Diatomic predissociation line widths
NASA Technical Reports Server (NTRS)
Child, M. S.
1973-01-01
Predissociation by rotation and curve crossing in diatomic molecules is discussed. The pattern of predissociation line widths is seen as providing a highly sensitive yardstick for the determination of unknown potential curves. In addition, the computation of such a pattern for given potential curves is considered a matter of routine, unless the predissociation happens to occur from an adiabatic potential curve. Analytic formulas are used to provide physical insight into the details of the predissociation pattern, to the extent that a direct inversion procedure is developed for determination of the repulsive potential curves for Type 1 predissociations.
Strong field control of predissociation dynamics.
Corrales, María E; Balerdi, Garikoitz; Loriot, Vincent; de Nalda, Rebeca; Bañares, Luis
2013-01-01
Strong field control scenarios are investigated in the CH3I predissociation dynamics at the origin of the second absorption B-band, in which state-selective electronic predissociation occurs through the crossing with a valence dissociative state. Dynamic Stark control (DSC) and pump-dump strategies are shown capable of altering both the predissociation lifetime and the product branching ratio.
NASA Technical Reports Server (NTRS)
Slanger, Tom G.; Copeland, Richard A.
1994-01-01
The objectives of this program are to further the understanding of the upper atmospheres of Titan, Triton, and the Earth in terms of the observed emissions of the 13-14 eV states of N2. These states are generated at quite high rates, yet very little emission is observed from them. The reasons are complex, involving resonance trapping and predissociation, and it is desired to quantify the effects of predissociation, particularly on the c(sub 4)' 1 Sigma(sub u),(sup +) state of N2. Earlier experiments had indicated that predissociation of the c(sub 4)' state was of little importance, yet over the last two years a growing body of evidence has shown that for levels above v = 2, predissociation is in fact a major process. It is the v = 0 level for which production by electron bombardment and photoexcitation is highest, and so it has been most important to evaluate the effects of predissociation on this particular level. The goal has been to target c(sub 4)' (v = 0) for a thorough analysis, in which both the extent of predissociation as a function of rotational level and the atomic product branching ratio, where the only possible products are N(4S) + N(4S) and N(2D) + N(4S), are determined. For the first year of funding, the intention was to demonstrate two-photon excitation of the intermediate N2(a(sup 1) Pi(sub g)) state, so that the gap to the 13 eV energy region could be bridged, and then use a second laser to reach the c(sub 4)' state itself.
Predissociation of oxygen in the B3Sigma(u)(-) state
NASA Technical Reports Server (NTRS)
Chiu, S. S.-L.; Cheung, A. S.-C.; Finch, M.; Jamieson, M. J.; Yoshino, K.; Dalgarno, A.; Parkinson, W. H.
1992-01-01
The predissociation linewidths and level shifts of vibrational levels of three oxygen isotopic molecules (O2)-16, (O-16)(O-18), and (O2)-18 arising from the interactions of the B3Sigma(u)(-) state with the four repulsive states 5Pi(u), 3Sigma(u)(+), 3Pi(u), and 1Pi(u) have been calculated. A set of parameters characterizing these interactions has been determined. Good agreement between calculated and experimental predissociation widths and shifts has been obtained for all the three isotopic molecules.
NASA Astrophysics Data System (ADS)
Chakraborty, S.; Thiemens, M. H.
2009-12-01
Photo-Induced Isotope Fractionation Effects (PHIFE) are known to produce isotopic frac-tionation in some photo-dissociating molecules (1-2). The PHIFE formalism is based on the Born-Oppenheimer approximation and the Reflection Principle. The isotopic fractionation arises principally from the spectral shift induced by the small difference in zero point energy between isotopologues and the contraction of the wave function due to isotopic substitution, consequently, the associated isotopic fractionations depends on the reduced mass of the isotopically substi-tuted species. The PHIFE formalism is only applicable to the molecules which undergo direct photo-dissociation that possess continuous absorption spectra. Simple molecules (N2, O2, CO) however do not follow a direct dissociation pathway and dissociate through an indirect process termed predissociation, which occurs when the molecule is excited to a quasi-bound state energetically above the dissociation continuum. The PHIFE formalism is not applicable when the absorption spectra are discrete. The assumption that the lightest isotopologues are preferentially predissociated is only valid for restricted predissociation cases. There is a special case of predissociation known as ‘accidental predissociation’ (3), which takes place through an intermediate bound state in two steps (i) leakage to an intermediate bound state (coupled through spin orbit interaction) and, (ii) predissociation to a third quasi-bound state from the intermediate state. Line broadening at an accidental predissociation is a function of the magnitude of coupling matrix elements and the linewidths are strongly influenced by isotopic substitution (4). An anomalous isotopic effect in accidental predissociation was spectroscopically observed in CO (5), N2 (4) and BeH (6). We measured the isotopic fractionation for the first time in two accidental predissociating states of CO through VUV photodissociation using the 9.0.2 beamline at ALS (7-8). In light of these data, anomalous isotopic fractionations associated with accidental predissociation will be discussed for the CO and N2. These fractionations are important as VUV-photodissociation of CO and N2 have been invoked in solar nebula (self-shielding, (9-10)) to explain the observed iso-topic signatures in different solar system objects neglecting these isotope effects during photo-dissociation. References: 1. Y. L. Yung, C. E. Miller, Science 278, 1778 (1997). 2. S. Chakraborty, S. K. Bhattacharya, J. Chem. Phys. 118, 2164 (2003). 3. H. Lefebvre-Brion, R. W. Field, The Spectra and Dynamics of Diatomic Molecules. (Elsevier Academic Press, 2004). 4. A. J. Lorquet, J. C. Lorquet, Chem. Phys. Lett. 26, 138 (1974). 5. W. Ubachs, I. Velchev, P. Cacciani, J. Chem. Phys. 113, 547 (2000). 6. H. Lefebvre-Brion, R. Colin, J. Mol. Spectrosc. 65, 33 (1977). 7. S. Chakraborty, M. Ahmed, T. L. Jackson, M. H. Thiemens, Science 321, 1328 (2008). 8. S. Chakraborty, M. Ahmed, T. L. Jackson, M. H. Thiemens, Science 324, 4 (2009). 9. R. N. Clayton, Nature 415, 860 (2002). 10. J. R. Lyons, E. D. Young, Nature 435, 317 (2005).
Ion laser isotope enrichment by photo-predissociation of formaldehyde
Marling, John B.
1977-06-17
Enrichment of carbon, hydrogen and/or oxygen isotopes by means of isotopically selective photo-predissociation of formaldehyde is achieved by irradiation with a fixed frequency ion laser, specifically, a neon, cadmium, or xenon ion laser.
NASA Astrophysics Data System (ADS)
Matzkin, A.; Jungen, Ch.; Ross, S. C.
2000-12-01
Multichannel quantum defect theory (MQDT) is used to calculate highly excited predissociated and preionized triplet gerade states of H2. The treatment is ab initio and is based on the clamped-nuclei quantum-defect matrices and dipole transition moments derived from quantum-chemical potential energy curves by Ross et al. [Can. J. Phys. (to be published)]. Level positions, predissociation or preionization widths and relative intensities are found to be in good agreement with those observed by Lembo et al. [Phys. Rev. A 38, 3447 (1988); J. Chem. Phys. 92, 2219 (1990)] by an optical-optical double resonance photoionization or depletion technique.
NASA Technical Reports Server (NTRS)
Chiu, S. S.-L.; Cheung, A. S.-C.; Yoshino, K.; Esmond, J. R.; Freeman, D. E.
1990-01-01
The Yoshino et al. (1988) measurements of absolute cross sections and those of Cheung et al. (1988) for spectroscopic constants are presently used to derive the predissociation linewidths of the (3,0)-(11,0) Schumman-Runge bands of (O-18)2 and O-16O-18, in the 180-196 nm wavelength region. Linewidths are determined as parameters in the nonlinear, least-squares fitting of calculated cross-sections to measured ones. The predissociation linewidths obtained are noted to often be greater than previously obtained experimental values for both isotopic molecules.
Surface hopping simulation of vibrational predissociation of methanol dimer
NASA Astrophysics Data System (ADS)
Jiang, Ruomu; Sibert, Edwin L.
2012-06-01
The mixed quantum-classical surface hopping method is applied to the vibrational predissociation of methanol dimer, and the results are compared to more exact quantum calculations. Utilizing the vibrational SCF basis, the predissociation problem is cast into a curve crossing problem between dissociative and quasibound surfaces with different vibrational character. The varied features of the dissociative surfaces, arising from the large amplitude OH torsion, generate rich predissociation dynamics. The fewest switches surface hopping algorithm of Tully [J. Chem. Phys. 93, 1061 (1990), 10.1063/1.459170] is applied to both diabatic and adiabatic representations. The comparison affords new insight into the criterion for selecting the suitable representation. The adiabatic method's difficulty with low energy trajectories is highlighted. In the normal crossing case, the diabatic calculations yield good results, albeit showing its limitation in situations where tunneling is important. The quadratic scaling of the rates on coupling strength is confirmed. An interesting resonance behavior is identified and is dealt with using a simple decoherence scheme. For low lying dissociative surfaces that do not cross the quasibound surface, the diabatic method tends to overestimate the predissociation rate whereas the adiabatic method is qualitatively correct. Analysis reveals the major culprits involve Rabi-like oscillation, treatment of classically forbidden hops, and overcoherence. Improvements of the surface hopping results are achieved by adopting a few changes to the original surface hopping algorithms.
The D1Πu state of HD and the mass scaling relation of its predissociation widths
NASA Astrophysics Data System (ADS)
Dickenson, G. D.; Ubachs, W.
2012-07-01
Absorption spectra of HD have been recorded in the wavelength range of 75-90 nm at 100 K using the vacuum ultraviolet Fourier transform spectrometer at the Synchrotron SOLEIL. The present wavelength resolution represents an order of magnitude improvement over that of previous studies. We present a detailed study of the D1Πu-X1Σ+g system observed up to v‧ = 18. The Q-branch transition probing levels of Π- symmetry are observed as narrow resonances limited by the Doppler width at 100 K. Line positions for these transitions are determined to an estimated absolute accuracy of 0.06 cm-1. Predissociation line widths of Π+ levels are extracted from the absorption spectra. A comparison with the recent results on a study of the D1Πu state in H2 and D2 reveals that the predissociation widths scale as μ-2J(J + 1), with μ being the reduced mass of the molecule and J the rotational angular momentum quantum number, as expected from an interaction with the B‧1Σ+u continuum causing the predissociation.
Pressure broadening and fine-structure-dependent predissociation in oxygen B 3sigma(u)-, v = 0.
Hannemann, Sandro; Wu, GuoRong; van Duijn, Eric-Jan; Ubachs, Wim; Cosby, Philip C
2005-11-01
Both laser-induced fluorescence and cavity ring-down spectral observations were made in the Schumann-Runge band system of oxygen, using a novel-type ultranarrow deep-UV pulsed laser source. From measurements on the very weak (0,0) band pressure broadening, pressure shift, and predissociation line-broadening parameters were determined for the B 3sigma(u)-, v = 0,F(i) fine-structure components for various rotational levels in O2. The information content from these studies was combined with that of entirely independent measurements probing the much stronger (0,10), (0,19), and (0,20) Schumann-Runge bands involving preparation of vibrationally excited O2 molecules via photolysis of ozone. The investigations result in a consistent set of predissociation widths for the B 3sigma(u)-, v = 0 state of oxygen.
Sommavilla, M; Merkt, F; Mezei, J Zs; Jungen, Ch
2016-02-28
Absorption and photoionization spectra of H2 have been recorded at a resolution of 0.09 and 0.04 cm(-1), respectively, between 125,600 cm(-1) and 126,000 cm(-1). The observed Rydberg states belong to series (n = 10 - 14) converging on the first vibrationally excited level of the X (2)Σ(g)(+) state of H2(+), and of lower members of series converging on higher vibrational levels. The observed resonances are characterized by the competition between autoionization, predissociation, and fluorescence. The unprecedented resolution of the present experimental data leads to a full characterization of the predissociation/autoionization profiles of many resonances that had not been resolved previously. Multichannel quantum defect theory is used to predict the line positions, widths, shapes, and intensities of the observed spectra and is found to yield quantitative agreement using previously determined quantum defect functions as the unique set of input parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezei, J. Zs.; Laboratoire Ondes et Milieux Complexes, UMR-6294 CNRS and Université du Havre, 25, rue Philippe Lebon, BP 540, 76058, Le Havre France; Schneider, I. F.
2014-08-14
The predissociation of the 3pπD{sup 1}Π{sub u}{sup +},v≥3,N=1, N = 2, and N = 3 levels of diatomic hydrogen is calculated by ab initio multichannel quantum defect theory combined with a R-matrix type approach that accounts for interfering predissociation and autoionization. The theory yields absorption line widths and shapes that are in good agreement with those observed in the high-resolution synchrotron vacuum-ultraviolet absorption spectra obtained by Dickenson et al. [J. Chem. Phys. 133, 144317 (2010)] at the DESIRS beamline of the SOLEIL synchrotron. The theory predicts further that many of the D state resonances with v ⩾ 6 exhibit amore » complex fine structure which cannot be modeled by the Fano profile formula and which has not yet been observed experimentally.« less
VUV spectroscopic study of the ? state of H2
NASA Astrophysics Data System (ADS)
Dickenson, G. D.; Ubachs, W.
2014-04-01
Spectral lines, probing rotational quantum states J‧ = 0, 1, 2 of the inner well vibrations (υ‧ ≤ 8) in the ? state of molecular hydrogen, were recorded in high resolution using a vacuum ultraviolet Fourier transform absorption spectrometer in the wavelength range 73-86 nm. Accurate line positions and predissociation widths are determined from a fit to the absorption spectra. Improved values for the line positions are obtained, while the predissociation widths agree well with previous investigations.
Predissociation of tif by tunneling
NASA Astrophysics Data System (ADS)
Wolf, U.; Tiemann, E.
1987-01-01
The UV spectra of the B 3Π 1-X 1Σ + transition in TIF were recorded applying frequency-doubled laser radiation and fluorescence or direct absorption detection. The observed J' -dependent predissociation in the upper levels v' = 2 and v' = 3 is explained quantitatively by invoking tunneling through a potential hump. The line positions and widths are fitted to a potential curve of the B 3Π 1 state using the semiclassical approximation for bound and quasibound levels.
VUV Spectroscopic Study of the D 1Π u State of Molecular Deuterium
NASA Astrophysics Data System (ADS)
Dickenson, G. D.; Ivanov, T. I.; Ubachs, W.; Roudjane, M.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Tchang-Brillet, W.-Ü. L.; Glass-Maujean, M.; Schmoranzer, H.; Knie, A.; Kübler, S.; Ehresmann, A.
2011-11-01
The D 1Π u - ? absorption system of molecular deuterium has been re-investigated using the VUV Fourier-Transform (FT) spectrometer at the DESIRS beamline of the synchrotron SOLEIL and photon-induced fluorescence spectrometry (PIFS) using the 10 m normal incidence monochromator at the synchrotron BESSY II. Using the FT spectrometer absorption spectra in the range 72-82 nm were recorded in quasi static gas at 100 K and in a free flowing jet at a spectroscopic resolution of 0.50 and 0.20 cm-1 respectively. The narrow Q-branch transitions, probing states of Π- symmetry, were observed up to vibrational level v = 22. The states of Π+ symmetry, known to be broadened due to predissociation and giving rise to asymmetric Beutler-Fano resonances, were studied up to v = 18. The 10 m normal incidence beamline setup at BESSY II was used to simultaneously record absorption, dissociation, ionization and fluorescence decay channels from which information on the line intensities, predissociated widths, and Fano q-parameters were extracted. R-branch transitions were observed up to v = 23 for J = 1-3 as well as several transitions for J = 4 and 5 up to v = 22 and 18 respectively. The Q-branch transitions are found to weakly predissociate and were observed from v = 8 to the final vibrational level of the state v = 23. The spectroscopic study is supported by two theoretical frameworks. Results on the Π- symmetry states are compared to ab initio multi-channel-quantum defect theory (MQDT) calculations, demonstrating that these calculations are accurate to within 0.5 cm-1. Furthermore, the calculated line intensities of Q-lines agree well with measured values. For the states of Π+ symmetry a perturbative model based on a single bound state interacting with a predissociation continuum was explored, yielding good agreement for predissociation widths, Fano q-parameters and line intensities.
Predissociation and collisional depopulation of the Cs/sub 2/(E) state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Z.; Huennekens, J.
1984-11-15
We report here an experimental study of depopulation mechanisms of the Cs/sub 2/(E) state. By combining ratios of atomic to molecular fluorescence with E state lifetimes obtained by the phase shift technique, all studied as a function of Cs density, we were able to obtain absolute values for predissociation, radiative, and collisional depopulation rates as well as the total quenching rates for the Cs/sub 2/(E) state. The results are discussed in relation to those of other experiments.
Rotational dependence of the predissociation linewidths of the Schumann-Runge bands of O2
NASA Technical Reports Server (NTRS)
Cheung, A. S.-C.; Mok, D. K.-W.; Jamieson, M. J.; Finch, M.; Yoshino, K.; Dalgarno, A.; Parkinson, W. H.
1993-01-01
The rotational coupling constant for the O2 molecule is estimated theoretically, and the predissociation linewidths of the Schumann-Runge bands of vibration levels v = 0-12 are calculated for (O-16)2, (O-16)(O-18), and (O-18)2 molecules in the B 3Sigma-u(-) state. Calculations accounted for both the spin-orbit and rotational couplings with rotational quantum number N up to 20. The theoretical linewidths are compared with experimental widths, showing satisfactory agreement.
Role of ion-pair states in the predissociation dynamics of Rydberg states of molecular iodine.
von Vangerow, J; Bogomolov, A S; Dozmorov, N V; Schomas, D; Stienkemeier, F; Baklanov, A V; Mudrich, M
2016-07-28
Using femtosecond pump-probe ion imaging spectroscopy, we establish the key role of I(+) + I(-) ion-pair (IP) states in the predissociation dynamics of molecular iodine I2 excited to Rydberg states. Two-photon excitation of Rydberg states lying above the lowest IP state dissociation threshold (1st tier) is found to be followed by direct parallel transitions into IP states of the 1st tier asymptotically correlating to a pair of I ions in their lowest states I(+)((3)P2) + I(-)((1)S0), of the 2nd tier correlating to I(+)((3)P0) + I(-)((1)S0), and of the 3rd tier correlating to I(+)((1)D2) + I(-)((1)S0). Predissociation via the 1st tier proceeds presumably with a delay of 1.6-1.7 ps which is close to the vibrational period in the 3rd tier state (3rd tier-mediated process). The 2nd tier IP state is concluded to be the main precursor for predissociation via lower lying Rydberg states proceeding with a characteristic time of 7-8 ps and giving rise to Rydberg atoms I(5s(2)5p(4)6s(1)). The channel generating I((2)P3/2) + I((2)P1/2) atoms with total kinetic energy corresponding to one-photon excitation is found to proceed via a pump - dump mechanism with dramatic change of angular anisotropy of this channel as compared with earlier nanosecond experiments.
High Resolution UV Emission Spectroscopy of Molecules Excited by Electron Impact
NASA Technical Reports Server (NTRS)
James, G. K.; Ajello, J. M.; Beegle, L.; Ciocca, M.; Dziczek, D.; Kanik, I.; Noren, C.; Jonin, C.; Hansen, D.
1999-01-01
Photodissociation via discrete line absorption into predissociating Rydberg and valence states is the dominant destruction mechanism of CO and other molecules in the interstellar medium and molecular clouds. Accurate values for the rovibronic oscillator strengths of these transitions and predissociation yields of the excited states are required for input into the photochemical models that attempt to reproduce observed abundances. We report here on our latest experimental results of the electron collisional properties of CO and N2 obtained using the 3-meter high resolution single-scattering spectroscopic facility at JPL.
Spin-orbit configuration interaction calculation of the potential energy curves of iodine oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roszak, S.; Krauss, M.; Alekseyev, A.B.
2000-04-06
An ab initio configuration interaction (CI) study including spin-orbit coupling is carried out for the ground and excited states of the IO radical by employing relativistic effective core potentials. The computed spectroscopic constants are in good agreement with available experimental data, with some tendency to underestimate the strength of bonding. The first excited state, a{sup 4}{Sigma}{sup {minus}}, which has not yet been observed experimentally, is predicted to be bound by 30.1 kJ/mol and to have a significantly larger equilibrium distance than the ground state. It is split by spin-orbit interaction into 1/2 and 3/2 components, with the 1/2 component beingmore » the lower one with a calculated spin-orbit splitting of 210 cm{sup {minus}1}. The most interesting state in the low-energy IO spectrum, A{sub 1}{sup 2}{Pi}{sub 3/2}, is shown to be predissociated due to interaction with a number of repulsive electronic states. Predissociation of the A{sup 1}, {nu}{prime} = 0, 1 vibrational levels is attributed to a fairly weak spin-orbit coupling with the {sup 2}{Delta}{sub 3/2} state, while rotationally dependent predissociation of the {nu}{prime} = 2 level is explained by the coupling with the 1/2(III) state having mainly {sup 2}{Sigma}{sup {minus}} character. Strong predissociation of the {nu}{prime} {ge} 4 levels is attributed to interaction with the higher-lying {Omega} = 3/2 states, with predominantly {sup 4}{Sigma}{sup +} and {sup 4}{Delta} origin.« less
Oscillator Strengths and Predissociation Widths for Rydberg Transitions in Carbon Monoxide
NASA Technical Reports Server (NTRS)
Federman, Steven R.; Sheffer, Y.; Eidelsberg, Michele; Lemaire, Jean-Louis; Fillion, Jean-Hugues; Rostas, Francois; Ruiz, J.
2006-01-01
CO is used as a probe of astronomical environments ranging from planetary atmospheres and comets to interstellar clouds and the envelopes surrounding stars near the end of their lives. One of the processes controlling the CO abundance and the ratio of its isotopomers is photodissociation. Accurate oscillator strengths for Rydberg transitions are needed for modeling this process. Absorption bands were analyzed by synthesizing the profiles with codes developed independently in Meudon and Toledo. Each synthetic spectrum was adjusted to match the experimental one in a non-linear least-squares fitting procedure with the band oscillator strength, the line width (instrumental and predissociation.
IR-IR Conformation Specific Spectroscopy of Na+(Glucose) Adducts
NASA Astrophysics Data System (ADS)
Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne
2018-01-01
We report an IR-IR double resonance study of the structural landscape present in the Na+(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na+(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na+ coordination. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Davis, Scott; Anderson, David T.; Farrell, John T., Jr.; Nesbitt, David J.
1996-06-01
High resolution near infrared spectra of the two high frequency intramolecular modes in (DF)2 have been characterized using a slit-jet infrared spectrometer. In total, four pairs of vibration-rotation-tunneling (VRT) bands are observed, corresponding to K=0 and K=1 excitation of both the ν2 (``bound'') and ν1 (``free'') intramolecular DF stretching modes. Analysis of the rotationally resolved spectra provides vibrational origins, rotational constants, tunneling splittings and upper state predissociation lifetimes for all four states. The rotational constants indicate that the deuterated hydrogen bond contracts and bends upon intramolecular excitation, analogous to what has been observed for (HF)2. The isotope and K dependence of tunneling splittings for (HF)2 and (DF)2 in both intramolecular modes is interpreted in terms of a semiclassical 1-D tunneling model. High resolution line shape measurements reveal vibrational predissociation broadening in (DF)2: 56(2) and 3(2) MHz for the ν2 (bound) and ν1 (free) intramolecular stretching modes, respectively. This 20-fold mode specific enhancement parallels the ≥30-fold enhancement observed between analogous intramolecular modes of (HF)2, further elucidating the role of nonstatistical predissociation dynamics in such hydrogen bonded clusters.
Use of predissociation to enhance the atomic hydrogen ion fraction in ion sources
Kim, Jinchoon
1979-01-01
A duopigatron ion source is modified by replacing the normal oxide-coated wire filament cathode of the ion source with a hot tungsten oven through which hydrogen gas is fed into the arc chamber. The hydrogen gas is predissociated in the hot oven prior to the arc discharge, and the recombination rate is minimized by hot walls inside of the arc chamber. With the use of the above modifications, the atomic H.sub.1.sup.+ ion fraction output can be increased from the normal 50% to greater than 70% with a corresponding decrease in the H.sub.2.sup.+ and H.sub.3.sup.+ molecular ion fraction outputs from the ion source.
IR-IR Conformation Specific Spectroscopy of Na +(Glucose) Adducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.
Here in this paper we report an IR-IR double resonance study of the structural landscape present in the Na +(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na +(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctivemore » Na+ coordination.« less
IR-IR Conformation Specific Spectroscopy of Na +(Glucose) Adducts
Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; ...
2017-09-27
Here in this paper we report an IR-IR double resonance study of the structural landscape present in the Na +(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na +(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctivemore » Na+ coordination.« less
Resonances in the predissociation of the A{sup 2}{Pi}{sub {Omega}} state of MgBr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadygov, R.G.; Rostas, J.; Taieb, G.
1997-03-01
Electronic structure methods and nonperturbative resonance theory are applied to study the radiative and radiationless decay mechanisms of the MgBr (A{sup 2}{Pi}{sub {Omega}}) vibrational levels. The X{sup 2}{Sigma}{sup +} and 1,2{sup 2}{Pi}{sub {Omega}} adiabatic electronic states are characterized using {ital ab initio} state-averaged multiconfigurational self-consistent field/second order configuration interaction wave functions. Interstate derivative couplings between the {sup 2}{Pi} states have been calculated and used to construct a rigorous diabatic basis. The nonrelativistic potential energy curves are modified in the first order of degenerate perturbation theory to take account of the spin{endash}orbit interactions treated within Breit{endash}Pauli approximation. All vibrational levels inmore » the A{sup 2}{Pi}{sub {Omega}} manifold are resonances predissociated by the repulsive 2{sup 2}{Pi} state. A recently developed computational approach [S. Han and D. R. Yarkony, Mol. Phys. {bold 88}, 53 (1996)] based on a Feshbach formalism is employed to determine energies, linewidths, and radiative and radiationless decay rates in a coupled diabatic states basis within a Hund`s case (a) approximation. Large nonadiabatic interactions cause significant energy shifts in the resonances levels. It is shown that a pronounced {Omega}-dependence in the radiationless decay rates results from the large fine structure splitting in the 2{sup 2}{Pi}{sub {Omega}} diabatic state which corresponds to Mg({sup 1}S)Br({sup 2}P). Comparisons with absorption and fluorescence spectra reveal important insights into A{sup 2}{Pi}{sub {Omega}} state decay. The spectroscopic constants of the A{sup 2}{Pi}{sub {Omega}}, {Omega}=3/2 and 1/2 states and the A{sup 2}{Pi}{sub 3/2} state predissociation are well described in a Hund`s case (a) approximation. However it is found that the A{sup 2}{Pi}{sub 1/2} state predissociation is significantly underestimated in this limit. (Abstract Truncated)« less
Nonadiabatic quantum dynamics and laser control of Br2 in solid argon.
