanisms regarding the origin of facet selectivity remain an enigma. Similar questions exist in biomimetic syntheses concerning biomolecular recognition to materials and crystal surfaces. Here we present mechanistic studies on the molecular origin of the recognition toward platinum {111} facet. By manipulating the conformations and chemical compositions of a platinum {111} facet specific peptide, phenylalanine is identified as the dominant motif to differentiate {111} from other facets. The discovered recognition motif is extended to convert nonspecific peptides into {111} specific peptides. Further extension of this mechanism allows the rational design of small organic molecules that demonstrate preferential adsorption to the {111} facets of both platinum and rhodium nanocrystals. This work represents an advance in understanding the organic-inorganic interfacial interactions in colloidal systems and paves the way to rational and predictable nanostructure modulations for many applications.

  18. Optical signal processing using photonic reservoir computing

    NASA Astrophysics Data System (ADS)

    Salehi, Mohammad Reza; Dehyadegari, Louiza

    2014-10-01

    As a new approach to recognition and classification problems, photonic reservoir computing has such advantages as parallel information processing, power efficient and high speed. In this paper, a photonic structure has been proposed for reservoir computing which is investigated using a simple, yet, non-partial noisy time series prediction task. This study includes the application of a suitable topology with self-feedbacks in a network of SOA's - which lends the system a strong memory - and leads to adjusting adequate parameters resulting in perfect recognition accuracy (100%) for noise-free time series, which shows a 3% improvement over previous results. For the classification of noisy time series, the rate of accuracy showed a 4% increase and amounted to 96%. Furthermore, an analytical approach was suggested to solve rate equations which led to a substantial decrease in the simulation time, which is an important parameter in classification of large signals such as speech recognition, and better results came up compared with previous works.

  19. Speech Perception, Word Recognition and the Structure of the Lexicon. Research on Speech Perception Progress Report No. 10.

    ERIC Educational Resources Information Center

    Pisoni, David B.; And Others

    The results of three projects concerned with auditory word recognition and the structure of the lexicon are reported in this paper. The first project described was designed to test experimentally several specific predictions derived from MACS, a simulation model of the Cohort Theory of word recognition. The second project description provides the…

  20. An Exemplar-Familiarity Model Predicts Short-Term and Long-Term Probe Recognition across Diverse Forms of Memory Search

    ERIC Educational Resources Information Center

    Nosofsky, Robert M.; Cox, Gregory E.; Cao, Rui; Shiffrin, Richard M.

    2014-01-01

    Experiments were conducted to test a modern exemplar-familiarity model on its ability to account for both short-term and long-term probe recognition within the same memory-search paradigm. Also, making connections to the literature on attention and visual search, the model was used to interpret differences in probe-recognition performance across…

  1. The Memory State Heuristic: A Formal Model Based on Repeated Recognition Judgments

    ERIC Educational Resources Information Center

    Castela, Marta; Erdfelder, Edgar

    2017-01-01

    The recognition heuristic (RH) theory predicts that, in comparative judgment tasks, if one object is recognized and the other is not, the recognized one is chosen. The memory-state heuristic (MSH) extends the RH by assuming that choices are not affected by recognition judgments per se, but by the memory states underlying these judgments (i.e.,…

  2. Speech-associated gestures, Broca’s area, and the human mirror system

    PubMed Central

    Skipper, Jeremy I.; Goldin-Meadow, Susan; Nusbaum, Howard C.; Small, Steven L

    2009-01-01

    Speech-associated gestures are hand and arm movements that not only convey semantic information to listeners but are themselves actions. Broca’s area has been assumed to play an important role both in semantic retrieval or selection (as part of a language comprehension system) and in action recognition (as part of a “mirror” or “observation–execution matching” system). We asked whether the role that Broca’s area plays in processing speech-associated gestures is consistent with the semantic retrieval/selection account (predicting relatively weak interactions between Broca’s area and other cortical areas because the meaningful information that speech-associated gestures convey reduces semantic ambiguity and thus reduces the need for semantic retrieval/selection) or the action recognition account (predicting strong interactions between Broca’s area and other cortical areas because speech-associated gestures are goal-direct actions that are “mirrored”). We compared the functional connectivity of Broca’s area with other cortical areas when participants listened to stories while watching meaningful speech-associated gestures, speech-irrelevant self-grooming hand movements, or no hand movements. A network analysis of neuroimaging data showed that interactions involving Broca’s area and other cortical areas were weakest when spoken language was accompanied by meaningful speech-associated gestures, and strongest when spoken language was accompanied by self-grooming hand movements or by no hand movements at all. Results are discussed with respect to the role that the human mirror system plays in processing speech-associated movements. PMID:17533001

  3. Quickprop method to speed up learning process of Artificial Neural Network in money's nominal value recognition case

    NASA Astrophysics Data System (ADS)

    Swastika, Windra

    2017-03-01

    A money's nominal value recognition system has been developed using Artificial Neural Network (ANN). ANN with Back Propagation has one disadvantage. The learning process is very slow (or never reach the target) in the case of large number of iteration, weight and samples. One way to speed up the learning process is using Quickprop method. Quickprop method is based on Newton's method and able to speed up the learning process by assuming that the weight adjustment (E) is a parabolic function. The goal is to minimize the error gradient (E'). In our system, we use 5 types of money's nominal value, i.e. 1,000 IDR, 2,000 IDR, 5,000 IDR, 10,000 IDR and 50,000 IDR. One of the surface of each nominal were scanned and digitally processed. There are 40 patterns to be used as training set in ANN system. The effectiveness of Quickprop method in the ANN system was validated by 2 factors, (1) number of iterations required to reach error below 0.1; and (2) the accuracy to predict nominal values based on the input. Our results shows that the use of Quickprop method is successfully reduce the learning process compared to Back Propagation method. For 40 input patterns, Quickprop method successfully reached error below 0.1 for only 20 iterations, while Back Propagation method required 2000 iterations. The prediction accuracy for both method is higher than 90%.

  4. The evolution of dominance in sporophytic self-incompatibility systems. II. Mate availability and recombination.

    PubMed

    Schoen, Daniel J; Busch, Jeremiah W

    2009-08-01

    Sporophytic self-incompatibility (SSI) is a self-pollen recognition system that enforces outcrossing in plants. Recognition in SSI systems is typically controlled by a complex locus (S-locus) with separate genes that determine pollen and stigma specificity. Experimental studies show that S-alleles can be dominant, recessive, or codominant, and that the dominance level of a given S-allele can depend upon whether pollen or stigma specificity is examined. Here and in the companion paper by Llaurens and colleagues, the evolution of dominance in single-locus SSI is explored using numerical models and simulation. Particular attention is directed at factors that can cause S-allele dominance to differ in pollen versus stigma. The effect of recombination between the S-locus and modifier locus is also examined. The models predict that limitation in the number of compatible mates is required for the evolution of S-allele dominance in the stigma but not in the pollen. Tight linkage between the S-locus and modifier promotes the evolution of S-allele dominance hierarchies. Model results are interpreted with respect to published information on the molecular basis of dominance in SSI systems, and reported S-allele dominance relationships in a variety of species. These studies show that dominant S-alleles are more common in the pollen than in the stigma, a pattern that when interpreted in light of model predictions, suggests that mate limitation may be relatively infrequent in natural populations with SSI.

  5. Rotation-invariant neural pattern recognition system with application to coin recognition.

    PubMed

    Fukumi, M; Omatu, S; Takeda, F; Kosaka, T

    1992-01-01

    In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.

  6. In-the-wild facial expression recognition in extreme poses

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Zhang, Qian; Zheng, Chi; Qiu, Guoping

    2018-04-01

    In the computer research area, facial expression recognition is a hot research problem. Recent years, the research has moved from the lab environment to in-the-wild circumstances. It is challenging, especially under extreme poses. But current expression detection systems are trying to avoid the pose effects and gain the general applicable ability. In this work, we solve the problem in the opposite approach. We consider the head poses and detect the expressions within special head poses. Our work includes two parts: detect the head pose and group it into one pre-defined head pose class; do facial expression recognize within each pose class. Our experiments show that the recognition results with pose class grouping are much better than that of direct recognition without considering poses. We combine the hand-crafted features, SIFT, LBP and geometric feature, with deep learning feature as the representation of the expressions. The handcrafted features are added into the deep learning framework along with the high level deep learning features. As a comparison, we implement SVM and random forest to as the prediction models. To train and test our methodology, we labeled the face dataset with 6 basic expressions.

  7. Using Pattern Recognition and Discriminance Analysis to Predict Critical Events in Large Signal Databases

    NASA Astrophysics Data System (ADS)

    Feller, Jens; Feller, Sebastian; Mauersberg, Bernhard; Mergenthaler, Wolfgang

    2009-09-01

    Many applications in plant management require close monitoring of equipment performance, in particular with the objective to prevent certain critical events. At each point in time, the information available to classify the criticality of the process, is represented through the historic signal database as well as the actual measurement. This paper presents an approach to detect and predict critical events, based on pattern recognition and discriminance analysis.

  8. Emotional facial recognition in proactive and reactive violent offenders.

    PubMed

    Philipp-Wiegmann, Florence; Rösler, Michael; Retz-Junginger, Petra; Retz, Wolfgang

    2017-10-01

    The purpose of this study is to analyse individual differences in the ability of emotional facial recognition in violent offenders, who were characterised as either reactive or proactive in relation to their offending. In accordance with findings of our previous study, we expected higher impairments in facial recognition in reactive than proactive violent offenders. To assess the ability to recognize facial expressions, the computer-based Facial Emotional Expression Labeling Test (FEEL) was performed. Group allocation of reactive und proactive violent offenders and assessment of psychopathic traits were performed by an independent forensic expert using rating scales (PROREA, PCL-SV). Compared to proactive violent offenders and controls, the performance of emotion recognition in the reactive offender group was significantly lower, both in total and especially in recognition of negative emotions such as anxiety (d = -1.29), sadness (d = -1.54), and disgust (d = -1.11). Furthermore, reactive violent offenders showed a tendency to interpret non-anger emotions as anger. In contrast, proactive violent offenders performed as well as controls. General and specific deficits in reactive violent offenders are in line with the results of our previous study and correspond to predictions of the Integrated Emotion System (IES, 7) and the hostile attribution processes (21). Due to the different error pattern in the FEEL test, the theoretical distinction between proactive and reactive aggression can be supported based on emotion recognition, even though aggression itself is always a heterogeneous act rather than a distinct one-dimensional concept.

  9. Recognizing Age-Separated Face Images: Humans and Machines

    PubMed Central

    Yadav, Daksha; Singh, Richa; Vatsa, Mayank; Noore, Afzel

    2014-01-01

    Humans utilize facial appearance, gender, expression, aging pattern, and other ancillary information to recognize individuals. It is interesting to observe how humans perceive facial age. Analyzing these properties can help in understanding the phenomenon of facial aging and incorporating the findings can help in designing effective algorithms. Such a study has two components - facial age estimation and age-separated face recognition. Age estimation involves predicting the age of an individual given his/her facial image. On the other hand, age-separated face recognition consists of recognizing an individual given his/her age-separated images. In this research, we investigate which facial cues are utilized by humans for estimating the age of people belonging to various age groups along with analyzing the effect of one's gender, age, and ethnicity on age estimation skills. We also analyze how various facial regions such as binocular and mouth regions influence age estimation and recognition capabilities. Finally, we propose an age-invariant face recognition algorithm that incorporates the knowledge learned from these observations. Key observations of our research are: (1) the age group of newborns and toddlers is easiest to estimate, (2) gender and ethnicity do not affect the judgment of age group estimation, (3) face as a global feature, is essential to achieve good performance in age-separated face recognition, and (4) the proposed algorithm yields improved recognition performance compared to existing algorithms and also outperforms a commercial system in the young image as probe scenario. PMID:25474200

  10. Recognizing age-separated face images: humans and machines.

    PubMed

    Yadav, Daksha; Singh, Richa; Vatsa, Mayank; Noore, Afzel

    2014-01-01

    Humans utilize facial appearance, gender, expression, aging pattern, and other ancillary information to recognize individuals. It is interesting to observe how humans perceive facial age. Analyzing these properties can help in understanding the phenomenon of facial aging and incorporating the findings can help in designing effective algorithms. Such a study has two components--facial age estimation and age-separated face recognition. Age estimation involves predicting the age of an individual given his/her facial image. On the other hand, age-separated face recognition consists of recognizing an individual given his/her age-separated images. In this research, we investigate which facial cues are utilized by humans for estimating the age of people belonging to various age groups along with analyzing the effect of one's gender, age, and ethnicity on age estimation skills. We also analyze how various facial regions such as binocular and mouth regions influence age estimation and recognition capabilities. Finally, we propose an age-invariant face recognition algorithm that incorporates the knowledge learned from these observations. Key observations of our research are: (1) the age group of newborns and toddlers is easiest to estimate, (2) gender and ethnicity do not affect the judgment of age group estimation, (3) face as a global feature, is essential to achieve good performance in age-separated face recognition, and (4) the proposed algorithm yields improved recognition performance compared to existing algorithms and also outperforms a commercial system in the young image as probe scenario.

  11. Practical automatic Arabic license plate recognition system

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Since 1970's, the need of an automatic license plate recognition system, sometimes referred as Automatic License Plate Recognition system, has been increasing. A license plate recognition system is an automatic system that is able to recognize a license plate number, extracted from image sensors. In specific, Automatic License Plate Recognition systems are being used in conjunction with various transportation systems in application areas such as law enforcement (e.g. speed limit enforcement) and commercial usages such as parking enforcement and automatic toll payment private and public entrances, border control, theft and vandalism control. Vehicle license plate recognition has been intensively studied in many countries. Due to the different types of license plates being used, the requirement of an automatic license plate recognition system is different for each country. [License plate detection using cluster run length smoothing algorithm ].Generally, an automatic license plate localization and recognition system is made up of three modules; license plate localization, character segmentation and optical character recognition modules. This paper presents an Arabic license plate recognition system that is insensitive to character size, font, shape and orientation with extremely high accuracy rate. The proposed system is based on a combination of enhancement, license plate localization, morphological processing, and feature vector extraction using the Haar transform. The performance of the system is fast due to classification of alphabet and numerals based on the license plate organization. Experimental results for license plates of two different Arab countries show an average of 99 % successful license plate localization and recognition in a total of more than 20 different images captured from a complex outdoor environment. The results run times takes less time compared to conventional and many states of art methods.

  12. The A2iA French handwriting recognition system at the Rimes-ICDAR2011 competition

    NASA Astrophysics Data System (ADS)

    Menasri, Farès; Louradour, Jérôme; Bianne-Bernard, Anne-Laure; Kermorvant, Christopher

    2012-01-01

    This paper describes the system for the recognition of French handwriting submitted by A2iA to the competition organized at ICDAR2011 using the Rimes database. This system is composed of several recognizers based on three different recognition technologies, combined using a novel combination method. A framework multi-word recognition based on weighted finite state transducers is presented, using an explicit word segmentation, a combination of isolated word recognizers and a language model. The system was tested both for isolated word recognition and for multi-word line recognition and submitted to the RIMES-ICDAR2011 competition. This system outperformed all previously proposed systems on these tasks.

  13. Recognition of oral spelling is diagnostic of the central reading processes.

    PubMed

    Schubert, Teresa; McCloskey, Michael

    2015-01-01

    The task of recognition of oral spelling (stimulus: "C-A-T", response: "cat") is often administered to individuals with acquired written language disorders, yet there is no consensus about the underlying cognitive processes. We adjudicate between two existing hypotheses: Recognition of oral spelling uses central reading processes, or recognition of oral spelling uses central spelling processes in reverse. We tested the recognition of oral spelling and spelling to dictation abilities of a single individual with acquired dyslexia and dysgraphia. She was impaired relative to matched controls in spelling to dictation but unimpaired in recognition of oral spelling. Recognition of oral spelling for exception words (e.g., colonel) and pronounceable nonwords (e.g., larth) was intact. Our results were predicted by the hypothesis that recognition of oral spelling involves the central reading processes. We conclude that recognition of oral spelling is a useful tool for probing the integrity of the central reading processes.

  14. Extra-hippocampal subcortical limbic involvement predicts episodic recall performance in multiple sclerosis.

    PubMed

    Dineen, Robert A; Bradshaw, Christopher M; Constantinescu, Cris S; Auer, Dorothee P

    2012-01-01

    Episodic memory impairment is a common but poorly-understood phenomenon in multiple sclerosis (MS). We aim to establish the relative contributions of reduced integrity of components of the extended hippocampal-diencephalic system to memory performance in MS patients using quantitative neuroimaging. 34 patients with relapsing-remitting MS and 24 healthy age-matched controls underwent 3 T MRI including diffusion tensor imaging and 3-D T1-weighted volume acquisition. Manual fornix regions-of-interest were used to derive fornix fractional anisotropy (FA). Normalized hippocampal, mammillary body and thalamic volumes were derived by manual segmentation. MS subjects underwent visual recall, verbal recall, verbal recognition and verbal fluency assessment. Significant differences between MS patients and controls were found for fornix FA (0.38 vs. 0.46, means adjusted for age and fornix volume, P<.0005) and mammillary body volumes (age-adjusted means 0.114 ml vs. 0.126 ml, P<.023). Multivariate regression analysis identified fornix FA and mammillary bodies as predictor of visual recall (R(2) = .31, P = .003, P = .006), and thalamic volume as predictive of verbal recall (R(2) = .37, P<.0005). No limbic measures predicted verbal recognition or verbal fluency. These findings indicate that structural and ultrastructural alterations in subcortical limbic components beyond the hippocampus predict performance of episodic recall in MS patients with mild memory dysfunction.

  15. Random-Profiles-Based 3D Face Recognition System

    PubMed Central

    Joongrock, Kim; Sunjin, Yu; Sangyoun, Lee

    2014-01-01

    In this paper, a noble nonintrusive three-dimensional (3D) face modeling system for random-profile-based 3D face recognition is presented. Although recent two-dimensional (2D) face recognition systems can achieve a reliable recognition rate under certain conditions, their performance is limited by internal and external changes, such as illumination and pose variation. To address these issues, 3D face recognition, which uses 3D face data, has recently received much attention. However, the performance of 3D face recognition highly depends on the precision of acquired 3D face data, while also requiring more computational power and storage capacity than 2D face recognition systems. In this paper, we present a developed nonintrusive 3D face modeling system composed of a stereo vision system and an invisible near-infrared line laser, which can be directly applied to profile-based 3D face recognition. We further propose a novel random-profile-based 3D face recognition method that is memory-efficient and pose-invariant. The experimental results demonstrate that the reconstructed 3D face data consists of more than 50 k 3D point clouds and a reliable recognition rate against pose variation. PMID:24691101

  16. Image quality assessment for video stream recognition systems

    NASA Astrophysics Data System (ADS)

    Chernov, Timofey S.; Razumnuy, Nikita P.; Kozharinov, Alexander S.; Nikolaev, Dmitry P.; Arlazarov, Vladimir V.

    2018-04-01

    Recognition and machine vision systems have long been widely used in many disciplines to automate various processes of life and industry. Input images of optical recognition systems can be subjected to a large number of different distortions, especially in uncontrolled or natural shooting conditions, which leads to unpredictable results of recognition systems, making it impossible to assess their reliability. For this reason, it is necessary to perform quality control of the input data of recognition systems, which is facilitated by modern progress in the field of image quality evaluation. In this paper, we investigate the approach to designing optical recognition systems with built-in input image quality estimation modules and feedback, for which the necessary definitions are introduced and a model for describing such systems is constructed. The efficiency of this approach is illustrated by the example of solving the problem of selecting the best frames for recognition in a video stream for a system with limited resources. Experimental results are presented for the system for identity documents recognition, showing a significant increase in the accuracy and speed of the system under simulated conditions of automatic camera focusing, leading to blurring of frames.

  17. 1Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults

    PubMed Central

    Whiteman, Andrew; Young, Daniel E.; He, Xuemei; Chen, Tai C.; Wagenaar, Robert C.; Stern, Chantal; Schon, Karin

    2013-01-01

    Convergent evidence from human and non-human animal studies suggests aerobic exercise and increased aerobic capacity may be beneficial for brain health and cognition. It is thought growth factors may mediate this putative relationship, particularly by augmenting plasticity mechanisms in the hippocampus, a brain region critical for learning and memory. Among these factors, glucocorticoids, brain derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF), hormones that have considerable and diverse physiological importance, are thought to effect normal and exercise-induced hippocampal plasticity. Despite these predictions, relatively few published human studies have tested hypotheses that relate exercise and fitness to the hippocampus, and none have considered the potential links to all of these hormonal components. Here we present cross-sectional data from a study of recognition memory; serum BDNF, cortisol, IGF-1, and VEGF levels; and aerobic capacity in healthy young adults. We measured circulating levels of these hormones together with performance on a recognition memory task, and a standard graded treadmill test of aerobic fitness. Regression analyses demonstrated BDNF and aerobic fitness predict recognition memory in an interactive manner. In addition, IGF-1 was positively associated with aerobic fitness, but not with recognition memory. Our results may suggest an exercise adaptation-related change in the BDNF dose-response curve that relates to hippocampal memory. PMID:24269495

  18. Mechatronics technology in predictive maintenance method

    NASA Astrophysics Data System (ADS)

    Majid, Nurul Afiqah A.; Muthalif, Asan G. A.

    2017-11-01

    This paper presents recent mechatronics technology that can help to implement predictive maintenance by combining intelligent and predictive maintenance instrument. Vibration Fault Simulation System (VFSS) is an example of mechatronics system. The focus of this study is the prediction on the use of critical machines to detect vibration. Vibration measurement is often used as the key indicator of the state of the machine. This paper shows the choice of the appropriate strategy in the vibration of diagnostic process of the mechanical system, especially rotating machines, in recognition of the failure during the working process. In this paper, the vibration signature analysis is implemented to detect faults in rotary machining that includes imbalance, mechanical looseness, bent shaft, misalignment, missing blade bearing fault, balancing mass and critical speed. In order to perform vibration signature analysis for rotating machinery faults, studies have been made on how mechatronics technology is used as predictive maintenance methods. Vibration Faults Simulation Rig (VFSR) is designed to simulate and understand faults signatures. These techniques are based on the processing of vibrational data in frequency-domain. The LabVIEW-based spectrum analyzer software is developed to acquire and extract frequency contents of faults signals. This system is successfully tested based on the unique vibration fault signatures that always occur in a rotating machinery.

  19. Theory of mind and its relationship with executive functions and emotion recognition in borderline personality disorder.

    PubMed

    Baez, Sandra; Marengo, Juan; Perez, Ana; Huepe, David; Font, Fernanda Giralt; Rial, Veronica; Gonzalez-Gadea, María Luz; Manes, Facundo; Ibanez, Agustin

    2015-09-01

    Impaired social cognition has been claimed to be a mechanism underlying the development and maintenance of borderline personality disorder (BPD). One important aspect of social cognition is the theory of mind (ToM), a complex skill that seems to be influenced by more basic processes, such as executive functions (EF) and emotion recognition. Previous ToM studies in BPD have yielded inconsistent results. This study assessed the performance of BPD adults on ToM, emotion recognition, and EF tasks. We also examined whether EF and emotion recognition could predict the performance on ToM tasks. We evaluated 15 adults with BPD and 15 matched healthy controls using different tasks of EF, emotion recognition, and ToM. The results showed that BPD adults exhibited deficits in the three domains, which seem to be task-dependent. Furthermore, we found that EF and emotion recognition predicted the performance on ToM. Our results suggest that tasks that involve real-life social scenarios and contextual cues are more sensitive to detect ToM and emotion recognition deficits in BPD individuals. Our findings also indicate that (a) ToM variability in BPD is partially explained by individual differences on EF and emotion recognition; and (b) ToM deficits of BPD patients are partially explained by the capacity to integrate cues from face, prosody, gesture, and social context to identify the emotions and others' beliefs. © 2014 The British Psychological Society.

  20. Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition

    PubMed Central

    Cadieu, Charles F.; Hong, Ha; Yamins, Daniel L. K.; Pinto, Nicolas; Ardila, Diego; Solomon, Ethan A.; Majaj, Najib J.; DiCarlo, James J.

    2014-01-01

    The primate visual system achieves remarkable visual object recognition performance even in brief presentations, and under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object recognition). This remarkable performance is mediated by the representation formed in inferior temporal (IT) cortex. In parallel, recent advances in machine learning have led to ever higher performing models of object recognition using artificial deep neural networks (DNNs). It remains unclear, however, whether the representational performance of DNNs rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts for experimental limitations, such as the amount of noise, the number of neural recording sites, and the number of trials, and computational limitations, such as the complexity of the decoding classifier and the number of classifier training examples. In this work, we perform a direct comparison that corrects for these experimental limitations and computational considerations. As part of our methodology, we propose an extension of “kernel analysis” that measures the generalization accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show that models that perform well on measures of representational performance also perform well on measures of representational similarity to IT, and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-inspired models, that possibility cannot be ruled out merely on representational performance grounds. PMID:25521294

  1. Recognition Memory zROC Slopes for Items with Correct versus Incorrect Source Decisions Discriminate the Dual Process and Unequal Variance Signal Detection Models

    ERIC Educational Resources Information Center

    Starns, Jeffrey J.; Rotello, Caren M.; Hautus, Michael J.

    2014-01-01

    We tested the dual process and unequal variance signal detection models by jointly modeling recognition and source confidence ratings. The 2 approaches make unique predictions for the slope of the recognition memory zROC function for items with correct versus incorrect source decisions. The standard bivariate Gaussian version of the unequal…

  2. Multivariate Predictors of Music Perception and Appraisal by Adult Cochlear Implant Users

    PubMed Central

    Gfeller, Kate; Oleson, Jacob; Knutson, John F.; Breheny, Patrick; Driscoll, Virginia; Olszewski, Carol

    2009-01-01

    The research examined whether performance by adult cochlear implant recipients on a variety of recognition and appraisal tests derived from real-world music could be predicted from technological, demographic, and life experience variables, as well as speech recognition scores. A representative sample of 209 adults implanted between 1985 and 2006 participated. Using multiple linear regression models and generalized linear mixed models, sets of optimal predictor variables were selected that effectively predicted performance on a test battery that assessed different aspects of music listening. These analyses established the importance of distinguishing between the accuracy of music perception and the appraisal of musical stimuli when using music listening as an index of implant success. Importantly, neither device type nor processing strategy predicted music perception or music appraisal. Speech recognition performance was not a strong predictor of music perception, and primarily predicted music perception when the test stimuli included lyrics. Additionally, limitations in the utility of speech perception in predicting musical perception and appraisal underscore the utility of music perception as an alternative outcome measure for evaluating implant outcomes. Music listening background, residual hearing (i.e., hearing aid use), cognitive factors, and some demographic factors predicted several indices of perceptual accuracy or appraisal of music. PMID:18669126

  3. Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins.

    PubMed

    Pombo, Marina A; Zheng, Yi; Fernandez-Pozo, Noe; Dunham, Diane M; Fei, Zhangjun; Martin, Gregory B

    2014-01-01

    Plants have two related immune systems to defend themselves against pathogen attack. Initially,pattern-triggered immunity is activated upon recognition of microbe-associated molecular patterns by pattern recognition receptors. Pathogenic bacteria deliver effector proteins into the plant cell that interfere with this immune response and promote disease. However, some plants express resistance proteins that detect the presence of specific effectors leading to a robust defense response referred to as effector-triggered immunity. The interaction of tomato with Pseudomonas syringae pv. tomato is an established model system for understanding the molecular basis of these plant immune responses. We apply high-throughput RNA sequencing to this pathosystem to identify genes whose expression changes specifically during pattern-triggered or effector-triggered immunity. We then develop reporter genes for each of these responses that will enable characterization of the host response to the large collection of P. s. pv. tomato strains that express different combinations of effectors. Virus-induced gene silencing of 30 of the effector-triggered immunity-specific genes identifies Epk1 which encodes a predicted protein kinase from a family previously unknown to be involved in immunity. Knocked-down expression of Epk1 compromises effector-triggered immunity triggered by three bacterial effectors but not by effectors from non-bacterial pathogens. Epistasis experiments indicate that Epk1 acts upstream of effector-triggered immunity-associated MAP kinase signaling. Using RNA-seq technology we identify genes involved in specific immune responses. A functional genomics screen led to the discovery of Epk1, a novel predicted protein kinase required for plant defense activation upon recognition of three different bacterial effectors.

  4. Mandarin Chinese Tone Identification in Cochlear Implants: Predictions from Acoustic Models

    PubMed Central

    Morton, Kenneth D.; Torrione, Peter A.; Throckmorton, Chandra S.; Collins, Leslie M.

    2015-01-01

    It has been established that current cochlear implants do not supply adequate spectral information for perception of tonal languages. Comprehension of a tonal language, such as Mandarin Chinese, requires recognition of lexical tones. New strategies of cochlear stimulation such as variable stimulation rate and current steering may provide the means of delivering more spectral information and thus may provide the auditory fine structure required for tone recognition. Several cochlear implant signal processing strategies are examined in this study, the continuous interleaved sampling (CIS) algorithm, the frequency amplitude modulation encoding (FAME) algorithm, and the multiple carrier frequency algorithm (MCFA). These strategies provide different types and amounts of spectral information. Pattern recognition techniques can be applied to data from Mandarin Chinese tone recognition tasks using acoustic models as a means of testing the abilities of these algorithms to transmit the changes in fundamental frequency indicative of the four lexical tones. The ability of processed Mandarin Chinese tones to be correctly classified may predict trends in the effectiveness of different signal processing algorithms in cochlear implants. The proposed techniques can predict trends in performance of the signal processing techniques in quiet conditions but fail to do so in noise. PMID:18706497

  5. Affective and contextual values modulate spatial frequency use in object recognition

    PubMed Central

    Caplette, Laurent; West, Gregory; Gomot, Marie; Gosselin, Frédéric; Wicker, Bruno

    2014-01-01

    Visual object recognition is of fundamental importance in our everyday interaction with the environment. Recent models of visual perception emphasize the role of top-down predictions facilitating object recognition via initial guesses that limit the number of object representations that need to be considered. Several results suggest that this rapid and efficient object processing relies on the early extraction and processing of low spatial frequencies (LSF). The present study aimed to investigate the SF content of visual object representations and its modulation by contextual and affective values of the perceived object during a picture-name verification task. Stimuli consisted of pictures of objects equalized in SF content and categorized as having low or high affective and contextual values. To access the SF content of stored visual representations of objects, SFs of each image were then randomly sampled on a trial-by-trial basis. Results reveal that intermediate SFs between 14 and 24 cycles per object (2.3–4 cycles per degree) are correlated with fast and accurate identification for all categories of objects. Moreover, there was a significant interaction between affective and contextual values over the SFs correlating with fast recognition. These results suggest that affective and contextual values of a visual object modulate the SF content of its internal representation, thus highlighting the flexibility of the visual recognition system. PMID:24904514

  6. A system for diagnosis of wheat leaf diseases based on Android smartphone

    NASA Astrophysics Data System (ADS)

    Xie, Xinhua; Zhang, Xiangqian; He, Bing; Liang, Dong; Zhang, Dongyang; Huang, Linsheng

    2016-10-01

    Owing to the shortages of inconvenience, expensive and high professional requirements etc. for conventional recognition devices of wheat leaf diseases, it does not satisfy the requirements of uploading and releasing timely investigation data in the large-scale field, which may influence the effectiveness of prevention and control for wheat diseases. In this study, a fast, accurate, and robust diagnose system of wheat leaf diseases based on android smartphone was developed, which comprises of two parts—the client and the server. The functions of the client include image acquisition, GPS positioning, corresponding, and knowledge base of disease prevention and control. The server includes image processing, feature extraction, and selection, and classifier establishing. The recognition process of the system goes as follow: when disease images were collected in fields and sent to the server by android smartphone, and then image processing of disease spots was carried out by the server. Eighteen larger weight features were selected by algorithm relief-F and as the input of Relevance Vector Machine (RVM), and the automatic identification of wheat stripe rust and powdery mildew was realized. The experimental results showed that the average recognition rate and predicted speed of RVM model were 5.56% and 7.41 times higher than that of Support Vector Machine (SVM). And application discovered that it needs about 1 minute to get the identification result. Therefore, it can be concluded that the system could be used to recognize wheat diseases and real-time investigate in fields.

  7. GPS-ARM: Computational Analysis of the APC/C Recognition Motif by Predicting D-Boxes and KEN-Boxes

    PubMed Central

    Ren, Jian; Cao, Jun; Zhou, Yanhong; Yang, Qing; Xue, Yu

    2012-01-01

    Anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase incorporated with Cdh1 and/or Cdc20 recognizes and interacts with specific substrates, and faithfully orchestrates the proper cell cycle events by targeting proteins for proteasomal degradation. Experimental identification of APC/C substrates is largely dependent on the discovery of APC/C recognition motifs, e.g., the D-box and KEN-box. Although a number of either stringent or loosely defined motifs proposed, these motif patterns are only of limited use due to their insufficient powers of prediction. We report the development of a novel GPS-ARM software package which is useful for the prediction of D-boxes and KEN-boxes in proteins. Using experimentally identified D-boxes and KEN-boxes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted. By extensive evaluation and comparison, the GPS-ARM performance was found to be much better than the one using simple motifs. With this powerful tool, we predicted 4,841 potential D-boxes in 3,832 proteins and 1,632 potential KEN-boxes in 1,403 proteins from H. sapiens, while further statistical analysis suggested that both the D-box and KEN-box proteins are involved in a broad spectrum of biological processes beyond the cell cycle. In addition, with the co-localization information, we predicted hundreds of mitosis-specific APC/C substrates with high confidence. As the first computational tool for the prediction of APC/C-mediated degradation, GPS-ARM is a useful tool for information to be used in further experimental investigations. The GPS-ARM is freely accessible for academic researchers at: http://arm.biocuckoo.org. PMID:22479614

  8. Effects of emotional and perceptual-motor stress on a voice recognition system's accuracy: An applied investigation

    NASA Astrophysics Data System (ADS)

    Poock, G. K.; Martin, B. J.

    1984-02-01

    This was an applied investigation examining the ability of a speech recognition system to recognize speakers' inputs when the speakers were under different stress levels. Subjects were asked to speak to a voice recognition system under three conditions: (1) normal office environment, (2) emotional stress, and (3) perceptual-motor stress. Results indicate a definite relationship between voice recognition system performance and the type of low stress reference patterns used to achieve recognition.

  9. Individual differences in the recognition of facial expressions: an event-related potentials study.

    PubMed

    Tamamiya, Yoshiyuki; Hiraki, Kazuo

    2013-01-01

    Previous studies have shown that early posterior components of event-related potentials (ERPs) are modulated by facial expressions. The goal of the current study was to investigate individual differences in the recognition of facial expressions by examining the relationship between ERP components and the discrimination of facial expressions. Pictures of 3 facial expressions (angry, happy, and neutral) were presented to 36 young adults during ERP recording. Participants were asked to respond with a button press as soon as they recognized the expression depicted. A multiple regression analysis, where ERP components were set as predictor variables, assessed hits and reaction times in response to the facial expressions as dependent variables. The N170 amplitudes significantly predicted for accuracy of angry and happy expressions, and the N170 latencies were predictive for accuracy of neutral expressions. The P2 amplitudes significantly predicted reaction time. The P2 latencies significantly predicted reaction times only for neutral faces. These results suggest that individual differences in the recognition of facial expressions emerge from early components in visual processing.

  10. Cascaded bidirectional recurrent neural networks for protein secondary structure prediction.

    PubMed

    Chen, Jinmiao; Chaudhari, Narendra

    2007-01-01

    Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.

  11. Sensor performance and weather effects modeling for intelligent transportation systems (ITS) applications

    NASA Astrophysics Data System (ADS)

    Everson, Jeffrey H.; Kopala, Edward W.; Lazofson, Laurence E.; Choe, Howard C.; Pomerleau, Dean A.

    1995-01-01

    Optical sensors are used for several ITS applications, including lateral control of vehicles, traffic sign recognition, car following, autonomous vehicle navigation, and obstacle detection. This paper treats the performance assessment of a sensor/image processor used as part of an on-board countermeasure system to prevent single vehicle roadway departure crashes. Sufficient image contrast between objects of interest and backgrounds is an essential factor influencing overall system performance. Contrast is determined by material properties affecting reflected/radiated intensities, as well as weather and visibility conditions. This paper discusses the modeling of these parameters and characterizes the contrast performance effects due to reduced visibility. The analysis process first involves generation of inherent road/off- road contrasts, followed by weather effects as a contrast modification. The sensor is modeled as a charge coupled device (CCD), with variable parameters. The results of the sensor/weather modeling are used to predict the performance on an in-vehicle warning system under various levels of adverse weather. Software employed in this effort was previously developed for the U.S. Air Force Wright Laboratory to determine target/background detection and recognition ranges for different sensor systems operating under various mission scenarios.

  12. Correlates Associated with Unipolar Depressive Disorders in a Latino Population

    PubMed Central

    Correa-Fernandez, Virmarie; Carrión-Baralt, José R.; Alegría, Margarita; Albizu-García, Carmen E.

    2014-01-01

    Background This study reports the comparison and associations of demographic, clinical, and psychosocial correlates with three unipolar depressive disorders: dysthymia (DYS), major depression (MD), and double depression (DD), and examines to which extent these variables predict the disorders. Sampling and Method Previously collected data from 563 adults from a community in Puerto Rico were analyzed. One hundred and thirty individuals with DYS, 260 with MD, and 173 with DD were compared by demographic variables, psychiatric and physical comorbidity, familial psychopathology, psychosocial stressors, functional impairment, self-reliance, problem recognition and formal use of mental health services. Multinomial regression was used to assess the association of the predictor variables with each of the three disorders. Results Similarities outweighed the discrepancies between disorders. The main differences observed were between MD and DD, while DYS shared common characteristics with both MD and DD. After other variables were controlled, anxiety, functional impairment, and problem recognition most strongly predicted a DD diagnosis while age predicted a DYS diagnosis. Conclusion MD, DYS, and DD are not completely different disorders but they do differ in key aspects that might be relevant for nosology, research, and practice. A dimensional system that incorporates specific categories of disorders would better reflect the different manifestations of unipolar depressive disorders. PMID:23006435

  13. A framework for the recognition of 3D faces and expressions

    NASA Astrophysics Data System (ADS)

    Li, Chao; Barreto, Armando

    2006-04-01

    Face recognition technology has been a focus both in academia and industry for the last couple of years because of its wide potential applications and its importance to meet the security needs of today's world. Most of the systems developed are based on 2D face recognition technology, which uses pictures for data processing. With the development of 3D imaging technology, 3D face recognition emerges as an alternative to overcome the difficulties inherent with 2D face recognition, i.e. sensitivity to illumination conditions and orientation positioning of the subject. But 3D face recognition still needs to tackle the problem of deformation of facial geometry that results from the expression changes of a subject. To deal with this issue, a 3D face recognition framework is proposed in this paper. It is composed of three subsystems: an expression recognition system, a system for the identification of faces with expression, and neutral face recognition system. A system for the recognition of faces with one type of expression (happiness) and neutral faces was implemented and tested on a database of 30 subjects. The results proved the feasibility of this framework.

  14. Learning and Recognition of a Non-conscious Sequence of Events in Human Primary Visual Cortex.

    PubMed

    Rosenthal, Clive R; Andrews, Samantha K; Antoniades, Chrystalina A; Kennard, Christopher; Soto, David

    2016-03-21

    Human primary visual cortex (V1) has long been associated with learning simple low-level visual discriminations [1] and is classically considered outside of neural systems that support high-level cognitive behavior in contexts that differ from the original conditions of learning, such as recognition memory [2, 3]. Here, we used a novel fMRI-based dichoptic masking protocol-designed to induce activity in V1, without modulation from visual awareness-to test whether human V1 is implicated in human observers rapidly learning and then later (15-20 min) recognizing a non-conscious and complex (second-order) visuospatial sequence. Learning was associated with a change in V1 activity, as part of a temporo-occipital and basal ganglia network, which is at variance with the cortico-cerebellar network identified in prior studies of "implicit" sequence learning that involved motor responses and visible stimuli (e.g., [4]). Recognition memory was associated with V1 activity, as part of a temporo-occipital network involving the hippocampus, under conditions that were not imputable to mechanisms associated with conscious retrieval. Notably, the V1 responses during learning and recognition separately predicted non-conscious recognition memory, and functional coupling between V1 and the hippocampus was enhanced for old retrieval cues. The results provide a basis for novel hypotheses about the signals that can drive recognition memory, because these data (1) identify human V1 with a memory network that can code complex associative serial visuospatial information and support later non-conscious recognition memory-guided behavior (cf. [5]) and (2) align with mouse models of experience-dependent V1 plasticity in learning and memory [6]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearinga)

    PubMed Central

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-01-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes. PMID:26233047

  16. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearing.

    PubMed

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-07-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes.

  17. Computer Recognition of Facial Profiles

    DTIC Science & Technology

    1974-08-01

    facial recognition 20. ABSTRACT (Continue on reverse side It necessary and Identify by block number) A system for the recognition of human faces from...21 2.6 Classification Algorithms ........... ... 32 III FACIAL RECOGNITION AND AUTOMATIC TRAINING . . . 37 3.1 Facial Profile Recognition...provide a fair test of the classification system. The work of Goldstein, Harmon, and Lesk [81 indicates, however, that for facial recognition , a ten class

  18. Incidents Prediction in Road Junctions Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Hajji, Tarik; Alami Hassani, Aicha; Ouazzani Jamil, Mohammed

    2018-05-01

    The implementation of an incident detection system (IDS) is an indispensable operation in the analysis of the road traffics. However the IDS may, in no case, represent an alternative to the classical monitoring system controlled by the human eye. The aim of this work is to increase detection and prediction probability of incidents in camera-monitored areas. Knowing that, these areas are monitored by multiple cameras and few supervisors. Our solution is to use Artificial Neural Networks (ANN) to analyze moving objects trajectories on captured images. We first propose a modelling of the trajectories and their characteristics, after we develop a learning database for valid and invalid trajectories, and then we carry out a comparative study to find the artificial neural network architecture that maximizes the rate of valid and invalid trajectories recognition.

  19. Optical coherence tomography in the diagnosis of dysplasia and adenocarcinoma in Barret's esophagus

    NASA Astrophysics Data System (ADS)

    Gladkova, N. D.; Zagaynova, E. V.; Zuccaro, G.; Kareta, M. V.; Feldchtein, F. I.; Balalaeva, I. V.; Balandina, E. B.

    2007-02-01

    Statistical analysis of endoscopic optical coherence tomography (EOCT) surveillance of 78 patients with Barrett's esophagus (BE) is presented in this study. The sensitivity of OCT device in retrospective open detection of early malignancy (including high grade dysplasia and intramucosal adenocarcinoma (IMAC)) was 75%, specificity 82%, diagnostic accuracy - 80%, positive predictive value- 60%, negative predictive value- 87%. In the open recognition of IMAC sensitivity was 81% and specificity were 85% each. Results of a blind recognition with the same material were similar: sensitivity - 77%, specificity 85%, diagnostic accuracy - 82%, positive predictive value- 70%, negative predictive value- 87%. As the endoscopic detection of early malignancy is problematic, OCT holds great promise in enhancing the diagnostic capability of clinical GI endoscopy.

  20. Complete fold annotation of the human proteome using a novel structural feature space.

    PubMed

    Middleton, Sarah A; Illuminati, Joseph; Kim, Junhyong

    2017-04-13

    Recognition of protein structural fold is the starting point for many structure prediction tools and protein function inference. Fold prediction is computationally demanding and recognizing novel folds is difficult such that the majority of proteins have not been annotated for fold classification. Here we describe a new machine learning approach using a novel feature space that can be used for accurate recognition of all 1,221 currently known folds and inference of unknown novel folds. We show that our method achieves better than 94% accuracy even when many folds have only one training example. We demonstrate the utility of this method by predicting the folds of 34,330 human protein domains and showing that these predictions can yield useful insights into potential biological function, such as prediction of RNA-binding ability. Our method can be applied to de novo fold prediction of entire proteomes and identify candidate novel fold families.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Sarah A.; Illuminati, Joseph; Kim, Junhyong

    Recognition of protein structural fold is the starting point for many structure prediction tools and protein function inference. Fold prediction is computationally demanding and recognizing novel folds is difficult such that the majority of proteins have not been annotated for fold classification. Here we describe a new machine learning approach using a novel feature space that can be used for accurate recognition of all 1,221 currently known folds and inference of unknown novel folds. We show that our method achieves better than 94% accuracy even when many folds have only one training example. We demonstrate the utility of this methodmore » by predicting the folds of 34,330 human protein domains and showing that these predictions can yield useful insights into potential biological function, such as prediction of RNA-binding ability. Finally, our method can be applied to de novo fold prediction of entire proteomes and identify candidate novel fold families.« less

  2. Complete fold annotation of the human proteome using a novel structural feature space

    PubMed Central

    Middleton, Sarah A.; Illuminati, Joseph; Kim, Junhyong

    2017-01-01

    Recognition of protein structural fold is the starting point for many structure prediction tools and protein function inference. Fold prediction is computationally demanding and recognizing novel folds is difficult such that the majority of proteins have not been annotated for fold classification. Here we describe a new machine learning approach using a novel feature space that can be used for accurate recognition of all 1,221 currently known folds and inference of unknown novel folds. We show that our method achieves better than 94% accuracy even when many folds have only one training example. We demonstrate the utility of this method by predicting the folds of 34,330 human protein domains and showing that these predictions can yield useful insights into potential biological function, such as prediction of RNA-binding ability. Our method can be applied to de novo fold prediction of entire proteomes and identify candidate novel fold families. PMID:28406174

  3. Modeling Spoken Word Recognition Performance by Pediatric Cochlear Implant Users using Feature Identification

    PubMed Central

    Frisch, Stefan A.; Pisoni, David B.

    2012-01-01

    Objective Computational simulations were carried out to evaluate the appropriateness of several psycholinguistic theories of spoken word recognition for children who use cochlear implants. These models also investigate the interrelations of commonly used measures of closed-set and open-set tests of speech perception. Design A software simulation of phoneme recognition performance was developed that uses feature identification scores as input. Two simulations of lexical access were developed. In one, early phoneme decisions are used in a lexical search to find the best matching candidate. In the second, phoneme decisions are made only when lexical access occurs. Simulated phoneme and word identification performance was then applied to behavioral data from the Phonetically Balanced Kindergarten test and Lexical Neighborhood Test of open-set word recognition. Simulations of performance were evaluated for children with prelingual sensorineural hearing loss who use cochlear implants with the MPEAK or SPEAK coding strategies. Results Open-set word recognition performance can be successfully predicted using feature identification scores. In addition, we observed no qualitative differences in performance between children using MPEAK and SPEAK, suggesting that both groups of children process spoken words similarly despite differences in input. Word recognition ability was best predicted in the model in which phoneme decisions were delayed until lexical access. Conclusions Closed-set feature identification and open-set word recognition focus on different, but related, levels of language processing. Additional insight for clinical intervention may be achieved by collecting both types of data. The most successful model of performance is consistent with current psycholinguistic theories of spoken word recognition. Thus it appears that the cognitive process of spoken word recognition is fundamentally the same for pediatric cochlear implant users and children and adults with normal hearing. PMID:11132784

  4. Experimental evidence for chick discrimination without recognition in a brood parasite host

    PubMed Central

    Grim, Tomáš

    2006-01-01

    Recognition is considered a critical basis for discriminatory behaviours in animals. Theoretically, recognition and discrimination of parasitic chicks are not predicted to evolve in hosts of brood parasitic birds that evict nest-mates. Yet, an earlier study showed that host reed warblers (Acrocephalus scirpaceus) of an evicting parasite, the common cuckoo (Cuculus canorus), can avoid the costs of prolonged care for unrelated young by deserting the cuckoo chick before it fledges. Desertion was not based on specific recognition of the parasite because hosts accept any chick cross-fostered into their nests. Thus, the mechanism of this adaptive host response remains enigmatic. Here, I show experimentally that the cue triggering this ‘discrimination without recognition’ behaviour is the duration of parental care. Neither the intensity of brood care nor the presence of a single-chick in the nest could explain desertions. Hosts responded similarly to foreign chicks, whether heterospecific or experimental conspecifics. The proposed mechanism of discrimination strikingly differs from those found in other parasite–host systems because hosts do not need an internal recognition template of the parasite's appearance to effectively discriminate. Thus, host defences against parasitic chicks may be based upon mechanisms qualitatively different from those operating against parasitic eggs. I also demonstrate that this discriminatory mechanism is non-costly in terms of recognition errors. Comparative data strongly suggest that parasites cannot counter-evolve any adaptation to mitigate effects of this host defence. These findings have crucial implications for the process and end-result of host–parasite arms races and our understanding of the cognitive basis of discriminatory mechanisms in general. PMID:17164201

  5. Smartphone-Based Patients' Activity Recognition by Using a Self-Learning Scheme for Medical Monitoring.

    PubMed

    Guo, Junqi; Zhou, Xi; Sun, Yunchuan; Ping, Gong; Zhao, Guoxing; Li, Zhuorong

    2016-06-01

    Smartphone based activity recognition has recently received remarkable attention in various applications of mobile health such as safety monitoring, fitness tracking, and disease prediction. To achieve more accurate and simplified medical monitoring, this paper proposes a self-learning scheme for patients' activity recognition, in which a patient only needs to carry an ordinary smartphone that contains common motion sensors. After the real-time data collection though this smartphone, we preprocess the data using coordinate system transformation to eliminate phone orientation influence. A set of robust and effective features are then extracted from the preprocessed data. Because a patient may inevitably perform various unpredictable activities that have no apriori knowledge in the training dataset, we propose a self-learning activity recognition scheme. The scheme determines whether there are apriori training samples and labeled categories in training pools that well match with unpredictable activity data. If not, it automatically assembles these unpredictable samples into different clusters and gives them new category labels. These clustered samples combined with the acquired new category labels are then merged into the training dataset to reinforce recognition ability of the self-learning model. In experiments, we evaluate our scheme using the data collected from two postoperative patient volunteers, including six labeled daily activities as the initial apriori categories in the training pool. Experimental results demonstrate that the proposed self-learning scheme for activity recognition works very well for most cases. When there exist several types of unseen activities without any apriori information, the accuracy reaches above 80 % after the self-learning process converges.

  6. Age-specific effects of voluntary exercise on memory and the older brain.

    PubMed

    Siette, Joyce; Westbrook, R Frederick; Cotman, Carl; Sidhu, Kuldip; Zhu, Wanlin; Sachdev, Perminder; Valenzuela, Michael J

    2013-03-01

    Physical exercise in early adulthood and mid-life improves cognitive function and enhances brain plasticity, but the effects of commencing exercise in late adulthood are not well-understood. We investigated the effects of voluntary exercise in the restoration of place recognition memory in aged rats and examined hippocampal changes of synaptic density and neurogenesis. We found a highly selective age-related deficit in place recognition memory that is stable across retest sessions and correlates strongly with loss of hippocampal synapses. Additionally, 12 weeks of voluntary running at 20 months of age removed the deficit in the hippocampally dependent place recognition memory. Voluntary running restored presynaptic density in the dentate gyrus and CA3 hippocampal subregions in aged rats to levels beyond those observed in younger animals, in which exercise had no functional or synaptic effects. By contrast, hippocampal neurogenesis, a possible memory-related mechanism, increased in both young and aged rats after physical exercise but was not linked with performance in the place recognition task. We used graph-based network analysis based on synaptic covariance patterns to characterize efficient intrahippocampal connectivity. This analysis revealed that voluntary running completely reverses the profound degradation of hippocampal network efficiency that accompanies sedentary aging. Furthermore, at an individual animal level, both overall hippocampal presynaptic density and subregional connectivity independently contribute to prediction of successful place recognition memory performance. Our findings emphasize the unique synaptic effects of exercise on the aged brain and their specific relevance to a hippocampally based memory system for place recognition. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Genetic and environmental influences on word recognition and spelling deficits as a function of age.

    PubMed

    Friend, Angela; DeFries, John C; Wadsworth, Sally J; Olson, Richard K

    2007-05-01

    Previous twin studies have suggested a possible developmental dissociation between genetic influences on word recognition and spelling deficits, wherein genetic influence declined across age for word recognition, and increased for spelling recognition. The present study included two measures of word recognition (timed, untimed) and two measures of spelling (recognition, production) in younger and older twins. The heritability estimates for the two word recognition measures were .65 (timed) and .64 (untimed) in the younger group and .65 and .58 respectively in the older group. For spelling, the corresponding estimates were .57 (recognition) and .51 (production) in the younger group and .65 and .67 in the older group. Although these age group differences were not significant, the pattern of decline in heritability across age for reading and increase for spelling conformed to that predicted by the developmental dissociation hypothesis. However, the tests for an interaction between genetic influences on word recognition and spelling deficits as a function of age were not significant.

  8. Quantum-chemical insights from deep tensor neural networks

    PubMed Central

    Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre

    2017-01-01

    Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol−1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems. PMID:28067221

  9. Forecasting Significant Societal Events Using The Embers Streaming Predictive Analytics System

    PubMed Central

    Katz, Graham; Summers, Kristen; Ackermann, Chris; Zavorin, Ilya; Lim, Zunsik; Muthiah, Sathappan; Butler, Patrick; Self, Nathan; Zhao, Liang; Lu, Chang-Tien; Khandpur, Rupinder Paul; Fayed, Youssef; Ramakrishnan, Naren

    2014-01-01

    Abstract Developed under the Intelligence Advanced Research Project Activity Open Source Indicators program, Early Model Based Event Recognition using Surrogates (EMBERS) is a large-scale big data analytics system for forecasting significant societal events, such as civil unrest events on the basis of continuous, automated analysis of large volumes of publicly available data. It has been operational since November 2012 and delivers approximately 50 predictions each day for countries of Latin America. EMBERS is built on a streaming, scalable, loosely coupled, shared-nothing architecture using ZeroMQ as its messaging backbone and JSON as its wire data format. It is deployed on Amazon Web Services using an entirely automated deployment process. We describe the architecture of the system, some of the design tradeoffs encountered during development, and specifics of the machine learning models underlying EMBERS. We also present a detailed prospective evaluation of EMBERS in forecasting significant societal events in the past 2 years. PMID:25553271

  10. Quantum-chemical insights from deep tensor neural networks.

    PubMed

    Schütt, Kristof T; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R; Tkatchenko, Alexandre

    2017-01-09

    Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol -1 ) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.

  11. Forecasting Significant Societal Events Using The Embers Streaming Predictive Analytics System.

    PubMed

    Doyle, Andy; Katz, Graham; Summers, Kristen; Ackermann, Chris; Zavorin, Ilya; Lim, Zunsik; Muthiah, Sathappan; Butler, Patrick; Self, Nathan; Zhao, Liang; Lu, Chang-Tien; Khandpur, Rupinder Paul; Fayed, Youssef; Ramakrishnan, Naren

    2014-12-01

    Developed under the Intelligence Advanced Research Project Activity Open Source Indicators program, Early Model Based Event Recognition using Surrogates (EMBERS) is a large-scale big data analytics system for forecasting significant societal events, such as civil unrest events on the basis of continuous, automated analysis of large volumes of publicly available data. It has been operational since November 2012 and delivers approximately 50 predictions each day for countries of Latin America. EMBERS is built on a streaming, scalable, loosely coupled, shared-nothing architecture using ZeroMQ as its messaging backbone and JSON as its wire data format. It is deployed on Amazon Web Services using an entirely automated deployment process. We describe the architecture of the system, some of the design tradeoffs encountered during development, and specifics of the machine learning models underlying EMBERS. We also present a detailed prospective evaluation of EMBERS in forecasting significant societal events in the past 2 years.

  12. Quantum-chemical insights from deep tensor neural networks

    NASA Astrophysics Data System (ADS)

    Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre

    2017-01-01

    Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol-1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.

  13. Flexible Piezoelectric Sensor-Based Gait Recognition.

    PubMed

    Cha, Youngsu; Kim, Hojoon; Kim, Doik

    2018-02-05

    Most motion recognition research has required tight-fitting suits for precise sensing. However, tight-suit systems have difficulty adapting to real applications, because people normally wear loose clothes. In this paper, we propose a gait recognition system with flexible piezoelectric sensors in loose clothing. The gait recognition system does not directly sense lower-body angles. It does, however, detect the transition between standing and walking. Specifically, we use the signals from the flexible sensors attached to the knee and hip parts on loose pants. We detect the periodic motion component using the discrete time Fourier series from the signal during walking. We adapt the gait detection method to a real-time patient motion and posture monitoring system. In the monitoring system, the gait recognition operates well. Finally, we test the gait recognition system with 10 subjects, for which the proposed system successfully detects walking with a success rate over 93 %.

  14. Autonomous facial recognition system inspired by human visual system based logarithmical image visualization technique

    NASA Astrophysics Data System (ADS)

    Wan, Qianwen; Panetta, Karen; Agaian, Sos

    2017-05-01

    Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.

  15. Does quality of life depend on speech recognition performance for adult cochlear implant users?

    PubMed

    Capretta, Natalie R; Moberly, Aaron C

    2016-03-01

    Current postoperative clinical outcome measures for adults receiving cochlear implants (CIs) consist of testing speech recognition, primarily under quiet conditions. However, it is strongly suspected that results on these measures may not adequately reflect patients' quality of life (QOL) using their implants. This study aimed to evaluate whether QOL for CI users depends on speech recognition performance. Twenty-three postlingually deafened adults with CIs were assessed. Participants were tested for speech recognition (Central Institute for the Deaf word and AzBio sentence recognition in quiet) and completed three QOL measures-the Nijmegen Cochlear Implant Questionnaire; either the Hearing Handicap Inventory for Adults or the Hearing Handicap Inventory for the Elderly; and the Speech, Spatial and Qualities of Hearing Scale questionnaires-to assess a variety of QOL factors. Correlations were sought between speech recognition and QOL scores. Demographics, audiologic history, language, and cognitive skills were also examined as potential predictors of QOL. Only a few QOL scores significantly correlated with postoperative sentence or word recognition in quiet, and correlations were primarily isolated to speech-related subscales on QOL measures. Poorer pre- and postoperative unaided hearing predicted better QOL. Socioeconomic status, duration of deafness, age at implantation, duration of CI use, reading ability, vocabulary size, and cognitive status did not consistently predict QOL scores. For adult, postlingually deafened CI users, clinical speech recognition measures in quiet do not correlate broadly with QOL. Results suggest the need for additional outcome measures of the benefits and limitations of cochlear implantation. 4. Laryngoscope, 126:699-706, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Limited receptive area neural classifier for recognition of swallowing sounds using continuous wavelet transform.

    PubMed

    Makeyev, Oleksandr; Sazonov, Edward; Schuckers, Stephanie; Lopez-Meyer, Paulo; Melanson, Ed; Neuman, Michael

    2007-01-01

    In this paper we propose a sound recognition technique based on the limited receptive area (LIRA) neural classifier and continuous wavelet transform (CWT). LIRA neural classifier was developed as a multipurpose image recognition system. Previous tests of LIRA demonstrated good results in different image recognition tasks including: handwritten digit recognition, face recognition, metal surface texture recognition, and micro work piece shape recognition. We propose a sound recognition technique where scalograms of sound instances serve as inputs of the LIRA neural classifier. The methodology was tested in recognition of swallowing sounds. Swallowing sound recognition may be employed in systems for automated swallowing assessment and diagnosis of swallowing disorders. The experimental results suggest high efficiency and reliability of the proposed approach.

  17. The MITLL NIST LRE 2015 Language Recognition System

    DTIC Science & Technology

    2016-05-06

    The MITLL NIST LRE 2015 Language Recognition System Pedro Torres-Carrasquillo, Najim Dehak*, Elizabeth Godoy, Douglas Reynolds, Fred Richardson...most recent MIT Lincoln Laboratory language recognition system developed for the NIST 2015 Language Recognition Evaluation (LRE). The submission...Task The National Institute of Science and Technology ( NIST ) has conducted formal evaluations of language detection algorithms since 1994. In

  18. The MITLL NIST LRE 2015 Language Recognition system

    DTIC Science & Technology

    2016-02-05

    The MITLL NIST LRE 2015 Language Recognition System Pedro Torres-Carrasquillo, Najim Dehak*, Elizabeth Godoy, Douglas Reynolds, Fred Richardson...recent MIT Lincoln Laboratory language recognition system developed for the NIST 2015 Language Recognition Evaluation (LRE). The submission features a...National Institute of Science and Technology ( NIST ) has conducted formal evaluations of language detection algorithms since 1994. In previous

  19. Frequency Interference in Children' Recognition of Sentence Information

    ERIC Educational Resources Information Center

    Levin, Joel R.; And Others

    1978-01-01

    Children listened to sentences under two instructional sets (imagery or repetition) and answered multiple choice alternatives--either identical or similar in meaning to correct information in the sentences; and including or not including previously presented irrelevant information. The sources of interference predicted from recognition memory…

  20. Context effects and false memory for alcohol words in adolescents.

    PubMed

    Zack, Martin; Sharpley, Justin; Dent, Clyde W; Stacy, Alan W

    2009-03-01

    This study assessed incidental recognition of Alcohol and Neutral words in adolescents who encoded the words under distraction. Participants were 171 (87 male) 10th grade students, ages 14-16 (M=15.1) years. Testing was conducted by telephone: Participants listened to a list containing Alcohol and Neutral (Experimental--Group E, n=92) or only Neutral (Control--Group C, n=79) words, while counting backwards from 200 by two's. Recognition was tested immediately thereafter. Group C exhibited higher false recognition of Neutral than Alcohol items, whereas Group E displayed equivalent false rates for both word types. The reported number of alcohol TV ads seen in the past week predicted higher false recognition of Neutral words in Group C and of Alcohol words in Group E. False memory for Alcohol words in Group E was greater in males and high anxiety sensitive participants. These context-dependent biases may contribute to exaggerations in perceived drinking norms previously found to predict alcohol misuse in young drinkers.

  1. A model of attention-guided visual perception and recognition.

    PubMed

    Rybak, I A; Gusakova, V I; Golovan, A V; Podladchikova, L N; Shevtsova, N A

    1998-08-01

    A model of visual perception and recognition is described. The model contains: (i) a low-level subsystem which performs both a fovea-like transformation and detection of primary features (edges), and (ii) a high-level subsystem which includes separated 'what' (sensory memory) and 'where' (motor memory) structures. Image recognition occurs during the execution of a 'behavioral recognition program' formed during the primary viewing of the image. The recognition program contains both programmed attention window movements (stored in the motor memory) and predicted image fragments (stored in the sensory memory) for each consecutive fixation. The model shows the ability to recognize complex images (e.g. faces) invariantly with respect to shift, rotation and scale.

  2. Recognition of facial emotion and perceived parental bonding styles in healthy volunteers and personality disorder patients.

    PubMed

    Zheng, Leilei; Chai, Hao; Chen, Wanzhen; Yu, Rongrong; He, Wei; Jiang, Zhengyan; Yu, Shaohua; Li, Huichun; Wang, Wei

    2011-12-01

    Early parental bonding experiences play a role in emotion recognition and expression in later adulthood, and patients with personality disorder frequently experience inappropriate parental bonding styles, therefore the aim of the present study was to explore whether parental bonding style is correlated with recognition of facial emotion in personality disorder patients. The Parental Bonding Instrument (PBI) and the Matsumoto and Ekman Japanese and Caucasian Facial Expressions of Emotion (JACFEE) photo set tests were carried out in 289 participants. Patients scored lower on parental Care but higher on parental Freedom Control and Autonomy Denial subscales, and they displayed less accuracy when recognizing contempt, disgust and happiness than the healthy volunteers. In healthy volunteers, maternal Autonomy Denial significantly predicted accuracy when recognizing fear, and maternal Care predicted the accuracy of recognizing sadness. In patients, paternal Care negatively predicted the accuracy of recognizing anger, paternal Freedom Control predicted the perceived intensity of contempt, maternal Care predicted the accuracy of recognizing sadness, and the intensity of disgust. Parenting bonding styles have an impact on the decoding process and sensitivity when recognizing facial emotions, especially in personality disorder patients. © 2011 The Authors. Psychiatry and Clinical Neurosciences © 2011 Japanese Society of Psychiatry and Neurology.

  3. Neural-scaled entropy predicts the effects of nonlinear frequency compression on speech perception

    PubMed Central

    Rallapalli, Varsha H.; Alexander, Joshua M.

    2015-01-01

    The Neural-Scaled Entropy (NSE) model quantifies information in the speech signal that has been altered beyond simple gain adjustments by sensorineural hearing loss (SNHL) and various signal processing. An extension of Cochlear-Scaled Entropy (CSE) [Stilp, Kiefte, Alexander, and Kluender (2010). J. Acoust. Soc. Am. 128(4), 2112–2126], NSE quantifies information as the change in 1-ms neural firing patterns across frequency. To evaluate the model, data from a study that examined nonlinear frequency compression (NFC) in listeners with SNHL were used because NFC can recode the same input information in multiple ways in the output, resulting in different outcomes for different speech classes. Overall, predictions were more accurate for NSE than CSE. The NSE model accurately described the observed degradation in recognition, and lack thereof, for consonants in a vowel-consonant-vowel context that had been processed in different ways by NFC. While NSE accurately predicted recognition of vowel stimuli processed with NFC, it underestimated them relative to a low-pass control condition without NFC. In addition, without modifications, it could not predict the observed improvement in recognition for word final /s/ and /z/. Findings suggest that model modifications that include information from slower modulations might improve predictions across a wider variety of conditions. PMID:26627780

  4. The Contribution of Brainstem and Cerebellar Pathways to Auditory Recognition

    PubMed Central

    McLachlan, Neil M.; Wilson, Sarah J.

    2017-01-01

    The cerebellum has been known to play an important role in motor functions for many years. More recently its role has been expanded to include a range of cognitive and sensory-motor processes, and substantial neuroimaging and clinical evidence now points to cerebellar involvement in most auditory processing tasks. In particular, an increase in the size of the cerebellum over recent human evolution has been attributed in part to the development of speech. Despite this, the auditory cognition literature has largely overlooked afferent auditory connections to the cerebellum that have been implicated in acoustically conditioned reflexes in animals, and could subserve speech and other auditory processing in humans. This review expands our understanding of auditory processing by incorporating cerebellar pathways into the anatomy and functions of the human auditory system. We reason that plasticity in the cerebellar pathways underpins implicit learning of spectrotemporal information necessary for sound and speech recognition. Once learnt, this information automatically recognizes incoming auditory signals and predicts likely subsequent information based on previous experience. Since sound recognition processes involving the brainstem and cerebellum initiate early in auditory processing, learnt information stored in cerebellar memory templates could then support a range of auditory processing functions such as streaming, habituation, the integration of auditory feature information such as pitch, and the recognition of vocal communications. PMID:28373850

  5. The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex

    PubMed Central

    Leibo, Joel Z.; Liao, Qianli; Anselmi, Fabio; Poggio, Tomaso

    2015-01-01

    Is visual cortex made up of general-purpose information processing machinery, or does it consist of a collection of specialized modules? If prior knowledge, acquired from learning a set of objects is only transferable to new objects that share properties with the old, then the recognition system’s optimal organization must be one containing specialized modules for different object classes. Our analysis starts from a premise we call the invariance hypothesis: that the computational goal of the ventral stream is to compute an invariant-to-transformations and discriminative signature for recognition. The key condition enabling approximate transfer of invariance without sacrificing discriminability turns out to be that the learned and novel objects transform similarly. This implies that the optimal recognition system must contain subsystems trained only with data from similarly-transforming objects and suggests a novel interpretation of domain-specific regions like the fusiform face area (FFA). Furthermore, we can define an index of transformation-compatibility, computable from videos, that can be combined with information about the statistics of natural vision to yield predictions for which object categories ought to have domain-specific regions in agreement with the available data. The result is a unifying account linking the large literature on view-based recognition with the wealth of experimental evidence concerning domain-specific regions. PMID:26496457

  6. Rapid interactions between lexical semantic and word form analysis during word recognition in context: evidence from ERPs.