Accardi, A; Borowski, A; Kühn, O
2009-07-02
A five-dimensional reaction surface-vibronic coupling model is introduced to describe the B- to C-state predissociation dynamics of Br(2) occupying a double substitutional lattice site in a face-centered cubic argon crystal at low temperatures. The quantum dynamics driven by a Franck-Condon vertical excitation is investigated, revealing the role of matrix cage compression for efficient nonadiabatic transitions. Vibrational preexcitation of the Br(2) bond in the electronic ground state can be used to access a different regime of predissociation which does not require substantial matrix compression because the Franck-Condon window shifts into the energetic range of the B-C level crossing. Using optimal control theory, it is shown how vibrational preexcitation can be achieved via a pump-dump-type mechanism involving the repulsive C state.
NASA Astrophysics Data System (ADS)
Ziemkiewicz, Michael P.; Pluetzer, Christian; Loreau, Jérôme; van der Avoird, Ad; Nesbitt, David J.
2017-12-01
Vibrationally state selective overtone spectroscopy and state- and nuclear spin-dependent predissociation dynamics of weakly bound ortho- and para-Ne-H2O complexes (D0(ortho) = 34.66 cm-1 and D0(para) = 31.67 cm-1) are reported, based on near-infrared excitation of van der Waals cluster bands correlating with vOH = 2 ← 0 overtone transitions (|02-〉 and |02+〉) out of the ortho (101) and para (000) internal rotor states of the H2O moiety. Quantum theoretical calculations for nuclear motion on a high level potential energy surface [CCSD(T)/VnZf12 (n = 3, 4)], corrected for basis set superposition error and extrapolated to the complete basis set (CBS) limit, are employed to successfully predict and assign Π-Σ, Σ-Σ, and Σ-Π infrared bands in the spectra, where Σ or Π represent approximate projections of the body-fixed H2O angular momentum along the Ne-H2O internuclear axis. IR-UV pump-probe experimental capabilities permit real-time measurements of the vibrational predissociation dynamics, which indicate facile intramolecular vibrational energy transfer from the H2O vOH = 2 overtone vibrations into the VdWs (van der Waals) dissociation coordinate on the τprediss = 15-25 ns time scale. Whereas all predicted strong transitions in the ortho-Ne-H2O complexes are readily detected and assigned, vibrationally mediated photolysis spectra for the corresponding para-Ne-H2O bands are surprisingly absent despite ab initio predictions of Q-branch intensities with S/N > 20-40. Such behavior signals the presence of highly selective nuclear spin ortho-para predissociation dynamics in the upper state, for which we offer a simple mechanism based on Ne-atom mediated intramolecular vibrational relaxation in the H2O subunit (i.e., |02±〉 → {|01±〉; v2 = 2}), which is confirmed by the ab initio energy level predictions and the nascent OH rotational (N), spin orbit (Π1/2,3/2), and lambda doublet product distributions.
Vibrational Spectra of Cryogenic Peptide Ions Using H_2 Predissociation Spectroscopy
NASA Astrophysics Data System (ADS)
Leavitt, Christopher M.; Wolk, Arron B.; Kamrath, Michael Z.; Garand, Etienne; Johnson, Mark A.; van Stipdonk, Michael J.
2011-06-01
H_2 predissociation spectroscopy was used to collect the vibrational spectra of the model protonated peptides, GlyGly, GlySar, SarGly and SarSar (Gly=glycine and Sar=sarcosine). H_2 molecules were condensed onto protonated peptide ions in a quadrupole ion trap cooled to approximately 10 K. The resulting spectra yielded clearly resolved vibrational transitions throughout the mid IR region, 600-4200 Cm-1, with linewidths of approximately 6 Cm-1. Protonation nominally occurred on the amino terminus giving rise to an intramolecular H-bond between the protonated amine and the neighboring amide oxygen. The sarcosine containing peptides incorporate a methyl group onto either the amino group or the amide nitrogen causing the peptide backbone to adopt a different structure, resulting in the shifts in the amide I and II bands and the N-H stretches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid
Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasingmore » synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.« less
Isotope enrichment by frequency-tripled temperature tuned neodymium laser photolysis of formaldehyde
Marling, John B.
1977-01-01
Enrichment of carbon, hydrogen and/or oxygen isotopes by means of isotopically selective photo-predissociation of formaldehyde is achieved by irradiation provided by a frequency-tripled, temperature tuned neodymium laser.
Nonperturbative quantum control via the nonresonant dynamic Stark effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sussman, Benjamin J.; Stolow, Albert; Department of Physics, Queen's University, Kingston, Ontario, K7L 3N6
2005-05-15
The nonresonant dynamic Stark effect (NRDSE) is investigated as a general tool for quantum control in the intermediate field strength regime (nonperturbative but nonionizing). We illustrate this scheme for the case of nonadiabatic molecular photodissociation at an avoided crossing. Using the NRDSE exclusively, both the electronic branching ratio and predissociation lifetime may be controlled. Infrared control pulses are used to modify the field-free dynamical evolution during traversal of the avoided crossing, thus controlling the nonadiabatic branching ratio. Predissociation lifetimes may be either increased or decreased using properly timed short infrared pulses to modify phase differences between the diabatic wave packets.more » In contrast with the limiting cases of perturbative control (interference between transitions) and strong field control with ionizing laser fields, control via the NRDSE may be thought of as reversibly modifying the effective Hamiltonian during system propagation.« less
Alkali Metal-Glucose Interaction Probed with Infrared Pre-Dissociation Spectroscopy
NASA Astrophysics Data System (ADS)
Kregel, Steven J.; Marsh, Brett; Zhou, Jia; Garand, Etienne
2015-06-01
The efficient extraction of cellulose from biomass and its subsequent conversion to glucose derivatives is an attractive goal in the field of energy science. However, current industrial methods require high ionic strength and harsh conditions. Ionic liquids (IL's) are a class of "green" compounds that have been shown to dissolve cellulose in concentrations of up to 25 wt%. In order to understand IL's extraordinary cellulose dissolving power, a molecular level understanding of the IL-cellulose interaction is needed. Toward that end, we have acquired infrared pre-dissociation spectra of M+-glucose, where M+=Li+, Na+, or K+. Through comparisons with density functional theory calculations, we have determined the relative abundances of various M+-glucose binding motifs in both the thermodynamic and kinetic limits. These results provide insight on the hydrogen bonding dynamics of glucose and are a step towards a fuller understanding of cellulose interactions with ionic liquids.
Hot N2 in Titan's upper atmosphere
NASA Astrophysics Data System (ADS)
Lavvas, P.; Yelle, R. V.; Heays, A.; Campbell, L.; Brunger, M. J.; Galand, M.; Vuitton, V.
2015-10-01
We present a detailed model for the vibrational population of all non pre-dissociating excited electronic states of N2, as well as for the ground and ionic states,in Titan's atmosphere. Our model includes the detailed energy deposition calculations presented in the past [1] as well as the more recent developments in the high resolution N2 photo-absorption cross sections that allow us to calculate photo-excitation rates for different vibrational levels of singlet nitrogen states, and provide information for their pre-dissociation yields.In addition, we consider the effect of collisions and chemical reactions in the population of the different states. Our results demonstrate that a significant population of vibrationally excited ground state N2 survives in Titan's upper atmosphere. This hot N2population can improve the agreement between models and observations for the emission of the c'4 state that is significantly affected by resonant scattering. Moreover we discuss the potential implications of the vibrationally excited population on the ionospheric densities.
Femtosecond Photoelectron Imaging of Dissociating and Autoionizing States in Oxygen
NASA Astrophysics Data System (ADS)
Plunkett, Alexander; Sandhu, Arvinder
2017-04-01
Time-resolved photoelectron spectra from molecular oxygen have been recorded with high energy and time resolution using a velocity map imaging (VMI) spectrometer. High harmonics were used to prepare neutral Rydberg states converging to the c4Σu- ionic state. These states display both autoionization and predissociation. A femtosecond laser pulse centered at 780 nm was used to probe the system, ionizing both the excited molecular states and the predissociated neutral atomic fragments. Electrons were collected in the 0-3 eV range using a VMI spectrometer and their spectra were reconstructed using a Fast Onion-peeling algorithm. By looking at IR modification to the electron spectrum, new features are observed which could originate from long-range columbic interactions or previously unobserved molecular decay channels. Ongoing studies extend this technique to other systems exhibiting non-adiabatic dynamics. This work was supported by the U. S. Army Research Laboratory and the U. S. Army Research Office under Grant No. W911NF-14-1-0383.
NASA Technical Reports Server (NTRS)
Sutton, D. J.; Houwing, A. F. P.; Palma, P. C.; Boyce, R. R.; Sandeman, R. J.; Mundt, CH.
1993-01-01
Single shot spatially and spectrally resolved laser induced predissociation fluorescence measurements in a shock layer around a cylinder in a pulsed supersonic free stream are presented. Fluorescence signals were produced using the tuned output of an argon fluoride excimer laser to excite a mixture of rovibrational transitions in molecular oxygen. The signals produced along a line inside the shock layer were focussed onto a two dimensional detector coupled to a spectrometer, thus allowing spectral and spatial resolution of the fluorescence. In this way, it was possible to detect two fluorescence signals from two different transitions simultaneously, allowing the determination of vibrational temperatures without the need for calibration. However, to minimize problems associated with low signal to noise ratios, background subtraction and spatial averaging was required. The experimental measurements are compared with theoretical inviscid shock layer calculations for nonequilibrium air. A description of the strategies employed in these calculations is also provided.
NASA Astrophysics Data System (ADS)
Žáček, P.; Wolf, M.
2017-10-01
This paper contains necessary modification of Bessel's equations for the axial cometary syndyne. This correction provides the accurate values of molecular acceleration in a cometary tail and precise values of decay constants for radiating molecules and their lifetimes. In consequence the hypothesis of the predissociation of molecules seems to be useless.
A velocity map imaging mass spectrometer for photofragments of fast ion beams
NASA Astrophysics Data System (ADS)
Johnston, M. David; Pearson, Wright L.; Wang, Greg; Metz, Ricardo B.
2018-01-01
We present the details of a fast ion velocity map imaging mass spectrometer that is capable of imaging the photofragments of trap-cooled (≥7 K) ions produced in a versatile ion source. The new instrument has been used to study the predissociation of N2O+ produced by electric discharge and the direct dissociation of Al2+ formed by laser ablation. The instrument's resolution is currently limited by the diameter of the collimating iris to a value of Δv/v = 7.6%. Photofragment images of N2O+ show that when the predissociative state is changed from 2Σ+(200) to 2Σ+(300) the dominant product channel shifts from a spin-forbidden ground state, N (4S) + NO+(v = 5), to a spin-allowed pathway, N*(2D) + NO+. The first photofragment images of Al2+ confirm the existence of a directly dissociative parallel transition (2Σ+u ← 2Σ+g) that yields products with a large amount of kinetic energy. D0 of ground state Al2+ (2Σ+g) measured from these images is 138 ± 5 kJ/mol, which is consistent with the published literature.
Voss, Jonathan M.; Marsh, Brett M.; Zhou, Jia; ...
2016-06-29
The infrared predissociation spectra of [bmim] +·(H 2O) n, n = 1–8, in the 2800–3800 cm –1 region are presented and analyzed with the help of electronic structure calculations. The results show that the water molecules solvate [bmim]+ by predominately interacting with the imidazolium C2–H moiety for the small n = 1 and 2 clusters. This is characterized by a redshifted and relatively intense C2–H stretch. For n ≥ 4 clusters, hydrogen-bond interactions between the water molecules drive the formation of ring isomers which interact on top of the imidazolium ring without any direct interaction with the C2–H. The watermore » arrangement in [bmim]+·(H 2O) n is similar to the low energy isomers of neutral water clusters up to the n = 6 cluster. This is not the case for the n = 8 cluster, which has the imidazolium ring disrupting the otherwise preferred cubic water structure. Here, the evolution of the solvation network around [bmim]+ illustrates the competing [bmim]+–water and water–water interactions.« less
NASA Astrophysics Data System (ADS)
Wolk, Arron B.; Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Mark A.
2013-06-01
Transition metal-based organometallic catalysts are a promising means of converting CO_{2} to transportable fuels. Ni(cyclam)^{2+}(cyclam = 1,4,8,11-tetraazacyclotetradecane), a Ni^{II} complex ligated by four nitrogen centers, has shown promise as a catalyst selective for CO_{2} reduction in aqueous solutions. The cyclam ligand has four NH hydrogen bond donors that can adopt five conformations, each offering distinct binding motifs for coordination of CO_{2} close to the metal center. To probe the ligand conformation and the role of hydrogen bonding in adduct binding, we extract Ni(cyclam)^{2+} complexes with the formate anion and some of its analogs from solution using electrospray ionization, and characterize their structures using cryogenic ion vibrational predissociation spectroscopy. Using the signature vibrational features of the embedded carboxylate anion and the NH groups as reporters, we compare the binding motifs of oxalate, benzoate, and formate anions to the Ni(cyclam)^{2+} framework. Finally, we comment on possible routes to generate the singly charged Ni(cyclam)^{+} complex, a key intermediate that has been invoked in the catalytic CO_{2} reduction cycle, but has never been isolated through ion processing techniques.
Willow, Soohaeng Yoo; Singh, N Jiten; Kim, Kwang S
2011-11-08
Experimental vibrational predissociation spectra of the magic NH4(+)(H2O)20 clusters are close to those of the magic H3O(+)(H2O)20 clusters. It has been assumed that the geometric features of NH4(+)(H2O)20 clusters might be close to those of H3O(+)(H2O)20 clusters, in which H3O(+) resides on the surface. Car-Parrinello molecular dynamics simulations in conjunction with density functional theory calculations are performed to generate the infrared spectra of the magic NH4(+)(H2O)20 clusters. In comparison with the experimental vibrational predissociation spectra of NH4(+)(H2O)20, we find that NH4(+) is inside the cage structure of NH4(+)(H2O)20 as opposed to on the surface structure. This shows a clear distinction between the structures of NH4(+)(H2O)20 and H3O(+)(H2O)20 as well as between the hydration phenomena of NH4(+) and H3O(+).
Electronically Metastable Molecules of High Symmetry
1990-01-01
diminishes and hence the rate of predissociation of the Rydbergs is expected to become exceedingly small Do(H3 ),h, =E -2R_ -Dg o (H 2 ) - ZPE (H3*), (3) 72...measurements. The new dissociation energy [40] of H2 (4.4781 ± 0.0001 eV), value is also consistent with that predicted by ab in- and ZPE (H3") is the zero
NASA Astrophysics Data System (ADS)
Stark, Glenn; Lyons, James; Herde, Hannah; Nave, Gillian; de Oliveira, Nelson
2015-11-01
Our research program comprises the measurement and modeling of ultraviolet molecular photoabsorption cross sections with the highest practical resolution. It supports efforts to interpret and model observations of planetary atmospheres. Measurement and modeling efforts on diatomic sulfur (S2) and sulfur monoxide (SO) are in progress.S2: Interpretations of atmospheric (Io, Jupiter, cometary comae) S2 absorption features are hindered by a complete lack of laboratory cross section data in the ultraviolet. We are working to quantify the photoabsorption spectrum of S2 from 240 to 300 nm based on laboratory measurements and theoretical calculations. We have constructed an experimental apparatus to produce a stable column of S2 vapor at a temperature of 800 K. High-resolution measurements of the absorption spectrum of the strong B - X system of S2 were completed using the NIST VUV-FTS at Gaithersburg, MD. These measurements are being incorporated into a coupled-channel model of the absorption spectrum of S2 to quantify the contributions from individual bands and to establish the mechanisms responsible for the strong predissociation signature of the B - X system. A successful coupled channels model can then be used to calculate the B - X absorption spectrum at any temperature.SO: There has been a long-standing need for high-resolution cross sections of SO radicals in the UV and VUV regions, where the molecule strongly predissociates, for modeling the atmospheres of Io and Venus, and for understanding sulfur isotope effects in the ancient (pre-O2) atmosphere of Earth. We have produced a measurable column of SO in a continuous-flow DC discharge cell, using SO2 as a parent molecule. Photoabsorption measurements were recently recorded with the high-resolution VUV-FTS on the DESIRS beamline of the SOLEIL synchrotron. A number of strong, predissociated SO bands were measured in the 140 to 200 nm region. Weaker features associated with the SO B - X system were simultaneously recorded, allowing for an approximate determination of the VUV SO band f-values.
NASA Astrophysics Data System (ADS)
Stark, Glenn
2016-07-01
Our research program comprises the measurement and modeling of ultraviolet molecular photoabsorption cross sections with the highest practical resolution. It supports efforts to interpret and model observations of planetary atmospheres. Measurement and modeling efforts on diatomic sulfur (S _{2}) and sulfur monoxide (SO) are in progress. S _{2}: Interpretations of atmospheric (Io, Jupiter, cometary comae) S _{2} absorption features are hindered by a complete lack of laboratory cross section data in the ultraviolet. We are working to quantify the photoabsorption spectrum of S _{2} from 240 to 300 nm based on laboratory measurements and theoretical calculations. We have constructed an experimental apparatus to produce a stable column of S _{2} vapor at a temperature of 800 K. High-resolution measurements of the absorption spectrum of the strong B - X system of S _{2} were completed using the NIST VUV-FTS at Gaithersburg, Maryland. These measurements are currently being incorporated into a coupled-channel model of the absorption spectrum of S _{2} to quantify the contributions from individual band features and to establish the mechanisms responsible for the strong predissociation signature of the B - X system. A successful coupled channels model can then be used to calculate the B - X absorption spectrum at any temperature. SO: There has been a long-standing need for high-resolution cross sections of sulfur monoxide radicals in the ultraviolet and vacuum ultraviolet regions, where the molecule strongly predissociates, for modeling the atmospheres of Io and Venus, and most recently for understanding sulfur isotope effects in the ancient (pre-O _{2}) atmosphere of Earth. We have produced a measurable column of SO in a continuous-flow DC discharge cell, using SO _{2} as a parent molecule. Photoabsorption measurements were recently recorded on the DESIRS beamline of the SOLEIL synchrotron, taking advantage of the high-resolution VUV-FTS on that beamline. A number of strong, predissociated SO bands were measured in the 140 to 200 nm region. Weaker features associated with the SO B - X system were simultaneously recorded, allowing for an approximate determination of the VUV SO band f-values.
First Infrared Predissociation Spectra of He-TAGGED Protonated Primary Alcohols at 4 K
NASA Astrophysics Data System (ADS)
Stoffels, Alexander; Redlich, Britta; Oomens, J.; Asvany, Oskar; Brünken, Sandra; Jusko, Pavol; Thorwirth, Sven; Schlemmer, Stephan
2015-06-01
Cryogenic multipole ion traps have become popular devices in the development of sensitive action-spectroscopic techniques. The low ion temperature leads to enhanced spectral resolution, and less congested spectra. In the early 2000s, a 22-pole ion trap was coupled to the Free-Electron Laser for Infrared eXperiments (FELIX), yielding infrared Laser Induced Reaction (LIR) spectra of the molecular ions C_2H_2+ and CH_5+. This pioneering work showed the great opportunities combining cold mass-selected molecular ions with widely tunable broadband IR radiation. In the past year a cryogenic (T>3.9 K) 22-pole ion trap designed and built in Cologne (FELion) has been successfully coupled to FELIX, which in its current configuration provides continuously tunable infrared radiation from 3 μm to 150 μm, hence allowing to probe characteristic vibrational spectra in the so-called "fingerprint region" with a sufficient spectral energy density also allowing for multiple photon processes (IR-MPD). Here we present the first infrared predissociation spectra of He-tagged protonated methanol and ethanol (MeOH_2+/EtOH_2+) stored at 4 K. These vibrational spectra were recorded with both a commercial OPO and FELIX, covering a total spectral range from 3700 wn to 550 wn at a spectral resolution of a few wn. The H-O-H stretching and bending modes clearly distinguish the protonated alcohols from their neutral analoga. For EtOH_2+, also IR-MPD spectra of the bare ion could be recorded. The symmetric and antisymmetric H-O-H stretching bands at around 3 μm show no significant shift within the given spectral resolution in comparison to those recorded with He predissociation, indicating a rather small perturbation caused by the attached He. The vibrational bands were assigned using quantum-chemical calculations on different levels of theory. The computed frequencies correspond favorably to the experimental spectra. Subsequent high resolution measurements could lead to a better structural characterization of these protonated alcohols. Asvany et al.: Phys. Rev.Lett. 94, 073001 (2005), Asvany et al.: Science 309, 1219-1222 (2005)
Infrared predissociation spectroscopy of M+ (C6H6)(1-4)(H2O)(1-2)Ar(0-1) cluster ions, M = Li, Na.
Beck, Jordan P; Lisy, James M
2011-05-05
Infrared predissociation (IRPD) spectra of Li(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar(0-1) and Na(+)(C(6)H(6))(2-4)(H(2)O)(1-2)Ar(1) are presented along with ab initio calculations. The results indicate that the global minimum energy structure for Li(+)(C(6)H(6))(2)(H(2)O)(2) has each water forming a π-hydrogen bond with the same benzene molecule. This bonding motif is preserved in Li(+)(C(6)H(6))(3-4)(H(2)O)(2)Ar(0-1) with the additional benzene ligands binding to the available free OH groups. Argon tagging allows high-energy Li(+)(C(6)H(6))(2-4)(H(2)O)(2)Ar isomers containing water-water hydrogen bonds to be trapped and detected. The monohydrated, Li(+) containing clusters contain benzene-water interactions with varying strength as indicated by shifts in OH stretching frequencies. The IRPD spectra of M(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar are very different for lithium-bearing versus sodium-bearing cluster ions emphasizing the important role of ion size in determining the most favorable balance of competing noncovalent interactions.
N2 state population in Titan's atmosphere
NASA Astrophysics Data System (ADS)
Lavvas, P.; Yelle, R. V.; Heays, A. N.; Campbell, L.; Brunger, M. J.; Galand, M.; Vuitton, V.
2015-11-01
We present a detailed model for the vibrational population of all non pre-dissociating excited electronic states of N2, as well as for the ground and ionic states, in Titan's atmosphere. Our model includes the detailed energy deposition calculations presented in the past (Lavvas, P. et al. [2011]. Icarus 213(1), 233-251) as well as the more recent developments in the high resolution N2 photo-absorption cross sections that allow us to calculate photo-excitation rates for different vibrational levels of singlet nitrogen states, and provide information for their pre-dissociation yields. In addition, we consider the effect of collisions and chemical reactions in the population of the different states. Our results demonstrate that above 600 km altitude, collisional processes are efficient only for a small sub-set of the excited states limited to the A and W(ν = 0) triplet states, and to a smaller degree to the a‧ singlet state. In addition, we find that a significant population of vibrationally excited ground state N2 survives in Titan's upper atmosphere. Our calculations demonstrate that this hot N2 population can improve the agreement between models and observations for the emission of the c4‧ state that is significantly affected by resonant scattering. Moreover we discuss the potential implications of the vibrationally excited population on the ionospheric densities.
Bond Dissociation Energies of Tungsten Molecules: WC, WSi, WS, WSe, and WCl.
Sevy, Andrew; Huffaker, Robert F; Morse, Michael D
2017-12-14
Resonant two-photon ionization spectroscopy was used to locate predissociation thresholds in WC, WSi, WS, WSe, and WCl, allowing bond dissociation energies to be measured for these species. Because of the high degree of vibronic congestion in the observed spectra, it is thought that the molecules dissociate as soon as the lowest separated atom limit is exceeded. From the observed predissociation thresholds, dissociation energies are assigned as D 0 (WC) = 5.289(8) eV, D 0 (WSi) = 3.103(10) eV, D 0 (WS) = 4.935(3) eV, D 0 (WSe) = 4.333(6) eV, and D 0 (WCl) = 3.818(6) eV. These results are combined with other data to obtain the ionization energy IE(WC) = 8.39(9) eV and the anionic bond dissociation energies of D 0 (W-C - ) = 6.181(17) eV, D 0 (W - -C) = 7.363(19) eV, D 0 (W-Si - ) ≤ 3.44(4) eV, and D 0 (W - -Si) ≤ 4.01(4) eV. Combination of the D 0 (WX) values with atomic enthalpies of formation also provides Δ f H 0K ° values for the gaseous WX molecules. Computational results are also provided, which shed some light on the electronic structure of these molecules.
VizieR Online Data Catalog: H2, D2, and HD c3Πu;
NASA Astrophysics Data System (ADS)
Liu, X.; Shemansky, D. E.; Yoshii, J.; Liu, M. J.; Johnson, P. V.; Malone, C. P.; Khakoo, M. A.
2017-11-01
The c3{Pi}u state of the hydrogen molecule has the triplet-state excitation cross-section, and plays an important role in the heating of the upper thermospheres of outer planets by electron excitation. Precise energies of the H2, D2, and HD c3{Pi}u-(v,N) levels are calculated from highly accurate ab initio potential energy curves that include relativistic, radiative, and empirical non-adiabatic corrections. The emission yields are determined from predissociation rates and refined radiative transition probabilities. The excitation function and excitation cross-section of the c3{Pi}u state are extracted from previous theoretical calculations and experimental measurements. The emission cross-section is determined from the calculated emission yield and the extracted excitation cross-section. The kinetic energy (Ek) distributions of H atoms produced via the predissociation of the c3{Pi}u state, the c3{Pi}u--b3{Sigma}u+ dissociative emission by the magnetic dipole and electric quadrupole, and the c3{Pi}u-a3{Sigma}g+-b3{Sigma}u+ cascade dissociative emission by the electric dipole are obtained. The predissociation of the c3{Pi}u+ and c3{Pi}u- states both produce H(1s) atoms with an average Ek of ~4.1eV/atom, while the c3{Pi}u--b3{Sigma}u+ dissociative emissions by the magnetic dipole and electric quadrupole give an average Ek of ~1.0 and ~0.8eV/atom, respectively. The c3{Pi}u-a3{Sigma}g+-b3{Sigma}u+ cascade and dissociative emission gives an average Ek of ~1.3 eV/atom. On average, each H2 excited to the c3{Pi}u state in an H2-dominated atmosphere deposits ~7.1eV into the atmosphere while each H2 directly excited to the a3{Sigma}g+ and d3{Pi}u states contribute ~2.3 and ~3.3eV, respectively, to the atmosphere. The spectral distribution of the calculated continuum emission arising from the X1{Sigma}g+-c3{Pi}u excitation is significantly different from that of direct a3{Sigma}g+ or d3{Pi}u excitations. (5 data files).
NASA Astrophysics Data System (ADS)
Derro, Erika L.