    PubMed

    Kim, Albert; Lai, Vicky

    2012-05-01

    We used ERPs to investigate the time course of interactions between lexical semantic and sublexical visual word form processing during word recognition. Participants read sentence-embedded pseudowords that orthographically resembled a contextually supported real word (e.g., "She measured the flour so she could bake a ceke…") or did not (e.g., "She measured the flour so she could bake a tont…") along with nonword consonant strings (e.g., "She measured the flour so she could bake a srdt…"). Pseudowords that resembled a contextually supported real word ("ceke") elicited an enhanced positivity at 130 msec (P130), relative to real words (e.g., "She measured the flour so she could bake a cake…"). Pseudowords that did not resemble a plausible real word ("tont") enhanced the N170 component, as did nonword consonant strings ("srdt"). The effect pattern shows that the visual word recognition system is, perhaps, counterintuitively, more rapidly sensitive to minor than to flagrant deviations from contextually predicted inputs. The findings are consistent with rapid interactions between lexical and sublexical representations during word recognition, in which rapid lexical access of a contextually supported word (CAKE) provides top-down excitation of form features ("cake"), highlighting the anomaly of an unexpected word "ceke."

  7. Prediction of the thermal imaging minimum resolvable (circle) temperature difference with neural network application.

    PubMed

    Fang, Yi-Chin; Wu, Bo-Wen

    2008-12-01

    Thermal imaging is an important technology in both national defense and the private sector. An advantage of thermal imaging is its ability to be deployed while fully engaged in duties, not limited by weather or the brightness of indoor or outdoor conditions. However, in an outdoor environment, many factors, including atmospheric decay, target shape, great distance, fog, temperature out of range and diffraction limits can lead to bad image formation, which directly affects the accuracy of object recognition. The visual characteristics of the human eye mean that it has a much better capacity for picture recognition under normal conditions than artificial intelligence does. However, conditions of interference significantly reduce this capacity for picture recognition for instance, fatigue impairs human eyesight. Hence, psychological and physiological factors can affect the result when the human eye is adopted to measure MRTD (minimum resolvable temperature difference) and MRCTD (minimum resolvable circle temperature difference). This study explores thermal imaging recognition, and presents a method for effectively choosing the characteristic values and processing the images fully. Neural network technology is successfully applied to recognize thermal imaging and predict MRTD and MRCTD (Appendix A), exceeding thermal imaging recognition under fatigue and the limits of the human eye.

  8. Improving Protein Fold Recognition by Deep Learning Networks.

    PubMed

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin

    2015-12-04

    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl's benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.

  9. Synergy between intention recognition and commitments in cooperation dilemmas

    NASA Astrophysics Data System (ADS)

    Han, The Anh; Santos, Francisco C.; Lenaerts, Tom; Pereira, Luís Moniz

    2015-03-01

    Commitments have been shown to promote cooperation if, on the one hand, they can be sufficiently enforced, and on the other hand, the cost of arranging them is justified with respect to the benefits of cooperation. When either of these constraints is not met it leads to the prevalence of commitment free-riders, such as those who commit only when someone else pays to arrange the commitments. Here, we show how intention recognition may circumvent such weakness of costly commitments. We describe an evolutionary model, in the context of the one-shot Prisoner's Dilemma, showing that if players first predict the intentions of their co-player and propose a commitment only when they are not confident enough about their prediction, the chances of reaching mutual cooperation are largely enhanced. We find that an advantageous synergy between intention recognition and costly commitments depends strongly on the confidence and accuracy of intention recognition. In general, we observe an intermediate level of confidence threshold leading to the highest evolutionary advantage, showing that neither unconditional use of commitment nor intention recognition can perform optimally. Rather, our results show that arranging commitments is not always desirable, but that they may be also unavoidable depending on the strength of the dilemma.

  10. Integrating the acoustics of running speech into the pure tone audiogram: a step from audibility to intelligibility and disability.

    PubMed

    Corthals, Paul

    2008-01-01

    The aim of the present study is to construct a simple method for visualizing and quantifying the audibility of speech on the audiogram and to predict speech intelligibility. The proposed method involves a series of indices on the audiogram form reflecting the sound pressure level distribution of running speech. The indices that coincide with a patient's pure tone thresholds reflect speech audibility and give evidence of residual functional hearing capacity. Two validation studies were conducted among sensorineurally hearing-impaired participants (n = 56 and n = 37, respectively) to investigate the relation with speech recognition ability and hearing disability. The potential of the new audibility indices as predictors for speech reception thresholds is comparable to the predictive potential of the ANSI 1968 articulation index and the ANSI 1997 speech intelligibility index. The sum of indices or a weighted combination can explain considerable proportions of variance in speech reception results for sentences in quiet free field conditions. The proportions of variance that can be explained in questionnaire results on hearing disability are less, presumably because the threshold indices almost exclusively reflect message audibility and much less the psychosocial consequences of hearing deficits. The outcomes underpin the validity of the new audibility indexing system, even though the proposed method may be better suited for predicting relative performance across a set of conditions than for predicting absolute speech recognition performance. (c) 2007 S. Karger AG, Basel

  11. Analytical performance evaluation of SAR ATR with inaccurate or estimated models

    NASA Astrophysics Data System (ADS)

    DeVore, Michael D.

    2004-09-01

    Hypothesis testing algorithms for automatic target recognition (ATR) are often formulated in terms of some assumed distribution family. The parameter values corresponding to a particular target class together with the distribution family constitute a model for the target's signature. In practice such models exhibit inaccuracy because of incorrect assumptions about the distribution family and/or because of errors in the assumed parameter values, which are often determined experimentally. Model inaccuracy can have a significant impact on performance predictions for target recognition systems. Such inaccuracy often causes model-based predictions that ignore the difference between assumed and actual distributions to be overly optimistic. This paper reports on research to quantify the effect of inaccurate models on performance prediction and to estimate the effect using only trained parameters. We demonstrate that for large observation vectors the class-conditional probabilities of error can be expressed as a simple function of the difference between two relative entropies. These relative entropies quantify the discrepancies between the actual and assumed distributions and can be used to express the difference between actual and predicted error rates. Focusing on the problem of ATR from synthetic aperture radar (SAR) imagery, we present estimators of the probabilities of error in both ideal and plug-in tests expressed in terms of the trained model parameters. These estimators are defined in terms of unbiased estimates for the first two moments of the sample statistic. We present an analytical treatment of these results and include demonstrations from simulated radar data.

  12. A motivational determinant of facial emotion recognition: regulatory focus affects recognition of emotions in faces.

    PubMed

    Sassenrath, Claudia; Sassenberg, Kai; Ray, Devin G; Scheiter, Katharina; Jarodzka, Halszka

    2014-01-01

    Two studies examined an unexplored motivational determinant of facial emotion recognition: observer regulatory focus. It was predicted that a promotion focus would enhance facial emotion recognition relative to a prevention focus because the attentional strategies associated with promotion focus enhance performance on well-learned or innate tasks - such as facial emotion recognition. In Study 1, a promotion or a prevention focus was experimentally induced and better facial emotion recognition was observed in a promotion focus compared to a prevention focus. In Study 2, individual differences in chronic regulatory focus were assessed and attention allocation was measured using eye tracking during the facial emotion recognition task. Results indicated that the positive relation between a promotion focus and facial emotion recognition is mediated by shorter fixation duration on the face which reflects a pattern of attention allocation matched to the eager strategy in a promotion focus (i.e., striving to make hits). A prevention focus did not have an impact neither on perceptual processing nor on facial emotion recognition. Taken together, these findings demonstrate important mechanisms and consequences of observer motivational orientation for facial emotion recognition.

  13. Development of First-Graders' Word Reading Skills: For Whom Can Dynamic Assessment Tell Us More?

    PubMed

    Cho, Eunsoo; Compton, Donald L; Gilbert, Jennifer K; Steacy, Laura M; Collins, Alyson A; Lindström, Esther R

    2017-01-01

    Dynamic assessment (DA) of word reading measures learning potential for early reading development by documenting the amount of assistance needed to learn how to read words with unfamiliar orthography. We examined the additive value of DA for predicting first-grade decoding and word recognition development while controlling for autoregressive effects. Additionally, we examined whether predictive validity of DA would be higher for students who have poor phonological awareness skills. First-grade students (n = 105) were assessed on measures of word reading, phonological awareness, rapid automatized naming, and DA in the fall and again assessed on word reading measures in the spring. A series of planned, moderated multiple regression analyses indicated that DA made a significant and unique contribution in predicting word recognition development above and beyond the autoregressor, particularly for students with poor phonological awareness skills. For these students, DA explained 3.5% of the unique variance in end-of-first-grade word recognition that was not attributable to autoregressive effect. Results suggest that DA provides an important source of individual differences in the development of word recognition skills that cannot be fully captured by merely assessing the present level of reading skills through traditional static assessment, particularly for students at risk for developing reading disabilities. © Hammill Institute on Disabilities 2015.

  14. Implicit multisensory associations influence voice recognition.

    PubMed

    von Kriegstein, Katharina; Giraud, Anne-Lise

    2006-10-01

    Natural objects provide partially redundant information to the brain through different sensory modalities. For example, voices and faces both give information about the speech content, age, and gender of a person. Thanks to this redundancy, multimodal recognition is fast, robust, and automatic. In unimodal perception, however, only part of the information about an object is available. Here, we addressed whether, even under conditions of unimodal sensory input, crossmodal neural circuits that have been shaped by previous associative learning become activated and underpin a performance benefit. We measured brain activity with functional magnetic resonance imaging before, while, and after participants learned to associate either sensory redundant stimuli, i.e. voices and faces, or arbitrary multimodal combinations, i.e. voices and written names, ring tones, and cell phones or brand names of these cell phones. After learning, participants were better at recognizing unimodal auditory voices that had been paired with faces than those paired with written names, and association of voices with faces resulted in an increased functional coupling between voice and face areas. No such effects were observed for ring tones that had been paired with cell phones or names. These findings demonstrate that brief exposure to ecologically valid and sensory redundant stimulus pairs, such as voices and faces, induces specific multisensory associations. Consistent with predictive coding theories, associative representations become thereafter available for unimodal perception and facilitate object recognition. These data suggest that for natural objects effective predictive signals can be generated across sensory systems and proceed by optimization of functional connectivity between specialized cortical sensory modules.

  15. Presentation Attack Detection for Iris Recognition System Using NIR Camera Sensor

    PubMed Central

    Nguyen, Dat Tien; Baek, Na Rae; Pham, Tuyen Danh; Park, Kang Ryoung

    2018-01-01

    Among biometric recognition systems such as fingerprint, finger-vein, or face, the iris recognition system has proven to be effective for achieving a high recognition accuracy and security level. However, several recent studies have indicated that an iris recognition system can be fooled by using presentation attack images that are recaptured using high-quality printed images or by contact lenses with printed iris patterns. As a result, this potential threat can reduce the security level of an iris recognition system. In this study, we propose a new presentation attack detection (PAD) method for an iris recognition system (iPAD) using a near infrared light (NIR) camera image. To detect presentation attack images, we first localized the iris region of the input iris image using circular edge detection (CED). Based on the result of iris localization, we extracted the image features using deep learning-based and handcrafted-based methods. The input iris images were then classified into real and presentation attack categories using support vector machines (SVM). Through extensive experiments with two public datasets, we show that our proposed method effectively solves the iris recognition presentation attack detection problem and produces detection accuracy superior to previous studies. PMID:29695113

  16. Presentation Attack Detection for Iris Recognition System Using NIR Camera Sensor.

    PubMed

    Nguyen, Dat Tien; Baek, Na Rae; Pham, Tuyen Danh; Park, Kang Ryoung

    2018-04-24

    Among biometric recognition systems such as fingerprint, finger-vein, or face, the iris recognition system has proven to be effective for achieving a high recognition accuracy and security level. However, several recent studies have indicated that an iris recognition system can be fooled by using presentation attack images that are recaptured using high-quality printed images or by contact lenses with printed iris patterns. As a result, this potential threat can reduce the security level of an iris recognition system. In this study, we propose a new presentation attack detection (PAD) method for an iris recognition system (iPAD) using a near infrared light (NIR) camera image. To detect presentation attack images, we first localized the iris region of the input iris image using circular edge detection (CED). Based on the result of iris localization, we extracted the image features using deep learning-based and handcrafted-based methods. The input iris images were then classified into real and presentation attack categories using support vector machines (SVM). Through extensive experiments with two public datasets, we show that our proposed method effectively solves the iris recognition presentation attack detection problem and produces detection accuracy superior to previous studies.

  17. Extending the Capture Volume of an Iris Recognition System Using Wavefront Coding and Super-Resolution.

    PubMed

    Hsieh, Sheng-Hsun; Li, Yung-Hui; Tien, Chung-Hao; Chang, Chin-Chen

    2016-12-01

    Iris recognition has gained increasing popularity over the last few decades; however, the stand-off distance in a conventional iris recognition system is too short, which limits its application. In this paper, we propose a novel hardware-software hybrid method to increase the stand-off distance in an iris recognition system. When designing the system hardware, we use an optimized wavefront coding technique to extend the depth of field. To compensate for the blurring of the image caused by wavefront coding, on the software side, the proposed system uses a local patch-based super-resolution method to restore the blurred image to its clear version. The collaborative effect of the new hardware design and software post-processing showed great potential in our experiment. The experimental results showed that such improvement cannot be achieved by using a hardware-or software-only design. The proposed system can increase the capture volume of a conventional iris recognition system by three times and maintain the system's high recognition rate.

  18. Fingerprint recognition system by use of graph matching

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Shen, Jun; Zheng, Huicheng

    2001-09-01

    Fingerprint recognition is an important subject in biometrics to identify or verify persons by physiological characteristics, and has found wide applications in different domains. In the present paper, we present a finger recognition system that combines singular points and structures. The principal steps of processing in our system are: preprocessing and ridge segmentation, singular point extraction and selection, graph representation, and finger recognition by graphs matching. Our fingerprint recognition system is implemented and tested for many fingerprint images and the experimental result are satisfactory. Different techniques are used in our system, such as fast calculation of orientation field, local fuzzy dynamical thresholding, algebraic analysis of connections and fingerprints representation and matching by graphs. Wed find that for fingerprint database that is not very large, the recognition rate is very high even without using a prior coarse category classification. This system works well for both one-to-few and one-to-many problems.

  19. Tailoring the Variational Implicit Solvent Method for New Challenges: Biomolecular Recognition and Assembly

    PubMed Central

    Ricci, Clarisse Gravina; Li, Bo; Cheng, Li-Tien; Dzubiella, Joachim; McCammon, J. Andrew

    2018-01-01

    Predicting solvation free energies and describing the complex water behavior that plays an important role in essentially all biological processes is a major challenge from the computational standpoint. While an atomistic, explicit description of the solvent can turn out to be too expensive in large biomolecular systems, most implicit solvent methods fail to capture “dewetting” effects and heterogeneous hydration by relying on a pre-established (i.e., guessed) solvation interface. Here we focus on the Variational Implicit Solvent Method, an implicit solvent method that adds water “plasticity” back to the picture by formulating the solvation free energy as a functional of all possible solvation interfaces. We survey VISM's applications to the problem of molecular recognition and report some of the most recent efforts to tailor VISM for more challenging scenarios, with the ultimate goal of including thermal fluctuations into the framework. The advances reported herein pave the way to make VISM a uniquely successful approach to characterize complex solvation properties in the recognition and binding of large-scale biomolecular complexes. PMID:29484300

  20. Pattern recognition applied to infrared images for early alerts in fog

    NASA Astrophysics Data System (ADS)

    Boucher, Vincent; Marchetti, Mario; Dumoulin, Jean; Cord, Aurélien

    2014-09-01

    Fog conditions are the cause of severe car accidents in western countries because of the poor induced visibility. Its forecast and intensity are still very difficult to predict by weather services. Infrared cameras allow to detect and to identify objects in fog while visibility is too low for eye detection. Over the past years, the implementation of cost effective infrared cameras on some vehicles has enabled such detection. On the other hand pattern recognition algorithms based on Canny filters and Hough transformation are a common tool applied to images. Based on these facts, a joint research program between IFSTTAR and Cerema has been developed to study the benefit of infrared images obtained in a fog tunnel during its natural dissipation. Pattern recognition algorithms have been applied, specifically on road signs which shape is usually associated to a specific meaning (circular for a speed limit, triangle for an alert, …). It has been shown that road signs were detected early enough in images, with respect to images in the visible spectrum, to trigger useful alerts for Advanced Driver Assistance Systems.

  1. Should visual speech cues (speechreading) be considered when fitting hearing aids?

    NASA Astrophysics Data System (ADS)

    Grant, Ken

    2002-05-01

    When talker and listener are face-to-face, visual speech cues become an important part of the communication environment, and yet, these cues are seldom considered when designing hearing aids. Models of auditory-visual speech recognition highlight the importance of complementary versus redundant speech information for predicting auditory-visual recognition performance. Thus, for hearing aids to work optimally when visual speech cues are present, it is important to know whether the cues provided by amplification and the cues provided by speechreading complement each other. In this talk, data will be reviewed that show nonmonotonicity between auditory-alone speech recognition and auditory-visual speech recognition, suggesting that efforts designed solely to improve auditory-alone recognition may not always result in improved auditory-visual recognition. Data will also be presented showing that one of the most important speech cues for enhancing auditory-visual speech recognition performance, voicing, is often the cue that benefits least from amplification.

  2. Sudden Event Recognition: A Survey

    PubMed Central

    Suriani, Nor Surayahani; Hussain, Aini; Zulkifley, Mohd Asyraf

    2013-01-01

    Event recognition is one of the most active research areas in video surveillance fields. Advancement in event recognition systems mainly aims to provide convenience, safety and an efficient lifestyle for humanity. A precise, accurate and robust approach is necessary to enable event recognition systems to respond to sudden changes in various uncontrolled environments, such as the case of an emergency, physical threat and a fire or bomb alert. The performance of sudden event recognition systems depends heavily on the accuracy of low level processing, like detection, recognition, tracking and machine learning algorithms. This survey aims to detect and characterize a sudden event, which is a subset of an abnormal event in several video surveillance applications. This paper discusses the following in detail: (1) the importance of a sudden event over a general anomalous event; (2) frameworks used in sudden event recognition; (3) the requirements and comparative studies of a sudden event recognition system and (4) various decision-making approaches for sudden event recognition. The advantages and drawbacks of using 3D images from multiple cameras for real-time application are also discussed. The paper concludes with suggestions for future research directions in sudden event recognition. PMID:23921828

  3. Self-reported well-being score modelling and prediction: Proof-of-concept of an approach based on linear dynamic systems.

    PubMed

    Xinyang Li; Poli, Riccardo; Valenza, Gaetano; Scilingo, Enzo Pasquale; Citi, Luca

    2017-07-01

    Assessment and recognition of perceived well-being has wide applications in the development of assistive healthcare systems for people with physical and mental disorders. In practical data collection, these systems need to be less intrusive, and respect users' autonomy and willingness as much as possible. As a result, self-reported data are not necessarily available at all times. Conventional classifiers, which usually require feature vectors of a prefixed dimension, are not well suited for this problem. To address the issue of non-uniformly sampled measurements, in this study we propose a method for the modelling and prediction of self-reported well-being scores based on a linear dynamic system. Within the model, we formulate different features as observations, making predictions even in the presence of inconsistent and irregular data. We evaluate the proposed method with synthetic data, as well as real data from two patients diagnosed with cancer. In the latter, self-reported scores from three well-being-related scales were collected over a period of approximately 60 days. Prompted each day, the patients had the choice whether to respond or not. Results show that the proposed model is able to track and predict the patients' perceived well-being dynamics despite the irregularly sampled data.

  4. Sex Differences in Music: A Female Advantage at Recognizing Familiar Melodies.

    PubMed

    Miles, Scott A; Miranda, Robbin A; Ullman, Michael T

    2016-01-01

    Although sex differences have been observed in various cognitive domains, there has been little work examining sex differences in the cognition of music. We tested the prediction that women would be better than men at recognizing familiar melodies, since memories of specific melodies are likely to be learned (at least in part) by declarative memory, which shows female advantages. Participants were 24 men and 24 women, with half musicians and half non-musicians in each group. The two groups were matched on age, education, and various measures of musical training. Participants were presented with well-known and novel melodies, and were asked to indicate their recognition of familiar melodies as rapidly as possible. The women were significantly faster than the men in responding, with a large effect size. The female advantage held across musicians and non-musicians, and across melodies with and without commonly associated lyrics, as evidenced by an absence of interactions between sex and these factors. Additionally, the results did not seem to be explained by sex differences in response biases, or in basic motor processes as tested in a control task. Though caution is warranted given that this is the first study to examine sex differences in familiar melody recognition, the results are consistent with the hypothesis motivating our prediction, namely that declarative memory underlies knowledge about music (particularly about familiar melodies), and that the female advantage at declarative memory may thus lead to female advantages in music cognition (particularly at familiar melody recognition). Additionally, the findings argue against the view that female advantages at tasks involving verbal (or verbalizable) material are due solely to a sex difference specific to the verbal domain. Further, the results may help explain previously reported cognitive commonalities between music and language: since declarative memory also underlies language, such commonalities may be partly due to a common dependence on this memory system. More generally, because declarative memory is well studied at many levels, evidence that music cognition depends on this system may lead to a powerful research program generating a wide range of novel predictions for the neurocognition of music, potentially advancing the field.

  5. Selecting cockpit functions for speech I/O technology

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1985-01-01

    A general methodology for the initial selection of functions for speech generation and speech recognition technology is discussed. The SCR (Stimulus/Central-Processing/Response) compatibility model of Wickens et al. (1983) is examined, and its application is demonstrated for a particular cockpit display problem. Some limits of the applicability of that model are illustrated in the context of predicting overall pilot-aircraft system performance. A program of system performance measurement is recommended for the evaluation of candidate systems. It is suggested that no one measure of system performance can necessarily be depended upon to the exclusion of others. Systems response time, system accuracy, and pilot ratings are all important measures. Finally, these measures must be collected in the context of the total flight task environment.

  6. NATIONAL PREPAREDNESS: Integrating New and Existing Technology and Information Sharing into an Effective Homeland Security Strategy

    DTIC Science & Technology

    2002-06-07

    Continue to Develop and Refine Emerging Technology • Some of the emerging biometric devices, such as iris scans and facial recognition systems...such as iris scans and facial recognition systems, facial recognition systems, and speaker verification systems. (976301)

  7. Identifying and Tracking Pedestrians Based on Sensor Fusion and Motion Stability Predictions

    PubMed Central

    Musleh, Basam; García, Fernando; Otamendi, Javier; Armingol, José Mª; de la Escalera, Arturo

    2010-01-01

    The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS) applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem) and dense disparity maps and u-v disparity (vision subsystem). Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle. PMID:22163639

  8. Identifying and tracking pedestrians based on sensor fusion and motion stability predictions.

    PubMed

    Musleh, Basam; García, Fernando; Otamendi, Javier; Armingol, José Maria; de la Escalera, Arturo

    2010-01-01

    The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS) applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem) and dense disparity maps and u-v disparity (vision subsystem). Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle.

  9. Energy Fluctuations Shape Free Energy of Nonspecific Biomolecular Interactions

    NASA Astrophysics Data System (ADS)

    Elkin, Michael; Andre, Ingemar; Lukatsky, David B.

    2012-01-01

    Understanding design principles of biomolecular recognition is a key question of molecular biology. Yet the enormous complexity and diversity of biological molecules hamper the efforts to gain a predictive ability for the free energy of protein-protein, protein-DNA, and protein-RNA binding. Here, using a variant of the Derrida model, we predict that for a large class of biomolecular interactions, it is possible to accurately estimate the relative free energy of binding based on the fluctuation properties of their energy spectra, even if a finite number of the energy levels is known. We show that the free energy of the system possessing a wider binding energy spectrum is almost surely lower compared with the system possessing a narrower energy spectrum. Our predictions imply that low-affinity binding scores, usually wasted in protein-protein and protein-DNA docking algorithms, can be efficiently utilized to compute the free energy. Using the results of Rosetta docking simulations of protein-protein interactions from Andre et al. (Proc. Natl. Acad. Sci. USA 105:16148, 2008), we demonstrate the power of our predictions.

  10. A validation study of the CEMACH recommended modified early obstetric warning system (MEOWS).

    PubMed

    Singh, S; McGlennan, A; England, A; Simons, R

    2012-01-01

    The 2003-2005 Confidential Enquiry into Maternal and Child Health report recommended the introduction of the modified early obstetric warning system (MEOWS) in all obstetric inpatients to track maternal physiological parameters, and to aid early recognition and treatment of the acutely unwell parturient. We prospectively reviewed 676 consecutive obstetric admissions, looking at their completed MEOWS charts for triggers and their notes for evidence of morbidity. Two hundred patients (30%) triggered and 86 patients (13%) had morbidity according to our criteria, including haemorrhage (43%), hypertensive disease of pregnancy (31%) and suspected infection (20%). The MEOWS was 89% sensitive (95% CI 81-95%), 79% specific (95% CI 76-82%), with a positive predictive value 39% (95% CI 32-46%) and a negative predictive value of 98% (95% CI 96-99%). There were no admissions to the intensive care unit, cardio respiratory arrests or deaths during the study period. This study suggests that MEOWS is a useful bedside tool for predicting morbidity. Adjustment of the trigger parameters may improve positive predictive value. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  11. Reward Dependent Invigoration Relates to Theta Oscillations and Is Predicted by Dopaminergic Midbrain Integrity in Healthy Elderly.

    PubMed

    Steiger, Tineke K; Bunzeck, Nico

    2017-01-01

    Motivation can have invigorating effects on behavior via dopaminergic neuromodulation. While this relationship has mainly been established in theoretical models and studies in younger subjects, the impact of structural declines of the dopaminergic system during healthy aging remains unclear. To investigate this issue, we used electroencephalography (EEG) in healthy young and elderly humans in a reward-learning paradigm. Specifically, scene images were initially encoded by combining them with cues predicting monetary reward (high vs. low reward). Subsequently, recognition memory for the scenes was tested. As a main finding, we can show that response times (RTs) during encoding were faster for high reward predicting images in the young but not elderly participants. This pattern was resembled in power changes in the theta-band (4-7 Hz). Importantly, analyses of structural MRI data revealed that individual reward-related differences in the elderlies' response time could be predicted by the structural integrity of the dopaminergic substantia nigra (SN; as measured by magnetization transfer (MT)). These findings suggest a close relationship between reward-based invigoration, theta oscillations and age-dependent changes of the dopaminergic system.

  12. Biometric identification

    NASA Astrophysics Data System (ADS)

    Syryamkim, V. I.; Kuznetsov, D. N.; Kuznetsova, A. S.

    2018-05-01

    Image recognition is an information process implemented by some information converter (intelligent information channel, recognition system) having input and output. The input of the system is fed with information about the characteristics of the objects being presented. The output of the system displays information about which classes (generalized images) the recognized objects are assigned to. When creating and operating an automated system for pattern recognition, a number of problems are solved, while for different authors the formulations of these tasks, and the set itself, do not coincide, since it depends to a certain extent on the specific mathematical model on which this or that recognition system is based. This is the task of formalizing the domain, forming a training sample, learning the recognition system, reducing the dimensionality of space.

  13. Evaluation of a voice recognition system for the MOTAS pseudo pilot station function

    NASA Technical Reports Server (NTRS)

    Houck, J. A.

    1982-01-01

    The Langley Research Center has undertaken a technology development activity to provide a capability, the mission oriented terminal area simulation (MOTAS), wherein terminal area and aircraft systems studies can be performed. An experiment was conducted to evaluate state-of-the-art voice recognition technology and specifically, the Threshold 600 voice recognition system to serve as an aircraft control input device for the MOTAS pseudo pilot station function. The results of the experiment using ten subjects showed a recognition error of 3.67 percent for a 48-word vocabulary tested against a programmed vocabulary of 103 words. After the ten subjects retrained the Threshold 600 system for the words which were misrecognized or rejected, the recognition error decreased to 1.96 percent. The rejection rates for both cases were less than 0.70 percent. Based on the results of the experiment, voice recognition technology and specifically the Threshold 600 voice recognition system were chosen to fulfill this MOTAS function.

  14. [The design and applications of a non-invasive intelligent detector for cardiovascular functions].

    PubMed

    Li, Feng; Xing, Wu; Chen, Ming-zhi; Shang, Huai

    2006-05-01

    An apparatus based on a high sensitive sensor which detects cardiovascular functions is introduced in this paper. Some intelligent detecting technologies, such as syntactic pattern recognition and a medical expert system are used in this detector. Its embedded single-chip microcomputer processes and analyzes pulse signals for gaining automatically the parameters about heart, blood vessel and blood etc., so as to get the health evaluation, correct medical diagnosis and prediction of cardiovascular diseases.

  15. FIEFDom: A Transparent Domain Boundary Recognition System using a Fuzzy Mean Operator

    DTIC Science & Technology

    2008-12-04

    to search for matching fragments by running the PSI-BLAST program a second time. During this step, the expectation value threshold ( e -value) is set at...statistical significance (or low e -value), and therefore have low scores. Finally, the domain boundaries (if any) are predicted using the scored...neighbor (match) is weighted by its e -value, the relative contribution of each neighbor is apparent. This is contrary to black-box models in which the

  16. On Assisting a Visual-Facial Affect Recognition System with Keyboard-Stroke Pattern Information

    NASA Astrophysics Data System (ADS)

    Stathopoulou, I.-O.; Alepis, E.; Tsihrintzis, G. A.; Virvou, M.

    Towards realizing a multimodal affect recognition system, we are considering the advantages of assisting a visual-facial expression recognition system with keyboard-stroke pattern information. Our work is based on the assumption that the visual-facial and keyboard modalities are complementary to each other and that their combination can significantly improve the accuracy in affective user models. Specifically, we present and discuss the development and evaluation process of two corresponding affect recognition subsystems, with emphasis on the recognition of 6 basic emotional states, namely happiness, sadness, surprise, anger and disgust as well as the emotion-less state which we refer to as neutral. We find that emotion recognition by the visual-facial modality can be aided greatly by keyboard-stroke pattern information and the combination of the two modalities can lead to better results towards building a multimodal affect recognition system.

  17. Face recognition system and method using face pattern words and face pattern bytes

    DOEpatents

    Zheng, Yufeng

    2014-12-23

    The present invention provides a novel system and method for identifying individuals and for face recognition utilizing facial features for face identification. The system and method of the invention comprise creating facial features or face patterns called face pattern words and face pattern bytes for face identification. The invention also provides for pattern recognitions for identification other than face recognition. The invention further provides a means for identifying individuals based on visible and/or thermal images of those individuals by utilizing computer software implemented by instructions on a computer or computer system and a computer readable medium containing instructions on a computer system for face recognition and identification.

  18. Distributed Learning, Recognition, and Prediction by ART and ARTMAP Neural Networks.

    PubMed

    Carpenter, Gail A.

    1997-11-01

    A class of adaptive resonance theory (ART) models for learning, recognition, and prediction with arbitrarily distributed code representations is introduced. Distributed ART neural networks combine the stable fast learning capabilities of winner-take-all ART systems with the noise tolerance and code compression capabilities of multilayer perceptrons. With a winner-take-all code, the unsupervised model dART reduces to fuzzy ART and the supervised model dARTMAP reduces to fuzzy ARTMAP. With a distributed code, these networks automatically apportion learned changes according to the degree of activation of each coding node, which permits fast as well as slow learning without catastrophic forgetting. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Thresholds increase monotonically during learning according to a principle of atrophy due to disuse. However, monotonic change at the synaptic level manifests itself as bidirectional change at the dynamic level, where the result of adaptation resembles long-term potentiation (LTP) for single-pulse or low frequency test inputs but can resemble long-term depression (LTD) for higher frequency test inputs. This paradoxical behavior is traced to dual computational properties of phasic and tonic coding signal components. A parallel distributed match-reset-search process also helps stabilize memory. Without the match-reset-search system, dART becomes a type of distributed competitive learning network.

  19. Applications of artificial neural network in AIDS research and therapy.

    PubMed

    Sardari, S; Sardari, D

    2002-01-01

    In recent years considerable effort has been devoted to applying pattern recognition techniques to the complex task of data analysis in drug research. Artificial neural networks (ANN) methodology is a modeling method with great ability to adapt to a new situation, or control an unknown system, using data acquired in previous experiments. In this paper, a brief history of ANN and the basic concepts behind the computing, the mathematical and algorithmic formulation of each of the techniques, and their developmental background is presented. Based on the abilities of ANNs in pattern recognition and estimation of system outputs from the known inputs, the neural network can be considered as a tool for molecular data analysis and interpretation. Analysis by neural networks improves the classification accuracy, data quantification and reduces the number of analogues necessary for correct classification of biologically active compounds. Conformational analysis and quantifying the components in mixtures using NMR spectra, aqueous solubility prediction and structure-activity correlation are among the reported applications of ANN as a new modeling method. Ranging from drug design and discovery to structure and dosage form design, the potential pharmaceutical applications of the ANN methodology are significant. In the areas of clinical monitoring, utilization of molecular simulation and design of bioactive structures, ANN would make the study of the status of the health and disease possible and brings their predicted chemotherapeutic response closer to reality.

  20. Infrared/Terahertz Double Resonance for Chemical Remote Sensing: Signatures and Performance Predictions

    DTIC Science & Technology

    2011-01-01

    remote sensing , such as Fourier-transform infrared spectroscopy, has limited recognition specificity because of atmospheric pressure broadening. Active interrogation techniques promise much greater chemical recognition that can overcome the limits imposed by atmospheric pressure broadening. Here we introduce infrared - terahertz (IR/THz) double resonance spectroscopy as an active means of chemical remote sensing that retains recognition specificity through rare, molecule-unique coincidences between IR molecular absorption and a line-tunable CO2

  1. Military applications of automatic speech recognition and future requirements

    NASA Technical Reports Server (NTRS)

    Beek, Bruno; Cupples, Edward J.

    1977-01-01

    An updated summary of the state-of-the-art of automatic speech recognition and its relevance to military applications is provided. A number of potential systems for military applications are under development. These include: (1) digital narrowband communication systems; (2) automatic speech verification; (3) on-line cartographic processing unit; (4) word recognition for militarized tactical data system; and (5) voice recognition and synthesis for aircraft cockpit.

  2. Gene expression pattern recognition algorithm inferences to classify samples exposed to chemical agents

    NASA Astrophysics Data System (ADS)

    Bushel, Pierre R.; Bennett, Lee; Hamadeh, Hisham; Green, James; Ableson, Alan; Misener, Steve; Paules, Richard; Afshari, Cynthia

    2002-06-01

    We present an analysis of pattern recognition procedures used to predict the classes of samples exposed to pharmacologic agents by comparing gene expression patterns from samples treated with two classes of compounds. Rat liver mRNA samples following exposure for 24 hours with phenobarbital or peroxisome proliferators were analyzed using a 1700 rat cDNA microarray platform. Sets of genes that were consistently differentially expressed in the rat liver samples following treatment were stored in the MicroArray Project System (MAPS) database. MAPS identified 238 genes in common that possessed a low probability (P < 0.01) of being randomly detected as differentially expressed at the 95% confidence level. Hierarchical cluster analysis on the 238 genes clustered specific gene expression profiles that separated samples based on exposure to a particular class of compound.

  3. Learning and Prediction of Slip from Visual Information

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Matthies, Larry; Helmick, Daniel; Perona, Pietro

    2007-01-01

    This paper presents an approach for slip prediction from a distance for wheeled ground robots using visual information as input. Large amounts of slippage which can occur on certain surfaces, such as sandy slopes, will negatively affect rover mobility. Therefore, obtaining information about slip before entering such terrain can be very useful for better planning and avoiding these areas. To address this problem, terrain appearance and geometry information about map cells are correlated to the slip measured by the rover while traversing each cell. This relationship is learned from previous experience, so slip can be predicted remotely from visual information only. The proposed method consists of terrain type recognition and nonlinear regression modeling. The method has been implemented and tested offline on several off-road terrains including: soil, sand, gravel, and woodchips. The final slip prediction error is about 20%. The system is intended for improved navigation on steep slopes and rough terrain for Mars rovers.

  4. Face Recognition Vendor Test 2000: Evaluation Report

    DTIC Science & Technology

    2001-02-16

    The biggest change in the facial recognition community since the completion of the FERET program has been the introduction of facial recognition products...program and significantly lowered system costs. Today there are dozens of facial recognition systems available that have the potential to meet...inquiries from numerous government agencies on the current state of facial recognition technology prompted the DoD Counterdrug Technology Development Program

  5. Developing a Credit Recognition System for Chinese Higher Education Institutions

    ERIC Educational Resources Information Center

    Li, Fuhui

    2015-01-01

    In recent years, a credit recognition system has been developing in Chinese higher education institutions. Much research has been done on this development, but it has been concentrated on system building, barriers/issues and international practices. The relationship between credit recognition system reforms and democratisation of higher education…

  6. Separating Speed from Accuracy in Beginning Reading Development

    ERIC Educational Resources Information Center

    Juul, Holger; Poulsen, Mads; Elbro, Carsten

    2014-01-01

    Phoneme awareness, letter knowledge, and rapid automatized naming (RAN) are well-known kindergarten predictors of later word recognition skills, but it is not clear whether they predict developments in accuracy or speed, or both. The present longitudinal study of 172 Danish beginning readers found that speed of word recognition mainly developed…

  7. Stability of distributed MPC in an intersection scenario

    NASA Astrophysics Data System (ADS)

    Sprodowski, T.; Pannek, J.

    2015-11-01

    The research topic of autonomous cars and the communication among them has attained much attention in the last years and is developing quickly. Among others, this research area spans fields such as image recognition, mathematical control theory, communication networks, and sensor fusion. We consider an intersection scenario where we divide the shared road space in different cells. These cells form a grid. The cars are modelled as an autonomous multi-agent system based on the Distributed Model Predictive Control algorithm (DMPC). We prove that the overall system reaches stability using Optimal Control for each multi-agent and demonstrate that by numerical results.

  8. A combination strategy for extraction and isolation of multi-component natural products by systematic two-phase solvent extraction-(13)C nuclear magnetic resonance pattern recognition and following conical counter-current chromatography separation: Podophyllotoxins and flavonoids from Dysosma versipellis (Hance) as examples.

    PubMed

    Yang, Zhi; Wu, Youqian; Wu, Shihua

    2016-01-29

    Despite of substantial developments of extraction and separation techniques, isolation of natural products from natural resources is still a challenging task. In this work, an efficient strategy for extraction and isolation of multi-component natural products has been successfully developed by combination of systematic two-phase liquid-liquid extraction-(13)C NMR pattern recognition and following conical counter-current chromatography separation. A small-scale crude sample was first distributed into 9 systematic hexane-ethyl acetate-methanol-water (HEMWat) two-phase solvent systems for determination of the optimum extraction solvents and partition coefficients of the prominent components. Then, the optimized solvent systems were used in succession to enrich the hydrophilic and lipophilic components from the large-scale crude sample. At last, the enriched components samples were further purified by a new conical counter-current chromatography (CCC). Due to the use of (13)C NMR pattern recognition, the kinds and structures of major components in the solvent extracts could be predicted. Therefore, the method could collect simultaneously the partition coefficients and the structural information of components in the selected two-phase solvents. As an example, a cytotoxic extract of podophyllotoxins and flavonoids from Dysosma versipellis (Hance) was selected. After the systematic HEMWat system solvent extraction and (13)C NMR pattern recognition analyses, the crude extract of D. versipellis was first degreased by the upper phase of HEMWat system (9:1:9:1, v/v), and then distributed in the two phases of the system of HEMWat (2:8:2:8, v/v) to obtain the hydrophilic lower phase extract and lipophilic upper phase extract, respectively. These extracts were further separated by conical CCC with the HEMWat systems (1:9:1:9 and 4:6:4:6, v/v). As results, total 17 cytotoxic compounds were isolated and identified. In general, whole results suggested that the strategy was very efficient for the systematic extraction and isolation of biological active components from the complex biomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Core reactivity estimation in space reactors using recurrent dynamic networks

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Tsai, Wei K.

    1991-01-01

    A recurrent multilayer perceptron network topology is used in the identification of nonlinear dynamic systems from only the input/output measurements. The identification is performed in the discrete time domain, with the learning algorithm being a modified form of the back propagation (BP) rule. The recurrent dynamic network (RDN) developed is applied for the total core reactivity prediction of a spacecraft reactor from only neutronic power level measurements. Results indicate that the RDN can reproduce the nonlinear response of the reactor while keeping the number of nodes roughly equal to the relative order of the system. As accuracy requirements are increased, the number of required nodes also increases, however, the order of the RDN necessary to obtain such results is still in the same order of magnitude as the order of the mathematical model of the system. It is believed that use of the recurrent MLP structure with a variety of different learning algorithms may prove useful in utilizing artificial neural networks for recognition, classification, and prediction of dynamic systems.

  10. Fitting and verification of frequency modulation systems on children with normal hearing.

    PubMed

    Schafer, Erin C; Bryant, Danielle; Sanders, Katie; Baldus, Nicole; Algier, Katherine; Lewis, Audrey; Traber, Jordan; Layden, Paige; Amin, Aneeqa

    2014-06-01

    Several recent investigations support the use of frequency modulation (FM) systems in children with normal hearing and auditory processing or listening disorders such as those diagnosed with auditory processing disorders, autism spectrum disorders, attention-deficit hyperactivity disorder, Friedreich ataxia, and dyslexia. The American Academy of Audiology (AAA) published suggested procedures, but these guidelines do not cite research evidence to support the validity of the recommended procedures for fitting and verifying nonoccluding open-ear FM systems on children with normal hearing. Documenting the validity of these fitting procedures is critical to maximize the potential FM-system benefit in the above-mentioned populations of children with normal hearing and those with auditory-listening problems. The primary goal of this investigation was to determine the validity of the AAA real-ear approach to fitting FM systems on children with normal hearing. The secondary goal of this study was to examine speech-recognition performance in noise and loudness ratings without and with FM systems in children with normal hearing sensitivity. A two-group, cross-sectional design was used in the present study. Twenty-six typically functioning children, ages 5-12 yr, with normal hearing sensitivity participated in the study. Participants used a nonoccluding open-ear FM receiver during laboratory-based testing. Participants completed three laboratory tests: (1) real-ear measures, (2) speech recognition performance in noise, and (3) loudness ratings. Four real-ear measures were conducted to (1) verify that measured output met prescribed-gain targets across the 1000-4000 Hz frequency range for speech stimuli, (2) confirm that the FM-receiver volume did not exceed predicted uncomfortable loudness levels, and (3 and 4) measure changes to the real-ear unaided response when placing the FM receiver in the child's ear. After completion of the fitting, speech recognition in noise at a -5 signal-to-noise ratio and loudness ratings at a +5 signal-to-noise ratio were measured in four conditions: (1) no FM system, (2) FM receiver on the right ear, (3) FM receiver on the left ear, and (4) bilateral FM system. The results of this study suggested that the slightly modified AAA real-ear measurement procedures resulted in a valid fitting of one FM system on children with normal hearing. On average, prescriptive targets were met for 1000, 2000, 3000, and 4000 Hz within 3 dB, and maximum output of the FM system never exceeded and was significantly lower than predicted uncomfortable loudness levels for the children. There was a minimal change in the real-ear unaided response when the open-ear FM receiver was placed into the ear. Use of the FM system on one or both ears resulted in significantly better speech recognition in noise relative to a no-FM condition, and the unilateral and bilateral FM receivers resulted in a comfortably loud signal when listening in background noise. Real-ear measures are critical for obtaining an appropriate fit of an FM system on children with normal hearing. American Academy of Audiology.

  11. Noise Robust Speech Recognition Applied to Voice-Driven Wheelchair

    NASA Astrophysics Data System (ADS)

    Sasou, Akira; Kojima, Hiroaki

    2009-12-01

    Conventional voice-driven wheelchairs usually employ headset microphones that are capable of achieving sufficient recognition accuracy, even in the presence of surrounding noise. However, such interfaces require users to wear sensors such as a headset microphone, which can be an impediment, especially for the hand disabled. Conversely, it is also well known that the speech recognition accuracy drastically degrades when the microphone is placed far from the user. In this paper, we develop a noise robust speech recognition system for a voice-driven wheelchair. This system can achieve almost the same recognition accuracy as the headset microphone without wearing sensors. We verified the effectiveness of our system in experiments in different environments, and confirmed that our system can achieve almost the same recognition accuracy as the headset microphone without wearing sensors.

  12. Reading handprinted addresses on IRS tax forms

    NASA Astrophysics Data System (ADS)

    Ramanaprasad, Vemulapati; Shin, Yong-Chul; Srihari, Sargur N.

    1996-03-01

    The hand-printed address recognition system described in this paper is a part of the Name and Address Block Reader (NABR) system developed by the Center of Excellence for Document Analysis and Recognition (CEDAR). NABR is currently being used by the IRS to read address blocks (hand-print as well as machine-print) on fifteen different tax forms. Although machine- print address reading was relatively straightforward, hand-print address recognition has posed some special challenges due to demands on processing speed (with an expected throughput of 8450 forms/hour) and recognition accuracy. We discuss various subsystems involved in hand- printed address recognition, including word segmentation, word recognition, digit segmentation, and digit recognition. We also describe control strategies used to make effective use of these subsystems to maximize recognition accuracy. We present system performance on 931 address blocks in recognizing various fields, such as city, state, ZIP Code, street number and name, and personal names.

  13. On the psychology of the recognition heuristic: retrieval primacy as a key determinant of its use.

    PubMed

    Pachur, Thorsten; Hertwig, Ralph

    2006-09-01

    The recognition heuristic is a prime example of a boundedly rational mind tool that rests on an evolved capacity, recognition, and exploits environmental structures. When originally proposed, it was conjectured that no other probabilistic cue reverses the recognition-based inference (D. G. Goldstein & G. Gigerenzer, 2002). More recent studies challenged this view and gave rise to the argument that recognition enters inferences just like any other probabilistic cue. By linking research on the heuristic with research on recognition memory, the authors argue that the retrieval of recognition information is not tantamount to the retrieval of other probabilistic cues. Specifically, the retrieval of subjective recognition precedes that of an objective probabilistic cue and occurs at little to no cognitive cost. This retrieval primacy gives rise to 2 predictions, both of which have been empirically supported: Inferences in line with the recognition heuristic (a) are made faster than inferences inconsistent with it and (b) are more prevalent under time pressure. Suspension of the heuristic, in contrast, requires additional time, and direct knowledge of the criterion variable, if available, can trigger such suspension. Copyright 2006 APA

  14. Molecular recognition of pre-tRNA by Arabidopsis protein-only Ribonuclease P.

    PubMed

    Klemm, Bradley P; Karasik, Agnes; Kaitany, Kipchumba J; Shanmuganathan, Aranganathan; Henley, Matthew J; Thelen, Adam Z; Dewar, Allison J L; Jackson, Nathaniel D; Koutmos, Markos; Fierke, Carol A

    2017-12-01

    Protein-only ribonuclease P (PRORP) is an enzyme responsible for catalyzing the 5' end maturation of precursor transfer ribonucleic acids (pre-tRNAs) encoded by various cellular compartments in many eukaryotes. PRORPs from plants act as single-subunit enzymes and have been used as a model system for analyzing the function of the metazoan PRORP nuclease subunit, which requires two additional proteins for efficient catalysis. There are currently few molecular details known about the PRORP-pre-tRNA complex. Here, we characterize the determinants of substrate recognition by the single subunit Arabidopsis thaliana PRORP1 and PRORP2 using kinetic and thermodynamic experiments. The salt dependence of binding affinity suggests 4-5 contacts with backbone phosphodiester bonds on substrates, including a single phosphodiester contact with the pre-tRNA 5' leader, consistent with prior reports of short leader requirements. PRORPs contain an N-terminal pentatricopeptide repeat (PPR) domain, truncation of which results in a >30-fold decrease in substrate affinity. While most PPR-containing proteins have been implicated in single-stranded sequence-specific RNA recognition, we find that the PPR motifs of PRORPs recognize pre-tRNA substrates differently. Notably, the PPR domain residues most important for substrate binding in PRORPs do not correspond to positions involved in base recognition in other PPR proteins. Several of these residues are highly conserved in PRORPs from algae, plants, and metazoans, suggesting a conserved strategy for substrate recognition by the PRORP PPR domain. Furthermore, there is no evidence for sequence-specific interactions. This work clarifies molecular determinants of PRORP-substrate recognition and provides a new predictive model for the PRORP-substrate complex. © 2017 Klemm et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  15. Complete fold annotation of the human proteome using a novel structural feature space

    DOE PAGES

    Middleton, Sarah A.; Illuminati, Joseph; Kim, Junhyong

    2017-04-13

    Recognition of protein structural fold is the starting point for many structure prediction tools and protein function inference. Fold prediction is computationally demanding and recognizing novel folds is difficult such that the majority of proteins have not been annotated for fold classification. Here we describe a new machine learning approach using a novel feature space that can be used for accurate recognition of all 1,221 currently known folds and inference of unknown novel folds. We show that our method achieves better than 94% accuracy even when many folds have only one training example. We demonstrate the utility of this methodmore » by predicting the folds of 34,330 human protein domains and showing that these predictions can yield useful insights into potential biological function, such as prediction of RNA-binding ability. Finally, our method can be applied to de novo fold prediction of entire proteomes and identify candidate novel fold families.« less

  16. An investigation of potential applications of OP-SAPS: Operational Sampled Analog Processors

    NASA Technical Reports Server (NTRS)

    Parrish, E. A.; Mcvey, E. S.

    1977-01-01

    The application of OP-SAP's (operational sampled analog processors) in pattern recognition system is summarized. Areas investigated include: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system.

  17. Effectiveness of feature and classifier algorithms in character recognition systems

    NASA Astrophysics Data System (ADS)

    Wilson, Charles L.

    1993-04-01

    At the first Census Optical Character Recognition Systems Conference, NIST generated accuracy data for more than character recognition systems. Most systems were tested on the recognition of isolated digits and upper and lower case alphabetic characters. The recognition experiments were performed on sample sizes of 58,000 digits, and 12,000 upper and lower case alphabetic characters. The algorithms used by the 26 conference participants included rule-based methods, image-based methods, statistical methods, and neural networks. The neural network methods included Multi-Layer Perceptron's, Learned Vector Quantitization, Neocognitrons, and cascaded neural networks. In this paper 11 different systems are compared using correlations between the answers of different systems, comparing the decrease in error rate as a function of confidence of recognition, and comparing the writer dependence of recognition. This comparison shows that methods that used different algorithms for feature extraction and recognition performed with very high levels of correlation. This is true for neural network systems, hybrid systems, and statistically based systems, and leads to the conclusion that neural networks have not yet demonstrated a clear superiority to more conventional statistical methods. Comparison of these results with the models of Vapnick (for estimation problems), MacKay (for Bayesian statistical models), Moody (for effective parameterization), and Boltzmann models (for information content) demonstrate that as the limits of training data variance are approached, all classifier systems have similar statistical properties. The limiting condition can only be approached for sufficiently rich feature sets because the accuracy limit is controlled by the available information content of the training set, which must pass through the feature extraction process prior to classification.

  18. An Analysis of Biometric Technology as an Enabler to Information Assurance

    DTIC Science & Technology

    2005-03-01

    29 Facial Recognition ................................................................................................ 30...al., 2003) Facial Recognition Facial recognition systems are gaining momentum as of late. The reason for this is that facial recognition systems...the traffic camera on the street corner, video technology is everywhere. There are a couple of different methods currently being used for facial

  19. Functional MR imaging or Wada test: which is the better predictor of individual postoperative memory outcome?

    PubMed

    Dupont, Sophie; Duron, Emmanuelle; Samson, Séverine; Denos, Marisa; Volle, Emmanuelle; Delmaire, Christine; Navarro, Vincent; Chiras, Jacques; Lehéricy, Stéphane; Samson, Yves; Baulac, Michel

    2010-04-01

    To retrospectively determine whether blood oxygen level-dependent functional magnetic resonance (MR) imaging can aid prediction of postoperative memory changes in epileptic patients after temporal lobe surgery. This study was approved by the local ethics committee, and informed consent was obtained from all patients. Data were analyzed from 25 patients (12 women, 13 men; age range, 19-52 years) with refractory epilepsy in whom temporal lobe surgery was performed after they underwent preoperative functional MR imaging, the Wada test, and neuropsychological testing. The functional MR imaging protocol included three different memory tasks (24-hour delayed recognition, encoding, and immediate recognition). Individual activations were measured in medial temporal lobe (MTL) regions of both hemispheres. The prognostic accuracy of functional MR imaging for prediction of postoperative memory changes was compared with the accuracy of the Wada test and preoperative neuropsychological testing by using a backward multiple regression analysis. An equation that was based on left functional MR imaging MTL activation during delayed recognition, side of the epileptic focus, and preoperative global verbal memory score was used to correctly predict worsening of verbal memory in 90% of patients. The right functional MR imaging MTL activation did not substantially correlate with the nonverbal memory outcome, which was only predicted by using the preoperative nonverbal global score. Wada test data were not good predictors of changes in either verbal or nonverbal memory. Findings suggest that functional MR imaging activation during a delayed-recognition task is a better predictor of individual postoperative verbal memory outcome than is the Wada test. RSNA, 2010

  20. Within-person adaptivity in frugal judgments from memory.

    PubMed

    Filevich, Elisa; Horn, Sebastian S; Kühn, Simone

    2017-12-22

    Humans can exploit recognition memory as a simple cue for judgment. The utility of recognition depends on the interplay with the environment, particularly on its predictive power (validity) in a domain. It is, therefore, an important question whether people are sensitive to differences in recognition validity between domains. Strategic, intra-individual changes in the reliance on recognition have not been investigated so far. The present study fills this gap by scrutinizing within-person changes in using a frugal strategy, the recognition heuristic (RH), across two task domains that differed in recognition validity. The results showed adaptive changes in the reliance on recognition between domains. However, these changes were neither associated with the individual recognition validities nor with corresponding changes in these validities. These findings support a domain-adaptivity explanation, suggesting that people have broader intuitions about the usefulness of recognition across different domains that are nonetheless sufficiently robust for adaptive decision making. The analysis of metacognitive confidence reports mirrored and extended these results. Like RH use, confidence ratings covaried with task domain, but not with individual recognition validities. The changes in confidence suggest that people may have metacognitive access to information about global differences between task domains, but not to individual cue validities.

  1. Does Facial Expression Recognition Provide a Toehold for the Development of Emotion Understanding?

    ERIC Educational Resources Information Center

    Strand, Paul S.; Downs, Andrew; Barbosa-Leiker, Celestina

    2016-01-01

    The authors explored predictions from basic emotion theory (BET) that facial emotion expression recognition skills are insular with respect to their own development, and yet foundational to the development of emotional perspective-taking skills. Participants included 417 preschool children for whom estimates of these 2 emotion understanding…

  2. An Electrophysiological Signature of Summed Similarity in Visual Working Memory

    ERIC Educational Resources Information Center

    van Vugt, Marieke K.; Sekuler, Robert; Wilson, Hugh R.; Kahana, Michael J.

    2013-01-01

    Summed-similarity models of short-term item recognition posit that participants base their judgments of an item's prior occurrence on that item's summed similarity to the ensemble of items on the remembered list. We examined the neural predictions of these models in 3 short-term recognition memory experiments using electrocorticographic/depth…

  3. Binary ROCs in Perception and Recognition Memory Are Curved

    ERIC Educational Resources Information Center

    Dube, Chad; Rotello, Caren M.

    2012-01-01

    In recognition memory, a classic finding is that receiver operating characteristics (ROCs) are curvilinear. This has been taken to support the fundamental assumptions of signal detection theory (SDT) over discrete-state models such as the double high-threshold model (2HTM), which predicts linear ROCs. Recently, however, Broder and Schutz (2009)…

  4. A Retrieval Model for Both Recognition and Recall.

    ERIC Educational Resources Information Center

    Gillund, Gary; Shiffrin, Richard M.

    1984-01-01

    The Search of Associative Memory (SAM) model for recall is extended by assuming that a familiarity process is used for recognition. The model, formalized in a computer simulation program, correctly predicts a number of findings in the literature as well as results from an experiment on the word-frequency effect. (Author/BW)

  5. Predicting the Accuracy of Facial Affect Recognition: The Interaction of Child Maltreatment and Intellectual Functioning

    ERIC Educational Resources Information Center

    Shenk, Chad E.; Putnam, Frank W.; Noll, Jennie G.

    2013-01-01

    Previous research demonstrates that both child maltreatment and intellectual performance contribute uniquely to the accurate identification of facial affect by children and adolescents. The purpose of this study was to extend this research by examining whether child maltreatment affects the accuracy of facial recognition differently at varying…

  6. Prediction of Word Recognition in the First Half of Grade 1

    ERIC Educational Resources Information Center

    Snel, M. J.; Aarnoutse, C. A. J.; Terwel, J.; van Leeuwe, J. F. J.; van der Veld, W. M.

    2016-01-01

    Early detection of reading problems is important to prevent an enduring lag in reading skills. We studied the relationship between speed of word recognition (after six months of grade 1 education) and four kindergarten pre-literacy skills: letter knowledge, phonological awareness and naming speed for both digits and letters. Our sample consisted…

  7. Item-specific processing reduces false memories.

    PubMed

    McCabe, David P; Presmanes, Alison G; Robertson, Chuck L; Smith, Anderson D

    2004-12-01

    We examined the effect of item-specific and relational encoding instructions on false recognition in two experiments in which the DRM paradigm was used (Deese, 1959; Roediger & McDermott, 1995). Type of encoding (item-specific or relational) was manipulated between subjects in Experiment 1 and within subjects in Experiment 2. Decision-based explanations (e.g., the distinctiveness heuristic) predict reductions in false recognition in between-subjects designs, but not in within-subjects designs, because they are conceptualized as global shifts in decision criteria. Memory-based explanations predict reductions in false recognition in both designs, resulting from enhanced recollection of item-specific details. False recognition was reduced following item-specific encoding instructions in both experiments, favoring a memory-based explanation. These results suggest that providing unique cues for the retrieval of individual studied items results in enhanced discrimination between those studied items and critical lures. Conversely, enhancing the similarity of studied items results in poor discrimination among items within a particular list theme. These results are discussed in terms of the item-specific/ relational framework (Hunt & McDaniel, 1993).

  8. Emotion recognition and cognitive empathy deficits in adolescent offenders revealed by context-sensitive tasks

    PubMed Central

    Gonzalez-Gadea, Maria Luz; Herrera, Eduar; Parra, Mario; Gomez Mendez, Pedro; Baez, Sandra; Manes, Facundo; Ibanez, Agustin

    2014-01-01

    Emotion recognition and empathy abilities require the integration of contextual information in real-life scenarios. Previous reports have explored these domains in adolescent offenders (AOs) but have not used tasks that replicate everyday situations. In this study we included ecological measures with different levels of contextual dependence to evaluate emotion recognition and empathy in AOs relative to non-offenders, controlling for the effect of demographic variables. We also explored the influence of fluid intelligence (FI) and executive functions (EFs) in the prediction of relevant deficits in these domains. Our results showed that AOs exhibit deficits in context-sensitive measures of emotion recognition and cognitive empathy. Difficulties in these tasks were neither explained by demographic variables nor predicted by FI or EFs. However, performance on measures that included simpler stimuli or could be solved by explicit knowledge was either only partially affected by demographic variables or preserved in AOs. These findings indicate that AOs show contextual social-cognition impairments which are relatively independent of basic cognitive functioning and demographic variables. PMID:25374529

  9. Improving Protein Fold Recognition by Deep Learning Networks

    NASA Astrophysics Data System (ADS)

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin

    2015-12-01

    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl’s benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.

  10. Predicting word-recognition performance in noise by young listeners with normal hearing using acoustic, phonetic, and lexical variables.

    PubMed

    McArdle, Rachel; Wilson, Richard H

    2008-06-01

    To analyze the 50% correct recognition data that were from the Wilson et al (this issue) study and that were obtained from 24 listeners with normal hearing; also to examine whether acoustic, phonetic, or lexical variables can predict recognition performance for monosyllabic words presented in speech-spectrum noise. The specific variables are as follows: (a) acoustic variables (i.e., effective root-mean-square sound pressure level, duration), (b) phonetic variables (i.e., consonant features such as manner, place, and voicing for initial and final phonemes; vowel phonemes), and (c) lexical variables (i.e., word frequency, word familiarity, neighborhood density, neighborhood frequency). The descriptive, correlational study will examine the influence of acoustic, phonetic, and lexical variables on speech recognition in noise performance. Regression analysis demonstrated that 45% of the variance in the 50% point was accounted for by acoustic and phonetic variables whereas only 3% of the variance was accounted for by lexical variables. These findings suggest that monosyllabic word-recognition-in-noise is more dependent on bottom-up processing than on top-down processing. The results suggest that when speech-in-noise testing is used in a pre- and post-hearing-aid-fitting format, the use of monosyllabic words may be sensitive to changes in audibility resulting from amplification.

  11. On the prompt identification of traces of explosives

    NASA Astrophysics Data System (ADS)

    Trobajo, M. T.; López-Cabeceira, M. M.; Carriegos, M. V.; Díez-Machío, H.

    2014-12-01

    Some recent results in the use of Raman spectroscopy for recognition of explosives are reviewed. Experimental study using spectra data base has been developed. In order to simulate a more real situation, both blank substances and explosives substances have been considered in this research. Statistic classification techniques have been performed. Estimations of prediction errors were obtained by cross-validation methods. These results can be applied in airport security systems in order to prevent terror acts (by the detection of explosive/flammable substances).

  12. The 4-D approach to visual control of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dickmanns, Ernst D.

    1994-01-01

    Development of a 4-D approach to dynamic machine vision is described. Core elements of this method are spatio-temporal models oriented towards objects and laws of perspective projection in a foward mode. Integration of multi-sensory measurement data was achieved through spatio-temporal models as invariants for object recognition. Situation assessment and long term predictions were allowed through maintenance of a symbolic 4-D image of processes involving objects. Behavioral capabilities were easily realized by state feedback and feed-foward control.

  13. A cross-race effect in metamemory: Predictions of face recognition are more accurate for members of our own race

    PubMed Central

    Hourihan, Kathleen L.; Benjamin, Aaron S.; Liu, Xiping

    2012-01-01

    The Cross-Race Effect (CRE) in face recognition is the well-replicated finding that people are better at recognizing faces from their own race, relative to other races. The CRE reveals systematic limitations on eyewitness identification accuracy and suggests that some caution is warranted in evaluating cross-race identification. The CRE is a problem because jurors value eyewitness identification highly in verdict decisions. In the present paper, we explore how accurate people are in predicting their ability to recognize own-race and other-race faces. Caucasian and Asian participants viewed photographs of Caucasian and Asian faces, and made immediate judgments of learning during study. An old/new recognition test replicated the CRE: both groups displayed superior discriminability of own-race faces, relative to other-race faces. Importantly, relative metamnemonic accuracy was also greater for own-race faces, indicating that the accuracy of predictions about face recognition is influenced by race. This result indicates another source of concern when eliciting or evaluating eyewitness identification: people are less accurate in judging whether they will or will not recognize a face when that face is of a different race than they are. This new result suggests that a witness’s claim of being likely to recognize a suspect from a lineup should be interpreted with caution when the suspect is of a different race than the witness. PMID:23162788

  14. Adaptive gamma correction-based expert system for nonuniform illumination face enhancement

    NASA Astrophysics Data System (ADS)

    Abdelhamid, Iratni; Mustapha, Aouache; Adel, Oulefki

    2018-03-01

    The image quality of a face recognition system suffers under severe lighting conditions. Thus, this study aims to develop an approach for nonuniform illumination adjustment based on an adaptive gamma correction (AdaptGC) filter that can solve the aforementioned issue. An approach for adaptive gain factor prediction was developed via neural network model-based cross-validation (NN-CV). To achieve this objective, a gamma correction function and its effects on the face image quality with different gain values were examined first. Second, an orientation histogram (OH) algorithm was assessed as a face's feature descriptor. Subsequently, a density histogram module was developed for face label generation. During the NN-CV construction, the model was assessed to recognize the OH descriptor and predict the face label. The performance of the NN-CV model was evaluated by examining the statistical measures of root mean square error and coefficient of efficiency. Third, to evaluate the AdaptGC enhancement approach, an image quality metric was adopted using enhancement by entropy, contrast per pixel, second-derivative-like measure of enhancement, and sharpness, then supported by visual inspection. The experiment results were examined using five face's databases, namely, extended Yale-B, Carnegie Mellon University-Pose, Illumination, and Expression, Mobio, FERET, and Oulu-CASIA-NIR-VIS. The final results prove that AdaptGC filter implementation compared with state-of-the-art methods is the best choice in terms of contrast and nonuniform illumination adjustment. In summary, the benefits attained prove that AdaptGC is driven by a profitable enhancement rate, which provides satisfying features for high rate face recognition systems.

  15. Activity recognition from minimal distinguishing subsequence mining

    NASA Astrophysics Data System (ADS)

    Iqbal, Mohammad; Pao, Hsing-Kuo

    2017-08-01

    Human activity recognition is one of the most important research topics in the era of Internet of Things. To separate different activities given sensory data, we utilize a Minimal Distinguishing Subsequence (MDS) mining approach to efficiently find distinguishing patterns among different activities. We first transform the sensory data into a series of sensor triggering events and operate the MDS mining procedure afterwards. The gap constraints are also considered in the MDS mining. Given the multi-class nature of most activity recognition tasks, we modify the MDS mining approach from a binary case to a multi-class one to fit the need for multiple activity recognition. We also study how to select the best parameter set including the minimal and the maximal support thresholds in finding the MDSs for effective activity recognition. Overall, the prediction accuracy is 86.59% on the van Kasteren dataset which consists of four different activities for recognition.