The hydrogen trioxy (HOOO) radical has been implicated as an important intermediate in key processes in the atmosphere. In the present studies, HOOO is produced by the combination of O2 and photolytically generated OH radicals in the collisional region of a pulsed supersonic expansion. Rotationally cooled HOOO is probed in the effectively collision-free region of the expansion using infrared action spectroscopy, an infrared-pump, ultraviolet-probe technique, in which HOOO is vibrationally excited and the nascent OH products of vibrational predissociation are probed via laser-induced fluorescence. High resolution infrared spectra of HOOO and DOOO were observed in the fundamental and overtone OH/D stretching regions (nui and 2nu 1), which comprise a rotationally structured band attributed to the trans conformer, and an unstructured component assigned to the cis conformer. Infrared spectra of HOOO and DOOO combination bands composed of the OH stretch and a low frequency mode (nu1 + nun) were also observed. This allowed identification of vibrational frequencies for five of the six modes for trans-H/DOOO and four of the six modes for cis-HOOO and DOOO. Identification of low frequency modes provides critical information on the vibrational dynamics and thermochemical properties of the HOOO radical, and furthermore, provides a potential means for detecting HOOO in situ in the atmosphere. In addition, the nascent OH X2pi products following vibrational predissociation of HOOO have been investigated. The product state distributions reveal a distinct preference for population of pi(A ') Λ-doublets in OH that is indicative of a planar dissociation of trans-HOOO in which the symmetry of the bonding orbital is maintained. The highest observed OH quantum state allows determination of the stability of HOOO relative to the OH + O 2 asymptote using a conservation of energy approach. In conjunction with a similar investigation of DOOO, the binding energy is determined to be ≤ 5.31 kcal/mol. The atmospheric abundance of HOOO is assessed using a statistical mechanical approach employing the experimentally determined binding energy and spectroscopic properties, which suggests that HOOO may be a significant sink for atmospheric OH radicals, specifically under the low temperature and moderate pressure conditions of the tropopause.
Dissociative and double photoionization cross sections of NO from threshold to 120 A
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Masuoka, T.; Pareek, P. N.
1985-01-01
The partial photoionization cross sections for producing the NO(+) parent ion and the O(+), N(+), and NO(2+) fragmentations from neutral NO are presented from 120 to 614 A. The results indicate predissociation of the 3 pi (21.72 eV) and B-prime 1Sigma(+) (22.73 eV) electronic states of NO(+). The photoionization threshold for double ionization was found to be 39.4 + or - 0.12 eV.
Calculations of predissociative lifetimes of RG...Hal2 Van der Waals complexes
NASA Astrophysics Data System (ADS)
Buchachenko, Alexei A.; Stepanov, N. F.
1992-07-01
Good examples of combined energy- and time-resolved techniques linked by the theoretical solution of a nuclear problem may be found in investigations of the dynamics of weakly bound Van der Waals (VdW) complexes, such as Ar-OH and He-stilbene. Our report concerns only the theoretical aspect of this complex approach. However, we shall stress the importance of energy-resolved spectroscopy for the dynamics and try to illustrate this with some numerical results.
Photodissociation of HCN and HNC isomers in the 7-10 eV energy range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chenel, Aurelie; Roncero, Octavio, E-mail: octavio.roncero@csic.es; Aguado, Alfredo
2016-04-14
The ultraviolet photoabsorption spectra of the HCN and HNC isomers have been simulated in the 7-10 eV photon energy range. For this purpose, the three-dimensional adiabatic potential energy surfaces of the 7 lowest electronic states, and the corresponding transition dipole moments, have been calculated, at multireference configuration interaction level. The spectra are calculated with a quantum wave packet method on these adiabatic potential energy surfaces. The spectra for the 3 lower excited states, the dissociative electronic states, correspond essentially to predissociation peaks, most of them through tunneling on the same adiabatic state. The 3 higher electronic states are bound, hereaftermore » electronic bound states, and their spectra consist of delta lines, in the adiabatic approximation. The radiative lifetime towards the ground electronic states of these bound states has been calculated, being longer than 10 ns in all cases, much longer that the characteristic predissociation lifetimes. The spectra of HCN is compared with the available experimental and previous theoretical simulations, while in the case of HNC there are no previous studies to our knowledge. The spectrum for HNC is considerably more intense than that of HCN in the 7-10 eV photon energy range, which points to a higher photodissociation rate for HNC, compared to HCN, in astrophysical environments illuminated by ultraviolet radiation.« less
Quantum chemical study of methane oxidation species
NASA Technical Reports Server (NTRS)
Jackels, C. F.
1984-01-01
Work completed on the 2A1 excited state and low-lying dissociative states of the methoxy radical is reported. A manuscript was prepared that reports the characterization of the 2A1 electronic state, the excitation energies and Franck-Condon factors for the 2A1 - 2E system, and the energies of intersection between the 2A1 state and the nearby dissociative states. The minimum excitation energy needed for predissociation of methoxy is predicted along with the corresponding implications for atmospheric chemistry.
Dissociative and double photoionization cross sections of NO from threshold to 120 A
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Masuoka, T.; Pareek, P. N.
1985-01-01
The partial photoionization cross sections for producing the NO(+) parent ion and the O(+), N(+), and NO2(+) fragment ions from neutral NO are presented from 120 to 614 A. The results indicate predissociation of the c(sup3) pi (21.72 eV) and B prime (sup 1) sigma (+) (22.73 eV) electronic states of NO(+). The photoionization threshold for double ionization was found to be 39.4 + or 0.12 eV.
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions
NASA Astrophysics Data System (ADS)
Thompson, Michael C.; Baraban, Joshua H.; Stanton, John F.; Weber, J. Mathias
2015-06-01
We use Ar predissociation and vibrational autodetachment below 2100 wn to obtain vibrational spectra of the low-energy modes of nitromethane anion. We interpret the spectra using anharmonic calculations, which reveal strong mode coupling and Fermi resonances. Not surprisingly, the number of evaporated Ar atoms varies with photon energy, and we follow the propensity of evaporating two versus one Ar atoms as photon energy increases. The photodetachment spectrum is discussed in the context of threshold effects and the importance of hot bands.
NASA Astrophysics Data System (ADS)
Portnov, Alexander; Epshtein, Michael; Bar, Ilana
2017-06-01
Nonadiabatic processes, dominated by dynamic passage of reactive fluxes through conical intersections (CIs) are considered to be appealing means for manipulating reaction paths. One approach that is considered to be effective in controlling the course of dissociation processes is the selective excitation of vibrational modes containing a considerable component of motion. Here, we have chosen to study the predissociation of the model test molecule, methylamine and its deuterated isotopologues, excited to well-characterized quantum states on the first excited electronic state, S_{1}, by following the N-H(D) bond fission dynamics through sensitive H(D) photofragment probing. The branching ratios between slow and fast H(D) photofragments, the internal energies of their counter radical photofragments and the anisotropy parameters for fast H photofragments, confirm correlated anomalies for predissociation initiated from specific rovibronic states, reflecting the existence of a dynamic resonance in each molecule. This resonance strongly depends on the energy of the initially excited rovibronic states, the evolving vibrational mode on the repulsive S_{1} part during N-H(D) bond elongation, and the manipulated passage through the CI that leads to radicals excited with C-N-H(D) bending and preferential perpendicular bond breaking, relative to the photolyzing laser polarization, in molecules containing the NH_{2} group. The indicated resonance plays an important role in the bifurcation dynamics at the CI and can be foreseen to exist in other photoinitiated processes and to control their outcome.
NASA Astrophysics Data System (ADS)
Eidelsberg, M.; Lemaire, J. L.; Federman, S. R.; Heays, A. N.; Stark, G.; Lyons, J. R.; Gavilan, L.; de Oliveira, N.
2017-06-01
We carried out experiments at the SOLEIL synchrotron facility to acquire data for modelling CO photochemistry in the vacuum ultraviolet. We report oscillator strengths and predissociation rates for four vibrational bands associated with transitions from the v = 0 level of the X1Σ+ ground state to the v = 0-3 vibrational levels of the core excited W1Π Rydberg state, and for three overlapping bands associated with the 4pπ, 5pπ, and 5pσ Rydberg states between 92.9 and 93.4 nm in 13C18O. These results complete those obtained in the same conditions for 12C16O, 13C16O, and 12C18O recently published by us, and extend the development of a comprehensive database of line positions, oscillator strengths, and linewidths of photodissociating transitions for CO isotopologues. Absorption spectra were recorded using the Vacuum UltraViolet Fourier Transform Spectrometer (VUV-FTS) installed on the Dichroïsme Et Spectroscopie par Interaction avec le Rayonnement Synchrotron (DESIRS) beamline at SOLEIL. The resolving power of the measurements, R = 300 000 to 400 000, allows the analysis of individual line strengths and widths within the bands. Gas column densities in the differentially pumped system were calibrated using the B-X (0-0) band at 115.1 nm in 13C18O.
Sub-Doppler spectroscopy of the trans-HOCO radical in the OH stretching mode.
Chang, Chih-Hsuan; Buckingham, Grant T; Nesbitt, David J
2013-12-19
Rovibrational spectroscopy of the fundamental OH stretching mode of the trans-HOCO radical has been studied via sub-Doppler high-resolution infrared laser absorption in a discharge slit-jet expansion. The trans-HOCO radical is formed by discharge dissociation of H2O to form OH, which then combines with CO and cools in the Ne expansion to a rotational temperature of 13.0(6) K. Rigorous assignment of both a-type and b-type spectral transitions is made possible by two-line combination differences from microwave studies, with full rovibrational analysis of the spectrum based on a Watson asymmetric top Hamiltonian. Additionally, fine structure splittings of each line due to electron spin are completely resolved, thus permitting all three ε(aa), ε(bb), ε(cc) spin-rotation constants to be experimentally determined in the vibrationally excited state. Furthermore, as both a- and b-type transitions for trans-HOCO are observed for the first time, the ratio of transition dipole moment projections along the a and b principal axes is determined to be μ(a)/μ(b) = 1.78(5), which is in close agreement with density functional quantum theoretical predictions (B3LYP/6-311++g(3df,3pd), μ(a)/μ(b) = 1.85). Finally, we note the energetic possibility in the excited OH stretch state for predissociation dynamics (i.e., trans-HOCO → H + CO2), with the present sub-Doppler line widths providing a rigorous upper limit of >2.7 ns for the predissociation lifetime.
Imaging the photodissociation dynamics of the methyl radical from the 3s and 3pz Rydberg states
Marggi Poullain, Sonia; Chicharro, David V.; Zanchet, Alexandre; González, Marta G.; Rubio-Lago, Luis; Senent, María L.; García-Vela, Alberto; Bañares, Luis
2016-01-01
The photodissociation dynamics of the methyl radical from the 3s and 3pz Rydberg states have been studied using velocity map and slice ion imaging in combination with pump-probe nanosecond laser pulses. The reported translational energy and angular distributions of the H(2S) photofragment detected by (2+1) REMPI highlight different dissociation mechanisms for the 3s and 3pz Rydberg states. A narrow peak in the translational energy distribution and an anisotropic angular distribution characterizes the fast 3s photodissociation, while for the 3pz state Boltzmann-type translational energy and isotropic angular distributions are found. High level ab initio calculations have been performed in order to elucidate the photodissociation mechanisms from the two Rydberg states and to rationalize the experimental results. The calculated potential energy curves highlight a typical predissociation mechanism for the 3s state, characterized by the coupling between the 3s Rydberg state and a valence repulsive state. On the other hand, the photodissociation on the 3pz state is initiated by a predissociation process due to the coupling between the 3pz Rydberg state and a valence repulsive state and constrained, later on, by two conical intersections that allow the system to relax to lower electronic states. Such mechanism opens different reaction pathways leading to CH2 photofragments in different electronic states and inducing a transfer of energy between translational and internal modes. PMID:27296907
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Eric L.; Davis, Quincy C.; Morse, Michael D.
The abrupt onset of predissociation in the congested electronic spectra of jet-cooled VC, VN, and VS has been observed using resonant two-photon ionization spectroscopy. It is argued that because of the high density of electronic states in these molecules, the predissociation threshold occurs at the thermochemical threshold for the production of separated atoms in their ground electronic states. As a result, the measured threshold represents the bond dissociation energy. Using this method, bond dissociation energies of D{sub 0}(V C) = 4.1086(25) eV, D{sub 0}(V N) = 4.9968(20) eV, and D{sub 0}(V S) = 4.5353(25) eV are obtained. From these values,more » enthalpies of formation are derived as Δ{sub f,0K}H°(V C(g)) = 827.0 ± 8 kJ mol{sup −1}, Δ{sub f,0K}H°(V N(g)) = 500.9 ± 8 kJ mol{sup −1}, and Δ{sub f,0K}H°(V S(g)) = 349.3 ± 8 kJ mol{sup −1}. Using a thermochemical cycle and the well-known ionization energies of V, VC, and VN, our results also provide D{sub 0}(V{sup +}–C) = 3.7242(25) eV and D{sub 0}(V{sup +}–N) = 4.6871(20) eV. These values are compared to previous measurements and to computational results. The precision of these bond dissociation energies makes them good candidates for testing computational chemistry methods, particularly those that employ density functional theory.« less
NASA Astrophysics Data System (ADS)
Anderson, David T.; Davis, Scott; Nesbitt, David J.
1996-04-01
High resolution near infrared spectra of the two lowest frequency intermolecular modes in HF-stretch excited states of (HF)2 have been characterized using a slit-jet infrared spectrometer. In the spectral region surveyed, ten vibration-rotation-tunneling (VRT) bands are observed and assigned to the low frequency ``van der Waals stretch'' (ν4) and ``geared bend'' (ν5) intermolecular modes, in combination with either the hydrogen bond acceptor (ν1) or donor (ν2) high-frequency intramolecular HF stretches. Analysis of the rotationally resolved spectra provide intermolecular frequencies, rotational constants, tunneling splittings, and predissociation rates for the ν4/ν5 intermolecular excited states. The intermolecular vibrational frequencies in the combination states display a systematic dependence on intramolecular redshift that allows far-IR intermolecular frequencies to be reliably extrapolated from the near-IR data. Approximately tenfold increases in the hydrogen bond interconversion tunneling splittings with either ν4 or ν5 excitation indicate that both intermolecular modes correlate strongly to the tunneling coordinate. The high resolution VRT line shapes reveal mode specific predissociation broadening sensitive predominantly to intramolecular excitation, with weaker but significant additional effects due to low frequency intermolecular excitation. Analysis of the high resolution spectroscopic data for these ν4 and ν5 combination bands suggests strong state mixing between what has previously been considered van der Waals stretch and geared bend degrees of freedom.
NASA Astrophysics Data System (ADS)
Liu, Xianming; Shemansky, Donald E.; Yoshii, Jean; Liu, Melinda J.; Johnson, Paul V.; Malone, Charles P.; Khakoo, Murtadha A.
2017-10-01
The c{}3{{{\\Pi }}}u state of the hydrogen molecule has the second largest triplet-state excitation cross-section, and plays an important role in the heating of the upper thermospheres of outer planets by electron excitation. Precise energies of the H2, D2, and HD c{}3{{{\\Pi }}}u-(v,N) levels are calculated from highly accurate ab initio potential energy curves that include relativistic, radiative, and empirical non-adiabatic corrections. The emission yields are determined from predissociation rates and refined radiative transition probabilities. The excitation function and excitation cross-section of the c{}3{{{\\Pi }}}u state are extracted from previous theoretical calculations and experimental measurements. The emission cross-section is determined from the calculated emission yield and the extracted excitation cross-section. The kinetic energy (E k ) distributions of H atoms produced via the predissociation of the c{}3{{{\\Pi }}}u state, the c{}3{{{\\Pi }}}u- - b{}3{{{Σ }}}u+ dissociative emission by the magnetic dipole and electric quadrupole, and the c{}3{{{\\Pi }}}u - a{}3{{{Σ }}}g+ - b{}3{{{Σ }}}u+ cascade dissociative emission by the electric dipole are obtained. The predissociation of the c{}3{{{\\Pi }}}u+ and c{}3{{{\\Pi }}}u- states both produce H(1s) atoms with an average E k of ˜4.1 eV/atom, while the c{}3{{{\\Pi }}}u- - b{}3{{{Σ }}}u+ dissociative emissions by the magnetic dipole and electric quadrupole give an average E k of ˜1.0 and ˜0.8 eV/atom, respectively. The c{}3{{{\\Pi }}}u - a{}3{{{Σ }}}g+ - b{}3{{{Σ }}}u+ cascade and dissociative emission gives an average E k of ˜1.3 eV/atom. On average, each H2 excited to the c{}3{{{\\Pi }}}u state in an H2-dominated atmosphere deposits ˜7.1 eV into the atmosphere while each H2 directly excited to the a{}3{{{Σ }}}g+ and d{}3{{{\\Pi }}}u states contribute ˜2.3 and ˜3.3 eV, respectively, to the atmosphere. The spectral distribution of the calculated continuum emission arising from the X{}1{{{Σ }}}g+ - c{}3{{{\\Pi }}}u excitation is significantly different from that of direct a{}3{{{Σ }}}g+ or d{}3{{{\\Pi }}}u excitations.
NASA Technical Reports Server (NTRS)
Palma, P. C.; Houwing, A. F. P.; Sandeman, R. J.
1993-01-01
Absolute intensity measurements of impurity emissions in a shock tunnel nozzle flow are presented. The impurity emission intensities were measured with a photomultiplier and optical multichannel analyzer and calibrated against an intensity standard. The various metallic contaminants were identified and their intensities measured in the spectral regions 290 to 330 nm and 375 to 385 nm. A comparison with calculated fluorescence intensities for predissociated laser-induced fluorescence signals is made. It is found that the emission background is negligible for most fluorescence experiments.
Kinetic energies of fragment ions produced by dissociative photoionization of NO
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Angel, G. C.; Rstgi, O. P.
1985-01-01
The kinetic energies of ions produced by dissociative photoionization of NO have been measured at the discrete resonance lines of He (584A) and Ne (736A), and with undispersed synchrotron radiation. O sup + ions were identified with energies from 0 to approximately 0.5 eV and two groups of N sup + ions one with energy of 0.36 eV and another with energies between 0.9 and 1.5 eV, apparently produced by predissociation of the C sup 3 P 1 and B'1 sigma states respectively.
Synchrotron vacuum ultraviolet radiation studies of the D 1Πu state of H2
NASA Astrophysics Data System (ADS)
Dickenson, G. D.; Ivanov, T. I.; Roudjane, M.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Tchang-Brillet, W.-Ü. L.; Glass-Maujean, M.; Haar, I.; Ehresmann, A.; Ubachs, W.
2010-10-01
The 3pπD Π1u state of the H2 molecule was reinvestigated with different techniques at two synchrotron installations. The Fourier transform spectrometer in the vacuum ultraviolet wavelength range of the DESIRS beamline at the SOLEIL synchrotron was used for recording absorption spectra of the D Π1u state at high resolution and high absolute accuracy, limited only by the Doppler contribution at 100 K. From these measurements, line positions were extracted, in particular, for the narrow resonances involving Π1u - states, with an accuracy estimated at 0.06 cm-1. The new data also closely match multichannel quantum defect calculations performed for the Π- components observed via the narrow Q-lines. The Λ-doubling in the D Π1u state was determined up to v =17. The 10 m normal incidence scanning monochromator at the beamline U125/2 of the BESSY II synchrotron, combined with a home-built target chamber and equipped with a variety of detectors, was used to unravel information on ionization, dissociation, and intramolecular fluorescence decay for the D Π1u vibrational series. The combined results yield accurate information on the characteristic Beutler-Fano profiles associated with the strongly predissociated Πu+ parity components of the D Π1u levels. Values for the parameters describing the predissociation width as well as the Fano-q line shape parameters for the J =1 and J =2 rotational states were determined for the sequence of vibrational quantum numbers up to v =17.
Mineo, H; Niu, Y L; Kuo, J L; Lin, S H; Fujimura, Y
2015-08-28
The results of application of the quantum-mechanical adiabatic theory to vibrational predissociation (VPD) of water dimers, (H2O)2 and (D2O)2, are presented. We consider the VPD processes including the totally symmetric OH mode of the dimer and the bending mode of the fragment. The VPD in the adiabatic representation is induced by breakdown of the vibrational adiabatic approximation, and two types of nonadiabatic coupling matrix elements are involved: one provides the VPD induced by the low-frequency dissociation mode and the other provides the VPD through channel interactions induced by the low-frequency modes. The VPD rate constants were calculated using the Fermi golden rule expression. A closed form for the nonadiabatic transition matrix element between the discrete and continuum states was derived in the Morse potential model. All of the parameters used were obtained from the potential surfaces of the water dimers, which were calculated by the density functional theory procedures. The VPD rate constants for the two processes were calculated in the non-Condon scheme beyond the so-called Condon approximation. The channel interactions in and between the initial and final states were taken into account, and those are found to increase the VPD rates by 3(1) orders of magnitude for the VPD processes in (H2O)2 ((D2O)2). The fraction of the bending-excited donor fragments is larger than that of the bending-excited acceptor fragments. The results obtained by quantum-mechanical approach are compared with both experimental and quasi-classical trajectory calculation results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Changala, P. Bryan; Baraban, Joshua H.; Field, Robert W., E-mail: rwfield@mit.edu
2015-08-28
We report novel experimental strategies that should prove instrumental in extending the vibrational and rotational assignments of the S{sub 1} state of acetylene, C{sub 2}H{sub 2}, in the region of the cis-trans isomerization barrier. At present, the assignments are essentially complete up to ∼500 cm{sup −1} below the barrier. Two difficulties arise when the assignments are continued to higher energies. One is that predissociation into C{sub 2}H + H sets in roughly 1100 cm{sup −1} below the barrier; the resulting quenching of laser-induced fluorescence (LIF) reduces its value for recording spectra in this region. The other difficulty is that tunnelingmore » through the barrier causes a staggering in the K-rotational structure of isomerizing vibrational levels. The assignment of these levels requires data for K values up to at least 3. Given the rotational selection rule K′ − ℓ{sup ′′} = ± 1, such data must be obtained via excited vibrational levels of the ground state with ℓ{sup ′′} > 0. In this paper, high resolution H-atom resonance-enhanced multiphoton ionization spectra are demonstrated to contain predissociated bands which are almost invisible in LIF spectra, while preliminary data using a hyperthermal pulsed nozzle show that ℓ{sup ′′} = 2 states can be selectively populated in a jet, giving access to K′ = 3 states in IR-UV double resonance.« less
UV Raman scattering measurements in a Mach 2 H2-air flame for assessment of CFD models
NASA Technical Reports Server (NTRS)
Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.; Jarrett, O., Jr.; Northam, G. B.
1991-01-01
An UV narrowband tunable excimer laser is used for spontaneous Raman scattering measurements in hydrogen diffusion flames. The UV Raman system is characterized by a repetition rate of about 100 Hz, a temporal resolution of about 20 ns, and a spatial resolution of about 0.4 mm. It is concluded that a single KrF excimer laser based on spontaneous Raman scattering in conjunction with laser-induced predissociative fluorescence is capable of measuring instantaneously and simultaneously major species (H2, O2, N2, H2O), minor species (OH), and temperature.
A pulsed supersonic entrainment reactor for the rational preparation of cold ionic complexes
NASA Astrophysics Data System (ADS)
Robertson, W. H.; Kelley, J. A.; Johnson, M. A.
2000-12-01
We describe an ion source for the efficient preparation of cold ion-molecule complexes, X-ṡM. The method relies on condensation of solvent molecules, M, onto argon-solvated ions, X-ṡArm, where the X-ṡArm species are formed in a primary expansion and the molecular partner, M, is interfaced to this flow in the hydrodynamic region by supersonic entrainment. This hybrid "supersonic afterglow" reactor provides a clean synthetic approach for both bare and argon-solvated complexes, where the latter are particularly useful since their structures can be characterized by "nanomatrix" infrared predissociation spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Mesa, Aliezer; Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm; Saalfrank, Peter
2015-05-21
Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the “curse of dimensionality” encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influencemore » of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0{sup +}) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given.« less
Lebech, M; Houver, J C; Raseev, G; dos Santos, A S; Dowek, D; Lucchese, Robert R
2012-03-07
Experimental and theoretical results for molecular-frame photoemission are presented for inner-valence shell photoionization of the CO molecule induced by linearly and circularly polarized light. The experimental recoil frame photoelectron angular distributions (RFPADs) obtained from dissociative photoionization measurements where the velocities of the ionic fragment and photoelectron were detected in coincidence, are compared to RFPADs computed using the multichannel Schwinger configuration interaction method. The formalism for including a finite lifetime of the predissociative ion state is presented for the case of general elliptically polarized light, to obtain the RFPAD rather than the molecular frame photoelectron angular distribution (MFPAD), which would be obtained with the assumption of instantaneous dissociation. We have considered photoionization of CO for the photon energies of 26.0 eV, 29.5 eV, and 32.5 eV. A comparison of experimental and theoretical RFPADs allows us to identify the ionic states detected in the experimental studies. In addition to previously identified states, we found evidence for the 2 (2)Δ state with an ionization potential of 25.3 eV and (2)Σ(+) states with ionization potentials near 32.5 eV. A comparison of the experimental and theoretical RFPADs permits us to estimate predissociative lifetimes of 0.25-1 ps for some of the ion states. Consideration of the MFPADs of a series of (2)Π ion states indicates the importance of inter-channel coupling at low photoelectron kinetic energy and the limitations of a single-channel analysis based on the corresponding Dyson orbitals. © 2012 American Institute of Physics
Schmidt, Johan A; Johnson, Matthew S; Schinke, Reinhard
2013-10-29
We present a first principles study of the carbon dioxide (CO2) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + singlet channel threshold at ~167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ~0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the and potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO2 isotopologues ((12)C(16)O2, (12)C(17)O(16)O, (12)C(18)O(16)O, (13)C(16)O2, and (13)C(18)O(16)O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO2 photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of (17)O containing CO2 more efficient.
Schmidt, Johan A.; Johnson, Matthew S.; Schinke, Reinhard
2013-01-01
We present a first principles study of the carbon dioxide (CO2) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + singlet channel threshold at ∼167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ∼0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the and potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO2 isotopologues (12C16O2, 12C17O16O, 12C18O16O, 13C16O2, and 13C18O16O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO2 photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of 17O containing CO2 more efficient. PMID:23776249
Plucking a hydrogen bond: A near infrared study of all four intermolecular modes in (DF)2
NASA Astrophysics Data System (ADS)
Davis, Scott; Anderson, David T.; Nesbitt, David J.