  16. The proactive brain and the fate of dead hypotheses

    PubMed Central

    Tal, Amir; Bar, Moshe

    2014-01-01

    A substantial portion of information flow in the brain is directed top-down, from high processing areas downwards. Signals of this sort are regarded as conveying prior expectations, biasing the processing and eventual perception of incoming stimuli. In this perspective we describe a framework of top-down processing in the visual system in which predictions on the identity of objects in sight aid in their recognition. Focus is placed, in particular, on a relatively uncharted ramification of this framework, that of the fate of initial predictions that are eventually rejected during the process of selection. We propose that such predictions are rapidly inhibited in the brain after a competing option has been selected. Empirical support, along with behavioral, neuronal and computational aspects of this proposal are discussed, and future directions for related research are offered. PMID:25408645

  17. The proactive brain and the fate of dead hypotheses.

    PubMed

    Tal, Amir; Bar, Moshe

    2014-01-01

    A substantial portion of information flow in the brain is directed top-down, from high processing areas downwards. Signals of this sort are regarded as conveying prior expectations, biasing the processing and eventual perception of incoming stimuli. In this perspective we describe a framework of top-down processing in the visual system in which predictions on the identity of objects in sight aid in their recognition. Focus is placed, in particular, on a relatively uncharted ramification of this framework, that of the fate of initial predictions that are eventually rejected during the process of selection. We propose that such predictions are rapidly inhibited in the brain after a competing option has been selected. Empirical support, along with behavioral, neuronal and computational aspects of this proposal are discussed, and future directions for related research are offered.

  18. An algorithm for automatic target recognition using passive radar and an EKF for estimating aircraft orientation

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.

    2005-07-01

    Rather than emitting pulses, passive radar systems rely on "illuminators of opportunity," such as TV and FM radio, to illuminate potential targets. These systems are attractive since they allow receivers to operate without emitting energy, rendering them covert. Until recently, most of the research regarding passive radar has focused on detecting and tracking targets. This dissertation focuses on extending the capabilities of passive radar systems to include automatic target recognition. The target recognition algorithm described in this dissertation uses the radar cross section (RCS) of potential targets, collected over a short period of time, as the key information for target recognition. To make the simulated RCS as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. An extended Kalman filter (EKF) estimates the target's orientation (and uncertainty in the estimate) from velocity measurements obtained from the passive radar tracker. Coupling the aircraft orientation and state with the known antenna locations permits computation of the incident and observed azimuth and elevation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of potential target classes as a function of these angles. Thus, the approximated incident and observed angles allow the appropriate RCS to be extracted from a database of FISC results. Using this process, the RCS of each aircraft in the target class is simulated as though each is executing the same maneuver as the target detected by the system. Two additional scaling processes are required to transform the RCS into a power profile (magnitude only) simulating the signal in the receiver. First, the RCS is scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. Then, the Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, further scaling the RCS. A Rician likelihood model compares the scaled RCS of the illuminated aircraft with those of the potential targets. To improve the robustness of the result, the algorithm jointly optimizes over feasible orientation profiles and target types via dynamic programming.

  19. The species recognition system: a new corollary for the human fetoembryonic defense system hypothesis.

    PubMed

    Clark, G F; Dell, A; Morris, H R; Patankar, M S; Easton, R L

    2001-01-01

    We have previously suggested that the human fetus is protected during human development by a system of both soluble and cell surface associated glycoconjugates that utilize their carbohydrate sequences as functional groups to enable them to evoke tolerance. The proposed model has been referred to as the human fetoembryonic defense system hypothesis (hu-FEDS). In this paradigm, it has previously been proposed that similar oligosaccharides are used to mediate crucial recognition events required during both human sperm-egg binding and immune-inflammatory cell interactions. This vertical integration suggested to us that the sperm-egg binding itself is related to universal recognition events that occur between immune and inflammatory cells, except that in this case recognition of 'species' rather than recognition of 'self' is being manifested. In this paper, we have designated this component of hu-FEDS as the species recognition system (SRS). We propose that the SRS is an integral component of the hu-FEDS used to enable sperm-egg recognition and protection of the gametes from potential immune responses. Recent structural data indicates that the glycan sequences implicated in mediating murine gamete recognition are also expressed on CD45 in activated murine T lymphocytes and cytotoxic T lymphocytes. This overlap supports our contention that there is an overlap between the immune and gamete recognition systems. Therefore the hu-FEDS paradigm may be a subset of a larger model that also applies to other placental mammals. We therefore propose that the hu-FEDS model for protection should in the future be referred to as the eutherian fetoembryonic defense system hypothesis (eu-FEDS) to account for this extension. The possibility exists that the SRS component of eu-FEDS could predate eutherians and extend to all sexually reproducing organisms. Future investigation of the interactions between the immune and gamete recognition system will be required to determine the degree of overlap. Copyright 2001 S. Karger AG, Basel

  20. Root System Water Consumption Pattern Identification on Time Series Data.

    PubMed

    Figueroa, Manuel; Pope, Christopher

    2017-06-16

    In agriculture, soil and meteorological sensors are used along low power networks to capture data, which allows for optimal resource usage and minimizing environmental impact. This study uses time series analysis methods for outliers' detection and pattern recognition on soil moisture sensor data to identify irrigation and consumption patterns and to improve a soil moisture prediction and irrigation system. This study compares three new algorithms with the current detection technique in the project; the results greatly decrease the number of false positives detected. The best result is obtained by the Series Strings Comparison (SSC) algorithm averaging a precision of 0.872 on the testing sets, vastly improving the current system's 0.348 precision.

  1. The role of egg-nest contrast in the rejection of brood parasitic eggs.

    PubMed

    Aidala, Zachary; Croston, Rebecca; Schwartz, Jessica; Tong, Lainga; Hauber, Mark E

    2015-04-15

    Hosts of avian brood parasites can avoid the reproductive costs of raising genetically unrelated offspring by rejecting parasitic eggs. The perceptual cues and controls mediating parasitic egg discrimination and ejection are well studied: hosts are thought to use differences in egg color, brightness, maculation, size and shape to discriminate between their own and foreign eggs. Most theories of brood parasitism implicitly assume that the primary criteria to which hosts attend when discriminating eggs are differences between the eggs themselves. However, this assumption is confounded by the degree to which chromatic and achromatic characteristics of the nest lining co-vary with egg coloration, so that egg-nest contrast per se might be the recognition cue driving parasitic egg detection. Here, we systematically tested whether and how egg-nest contrast itself contributes to foreign egg discrimination. In an artificial parasitism experiment, we independently manipulated egg color and nest lining color of the egg-ejector American robin (Turdus migratorius), a host of the obligate brood parasitic brown-headed cowbird (Molothrus ater). We hypothesized that the degree of contrast between foreign eggs and the nest background would affect host egg rejection behavior. We predicted that experimentally decreasing egg-nest chromatic and achromatic contrast (i.e. rendering parasitic eggs more cryptic against the nest lining) would decrease rejection rates, while increasing egg-nest contrast would increase rejection rates. In contrast to our predictions, egg-nest contrast was not a significant predictor of egg ejection patterns. Instead, egg color significantly predicted responses to parasitism. We conclude that egg-egg differences are the primary drivers of egg rejection in this system. Future studies should test for the effects of egg-nest contrast per se in predicting parasitic egg recognition in other host-parasite systems, including those hosts building enclosed nests and those parasites laying cryptic eggs, as an alternative to hypothesized effects of egg-egg contrast. © 2015. Published by The Company of Biologists Ltd.

  2. Automatic speech recognition technology development at ITT Defense Communications Division

    NASA Technical Reports Server (NTRS)

    White, George M.

    1977-01-01

    An assessment of the applications of automatic speech recognition to defense communication systems is presented. Future research efforts include investigations into the following areas: (1) dynamic programming; (2) recognition of speech degraded by noise; (3) speaker independent recognition; (4) large vocabulary recognition; (5) word spotting and continuous speech recognition; and (6) isolated word recognition.

  3. Implementation of age and gender recognition system for intelligent digital signage

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Heon; Sohn, Myoung-Kyu; Kim, Hyunduk

    2015-12-01

    Intelligent digital signage systems transmit customized advertising and information by analyzing users and customers, unlike existing system that presented advertising in the form of broadcast without regard to type of customers. Currently, development of intelligent digital signage system has been pushed forward vigorously. In this study, we designed a system capable of analyzing gender and age of customers based on image obtained from camera, although there are many different methods for analyzing customers. We conducted age and gender recognition experiments using public database. The age/gender recognition experiments were performed through histogram matching method by extracting Local binary patterns (LBP) features after facial area on input image was normalized. The results of experiment showed that gender recognition rate was as high as approximately 97% on average. Age recognition was conducted based on categorization into 5 age classes. Age recognition rates for women and men were about 67% and 68%, respectively when that conducted separately for different gender.

  4. Temporal hemodynamic classification of two hands tapping using functional near—infrared spectroscopy

    PubMed Central

    Thanh Hai, Nguyen; Cuong, Ngo Q.; Dang Khoa, Truong Q.; Van Toi, Vo

    2013-01-01

    In recent decades, a lot of achievements have been obtained in imaging and cognitive neuroscience of human brain. Brain's activities can be shown by a number of different kinds of non-invasive technologies, such as: Near-Infrared Spectroscopy (NIRS), Magnetic Resonance Imaging (MRI), and ElectroEncephaloGraphy (EEG; Wolpaw et al., 2002; Weiskopf et al., 2004; Blankertz et al., 2006). NIRS has become the convenient technology for experimental brain purposes. The change of oxygenation changes (oxy-Hb) along task period depending on location of channel on the cortex has been studied: sustained activation in the motor cortex, transient activation during the initial segments in the somatosensory cortex, and accumulating activation in the frontal lobe (Gentili et al., 2010). Oxy-Hb concentration at the aforementioned sites in the brain can also be used as a predictive factor allows prediction of subject's investigation behavior with a considerable degree of precision (Shimokawa et al., 2009). In this paper, a study of recognition algorithm will be described for recognition whether one taps the left hand (LH) or the right hand (RH). Data with noises and artifacts collected from a multi-channel system will be pre-processed using a Savitzky–Golay filter for getting more smoothly data. Characteristics of the filtered signals during LH and RH tapping process will be extracted using a polynomial regression (PR) algorithm. Coefficients of the polynomial, which correspond to Oxygen-Hemoglobin (Oxy-Hb) concentration, will be applied for the recognition models of hand tapping. Support Vector Machines (SVM) will be applied to validate the obtained coefficient data for hand tapping recognition. In addition, for the objective of comparison, Artificial Neural Networks (ANNs) was also applied to recognize hand tapping side with the same principle. Experimental results have been done many trials on three subjects to illustrate the effectiveness of the proposed method. PMID:24032008

  5. Temporal hemodynamic classification of two hands tapping using functional near-infrared spectroscopy.

    PubMed

    Thanh Hai, Nguyen; Cuong, Ngo Q; Dang Khoa, Truong Q; Van Toi, Vo

    2013-01-01

    In recent decades, a lot of achievements have been obtained in imaging and cognitive neuroscience of human brain. Brain's activities can be shown by a number of different kinds of non-invasive technologies, such as: Near-Infrared Spectroscopy (NIRS), Magnetic Resonance Imaging (MRI), and ElectroEncephaloGraphy (EEG; Wolpaw et al., 2002; Weiskopf et al., 2004; Blankertz et al., 2006). NIRS has become the convenient technology for experimental brain purposes. The change of oxygenation changes (oxy-Hb) along task period depending on location of channel on the cortex has been studied: sustained activation in the motor cortex, transient activation during the initial segments in the somatosensory cortex, and accumulating activation in the frontal lobe (Gentili et al., 2010). Oxy-Hb concentration at the aforementioned sites in the brain can also be used as a predictive factor allows prediction of subject's investigation behavior with a considerable degree of precision (Shimokawa et al., 2009). In this paper, a study of recognition algorithm will be described for recognition whether one taps the left hand (LH) or the right hand (RH). Data with noises and artifacts collected from a multi-channel system will be pre-processed using a Savitzky-Golay filter for getting more smoothly data. Characteristics of the filtered signals during LH and RH tapping process will be extracted using a polynomial regression (PR) algorithm. Coefficients of the polynomial, which correspond to Oxygen-Hemoglobin (Oxy-Hb) concentration, will be applied for the recognition models of hand tapping. Support Vector Machines (SVM) will be applied to validate the obtained coefficient data for hand tapping recognition. In addition, for the objective of comparison, Artificial Neural Networks (ANNs) was also applied to recognize hand tapping side with the same principle. Experimental results have been done many trials on three subjects to illustrate the effectiveness of the proposed method.

  6. Implicit Multisensory Associations Influence Voice Recognition

    PubMed Central

    von Kriegstein, Katharina; Giraud, Anne-Lise

    2006-01-01

    Natural objects provide partially redundant information to the brain through different sensory modalities. For example, voices and faces both give information about the speech content, age, and gender of a person. Thanks to this redundancy, multimodal recognition is fast, robust, and automatic. In unimodal perception, however, only part of the information about an object is available. Here, we addressed whether, even under conditions of unimodal sensory input, crossmodal neural circuits that have been shaped by previous associative learning become activated and underpin a performance benefit. We measured brain activity with functional magnetic resonance imaging before, while, and after participants learned to associate either sensory redundant stimuli, i.e. voices and faces, or arbitrary multimodal combinations, i.e. voices and written names, ring tones, and cell phones or brand names of these cell phones. After learning, participants were better at recognizing unimodal auditory voices that had been paired with faces than those paired with written names, and association of voices with faces resulted in an increased functional coupling between voice and face areas. No such effects were observed for ring tones that had been paired with cell phones or names. These findings demonstrate that brief exposure to ecologically valid and sensory redundant stimulus pairs, such as voices and faces, induces specific multisensory associations. Consistent with predictive coding theories, associative representations become thereafter available for unimodal perception and facilitate object recognition. These data suggest that for natural objects effective predictive signals can be generated across sensory systems and proceed by optimization of functional connectivity between specialized cortical sensory modules. PMID:17002519

  7. Is White Light the Best Illumination for Palmprint Recognition?

    NASA Astrophysics Data System (ADS)

    Guo, Zhenhua; Zhang, David; Zhang, Lei

    Palmprint as a new biometric has received great research attention in the past decades. It owns many merits, such as robustness, low cost, user friendliness, and high accuracy. Most of the current palmprint recognition systems use an active light to acquire clear palmprint images. Thus, light source is a key component in the system to capture enough of discriminant information for palmprint recognition. To the best of our knowledge, white light is the most widely used light source. However, little work has been done on investigating whether white light is the best illumination for palmprint recognition. In this study, we empirically compared palmprint recognition accuracy using white light and other six different color lights. The experiments on a large database show that white light is not the optimal illumination for palmprint recognition. This finding will be useful to future palmprint recognition system design.

  8. Pattern recognition by wavelet transforms using macro fibre composites transducers

    NASA Astrophysics Data System (ADS)

    Ruiz de la Hermosa González-Carrato, Raúl; García Márquez, Fausto Pedro; Dimlaye, Vichaar; Ruiz-Hernández, Diego

    2014-10-01

    This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system.

  9. [An Extraction and Recognition Method of the Distributed Optical Fiber Vibration Signal Based on EMD-AWPP and HOSA-SVM Algorithm].

    PubMed

    Zhang, Yanjun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong

    2016-02-01

    Given that the traditional signal processing methods can not effectively distinguish the different vibration intrusion signal, a feature extraction and recognition method of the vibration information is proposed based on EMD-AWPP and HOSA-SVM, using for high precision signal recognition of distributed fiber optic intrusion detection system. When dealing with different types of vibration, the method firstly utilizes the adaptive wavelet processing algorithm based on empirical mode decomposition effect to reduce the abnormal value influence of sensing signal and improve the accuracy of signal feature extraction. Not only the low frequency part of the signal is decomposed, but also the high frequency part the details of the signal disposed better by time-frequency localization process. Secondly, it uses the bispectrum and bicoherence spectrum to accurately extract the feature vector which contains different types of intrusion vibration. Finally, based on the BPNN reference model, the recognition parameters of SVM after the implementation of the particle swarm optimization can distinguish signals of different intrusion vibration, which endows the identification model stronger adaptive and self-learning ability. It overcomes the shortcomings, such as easy to fall into local optimum. The simulation experiment results showed that this new method can effectively extract the feature vector of sensing information, eliminate the influence of random noise and reduce the effects of outliers for different types of invasion source. The predicted category identifies with the output category and the accurate rate of vibration identification can reach above 95%. So it is better than BPNN recognition algorithm and improves the accuracy of the information analysis effectively.

  10. Predictive factor analysis for successful performance of iris recognition-assisted dynamic rotational eye tracking during laser in situ keratomileusis.

    PubMed

    Prakash, Gaurav; Ashok Kumar, Dhivya; Agarwal, Amar; Jacob, Soosan; Sarvanan, Yoga; Agarwal, Athiya

    2010-02-01

    To analyze the predictive factors associated with success of iris recognition and dynamic rotational eye tracking on a laser in situ keratomileusis (LASIK) platform with active assessment and correction of intraoperative cyclotorsion. Interventional case series. Two hundred seventy-five eyes of 142 consecutive candidates underwent LASIK with attempted iris recognition and dynamic rotational tracking on the Technolas 217z100 platform (Techolas Perfect Vision, St Louis, Missouri, USA) at a tertiary care ophthalmic hospital. The main outcome measures were age, gender, flap creation method (femtosecond, microkeratome, epi-LASIK), success of static rotational tracking, ablation algorithm, pulses, and depth; preablation and intraablation rotational activity were analyzed and evaluated using regression models. Preablation static iris recognition was successful in 247 eyes, without difference in flap creation methods (P = .6). Age (partial correlation, -0.16; P = .014), amount of pulses (partial correlation, 0.39; P = 1.6 x 10(-8)), and gender (P = .02) were significant predictive factors for the amount of intraoperative cyclodeviation. Tracking difficulties leading to linking the ablation with a new intraoperatively acquired iris image were more with femtosecond-assisted flaps (P = 2.8 x 10(-7)) and the amount of intraoperative cyclotorsion (P = .02). However, the number of cases having nonresolvable failure of intraoperative rotational tracking was similar in the 3 flap creation methods (P = .22). Intraoperative cyclotorsional activity depends on the age, gender, and duration of ablation (pulses delivered). Femtosecond flaps do not seem to have a disadvantage over microkeratome flaps as far as iris recognition and success of intraoperative dynamic rotational tracking is concerned. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. Sensory experience ratings (SERs) for 1,659 French words: Relationships with other psycholinguistic variables and visual word recognition.

    PubMed

    Bonin, Patrick; Méot, Alain; Ferrand, Ludovic; Bugaïska, Aurélia

    2015-09-01

    We collected sensory experience ratings (SERs) for 1,659 French words in adults. Sensory experience for words is a recently introduced variable that corresponds to the degree to which words elicit sensory and perceptual experiences (Juhasz & Yap Behavior Research Methods, 45, 160-168, 2013; Juhasz, Yap, Dicke, Taylor, & Gullick Quarterly Journal of Experimental Psychology, 64, 1683-1691, 2011). The relationships of the sensory experience norms with other psycholinguistic variables (e.g., imageability and age of acquisition) were analyzed. We also investigated the degree to which SER predicted performance in visual word recognition tasks (lexical decision, word naming, and progressive demasking). The analyses indicated that SER reliably predicted response times in lexical decision, but not in word naming or progressive demasking. The findings are discussed in relation to the status of SER, the role of semantic code activation in visual word recognition, and the embodied view of cognition.

  12. Marijuana effects on long-term memory assessment and retrieval.

    PubMed

    Darley, C F; Tinklenberg, J R; Roth, W T; Vernon, S; Kopell, B S

    1977-05-09

    The ability of 16 college-educated male subjects to recall from long-term memory a series of common facts was tested during intoxication with marijuana extract calibrated to 0.3 mg/kg delta-9-tetrahydrocannabinol and during placebo conditions. The subjects' ability to assess their memory capabilities was then determined by measuring how certain they were about the accuracy of their recall performance and by having them predict their performance on a subsequent recognition test involving the same recall items. Marijuana had no effect on recall or recognition performance. These results do not support the view that marijuana provides access to facts in long-term storage which are inaccessible during non-intoxication. During both marijuana and placebo conditions, subjects could accurately predict their recognition memory performance. Hence, marijuana did not alter the subjects' ability to accurately assess what information resides in long-term memory even though they did not have complete access to that information.

  13. An Individual Finger Gesture Recognition System Based on Motion-Intent Analysis Using Mechanomyogram Signal

    PubMed Central

    Ding, Huijun; He, Qing; Zhou, Yongjin; Dan, Guo; Cui, Song

    2017-01-01

    Motion-intent-based finger gesture recognition systems are crucial for many applications such as prosthesis control, sign language recognition, wearable rehabilitation system, and human–computer interaction. In this article, a motion-intent-based finger gesture recognition system is designed to correctly identify the tapping of every finger for the first time. Two auto-event annotation algorithms are firstly applied and evaluated for detecting the finger tapping frame. Based on the truncated signals, the Wavelet packet transform (WPT) coefficients are calculated and compressed as the features, followed by a feature selection method that is able to improve the performance by optimizing the feature set. Finally, three popular classifiers including naive Bayes (NBC), K-nearest neighbor (KNN), and support vector machine (SVM) are applied and evaluated. The recognition accuracy can be achieved up to 94%. The design and the architecture of the system are presented with full system characterization results. PMID:29167655

  14. An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition.

    PubMed

    Lozano-Diez, Alicia; Zazo, Ruben; Toledano, Doroteo T; Gonzalez-Rodriguez, Joaquin

    2017-01-01

    Language recognition systems based on bottleneck features have recently become the state-of-the-art in this research field, showing its success in the last Language Recognition Evaluation (LRE 2015) organized by NIST (U.S. National Institute of Standards and Technology). This type of system is based on a deep neural network (DNN) trained to discriminate between phonetic units, i.e. trained for the task of automatic speech recognition (ASR). This DNN aims to compress information in one of its layers, known as bottleneck (BN) layer, which is used to obtain a new frame representation of the audio signal. This representation has been proven to be useful for the task of language identification (LID). Thus, bottleneck features are used as input to the language recognition system, instead of a classical parameterization of the signal based on cepstral feature vectors such as MFCCs (Mel Frequency Cepstral Coefficients). Despite the success of this approach in language recognition, there is a lack of studies analyzing in a systematic way how the topology of the DNN influences the performance of bottleneck feature-based language recognition systems. In this work, we try to fill-in this gap, analyzing language recognition results with different topologies for the DNN used to extract the bottleneck features, comparing them and against a reference system based on a more classical cepstral representation of the input signal with a total variability model. This way, we obtain useful knowledge about how the DNN configuration influences bottleneck feature-based language recognition systems performance.

  15. Hidden Markov models for character recognition.

    PubMed

    Vlontzos, J A; Kung, S Y

    1992-01-01

    A hierarchical system for character recognition with hidden Markov model knowledge sources which solve both the context sensitivity problem and the character instantiation problem is presented. The system achieves 97-99% accuracy using a two-level architecture and has been implemented using a systolic array, thus permitting real-time (1 ms per character) multifont and multisize printed character recognition as well as handwriting recognition.

  16. Adaptive method of recognition of signals for one and two-frequency signal system in the telephony on the background of speech

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Michael V.

    2006-05-01

    For reliable teamwork of various systems of automatic telecommunication including transferring systems of optical communication networks it is necessary authentic recognition of signals for one- or two-frequency service signal system. The analysis of time parameters of an accepted signal allows increasing reliability of detection and recognition of the service signal system on a background of speech.

  17. Real-Time Reconfigurable Adaptive Speech Recognition Command and Control Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Salazar, George A. (Inventor); Haynes, Dena S. (Inventor); Sommers, Marc J. (Inventor)

    1998-01-01

    An adaptive speech recognition and control system and method for controlling various mechanisms and systems in response to spoken instructions and in which spoken commands are effective to direct the system into appropriate memory nodes, and to respective appropriate memory templates corresponding to the voiced command is discussed. Spoken commands from any of a group of operators for which the system is trained may be identified, and voice templates are updated as required in response to changes in pronunciation and voice characteristics over time of any of the operators for which the system is trained. Provisions are made for both near-real-time retraining of the system with respect to individual terms which are determined not be positively identified, and for an overall system training and updating process in which recognition of each command and vocabulary term is checked, and in which the memory templates are retrained if necessary for respective commands or vocabulary terms with respect to an operator currently using the system. In one embodiment, the system includes input circuitry connected to a microphone and including signal processing and control sections for sensing the level of vocabulary recognition over a given period and, if recognition performance falls below a given level, processing audio-derived signals for enhancing recognition performance of the system.

  18. Cerebellar contribution to feedforward control of locomotion.

    PubMed

    Pisotta, Iolanda; Molinari, Marco

    2014-01-01

    The cerebellum is an important contributor to feedforward control mechanisms of the central nervous system, and sequencing-the process that allows spatial and temporal relationships between events to be recognized-has been implicated as the fundamental cerebellar mode of operation. By adopting such a mode and because cerebellar activity patterns are sensitive to a variety of sensorimotor-related tasks, the cerebellum is believed to support motor and cognitive functions that are encoded in the frontal and parietal lobes of the cerebral cortex. In this model, the cerebellum is hypothesized to make predictions about the consequences of a motor or cognitive command that originates from the cortex to prepare the entire system to cope with ongoing changes. In this framework, cerebellar predictive mechanisms for locomotion are addressed, focusing on sensorial and motoric sequencing. The hypothesis that sequence recognition is the mechanism by which the cerebellum functions in gait control is presented and discussed.

  19. Cerebellar contribution to feedforward control of locomotion

    PubMed Central

    Pisotta, Iolanda; Molinari, Marco

    2014-01-01

    The cerebellum is an important contributor to feedforward control mechanisms of the central nervous system, and sequencing—the process that allows spatial and temporal relationships between events to be recognized—has been implicated as the fundamental cerebellar mode of operation. By adopting such a mode and because cerebellar activity patterns are sensitive to a variety of sensorimotor-related tasks, the cerebellum is believed to support motor and cognitive functions that are encoded in the frontal and parietal lobes of the cerebral cortex. In this model, the cerebellum is hypothesized to make predictions about the consequences of a motor or cognitive command that originates from the cortex to prepare the entire system to cope with ongoing changes. In this framework, cerebellar predictive mechanisms for locomotion are addressed, focusing on sensorial and motoric sequencing. The hypothesis that sequence recognition is the mechanism by which the cerebellum functions in gait control is presented and discussed. PMID:25009490

  20. Improving recognition of patients at risk in a Portuguese general hospital: results from a preliminary study on the early warning score.

    PubMed

    Correia, Nuno; Rodrigues, Rui Paulo; Sá, Márcia Carvalho; Dias, Paula; Lopes, Luís; Paiva, Artur

    2014-01-01

    Early warning score (EWS) is a system that assists in the timely recognition of hospitalized patients outside critical care areas with potential or established critical illness at risk of deteriorating and who may be receiving suboptimal care. No such systems have been implemented in Portuguese National Health Service's wards. We performed a preliminary study to assess the potential outcome of applying the EWS in our hospital setting. An observational retrospective study was conducted based on 100 patients assessed by the outreach team due to an acute event. The EWS was calculated a posteriori on three preceding periods from the acute deterioration (-12, -24, and -72 h). In 35 patients, there was insufficient recording of vital signs. The final sample of 65 patients includes 62.0% men, and the mean age (±SD) was 67 ± 16 years old. Respiratory problems were the main cause of deterioration (44.6%). The EWS score increased from -72 to -12 h. More than half of cases (63.0%) were admitted into high care units, and their mean (±SD) score was higher in comparison to those remaining in general wards (Intermediate Care Units 3.75 ± 1.9, Intensive Care Units 4.2 ± 1.5, wards 3.5 ± 1.4). Score at -24 and -12 h seemed to predict length of stay (LoS; p < 0.05) and mortality, respectively. The EWS would have incremented early medical attention by 40.0% if a threshold of ≥3 was used. EWS systems are not widely used in Portuguese health service. Our data suggests that the EWS would allow early recognition for a higher number of patients in comparison to current ward care. Clinical worsening, lengths of stay, admission into high care units, and mortality may be predicted by the EWS. Prospective studies with multivariable analysis are needed to clarify the global outcome of the EWS implementation in national wards.

  1. A segmentation-free approach to Arabic and Urdu OCR

    NASA Astrophysics Data System (ADS)

    Sabbour, Nazly; Shafait, Faisal

    2013-01-01

    In this paper, we present a generic Optical Character Recognition system for Arabic script languages called Nabocr. Nabocr uses OCR approaches specific for Arabic script recognition. Performing recognition on Arabic script text is relatively more difficult than Latin text due to the nature of Arabic script, which is cursive and context sensitive. Moreover, Arabic script has different writing styles that vary in complexity. Nabocr is initially trained to recognize both Urdu Nastaleeq and Arabic Naskh fonts. However, it can be trained by users to be used for other Arabic script languages. We have evaluated our system's performance for both Urdu and Arabic. In order to evaluate Urdu recognition, we have generated a dataset of Urdu text called UPTI (Urdu Printed Text Image Database), which measures different aspects of a recognition system. The performance of our system for Urdu clean text is 91%. For Arabic clean text, the performance is 86%. Moreover, we have compared the performance of our system against Tesseract's newly released Arabic recognition, and the performance of both systems on clean images is almost the same.

  2. Optical correlators for recognition of human face thermal images

    NASA Astrophysics Data System (ADS)

    Bauer, Joanna; Podbielska, Halina; Suchwalko, Artur; Mazurkiewicz, Jacek

    2005-09-01

    In this paper, the application of the optical correlators for face thermograms recognition is described. The thermograms were colleted from 27 individuals. For each person 10 pictures in different conditions were recorded and the data base composed of 270 images was prepared. Two biometric systems based on joint transform correlator and 4f correlator were built. Each system was designed for realizing two various tasks: verification and identification. The recognition systems were tested and evaluated according to the Face Recognition Vendor Tests (FRVT).

  3. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.

    PubMed

    Grossberg, Stephen

    2015-09-24

    This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Automated target recognition using passive radar and coordinated flight models

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.; Lanterman, Aaron D.

    2003-09-01

    Rather than emitting pulses, passive radar systems rely on illuminators of opportunity, such as TV and FM radio, to illuminate potential targets. These systems are particularly attractive since they allow receivers to operate without emitting energy, rendering them covert. Many existing passive radar systems estimate the locations and velocities of targets. This paper focuses on adding an automatic target recognition (ATR) component to such systems. Our approach to ATR compares the Radar Cross Section (RCS) of targets detected by a passive radar system to the simulated RCS of known targets. To make the comparison as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. The estimated positions become inputs for an algorithm that uses a coordinated flight model to compute probable aircraft orientation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of several potential target classes as they execute the estimated maneuvers. The RCS is then scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. The Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, so that the RCS can be further scaled. The Rician model compares the RCS of the illuminated aircraft with those of the potential targets. This comparison results in target identification.

  5. Individual differences in language and working memory affect children's speech recognition in noise.

    PubMed

    McCreery, Ryan W; Spratford, Meredith; Kirby, Benjamin; Brennan, Marc

    2017-05-01

    We examined how cognitive and linguistic skills affect speech recognition in noise for children with normal hearing. Children with better working memory and language abilities were expected to have better speech recognition in noise than peers with poorer skills in these domains. As part of a prospective, cross-sectional study, children with normal hearing completed speech recognition in noise for three types of stimuli: (1) monosyllabic words, (2) syntactically correct but semantically anomalous sentences and (3) semantically and syntactically anomalous word sequences. Measures of vocabulary, syntax and working memory were used to predict individual differences in speech recognition in noise. Ninety-six children with normal hearing, who were between 5 and 12 years of age. Higher working memory was associated with better speech recognition in noise for all three stimulus types. Higher vocabulary abilities were associated with better recognition in noise for sentences and word sequences, but not for words. Working memory and language both influence children's speech recognition in noise, but the relationships vary across types of stimuli. These findings suggest that clinical assessment of speech recognition is likely to reflect underlying cognitive and linguistic abilities, in addition to a child's auditory skills, consistent with the Ease of Language Understanding model.

  6. Accurate Identification of Fear Facial Expressions Predicts Prosocial Behavior

    PubMed Central

    Marsh, Abigail A.; Kozak, Megan N.; Ambady, Nalini

    2009-01-01

    The fear facial expression is a distress cue that is associated with the provision of help and prosocial behavior. Prior psychiatric studies have found deficits in the recognition of this expression by individuals with antisocial tendencies. However, no prior study has shown accuracy for recognition of fear to predict actual prosocial or antisocial behavior in an experimental setting. In 3 studies, the authors tested the prediction that individuals who recognize fear more accurately will behave more prosocially. In Study 1, participants who identified fear more accurately also donated more money and time to a victim in a classic altruism paradigm. In Studies 2 and 3, participants’ ability to identify the fear expression predicted prosocial behavior in a novel task designed to control for confounding variables. In Study 3, accuracy for recognizing fear proved a better predictor of prosocial behavior than gender, mood, or scores on an empathy scale. PMID:17516803

  7. Accurate identification of fear facial expressions predicts prosocial behavior.

    PubMed

    Marsh, Abigail A; Kozak, Megan N; Ambady, Nalini

    2007-05-01

    The fear facial expression is a distress cue that is associated with the provision of help and prosocial behavior. Prior psychiatric studies have found deficits in the recognition of this expression by individuals with antisocial tendencies. However, no prior study has shown accuracy for recognition of fear to predict actual prosocial or antisocial behavior in an experimental setting. In 3 studies, the authors tested the prediction that individuals who recognize fear more accurately will behave more prosocially. In Study 1, participants who identified fear more accurately also donated more money and time to a victim in a classic altruism paradigm. In Studies 2 and 3, participants' ability to identify the fear expression predicted prosocial behavior in a novel task designed to control for confounding variables. In Study 3, accuracy for recognizing fear proved a better predictor of prosocial behavior than gender, mood, or scores on an empathy scale.