1996-10-01
The near ir combination band spectra of supersonically cooled (DF)2 in the 2900 to 3300 cm-1 region have been recorded with a high resolution slit jet spectrometer. Twelve vibration-rotation-tunneling (VRT) bands are observed, representing each of the four intermolecular modes (van der Waals stretch ν4, geared bend ν5, out-of-plane torsion ν6, and antigeared bend ν3) built as combination bands on either the ν1 (free) or ν2 (bound) DF stretches. Analysis of the rotationally resolved spectra provide spectroscopic constants, intermolecular frequencies, tunneling splittings, and predissociation rates as a function of both intra- and intermolecular excitation. The intermolecular frequencies demonstrate a small but systematic dependence on intramolecular mode, which is exploited to yield frequency predictions relevant to far-ir studies, as well as facilitate direct comparison with full 6-D quantum calculations on trial potential surfaces. The tunneling splittings demonstrate a much stronger dependence upon intermolecular mode, increasing by as much as an order of magnitude for geared bend excitation. Conversely, high resolution line shape analysis reveals that vibrational predissociation broadening is only modestly affected by intermolecular excitation, and instead exhibits mode specific behavior controlled predominantly by intramolecular excitation. Detailed H/D isotopic vibrational shifts are obtained by comparison with previous combination band studies of all four intermolecular modes in (HF)2. In contrast to the strong state mixing previously observed for (HF)2, the van der Waals stretch and geared bend degrees of freedom are largely decoupled in (DF)2, due to isotopically ``detuning'' of resonances between bend-stretch intermolecular vibrations. Four-dimensional quantum calculations of the (HF)2 and (DF)2 eigenfunctions indicate that the isotopic dependence of this bend-stretch resonance behavior is incorrectly predicted by current hydrogen bond potential surfaces.
Overtone, 2OH spectroscopy of H2Osbnd Kr
NASA Astrophysics Data System (ADS)
Vanfleteren, Thomas; Földes, Tomas; Rizopoulos, Athéna; Herman, Michel
2017-12-01
We have used continuous-wave cavity ring-down spectroscopy to record the spectrum of H2Osbnd Kr in the 2OH excitation range of H2O. 11 sub-bands have been observed for the main krypton isotope, 84 Kr. Their rotational structure (Trot = 18 K) is analyzed and the lines fitted together with literature microwave data, with a unitless standard deviation σ = 0.86 and 1.32 for ortho and para species, respectively. 4 more sub-bands are observed for the three other isotopes and are also analyzed. The upper state vibrational predissociation lifetime is estimated to 4 ns from observed spectral linewidths.
Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions
NASA Astrophysics Data System (ADS)
Thompson, Michael C.; Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.; Weber, J. Mathias
2015-06-01
We report infrared spectra of nitromethane anion, CH3NO2-, in the region 700-2150 cm-1, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.
Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions.
Thompson, Michael C; Baraban, Joshua H; Matthews, Devin A; Stanton, John F; Weber, J Mathias
2015-06-21
We report infrared spectra of nitromethane anion, CH3NO2 (-), in the region 700-2150 cm(-1), obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.
NASA Technical Reports Server (NTRS)
Judge, D. L.; Wu, C. Y. R.
1990-01-01
Absorption of a high energy photon (greater than 6 eV) by an isolated molecule results in the formation of highly excited quasi-discrete or continuum states which evolve through a wide range of direct and indirect photochemical processes. These are: photoionization and autoionization, photodissociation and predissociation, and fluorescence. The ultimate goal is to understand the dynamics of the excitation and decay processes and to quantitatively measure the absolute partial cross sections for all processes which occur in photoabsorption. Typical experimental techniques and the status of observational results of particular interest to solar system observations are presented.
Smirnov, Mikhail; Mirgorodsky, Andrei; Masson, Olivier; Thomas, Philippe
2012-09-20
The effects of intermolecular interactions of TeO(2) molecules in the (TeO(2))(n) oligomers on the polarizability (α) and second hyperpolarizability (γ) are investigated by the use of a density functional method. A significant intermolecular distance dependence of both quantities is observed. The huge dissociation-induced polarizability enhancement is analyzed in terms of the molecular orbital evolution. It is shown that the obtained results can provide a new look at the microscopic origin of the extraordinary dielectric properties of TeO(2) glass.
Active control of the lifetime of excited resonance states by means of laser pulses.
García-Vela, A
2012-04-07
Quantum control of the lifetime of a system in an excited resonance state is investigated theoretically by creating coherent superpositions of overlapping resonances. This control scheme exploits the quantum interference occurring between the overlapping resonances, which can be controlled by varying the width of the laser pulse that creates the superposition state. The scheme is applied to a realistic model of the Br(2)(B)-Ne predissociation decay dynamics through a three-dimensional wave packet method. It is shown that extensive control of the system lifetime is achievable, both enhancing and damping it remarkably. An experimental realization of the control scheme is suggested.
The main beam correction term in kinetic energy release from metastable peaks.
Petersen, Allan Christian
2017-12-01
The correction term for the precursor ion signal width in determination of kinetic energy release is reviewed, and the correction term is formally derived. The derived correction term differs from the traditionally applied term. An experimental finding substantiates the inaccuracy in the latter. The application of the "T-value" to study kinetic energy release is found preferable to kinetic energy release distributions when the metastable peaks are slim and simple Gaussians. For electronically predissociated systems, a "borderline zero" kinetic energy release can be directly interpreted in reaction dynamics with strong curvature in the reaction coordinate. Copyright © 2017 John Wiley & Sons, Ltd.
Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air
NASA Technical Reports Server (NTRS)
Porter, H. S.; Jackman, C. H.; Green, A. E. S.
1976-01-01
Relativistic electron and proton impact cross sections are obtained and represented by analytic forms which span the energy range from threshold to 1 GeV. For ionization processes, the Massey-Mohr continuum generalized oscillator strength surface is parameterized. Parameters are determined by simultaneous fitting to (1) empirical data, (2) the Bethe sum rule, and (3) doubly differential cross sections for ionization. Branching ratios for dissociation and predissociation from important states of N2 and O2 are determined. The efficiency for the production of atomic nitrogen and oxygen by protons with kinetic energy less than 1 GeV is determined using these branching ratio and cross section assignments.
Electron-impact dissociation of molecular hydrogen into neutral fragments
NASA Astrophysics Data System (ADS)
Scarlett, Liam H.; Tapley, Jonathan K.; Fursa, Dmitry V.; Zammit, Mark C.; Savage, Jeremy S.; Bray, Igor
2018-02-01
We present convergent close-coupling calculations of electron-impact dissociation of the ground state of molecular hydrogen into neutral fragments over the range of impact energies from 6 to 300 eV. The calculations account for dissociative excitation, excitation radiative decay dissociation, and predissociation through all bound electronic triplet states, and singlet states up to the D' 1 Π u state. An estimate is given for the contribution from the remaining bound electronic singlet states. Our results are in agreement with the recommended data of Yoon et al. [J. Phys. Chem. Ref. Data 37, 913 (2008)] in the low (6-12 eV) and high (60-70 eV) energy regions, but somewhat lower at the intermediate energies.
THE tilde{A}-tilde{X} AND tilde{B}-tilde{X} ABSORPTIONS OF NO_3 TRAPPED IN SOLID NEON
NASA Astrophysics Data System (ADS)
Jacox, Marilyn E.; Thompson, Warren E.
2009-06-01
Absorptions arising from the tilde{A}-tilde{X} transition of normal and isotopically substituted NO_3 have been observed between 7500 and 9500 cm^{-1}. Details of the spectra will be discussed and assignments will be proposed. Absorptions arising from the tilde{B}-tilde{X} transition of NO_3, with band origin near 15 000 cm^{-1}, have also been observed for the normal species and two of its isotopologues which possess D_{3h} symmetry. As in the gas phase, the absorptions are broadened because of predissociation. The observed band structure corresponds closely with that reported for the gas-phase molecule.
Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Michael C.; Weber, J. Mathias, E-mail: weberjm@jila.colorado.edu; Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215
2015-06-21
We report infrared spectra of nitromethane anion, CH{sub 3}NO{sub 2}{sup −}, in the region 700–2150 cm{sup −1}, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.
Epitaxial growth and characterization of Si/NiSi 2/Si(111) heterostructures
NASA Astrophysics Data System (ADS)
Rizzi, Angela; Förster, A.; Lüth, H.; Slijkerman, W.
1989-04-01
Si/NiSi 2/Si(111) heterostructures are grown under UHV conditions. The well known "template" method is used to produce the epitaxial NiSi 2 interlayer. On top of the suicide, the silicon epitaxial growth is obtained by means of gas phase reaction of SiH 4 at a surface temperature of 500° C. The Si growth rate is strongly enhanced by predissociation of SiH 4 using a hot tungsten filament in the vicinity of the surface. The single steps of the growth are followed in-situ by means of AES, HREELS and LEED analysis. Ex-situ high resolution RBS analysis is also applied for characterization.
Photodisproportionation of (. mu. -oxo)bis((tetraphenylporphinato)iron(III))
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richman, R.M.; Peterson, M.W.
1982-10-20
This report proposes an alternative strategy for photochemical solar energy conversion in which the photocatalyst dissociates from an excited state that may react in the strong coupling limit or even predissociate. The key requirement for uphill thermodynamics is that one photoproduct be either a stronger oxidant or a stronger reductant than the starting compound. The requirement for the potential to recycle as a catalyst is that the products not be reactive radicals. A reaction likely to meet these criteria is a photodisproportionation of the form M-O-M ..-->../sup hv/ MVertical BarO + M. This paper reports the first recognized example ofmore » this mechanism for potentially storing energy.« less
Infrared Spectroscopic Investigation on CH Bond Acidity in Cationic Alkanes
NASA Astrophysics Data System (ADS)
Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka
2016-06-01
We have demonstrated large enhancements of CH bond acidities in alcohol, ether, and amine cations through infrared predissociation spectroscopy based on the vacuum ultraviolet photoionization detection. In this study, we investigate for the cationic alkanes (pentane, hexane, and heptane) with different alkyl chain lengths. The σ electrons are ejected in the ionization of alkanes, while nonbonding electrons are ejected in ionization of alcohols, ethers, and amines. Nevertheless, the acidity enhancements of CH in these cationic alkanes have also been demonstrated by infrared spectroscopy. The correlations of their CH bond acidities with the alkyl chain lengths as well as the mechanisms of their acidity enhancements will be discussed by comparison of infrared spectra and theoretical calculations.
NASA Astrophysics Data System (ADS)
Lazarov, Guenadiy; Lyyra, A. Marjatta; Li, Li
2001-01-01
Two new pairs of singlet-triplet A1Σ+u ∼ b3Πu mixed levels of 7Li2 have been observed and used here as 'window' levels in cw perturbation-facilitated optical-optical double-resonance (PFOODR) experiments. Previously, only one b3Πu vibrational level, v = 19, was known to mix with the singlet A1Σ+uv = 13 level, resulting in three perturbed A ∼ b pairs [L. Li, T. An, T.-J. Whang, A. M. Lyyra, W. C. Stwalley, R. W. Field, and R. A. Bernheim, J. Chem. Phys. 96, 3342 (1992)]. The scarcity of window levels and the resulting difficulty in accessing the dark triplet states of Li2 is caused by the weak spin-orbit interaction of Li2. The two new mixed b3Πuv = 15 and 22 levels reported here enhance access to the dark triplet state manifold through expansion of the Franck-Condon overlap factor range. Furthermore, the earlier range of accessible rotational levels, N = 5, 7, and 10, is now expanded to include N = 8 and N = 16, thereby allowing for more reliable determination of the excited triplet states rotational structure. To demonstrate the importance of the new A1Σ+u ∼ b3Πu mixed levels, we have studied the 23Σ+g state by cw PFOODR fluorescence excitation spectroscopy. New molecular constants and RKR potential curve have been determined. As previously reported [L. Li, G. Lazarov, and A. M. Lyyra, J. Mol. Spectrosc. 191, 387 (1998)], the 23Σ+g state interacts with the repulsive 13Πg state by L-uncoupling and predissociates. We show that some 23Πg levels predissociate accidentally by the 13Πg state via the 23Σ+g state through L-uncoupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.
2015-02-14
We clarify the role of the critical imidazolium C{sub (2)}H position (the central C between N atoms in the heterocycle) in the assembly motif of the [EMIM][BF{sub 4}] ionic liquid by analyzing the vibrational spectra of the bare EMIM{sup +} ion as well as that of the cationic [EMIM]{sub 2}[BF{sub 4}]{sup +} (EMIM{sup +} = 1-ethyl-3-methylimidazolium, C{sub 6}H{sub 11}N{sub 2}{sup +}) cluster. Vibrational spectra of the cold, mass-selected ions are obtained using cryogenic ion vibrational predissociation of weakly bound D{sub 2} molecules formed in a 10 K ion trap. The C{sub (2)}H behavior is isolated by following the evolution ofmore » key vibrational features when the C{sub (2)} hydrogen, the proposed binding location of the anion to the imidazolium ring, is replaced by either deuterium or a methyl group (i.e., in the EMMIM{sup +} analogue). Strong features in the ring CH stretching region of the bare ion are traced to Fermi resonances with overtones of lower frequency modes. Upon incorporation into the EMIM{sup +} ⋅ ⋅ ⋅ BF{sub 4}{sup −} ⋅ ⋅ ⋅ EMIM{sup +} ternary complex, the C{sub (2)}H oscillator strength is dramatically increased, accounting for the much more complicated patterns derived from the EMIM{sup +} ring CH stretches in the light isotopomer, which are strongly suppressed in the deuterated analogue. Further changes in the spectra that occur when the C{sub (2)}H is replaced by a methyl group are consistent with BF{sub 4}{sup −} attachment directly to the imidazolium ring in an arrangement that maximizes the electrostatic interaction between the molecular ions.« less
NASA Astrophysics Data System (ADS)
Anderson, David T.; Davis, Scott; Nesbitt, David J.
1996-09-01
High-resolution near infrared spectra of the two ``high'' frequency intermolecular modes of (HF)2 have been characterized in HF-stretch excited states using a slit jet spectrometer. In the spectral region between 4280 and 4480 cm-1, four vibration-rotation-tunneling (VRT) bands are observed and assigned to tunneling pairs of the out-of-plane torsion (ν6) and antigeared bend (ν3) intermolecular modes, in combination with the hydrogen bond donor (ν2) and acceptor (ν1) high-frequency intramolecular HF stretches, respectively. Analysis of the jet-cooled, rotationally resolved spectra provide intermolecular frequencies, rotational constants, tunneling splittings, and predissociation rates for the ν3/ν6 intermolecular excited states. The relatively small changes in the hydrogen bond interconversion tunneling splitting with either ν3 or ν6 excitation indicate that neither intermolecular mode is strongly coupled to the tunneling coordinate. The high-resolution VRT linewidths reveal mode specific predissociation broadening sensitive predominantly to intramolecular excitation, but with significant additional effects due to low-frequency intermolecular excitation as well. The intermolecular vibrational frequencies in the combination states display a systematic dependence on intramolecular redshift that allows all four intermolecular fundamental frequencies to be extrapolated from the near-ir data. Agreement between full 6-D quantum calculations and experiment for the out-of-plane torsion (ν6) vibration is remarkably good (0.5%). However, significant discrepancies (≳10%) between theory and experiment are obtained for the antigeared bend (ν3), indicating the need for further refinement of the HF dimer potential surface. Finally, the observation of all four intermolecular modes allows zero-point contributions to the binding energy to be reliably estimated. The revised value for the binding energy, De=1580(35) cm-1, is slightly higher than semiempirical estimates but now in excellent agreement with recent high level ab initio calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishino, Yojiro; Hasegawa, Tatsuya; Yamaguchi, Shigeki
1999-07-01
Using a novel optical system, simultaneous imaging of schlieren photography and laser induced predissociation fluorescence of OH radicals (OH-LIPF) have been carried out to examine combustion processes and flame structure in a two-dimensional valveless pulse combustor. Simultaneous imaging of schlieren photographs and spontaneous OH-emission have also been made, in order to obtain information on the behavior of the flame front during a cycle of pulsation. The pulse combustor used in this experiment consists of a combustion chamber of a volume of 125 cm{sup 3} and a tailpipe of a length of 976 mm, which is followed by an automobile muffler.more » The fuel used is commercial grade gaseous propane.« less
Ab initio non-adiabatic study of the 4pσ B'' 1Σ+u state of H2
NASA Astrophysics Data System (ADS)
Glass-Maujean, M.; Schmoranzer, H.
2018-05-01
Fully ab initio non-adiabatic multichannel quantum defect calculations of the 4pσ B'' 1∑u+ energy levels, line intensities and widths, based on the latest quantum-chemical clamped-nuclei calculations of Wolniewicz and collaborators are presented for H2. The B″ state corresponds to the inner well of the ? state. The B'' v ≥ 1 levels are rapidly predissociated through vibrational coupling with the 3pσ B' 1Σ+u continuum so that coupled-equation calculations become unstable. Multichannel quantum defect theory, on the other hand, is demonstrated to be particularly suited to this situation. Experimental data as level energies, line intensities and dissociation widths were revisited and corrected. Reinvestigating previously published spectra, several new lines were assigned.
Solar flux variability and the lifetimes of cometary H2O and OH
NASA Astrophysics Data System (ADS)
Budzien, S. A.; Festou, M. C.; Feldman, P. D.
1994-01-01
A solar EUV/FUV flux model based on recent SUSIM solar observations is presented. It is shown that both the fluxes and variabilities of the model are more consistent with SME and SUSIM solar spectrum measurements than those of the SERF1 model. It is calculated that photodissociation accounts for about 80 percent of the H2O destruction rate, while photoionization and solar wind particle interactions each account for about 10 percent of the H2O destruction. The calculated H2O and OH lifetimes against direct photodissociation both vary by 30 percent with solar activity. The major destruction channel for OH is predissociation, while direct photodissociation and solar wind interactions account for roughly 30 and 10 percent of the destruction rate, respectively.
Photodissociation dynamics and spectroscopy of free radical combustion intermediates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, David Lewis
1996-12-01
The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, P(E T), and angular distribution of the recoiling fragments using a time- and position-sensitive detector. Ab initio calculationsmore » are combined with dynamical and statistical models to interpret the observed data. The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work.« less
Dissociation energy and dynamics of water clusters
NASA Astrophysics Data System (ADS)
Ch'ng, Lee Chiat
The state-to-state vibrational predissociation (VP) dynamics of water clusters were studied following excitation of a vibrational mode of each cluster. Velocity-map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated center-of-mass translational energy distributions. Product energy distributions and dissociation energies were determined. Following vibrational excitation of the HCl stretch fundamental of the HCl-H2O dimer, HCl fragments were detected by 2 + 1 REMPI via the f 3□2(nu' = 0) ← X 1Sigma+(nu'' = 0) and V1Sigma + (nu' = 11 and 12) ← X1Sigma+ (nu'' = 0) transitions. REMPI spectra clearly show HCl from dissociation produced in the ground vibrational state with J'' up to 11. The fragments' center-of-mass translational energy distributions were determined from images of selected rotational states of HCl and were converted to rotational state distributions of the water cofragment. All the distributions could be fit well when using a dimer dissociation energy of bond dissociation energy D0 = 1334 +/- 10 cm--1. The rotational distributions in the water cofragment pair-correlated with specific rotational states of HCl appear nonstatistical when compared to predictions of the statistical phase space theory. A detailed analysis of pair-correlated state distributions was complicated by the large number of water rotational states available, but the data show that the water rotational populations increase with decreasing translational energy. H2O fragments of this dimer were detected by 2 + 1 REMPI via the C˜1B1(000) ← X˜1A1(000) transition. REMPI clearly shows that H2O from dissociation is produced in the ground vibrational state. The fragment's center-of-mass translational energy distributions were determined from images of selected rotational states of H2O and were converted to rotational state distributions of the HCl cofragment. The distributions gave D0 = 1334 +/- 10 cm --1 and show a clear preference for rotational levels in the HCl fragment that minimize translational energy release. The usefulness of 2 + 1 REMPI detection of water fragment is discussed. The hydrogen bonding in water is dominated by pair-wise dimer interactions, and the predissociation of the water dimer following vibrational excitation is reported. The measured D0 values of (H 2O)2 and (D2O)2, 1105 and 1244 +/- 10 cm--1, respectively, are in excellent agreement with the calculated values of 1103 and 1244 +/- 5 cm--1. Pair-correlated water fragment rovibrational state distributions following vibrational predissociation of (H2O)2 and (D2O) 2 were obtained upon excitation of the hydrogen bonded OH and OD stretch fundamentals, respectively. Quasiclassical trajectory calculations, using an accurate full-dimensional potential energy surface, are in accord with and help to elucidate experiment. Experiment and theory find predominant excitation of the fragment bending mode upon hydrogen bond breaking. A minor channel is also observed in which both fragments are in the ground vibrational state and are highly rotationally excited. The theoretical calculations reveal equal probability of bending excitation in the donor and acceptor subunits, which is a result of interchange of donor and acceptor roles. The rotational distributions associated with the major channel, in which one water fragment has one quantum of bend, and the minor channel with both water fragments in the ground vibrational state are calculated, and are in agreement with experiment. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Kuwata, Keith T.
Ionic clusters are useful as model systems for the study of fundamental processes in solution and in the atmosphere. Their structure and reactivity can be studied in detail using vibrational predissociation spectroscopy, in conjunction with high level ab initio calculations. This thesis presents the applications of infrared spectroscopy and computation to a variety of gas-phase cluster systems. A crucial component of the process of stratospheric ozone depletion is the action of polar stratospheric clouds (PSCs) to convert the reservoir species HCl and chlorine nitrate (ClONO2) to photochemically labile compounds. Quantum chemistry was used to explore one possible mechanism by which this activation is effected: Cl- + ClONO2 /to Cl2 + NO3- eqno(1)Correlated ab initio calculations predicted that the direct reaction of chloride ion with ClONO2 is facile, which was confirmed in an experimental kinetics study. In the reaction a weakly bound intermediate Cl2-NO3- is formed, with ~70% of the charge localized on the nitrate moiety. This enables the Cl2-NO3- cluster to be well solvated even in bulk solution, allowing (1) to be facile on PSCs. Quantum chemistry was also applied to the hydration of nitrosonium ion (NO+), an important process in the ionosphere. The calculations, in conjunction with an infrared spectroscopy experiment, revealed the structure of the gas-phase clusters NO+(H2O)n. The large degree of covalent interaction between NO+ and the lone pairs of the H2O ligands is contrasted with the weak electrostatic bonding between iodide ion and H2O. Finally, the competition between ion solvation and solvent self-association is explored for the gas-phase clusters Cl/-(H2O)n and Cl-(NH3)n. For the case of water, vibrational predissociation spectroscopy reveals less hydrogen bonding among H2O ligands than predicted by ab initio calculations. Nevertheless, for n /ge 5, cluster structure is dominated by water-water interactions, with Cl- only partially solvated by the water cluster. Preliminary infrared spectra and computations on Cl- (NH3)n indicate that NH3 preferentially binds to Cl- ion instead of forming inter-solvent networks.
NASA Technical Reports Server (NTRS)
Van Ijzendoorn, L. J.; Baas, F.; Koernig, S.; Greenberg, J. M.; Allamandola, L. J.
1986-01-01
Laser-induced fluorescence and phosphorescence as well as infrared and visible absorption spectra of glyoxal in Ar, N2, and CO matrices are presented and analyzed. Glyoxal in its first excited electronic state is shown to form an exciplex with its nearest neighbors in all three matrices, and transitions normally forbidden dominate the emission spectra. The spectral characteristics of these complexes are similar to those of the Ar-glyoxal complex found in supersonic beam experiments. Due to the matrix cage effect, no vibrational predissociation is observed. The phosphorescence lifetime is determined and an upper limit is given for the fluorescence lifetime. This, in combination with the relative intensities of fluorescence and phosphorescence, can be used to place limits on the quantum yields of the various relaxation processes.
High-resolution Fourier-transform extreme ultraviolet photoabsorption spectroscopy of 14N15N
NASA Astrophysics Data System (ADS)
Heays, A. N.; Dickenson, G. D.; Salumbides, E. J.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Lewis, B. R.; Ubachs, W.
2011-12-01
The first comprehensive high-resolution photoabsorption spectrum of 14N15N has been recorded using the Fourier-transform spectrometer attached to the Desirs beamline at the Soleil synchrotron. Observations are made in the extreme ultraviolet and span 100 000-109 000 cm-1 (100-91.7 nm). The observed absorption lines have been assigned to 25 bands and reduced to a set of transition energies, f values, and linewidths. This analysis has verified the predictions of a theoretical model of N2 that simulates its photoabsorption and photodissociation cross section by solution of an isotopomer independent formulation of the coupled-channel Schrödinger equation. The mass dependence of predissociation linewidths and oscillator strengths is clearly evident and many local perturbations of transition energies, strengths, and widths within individual rotational series have been observed.
Capturing Hammerhead Ribozyme Structures in Action by Modulating General Base Catalysis
Chi, Young-In; Martick, Monika; Lares, Monica; Kim, Rosalind; Scott, William G; Kim, Sung-Hou
2008-01-01
We have obtained precatalytic (enzyme–substrate complex) and postcatalytic (enzyme–product complex) crystal structures of an active full-length hammerhead RNA that cleaves in the crystal. Using the natural satellite tobacco ringspot virus hammerhead RNA sequence, the self-cleavage reaction was modulated by substituting the general base of the ribozyme, G12, with A12, a purine variant with a much lower pKa that does not significantly perturb the ribozyme's atomic structure. The active, but slowly cleaving, ribozyme thus permitted isolation of enzyme–substrate and enzyme–product complexes without modifying the nucleophile or leaving group of the cleavage reaction, nor any other aspect of the substrate. The predissociation enzyme-product complex structure reveals RNA and metal ion interactions potentially relevant to transition-state stabilization that are absent in precatalytic structures. PMID:18834200
Finite-rate chemistry effects in a Mach 2 reacting flow
NASA Technical Reports Server (NTRS)
Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.; Jarrett, O., Jr.; Northam, G. B.
1991-01-01
UV spontaneous vibrational Raman scattering and laser-induced predissociative fluorescence (LIPF) are combined and applied to a supersonic flame. For the first time, simultaneous measurements of temperature, major species (H2, O2, N2, H2O), and minor species (OH) concentrations are obtained with a 'single' excimer laser in a supersonic-lifted hydrogen-air diffusion flame. In the supersonic flame, a small amount of reaction occurs upstream of the lifted flame base, due to shock wave interactions and mixing with hot vitiated air. The strong turbulent mixing and high total enthalpy fluctuations lead to nonequilibrium values of temperature, and major and minor species concentrations. Combustion occurs farther downstream of the lifted region where slow three-body recombination reactions result in superequilibrium OH concentrations that depress the temperatures below their equilibrium values. Farther downstream, ambient air entrainment contaminates flame properties.
Competitive internal transfers in metastable decay of cluster ions
NASA Astrophysics Data System (ADS)
Buonomo, E.; Gianturco, F. A.; Delgado-Barrio, G.; Miret-Artés, S.; Villarreal, P.