  8. Research and development on performance models of thermal imaging systems

    NASA Astrophysics Data System (ADS)

    Wang, Ji-hui; Jin, Wei-qi; Wang, Xia; Cheng, Yi-nan

    2009-07-01

    Traditional ACQUIRE models perform the discrimination tasks of detection (target orientation, recognition and identification) for military target based upon minimum resolvable temperature difference (MRTD) and Johnson criteria for thermal imaging systems (TIS). Johnson criteria is generally pessimistic for performance predict of sampled imager with the development of focal plane array (FPA) detectors and digital image process technology. Triangle orientation discrimination threshold (TOD) model, minimum temperature difference perceived (MTDP)/ thermal range model (TRM3) Model and target task performance (TTP) metric have been developed to predict the performance of sampled imager, especially TTP metric can provides better accuracy than the Johnson criteria. In this paper, the performance models above are described; channel width metrics have been presented to describe the synthesis performance including modulate translate function (MTF) channel width for high signal noise to ration (SNR) optoelectronic imaging systems and MRTD channel width for low SNR TIS; the under resolvable questions for performance assessment of TIS are indicated; last, the development direction of performance models for TIS are discussed.

  9. Discovering Peripheral Arterial Disease Cases from Radiology Notes Using Natural Language Processing

    PubMed Central

    Savova, Guergana K.; Fan, Jin; Ye, Zi; Murphy, Sean P.; Zheng, Jiaping; Chute, Christopher G.; Kullo, Iftikhar J.

    2010-01-01

    As part of the Electronic Medical Records and Genomics Network, we applied, extended and evaluated an open source clinical Natural Language Processing system, Mayo’s Clinical Text Analysis and Knowledge Extraction System, for the discovery of peripheral arterial disease cases from radiology reports. The manually created gold standard consisted of 223 positive, 19 negative, 63 probable and 150 unknown cases. Overall accuracy agreement between the system and the gold standard was 0.93 as compared to a named entity recognition baseline of 0.46. Sensitivity for the positive, probable and unknown cases was 0.93–0.96, and for the negative cases was 0.72. Specificity and negative predictive value for all categories were in the 90’s. The positive predictive value for the positive and unknown categories was in the high 90’s, for the negative category was 0.84, and for the probable category was 0.63. We outline the main sources of errors and suggest improvements. PMID:21347073

  10. Visual face-movement sensitive cortex is relevant for auditory-only speech recognition.

    PubMed

    Riedel, Philipp; Ragert, Patrick; Schelinski, Stefanie; Kiebel, Stefan J; von Kriegstein, Katharina

    2015-07-01

    It is commonly assumed that the recruitment of visual areas during audition is not relevant for performing auditory tasks ('auditory-only view'). According to an alternative view, however, the recruitment of visual cortices is thought to optimize auditory-only task performance ('auditory-visual view'). This alternative view is based on functional magnetic resonance imaging (fMRI) studies. These studies have shown, for example, that even if there is only auditory input available, face-movement sensitive areas within the posterior superior temporal sulcus (pSTS) are involved in understanding what is said (auditory-only speech recognition). This is particularly the case when speakers are known audio-visually, that is, after brief voice-face learning. Here we tested whether the left pSTS involvement is causally related to performance in auditory-only speech recognition when speakers are known by face. To test this hypothesis, we applied cathodal transcranial direct current stimulation (tDCS) to the pSTS during (i) visual-only speech recognition of a speaker known only visually to participants and (ii) auditory-only speech recognition of speakers they learned by voice and face. We defined the cathode as active electrode to down-regulate cortical excitability by hyperpolarization of neurons. tDCS to the pSTS interfered with visual-only speech recognition performance compared to a control group without pSTS stimulation (tDCS to BA6/44 or sham). Critically, compared to controls, pSTS stimulation additionally decreased auditory-only speech recognition performance selectively for voice-face learned speakers. These results are important in two ways. First, they provide direct evidence that the pSTS is causally involved in visual-only speech recognition; this confirms a long-standing prediction of current face-processing models. Secondly, they show that visual face-sensitive pSTS is causally involved in optimizing auditory-only speech recognition. These results are in line with the 'auditory-visual view' of auditory speech perception, which assumes that auditory speech recognition is optimized by using predictions from previously encoded speaker-specific audio-visual internal models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Active Multimodal Sensor System for Target Recognition and Tracking

    PubMed Central

    Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen

    2017-01-01

    High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system. PMID:28657609

  12. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network

    PubMed Central

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H. M.; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications. PMID:28744189

  13. Brain mechanisms underlying human communication.

    PubMed

    Noordzij, Matthijs L; Newman-Norlund, Sarah E; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  14. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network.

    PubMed

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H M; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  15. Effects of Repetition Priming on Recognition Memory: Testing a Perceptual Fluency-Disfluency Model

    ERIC Educational Resources Information Center

    Huber, David E.; Clark, Tedra F.; Curran, Tim; Winkielman, Piotr

    2008-01-01

    Five experiments explored the effects of immediate repetition priming on episodic recognition (the "Jacoby-Whitehouse effect") as measured with forced-choice testing. These experiments confirmed key predictions of a model adapted from D. E. Huber and R. C. O'Reilly's (2003) dynamic neural network of perception. In this model, short prime durations…

  16. Within-Category VOT Affects Recovery from "Lexical" Garden-Paths: Evidence against Phoneme-Level Inhibition

    ERIC Educational Resources Information Center

    McMurray, Bob; Tanenhaus, Michael K.; Aslin, Richard N.

    2009-01-01

    Spoken word recognition shows gradient sensitivity to within-category voice onset time (VOT), as predicted by several current models of spoken word recognition, including TRACE (McClelland, J., & Elman, J. (1986). The TRACE model of speech perception. "Cognitive Psychology," 18, 1-86). It remains unclear, however, whether this sensitivity is…

  17. Behavioral and Physiological Neural Network Analyses: A Common Pathway toward Pattern Recognition and Prediction

    ERIC Educational Resources Information Center

    Ninness, Chris; Lauter, Judy L.; Coffee, Michael; Clary, Logan; Kelly, Elizabeth; Rumph, Marilyn; Rumph, Robin; Kyle, Betty; Ninness, Sharon K.

    2012-01-01

    Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study…

  18. Orthographic Neighborhood Effects in Recognition and Recall Tasks in a Transparent Orthography

    ERIC Educational Resources Information Center

    Justi, Francis R. R.; Jaeger, Antonio

    2017-01-01

    The number of orthographic neighbors of a word influences its probability of being retrieved in recognition and free recall memory tests. Even though this phenomenon is well demonstrated for English words, it has yet to be demonstrated for languages with more predictable grapheme-phoneme mappings than English. To address this issue, 4 experiments…

  19. Face Engagement during Infancy Predicts Later Face Recognition Ability in Younger Siblings of Children with Autism

    ERIC Educational Resources Information Center

    de Klerk, Carina C. J. M.; Gliga, Teodora; Charman, Tony; Johnson, Mark H.

    2014-01-01

    Face recognition difficulties are frequently documented in children with autism spectrum disorders (ASD). It has been hypothesized that these difficulties result from a reduced interest in faces early in life, leading to decreased cortical specialization and atypical development of the neural circuitry for face processing. However, a recent study…

  20. Word-level recognition of multifont Arabic text using a feature vector matching approach

    NASA Astrophysics Data System (ADS)

    Erlandson, Erik J.; Trenkle, John M.; Vogt, Robert C., III

    1996-03-01

    Many text recognition systems recognize text imagery at the character level and assemble words from the recognized characters. An alternative approach is to recognize text imagery at the word level, without analyzing individual characters. This approach avoids the problem of individual character segmentation, and can overcome local errors in character recognition. A word-level recognition system for machine-printed Arabic text has been implemented. Arabic is a script language, and is therefore difficult to segment at the character level. Character segmentation has been avoided by recognizing text imagery of complete words. The Arabic recognition system computes a vector of image-morphological features on a query word image. This vector is matched against a precomputed database of vectors from a lexicon of Arabic words. Vectors from the database with the highest match score are returned as hypotheses for the unknown image. Several feature vectors may be stored for each word in the database. Database feature vectors generated using multiple fonts and noise models allow the system to be tuned to its input stream. Used in conjunction with database pruning techniques, this Arabic recognition system has obtained promising word recognition rates on low-quality multifont text imagery.

  1. Advanced methods in NDE using machine learning approaches

    NASA Astrophysics Data System (ADS)

    Wunderlich, Christian; Tschöpe, Constanze; Duckhorn, Frank

    2018-04-01

    Machine learning (ML) methods and algorithms have been applied recently with great success in quality control and predictive maintenance. Its goal to build new and/or leverage existing algorithms to learn from training data and give accurate predictions, or to find patterns, particularly with new and unseen similar data, fits perfectly to Non-Destructive Evaluation. The advantages of ML in NDE are obvious in such tasks as pattern recognition in acoustic signals or automated processing of images from X-ray, Ultrasonics or optical methods. Fraunhofer IKTS is using machine learning algorithms in acoustic signal analysis. The approach had been applied to such a variety of tasks in quality assessment. The principal approach is based on acoustic signal processing with a primary and secondary analysis step followed by a cognitive system to create model data. Already in the second analysis steps unsupervised learning algorithms as principal component analysis are used to simplify data structures. In the cognitive part of the software further unsupervised and supervised learning algorithms will be trained. Later the sensor signals from unknown samples can be recognized and classified automatically by the algorithms trained before. Recently the IKTS team was able to transfer the software for signal processing and pattern recognition to a small printed circuit board (PCB). Still, algorithms will be trained on an ordinary PC; however, trained algorithms run on the Digital Signal Processor and the FPGA chip. The identical approach will be used for pattern recognition in image analysis of OCT pictures. Some key requirements have to be fulfilled, however. A sufficiently large set of training data, a high signal-to-noise ratio, and an optimized and exact fixation of components are required. The automated testing can be done subsequently by the machine. By integrating the test data of many components along the value chain further optimization including lifetime and durability prediction based on big data becomes possible, even if components are used in different versions or configurations. This is the promise behind German Industry 4.0.

  2. Multimodal Emotion Recognition Is Resilient to Insufficient Sleep: Results From Cross-Sectional and Experimental Studies.

    PubMed

    Holding, Benjamin C; Laukka, Petri; Fischer, Håkan; Bänziger, Tanja; Axelsson, John; Sundelin, Tina

    2017-11-01

    Insufficient sleep has been associated with impaired recognition of facial emotions. However, previous studies have found inconsistent results, potentially stemming from the type of static picture task used. We therefore examined whether insufficient sleep was associated with decreased emotion recognition ability in two separate studies using a dynamic multimodal task. Study 1 used a cross-sectional design consisting of 291 participants with questionnaire measures assessing sleep duration and self-reported sleep quality for the previous night. Study 2 used an experimental design involving 181 participants where individuals were quasi-randomized into either a sleep-deprivation (N = 90) or a sleep-control (N = 91) condition. All participants from both studies were tested on the same forced-choice multimodal test of emotion recognition to assess the accuracy of emotion categorization. Sleep duration, self-reported sleep quality (study 1), and sleep deprivation (study 2) did not predict overall emotion recognition accuracy or speed. Similarly, the responses to each of the twelve emotions tested showed no evidence of impaired recognition ability, apart from one positive association suggesting that greater self-reported sleep quality could predict more accurate recognition of disgust (study 1). The studies presented here involve considerably larger samples than previous studies and the results support the null hypotheses. Therefore, we suggest that the ability to accurately categorize the emotions of others is not associated with short-term sleep duration or sleep quality and is resilient to acute periods of insufficient sleep. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  3. Practical vision based degraded text recognition system

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Rapid growth and progress in the medical, industrial, security and technology fields means more and more consideration for the use of camera based optical character recognition (OCR) Applying OCR to scanned documents is quite mature, and there are many commercial and research products available on this topic. These products achieve acceptable recognition accuracy and reasonable processing times especially with trained software, and constrained text characteristics. Even though the application space for OCR is huge, it is quite challenging to design a single system that is capable of performing automatic OCR for text embedded in an image irrespective of the application. Challenges for OCR systems include; images are taken under natural real world conditions, Surface curvature, text orientation, font, size, lighting conditions, and noise. These and many other conditions make it extremely difficult to achieve reasonable character recognition. Performance for conventional OCR systems drops dramatically as the degradation level of the text image quality increases. In this paper, a new recognition method is proposed to recognize solid or dotted line degraded characters. The degraded text string is localized and segmented using a new algorithm. The new method was implemented and tested using a development framework system that is capable of performing OCR on camera captured images. The framework allows parameter tuning of the image-processing algorithm based on a training set of camera-captured text images. Novel methods were used for enhancement, text localization and the segmentation algorithm which enables building a custom system that is capable of performing automatic OCR which can be used for different applications. The developed framework system includes: new image enhancement, filtering, and segmentation techniques which enabled higher recognition accuracies, faster processing time, and lower energy consumption, compared with the best state of the art published techniques. The system successfully produced impressive OCR accuracies (90% -to- 93%) using customized systems generated by our development framework in two industrial OCR applications: water bottle label text recognition and concrete slab plate text recognition. The system was also trained for the Arabic language alphabet, and demonstrated extremely high recognition accuracy (99%) for Arabic license name plate text recognition with processing times of 10 seconds. The accuracy and run times of the system were compared to conventional and many states of art methods, the proposed system shows excellent results.

  4. The word-frequency paradox for recall/recognition occurs for pictures.

    PubMed

    Karlsen, Paul Johan; Snodgrass, Joan Gay

    2004-08-01

    A yes-no recognition task and two recall tasks were conducted using pictures of high and low familiarity ratings. Picture familiarity had analogous effects to word frequency, and replicated the word-frequency paradox in recall and recognition. Low-familiarity pictures were more recognizable than high-familiarity pictures, pure lists of high-familiarity pictures were more recallable than pure lists of low-familiarity pictures, and there was no effect of familiarity for mixed lists. These results are consistent with the predictions of the Search of Associative Memory (SAM) model.

  5. Enhancement of gesture recognition for contactless interface using a personalized classifier in the operating room.

    PubMed

    Cho, Yongwon; Lee, Areum; Park, Jongha; Ko, Bemseok; Kim, Namkug

    2018-07-01

    Contactless operating room (OR) interfaces are important for computer-aided surgery, and have been developed to decrease the risk of contamination during surgical procedures. In this study, we used Leap Motion™, with a personalized automated classifier, to enhance the accuracy of gesture recognition for contactless interfaces. This software was trained and tested on a personal basis that means the training of gesture per a user. We used 30 features including finger and hand data, which were computed, selected, and fed into a multiclass support vector machine (SVM), and Naïve Bayes classifiers and to predict and train five types of gestures including hover, grab, click, one peak, and two peaks. Overall accuracy of the five gestures was 99.58% ± 0.06, and 98.74% ± 3.64 on a personal basis using SVM and Naïve Bayes classifiers, respectively. We compared gesture accuracy across the entire dataset and used SVM and Naïve Bayes classifiers to examine the strength of personal basis training. We developed and enhanced non-contact interfaces with gesture recognition to enhance OR control systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Fuzzy logic and neural network technologies

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.; Lea, Robert N.; Savely, Robert T.

    1992-01-01

    Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.

  7. Model and algorithmic framework for detection and correction of cognitive errors.

    PubMed

    Feki, Mohamed Ali; Biswas, Jit; Tolstikov, Andrei

    2009-01-01

    This paper outlines an approach that we are taking for elder-care applications in the smart home, involving cognitive errors and their compensation. Our approach involves high level modeling of daily activities of the elderly by breaking down these activities into smaller units, which can then be automatically recognized at a low level by collections of sensors placed in the homes of the elderly. This separation allows us to employ plan recognition algorithms and systems at a high level, while developing stand-alone activity recognition algorithms and systems at a low level. It also allows the mixing and matching of multi-modality sensors of various kinds that go to support the same high level requirement. Currently our plan recognition algorithms are still at a conceptual stage, whereas a number of low level activity recognition algorithms and systems have been developed. Herein we present our model for plan recognition, providing a brief survey of the background literature. We also present some concrete results that we have achieved for activity recognition, emphasizing how these results are incorporated into the overall plan recognition system.

  8. Is Listening in Noise Worth It? The Neurobiology of Speech Recognition in Challenging Listening Conditions.

    PubMed

    Eckert, Mark A; Teubner-Rhodes, Susan; Vaden, Kenneth I

    2016-01-01

    This review examines findings from functional neuroimaging studies of speech recognition in noise to provide a neural systems level explanation for the effort and fatigue that can be experienced during speech recognition in challenging listening conditions. Neuroimaging studies of speech recognition consistently demonstrate that challenging listening conditions engage neural systems that are used to monitor and optimize performance across a wide range of tasks. These systems appear to improve speech recognition in younger and older adults, but sustained engagement of these systems also appears to produce an experience of effort and fatigue that may affect the value of communication. When considered in the broader context of the neuroimaging and decision making literature, the speech recognition findings from functional imaging studies indicate that the expected value, or expected level of speech recognition given the difficulty of listening conditions, should be considered when measuring effort and fatigue. The authors propose that the behavioral economics or neuroeconomics of listening can provide a conceptual and experimental framework for understanding effort and fatigue that may have clinical significance.

  9. Is Listening in Noise Worth It? The Neurobiology of Speech Recognition in Challenging Listening Conditions

    PubMed Central

    Eckert, Mark A.; Teubner-Rhodes, Susan; Vaden, Kenneth I.

    2016-01-01

    This review examines findings from functional neuroimaging studies of speech recognition in noise to provide a neural systems level explanation for the effort and fatigue that can be experienced during speech recognition in challenging listening conditions. Neuroimaging studies of speech recognition consistently demonstrate that challenging listening conditions engage neural systems that are used to monitor and optimize performance across a wide range of tasks. These systems appear to improve speech recognition in younger and older adults, but sustained engagement of these systems also appears to produce an experience of effort and fatigue that may affect the value of communication. When considered in the broader context of the neuroimaging and decision making literature, the speech recognition findings from functional imaging studies indicate that the expected value, or expected level of speech recognition given the difficulty of listening conditions, should be considered when measuring effort and fatigue. We propose that the behavioral economics and/or neuroeconomics of listening can provide a conceptual and experimental framework for understanding effort and fatigue that may have clinical significance. PMID:27355759

  10. Multi-modal gesture recognition using integrated model of motion, audio and video

    NASA Astrophysics Data System (ADS)

    Goutsu, Yusuke; Kobayashi, Takaki; Obara, Junya; Kusajima, Ikuo; Takeichi, Kazunari; Takano, Wataru; Nakamura, Yoshihiko

    2015-07-01

    Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.

  11. Seamless Tracing of Human Behavior Using Complementary Wearable and House-Embedded Sensors

    PubMed Central

    Augustyniak, Piotr; Smoleń, Magdalena; Mikrut, Zbigniew; Kańtoch, Eliasz

    2014-01-01

    This paper presents a multimodal system for seamless surveillance of elderly people in their living environment. The system uses simultaneously a wearable sensor network for each individual and premise-embedded sensors specific for each environment. The paper demonstrates the benefits of using complementary information from two types of mobility sensors: visual flow-based image analysis and an accelerometer-based wearable network. The paper provides results for indoor recognition of several elementary poses and outdoor recognition of complex movements. Instead of complete system description, particular attention was drawn to a polar histogram-based method of visual pose recognition, complementary use and synchronization of the data from wearable and premise-embedded networks and an automatic danger detection algorithm driven by two premise- and subject-related databases. The novelty of our approach also consists in feeding the databases with real-life recordings from the subject, and in using the dynamic time-warping algorithm for measurements of distance between actions represented as elementary poses in behavioral records. The main results of testing our method include: 95.5% accuracy of elementary pose recognition by the video system, 96.7% accuracy of elementary pose recognition by the accelerometer-based system, 98.9% accuracy of elementary pose recognition by the combined accelerometer and video-based system, and 80% accuracy of complex outdoor activity recognition by the accelerometer-based wearable system. PMID:24787640

  12. Prediction of activity type in preschool children using machine learning techniques.

    PubMed

    Hagenbuchner, Markus; Cliff, Dylan P; Trost, Stewart G; Van Tuc, Nguyen; Peoples, Gregory E

    2015-07-01

    Recent research has shown that machine learning techniques can accurately predict activity classes from accelerometer data in adolescents and adults. The purpose of this study is to develop and test machine learning models for predicting activity type in preschool-aged children. Participants completed 12 standardised activity trials (TV, reading, tablet game, quiet play, art, treasure hunt, cleaning up, active game, obstacle course, bicycle riding) over two laboratory visits. Eleven children aged 3-6 years (mean age=4.8±0.87; 55% girls) completed the activity trials while wearing an ActiGraph GT3X+ accelerometer on the right hip. Activities were categorised into five activity classes: sedentary activities, light activities, moderate to vigorous activities, walking, and running. A standard feed-forward Artificial Neural Network and a Deep Learning Ensemble Network were trained on features in the accelerometer data used in previous investigations (10th, 25th, 50th, 75th and 90th percentiles and the lag-one autocorrelation). Overall recognition accuracy for the standard feed forward Artificial Neural Network was 69.7%. Recognition accuracy for sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running was 82%, 79%, 64%, 36% and 46%, respectively. In comparison, overall recognition accuracy for the Deep Learning Ensemble Network was 82.6%. For sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running recognition accuracy was 84%, 91%, 79%, 73% and 73%, respectively. Ensemble machine learning approaches such as Deep Learning Ensemble Network can accurately predict activity type from accelerometer data in preschool children. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Validation of an electronic surveillance system for acute lung injury.

    PubMed

    Herasevich, Vitaly; Yilmaz, Murat; Khan, Hasrat; Hubmayr, Rolf D; Gajic, Ognjen

    2009-06-01

    Early detection of acute lung injury (ALI) is essential for timely implementation of evidence-based therapies and enrollment into clinical trials. We aimed to determine the accuracy of computerized syndrome surveillance for detection of ALI in hospitalized patients and compare it with routine clinical assessment. Using a near-real time copy of the electronic medical records, we developed and validated a custom ALI electronic alert (ALI "sniffer") based on the European-American Consensus Conference Definition and compared its performance against provider-derived documentation. A total of 3,795 consecutive critically ill patients admitted to nine multidisciplinary intensive care units (ICUs) of a tertiary care teaching institution were included. ALI developed in 325 patients and was recognized by bedside clinicians in only 86 (26.5%). Under-recognition of ALI was associated with not implementing protective mechanical ventilation (median tidal volumes of 9.2 vs. 8.0 ml/kg predicted body weight, P < 0.001). ALI "sniffer" demonstrated excellent sensitivity of 96% (95% CI 94-98) and moderate specificity of 89% (95% CI 88-90) with a positive predictive value ranging from 24% (95% CI 13-40) in the heart-lung transplant ICU to 64% (95% CI 55-71) in the medical ICU. The computerized surveillance system accurately identifies critically ill patients who develop ALI syndrome. Since the lack of ALI recognition is a barrier to the timely implementation of best practices and enrollment into research studies, computerized syndrome surveillance could be a useful tool to enhance patient safety and clinical research.

  14. Emotion recognition and social skills in child and adolescent offspring of parents with schizophrenia.

    PubMed

    Horton, Leslie E; Bridgwater, Miranda A; Haas, Gretchen L

    2017-05-01

    Emotion recognition, a social cognition domain, is impaired in people with schizophrenia and contributes to social dysfunction. Whether impaired emotion recognition emerges as a manifestation of illness or predates symptoms is unclear. Findings from studies of emotion recognition impairments in first-degree relatives of people with schizophrenia are mixed and, to our knowledge, no studies have investigated the link between emotion recognition and social functioning in that population. This study examined facial affect recognition and social skills in 16 offspring of parents with schizophrenia (familial high-risk/FHR) compared to 34 age- and sex-matched healthy controls (HC), ages 7-19. As hypothesised, FHR children exhibited impaired overall accuracy, accuracy in identifying fearful faces, and overall recognition speed relative to controls. Age-adjusted facial affect recognition accuracy scores predicted parent's overall rating of their child's social skills for both groups. This study supports the presence of facial affect recognition deficits in FHR children. Importantly, as the first known study to suggest the presence of these deficits in young, asymptomatic FHR children, it extends findings to a developmental stage predating symptoms. Further, findings point to a relationship between early emotion recognition and social skills. Improved characterisation of deficits in FHR children could inform early intervention.

  15. Research on gesture recognition of augmented reality maintenance guiding system based on improved SVM

    NASA Astrophysics Data System (ADS)

    Zhao, Shouwei; Zhang, Yong; Zhou, Bin; Ma, Dongxi

    2014-09-01

    Interaction is one of the key techniques of augmented reality (AR) maintenance guiding system. Because of the complexity of the maintenance guiding system's image background and the high dimensionality of gesture characteristics, the whole process of gesture recognition can be divided into three stages which are gesture segmentation, gesture characteristic feature modeling and trick recognition. In segmentation stage, for solving the misrecognition of skin-like region, a segmentation algorithm combing background mode and skin color to preclude some skin-like regions is adopted. In gesture characteristic feature modeling of image attributes stage, plenty of characteristic features are analyzed and acquired, such as structure characteristics, Hu invariant moments features and Fourier descriptor. In trick recognition stage, a classifier based on Support Vector Machine (SVM) is introduced into the augmented reality maintenance guiding process. SVM is a novel learning method based on statistical learning theory, processing academic foundation and excellent learning ability, having a lot of issues in machine learning area and special advantages in dealing with small samples, non-linear pattern recognition at high dimension. The gesture recognition of augmented reality maintenance guiding system is realized by SVM after the granulation of all the characteristic features. The experimental results of the simulation of number gesture recognition and its application in augmented reality maintenance guiding system show that the real-time performance and robustness of gesture recognition of AR maintenance guiding system can be greatly enhanced by improved SVM.

  16. Biometrics: A Look at Facial Recognition

    DTIC Science & Technology

    a facial recognition system in the city’s Oceanfront tourist area. The system has been tested and has recently been fully implemented. Senator...Kenneth W. Stolle, the Chairman of the Virginia State Crime Commission, established a Facial Recognition Technology Sub-Committee to examine the issue of... facial recognition technology. This briefing begins by defining biometrics and discussing examples of the technology. It then explains how biometrics

  17. Face Recognition Vendor Test 2000: Appendices

    DTIC Science & Technology

    2001-02-01

    DARPA), NAVSEA Crane Division and NAVSEA Dahlgren Division are sponsoring an evaluation of commercial off the shelf (COTS) facial recognition products...The purpose of these evaluations is to accurately gauge the capabilities of facial recognition biometric systems that are currently available for...or development efforts. Participation in these tests is open to all facial recognition systems on the US commercial market. The U.S. Government will

  18. United States Homeland Security and National Biometric Identification

    DTIC Science & Technology

    2002-04-09

    security number. Biometrics is the use of unique individual traits such as fingerprints, iris eye patterns, voice recognition, and facial recognition to...technology to control access onto their military bases using a Defense Manpower Management Command developed software application. FACIAL Facial recognition systems...installed facial recognition systems in conjunction with a series of 200 cameras to fight street crime and identify terrorists. The cameras, which are

  19. Cognitive Processing Hardware Elements

    DTIC Science & Technology

    2005-01-31

    characters. Results will be presented below. 1 4. Recognition of human faces. There are many other possible applications such as facial recognition and...For the experiments in facial recognition , we have used a 3-layer autoassociative neural network having the following specifications: "* The input...using the facial recognition system described in the section above as an example. This system uses an autoassociative neural network containing over 10

  20. Novel Approach for the Recognition and Prediction of Multi-Function Radar Behaviours Based on Predictive State Representations.

    PubMed

    Ou, Jian; Chen, Yongguang; Zhao, Feng; Liu, Jin; Xiao, Shunping

    2017-03-19

    The extensive applications of multi-function radars (MFRs) have presented a great challenge to the technologies of radar countermeasures (RCMs) and electronic intelligence (ELINT). The recently proposed cognitive electronic warfare (CEW) provides a good solution, whose crux is to perceive present and future MFR behaviours, including the operating modes, waveform parameters, scheduling schemes, etc. Due to the variety and complexity of MFR waveforms, the existing approaches have the drawbacks of inefficiency and weak practicability in prediction. A novel method for MFR behaviour recognition and prediction is proposed based on predictive state representation (PSR). With the proposed approach, operating modes of MFR are recognized by accumulating the predictive states, instead of using fixed transition probabilities that are unavailable in the battlefield. It helps to reduce the dependence of MFR on prior information. And MFR signals can be quickly predicted by iteratively using the predicted observation, avoiding the very large computation brought by the uncertainty of future observations. Simulations with a hypothetical MFR signal sequence in a typical scenario are presented, showing that the proposed methods perform well and efficiently, which attests to their validity.

  1. Novel Approach for the Recognition and Prediction of Multi-Function Radar Behaviours Based on Predictive State Representations

    PubMed Central

    Ou, Jian; Chen, Yongguang; Zhao, Feng; Liu, Jin; Xiao, Shunping

    2017-01-01

    The extensive applications of multi-function radars (MFRs) have presented a great challenge to the technologies of radar countermeasures (RCMs) and electronic intelligence (ELINT). The recently proposed cognitive electronic warfare (CEW) provides a good solution, whose crux is to perceive present and future MFR behaviours, including the operating modes, waveform parameters, scheduling schemes, etc. Due to the variety and complexity of MFR waveforms, the existing approaches have the drawbacks of inefficiency and weak practicability in prediction. A novel method for MFR behaviour recognition and prediction is proposed based on predictive state representation (PSR). With the proposed approach, operating modes of MFR are recognized by accumulating the predictive states, instead of using fixed transition probabilities that are unavailable in the battlefield. It helps to reduce the dependence of MFR on prior information. And MFR signals can be quickly predicted by iteratively using the predicted observation, avoiding the very large computation brought by the uncertainty of future observations. Simulations with a hypothetical MFR signal sequence in a typical scenario are presented, showing that the proposed methods perform well and efficiently, which attests to their validity. PMID:28335492

  2. A Single-System Account of the Relationship between Priming, Recognition, and Fluency

    ERIC Educational Resources Information Center

    Berry, Christopher J.; Shanks, David R.; Henson, Richard N. A.

    2008-01-01

    A single-system computational model of priming and recognition was applied to studies that have looked at the relationship between priming, recognition, and fluency in continuous identification paradigms. The model was applied to 3 findings that have been interpreted as evidence for a multiple-systems account: (a) priming can occur for items not…

  3. Action understanding and active inference

    PubMed Central

    Mattout, Jérémie; Kilner, James

    2012-01-01

    We have suggested that the mirror-neuron system might be usefully understood as implementing Bayes-optimal perception of actions emitted by oneself or others. To substantiate this claim, we present neuronal simulations that show the same representations can prescribe motor behavior and encode motor intentions during action–observation. These simulations are based on the free-energy formulation of active inference, which is formally related to predictive coding. In this scheme, (generalised) states of the world are represented as trajectories. When these states include motor trajectories they implicitly entail intentions (future motor states). Optimizing the representation of these intentions enables predictive coding in a prospective sense. Crucially, the same generative models used to make predictions can be deployed to predict the actions of self or others by simply changing the bias or precision (i.e. attention) afforded to proprioceptive signals. We illustrate these points using simulations of handwriting to illustrate neuronally plausible generation and recognition of itinerant (wandering) motor trajectories. We then use the same simulations to produce synthetic electrophysiological responses to violations of intentional expectations. Our results affirm that a Bayes-optimal approach provides a principled framework, which accommodates current thinking about the mirror-neuron system. Furthermore, it endorses the general formulation of action as active inference. PMID:21327826

  4. Predicting reasoning from memory.

    PubMed

    Heit, Evan; Hayes, Brett K

    2011-02-01

    In an effort to assess the relations between reasoning and memory, in 8 experiments, the authors examined how well responses on an inductive reasoning task are predicted from responses on a recognition memory task for the same picture stimuli. Across several experimental manipulations, such as varying study time, presentation frequency, and the presence of stimuli from other categories, there was a high correlation between reasoning and memory responses (average r = .87), and these manipulations showed similar effects on the 2 tasks. The results point to common mechanisms underlying inductive reasoning and recognition memory abilities. A mathematical model, GEN-EX (generalization from examples), derived from exemplar models of categorization, is presented, which predicts both reasoning and memory responses from pairwise similarities among the stimuli, allowing for additional influences of subtyping and deterministic responding. (c) 2010 APA, all rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolme, David S; Tokola, Ryan A; Boehnen, Chris Bensing

    Automatic recognition systems are a valuable tool for identifying unknown deceased individuals. Immediately af- ter death fingerprint and face biometric samples are easy to collect using standard sensors and cameras and can be easily matched to anti-mortem biometric samples. Even though post-mortem fingerprints and faces have been used for decades, there are no studies that track these biomet- rics through the later stages of decomposition to determine the length of time the biometrics remain viable. This paper discusses a multimodal dataset of fingerprints, faces, and irises from 14 human cadavers that decomposed outdoors under natural conditions. Results include predictive modelsmore » relating time and temperature, measured as Accumulated Degree Days (ADD), and season (winter, spring, summer) to the predicted probably of automatic verification using a commercial algorithm.« less

  6. Performing speech recognition research with hypercard

    NASA Technical Reports Server (NTRS)

    Shepherd, Chip

    1993-01-01

    The purpose of this paper is to describe a HyperCard-based system for performing speech recognition research and to instruct Human Factors professionals on how to use the system to obtain detailed data about the user interface of a prototype speech recognition application.

  7. Automated Field-of-View, Illumination, and Recognition Algorithm Design of a Vision System for Pick-and-Place Considering Colour Information in Illumination and Images

    PubMed Central

    Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun

    2018-01-01

    Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition. PMID:29786665

  8. Automated Field-of-View, Illumination, and Recognition Algorithm Design of a Vision System for Pick-and-Place Considering Colour Information in Illumination and Images.

    PubMed

    Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun

    2018-05-22

    Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition.

  9. Stress reaction process-based hierarchical recognition algorithm for continuous intrusion events in optical fiber prewarning system

    NASA Astrophysics Data System (ADS)

    Qu, Hongquan; Yuan, Shijiao; Wang, Yanping; Yang, Dan

    2018-04-01

    To improve the recognition performance of optical fiber prewarning system (OFPS), this study proposed a hierarchical recognition algorithm (HRA). Compared with traditional methods, which employ only a complex algorithm that includes multiple extracted features and complex classifiers to increase the recognition rate with a considerable decrease in recognition speed, HRA takes advantage of the continuity of intrusion events, thereby creating a staged recognition flow inspired by stress reaction. HRA is expected to achieve high-level recognition accuracy with less time consumption. First, this work analyzed the continuity of intrusion events and then presented the algorithm based on the mechanism of stress reaction. Finally, it verified the time consumption through theoretical analysis and experiments, and the recognition accuracy was obtained through experiments. Experiment results show that the processing speed of HRA is 3.3 times faster than that of a traditional complicated algorithm and has a similar recognition rate of 98%. The study is of great significance to fast intrusion event recognition in OFPS.

  10. Technology-Based Early Warning Systems for Bipolar Disorder: A Conceptual Framework

    PubMed Central

    Torous, John; Thompson, Wesley

    2016-01-01

    Recognition and timely action around “warning signs” of illness exacerbation is central to the self-management of bipolar disorder. Due to its heterogeneity and fluctuating course, passive and active mobile technologies have been increasingly evaluated as adjunctive or standalone tools to predict and prevent risk of worsening of course in bipolar disorder. As predictive analytics approaches to big data from mobile health (mHealth) applications and ancillary sensors advance, it is likely that early warning systems will increasingly become available to patients. Such systems could reduce the amount of time spent experiencing symptoms and diminish the immense disability experienced by people with bipolar disorder. However, in addition to the challenges in validating such systems, we argue that early warning systems may not be without harms. Probabilistic warnings may be delivered to individuals who may not be able to interpret the warning, have limited information about what behaviors to change, or are unprepared to or cannot feasibly act due to time or logistic constraints. We propose five essential elements for early warning systems and provide a conceptual framework for designing, incorporating stakeholder input, and validating early warning systems for bipolar disorder with a focus on pragmatic considerations. PMID:27604265

  11. Improving the recognition of fingerprint biometric system using enhanced image fusion

    NASA Astrophysics Data System (ADS)

    Alsharif, Salim; El-Saba, Aed; Stripathi, Reshma

    2010-04-01

    Fingerprints recognition systems have been widely used by financial institutions, law enforcement, border control, visa issuing, just to mention few. Biometric identifiers can be counterfeited, but considered more reliable and secure compared to traditional ID cards or personal passwords methods. Fingerprint pattern fusion improves the performance of a fingerprint recognition system in terms of accuracy and security. This paper presents digital enhancement and fusion approaches that improve the biometric of the fingerprint recognition system. It is a two-step approach. In the first step raw fingerprint images are enhanced using high-frequency-emphasis filtering (HFEF). The second step is a simple linear fusion process between the raw images and the HFEF ones. It is shown that the proposed approach increases the verification and identification of the fingerprint biometric recognition system, where any improvement is justified using the correlation performance metrics of the matching algorithm.

  12. Optical character recognition of camera-captured images based on phase features

    NASA Astrophysics Data System (ADS)

    Diaz-Escobar, Julia; Kober, Vitaly

    2015-09-01

    Nowadays most of digital information is obtained using mobile devices specially smartphones. In particular, it brings the opportunity for optical character recognition in camera-captured images. For this reason many recognition applications have been recently developed such as recognition of license plates, business cards, receipts and street signal; document classification, augmented reality, language translator and so on. Camera-captured images are usually affected by geometric distortions, nonuniform illumination, shadow, noise, which make difficult the recognition task with existing systems. It is well known that the Fourier phase contains a lot of important information regardless of the Fourier magnitude. So, in this work we propose a phase-based recognition system exploiting phase-congruency features for illumination/scale invariance. The performance of the proposed system is tested in terms of miss classifications and false alarms with the help of computer simulation.

  13. Research for Key Techniques of Geophysical Recognition System of Hydrocarbon-induced Magnetic Anomalies Based on Hydrocarbon Seepage Theory

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Hao, T.; Zhao, B.

    2009-12-01

    Hydrocarbon seepage effects can cause magnetic alteration zones in near surface, and the magnetic anomalies induced by the alteration zones can thus be used to locate oil-gas potential regions. In order to reduce the inaccuracy and multi-resolution of the hydrocarbon anomalies recognized only by magnetic data, and to meet the requirement of integrated management and sythetic analysis of multi-source geoscientfic data, it is necessary to construct a recognition system that integrates the functions of data management, real-time processing, synthetic evaluation, and geologic mapping. In this paper research for the key techniques of the system is discussed. Image processing methods can be applied to potential field images so as to make it easier for visual interpretation and geological understanding. For gravity or magnetic images, the anomalies with identical frequency-domain characteristics but different spatial distribution will reflect differently in texture and relevant textural statistics. Texture is a description of structural arrangements and spatial variation of a dataset or an image, and has been applied in many research fields. Textural analysis is a procedure that extracts textural features by image processing methods and thus obtains a quantitative or qualitative description of texture. When the two kinds of anomalies have no distinct difference in amplitude or overlap in frequency spectrum, they may be distinguishable due to their texture, which can be considered as textural contrast. Therefore, for the recognition system we propose a new “magnetic spots” recognition method based on image processing techniques. The method can be divided into 3 major steps: firstly, separate local anomalies caused by shallow, relatively small sources from the total magnetic field, and then pre-process the local magnetic anomaly data by image processing methods such that magnetic anomalies can be expressed as points, lines and polygons with spatial correlation, which includes histogram-equalization based image display, object recognition and extraction; then, mine the spatial characteristics and correlations of the magnetic anomalies using textural statistics and analysis, and study the features of known anomalous objects (closures, hydrocarbon-bearing structures, igneous rocks, etc.) in the same research area; finally, classify the anomalies, cluster them according to their similarity, and predict hydrocarbon induced “magnetic spots” combined with geologic, drilling and rock core data. The system uses the ArcGIS as the secondary development platform, inherits the basic functions of the ArcGIS, and develops two main sepecial functional modules, the module for conventional potential-field data processing methods and the module for feature extraction and enhancement based on image processing and analysis techniques. The system can be applied to realize the geophysical detection and recognition of near-surface hydrocarbon seepage anomalies, provide technical support for locating oil-gas potential regions, and promote geophysical data processing and interpretation to advance more efficiently.

  14. Can Changes in Eye Movement Scanning Alter the Age-Related Deficit in Recognition Memory?

    PubMed Central

    Chan, Jessica P. K.; Kamino, Daphne; Binns, Malcolm A.; Ryan, Jennifer D.

    2011-01-01

    Older adults typically exhibit poorer face recognition compared to younger adults. These recognition differences may be due to underlying age-related changes in eye movement scanning. We examined whether older adults’ recognition could be improved by yoking their eye movements to those of younger adults. Participants studied younger and older faces, under free viewing conditions (bases), through a gaze-contingent moving window (own), or a moving window which replayed the eye movements of a base participant (yoked). During the recognition test, participants freely viewed the faces with no viewing restrictions. Own-age recognition biases were observed for older adults in all viewing conditions, suggesting that this effect occurs independently of scanning. Participants in the bases condition had the highest recognition accuracy, and participants in the yoked condition were more accurate than participants in the own condition. Among yoked participants, recognition did not depend on age of the base participant. These results suggest that successful encoding for all participants requires the bottom-up contribution of peripheral information, regardless of the locus of control of the viewer. Although altering the pattern of eye movements did not increase recognition, the amount of sampling of the face during encoding predicted subsequent recognition accuracy for all participants. Increased sampling may confer some advantages for subsequent recognition, particularly for people who have declining memory abilities. PMID:21687460

  15. Probing binding hot spots at protein-RNA recognition sites.

    PubMed

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Speech variability effects on recognition accuracy associated with concurrent task performance by pilots

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1985-01-01

    In the present study of the responses of pairs of pilots to aircraft warning classification tasks using an isolated word, speaker-dependent speech recognition system, the induced stress was manipulated by means of different scoring procedures for the classification task and by the inclusion of a competitive manual control task. Both speech patterns and recognition accuracy were analyzed, and recognition errors were recorded by type for an isolated word speaker-dependent system and by an offline technique for a connected word speaker-dependent system. While errors increased with task loading for the isolated word system, there was no such effect for task loading in the case of the connected word system.

  17. Medical Named Entity Recognition for Indonesian Language Using Word Representations

    NASA Astrophysics Data System (ADS)

    Rahman, Arief

    2018-03-01

    Nowadays, Named Entity Recognition (NER) system is used in medical texts to obtain important medical information, like diseases, symptoms, and drugs. While most NER systems are applied to formal medical texts, informal ones like those from social media (also called semi-formal texts) are starting to get recognition as a gold mine for medical information. We propose a theoretical Named Entity Recognition (NER) model for semi-formal medical texts in our medical knowledge management system by comparing two kinds of word representations: cluster-based word representation and distributed representation.

  18. Gait recognition based on integral outline

    NASA Astrophysics Data System (ADS)

    Ming, Guan; Fang, Lv

    2017-02-01

    Biometric identification technology replaces traditional security technology, which has become a trend, and gait recognition also has become a hot spot of research because its feature is difficult to imitate and theft. This paper presents a gait recognition system based on integral outline of human body. The system has three important aspects: the preprocessing of gait image, feature extraction and classification. Finally, using a method of polling to evaluate the performance of the system, and summarizing the problems existing in the gait recognition and the direction of development in the future.

  19. Localization and recognition of traffic signs for automated vehicle control systems

    NASA Astrophysics Data System (ADS)

    Zadeh, Mahmoud M.; Kasvand, T.; Suen, Ching Y.

    1998-01-01

    We present a computer vision system for detection and recognition of traffic signs. Such systems are required to assist drivers and for guidance and control of autonomous vehicles on roads and city streets. For experiments we use sequences of digitized photographs and off-line analysis. The system contains four stages. First, region segmentation based on color pixel classification called SRSM. SRSM limits the search to regions of interest in the scene. Second, we use edge tracing to find parts of outer edges of signs which are circular or straight, corresponding to the geometrical shapes of traffic signs. The third step is geometrical analysis of the outer edge and preliminary recognition of each candidate region, which may be a potential traffic sign. The final step in recognition uses color combinations within each region and model matching. This system maybe used for recognition of other types of objects, provided that the geometrical shape and color content remain reasonably constant. The method is reliable, easy to implement, and fast, This differs form the road signs recognition method in the PROMETEUS. The overall structure of the approach is sketched.

  20. Robust and Effective Component-based Banknote Recognition for the Blind

    PubMed Central

    Hasanuzzaman, Faiz M.; Yang, Xiaodong; Tian, YingLi

    2012-01-01

    We develop a novel camera-based computer vision technology to automatically recognize banknotes for assisting visually impaired people. Our banknote recognition system is robust and effective with the following features: 1) high accuracy: high true recognition rate and low false recognition rate, 2) robustness: handles a variety of currency designs and bills in various conditions, 3) high efficiency: recognizes banknotes quickly, and 4) ease of use: helps blind users to aim the target for image capture. To make the system robust to a variety of conditions including occlusion, rotation, scaling, cluttered background, illumination change, viewpoint variation, and worn or wrinkled bills, we propose a component-based framework by using Speeded Up Robust Features (SURF). Furthermore, we employ the spatial relationship of matched SURF features to detect if there is a bill in the camera view. This process largely alleviates false recognition and can guide the user to correctly aim at the bill to be recognized. The robustness and generalizability of the proposed system is evaluated on a dataset including both positive images (with U.S. banknotes) and negative images (no U.S. banknotes) collected under a variety of conditions. The proposed algorithm, achieves 100% true recognition rate and 0% false recognition rate. Our banknote recognition system is also tested by blind users. PMID:22661884

  1. Kannada character recognition system using neural network

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh D. S.; Kamalapuram, Srinivasa K.; Kumar, Ajay B. R.

    2013-03-01

    Handwriting recognition has been one of the active and challenging research areas in the field of pattern recognition. It has numerous applications which include, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. As there is no sufficient number of works on Indian language character recognition especially Kannada script among 15 major scripts in India. In this paper an attempt is made to recognize handwritten Kannada characters using Feed Forward neural networks. A handwritten Kannada character is resized into 20x30 Pixel. The resized character is used for training the neural network. Once the training process is completed the same character is given as input to the neural network with different set of neurons in hidden layer and their recognition accuracy rate for different Kannada characters has been calculated and compared. The results show that the proposed system yields good recognition accuracy rates comparable to that of other handwritten character recognition systems.

  2. Permutation coding technique for image recognition systems.

    PubMed

    Kussul, Ernst M; Baidyk, Tatiana N; Wunsch, Donald C; Makeyev, Oleksandr; Martín, Anabel

    2006-11-01

    A feature extractor and neural classifier for image recognition systems are proposed. The proposed feature extractor is based on the concept of random local descriptors (RLDs). It is followed by the encoder that is based on the permutation coding technique that allows to take into account not only detected features but also the position of each feature on the image and to make the recognition process invariant to small displacements. The combination of RLDs and permutation coding permits us to obtain a sufficiently general description of the image to be recognized. The code generated by the encoder is used as an input data for the neural classifier. Different types of images were used to test the proposed image recognition system. It was tested in the handwritten digit recognition problem, the face recognition problem, and the microobject shape recognition problem. The results of testing are very promising. The error rate for the Modified National Institute of Standards and Technology (MNIST) database is 0.44% and for the Olivetti Research Laboratory (ORL) database it is 0.1%.

  3. A multi-view face recognition system based on cascade face detector and improved Dlib

    NASA Astrophysics Data System (ADS)

    Zhou, Hongjun; Chen, Pei; Shen, Wei

    2018-03-01

    In this research, we present a framework for multi-view face detect and recognition system based on cascade face detector and improved Dlib. This method is aimed to solve the problems of low efficiency and low accuracy in multi-view face recognition, to build a multi-view face recognition system, and to discover a suitable monitoring scheme. For face detection, the cascade face detector is used to extracted the Haar-like feature from the training samples, and Haar-like feature is used to train a cascade classifier by combining Adaboost algorithm. Next, for face recognition, we proposed an improved distance model based on Dlib to improve the accuracy of multiview face recognition. Furthermore, we applied this proposed method into recognizing face images taken from different viewing directions, including horizontal view, overlooks view, and looking-up view, and researched a suitable monitoring scheme. This method works well for multi-view face recognition, and it is also simulated and tested, showing satisfactory experimental results.

  4. [Creating language model of the forensic medicine domain for developing a autopsy recording system by automatic speech recognition].

    PubMed

    Niijima, H; Ito, N; Ogino, S; Takatori, T; Iwase, H; Kobayashi, M

    2000-11-01

    For the purpose of practical use of speech recognition technology for recording of forensic autopsy, a language model of the speech recording system, specialized for the forensic autopsy, was developed. The language model for the forensic autopsy by applying 3-gram model was created, and an acoustic model for Japanese speech recognition by Hidden Markov Model in addition to the above were utilized to customize the speech recognition engine for forensic autopsy. A forensic vocabulary set of over 10,000 words was compiled and some 300,000 sentence patterns were made to create the forensic language model, then properly mixing with a general language model to attain high exactitude. When tried by dictating autopsy findings, this speech recognition system was proved to be about 95% of recognition rate that seems to have reached to the practical usability in view of speech recognition software, though there remains rooms for improving its hardware and application-layer software.

  5. A real time mobile-based face recognition with fisherface methods

    NASA Astrophysics Data System (ADS)

    Arisandi, D.; Syahputra, M. F.; Putri, I. L.; Purnamawati, S.; Rahmat, R. F.; Sari, P. P.

    2018-03-01

    Face Recognition is a field research in Computer Vision that study about learning face and determine the identity of the face from a picture sent to the system. By utilizing this face recognition technology, learning process about people’s identity between students in a university will become simpler. With this technology, student won’t need to browse student directory in university’s server site and look for the person with certain face trait. To obtain this goal, face recognition application use image processing methods consist of two phase, pre-processing phase and recognition phase. In pre-processing phase, system will process input image into the best image for recognition phase. Purpose of this pre-processing phase is to reduce noise and increase signal in image. Next, to recognize face phase, we use Fisherface Methods. This methods is chosen because of its advantage that would help system of its limited data. Therefore from experiment the accuracy of face recognition using fisherface is 90%.

  6. Event-related theta synchronization predicts deficit in facial affect recognition in schizophrenia.

    PubMed

    Csukly, Gábor; Stefanics, Gábor; Komlósi, Sarolta; Czigler, István; Czobor, Pál

    2014-02-01

    Growing evidence suggests that abnormalities in the synchronized oscillatory activity of neurons in schizophrenia may lead to impaired neural activation and temporal coding and thus lead to neurocognitive dysfunctions, such as deficits in facial affect recognition. To gain an insight into the neurobiological processes linked to facial affect recognition, we investigated both induced and evoked oscillatory activity by calculating the Event Related Spectral Perturbation (ERSP) and the Inter Trial Coherence (ITC) during facial affect recognition. Fearful and neutral faces as well as nonface patches were presented to 24 patients with schizophrenia and 24 matched healthy controls while EEG was recorded. The participants' task was to recognize facial expressions. Because previous findings with healthy controls showed that facial feature decoding was associated primarily with oscillatory activity in the theta band, we analyzed ERSP and ITC in this frequency band in the time interval of 140-200 ms, which corresponds to the N170 component. Event-related theta activity and phase-locking to facial expressions, but not to nonface patches, predicted emotion recognition performance in both controls and patients. Event-related changes in theta amplitude and phase-locking were found to be significantly weaker in patients compared with healthy controls, which is in line with previous investigations showing decreased neural synchronization in the low frequency bands in patients with schizophrenia. Neural synchrony is thought to underlie distributed information processing. Our results indicate a less effective functioning in the recognition process of facial features, which may contribute to a less effective social cognition in schizophrenia. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  7. Parents' Emotion-Related Beliefs, Behaviours, and Skills Predict Children's Recognition of Emotion

    ERIC Educational Resources Information Center

    Castro, Vanessa L.; Halberstadt, Amy G.; Lozada, Fantasy T.; Craig, Ashley B.

    2015-01-01

    Children who are able to recognize others' emotions are successful in a variety of socioemotional domains, yet we know little about how school-aged children's abilities develop, particularly in the family context. We hypothesized that children develop emotion recognition skill as a function of parents' own emotion-related beliefs,…

  8. A Longitudinal Study of Cognitive Representation in Symbolic Play, Self-recognition, and Object Permanence during the Second Year.

    ERIC Educational Resources Information Center

    Chapman, Michael

    1987-01-01

    Explores development of cognitive representation in 20 infants 12 to 24 months of age with regard to (l) their understanding of agency in symbolic play (agent use), (2) recognition of their own mirror image, and (3) object permanence. Results were generally consistent with developmental sequences predicted by Fischer's Skill Theory for agent use…

  9. Learning to recognize volcanic non-eruptions

    USGS Publications Warehouse

    Poland, Michael P.

    2010-01-01

    An important goal of volcanology is to answer the questions of when, where, and how a volcano will erupt—in other words, eruption prediction. Generally, eruption predictions are based on insights from monitoring data combined with the history of the volcano. An outstanding example is the A.D. 1980–1986 lava dome growth at Mount St. Helens, Washington (United States). Recognition of a consistent pattern of precursors revealed by geophysical, geological, and geochemical monitoring enabled successful predictions of more than 12 dome-building episodes (Swanson et al., 1983). At volcanic systems that are more complex or poorly understood, probabilistic forecasts can be useful (e.g., Newhall and Hoblitt, 2002; Marzocchi and Woo, 2009). In such cases, the probabilities of different types of volcanic events are quantified, using historical accounts and geological studies of a volcano's past activity, supplemented by information from similar volcanoes elsewhere, combined with contemporary monitoring information.

  10. Autistic trait interactions underlie sex-dependent facial recognition abilities in the normal population.

    PubMed

    Valla, Jeffrey M; Maendel, Jeffrey W; Ganzel, Barbara L; Barsky, Andrew R; Belmonte, Matthew K

    2013-01-01

    Autistic face processing difficulties are either uniquely social or due to a piecemeal cognitive "style." Co-morbidity of social deficits and piecemeal cognition in autism makes teasing apart these accounts difficult. These traits vary normally, and are more separable in the general population, suggesting another way to compare accounts. Participants completed the Autism Quotient survey of autistic traits, and one of three face recognition tests: full-face, eyes-only, or mouth-only. Social traits predicted performance in the full-face condition in both sexes. Eyes-only males' performance was predicted by a social × cognitive trait interaction: attention to detail boosted face recognition in males with few social traits, but hindered performance in those reporting many social traits. This suggests social/non-social Autism Spectrum Conditions (ASC) trait interactions at the behavioral level. In the presence of few ASC-like difficulties in social reciprocity, an ASC-like attention to detail may confer advantages on typical males' face recognition skills. On the other hand, when attention to detail co-occurs with difficulties in social reciprocity, a detailed focus may exacerbate such already present social difficulties, as is thought to occur in autism.

  11. Limited evidence of individual differences in holistic processing in different versions of the part-whole paradigm.

    PubMed

    Sunday, Mackenzie A; Richler, Jennifer J; Gauthier, Isabel

    2017-07-01

    The part-whole paradigm was one of the first measures of holistic processing and it has been used to address several topics in face recognition, including its development, other-race effects, and more recently, whether holistic processing is correlated with face recognition ability. However the task was not designed to measure individual differences and it has produced measurements with low reliability. We created a new holistic processing test designed to measure individual differences based on the part-whole paradigm, the Vanderbilt Part Whole Test (VPWT). Measurements in the part and whole conditions were reliable, but, surprisingly, there was no evidence for reliable individual differences in the part-whole index (how well a person can take advantage of a face part presented within a whole face context compared to the part presented without a whole face) because part and whole conditions were strongly correlated. The same result was obtained in a version of the original part-whole task that was modified to increase its reliability. Controlling for object recognition ability, we found that variance in the whole condition does not predict any additional variance in face recognition over what is already predicted by performance in the part condition.

  12. MoRFchibi SYSTEM: software tools for the identification of MoRFs in protein sequences.

    PubMed

    Malhis, Nawar; Jacobson, Matthew; Gsponer, Jörg

    2016-07-08

    Molecular recognition features, MoRFs, are short segments within longer disordered protein regions that bind to globular protein domains in a process known as disorder-to-order transition. MoRFs have been found to play a significant role in signaling and regulatory processes in cells. High-confidence computational identification of MoRFs remains an important challenge. In this work, we introduce MoRFchibi SYSTEM that contains three MoRF predictors: MoRFCHiBi, a basic predictor best suited as a component in other applications, MoRFCHiBi_ Light, ideal for high-throughput predictions and MoRFCHiBi_ Web, slower than the other two but best for high accuracy predictions. Results show that MoRFchibi SYSTEM provides more than double the precision of other predictors. MoRFchibi SYSTEM is available in three different forms: as HTML web server, RESTful web server and downloadable software at: http://www.chibi.ubc.ca/faculty/joerg-gsponer/gsponer-lab/software/morf_chibi/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Propagating Molecular Recognition Events through Highly Integrated Sense-Response Chemical Systems

    DTIC Science & Technology

    2017-08-01

    Propagating Molecular Recognition Events through Highly Integrated Sense-Response Chemical Systems The views, opinions and/or findings contained in...University of California - San Diego Title: Propagating Molecular Recognition Events through Highly Integrated Sense-Response Chemical Systems Report Term...including enzymatic reactions , occurring at the aqueous interfaces of thermotropic LCs show promise as the basis of biomolecular triggers of LC

  14. A system for activity recognition using multi-sensor fusion.

    PubMed

    Gao, Lei; Bourke, Alan K; Nelson, John

    2011-01-01

    This paper proposes a system for activity recognition using multi-sensor fusion. In this system, four sensors are attached to the waist, chest, thigh, and side of the body. In the study we present two solutions for factors that affect the activity recognition accuracy: the calibration drift and the sensor orientation changing. The datasets used to evaluate this system were collected from 8 subjects who were asked to perform 8 scripted normal activities of daily living (ADL), three times each. The Naïve Bayes classifier using multi-sensor fusion is adopted and achieves 70.88%-97.66% recognition accuracies for 1-4 sensors.

  15. Vision-based object detection and recognition system for intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Ran, Bin; Liu, Henry X.; Martono, Wilfung

    1999-01-01

    Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.

  16. Relations of Distinct Psychopathic Personality Traits with Anxiety and Fear: Findings from Offenders and Non-Offenders.

    PubMed

    Gillespie, Steven M; Mitchell, Ian J; Satherley, Rose-Marie; Beech, Anthony R; Rotshtein, Pia

    2015-01-01

    Early descriptions of psychopathy emphasise fearlessness and a lack of nervousness or anxiety as key characteristics of the disorder. However, conflicting evidence suggests that anxiety may be positively correlated with some aspects of the psychopathy construct. This position may seem somewhat paradoxical when considered alongside impaired processing of fear related stimuli in psychopathic personality. The aim of the current paper was to examine the distinct relations of callous, egocentric, and antisocial psychopathic traits with measures of anxiety and social anxiety in samples of non-offenders (Study 1) and violent offenders (Study 2). In Study 2 we also used an emotion recognition task to examine fearful face recognition. In Studies 1 and 2 we showed distinct and opposite significant relationships of egocentric and antisocial psychopathic traits with trait anxiety. Thus, while trait anxiety was negatively predicted by egocentric traits, it was predicted in a positive direction by antisocial traits in both samples. In Study 2 we found that callous traits were predictive of greater impairments in fearful face recognition. These findings suggest that anxiety and fear are distinguishable constructs in relation to psychopathic personality traits, and are discussed in terms of potentially separable mechanisms for these two constructs.

  17. Hyperspectral face recognition using improved inter-channel alignment based on qualitative prediction models.

    PubMed

    Cho, Woon; Jang, Jinbeum; Koschan, Andreas; Abidi, Mongi A; Paik, Joonki

    2016-11-28

    A fundamental limitation of hyperspectral imaging is the inter-band misalignment correlated with subject motion during data acquisition. One way of resolving this problem is to assess the alignment quality of hyperspectral image cubes derived from the state-of-the-art alignment methods. In this paper, we present an automatic selection framework for the optimal alignment method to improve the performance of face recognition. Specifically, we develop two qualitative prediction models based on: 1) a principal curvature map for evaluating the similarity index between sequential target bands and a reference band in the hyperspectral image cube as a full-reference metric; and 2) the cumulative probability of target colors in the HSV color space for evaluating the alignment index of a single sRGB image rendered using all of the bands of the hyperspectral image cube as a no-reference metric. We verify the efficacy of the proposed metrics on a new large-scale database, demonstrating a higher prediction accuracy in determining improved alignment compared to two full-reference and five no-reference image quality metrics. We also validate the ability of the proposed framework to improve hyperspectral face recognition.

  18. Relations of Distinct Psychopathic Personality Traits with Anxiety and Fear: Findings from Offenders and Non-Offenders

    PubMed Central

    Gillespie, Steven M.; Mitchell, Ian J.; Satherley, Rose-Marie; Beech, Anthony R.; Rotshtein, Pia

    2015-01-01

    Early descriptions of psychopathy emphasise fearlessness and a lack of nervousness or anxiety as key characteristics of the disorder. However, conflicting evidence suggests that anxiety may be positively correlated with some aspects of the psychopathy construct. This position may seem somewhat paradoxical when considered alongside impaired processing of fear related stimuli in psychopathic personality. The aim of the current paper was to examine the distinct relations of callous, egocentric, and antisocial psychopathic traits with measures of anxiety and social anxiety in samples of non-offenders (Study 1) and violent offenders (Study 2). In Study 2 we also used an emotion recognition task to examine fearful face recognition. In Studies 1 and 2 we showed distinct and opposite significant relationships of egocentric and antisocial psychopathic traits with trait anxiety. Thus, while trait anxiety was negatively predicted by egocentric traits, it was predicted in a positive direction by antisocial traits in both samples. In Study 2 we found that callous traits were predictive of greater impairments in fearful face recognition. These findings suggest that anxiety and fear are distinguishable constructs in relation to psychopathic personality traits, and are discussed in terms of potentially separable mechanisms for these two constructs. PMID:26569411

  19. Artificial neural networks to predict activity type and energy expenditure in youth.

    PubMed

    Trost, Stewart G; Wong, Weng-Keen; Pfeiffer, Karen A; Zheng, Yonglei

    2012-09-01

    Previous studies have demonstrated that pattern recognition approaches to accelerometer data reduction are feasible and moderately accurate in classifying activity type in children. Whether pattern recognition techniques can be used to provide valid estimates of physical activity (PA) energy expenditure in youth remains unexplored in the research literature. The objective of this study is to develop and test artificial neural networks (ANNs) to predict PA type and energy expenditure (PAEE) from processed accelerometer data collected in children and adolescents. One hundred participants between the ages of 5 and 15 yr completed 12 activity trials that were categorized into five PA types: sedentary, walking, running, light-intensity household activities or games, and moderate-to-vigorous-intensity games or sports. During each trial, participants wore an ActiGraph GT1M on the right hip, and VO2 was measured using the Oxycon Mobile (Viasys Healthcare, Yorba Linda, CA) portable metabolic system. ANNs to predict PA type and PAEE (METs) were developed using the following features: 10th, 25th, 50th, 75th, and 90th percentiles and the lag one autocorrelation. To determine the highest time resolution achievable, we extracted features from 10-, 15-, 20-, 30-, and 60-s windows. Accuracy was assessed by calculating the percentage of windows correctly classified and root mean square error (RMSE). As window size increased from 10 to 60 s, accuracy for the PA-type ANN increased from 81.3% to 88.4%. RMSE for the MET prediction ANN decreased from 1.1 METs to 0.9 METs. At any given window size, RMSE values for the MET prediction ANN were 30-40% lower than the conventional regression-based approaches. ANNs can be used to predict both PA type and PAEE in children and adolescents using count data from a single waist mounted accelerometer.

  20. A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy.

    PubMed

    Kell, Alexander J E; Yamins, Daniel L K; Shook, Erica N; Norman-Haignere, Sam V; McDermott, Josh H

    2018-05-02

    A core goal of auditory neuroscience is to build quantitative models that predict cortical responses to natural sounds. Reasoning that a complete model of auditory cortex must solve ecologically relevant tasks, we optimized hierarchical neural networks for speech and music recognition. The best-performing network contained separate music and speech pathways following early shared processing, potentially replicating human cortical organization. The network performed both tasks as well as humans and exhibited human-like errors despite not being optimized to do so, suggesting common constraints on network and human performance. The network predicted fMRI voxel responses substantially better than traditional spectrotemporal filter models throughout auditory cortex. It also provided a quantitative signature of cortical representational hierarchy-primary and non-primary responses were best predicted by intermediate and late network layers, respectively. The results suggest that task optimization provides a powerful set of tools for modeling sensory systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Sex differences in razorbill (Family: Alcidae) parent-offspring vocal recognition

    NASA Astrophysics Data System (ADS)

    Insley, Stephen J.; Paredes Vela, Rosana; Jones, Ian L.

    2002-05-01

    In this study we examines how a pattern of parental care may result in a sex bias in vocal recognition. In Razorbills (Alca torda), both sexes provide parental care to their chicks while at the nest, after which the male is the sole caregiver for an additional period at sea. Selection pressure acting on recognition behavior is expected to be strongest during the time when males and chicks are together at sea, and as a result, parent-offspring recognition was predicted to be better developed in the male parent, that is, show a paternal bias. In order to test this hypothesis, vocal playback experiments were conducted on breeding Razorbills at the Gannet Islands, Labrador, 2001. The data provide clear evidence of mutual vocal recognition between the male parent and chick but not between the female parent and chick, supporting the hypothesis that parent-offspring recognition is male biased in this species. In addition to acoustic recognition, such a bias could have important social implications for a variety of behavioral and basic life history traits such as cooperation and sex-biased dispersal.

  2. Why the long face? The importance of vertical image structure for biological "barcodes" underlying face recognition.

    PubMed

    Spence, Morgan L; Storrs, Katherine R; Arnold, Derek H

    2014-07-29

    Humans are experts at face recognition. The mechanisms underlying this complex capacity are not fully understood. Recently, it has been proposed that face recognition is supported by a coarse-scale analysis of visual information contained in horizontal bands of contrast distributed along the vertical image axis-a biological facial "barcode" (Dakin & Watt, 2009). A critical prediction of the facial barcode hypothesis is that the distribution of image contrast along the vertical axis will be more important for face recognition than image distributions along the horizontal axis. Using a novel paradigm involving dynamic image distortions, a series of experiments are presented examining famous face recognition impairments from selectively disrupting image distributions along the vertical or horizontal image axes. Results show that disrupting the image distribution along the vertical image axis is more disruptive for recognition than matched distortions along the horizontal axis. Consistent with the facial barcode hypothesis, these results suggest that human face recognition relies disproportionately on appropriately scaled distributions of image contrast along the vertical image axis. © 2014 ARVO.