1994-05-01
In a previous study of fragmentation patterns of (Ar)+3 clusters [G. Delgado-Barrio, S. Miret-Artés, P. Villarreal, and F. A. Gianturco, Z. Phys. D 27, 354 (1993)] it was found that overall rotations control the lifetimes of the occupied metastable states of the cluster and that a spherical, effective interaction was sufficient to describe the dynamical process. In the present study, the strong anisotropy of a more realistic three-particle interaction is introduced and its effects on metastable decay are examined. By separating internal rotations from internal vibrations of the diatomic ion, it is possible to show that internal predissociation pathways are very efficient and lead to very short lifetimes. The latter can be lengthened only when overall rotational states are directly included, thus confirming the physical picture of the earlier work.
Infrared spectroscopy of hydrated naphthalene cluster anions.
Knurr, Benjamin J; Adams, Christopher L; Weber, J Mathias
2012-09-14
We present infrared spectra of mass-selected C(10)H(8)(-)·(H(2)O)(n)·Ar(m) cluster anions (n = 1-6) obtained by Ar predissociation spectroscopy. The experimental spectra are compared with predicted spectra from density functional theory calculations. The OH groups of the water ligands are involved in H-bonds to other water molecules or to the π system of the naphthalene anion, which accommodates the excess electron. The interactions in the water network are generally found to be more important than those between water molecules and the ion. For 2 ≤ n ≤ 4 the water molecules form single layer water networks on one side of the naphthalene anion, while for n = 5 and 6, cage and multilayer structures become more energetically favorable. For cluster sizes with more than 3 water molecules, multiple conformers are likely to be responsible for the experimental spectra.
ExoMol line lists XXVIII: The rovibronic spectrum of AlH
NASA Astrophysics Data System (ADS)
Yurchenko, Sergei N.; Williams, Henry; Leyland, Paul C.; Lodi, Lorenzo; Tennyson, Jonathan
2018-06-01
A new line list for AlH is produced. The WYLLoT line list spans two electronic states X 1Σ+ and A 1Π. A diabatic model is used to model the shallow potential energy curve of the A 1Π state, which has a strong pre-dissociative character with only two bound vibrational states. Both potential energy curves are empirical and were obtained by fitting to experimentally derived energies of the X 1Σ+ and A 1Π electronic states using the diatomic nuclear motion codes DPOTFIT and DUO. High temperature line lists plus partition functions and lifetimes for three isotopologues 27AlH, 27AlD and 26AlH were generated using ab initio dipole moments. The line lists cover both the X-X and A-X systems and are made available in electronic form at the CDS and ExoMol databases.
An assumed joint-Beta PDF approach for supersonic turbulent combustion
NASA Technical Reports Server (NTRS)
Baurle, R. A.; Alexopoulos, G. A.; Hassan, H. A.; Drummond, J. P.
1992-01-01
In a recent experiment, Cheng et al. (1991) used ultraviolet spontaneous vibrational Raman scattering and laser-induced predissociative fluorescence techniques for simultaneous measurements of temperature and concentrations of O2, H2, H2O, OH, and N2 (and their rms) in supersonic turbulent reacting shear layers. Because present computational techniques are not suited for prediction of all of the above measurements, a new approach has been developed and is being used to predict all relevant flow properties and their rms (where appropriate). The approach explores the use of a joint-Beta PDF for concentrations. It was found that the general expression of this PDF was impractical because of decoding problems resulting from determining the various parameters of the PDF. Thus, a special case of this general expression was considered. Calculations using this simplified version of the joint-Beta PDF were not consistent with the available data from the experiment.
NASA Technical Reports Server (NTRS)
Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.
1991-01-01
Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.
How does methylation suppress the electron-induced decomposition of 1-methyl-nitroimidazoles?
NASA Astrophysics Data System (ADS)
Kossoski, F.; Varella, M. T. do N.
2017-10-01
The efficient decomposition of nitroimidazoles (NIs) by low energy electrons is believed to underlie their radiosensitizing properties. Recent dissociative electron attachment (DEA) measurements showed that methylation at the N1 site unexpectedly suppresses the electron-induced reactions in 4(5)-NI. We report theoretical results that provide a clear interpretation of that astounding finding. Around 1.5 eV, DEA reactions into several fragments are initiated by a π* resonance, not considered in previous studies. The autoionization lifetime of this anion state, which limits the predissociation dynamics, is considerably shorter in the methylated species, thereby suppressing the DEA signals. On the other hand, the lifetime of the π* resonance located around 3 eV is less affected by methylation, which explains why DEA is still observed at these energies. Our results demonstrate how even a simple methylation can significantly modify the probabilities for DEA reactions, which may be significant for NI-based cancer therapy.
NASA Technical Reports Server (NTRS)
Misakian, M.; Mumma, M. J.; Faris, J. F.
1975-01-01
Dissociative excitation of CO2 by electron impact was studied using the methods of translational spectroscopy and angular distribution analysis. Earlier time of flight studies revealed two overlapping spectra, the slower of which was attributed to metastable CO(a3 pi) fragments. The fast peak is the focus of this study. Threshold energy, angular distribution, and improve time of flight measurements indicate that the fast peak actually consists of five overlapping features. The slowest of the five features is found to consist of metastable 0(5S) produced by predissociation of a sigma u + state of CO2 into 0(5S) + CO(a3 pi). Oxygen Rydberg fragments originating directly from a different sigma u + state are believed to make up the next fastest feature. Mechanisms for producing the three remaining features are discussed.
NASA Astrophysics Data System (ADS)
DeBlase, Andrew F.; Weddle, Gary H.; Archer, Kaye A.; Jordan, Kenneth D.; Johnson, Mark
2015-06-01
As an isolated species, the radical anion of pyridine (Py-) exists as an unstable transient negative ion, while in aqueous environments it is known to undergo rapid protonation to form the neutral pyridinium radical [PyH(0)] along with hydroxide. Furthermore, the negative adiabatic electron affinity (AEA) of Py- can become diminished by the solvation energy associated with cluster formation. In this work, we focus on the hydrates [Py\\cdot(H2O)n]- with n = 3-5 and elucidate the structures of these water clusters using a combination of vibrational predissociation and photoelectron spectroscopies. We show that H-trasfer to form PyH(0) occurs in these clusters by the infrared signature of the nascent hydroxide ion and by the sharp bending vibrations of aromatic ring CH bending.
Vibrational dynamics of aniline (N2)1 clusters in their first excited singlet state
NASA Astrophysics Data System (ADS)
Hineman, M. F.; Kim, S. K.; Bernstein, E. R.; Kelley, D. F.
1992-04-01
The first excited singlet state S1 vibrational dynamics of aniline(N2)1 clusters are studied and compared to previous results on aniline(CH4)1 and aniline(Ar)1. Intramolecular vibrational energy redistribution (IVR) and vibrational predissociation (VP) rates fall between the two extremes of the CH4 (fast IVR, slow VP) and Ar (slow IVR, fast VP) cluster results as is predicted by a serial IVR/VP model using Fermi's golden rule to describe IVR processes and a restricted Rice-Ramsperger-Kassel-Marcus (RRKM) theory to describe unimolecular VP rates. The density of states is the most important factor determining the rates. Two product states, 00 and 10b1, of bare aniline and one intermediate state ˜(00) in the overall IVR/VP process are observed and time resolved measurements are obtained for the 000 and ˜(000) transitions. The results are modeled with the serial mechanism described above.
VizieR Online Data Catalog: H2 d3{Pi}u excitation by elec
NASA Astrophysics Data System (ADS)
Liu, X.; Shemansky, D. E.; Yoshii, J.; Johnson, P. V.; Malone, C. P.; Ajello, J. M.
2016-05-01
Electron-impact excitation of H2 triplet states plays an imp role in the heating of outer planet upper thermospheres. The d3{Pi}u state is the third ungerade triplet state, and the d3{Pi}u-a3{Sigma}g+ emission is the largest cascade channel for the a3{Sigma}g+ state. Accurate energies of the d3{Pi}u-(v, J) levels are calculated from an ab initio potential energy curve. Radiative lifetimes of the d3{Pi}u(v,J) levels are obtained by an accurate evaluation of the d3{Pi}u-a3{Sigma}g+ transition probabilities. The emission yields are determined from experimental lifetimes and calculated radiative lifetimes and are further verified by comparing experimental and synthetic d3{Pi}u-a3{Sigma}g+ spectra at 20eV impact energy. Spectral analysis revealed that multipolar components beyond the dipolar term are required to model the X1{Sigma}g+-d3{Pi}u excitation, and significant cascade excitation occurs at the d3{Pi}u (v=0,1) levels. Kinetic energy (Ek) distributions of H atoms produced via predissociation of the 3{Pi}u state and the d3{Pi}u-a3{Sigma}g+-b3{Sigma}u+ cascade dissociative emission are obtained. Predissociation of the d3{Pi}u state produces H atoms with an average Ek of 2.3+/-0.4 eV/atom, while the Ekdistribution of the d3{Pi}u-a3{Sigma}g+-b3{Sigma}u+ channel is similar to that of the X1{Sigma}g+-a3{Sigma}g+-b3{Sigma}u+ channel and produces H(1s) atoms with an average Ek of 1.15+/-0.05eV/atom. On average, each H2 excited to the d3{Pi}u state in an H2-dominated atmosphere deposits 3.3+/-0.4eV into the atmosphere, while each H2directly excited to the a3{Sigma}g+ state gives 2.2-2.3eV to the atmosphere. The spectral distribution of the calculated a3{Sigma}g+-b3{Sigma}u+ continuum emission due to the X1{Sigma}g+-d3{Pi}u excitation is significantly different from that of direct a3{Sigma}g+ excitation. (2 data files).
Stalking Higher Energy Conformers on the Potential Energy Surface of Charged Species.
Brites, Vincent; Cimas, Alvaro; Spezia, Riccardo; Sieffert, Nicolas; Lisy, James M; Gaigeot, Marie-Pierre
2015-03-10
Combined theoretical DFT-MD and RRKM methodologies and experimental spectroscopic infrared predissociation (IRPD) strategies to map potential energy surfaces (PES) of complex ionic clusters are presented, providing lowest and high energy conformers, thresholds to isomerization, and cluster formation pathways. We believe this association not only represents a significant advance in the field of mapping minima and transition states on the PES but also directly measures dynamical pathways for the formation of structural conformers and isomers. Pathways are unraveled over picosecond (DFT-MD) and microsecond (RRKM) time scales while changing the amount of internal energy is experimentally achieved by changing the loss channel for the IRPD measurements, thus directly probing different kinetic and isomerization pathways. Demonstration is provided for Li(+)(H2O)3,4 ionic clusters. Nonstatistical formation of these ionic clusters by both direct and cascade processes, involving isomerization processes that can lead to trapping of high energy conformers along the paths due to evaporative cooling, has been unraveled.
Photodissociation of CS from Excited Rovibrational Levels
NASA Astrophysics Data System (ADS)
Pattillo, R. J.; Cieszewski, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.; McCann, J. F.; McLaughlin, B. M.
2018-05-01
Accurate photodissociation cross sections have been computed for transitions from the X 1Σ+ ground electronic state of CS to six low-lying excited electronic states. New ab initio potential curves and transition dipole moment functions have been obtained for these computations using the multi-reference configuration interaction approach with the Davidson correction (MRCI+Q) and aug-cc-pV6Z basis sets. State-resolved cross sections have been computed for transitions from nearly the full range of rovibrational levels of the X 1Σ+ state and for photon wavelengths ranging from 500 Å to threshold. Destruction of CS via predissociation in highly excited electronic states originating from the rovibrational ground state is found to be unimportant. Photodissociation cross sections are presented for temperatures in the range between 1000 and 10,000 K, where a Boltzmann distribution of initial rovibrational levels is assumed. Applications of the current computations to various astrophysical environments are briefly discussed focusing on photodissociation rates due to the standard interstellar and blackbody radiation fields.
NASA Astrophysics Data System (ADS)
Jones, D. B.; Cartwright, D. C.; Campbell, L.; Teubner, P. J. O.; Brunger, M. J.; Bottema, M. J.
2004-09-01
We report on the extension of our Statistical Equlibrium Code (SEC) to determine the electronic-vibrational behaviour of O2 in the thermosphere, under night-time auroral conditions. This work was necessitated by the inadequacies in previous studies where the electron-impact cross section data bases employed have been superceeded, and/or direct excitation of states via electron impact has been neglected. Here we use the latest electron-impact cross section data bases to present the first electron-impact excitation rates for the 8 lowest lying electronic states of O_2. We then use these rates in conjunction with the most accurately available Franck-Condon factors, transition probabilities and quenching rates to determine the excited state populations. Note that predissociation, which is important for O_2, is also included in our model. We present radiative rates for various transitions and compare these results with those from other models and experimental rocket measurements.
Far-UV photochemical bond cleavage of n-amyl nitrite: bypassing a repulsive surface.
Minitti, Michael P; Zhang, Yao; Rosenberg, Martin; Brogaard, Rasmus Y; Deb, Sanghamitra; Sølling, Theis I; Weber, Peter M
2012-01-19
We have investigated the deep-UV photoinduced, homolytic bond cleavage of amyl nitrite to form NO and pentoxy radicals. One-color multiphoton ionization with ultrashort laser pulses through the S(2) state resonance gives rise to photoelectron spectra that reflect ionization from the S(1) state. Time-resolved pump-probe photoionization measurements show that upon excitation at 207 nm, the generation of NO in the v = 2 state is delayed, with a rise time of 283 (16) fs. The time-resolved mass spectrum shows the NO to be expelled with a kinetic energy of 1.0 eV, which is consistent with dissociation on the S(1) state potential energy surface. Combined, these observations show that the first step of the dissociation reaction involves an internal conversion from the S(2) to the S(1) state, which is followed by the ejection of the NO radical on the predissociative S(1) state potential energy surface.
NASA Astrophysics Data System (ADS)
Voss, Jonathan M.; Fischer, Kaitlyn C.; Garand, Etienne
2018-05-01
We report an isomer specific IR-IR double resonance study of the mass-selected protonated triglycine peptide. Comparison of experimental spectra with calculations reveals the presence of two isomers, with protonation occurring at either the terminal amine site or one of the amide oxygen sites. The amine protonated isomer identified in our experiment contains an atypical cis amide configuration as well as a more typical trans amide. The amide protonated peptide, on the other hand, contains two trans amide moieties. Both isomers are found to be the lowest energy structures for their respective protonation site, but it is unclear, from experiments and calculations, which one is the global minimum. The presence of both in our experiments likely points to kinetic trapping of a higher energy structure. Finally, the observed frequencies of the Nsbnd H and Osbnd H stretch vibrations are used to estimate the hydrogen-bond strengths present in each isomer, accounting for the relative stabilities of these structures.
NASA Astrophysics Data System (ADS)
Wolk, Arron B.; Garand, Etienne; Jones, Ian M.; Kamrath, Michael Z.; Hamilton, Rew; Johnson, Mark A.
2012-06-01
We report the infrared predissociation spectra of a family of ionic diphenylacetylene molecular switch complexes. The electrosprayed complexes were trapped and cooled in a cryogenic (10K) quadrupole ion trap and tagged with molecular deuterium. The infrared spectra of the vibrationally cold species reveal sharp transitions over a wide energy range (800 - 3800 cm-1), facilitating comparison to harmonic spectra. The evolution of the band pattern upon derivatization of the complexes exposes the signatures of the amide, urea, and carbonyl functionalities, enabling unambiguous identification of the non-covalent interactions that control the secondary structure of the molecule. Complexation with the tetramethylammonium cation reveals a conformation analogous to that of the neutral molecule, while halide ion attachment induces a conformational change similar to that observed earlier in solution. In several cases, both the donor and acceptor groups involved in the multidentate H-bonds are observed, providing a microscopic mechanical picture of the interactions at play. I. Jones, and A. Hamilton, Angew. Chem. Intl. Edit. 50, 4597 (2011).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, Jonathan M.; Fischer, Kaitlyn C.; Garand, Etienne
Here, we report an isomer specific IR-IR double resonance study of the mass-selected protonated triglycine peptide. Comparison of experimental spectra with calculations reveals the presence of two isomers, with protonation occurring at either the terminal amine site or one of the amide oxygen sites. The amine protonated isomer identified in our experiment contains an atypical cis amide configuration as well as a more typical trans amide. The amide protonated peptide, on the other hand, contains two trans amide moieties. Both isomers are found to be the lowest energy structures for their respective protonation site, but it is unclear, from experimentsmore » and calculations, which one is the global minimum. The presence of both in our experiments likely points to kinetic trapping of a higher energy structure. Lastly, the observed frequencies of the NH and OH stretch vibrations are used to estimate the hydrogen-bond strengths present in each isomer, accounting for the relative stabilities of these structures.« less
Electronic and spectroscopic characterizations of SNP isomers
NASA Astrophysics Data System (ADS)
Trabelsi, Tarek; Al Mogren, Muneerah Mogren; Hochlaf, Majdi; Francisco, Joseph S.
2018-02-01
High-level ab initio electronic structure calculations were performed to characterize SNP isomers. In addition to the known linear SNP, cyc-PSN, and linear SPN isomers, we identified a fourth isomer, linear PSN, which is located ˜2.4 eV above the linear SNP isomer. The low-lying singlet and triplet electronic states of the linear SNP and SPN isomers were investigated using a multi-reference configuration interaction method and large basis set. Several bound electronic states were identified. However, their upper rovibrational levels were predicted to pre-dissociate, leading to S + PN, P + NS products, and multi-step pathways were discovered. For the ground states, a set of spectroscopic parameters were derived using standard and explicitly correlated coupled-cluster methods in conjunction with augmented correlation-consistent basis sets extrapolated to the complete basis set limit. We also considered scalar and core-valence effects. For linear isomers, the rovibrational spectra were deduced after generation of their 3D-potential energy surfaces along the stretching and bending coordinates and variational treatments of the nuclear motions.
Voss, Jonathan M.; Fischer, Kaitlyn C.; Garand, Etienne
2018-03-08
Here, we report an isomer specific IR-IR double resonance study of the mass-selected protonated triglycine peptide. Comparison of experimental spectra with calculations reveals the presence of two isomers, with protonation occurring at either the terminal amine site or one of the amide oxygen sites. The amine protonated isomer identified in our experiment contains an atypical cis amide configuration as well as a more typical trans amide. The amide protonated peptide, on the other hand, contains two trans amide moieties. Both isomers are found to be the lowest energy structures for their respective protonation site, but it is unclear, from experimentsmore » and calculations, which one is the global minimum. The presence of both in our experiments likely points to kinetic trapping of a higher energy structure. Lastly, the observed frequencies of the NH and OH stretch vibrations are used to estimate the hydrogen-bond strengths present in each isomer, accounting for the relative stabilities of these structures.« less
A spectroscopist's view of energy states, energy transfers, and chemical reactions.
Moore, C Bradley
2007-01-01
This chapter describes a research career beginning at Berkeley in 1960, shortly after Sputnik and the invention of the laser. Following thesis work on vibrational spectroscopy and the chemical reactivity of small molecules, we studied vibrational energy transfers in my own lab. Collision-induced transfers among vibrations of a single molecule, from one molecule to another, and from vibration to rotation and translation were elucidated. My research group also studied the competition between vibrational relaxation and chemical reaction for potentially reactive collisions with one molecule vibrationally excited. Lasers were used to enrich isotopes by the excitation of a predissociative transition of a selected isotopomer. We also tested the hypotheses of transition-state theory for unimolecular reactions of ketene, formaldehyde, and formyl fluoride by (a) resolving individual molecular eigenstates above a dissociation threshold, (b) locating vibrational levels at the transition state, (c) observing quantum resonances in the barrier region for motion along a reaction coordinate, and (d) studying energy release to fragments.
Nitrogen isotope ratio and its evolution on Titan
NASA Astrophysics Data System (ADS)
Krasnopolsky, V.
2017-09-01
14N/15N ratios in the Sun, Jupiter, comets, and the inner planets indicate that Earth, Venus, and Mars got their nitrogen as N2 gas and NH3 ice in proportion 3 : 1. An alternative explanation is that planetesimals were another reservoir of N with 14N/15N = 270. 14N/15N = 168 in N2 and 60 in HCN on Titan, and the great difference is explained by strong enrichment in 15N by a factor of 8 in predissociation of N2 at 80-100 nm (Liang et al. 2007) and no fractionation in other 12 processes that form N. The calculated 14N/15N = 57 in nitriles, in perfect agreement with the observations. Modeling of nitrogen isotope fractionation by formation of nitriles and sputtering through the history of Titan with the much greater solar EUV and wind in the earlier epochs supports ammonia similar to that in comets as a source of nitrogen on Titan.
Stereodynamics of Ne(3P2) reacting with Ar, Kr, Xe, and N2
NASA Astrophysics Data System (ADS)
Zou, Junwen; Gordon, Sean D. S.; Tanteri, Silvia; Osterwalder, Andreas
2018-04-01
Stereodynamics experiments of Ne(3P2) reacting with Ar, Kr, Xe, and N2 leading to Penning and associative ionization have been performed in a crossed molecular beam apparatus. A curved magnetic hexapole was used to state-select and polarize Ne(3P2) atoms which were then oriented in a rotatable magnetic field and crossed with a beam of Ar, Kr, Xe, or N2. The ratio of associative to Penning ionization was recorded as a function of the magnetic field direction for collision energies between 320 cm-1 and 500 cm-1. Reactivities are obtained for individual states that differ only in Ω, the projection of the neon total angular momentum vector on the inter-particle axis. The results are rationalized on the basis of a model involving a long-range and a short-range reaction mechanism. Substantially lower probability for associative ionization was observed for N2, suggesting that predissociation plays a critical role in the overall reaction pathway.
Atmospheric Oxygen Photoabsorption
NASA Technical Reports Server (NTRS)
Slanger, Tom G.
1996-01-01
The work conducted on this grant was devoted to various aspects of the photophysics and photochemistry of the oxygen molecule. Predissociation linewidths were measured for several vibrational levels in the O2(B3 Sigma(sub u)(sup -)) state, providing good agreement with other groups working on this important problem. Extensive measurements were made on the loss kinetics of vibrationally excited oxygen, where levels between v = 5 and v = 22 were investigated. Cavity ring-down spectroscopy was used to measure oscillator strengths in the oxygen Herzberg bands. The great sensitivity of this technique made it possible to extend the known absorption bands to the dissociation limit as well as providing many new absorption lines that seem to be associated with new O2 transitions. The literature concerning the Herzberg band strengths was evaluated in light of our new measurements, and we made recommendations for the appropriate Herzberg continuum cross sections to be used in stratospheric chemistry. The transition probabilities for all three Herzberg band systems were re-evaluated, and we are recommending a new set of values.
Detection and Characterization of the Stannylene (SnH_{2} ) Radical in the Gas Phase
NASA Astrophysics Data System (ADS)
Smith, Tony; Clouthier, Dennis
2017-06-01
The electronic spectrum of the jet-cooled SnH_{2} radical has been detected by LIF spectroscopy. The radical was produced in a pulsed electric discharge through a precursor mixture of SnH_{4} in argon. Each band in the LIF spectrum consists of a small number of rovibronic transitions to the lowest energy (K_{a} = 0, J = 0,1,2,3) rotational levels in the excited state. High resolution spectra of the ^{p}P_{1}(1) line of the 2^{2}_{0} band show 7 components whose relative intensities are characteristic of the tin major isotopic abundances. The emission spectra are also consistent with assigning the spectrum as due to SnH_{2}. The fluorescence lifetimes of the upper state rotational levels decrease with increasing J', indicative of a rotationally dependent predissociation process in the excited state, similar to that previously observed in SiH_{2} and GeH_{2}. Fluorescence hole burning experiments have located the upper state K_{a} = 2 levels which allow a determination of the molecular structure.
Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility
NASA Technical Reports Server (NTRS)
Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.
2012-01-01
Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.
Cirtog, M; Asselin, P; Soulard, P; Tremblay, B; Madebène, B; Alikhani, M E; Georges, R; Moudens, A; Goubet, M; Huet, T R; Pirali, O; Roy, P
2011-03-31
A series of hydrogen bonded complexes involving oxirane and water molecules have been studied. In this paper we report on the vibrational study of the oxirane-water complex (CH(2))(2)O-H(2)O. Neon matrix experiments and ab initio anharmonic vibrational calculations have been performed, providing a consistent set of vibrational frequencies and anharmonic coupling constants. The implementation of a new large flow supersonic jet coupled to the Bruker IFS 125 HR spectrometer at the infrared AILES beamline of the French synchrotron SOLEIL (Jet-AILES) enabled us to record first jet-cooled Fourier transform infrared spectra of oxirane-water complexes at different resolutions down to 0.2 cm(-1). Rovibrational parameters and a lower bound of the predissociation lifetime of 25 ps for the v(OH)(b) = 1 state have been derived from the rovibrational analysis of the ν(OH)(b) band contour recorded at respective rotational temperatures of 12 K (Jet-AILES) and 35 K (LADIR jet).
Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames
NASA Technical Reports Server (NTRS)
Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.
1991-01-01
Ultraviolet (UV) spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. Simultaneous measurements of temperature, major species (H2, O2, N2, H2O), and minor species (OH) concentrations are made with a 'single' narrow band KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat-flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. The single shot measurement precision for concentration and temperature measurement is 5 to 10 pct. Calibration constants and bandwidth factors are determined from the flat burner measurements and used in a data reduction program to arrive at temperature and species concentration measurements. These simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.
Experimental and theoretical investigations of H2O-Ar
NASA Astrophysics Data System (ADS)
Vanfleteren, Thomas; Földes, Tomas; Herman, Michel; Liévin, Jacques; Loreau, Jérôme; Coudert, Laurent H.
2017-07-01
We have used continuous-wave cavity ring-down spectroscopy to record the spectrum of H2O A r in the 2OH excitation range of H2O . 24 sub-bands have been observed. Their rotational structure (Trot = 12 K) is analyzed and the lines are fitted separately for ortho and para species together with microwave and far infrared data from the literature, with a unitless standard deviation σ =0.98 and 1.31, respectively. Their vibrational analysis is supported by a theoretical input based on an intramolecular potential energy surface obtained through ab initio calculations and computation of the rotational energy of sub-states of the complex with the water monomer in excited vibrational states up to the first hexad. For the ground and (010) vibrational states, the theoretical results agree well with experimental energies and rotational constants in the literature. For the excited vibrational states of the first hexad, they guided the assignment of the observed sub-bands. The upper state vibrational predissociation lifetime is estimated to be 3 ns from observed spectral linewidths.
NASA Technical Reports Server (NTRS)
Parkinson, W. H.; Yoshino, K.; Freeman, D. E.