  3. Impact of a voice recognition system on report cycle time and radiologist reading time

    NASA Astrophysics Data System (ADS)

    Melson, David L.; Brophy, Robert; Blaine, G. James; Jost, R. Gilbert; Brink, Gary S.

    1998-07-01

    Because of its exciting potential to improve clinical service, as well as reduce costs, a voice recognition system for radiological dictation was recently installed at our institution. This system will be clinically successful if it dramatically reduces radiology report turnaround time without substantially affecting radiologist dictation and editing time. This report summarizes an observer study currently under way in which radiologist reporting times using the traditional transcription system and the voice recognition system are compared. Four radiologists are observed interpreting portable intensive care unit (ICU) chest examinations at a workstation in the chest reading area. Data are recorded with the radiologists using the transcription system and using the voice recognition system. The measurements distinguish between time spent performing clerical tasks and time spent actually dictating the report. Editing time and the number of corrections made are recorded. Additionally, statistics are gathered to assess the voice recognition system's impact on the report cycle time -- the time from report dictation to availability of an edited and finalized report -- and the length of reports.

  4. End-to-end system of license plate localization and recognition

    NASA Astrophysics Data System (ADS)

    Zhu, Siyu; Dianat, Sohail; Mestha, Lalit K.

    2015-03-01

    An end-to-end license plate recognition system is proposed. It is composed of preprocessing, detection, segmentation, and character recognition to find and recognize plates from camera-based still images. The system utilizes connected component (CC) properties to quickly extract the license plate region. A two-stage CC filtering is utilized to address both shape and spatial relationship information to produce high precision and to recall values for detection. Floating peak and valleys of projection profiles are used to cut the license plates into individual characters. A turning function-based method is proposed to quickly and accurately recognize each character. It is further accelerated using curvature histogram-based support vector machine. The INFTY dataset is used to train the recognition system, and MediaLab license plate dataset is used for testing. The proposed system achieved 89.45% F-measure for detection and 87.33% accuracy for overall recognition rate which is comparable to current state-of-the-art systems.

  5. Statistical assessment of speech system performance

    NASA Technical Reports Server (NTRS)

    Moshier, Stephen L.

    1977-01-01

    Methods for the normalization of performance tests results of speech recognition systems are presented. Technological accomplishments in speech recognition systems, as well as planned research activities are described.

  6. A Feasibility Study for Perioperative Ventricular Tachycardia Prognosis and Detection and Noise Detection Using a Neural Network and Predictive Linear Operators

    NASA Technical Reports Server (NTRS)

    Moebes, T. A.

    1994-01-01

    To locate the accessory pathway(s) in preexicitation syndromes, epicardial and endocardial ventricular mapping is performed during anterograde ventricular activation via accessory pathway(s) from data originally received in signal form. As the number of channels increases, it is pertinent that more automated detection of coherent/incoherent signals is achieved as well as the prediction and prognosis of ventricular tachywardia (VT). Today's computers and computer program algorithms are not good in simple perceptual tasks such as recognizing a pattern or identifying a sound. This discrepancy, among other things, has been a major motivating factor in developing brain-based, massively parallel computing architectures. Neural net paradigms have proven to be effective at pattern recognition tasks. In signal processing, the picking of coherent/incoherent signals represents a pattern recognition task for computer systems. The picking of signals representing the onset ot VT also represents such a computer task. We attacked this problem by defining four signal attributes for each potential first maximal arrival peak and one signal attribute over the entire signal as input to a back propagation neural network. One attribute was the predicted amplitude value after the maximum amplitude over a data window. Then, by using a set of known (user selected) coherent/incoherent signals, and signals representing the onset of VT, we trained the back propagation network to recognize coherent/incoherent signals, and signals indicating the onset of VT. Since our output scheme involves a true or false decision, and since the output unit computes values between 0 and 1, we used a Fuzzy Arithmetic approach to classify data as coherent/incoherent signals. Furthermore, a Mean-Square Error Analysis was used to determine system stability. The neural net based picking coherent/incoherent signal system achieved high accuracy on picking coherent/incoherent signals on different patients. The system also achieved a high accuracy of picking signals which represent the onset of VT, that is, VT immediately followed these signals. A special binary representation of the input and output data allowed the neural network to train very rapidly as compared to another standard decimal or normalized representations of the data.

  7. Role of fusiform and anterior temporal cortical areas in facial recognition.

    PubMed

    Nasr, Shahin; Tootell, Roger B H

    2012-11-15

    Recent fMRI studies suggest that cortical face processing extends well beyond the fusiform face area (FFA), including unspecified portions of the anterior temporal lobe. However, the exact location of such anterior temporal region(s), and their role during active face recognition, remain unclear. Here we demonstrate that (in addition to FFA) a small bilateral site in the anterior tip of the collateral sulcus ('AT'; the anterior temporal face patch) is selectively activated during recognition of faces but not houses (a non-face object). In contrast to the psychophysical prediction that inverted and contrast reversed faces are processed like other non-face objects, both FFA and AT (but not other visual areas) were also activated during recognition of inverted and contrast reversed faces. However, response accuracy was better correlated to recognition-driven activity in AT, compared to FFA. These data support a segregated, hierarchical model of face recognition processing, extending to the anterior temporal cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. A dynamical pattern recognition model of gamma activity in auditory cortex

    PubMed Central

    Zavaglia, M.; Canolty, R.T.; Schofield, T.M.; Leff, A.P.; Ursino, M.; Knight, R.T.; Penny, W.D.

    2012-01-01

    This paper describes a dynamical process which serves both as a model of temporal pattern recognition in the brain and as a forward model of neuroimaging data. This process is considered at two separate levels of analysis: the algorithmic and implementation levels. At an algorithmic level, recognition is based on the use of Occurrence Time features. Using a speech digit database we show that for noisy recognition environments, these features rival standard cepstral coefficient features. At an implementation level, the model is defined using a Weakly Coupled Oscillator (WCO) framework and uses a transient synchronization mechanism to signal a recognition event. In a second set of experiments, we use the strength of the synchronization event to predict the high gamma (75–150 Hz) activity produced by the brain in response to word versus non-word stimuli. Quantitative model fits allow us to make inferences about parameters governing pattern recognition dynamics in the brain. PMID:22327049

  9. Digital signal processing algorithms for automatic voice recognition

    NASA Technical Reports Server (NTRS)

    Botros, Nazeih M.

    1987-01-01

    The current digital signal analysis algorithms are investigated that are implemented in automatic voice recognition algorithms. Automatic voice recognition means, the capability of a computer to recognize and interact with verbal commands. The digital signal is focused on, rather than the linguistic, analysis of speech signal. Several digital signal processing algorithms are available for voice recognition. Some of these algorithms are: Linear Predictive Coding (LPC), Short-time Fourier Analysis, and Cepstrum Analysis. Among these algorithms, the LPC is the most widely used. This algorithm has short execution time and do not require large memory storage. However, it has several limitations due to the assumptions used to develop it. The other 2 algorithms are frequency domain algorithms with not many assumptions, but they are not widely implemented or investigated. However, with the recent advances in the digital technology, namely signal processors, these 2 frequency domain algorithms may be investigated in order to implement them in voice recognition. This research is concerned with real time, microprocessor based recognition algorithms.

  10. Role of Fusiform and Anterior Temporal Cortical Areas in Facial Recognition

    PubMed Central

    Nasr, Shahin; Tootell, Roger BH

    2012-01-01

    Recent FMRI studies suggest that cortical face processing extends well beyond the fusiform face area (FFA), including unspecified portions of the anterior temporal lobe. However, the exact location of such anterior temporal region(s), and their role during active face recognition, remain unclear. Here we demonstrate that (in addition to FFA) a small bilateral site in the anterior tip of the collateral sulcus (‘AT’; the anterior temporal face patch) is selectively activated during recognition of faces but not houses (a non-face object). In contrast to the psychophysical prediction that inverted and contrast reversed faces are processed like other non-face objects, both FFA and AT (but not other visual areas) were also activated during recognition of inverted and contrast reversed faces. However, response accuracy was better correlated to recognition-driven activity in AT, compared to FFA. These data support a segregated, hierarchical model of face recognition processing, extending to the anterior temporal cortex. PMID:23034518

  11. An Evaluation of PC-Based Optical Character Recognition Systems.

    ERIC Educational Resources Information Center

    Schreier, E. M.; Uslan, M. M.

    1991-01-01

    The review examines six personal computer-based optical character recognition (OCR) systems designed for use by blind and visually impaired people. Considered are OCR components and terms, documentation, scanning and reading, command structure, conversion, unique features, accuracy of recognition, scanning time, speed, and cost. (DB)

  12. A Limited-Vocabulary, Multi-Speaker Automatic Isolated Word Recognition System.

    ERIC Educational Resources Information Center

    Paul, James E., Jr.

    Techniques for automatic recognition of isolated words are investigated, and a computer simulation of a word recognition system is effected. Considered in detail are data acquisition and digitizing, word detection, amplitude and time normalization, short-time spectral estimation including spectral windowing, spectral envelope approximation,…

  13. Adolescents' ability to read different emotional faces relates to their history of maltreatment and type of psychopathology.

    PubMed

    Leist, Tatyana; Dadds, Mark R

    2009-04-01

    Emotional processing styles appear to characterize various forms of psychopathology and environmental adversity in children. For example, autistic, anxious, high- and low-emotion conduct problem children, and children who have been maltreated, all appear to show specific deficits and strengths in recognizing the facial expressions of emotions. Until now, the relationships between emotion recognition, antisocial behaviour, emotional problems, callous-unemotional (CU) traits and early maltreatment have never been assessed simultaneously in one study, and the specific associations of emotion recognition to maltreatment and child characteristics are therefore unknown. We examined facial-emotion processing in a sample of 23 adolescents selected for high-risk status on the variables of interest. As expected, maltreatment and child characteristics showed unique associations. CU traits were uniquely related to impairments in fear recognition. Antisocial behaviour was uniquely associated with better fear recognition, but impaired anger recognition. Emotional problems were associated with better recognition of anger and sadness, but lower recognition of neutral faces. Maltreatment was predictive of superior recognition of fear and sadness. The findings are considered in terms of social information-processing theories of psychopathology. Implications for clinical interventions are discussed.

  14. Dynamical Evolution of Planetary Embryos

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    2002-01-01

    During the past decade, progress has been made by relating the 'standard model' for the formation of planetary systems to computational and observational advances. A significant contribution to this has been provided by this grant. The consequence of this is that the rigor of the physical modeling has improved considerably. This has identified discrepancies between the predictions of the standard model and recent observations of extrasolar planets. In some cases, the discrepancies can be resolved by recognition of the stochastic nature of the planetary formation process, leading to variations in the final state of a planetary system. In other cases, it seems more likely that there are major deficiencies in the standard model, requiring our identifying variations to the model that are not so strongly constrained to our Solar System.

  15. Developments in Molecular Recognition and Sensing at Interfaces

    PubMed Central

    Ariga, Katsuhiko; Hill, Jonathan P.; Endo, Hiroshi

    2007-01-01

    In biological systems, molecular recognition events occur mostly within interfacial environments such as at membrane surfaces, enzyme reaction sites, or at the interior of the DNA double helix. Investigation of molecular recognition at model interfaces provides great insights into biological phenomena. Molecular recognition at interfaces not only has relevance to biological systems but is also important for modern applications such as high sensitivity sensors. Selective binding of guest molecules in solution to host molecules located at solid surfaces is crucial for electronic or photonic detection of analyte substances. In response to these demands, molecular recognition at interfaces has been investigated extensively during the past two decades using Langmuir monolayers, self-assembled monolayers, and lipid assemblies as recognition media. In this review, advances of molecular recognition at interfaces are briefly summarized.

  16. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems.

    PubMed

    Muto, Yutaka; Yokoyama, Shigeyuki

    2012-01-01

    'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Address entry while driving: speech recognition versus a touch-screen keyboard.

    PubMed

    Tsimhoni, Omer; Smith, Daniel; Green, Paul

    2004-01-01

    A driving simulator experiment was conducted to determine the effects of entering addresses into a navigation system during driving. Participants drove on roads of varying visual demand while entering addresses. Three address entry methods were explored: word-based speech recognition, character-based speech recognition, and typing on a touch-screen keyboard. For each method, vehicle control and task measures, glance timing, and subjective ratings were examined. During driving, word-based speech recognition yielded the shortest total task time (15.3 s), followed by character-based speech recognition (41.0 s) and touch-screen keyboard (86.0 s). The standard deviation of lateral position when performing keyboard entry (0.21 m) was 60% higher than that for all other address entry methods (0.13 m). Degradation of vehicle control associated with address entry using a touch screen suggests that the use of speech recognition is favorable. Speech recognition systems with visual feedback, however, even with excellent accuracy, are not without performance consequences. Applications of this research include the design of in-vehicle navigation systems as well as other systems requiring significant driver input, such as E-mail, the Internet, and text messaging.

  18. Cost-sensitive learning for emotion robust speaker recognition.

    PubMed

    Li, Dongdong; Yang, Yingchun; Dai, Weihui

    2014-01-01

    In the field of information security, voice is one of the most important parts in biometrics. Especially, with the development of voice communication through the Internet or telephone system, huge voice data resources are accessed. In speaker recognition, voiceprint can be applied as the unique password for the user to prove his/her identity. However, speech with various emotions can cause an unacceptably high error rate and aggravate the performance of speaker recognition system. This paper deals with this problem by introducing a cost-sensitive learning technology to reweight the probability of test affective utterances in the pitch envelop level, which can enhance the robustness in emotion-dependent speaker recognition effectively. Based on that technology, a new architecture of recognition system as well as its components is proposed in this paper. The experiment conducted on the Mandarin Affective Speech Corpus shows that an improvement of 8% identification rate over the traditional speaker recognition is achieved.

  19. Cost-Sensitive Learning for Emotion Robust Speaker Recognition

    PubMed Central

    Li, Dongdong; Yang, Yingchun

    2014-01-01

    In the field of information security, voice is one of the most important parts in biometrics. Especially, with the development of voice communication through the Internet or telephone system, huge voice data resources are accessed. In speaker recognition, voiceprint can be applied as the unique password for the user to prove his/her identity. However, speech with various emotions can cause an unacceptably high error rate and aggravate the performance of speaker recognition system. This paper deals with this problem by introducing a cost-sensitive learning technology to reweight the probability of test affective utterances in the pitch envelop level, which can enhance the robustness in emotion-dependent speaker recognition effectively. Based on that technology, a new architecture of recognition system as well as its components is proposed in this paper. The experiment conducted on the Mandarin Affective Speech Corpus shows that an improvement of 8% identification rate over the traditional speaker recognition is achieved. PMID:24999492

  20. Design and development of an ancient Chinese document recognition system

    NASA Astrophysics Data System (ADS)

    Peng, Liangrui; Xiu, Pingping; Ding, Xiaoqing

    2003-12-01

    The digitization of ancient Chinese documents presents new challenges to OCR (Optical Character Recognition) research field due to the large character set of ancient Chinese characters, variant font types, and versatile document layout styles, as these documents are historical reflections to the thousands of years of Chinese civilization. After analyzing the general characteristics of ancient Chinese documents, we present a solution for recognition of ancient Chinese documents with regular font-types and layout-styles. Based on the previous work on multilingual OCR in TH-OCR system, we focus on the design and development of two key technologies which include character recognition and page segmentation. Experimental results show that the developed character recognition kernel of 19,635 Chinese characters outperforms our original traditional Chinese recognition kernel; Benchmarked test on printed ancient Chinese books proves that the proposed system is effective for regular ancient Chinese documents.

  1. Online handwritten mathematical expression recognition

    NASA Astrophysics Data System (ADS)

    Büyükbayrak, Hakan; Yanikoglu, Berrin; Erçil, Aytül

    2007-01-01

    We describe a system for recognizing online, handwritten mathematical expressions. The system is designed with a user-interface for writing scientific articles, supporting the recognition of basic mathematical expressions as well as integrals, summations, matrices etc. A feed-forward neural network recognizes symbols which are assumed to be single-stroke and a recursive algorithm parses the expression by combining neural network output and the structure of the expression. Preliminary results show that writer-dependent recognition rates are very high (99.8%) while writer-independent symbol recognition rates are lower (75%). The interface associated with the proposed system integrates the built-in recognition capabilities of the Microsoft's Tablet PC API for recognizing textual input and supports conversion of hand-drawn figures into PNG format. This enables the user to enter text, mathematics and draw figures in a single interface. After recognition, all output is combined into one LATEX code and compiled into a PDF file.

  2. The many selves of social insects.

    PubMed

    Queller, David C; Strassmann, Joan E

    2002-04-12

    Social insects show multiple levels of self identity. Most individuals are sterile workers who selflessly labor for their colony, which is often viewed as a superorganism. The superorganism protects itself with colony recognition systems based on learned odors, typically cuticular hydrocarbons. Transfer of these odors within the colony obscures separate clan identities. Residual individual interests do appear to cause conflicts within colonies over sex ratio, male production, caste, and reproductive dominance. However, genomic imprinting theory predicts that the individual's maternal and paternal genes will evolve separate infraorganismal identities, perhaps leaving virtually no coherent individual identity.

  3. 48 CFR 49.108-5 - Recognition of judgments and arbitration awards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Recognition of judgments and arbitration awards. 49.108-5 Section 49.108-5 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TERMINATION OF CONTRACTS General Principles 49.108-5 Recognition of...

  4. A Novel Wearable Sensor-Based Human Activity Recognition Approach Using Artificial Hydrocarbon Networks.

    PubMed

    Ponce, Hiram; Martínez-Villaseñor, María de Lourdes; Miralles-Pechuán, Luis

    2016-07-05

    Human activity recognition has gained more interest in several research communities given that understanding user activities and behavior helps to deliver proactive and personalized services. There are many examples of health systems improved by human activity recognition. Nevertheless, the human activity recognition classification process is not an easy task. Different types of noise in wearable sensors data frequently hamper the human activity recognition classification process. In order to develop a successful activity recognition system, it is necessary to use stable and robust machine learning techniques capable of dealing with noisy data. In this paper, we presented the artificial hydrocarbon networks (AHN) technique to the human activity recognition community. Our artificial hydrocarbon networks novel approach is suitable for physical activity recognition, noise tolerance of corrupted data sensors and robust in terms of different issues on data sensors. We proved that the AHN classifier is very competitive for physical activity recognition and is very robust in comparison with other well-known machine learning methods.

  5. Novel Blind Recognition Algorithm of Frame Synchronization Words Based on Soft-Decision in Digital Communication Systems.

    PubMed

    Qin, Jiangyi; Huang, Zhiping; Liu, Chunwu; Su, Shaojing; Zhou, Jing

    2015-01-01

    A novel blind recognition algorithm of frame synchronization words is proposed to recognize the frame synchronization words parameters in digital communication systems. In this paper, a blind recognition method of frame synchronization words based on the hard-decision is deduced in detail. And the standards of parameter recognition are given. Comparing with the blind recognition based on the hard-decision, utilizing the soft-decision can improve the accuracy of blind recognition. Therefore, combining with the characteristics of Quadrature Phase Shift Keying (QPSK) signal, an improved blind recognition algorithm based on the soft-decision is proposed. Meanwhile, the improved algorithm can be extended to other signal modulation forms. Then, the complete blind recognition steps of the hard-decision algorithm and the soft-decision algorithm are given in detail. Finally, the simulation results show that both the hard-decision algorithm and the soft-decision algorithm can recognize the parameters of frame synchronization words blindly. What's more, the improved algorithm can enhance the accuracy of blind recognition obviously.

  6. Increased contextual cue utilization with tDCS over the prefrontal cortex during a recognition task

    PubMed Central

    Pergolizzi, Denise; Chua, Elizabeth F.

    2016-01-01

    The precise role of the prefrontal and posterior parietal cortices in recognition performance remains controversial, with questions about whether these regions contribute to recognition via the availability of mnemonic evidence or via decision biases and retrieval orientation. Here we used an explicit memory cueing paradigm, whereby external cues probabilistically predict upcoming memoranda as old or new, in our case with 75% validity, and these cues affect recognition decision biases in the direction of the cue. The present study applied bilateral transcranial direct current stimulation (tDCS) over prefrontal or posterior parietal cortex, or sham tDCS, to test the causal role of these regions in recognition accuracy or decision biasing. Participants who received tDCS over prefrontal cortex showed increased cue utilization compared to tDCS over posterior parietal cortex and sham tDCS, suggesting that the prefrontal cortex is involved in processes that contribute to decision biases in memory. PMID:27845032

  7. Predictive Coding Accelerates Word Recognition and Learning in the Early Stages of Language Development

    ERIC Educational Resources Information Center

    Ylinen, Sari; Bosseler, Alexis; Junttila, Katja; Huotilainen, Minna

    2017-01-01

    The ability to predict future events in the environment and learn from them is a fundamental component of adaptive behavior across species. Here we propose that inferring predictions facilitates speech processing and word learning in the early stages of language development. Twelve- and 24-month olds' electrophysiological brain responses to heard…

  8. Hybrid neuro-fuzzy approach for automatic vehicle license plate recognition

    NASA Astrophysics Data System (ADS)

    Lee, Hsi-Chieh; Jong, Chung-Shi

    1998-03-01

    Most currently available vehicle identification systems use techniques such as R.F., microwave, or infrared to help identifying the vehicle. Transponders are usually installed in the vehicle in order to transmit the corresponding information to the sensory system. It is considered expensive to install a transponder in each vehicle and the malfunction of the transponder will result in the failure of the vehicle identification system. In this study, novel hybrid approach is proposed for automatic vehicle license plate recognition. A system prototype is built which can be used independently or cooperating with current vehicle identification system in identifying a vehicle. The prototype consists of four major modules including the module for license plate region identification, the module for character extraction from the license plate, the module for character recognition, and the module for the SimNet neuro-fuzzy system. To test the performance of the proposed system, three hundred and eighty vehicle image samples are taken by a digital camera. The license plate recognition success rate of the prototype is approximately 91% while the character recognition success rate of the prototype is approximately 97%.

  9. Theoretical Aspects of the Patterns Recognition Statistical Theory Used for Developing the Diagnosis Algorithms for Complicated Technical Systems

    NASA Astrophysics Data System (ADS)

    Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.

    2017-01-01

    In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.

  10. FaceIt: face recognition from static and live video for law enforcement

    NASA Astrophysics Data System (ADS)

    Atick, Joseph J.; Griffin, Paul M.; Redlich, A. N.

    1997-01-01

    Recent advances in image and pattern recognition technology- -especially face recognition--are leading to the development of a new generation of information systems of great value to the law enforcement community. With these systems it is now possible to pool and manage vast amounts of biometric intelligence such as face and finger print records and conduct computerized searches on them. We review one of the enabling technologies underlying these systems: the FaceIt face recognition engine; and discuss three applications that illustrate its benefits as a problem-solving technology and an efficient and cost effective investigative tool.

  11. Codon-Anticodon Recognition in the Bacillus subtilis glyQS T Box Riboswitch

    PubMed Central

    Caserta, Enrico; Liu, Liang-Chun; Grundy, Frank J.; Henkin, Tina M.

    2015-01-01

    Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the “Specifier Sequence,” in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNAGly anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3′ of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system. PMID:26229106

  12. Indirectly Recognized HLA-C Mismatches and Their Potential Role in Transplant Outcome

    PubMed Central

    Thus, Kirsten A.; Te Boome, Liane; Kuball, Jürgen; Spierings, Eric

    2014-01-01

    HLA-C mismatches are clearly associated to alloreactivity after hematopoietic stem-cell transplantation; in a number of large cohorts, HLA-C mismatches are correlated to an increased risk of acute graft-versus-host disease (GVHD) or even impaired survival. While for HLA-A and -B, both antigenic as well as allelic mismatches are associated with an increased risk of acute GVHD, such an increased risk is only observed for antigenic HLA-C mismatches and not for allelic mismatches. These observations raise the question what sets HLA-C apart from HLA-A and -B. The difference may well be related to the reduced levels of cell-surface expression of HLA-C as compared to HLA-A and -B, possibly due to, among other factors, a limited peptide-binding capacity. This limited peptide-binding capacity may retain HLA-C in the ER and enhance degradation of the HLA-C protein. Once degraded, HLA-C-derived peptides can be presented to the immune system via other HLA alleles and are thus available for indirect recognition. Indeed, such HLA-C-derived peptides have previously been eluted from other HLA alleles. We have recently developed an approach to predict indirect recognition of HLA molecules, by establishing the numbers of predicted indirectly recognizable HLA epitopes (PIRCHES). The number of PIRCHES presented on HLA class I and II (PIRCHE-I and -II, respectively), are highly correlated to clinical measures of alloreactivity, such as acute GVHD. In the present “Hypothesis & Theory,” we reviewed the current knowledge on HLA-C mismatches and alloreactivity. Moreover, we speculate about the role of direct and indirect recognition of HLA-C and the consequences for donor selection in HLA-C mismatched stem-cell transplantation. PMID:24860572

  13. Public domain optical character recognition

    NASA Astrophysics Data System (ADS)

    Garris, Michael D.; Blue, James L.; Candela, Gerald T.; Dimmick, Darrin L.; Geist, Jon C.; Grother, Patrick J.; Janet, Stanley A.; Wilson, Charles L.

    1995-03-01

    A public domain document processing system has been developed by the National Institute of Standards and Technology (NIST). The system is a standard reference form-based handprint recognition system for evaluating optical character recognition (OCR), and it is intended to provide a baseline of performance on an open application. The system's source code, training data, performance assessment tools, and type of forms processed are all publicly available. The system recognizes the handprint entered on handwriting sample forms like the ones distributed with NIST Special Database 1. From these forms, the system reads hand-printed numeric fields, upper and lowercase alphabetic fields, and unconstrained text paragraphs comprised of words from a limited-size dictionary. The modular design of the system makes it useful for component evaluation and comparison, training and testing set validation, and multiple system voting schemes. The system contains a number of significant contributions to OCR technology, including an optimized probabilistic neural network (PNN) classifier that operates a factor of 20 times faster than traditional software implementations of the algorithm. The source code for the recognition system is written in C and is organized into 11 libraries. In all, there are approximately 19,000 lines of code supporting more than 550 subroutines. Source code is provided for form registration, form removal, field isolation, field segmentation, character normalization, feature extraction, character classification, and dictionary-based postprocessing. The recognition system has been successfully compiled and tested on a host of UNIX workstations. This paper gives an overview of the recognition system's software architecture, including descriptions of the various system components along with timing and accuracy statistics.

  14. Smart Extraction and Analysis System for Clinical Research.

    PubMed

    Afzal, Muhammad; Hussain, Maqbool; Khan, Wajahat Ali; Ali, Taqdir; Jamshed, Arif; Lee, Sungyoung

    2017-05-01

    With the increasing use of electronic health records (EHRs), there is a growing need to expand the utilization of EHR data to support clinical research. The key challenge in achieving this goal is the unavailability of smart systems and methods to overcome the issue of data preparation, structuring, and sharing for smooth clinical research. We developed a robust analysis system called the smart extraction and analysis system (SEAS) that consists of two subsystems: (1) the information extraction system (IES), for extracting information from clinical documents, and (2) the survival analysis system (SAS), for a descriptive and predictive analysis to compile the survival statistics and predict the future chance of survivability. The IES subsystem is based on a novel permutation-based pattern recognition method that extracts information from unstructured clinical documents. Similarly, the SAS subsystem is based on a classification and regression tree (CART)-based prediction model for survival analysis. SEAS is evaluated and validated on a real-world case study of head and neck cancer. The overall information extraction accuracy of the system for semistructured text is recorded at 99%, while that for unstructured text is 97%. Furthermore, the automated, unstructured information extraction has reduced the average time spent on manual data entry by 75%, without compromising the accuracy of the system. Moreover, around 88% of patients are found in a terminal or dead state for the highest clinical stage of disease (level IV). Similarly, there is an ∼36% probability of a patient being alive if at least one of the lifestyle risk factors was positive. We presented our work on the development of SEAS to replace costly and time-consuming manual methods with smart automatic extraction of information and survival prediction methods. SEAS has reduced the time and energy of human resources spent unnecessarily on manual tasks.

  15. New technique for real-time distortion-invariant multiobject recognition and classification

    NASA Astrophysics Data System (ADS)

    Hong, Rutong; Li, Xiaoshun; Hong, En; Wang, Zuyi; Wei, Hongan

    2001-04-01

    A real-time hybrid distortion-invariant OPR system was established to make 3D multiobject distortion-invariant automatic pattern recognition. Wavelet transform technique was used to make digital preprocessing of the input scene, to depress the noisy background and enhance the recognized object. A three-layer backpropagation artificial neural network was used in correlation signal post-processing to perform multiobject distortion-invariant recognition and classification. The C-80 and NOA real-time processing ability and the multithread programming technology were used to perform high speed parallel multitask processing and speed up the post processing rate to ROIs. The reference filter library was constructed for the distortion version of 3D object model images based on the distortion parameter tolerance measuring as rotation, azimuth and scale. The real-time optical correlation recognition testing of this OPR system demonstrates that using the preprocessing, post- processing, the nonlinear algorithm os optimum filtering, RFL construction technique and the multithread programming technology, a high possibility of recognition and recognition rate ere obtained for the real-time multiobject distortion-invariant OPR system. The recognition reliability and rate was improved greatly. These techniques are very useful to automatic target recognition.

  16. Iris recognition in the presence of ocular disease

    PubMed Central

    Aslam, Tariq Mehmood; Tan, Shi Zhuan; Dhillon, Baljean

    2009-01-01

    Iris recognition systems are among the most accurate of all biometric technologies with immense potential for use in worldwide security applications. This study examined the effect of eye pathology on iris recognition and in particular whether eye disease could cause iris recognition systems to fail. The experiment involved a prospective cohort of 54 patients with anterior segment eye disease who were seen at the acute referral unit of the Princess Alexandra Eye Pavilion in Edinburgh. Iris camera images were obtained from patients before treatment was commenced and again at follow-up appointments after treatment had been given. The principal outcome measure was that of mathematical difference in the iris recognition templates obtained from patients' eyes before and after treatment of the eye disease. Results showed that the performance of iris recognition was remarkably resilient to most ophthalmic disease states, including corneal oedema, iridotomies (laser puncture of iris) and conjunctivitis. Problems were, however, encountered in some patients with acute inflammation of the iris (iritis/anterior uveitis). The effects of a subject developing anterior uveitis may cause current recognition systems to fail. Those developing and deploying iris recognition should be aware of the potential problems that this could cause to this key biometric technology. PMID:19324690

  17. Iris recognition in the presence of ocular disease.

    PubMed

    Aslam, Tariq Mehmood; Tan, Shi Zhuan; Dhillon, Baljean

    2009-05-06

    Iris recognition systems are among the most accurate of all biometric technologies with immense potential for use in worldwide security applications. This study examined the effect of eye pathology on iris recognition and in particular whether eye disease could cause iris recognition systems to fail. The experiment involved a prospective cohort of 54 patients with anterior segment eye disease who were seen at the acute referral unit of the Princess Alexandra Eye Pavilion in Edinburgh. Iris camera images were obtained from patients before treatment was commenced and again at follow-up appointments after treatment had been given. The principal outcome measure was that of mathematical difference in the iris recognition templates obtained from patients' eyes before and after treatment of the eye disease. Results showed that the performance of iris recognition was remarkably resilient to most ophthalmic disease states, including corneal oedema, iridotomies (laser puncture of iris) and conjunctivitis. Problems were, however, encountered in some patients with acute inflammation of the iris (iritis/anterior uveitis). The effects of a subject developing anterior uveitis may cause current recognition systems to fail. Those developing and deploying iris recognition should be aware of the potential problems that this could cause to this key biometric technology.

  18. Remote Video Monitor of Vehicles in Cooperative Information Platform

    NASA Astrophysics Data System (ADS)

    Qin, Guofeng; Wang, Xiaoguo; Wang, Li; Li, Yang; Li, Qiyan

    Detection of vehicles plays an important role in the area of the modern intelligent traffic management. And the pattern recognition is a hot issue in the area of computer vision. An auto- recognition system in cooperative information platform is studied. In the cooperative platform, 3G wireless network, including GPS, GPRS (CDMA), Internet (Intranet), remote video monitor and M-DMB networks are integrated. The remote video information can be taken from the terminals and sent to the cooperative platform, then detected by the auto-recognition system. The images are pretreated and segmented, including feature extraction, template matching and pattern recognition. The system identifies different models and gets vehicular traffic statistics. Finally, the implementation of the system is introduced.

  19. Indoor navigation by image recognition

    NASA Astrophysics Data System (ADS)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  20. Integrated system for automated financial document processing

    NASA Astrophysics Data System (ADS)

    Hassanein, Khaled S.; Wesolkowski, Slawo; Higgins, Ray; Crabtree, Ralph; Peng, Antai

    1997-02-01

    A system was developed that integrates intelligent document analysis with multiple character/numeral recognition engines in order to achieve high accuracy automated financial document processing. In this system, images are accepted in both their grayscale and binary formats. A document analysis module starts by extracting essential features from the document to help identify its type (e.g. personal check, business check, etc.). These features are also utilized to conduct a full analysis of the image to determine the location of interesting zones such as the courtesy amount and the legal amount. These fields are then made available to several recognition knowledge sources such as courtesy amount recognition engines and legal amount recognition engines through a blackboard architecture. This architecture allows all the available knowledge sources to contribute incrementally and opportunistically to the solution of the given recognition query. Performance results on a test set of machine printed business checks using the integrated system are also reported.

Top