1993-01-01
An account is given of progress during the six-month period 1 Nov. 1992 to 30 Apr. 1993 on work on (1) cross section measurements of the Schumann-Runge continuum; (2) the determination of the predissociation linewidths of the Schumann-Runge bands of O2; (3) the determination of the molecular constants of the ground state of O2; (4) cross section measurements of CO2 in wavelength region 120-170 nm; and (4) determination of dissociation energy of O2. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (FWHM = 0.0013 nm), uniquely suitable for cross section measurements of molecular bands with discrete rotational structure. Below 175 nm and in the region of the S-R continuum, synchrotron radiation is suitable for cross section measurements. All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen and penetration of solar radiation into the Earth's atmosphere.
Accessing the Vibrational Signatures of Amino Acid Ions Embedded in Water Clusters
Voss, Jonathan M.; Fischer, Kaitlyn C.; Garand, Etienne
2018-04-16
We present an infrared predissociation (IRPD) study of microsolvated GlyH +(H 2O) n and GlyH +(D 2O) n clusters, formed inside of a cryogenic ion trap via condensation of H 2O or D 2O onto the protonated glycine ions. The resulting IRPD spectra, showing characteristic O–H and O–D stretches, indicate that H/D exchange reactions are quenched when the ion trap is held at 80 K, minimizing the presence of isotopomers. Comparisons of GlyH +(H 2O) n and GlyH +(D 2O) n spectra clearly highlight and distinguish the vibrational signatures of the water solvent molecules from those of the core GlyHmore » + ion, allowing for quick assessment of solvation structures. Without the aid of calculations, we can already infer solvation motifs and the presence of multiple conformations. Furthermore, the use of a cryogenic ion trap to cluster solvent molecules around ions of interest and control H/D exchange reactions is broadly applicable and should be extendable to studies of more complex peptidic ions in large solvated clusters.« less
Accessing the Vibrational Signatures of Amino Acid Ions Embedded in Water Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, Jonathan M.; Fischer, Kaitlyn C.; Garand, Etienne
We present an infrared predissociation (IRPD) study of microsolvated GlyH +(H 2O) n and GlyH +(D 2O) n clusters, formed inside of a cryogenic ion trap via condensation of H 2O or D 2O onto the protonated glycine ions. The resulting IRPD spectra, showing characteristic O–H and O–D stretches, indicate that H/D exchange reactions are quenched when the ion trap is held at 80 K, minimizing the presence of isotopomers. Comparisons of GlyH +(H 2O) n and GlyH +(D 2O) n spectra clearly highlight and distinguish the vibrational signatures of the water solvent molecules from those of the core GlyHmore » + ion, allowing for quick assessment of solvation structures. Without the aid of calculations, we can already infer solvation motifs and the presence of multiple conformations. Furthermore, the use of a cryogenic ion trap to cluster solvent molecules around ions of interest and control H/D exchange reactions is broadly applicable and should be extendable to studies of more complex peptidic ions in large solvated clusters.« less
Chaos in the classical mechanics of bound and quasi-bound HX-4He complexes with X = F, Cl, Br, CN.
Gamboa, Antonio; Hernández, Henar; Ramilowski, Jordan A; Losada, J C; Benito, R M; Borondo, F; Farrelly, David
2009-10-01
The classical dynamics of weakly bound floppy van der Waals complexes have been extensively studied in the past except for the weakest of all, i.e., those involving He atoms. These complexes are of considerable current interest in light of recent experimental work focussed on the study of molecules trapped in small droplets of the quantum solvent (4)He. Despite a number of quantum investigations, details on the dynamics of how quantum solvation occurs remain unclear. In this paper, the classical rotational dynamics of a series of van der Waals complexes, HX-(4)He with X = F, Cl, Br, CN, are studied. In all cases, the ground state dynamics are found to be almost entirely chaotic, in sharp contrast to other floppy complexes, such as HCl-Ar, for which chaos sets in only at relatively high energies. The consequences of this result for quantum solvation are discussed. We also investigate rotationally excited states with J = 1 which, except for HCN-(4)He, are actually resonances that decay by rotational pre-dissociation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Zhou; Chang, Yih Chung; Gao, Hong
2014-06-21
We present a generally applicable experimental method for the direct measurement of nascent spin-orbit state distributions of atomic photofragments based on the detection of vacuum ultraviolet (VUV)-excited autoionizing-Rydberg (VUV-EAR) states. The incorporation of this VUV-EAR method in the application of the newly established VUV-VUV laser velocity-map-imaging-photoion (VMI-PI) apparatus has made possible the branching ratio measurement for correlated spin-orbit state resolved product channels, CO(ã{sup 3}Π; v) + O({sup 3}P{sub 0,1,2}) and CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}), formed by VUV photoexcitation of CO{sub 2} to the 4s(1{sub 0}{sup 1}) Rydberg state at 97,955.7 cm{sup −1}. The total kinetic energy releasemore » (TKER) spectra obtained from the O{sup +} VMI-PI images of O({sup 3}P{sub 0,1,2}) reveal the formation of correlated CO(ã{sup 3}Π; v = 0–2) with well-resolved v = 0–2 vibrational bands. This observation shows that the dissociation of CO{sub 2} to form the spin-allowed CO(ã{sup 3}Π; v = 0–2) + O({sup 3}P{sub 0,1,2}) channel has no potential energy barrier. The TKER spectra for the spin-forbidden CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) channel were found to exhibit broad profiles, indicative of the formation of a broad range of rovibrational states of CO(Χ{sup ~1}Σ{sup +}) with significant vibrational populations for v = 18–26. While the VMI-PI images for the CO(ã{sup 3}Π; v = 0–2) + O({sup 3}P{sub 0,1,2}) channel are anisotropic, indicating that the predissociation of CO{sub 2} 4s(1{sub 0}{sup 1}) occurs via a near linear configuration in a time scale shorter than the rotational period, the angular distributions for the CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) channel are close to isotropic, revealing a slower predissociation process, which possibly occurs on a triplet surface via an intersystem crossing mechanism.« less
Electron impact excitation of higher energy states of molecular oxygen in the atmosphere of Europa
NASA Astrophysics Data System (ADS)
Campbell, L.; Tanaka, H.; Kato, H.; Jayaraman, S.; Brunger, M. J.
2012-01-01
Recent measurements of integral cross sections for electron impact excitation of the Schumann-Runge continuum, longest band and second band of molecular oxygen are applied to calculations of emissions from the atmosphere of Europa. Molecules excited to these bands predissociate, producing O(1D) (excited oxygen) atoms which subsequently decay to produce 630.0-nm radiation. Radiation of this wavelength is also produced by direct excitation of O atoms and by the recombination of O _2^+ + 2 with electrons, but these two processes also produce O(1S) atoms which then emit at 557.7 nm. It is shown by modeling that the ratio of 630.0-nm to 557.7-nm is sensitive to the relative importance of the three processes, suggesting that the ratio would be a useful remote sensing probe in the atmosphere of Europa. In particular, the excitation of the Schumann-Runge continuum, longest band and second band is produced by magnetospheric electrons while the recombination is produced by secondary electrons produced in the atmosphere. This difference raises the possibility of determination of the secondary electron spectrum by measurement of light emissions.
Young, Justin W; Booth, Ryan S; Vogelhuber, Kristen M; Stearns, Jaime A; Annesley, Christopher J
2018-06-28
Photoexcitation of water by Lyman-α (121.6 nm) induces a dissociation reaction that produces OH(A 2 Σ + ) + H. Despite this reaction being part of numerous studies, a combined understanding of the product and fluorescence yields is still lacking. Here, the rotational and vibrational distributions of OH(A) are determined from dispersed fluorescence following photoexcitation of both room-temperature and jet-cooled water vapor, for the first time in the same experiment. This work compares new data of state-resolved fluorescence with literature molecular branching ratios and brings previous studies into agreement through careful consideration of OH(A) fluorescent and predissociation lifetimes and confirms a fluorescent quantum yield of 8%. Comparison of the room-temperature and jet-cooled OH(A) populations indicate the temperature of H 2 O prior to excitation has subtle effects on the OH(A) population distribution, such as altering the rotational distribution in the ν' = 0 population and affecting the population in the ν' = 1 state. These results indicate jet-cooled water vapor may have a 1% higher fluorescence quantum yield compared to room-temperature water vapor.
The eΠ3g state of C2: A pathway to dissociation
NASA Astrophysics Data System (ADS)
Welsh, B. A.; Krechkivska, O.; Nauta, K.; Bacskay, G. B.; Kable, S. H.; Schmidt, T. W.
2017-07-01
The lowest 13 vibrational levels, v = 0-12, of the eΠ3g state of the C2 molecule have been measured by laser-induced fluorescence of new bands of the Fox-Herzberg system. The newly observed levels, v = 5-12, which span the eΠ3g electronic state up to and beyond the first dissociation threshold of C2, were analyzed to afford highly accurate molecular constants, including band origins, and rotational and spin-orbit constants. The spin-orbit coupling constants of the previously published lowest five levels are revised in sign and magnitude, requiring an overhaul of previously published molecular constants. The analysis is supported by high level ab initio calculations. Lifetimes of all observed levels were recorded and found to be in excellent agreement with ab initio predicted values up to v = 11. v = 12 was found to exhibit a much reduced lifetime and fluorescence quantum yield, which is attributed to the onset of predissociation. This brackets the dissociation energy of ground state XΣ+1g C2 between 6.1803 and 6.2553 eV, in agreement with the Active Thermochemical Tables.
NASA Astrophysics Data System (ADS)
Denton, Joanna K.; Wolke, Conrad T.; Gorlova, Olga; Gerardi, Helen; McCoy, Anne B.; Johnson, Mark
2016-06-01
The breadth of the OH stretching manifold observed in the IR for bulk water is commonly attributed to the thermal population of excited states and the presence of many configurations within the water network. Here, I use carboxylate species as a rigid framework to isolate a single water molecule in the gas phase and cold ion vibrational pre-dissociation spectroscopy to explore excited state contributions to bandwidth. The spectrum of the carboxylate monohydrate exhibits a signature series of peaks in the OH stretching region of this system, providing an archetypal model to study vibrationally adiabatic mode separation. Previous analysis of this behavior accounts for the extensive progression in a Franck-Condon formalism involving displaced vibrationally adiabatic potentials. In this talk I will challenge this prediction by using isotopic substation to systematically change the level structure within these potentials. This picture quantitatively accounts for the diffuse spectrum of this complex at elevated temperature providing a convenient spectroscopic reporter for the temperature of ions in a trap. E. M. Myshakin, K. D. Jordan, E. L. Sibert III, M. A. Johnson J. Chem. Phys. 119, 10138 (2003) W.H. Robertson, et al. J. Phys Chem. 107, 6527 (2003)
Marques, J M C; Martínez-Núñez, E; Fernandez-Ramos, A; Vazquez, S A
2005-06-23
Large-scale classical trajectory calculations have been performed to study the reaction Ar + CH4--> CH3 +H + Ar in the temperature range 2500 < or = T/K < or = 4500. The potential energy surface used for ArCH4 is the sum of the nonbonding pairwise potentials of Hase and collaborators (J. Chem. Phys. 2001, 114, 535) that models the intermolecular interaction and the CH4 intramolecular potential of Duchovic et al. (J. Phys. Chem. 1984, 88, 1339), which has been modified to account for the H-H repulsion at small bending angles. The thermal rate coefficient has been calculated, and the zero-point energy (ZPE) of the CH3 product molecule has been taken into account in the analysis of the results; also, two approaches have been applied for discarding predissociative trajectories. In both cases, good agreement is observed between the experimental and trajectory results after imposing the ZPE of CH3. The energy-transfer parameters have also been obtained from trajectory calculations and compared with available values estimated from experiment using the master equation formalism; in general, the agreement is good.
Infrared Spectroscopy of Mobility-Selected H+-Gly-Pro-Gly-Gly (GPGG)
NASA Astrophysics Data System (ADS)
Masson, Antoine; Kamrath, Michael Z.; Perez, Marta A. S.; Glover, Matthew S.; Rothlisberger, U.; Clemmer, David E.; Rizzo, Thomas R.
2015-09-01
We report the first results from a new instrument capable of acquiring infrared spectra of mobility-selected ions. This demonstration involves using ion mobility to first separate the protonated peptide Gly-Pro-Gly-Gly (GPGG) into two conformational families with collisional cross-sections of 93.8 and 96.8 Å2. After separation, each family is independently analyzed by acquiring the infrared predissociation spectrum of the H2-tagged molecules. The ion mobility and spectroscopic data combined with density functional theory (DFT) based molecular dynamics simulations confirm the presence of one major conformer per family, which arises from cis/ trans isomerization about the proline residue. We induce isomerization between the two conformers by using collisional activation in the drift tube and monitor the evolution of the ion distribution with ion mobility and infrared spectroscopy. While the cis-proline species is the preferred gas-phase structure, its relative population is smaller than that of the trans-proline species in the initial ion mobility drift distribution. This suggests that a portion of the trans-proline ion population is kinetically trapped as a higher energy conformer and may retain structural elements from solution.
NASA Technical Reports Server (NTRS)
Parkinson, W. H.; Yoshino, K.
1997-01-01
An account is given of progress during the period 8/l/96-7/31/97 on work on (a) cross section measurements of O2 S-R using a Fourier transform spectrometer (FTS) at the Photon Factory in Japan; (b) the determination of the predissociation linewidths of the Schumann-Runge bands (S-R) of 02; (c) cross section measurements of 02 Herzberg bands using a Fourier transform spectrometer (FTS) at Imperial College; and (d) cross section measurements of H2O in the wavelength region 120-188 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer and with the Fourier transform spectrometer. Below 175 nm, synchrotron radiation is most suitable for cross section measurements in combination with spectrometers at the Photon Factory Japan. Cross section measurements of the Doppler limited bands depend on using the very high resolution, available with the Fourier transform spectrometer, (0.025/cm resolution). All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen, the penetration of solar radiation into the Earth's atmosphere, and photochemistry of minor molecules.
Mapping the exciton diffusion in semiconductor nanocrystal solids.
Kholmicheva, Natalia; Moroz, Pavel; Bastola, Ebin; Razgoniaeva, Natalia; Bocanegra, Jesus; Shaughnessy, Martin; Porach, Zack; Khon, Dmitriy; Zamkov, Mikhail
2015-03-24
Colloidal nanocrystal solids represent an emerging class of functional materials that hold strong promise for device applications. The macroscopic properties of these disordered assemblies are determined by complex trajectories of exciton diffusion processes, which are still poorly understood. Owing to the lack of theoretical insight, experimental strategies for probing the exciton dynamics in quantum dot solids are in great demand. Here, we develop an experimental technique for mapping the motion of excitons in semiconductor nanocrystal films with a subdiffraction spatial sensitivity and a picosecond temporal resolution. This was accomplished by doping PbS nanocrystal solids with metal nanoparticles that force the exciton dissociation at known distances from their birth. The optical signature of the exciton motion was then inferred from the changes in the emission lifetime, which was mapped to the location of exciton quenching sites. By correlating the metal-metal interparticle distance in the film with corresponding changes in the emission lifetime, we could obtain important transport characteristics, including the exciton diffusion length, the number of predissociation hops, the rate of interparticle energy transfer, and the exciton diffusivity. The benefits of this approach to device applications were demonstrated through the use of two representative film morphologies featuring weak and strong interparticle coupling.
NASA Astrophysics Data System (ADS)
Madison, Lindsey R.; Mosley, Jonathan; Mauney, Daniel; Duncan, Michael A.; McCoy, Anne B.
2016-06-01
Formaldehyde is the smallest organic molecule and is a prime candidate for a thorough investigation regarding the anharmonic approximations made in computationally modeling its infrared spectrum. Mass-selected ion spectroscopy was used to detect mass 30 cations which include of HCOH^+ and CH_2O^+. In order to elucidate the differences between the structures of these isomers, infrared spectroscopy was performed on the mass 30 cations using Ar predissociation. Interestingly, several additional spectral features are observed that cannot be explained by the fundamental OH and CH stretch vibrations alone. By including anharmonic coupling between OH and CH stretching and various overtones and combination bands involving lower frequency vibrations, we are able to identify how specific modes couple and lead to the experimentally observed spectral features. We combine straight-forward, ab initio calculations of the anharmonic frequencies of the mass 30 cations with higher order, adiabatic approximations and Fermi resonance models. By including anharmonic effects we are able to confirm that the isomers of the CH_2O^+\\cdotAr system have substantially different, and thus distinguishable, IR spectra and that many of the features can only be explained with anharmonic treatments.
Observational Constraints for Modeling Diffuse Molecular Clouds
NASA Astrophysics Data System (ADS)
Federman, S. R.
2014-02-01
Ground-based and space-borne observations of diffuse molecular clouds suggest a number of areas where further improvements to modeling efforts is warranted. I will highlight those that have the widest applicability. The range in CO fractionation caused by selective isotope photodissociation, in particular the large 12C16O/13C16O ratios observed toward stars in Ophiuchus, is not reproduced well by current models. Our ongoing laboratory measurements of oscillator strengths and predissociation rates for Rydberg transitions in CO isotopologues may help clarify the situtation. The CH+ abundance continues to draw attention. Small scale structure seen toward ζ Per may provide additional constraints on the possible synthesis routes. The connection between results from optical transitions and those from radio and sub-millimeter wave transitions requires further effort. A study of OH+ and OH toward background stars reveals that these species favor different environments. This brings to focus the need to model each cloud along the line of sight separately, and to allow the physical conditions to vary within an individual cloud, in order to gain further insight into the chemistry. Now that an extensive set of data on molecular excitation is available, the models should seek to reproduce these data to place further constraints on the modeling results.
NASA Astrophysics Data System (ADS)
Ono, Ryo
2018-06-01
The spatiotemporal evolution of the temperature in the afterglow of point-to-plane, pulsed positive streamer discharge was measured near the anode tip and cathode surface using laser-induced predissociation fluorescence of OH radicals. The temperature exhibited a rapid increase and displayed a steep spatial gradient after a discharge pulse. The rate of temperature rise reached 84 K μs‑1 at mm, where z represents the distance from the anode tip. The temperature rise was much faster than in the middle of the gap; it was only 2.8 K μs‑1 at mm. The temperature reached 1700 K near the anode tip at s and 1500 K near the cathode surface at s, where t represents the postdischarge time. The spatial gradient reached 1280 K mm‑1 near the anode tip at s. The mechanism responsible for the rapid temperature increase was discussed, including rapid heating of the gas in the early postdischarge phase (s), and vibration-to-translation energy transfer in the later postdischarge phase (s). The high temperatures near the anode tip and cathode surface are particularly important for the ignition of combustible mixtures and for surface treatments, including solid-surface treatments, water treatments, and plasma medicine using pulsed streamer discharges.
NASA Astrophysics Data System (ADS)
Duong, Chinh H.; Menges, Fabian; Craig, Stephanie; Wolke, Conrad T.; Johnson, Mark
2016-06-01
The diffuse spectra arising from the excess proton in dilute acids suggests that its behavior is highly dependent on the local environment surrounding it. In this work, we report how the spectra of the H3O+, NH4+, and CH3NH3+ ions respond when docked to the rigid, tri-coordinated binding pocket of the 18-crown-6 ether using cryogenic ion vibrational predissociation (CIVP) spectroscopy with D2 tagging at 10 K. The H3O+{tiny^bullet}18-crown-6 ether complex displays a broad (350 cm-1 FWHM) unstructured band arising from the OH stretching fundamentals, which is significantly broader than the corresponding band (125 cm-1 FWHM) in the Eigen cation (H9O4+) spectrum. Perdeuterated isotopologue studies for both systems yield sharper bands with clear multiplet structures, indicating that the broadening arises from nuclear quantum effects. The key displacements underlying this coupling were explored using the vibrationally adiabatic scheme introduced by McCoy in the context of similar broadening in the Ca2+OH-(H2O)n system. Christopher J. Johnson, Laura C. Dzugan, Arron B. Wolk, Christopher M. Leavitt, Joseph A. Fournier, Anne B. McCoy, Mark A. Johnson, J. Phys. Chem. A 118, 2014.
NASA Astrophysics Data System (ADS)
Heays, Alan; de Oliveira, Nelson; Gans, Bérenger; Ito, Kenji; Nahon, Laurent; Douin, Stéphane; Boyé-Péronne, Séverine; Hickson, Kevin; Loison, Jean-Christophe; Lyons, James; Stark, Glenn
2018-06-01
Radicals are certainly important in the ISM and atmospheric chemical cycles but laboratory measurement of their photoabsorption and dissociation cross sections is a continuing challenge. In some cases, the detailed rovibrational structure within ultraviolet electronic transitions leads to interesting resonance or isotope effects in interstellar or atmospheric photodissociation but their measurement requires high spectral resolution. The latest generation in broadband high-resolution UV spectrometers at the SOLEIL synchrotron has been put to work studying the photoabsorption of radicals OH and SO. I will present the results of these studies.This unique UV/VUV Fourier-transform spectrometer is illuminated by a 3rd generation synchrotron and a column of radicals is maintained in a radio-frequency discharge [1]. Careful separation of precursor gases and contaminants is needed to distinguish the radical absorption, and a means of determining the absolute radical column density. In the case of OH, we measure the absolute absorption strength of the D-X transition, occasionally observed in the ISM and refine its rate of interstellar photodissociation [2]. For SO, we measure the absorption strengths and variable predissociation linewidths of the B-X transition, and investigate the possibility of isotope-dependent effects.[1] de Oliveira et al. (2016) J. Synchr. Rad. 23:887.[2] Heays et al. (2018) JQSRT 204:12.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, G. Barratt, E-mail: barratt@mit.edu, E-mail: barratt.park@gmail.com; Womack, Caroline C.; Jiang, Jun
2015-04-14
Millimeter-wave detected, millimeter-wave optical double resonance (mmODR) spectroscopy is a powerful tool for the analysis of dense, complicated regions in the optical spectra of small molecules. The availability of cavity-free microwave and millimeter wave spectrometers with frequency-agile generation and detection of radiation (required for chirped-pulse Fourier-transform spectroscopy) opens up new schemes for double resonance experiments. We demonstrate a multiplexed population labeling scheme for rapid acquisition of double resonance spectra, probing multiple rotational transitions simultaneously. We also demonstrate a millimeter-wave implementation of the coherence-converted population transfer scheme for background-free mmODR, which provides a ∼10-fold sensitivity improvement over the population labeling scheme.more » We analyze perturbations in the C{sup ~} state of SO{sub 2}, and we rotationally assign a b{sub 2} vibrational level at 45 328 cm{sup −1} that borrows intensity via a c-axis Coriolis interaction. We also demonstrate the effectiveness of our multiplexed mmODR scheme for rapid acquisition and assignment of three predissociated vibrational levels of the C{sup ~} state of SO{sub 2} between 46 800 and 47 650 cm{sup −1}.« less
Beck, Jordan P; Cimas, Alvaro; Lisy, James M; Gaigeot, Marie-Pierre
2014-02-05
The structures of Cl(-)-(Methanol)1,2 clusters have been unraveled combining Infrared Predissociation (IR-PD) experiments and DFT-based molecular dynamics simulations (DFT-MD) at 100 K. The dynamical IR spectra extracted from DFT-MD provide the initial 600 cm(-1) large anharmonic red-shift of the O-H stretch from uncomplexed methanol (3682 cm(-1)) to Cl(-)-(Methanol)1 complex (3085 cm(-1)) as observed in the IR-PD experiment, as well as the subtle supplementary blue- and red-shifts of the O-H stretch in Cl(-)-(Methanol)2 depending on the structure. The anharmonic vibrational calculations remarkably provide the 100 cm(-1) O-H blue-shift when the two methanol molecules are simultaneously organized in the anion first hydration shell (conformer 2A), while they provide the 240 cm(-1) O-H red-shift when the second methanol is in the second hydration shell of Cl(-) (conformer 2B). RRKM calculations have also shown that 2A/2B conformers interconvert on a nanosecond time-scale at the estimated 100 K temperature of the clusters formed by evaporative cooling of argon prior to the IR-PD process. Copyright © 2013 Elsevier B.V. All rights reserved.
Cooperatively enhanced ionic hydrogen bonds in Cl-(CH3OH)(1-3)Ar clusters.
Beck, Jordan P; Lisy, James M
2010-09-23
Infrared predissociation (IRPD) spectra of Cl−(CH3OH)1-3Ar and Cl-(CH3OD)1-3Ar were obtained in the OH and CH stretching regions. The use of methanol-d1 was necessary to distinguish between CH stretches and hydrogen-bonded OH features. The spectra of Cl-(CH3OH)2-3Ar show intense features at frequencies lower than the CH stretches, indicating structures with very strong hydrogen bonds. These strong hydrogen bonds arise from structures in which a Cl-···methanol ionic hydrogen bond is cooperatively enhanced by the presence of a second shell and, in the case of Cl-(CH3OH)3Ar, a third shell methanol. The strongest hydrogen bond is observed in the Cl-(CH3OH)3Ar spectrum at 2733 cm-1, shifted a remarkable -948 cm-1 from the neutral, gas-phase methanol value. Harmonic, ab initio frequency calculations are not adequate in describing these strong hydrogen bonds. Therefore, we describe a simple computational approach to better approximate the hydrogen bond frequencies. Overall, the results of this study indicate that high-energy isomers are very efficiently trapped using our experimental method of introducing Cl- into neutral, cold methanol-argon clusters.
Detection and characterization of the tin dihydride (SnH2 and SnD2) molecule in the gas phase
NASA Astrophysics Data System (ADS)
Smith, Tony C.; Clouthier, Dennis J.
2018-01-01
The SnH2 and SnD2 molecules have been detected for the first time in the gas phase by laser-induced fluorescence (LIF) and emission spectroscopic techniques through the à 1B1-X ˜ 1A1 electronic transition. These reactive species were prepared in a pulsed electric discharge jet using (CH3)4Sn or SnH4/SnD4 precursors diluted in high pressure argon. Transitions to the electronic excited state of the jet-cooled molecules were probed with LIF, and the ground state energy levels were measured from single rovibronic level emission spectra. The LIF spectrum of SnD2 afforded sufficient rotational structure to determine the ground and excited state geometries: r0″ = 1.768 Å, θ0″ = 91.0°, r0' = 1.729 Å, θ0' = 122.9°. All of the observed LIF bands show evidence of a rotational-level-dependent predissociation process which rapidly decreases the fluorescence yield and lifetime with increasing rotational angular momentum in each excited vibronic level. This behavior is analogous to that observed in SiH2 and GeH2 and is suggested to lead to the formation of ground state tin atoms and hydrogen molecules.
Excited-state dynamics of acetylene excited to individual rotational level of the V04K01 subband
NASA Astrophysics Data System (ADS)
Makarov, Vladimir I.; Kochubei, Sergei A.; Khmelinskii, Igor V.
2006-01-01
Dynamics of the IR emission induced by excitation of the acetylene molecule using the (32Ka0,1,2,ÃAu1←41la1,X˜Σg+1) transition was investigated. The observed IR emission was assigned to transitions between the ground-state vibrational levels. Acetylene fluorescence quenching induced by external electric and magnetic fields acting upon the system prepared using the (34Ka1,ÃAu1←00la0,X˜Σg+1) excitation was also studied. External electric field creates an additional radiationless pathway to the ground-state levels, coupling levels of the ÃAu1 excited state to the quasiresonant levels of the X˜Σg+1 ground state. The level density of the ground state in the vicinity of the excited state is very high, thus the electric-field-induced transition is irreversible, with the rate constant described by the Fermi rule. Magnetic field alters the decay profile without changing the fluorescence quantum yield in collisionless conditions. IR emission from the CCH transient was detected, and was also affected by the external electric and magnetic fields. Acetylene predissociation was demonstrated to proceed by the direct S1→S0 mechanism. The results were explained using the previously developed theoretical approach, yielding values of the relevant model parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shternin, Peter S.; Vasyutinskii, Oleg S.
We present a theoretical framework for calculating the recoil-angle dependence of the photofragment angular momentum polarization taking into account both radial and Coriolis nonadiabatic interactions in the diatomic/linear photodissociating molecules. The parity-adapted representation of the total molecular wave function has been used throughout the paper. The obtained full quantum-mechanical expressions for the photofragment state multipoles have been simplified by using the semiclassical approximation in the high-J limit and then analyzed for the cases of direct photodissociation and slow predissociation in terms of the anisotropy parameters. In both cases, each anisotropy parameter can be presented as a linear combination of themore » generalized dynamical functions f{sub K}(q,q{sup '},q-tilde,q-tilde{sup '}) of the rank K representing contribution from different dissociation mechanisms including possible radial and Coriolis nonadiabatic transitions, coherent effects, and the rotation of the recoil axis. In the absence of the Coriolis interactions, the obtained results are equivalent to the earlier published ones. The angle-recoil dependence of the photofragment state multipoles for an arbitrary photolysis reaction is derived. As shown, the polarization of the photofragments in the photolysis of a diatomic or a polyatomic molecule can be described in terms of the anisotropy parameters irrespective of the photodissociation mechanism.« less
Fast Nitrogen Atoms from Dissociative Excitation of N2 by Electron Impact
NASA Technical Reports Server (NTRS)
Ajello, Joseph M.; Ciocca, Marco
1996-01-01
The Doppler profiles of one of the fine structure lines of the N I (1200 A) g (sup 4)S(sup 0)-(sup 4)P multiplet and of the N II (1085 A) g (sup 3)p(sup O)-(sup 3)D multiplet have been measured. Excitation of the multiplets is produced by electron impact dissociative excitation of N2. The experimental line profiles are evaluated by fast Fourier transform (FFT) techniques and analysis of the profiles yields the kinetic energy distribution of fragments. The full width at half maximum (FWHM) of N I (1200 A) increases from 27+/-6 mA at 30 eV to 37+/-4 mA at 100 eV as the emission cross section of the dissociative ionization excitation process becomes more important relative to the dissociative excitation process. The FWHM of the N II (1085 A) line is 36+/-4 mA at 100 eV. For each multiplet the kinetic energy distribution function of each of the two fragment N atoms (ions) is much broader than thermal with a mean energy above 1.0 eV. The dissociation process with the largest cross section is predissociation and predominantly produces N atoms with kinetic energy distributions having mean energies above 0.5 eV. Dissociative processes can lead to a substantial escape flux of N I atoms from the satellites, Titan and Triton of the outer planets.
Formation of ions and radicals from icy grains in comets
NASA Technical Reports Server (NTRS)
Jackson, William M.; Gerth, Christopher; Hendricks, Charles
1991-01-01
Ion and radical formation in comets are thought to occur primarily by photodissociation of gas phase molecules. Experimental evidence and theoretical calculations are presented that show that some of the radical and ions can come directly from ice grains. The experimental evidence suggest that if the frozen molecules on the surface of grains undergo direct dissociation then they may be able to release radicals directly in the gas phase. If the molecules undergo predissociation it is unlikely that they will release radicals in the gas phase since they should be quenched. Calculations of this direct photodissociation mechanism further indicate that even if the parent molecule undergoes direct dissociation, the yield will not be high enough to explain the rays structure in comets unless the radicals are stored in the grains and then released when the grain evaporates. Calculations were also performed to determine the maximum number of ions that can be stored in an icy grain's radius. This number is compared with the ratio of the ion to neutral molecular density. The comparison suggests that some of the ions observed near the nucleus of the comet could have originally been present in the cometary nucleus. It is also pointed out that the presence of these ions in icy grains could lead to radical formation via electron recombination. Finally, an avalanche process was evaluated as another means of producing ions in comets.
NASA Technical Reports Server (NTRS)
Winter, Michael W.; Prabhu, Dinesh K.
2011-01-01
Spectroscopic measurements of non-equilibrium emission were made in the free stream of the 60 megawatts Interaction Heating Facility at NASA Ames Research Center. In the visible near infrared wavelength region, the most prominent emission was from molecular N2, and in the ultra violet region, the spectra were dominated by emission from molecular NO. The only atomic lines observed were those of copper (an erosion product of the electrodes). The bands of the 1st Positive system of N2 (if B is true then A is true) differed significantly from spectra computed spectra assuming only thermal excitation, suggesting overpopulation of the high vibrational states of the B state of N2. Populations of these high vibrational levels (peaking at v (sub upper) equals 13) of the N2 B state were determined by scaling simulated spectra; calculations were performed for each upper vibrational state separately. The experimental-theoretical procedure was repeated for several radial positions away from the nozzle axis to obtain spatial distributions of the upper state populations; rotational symmetry of the flow was assumed in simulations. The overpopulation of the high vibrational levels has been interpreted as the effect of inverse pre-dissociation of neutral atoms in the N2 A state, which populates the N2 B state through a level crossing process at v (sub upper) is greater than 10.
NASA Astrophysics Data System (ADS)
Hostutler, David A.; Li, Haiyang; Clouthier, Dennis J.; Wannous, Ghassan
2002-03-01
The optical spectrum of jet-cooled Ge2 has been observed for the first time. Laser-induced fluorescence (LIF) and wavelength resolved emission spectra were recorded using the pulsed discharge technique with a tetramethylgermane precursor. Analysis of the spectra yielded the vibrational constants ωe″=287.9(47), ωexe″=0.81(55), ωeye″=0.0037(18), ωe'=189.0(15), ωexe'=6.41(30), and Te'=20 610.8(16) cm-1. High-resolution rotationally resolved spectra of several bands of 74Ge2 show two strong P and R branches and two very weak Q branches. We have assigned the band system as a Hund's case (c) Ω'=1-Ω″=1 transition from the ground 3Σg- state to a 3Σu- excited state. The bond lengths derived from the rotational constants are r0″=2.3680(1) Å and re'=2.5244(18) Å, an ˜0.16 Å increase on electronic excitation. Arguments are presented for assigning the transition to a σg2πu2→σg2πuπg electron promotion, although the observed increase in the bond length is much less than predicted by previous ab initio calculations. The absence of the 0u+-0g+ component in the spectra has been attributed to an excited state predissociation.
NASA Astrophysics Data System (ADS)
Kelleher, Patrick J.; DePalma, Joseph W.; Johnson, Mark
2016-06-01
The binding of alkaline earth dications to the biologically relevant carboxylate ligand has previously been studied using vibrational sum frequency generation (VSFG) spectroscopy of the air-water interface, infrared multiple photon dissociation (IRMPD) spectroscopy of clusters, and DFT methods. These results suggest the presence of both monodentate and bidentate binding motifs of the M2+ ions to the cayboxyl head groups depending on the extent of solvation. We revisit these systems using vibrational predissociation spectroscopy to measure the gas-phase vibrational spectra of the D2-tagged microhydrated [MgOAc(H2O)n=1-5]+ and [CaOAc(H2O)n=1-6]+ clusters. The spectra show that [MgOAc(H2O)n]+ switches from bidentate to monodentate binding promptly at n = 5, while [CaOAc(H2O)n]+ retains its bidentate attachment such that the sixth water molecule initiates the second solvation shell. The difference in binding behavior between these two divalent metal ions is analyzed in the context of the local acidity of the solvent water molecules and the strength of the metal-carboxylate and metal-water interactions. This cluster study provides insight into the chemical physics underlying the unique and surprising impacts of Mg2+ and Ca2+ on the chemistry mediated by sea spray aerosols. Funding for this work was provided by the NSF's Center for Aerosol Impacts on Climate and the Environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, H.B.; Hu, Y.J.; Bernstein, E.R.
Small methanol clusters are formed by expanding a mixture of methanol vapor seeded in helium and are detected using vacuum UV (vuv) (118 nm) single-photon ionization/linear time-of-flight mass spectrometer (TOFMS). Protonated cluster ions, (CH{sub 3}OH){sub n-1}H{sup +} (n=2-8), formed through intracluster ion-molecule reactions following ionization, essentially correlate to the neutral clusters, (CH{sub 3}OH){sub n}, in the present study using 118 nm light as the ionization source. Both experimental and Born-Haber calculational results clarify that not enough excess energy is released into protonated cluster ions to initiate further fragmentation in the time scale appropriate for linear TOFMS. Size-specific spectra for (CH{submore » 3}OH){sub n} (n=4 to 8) clusters in the OH stretch fundamental region are recorded by IR+vuv (118 nm) nonresonant ion-dip spectroscopy through the detection chain of IR multiphoton predissociation and subsequent vuv single-photon ionization. The general structures and gross features of these cluster spectra are consistent with previous theoretical calculations. The lowest-energy peak contributed to each cluster spectrum is redshifted with increasing cluster size from n=4 to 8, and limits near {approx}3220 cm{sup -1} in the heptamer and octamer. Moreover, IR+vuv nonresonant ionization detected spectroscopy is employed to study the OH stretch first overtone of the methanol monomer. The rotational temperature of the clusters is estimated to be at least 50 K based on the simulation of the monomer rotational envelope under clustering conditions.« less
Flachenecker, G; Materny, A
2004-03-22
We present femtosecond time-resolved pump-probe experiments on iodine molecules enclosed into well-defined cages and channels of different crystalline SiO2 modifications of zeolites. The new experimental results obtained from iodine in TON (Silica-ZSM-22), FER (Silica-Ferrierit), and MFI (Silicalit-1) porosils are compared with data published earlier on the iodine/DDR (Decadodecasil 3R) porosil system [Flachenecker et al., Phys. Chem. Chem. Phys. 5, 865 (2003)]. A summary of all findings is given. The processes analyzed by means of the ultrafast spectroscopy are the vibrational relaxation as well as the dissociation and recombination reactions, which are caused by the interaction of the photo-excited iodine molecules with the cavity walls of the porosils. A clear dependence of the observed dynamics on the geometry of the surrounding lattice structure can be seen. These measurements are supported by temperature-dependent experiments. Making use of a theoretical model which is based on the classical Langevin equation, an analysis of the geometry-reaction relation is performed. The Brownian dynamics simulations show that in contrast to the vibrational relaxation the predissociation dynamics are independent of the frequency of collisions with the surroundings. From the results obtained in the different surroundings, we conclude that mainly local fields are responsible for the crossing from the bound B state to the repulsive a/a' states of the iodine molecules.
Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method
NASA Astrophysics Data System (ADS)
Panesi, M.; Munafò, A.; Magin, T. E.; Jaffe, R. L.
2014-07-01
A rovibrational collisional model is developed to study the internal energy excitation and dissociation processes behind a strong shock wave in a nitrogen flow. The reaction rate coefficients are obtained from the ab initio database of the NASA Ames Research Center. The master equation is coupled with a one-dimensional flow solver to study the nonequilibrium phenomena encountered in the gas during a hyperbolic reentry into Earth's atmosphere. The analysis of the populations of the rovibrational levels demonstrates how rotational and vibrational relaxation proceed at the same rate. This contrasts with the common misconception that translational and rotational relaxation occur concurrently. A significant part of the relaxation process occurs in non-quasi-steady-state conditions. Exchange processes are found to have a significant impact on the relaxation of the gas, while predissociation has a negligible effect. The results obtained by means of the full rovibrational collisional model are used to assess the validity of reduced order models (vibrational collisional and multitemperature) which are based on the same kinetic database. It is found that thermalization and dissociation are drastically overestimated by the reduced order models. The reasons of the failure differ in the two cases. In the vibrational collisional model the overestimation of the dissociation is a consequence of the assumption of equilibrium between the rotational energy and the translational energy. The multitemperature model fails to predict the correct thermochemical relaxation due to the failure of the quasi-steady-state assumption, used to derive the phenomenological rate coefficient for dissociation.
NASA Astrophysics Data System (ADS)
Katz, A.; Waichman, K.; Dahan, Z.; Rybalkin, V.; Barmashenko, B. D.; Rosenwaks, S.
2007-06-01
The dissociation of I II molecules at the optical axis of a supersonic chemical oxygen-iodine laser (COIL) was studied via detailed measurements and three dimensional computational fluid dynamics calculations. Comparing the measurements and the calculations enabled critical examination of previously proposed dissociation mechanisms and suggestion of a mechanism consistent with the experimental and theoretical results obtained in a supersonic COIL for the gain, temperature and I II dissociation fraction at the optical axis. The suggested mechanism combines the recent scheme of Azyazov and Heaven (AIAA J. 44, 1593 (2006)), where I II(A' 3Π 2u), I II(A 3Π 1u) and O II(a1Δ g, v) are significant dissociation intermediates, with the "standard" chain branching mechanism of Heidner et al. (J. Phys. Chem. 87, 2348 (1983)), involving I(2P 1/2) and I II(X1Σ + g, v). In addition, we examined a new method for enhancement of the gain and power in a COIL by applying DC corona/glow discharge in the transonic section of the secondary flow in the supersonic nozzle, dissociating I II prior to its mixing with O II(1Δ). The loss of O II(1Δ) consumed for dissociation was thus reduced and the consequent dissociation rate downstream of the discharge increased, resulting in up to 80% power enhancement. The implication of this method for COILs operating beyond the specific conditions reported here is assessed.
NASA Astrophysics Data System (ADS)
Le Nadan, André; Sinou, Guillaume; Tuffin, Firmin
1993-06-01
Experimental observations of Penning ionisation of H{2}O by the helium metastables 21S and 23S and by the neon metastables ^3P{0} and ^3P{2} are reported. The kinetic energies of the ions created during the collision process (both parent and fragment) are analysed. Certain particularities of the experimental results are explained by involving the hypothesis of transfers of vibrational energy to kinetic energy. Furthermore, the forms of the energy distributions of the fragment ions are explained by th predissociation of the ^2B{2} state of H{2}O+. Nous avons étudié l'ionisation Penning de H{2}O par des métastables 21S et 23S de l'hélium, ainsi que ^3P{0} et ^3P{2} du néon. Nous avons analysé l'énergie cinétique des ions créés au cours de la collision (parents et fragments). Afin d'interpréter certaines particularités expérimentales, l'hypothèse de transferts d'énergie de vibration en énergie cinétique est proposées. Par ailleurs, les caractéristiques des distributions en énergie des ions fragments sont expliquées par la prédissociation de l'état ^2B{2} de H{2}O+.
An approximate classical unimolecular reaction rate theory
NASA Astrophysics Data System (ADS)
Zhao, Meishan; Rice, Stuart A.
1992-05-01
We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.
NASA Astrophysics Data System (ADS)
Tang, Xiaofeng; Zhou, Xiaoguo; Wu, Manman; Liu, Shilin; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi
2012-01-01
Utilizing threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging, dissociation of state-selected CH3Cl+ ions was investigated in the excitation energy range of 11.0-18.5 eV. TPEPICO time-of-flight mass spectra and three-dimensional time-sliced velocity images of CH3+ dissociated from CH3Cl+(A2A1 and B2E) ions were recorded. CH3+ was kept as the most dominant fragment ion in the present energy range, while the branching ratio of CH2Cl+ fragment was very low. For dissociation of CH3Cl+(A2A1) ions, a series of homocentric rings was clearly observed in the CH3+ image, which was assigned as the excitation of umbrella vibration of CH3+ ions. Moreover, a dependence of anisotropic parameters on the vibrational states of CH3+(11A') provided a direct experimental evidence of a shallow potential well along the C-Cl bond rupture. For CH3Cl+(B2E) ions, total kinetic energy released distribution for CH3+ fragmentation showed a near Maxwell-Boltzmann profile, indicating that the Cl-loss pathway from the B2E state was statistical predissociation. With the aid of calculated Cl-loss potential energy curves of CH3Cl+, CH3+ formation from CH3Cl+(A2A1) ions was a rapid direct fragmentation, while CH3Cl+(B2E) ions statistically dissociated to CH3+ + Cl via internal conversion to the high vibrational states of X2E.
NASA Astrophysics Data System (ADS)
Schulenburg, A. M.; Alcaraz, Ch.; Grassi, G.; Merkt, F.
2006-09-01
High-resolution photoionization and pulsed-field-ionization zero-kinetic-energy photoelectron spectra of CH3, CH2D, CHD2, and CD3 have been recorded in the vicinity of the first adiabatic ionization threshold following single-photon excitation from the ground neutral state using a narrow-bandwidth vacuum-ultraviolet laser. The radicals were produced from the precursor molecules methyl-bromide, methyl-iodide, dimethyl-thioether, acetone, and nitromethane by 193nm excimer photolysis in a quartz capillary and were subsequently cooled to a rotational temperature Trot≈30K in a supersonic expansion. Nitromethane was identified as a particularly suitable photolytic precursor of methyl for studies by photoionization and threshold photoelectron spectroscopy. Thanks to the cold rotational temperature reached in the supersonic expansion, the rotational structure of the threshold ionization spectra could be resolved, and the photoionization dynamics investigated. Rydberg series converging on excited rotational levels of CH3+ could be observed in the range of principal quantum number n =30-50, and both rotational autoionization and predissociation were identified as decay processes in the threshold region. The observed photoionization transitions can be understood in the realm of an orbital model for direct ionization but the intensity distributions can only be fully accounted for if the rotational channel interactions mediated by the quadrupole of the cation are considered. Improved values of the adiabatic ionization thresholds were derived for all isotopomers [CH3: 79356.2(15)cm-1, CH2D: 79338.8(15)cm-1, CHD2: 79319.1(15)cm-1, and CD3: 79296.4(15)cm-1].
Water network-mediated, electron-induced proton transfer in [C5H5N ṡ (H2O)n]- clusters
NASA Astrophysics Data System (ADS)
DeBlase, Andrew F.; Wolke, Conrad T.; Weddle, Gary H.; Archer, Kaye A.; Jordan, Kenneth D.; Kelly, John T.; Tschumper, Gregory S.; Hammer, Nathan I.; Johnson, Mark A.
2015-10-01
The role of proton-assisted charge accommodation in electron capture by a heterocyclic electron scavenger is investigated through theoretical analysis of the vibrational spectra of cold, gas phase [Py ṡ (H2O)n=3-5]- clusters. These radical anions are formed when an excess electron is attached to water clusters containing a single pyridine (Py) molecule in a supersonic jet ion source. Under these conditions, the cluster ion distribution starts promptly at n = 3, and the photoelectron spectra, combined with vibrational predissociation spectra of the Ar-tagged anions, establish that for n > 3, these species are best described as hydrated hydroxide ions with the neutral pyridinium radical, PyH(0), occupying one of the primary solvation sites of the OH-. The n = 3 cluster appears to be a special case where charge localization on Py and hydroxide is nearly isoenergetic, and the nature of this species is explored with ab initio molecular dynamics calculations of the trajectories that start from metastable arrangements of the anion based on a diffuse, essentially dipole-bound electron. These calculations indicate that the reaction proceeds via a relatively slow rearrangement of the water network to create a favorable hydration configuration around the water molecule that eventually donates a proton to the Py nitrogen atom to yield the product hydroxide ion. The correlation between the degree of excess charge localization and the evolving shape of the water network revealed by this approach thus provides a microscopic picture of the "solvent coordinate" at the heart of a prototypical proton-coupled electron transfer reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineo, H.; Kuo, J. L.; Niu, Y. L.
The results of application of the quantum-mechanical adiabatic theory to vibrational predissociation (VPD) of water dimers, (H{sub 2}O){sub 2} and (D{sub 2}O){sub 2}, are presented. We consider the VPD processes including the totally symmetric OH mode of the dimer and the bending mode of the fragment. The VPD in the adiabatic representation is induced by breakdown of the vibrational adiabatic approximation, and two types of nonadiabatic coupling matrix elements are involved: one provides the VPD induced by the low-frequency dissociation mode and the other provides the VPD through channel interactions induced by the low-frequency modes. The VPD rate constants weremore » calculated using the Fermi golden rule expression. A closed form for the nonadiabatic transition matrix element between the discrete and continuum states was derived in the Morse potential model. All of the parameters used were obtained from the potential surfaces of the water dimers, which were calculated by the density functional theory procedures. The VPD rate constants for the two processes were calculated in the non-Condon scheme beyond the so-called Condon approximation. The channel interactions in and between the initial and final states were taken into account, and those are found to increase the VPD rates by 3(1) orders of magnitude for the VPD processes in (H{sub 2}O){sub 2} ((D{sub 2}O){sub 2}). The fraction of the bending-excited donor fragments is larger than that of the bending-excited acceptor fragments. The results obtained by quantum-mechanical approach are compared with both experimental and quasi-classical trajectory calculation results.« less
Direct Electron Impact Excitation of Rydberg-Valence States of Molecular Nitrogen
NASA Astrophysics Data System (ADS)
Malone, C. P.; Johnson, P. V.; Liu, X.; Ajdari, B.; Muleady, S.; Kanik, I.; Khakoo, M. A.
2012-12-01
Collisions between electrons and neutral N2 molecules result in emissions that provide an important diagnostic probe for understanding the ionospheric energy balance and the effects of space weather in upper atmospheres. Also, transitions to singlet ungerade states cause N2 to be a strong absorber of solar radiation in the EUV spectral range where many ro-vibrational levels of these Rydberg-valence (RV) states are predissociative. Thus, their respective excitation and emission cross sections are important parameters for understanding the [N]/[N2] ratio in the thermosphere of nitrogen dominated atmospheres. The following work provides improved constraints on absolute and relative excitation cross sections of numerous RV states of N2, enabling more physically accurate atmospheric modeling. Here, we present recent integral cross sections (ICSs) for electron impact excitation of RV states of N2 [6], which were based on the differential cross sections (DCSs) derived from electron energy-loss (EEL) spectra of [5]. This work resulted in electronic excitation cross sections over the following measured vibrational levels: b 1Πu (v‧=0-14), c3 1Πu (v‧=0-3), o3 1Πu (v‧=0-3), b‧ 1Σu+ (v‧=0-10), c‧4 1Σu+ (v‧=0-3), G 3Πu (v‧=0-3), and F 3Πu (v‧=0-3). We further adjusted the cross sections of the RV states by extending the vibronic contributions to unmeasured v‧-levels via the relative excitation probabilities (REPs) as discussed in [6]. This resulted in REP-scaled ICSs over the following vibrational levels for the singlet ungerade states: b(0-19), c3(0-4), o3(0-4), b‧(0-16), and c‧4(0-8). Comparison of the ICSs of [6] with available EEL based measurements, theoretical calculations, and emission based work generally shows good agreement within error estimations, except with the recent reevaluation provided by [1]. Further, we have extended these results, using the recent EEL data of [3], to include the unfolding of better resolved features above ~13.82eV. This effort is to provide improved cross sections for these RV states, in particular for the b‧ 1Σu+ and c‧4 1Σu+ states, with inclusion of more upper vibrational levels. Future optical emission work should include re-measurements of excitation shape functions of the singlet ungerade states utilizing better spectral resolution than past determinations (e.g., [2,4]) to avoid uncertainties associated with unresolved and/or blended spectral features as well as J-dependent predissociation. Further development of theoretical treatments of N2 excitation is also in need. We will also present analysis of our new low-energy, near-threshold excitation cross sections for the valence states of N2, including a 1Πg (v‧) levels. Acknowledgement: This work was performed at CSUF and JPL, Caltech, under contract with NASA. We gratefully acknowledge financial support through NASA's OPR and PATM programs and NSF-PHY-RUI-0096808 & -0965793 and NSF-AGS-0938223. References: [1] Ajello, J. M., M. H. Stevens, I. Stewart, et al. (2007), GRL, 34, L24204 [2] Ajello, J. M., G. K. James, and B. O. Franklin (1989), PRA, 40, 3524-56 [3] Heays, A. N., B. R. Lewis, S. T. Gibson, et al. (2012), PRA, 85, 012705 [4] James, G. K., J. M. Ajello, B. Franklin, and D. E. Shemansky (1990), JPB, 23, 2055-81 [5] Khakoo, M. A., C. P. Malone, P. V. Johnson, et al. (2008), PRA, 77, 012704 [6] Malone, C. P., P. V. Johnson, X. Liu, et al. (2012), PRA, 85, 062704
NASA Astrophysics Data System (ADS)
Jones, D. B.; Campbell, L.; Bottema, M. J.; Teubner, P. J. O.; Cartwright, D. C.; Newell, W. R.; Brunger, M. J.
2006-01-01
Electron impact excitation of vibrational levels in the ground electronic state and seven excited electronic states in O 2 have been simulated for an International Brightness Coefficient-Category 2+ (IBC II+) night-time aurora, in order to predict O 2 excited state number densities and volume emission rates (VERs). These number densities and VERs are determined as a function of altitude (in the range 80-350 km) in the present study. Recent electron impact excitation cross-sections for O 2 were combined with appropriate altitude dependent IBC II+ auroral secondary electron distributions and the vibrational populations of the eight O 2 electronic states were determined under conditions of statistical equilibrium. Pre-dissociation, atmospheric chemistry involving atomic and molecular oxygen, radiative decay and quenching of excited states were included in this study. This model predicts relatively high number densities for the X3Σg-(v'⩽4),a1Δandb1Σg+ metastable electronic states and could represent a significant source of stored energy in O 2* for subsequent thermospheric chemical reactions. Particular attention is directed towards the emission intensities of the infrared (IR) atmospheric (1.27 μm), Atmospheric (0.76 μm) and the atomic oxygen 1S→ 1D transition (5577 Å) lines and the role of electron-driven processes in their origin. Aircraft, rocket and satellite observations have shown both the IR atmospheric and Atmospheric lines are dramatically enhanced under auroral conditions and, where possible, we compare our results to these measurements. Our calculated 5577 Å intensity is found to be in good agreement with values independently measured for a medium strength IBC II+ aurora.
NASA Astrophysics Data System (ADS)
Boguslavskiy, Andrey E.; Schalk, Oliver; Gador, Niklas; Glover, William J.; Mori, Toshifumi; Schultz, Thomas; Schuurman, Michael S.; Martínez, Todd J.; Stolow, Albert
2018-04-01
The ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright 1Bu (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans' correlations and Franck-Condon factors for the excited and cationic states involved. The known predissociative character of the cation excited states is utilized to assign photoelectron bands to specific continua using TRPEPICO spectroscopy. This permits us to report the direct observation of the famously elusive S1(21Ag) dark electronic state during the internal conversion of trans 1,3-butadiene. Our phenomenological analysis permits the spectroscopic determination of several important time constants. We report the overall decay lifetimes of the 11Bu and 21Ag states and observe the re-appearance of the hot ground state molecule. We argue that the apparent dephasing time of the S2(11Bu) state, which leads to the extreme breadth of the absorption spectrum, is principally due to large amplitude torsional motion on the 1Bu surface in conjunction with strong non-adiabatic couplings via conical intersections, whereupon nuclear wavepacket revivals to the initial Franck-Condon region become effectively impossible. In Paper II [W. J. Glover et al., J. Chem. Phys. 148, 164303 (2018)], ab initio multiple spawning is used for on-the-fly computations of the excited state non-adiabatic wavepacket dynamics and their associated TRPEPICO observables, allowing for direct comparisons of experiment with theory.
High-accuracy calculations of the rotation-vibration spectrum of {{\\rm{H}}}_{3}^{+}
NASA Astrophysics Data System (ADS)
Tennyson, Jonathan; Polyansky, Oleg L.; Zobov, Nikolai F.; Alijah, Alexander; Császár, Attila G.
2017-12-01
Calculation of the rotation-vibration spectrum of {{{H}}}3+, as well as of its deuterated isotopologues, with near-spectroscopic accuracy requires the development of sophisticated theoretical models, methods, and codes. The present paper reviews the state-of-the-art in these fields. Computation of rovibrational states on a given potential energy surface (PES) has now become standard for triatomic molecules, at least up to intermediate energies, due to developments achieved by the present authors and others. However, highly accurate Born-Oppenheimer energies leading to highly accurate PESs are not accessible even for this two-electron system using conventional electronic structure procedures (e.g. configuration-interaction or coupled-cluster techniques with extrapolation to the complete (atom-centered Gaussian) basis set limit). For this purpose, highly specialized techniques must be used, e.g. those employing explicitly correlated Gaussians and nonlinear parameter optimizations. It has also become evident that a very dense grid of ab initio points is required to obtain reliable representations of the computed points extending from the minimum to the asymptotic limits. Furthermore, adiabatic, relativistic, and quantum electrodynamic correction terms need to be considered to achieve near-spectroscopic accuracy during calculation of the rotation-vibration spectrum of {{{H}}}3+. The remaining and most intractable problem is then the treatment of the effects of non-adiabatic coupling on the rovibrational energies, which, in the worst cases, may lead to corrections on the order of several cm-1. A promising way of handling this difficulty is the further development of effective, motion- or even coordinate-dependent, masses and mass surfaces. Finally, the unresolved challenge of how to describe and elucidate the experimental pre-dissociation spectra of {{{H}}}3+ and its isotopologues is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeBlase, Andrew F.; Wolke, Conrad T.; Johnson, Mark A., E-mail: jordan@pitt.edu, E-mail: nhammer@olemiss.edu, E-mail: mark.johnson@yale.edu
2015-10-14
The role of proton-assisted charge accommodation in electron capture by a heterocyclic electron scavenger is investigated through theoretical analysis of the vibrational spectra of cold, gas phase [Py ⋅ (H{sub 2}O){sub n=3−5}]{sup −} clusters. These radical anions are formed when an excess electron is attached to water clusters containing a single pyridine (Py) molecule in a supersonic jet ion source. Under these conditions, the cluster ion distribution starts promptly at n = 3, and the photoelectron spectra, combined with vibrational predissociation spectra of the Ar-tagged anions, establish that for n > 3, these species are best described as hydrated hydroxidemore » ions with the neutral pyridinium radical, PyH{sup (0)}, occupying one of the primary solvation sites of the OH{sup −}. The n = 3 cluster appears to be a special case where charge localization on Py and hydroxide is nearly isoenergetic, and the nature of this species is explored with ab initio molecular dynamics calculations of the trajectories that start from metastable arrangements of the anion based on a diffuse, essentially dipole-bound electron. These calculations indicate that the reaction proceeds via a relatively slow rearrangement of the water network to create a favorable hydration configuration around the water molecule that eventually donates a proton to the Py nitrogen atom to yield the product hydroxide ion. The correlation between the degree of excess charge localization and the evolving shape of the water network revealed by this approach thus provides a microscopic picture of the “solvent coordinate” at the heart of a prototypical proton-coupled electron transfer reaction.« less
NASA Astrophysics Data System (ADS)
Smith, P. L.; Stark, G.; Yoshino, K.
2003-05-01
The analyses of VUV occultation measurements of the N2-rich atmospheres of Titan and Triton are hampered by the lack of fundamental spectroscopic data for N2. There is a need for reliable photoabsorption cross sections and line widths for the 100 electronic bands of N2 in the 80 to 100 nm wavelength region. We present analyses of new measurements of individual line strengths and widths in N2 bands in the region 94 to 100 nm. Within individual bands, we find significant departures from the predicted line strength distributions based on isolated band models. Line width analyses within each band indicate that predissociation-broadening is often highly dependent on the rotational quantum number. We illustrate the importance of N2 line widths in the analysis of occultation measurements via N2 transmission models over selected wavelength regions. We have continued to compile on-line molecular spectroscopic atlas based on our N2 laboratory data: http://cfa-www.harvard.edu/amdata/ampdata/N2ARCHIVE/n2home.html. The archive includes published and unpublished 14N2, 14N15N, and 15N2 line lists and spectroscopic identifications, excited state energy levels, band and line f-values, a summary of published band f-value and line width measurements, and a cross-referenced summary of the relevant N2 literature. The listings are searchable by wavelength interval or band identification and are suitable for down-loading in a convenient format. We gratefully acknowledge funding support from NASA grant NAG5-9059 and the Smithsonian Institution Atherton-Seidell Grant Program.
Molecular modeling studies of substrate binding by penicillin acylase.
Chilov, G G; Stroganov, O V; Svedas, V K
2008-01-01
Molecular modeling has revealed intimate details of the mechanism of binding of natural substrate, penicillin G (PG), in the penicillin acylase active center and solved questions raised by analysis of available X-ray structures, mimicking Michaelis complex, which substantially differ in the binding pattern of the PG leaving group. Three MD trajectories were launched, starting from PDB complexes of the inactive mutant enzyme with PG (1FXV) and native penicillin acylase with sluggishly hydrolyzed substrate analog penicillin G sulfoxide (1GM9), or from the complex obtained by PG docking. All trajectories converged to a similar PG binding mode, which represented the near-to-attack conformation, consistent with chemical criteria of how reactive Michaelis complex should look. Simulated dynamic structure of the enzyme-substrate complex differed significantly from 1FXV, resembling rather 1GM9; however, additional contacts with residues bG385, bS386, and bN388 have been found, which were missing in X-ray structures. Combination of molecular docking and molecular dynamics also clarified the nature of extremely effective phenol binding in the hydrophobic pocket of penicillin acylase, which lacked proper explanation from crystallographic experiments. Alternative binding modes of phenol were probed, and corresponding trajectories converged to a single binding pattern characterized by a hydrogen bond between the phenol hydroxyl and the main chain oxygen of bS67, which was not evident from the crystal structure. Observation of the trajectory, in which phenol moved from its steady bound to pre-dissociation state, mapped the consequence of molecular events governing the conformational transitions in a coil region a143-a146 coupled to substrate binding and release of the reaction products. The current investigation provided information on dynamics of the conformational transitions accompanying substrate binding and significance of poorly structured and flexible regions in maintaining catalytic framework.
Matthews, Edward; Sen, Ananya; Yoshikawa, Naruo; Bergström, Ed; Dessent, Caroline E H
2016-06-01
Isolated molecular clusters of adenine, cytosine, thymine and uracil bound to hexachloroplatinate, PtCl6(2-), have been studied using laser electronic photodissociation spectroscopy to investigate photoactivation of a platinum complex in the vicinity of a nucleobase. These metal complex-nucleobase clusters represent model systems for identifying the fundamental photochemical processes occurring in photodynamic platinum drug therapies that target DNA. This is the first study to explore the specific role of a strongly photoactive platinum compound in the aggregate complex. Each of the clusters studied displays a broadly similar absorption spectra, with a strong λmax ∼ 4.6 eV absorption band and a subsequent increase in the absorption intensity towards higher spectral-energy. The absorption bands are traced to ligand-to-metal-charge-transfer excitations on the PtCl6(2-) moiety within the cluster, and result in Cl(-)·nucleobase and PtCl5(-) as primary photofragments. These results demonstrate how selective photoexcitation can drive distinctive photodecay channels for a model photo-pharmaceutical. In addition, cluster absorption due to excitation of nucleobase-centred chromophores is observed in the region around 5 eV. For the uracil cluster, photofragments consistent with ultrafast decay of the excited state and vibrational predissociation on the ground-state surface are observed. However, this decay channel becomes successively weaker on going from thymine to cytosine to adenine, due to differential coupling of the excited states to the electron detachment continuum. These effects demonstrate the distinctive photophysical characteristics of the different nucleobases, and are discussed in the context of the recently recorded photoelectron spectra of theses clusters.
High resolution emission Fourier transform infrared spectra of the 4p-5s and 5p-6s bands of ArH.
Baskakov, O I; Civis, S; Kawaguchi, K
2005-03-15
In the 2500-8500 cm(-1) region several strong emission bands of (40)ArH were observed by Fourier transform spectroscopy through a dc glow discharge in a mixture of argon and hydrogen. Rotational-electronic transitions of the two previously unstudied 4p-5s and 5p-6s,v = 0-0, bands of (40)ArH were measured and assigned in the 6060 and 3770 cm(-1) regions, respectively. A simultaneous fit of the emission transitions of the 4p-5s and 5p-6s bands and an extended set of transitions of the 6s-4p band observed by Dabrowski, Tokaryk, and Watson [J. Mol. Spectrosc. 189, 95 (1998)] and remeasured in the present work yielded consistent values of the spectroscopic parameters of the electronic states under investigation. In the branch of the 4p-5s band with transitions of type (Q)Q(f(3)e) we observed a narrowing in the linewidths with increasing rotational quantum number N. The rotational dependence of the linewidth is caused by predissociation of the 5s state by the repulsive ground 4s state through homogeneous coupling and changes in overlap integrals of the vibrational wave functions with the rotational level. Analysis was based on the Fermi's golden rule approximation model. In the 4p-5s band region a vibrational sequence ofv(')-v(")=1-1, 2-2, and 3-3 were recorded and a number of transitions belonging to the strongest (Q)Q(f(3)e) form branch of the 1-1 band were analyzed.
Equine Rhinitis A Virus and Its Low pH Empty Particle: Clues Towards an Aphthovirus Entry Mechanism?
Tuthill, Tobias J.; Harlos, Karl; Walter, Thomas S.; Knowles, Nick J.; Groppelli, Elisabetta; Rowlands, David J.; Stuart, David I.; Fry, Elizabeth E.
2009-01-01
Equine rhinitis A virus (ERAV) is closely related to foot-and-mouth disease virus (FMDV), belonging to the genus Aphthovirus of the Picornaviridae. How picornaviruses introduce their RNA genome into the cytoplasm of the host cell to initiate replication is unclear since they have no lipid envelope to facilitate fusion with cellular membranes. It has been thought that the dissociation of the FMDV particle into pentameric subunits at acidic pH is the mechanism for genome release during cell entry, but this raises the problem of how transfer across the endosome membrane of the genome might be facilitated. In contrast, most other picornaviruses form ‘altered’ particle intermediates (not reported for aphthoviruses) thought to induce membrane pores through which the genome can be transferred. Here we show that ERAV, like FMDV, dissociates into pentamers at mildly acidic pH but demonstrate that dissociation is preceded by the transient formation of empty 80S particles which have released their genome and may represent novel biologically relevant intermediates in the aphthovirus cell entry process. The crystal structures of the native ERAV virus and a low pH form have been determined via highly efficient crystallization and data collection strategies, required due to low virus yields. ERAV is closely similar to FMDV for VP2, VP3 and part of VP4 but VP1 diverges, to give a particle with a pitted surface, as seen in cardioviruses. The low pH particle has internal structure consistent with it representing a pre-dissociation cell entry intermediate. These results suggest a unified mechanism of picornavirus cell entry. PMID:19816570
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, T. B.; Miliordos, E.; Carnegie, P. D.
Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O–H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 1:3 intensity ratios for K = even:odd levels for independent ortho:para nuclearmore » spin states are missing for some complexes. We relied on highly correlated internally contracted Multi-Reference Configuration Interaction (icMRCI) and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to quasi-C2v symmetry with significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and iobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 sec-1).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boguslavskiy, Andrey E.; Schalk, Oliver; Gador, Niklas
The ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright 1B u (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans’ correlations and Franck-Condon factors for the excited and cationic states involved. The known predissociative character of the cation excited states is utilized to assign photoelectron bands to specific continua using TRPEPICO spectroscopy. This permits us tomore » report the direct observation of the famously elusive S 1(2 1A g) dark electronic state during the internal conversion of trans 1,3-butadiene. Our phenomenological analysis permits the spectroscopic determination of several important time constants. We report the overall decay lifetimes of the 1 1B u and 2 1A g states and observe the re-appearance of the hot ground state molecule. We argue that the apparent dephasing time of the S 2(1 1B u) state, which leads to the extreme breadth of the absorption spectrum, is principally due to large amplitude torsional motion on the 1B u surface in conjunction with strong non-adiabatic couplings via conical intersections, whereupon nuclear wavepacket revivals to the initial Franck-Condon region become effectively impossible. Lastly, in Paper II [W. J. Glover et al., J. Chem. Phys. 148, 164303 (2018)], ab initio multiple spawning is used for on-the-fly computations of the excited state non-adiabatic wavepacket dynamics and their associated TRPEPICO observables, allowing for direct comparisons of experiment with theory.« less
NASA Astrophysics Data System (ADS)
Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio
1994-05-01
Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.
Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters.
Ward, T B; Miliordos, E; Carnegie, P D; Xantheas, S S; Duncan, M A
2017-06-14
Vanadium and niobium cation-water complexes, V + (H 2 O) and Nb + (H 2 O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C 2v symmetry with a significant probability off the C 2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 10 6 s -1 ).
Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters
NASA Astrophysics Data System (ADS)
Ward, T. B.; Miliordos, E.; Carnegie, P. D.; Xantheas, S. S.; Duncan, M. A.
2017-06-01
Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C2v symmetry with a significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 s-1).
Recent Changes in Pgopher: a General Purpose Program for Simulating Rotational Structure
NASA Astrophysics Data System (ADS)
Western, Colin
2010-06-01
Key features of the PGOPHER program include the simulation and fitting of the rotational structure of linear molecules and symmetric and asymmetric tops, including effects due to unpaired electrons and nuclear spin. The program is written to be as general as possible, and can handle many effects such as multiple interacting states, predissociation and multiphoton transitions. It is designed to be easy to use, with a flexible graphical user interface. PGOPHER has been released as an open source program, and can be freely downloaded from the website at http://pgopher.chm.bris.ac.uk. Recent additions include a mode which allows the calculation of vibrational energy levels starting from a harmonic model and the multidimensional Franck-Condon factors required to calculate intensities of vibronic transitions. PGOPHER takes account of both the displacement along normal co-ordinates and mixing between modes (the Duschinsky effect). l matrices produced from ab initio programs can be directly read by PGOPHER or the mode displacements and mixing can be fit to observed spectra. In addition the effects of external electric and/or magnetic fields can now be calculated, including plots of energy level against electric field suitable for predicting Stark deceleration, focussing and trapping of molecules. The figure shows a typical plot, showing the electric field tuning of the M = 0 levels of 202, 111 and 110 levels of (NO)_2. Other new features include fits to combination differences, simulation of the Doppler split peak typical of Fourier transform microwave spectroscopy, specifying a nuclear spin temperature independent of rotational temperature and interactive adjustment of parameter values with the mouse in addition to typing values.
Computational Study of Electron-Molecule Collisions Related to Low-Temperature Plasmas.
NASA Astrophysics Data System (ADS)
Huo, Winifred M.
1997-10-01
Computational study of electron-molecule collisions not only complements experimental measurements, but can also be used to investigate processes not readily accessible experimentally. A number of ab initio computational methods are available for this type of calculations. Here we describe a recently developed technique, the finite element Z-matrix method. Analogous to the R-matrix method, it partitions the space into regions and employs real matrix elements. However, unlike the implementation of the R-matrix method commonly used in atomic and molecular physics,(C. J. Gillan, J. Tennyson, and P. G. Burke, Chapter 10 in Computational Methods for Electron-Molecule Collisions), W. M. Huo and F. A. Gianturco, Editors, Plenum, New York (1995), p. 239. the Z-matrix method is fully variational.(D. Brown and J. C. Light, J. Chem. Phys. 101), 3723 (1994). In the present implementation, a mixed basis of finite elements and Gaussians is used to represent the continuum electron, thus offering full flexibility without imposing fixed boundary conditions. Numerical examples include the electron-impact dissociation of N2 via the metastable A^3Σ_u^+ state, a process which may be important in the lower thermosphere, and the dissociation of the CF radical, a process of interest to plasma etching. To understand the dissociation pathways, large scale quantum chemical calculations have been carried out for all target states which dissociate to the lowest five limits in the case of N_2, and to the lowest two limits in the case of CF. For N_2, the structural calculations clearly show the preference for predissociation if the initial state is the ground X^1Σ_g^+ state, but direct dissociation appears to be preferable if the initial state is the A^3Σ_u^+ state. Multi-configuration SCF target functions are used in the collisional calculation,
Boguslavskiy, Andrey E.; Schalk, Oliver; Gador, Niklas; ...
2018-04-27
The ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright 1B u (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans’ correlations and Franck-Condon factors for the excited and cationic states involved. The known predissociative character of the cation excited states is utilized to assign photoelectron bands to specific continua using TRPEPICO spectroscopy. This permits us tomore » report the direct observation of the famously elusive S 1(2 1A g) dark electronic state during the internal conversion of trans 1,3-butadiene. Our phenomenological analysis permits the spectroscopic determination of several important time constants. We report the overall decay lifetimes of the 1 1B u and 2 1A g states and observe the re-appearance of the hot ground state molecule. We argue that the apparent dephasing time of the S 2(1 1B u) state, which leads to the extreme breadth of the absorption spectrum, is principally due to large amplitude torsional motion on the 1B u surface in conjunction with strong non-adiabatic couplings via conical intersections, whereupon nuclear wavepacket revivals to the initial Franck-Condon region become effectively impossible. Lastly, in Paper II [W. J. Glover et al., J. Chem. Phys. 148, 164303 (2018)], ab initio multiple spawning is used for on-the-fly computations of the excited state non-adiabatic wavepacket dynamics and their associated TRPEPICO observables, allowing for direct comparisons of experiment with theory.« less
Effects of CO addition on the characteristics of laminar premixed CH{sub 4}/air opposed-jet flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C.-Y.; Chao, Y.-C.; Chen, C.-P.
2009-02-15
The effects of CO addition on the characteristics of premixed CH{sub 4}/air opposed-jet flames are investigated experimentally and numerically. Experimental measurements and numerical simulations of the flame front position, temperature, and velocity are performed in stoichiometric CH{sub 4}/CO/air opposed-jet flames with various CO contents in the fuel. Thermocouple is used for the determination of flame temperature, velocity measurement is made using particle image velocimetry (PIV), and the flame front position is measured by direct photograph as well as with laser-induced predissociative fluorescence (LIPF) of OH imaging techniques. The laminar burning velocity is calculated using the PREMIX code of Chemkin collectionmore » 3.5. The flame structures of the premixed stoichiometric CH{sub 4}/CO/air opposed-jet flames are simulated using the OPPDIF package with GRI-Mech 3.0 chemical kinetic mechanisms and detailed transport properties. The measured flame front position, temperature, and velocity of the stoichiometric CH{sub 4}/CO/air flames are closely predicted by the numerical calculations. Detailed analysis of the calculated chemical kinetic structures reveals that as the CO content in the fuel is increased from 0% to 80%, CO oxidation (R99) increases significantly and contributes to a significant level of heat-release rate. It is also shown that the laminar burning velocity reaches a maximum value (57.5 cm/s) at the condition of 80% of CO in the fuel. Based on the results of sensitivity analysis, the chemistry of CO consumption shifts to the dry oxidation kinetics when CO content is further increased over 80%. Comparison between the results of computed laminar burning velocity, flame temperature, CO consumption rate, and sensitivity analysis reveals that the effect of CO addition on the laminar burning velocity of the stoichiometric CH{sub 4}/CO/air flames is due mostly to the transition of the dominant chemical kinetic steps. (author)« less
Orientation observed by Zeeman spectra of dissociated atoms and the interference in photoexcitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Yasuyuki; Kasahara, Shunji; Kato, Hajime
2003-06-01
In a magnetic field, the wave number of a pump laser light polarized along the field was fixed to the isolated Cs{sub 2}D {sup 1}{sigma}{sub u}{sup +}(v=46, J=54)(leftarrow)X {sup 1}{sigma}{sub g}{sup +}(v=0, J=55) line, and the excitation spectrum of the dissociated Cs(6p {sup 2}P{sub 3/2}) atoms was measured by scanning the wave number of a probe laser light polarized perpendicular to the field. The population of each sublevel 6p {sup 2}P{sub 3/2,m{sub j}} of the dissociated atoms was determined from the line intensities in the m{sub j}-resolved excitation spectrum. The unequal population between the 6p {sup 2}P{sub 3/2,+verticalbarm{sub j}}{sub verticalbar}more » and 6p {sup 2}P{sub 3/2,-verticalbarm{sub j}}{sub verticalbar} levels (atomic orientation) was observed and it was enhanced as the magnetic-field strength was increased. The atomic orientation is shown to be induced by the interference between the indirect predissociation, which occurs by a combination of the spin-orbit coupling of the D {sup 1}{sigma}{sub u}{sup +} state with the (2){sup 3}{pi}{sub 0u} state and the L-uncoupling and Zeeman interactions between the (2){sup 3}{pi}{sub 0u} and dissociative (2){sup 3}{sigma}{sub u}{sup +} states, and the dissociation following a direct excitation to the (2){sup 3}{sigma}{sub u}{sup +} state, which is allowed by spin-orbit coupling of the (2){sup 3}{sigma}{sub u}{sup +} state with the B {sup 1}{pi}{sub u} state. It is demonstrated that the atomic orientation is produced by the photodissociation in the presence of an external magnetic field even when all degenerated molecular M=J,...,0,...,-J sublevels are excited by a light polarized linearly along the field.« less
dPotFit: A computer program to fit diatomic molecule spectral data to potential energy functions
NASA Astrophysics Data System (ADS)
Le Roy, Robert J.
2017-01-01
This paper describes program dPotFit, which performs least-squares fits of diatomic molecule spectroscopic data consisting of any combination of microwave, infrared or electronic vibrational bands, fluorescence series, and tunneling predissociation level widths, involving one or more electronic states and one or more isotopologs, and for appropriate systems, second virial coefficient data, to determine analytic potential energy functions defining the observed levels and other properties of each state. Four families of analytical potential functions are available for fitting in the current version of dPotFit: the Expanded Morse Oscillator (EMO) function, the Morse/Long-Range (MLR) function, the Double-Exponential/Long-Range (DELR) function, and the 'Generalized Potential Energy Function' (GPEF) of Šurkus, which incorporates a variety of polynomial functional forms. In addition, dPotFit allows sets of experimental data to be tested against predictions generated from three other families of analytic functions, namely, the 'Hannover Polynomial' (or "X-expansion") function, and the 'Tang-Toennies' and Scoles-Aziz 'HFD', exponential-plus-van der Waals functions, and from interpolation-smoothed pointwise potential energies, such as those obtained from ab initio or RKR calculations. dPotFit also allows the fits to determine atomic-mass-dependent Born-Oppenheimer breakdown functions, and singlet-state Λ-doubling, or 2Σ splitting radial strength functions for one or more electronic states. dPotFit always reports both the 95% confidence limit uncertainty and the "sensitivity" of each fitted parameter; the latter indicates the number of significant digits that must be retained when rounding fitted parameters, in order to ensure that predictions remain in full agreement with experiment. It will also, if requested, apply a "sequential rounding and refitting" procedure to yield a final parameter set defined by a minimum number of significant digits, while ensuring no significant loss of accuracy in the predictions yielded by those parameters.
Coherent control of alkali cluster fragmentation dynamics
NASA Astrophysics Data System (ADS)
Lindinger, Albrecht; Lupulescu, Cosmin; Bartelt, Andreas; Vajda, Štefan; Wöste, Ludger
2003-06-01
Metal clusters exhibit extraordinary chemical and catalytic properties, which sensitively depend upon their size. This behavior makes them interesting candidates for the real-time analysis of ultrafast photo-induced processes—ultimately leading to coherent control scenarii. We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters, like its phase, amplitude and duration; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photochemical process. We present first the vibrational dynamics of bound, dissociated, and pre-dissociated electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced fragmentation experiments on bifurcating reaction channels were carried out. In these experiments different branching ionization and fragmentation pathways of electronically excited Na 2K were investigated. By employing an evolutionary algorithm for optimizing the phase and amplitude of the applied laser field, the yield of the resulting parent or fragment ions could significantly be influenced and interesting features could be concluded from the obtained optimum pulse shapes revealing the characteristic molecular oscillation period. Moreover, the influence on the optimal pulse shape due to fragmentation from larger clusters into NaK is obtained. The substructure of the optimal pulse shape thereby offers new insight into the fragmentation channel during the control process. Characteristic motions of the involved wave packets are proposed, in order to explain the optimized dynamic dissociation pathways.
Near infrared overtone (vOH = 2 ← 0) spectroscopy of Ne-H2O clusters
NASA Astrophysics Data System (ADS)
Ziemkiewicz, Michael P.; Pluetzer, Christian; Wojcik, Michael; Loreau, Jérôme; van der Avoird, Ad; Nesbitt, David J.
2017-03-01
Vibrationally state selective overtone spectroscopy and dynamics of weakly bound Ne-H2O complexes (D0(para) = 31.67 cm-1, D0(ortho) = 34.66 cm-1) are reported for the first time, based on near infrared excitation of van der Waals cluster bands correlating with vOH = 2 ← 0 overtone transitions (|02-⟩←|00+⟩ and |02+⟩ ←|00+⟩ ) out of the ortho (101) and para (000) internal rotor states of the H2O moiety. Quantum theoretical calculations for nuclear motion on a high level ab initio potential energy surface (CCSD(T)/VnZ-f12 (n = 3,4), corrected for basis set superposition error and extrapolated to the complete basis set limit) are employed for assignment of Σ ←Σ ,Π ←Σ , and Σ ←Π infrared bands in the overtone spectra, where Σ ( K = 0) and Π (K = 1) represent approximate projections (K) of the body angular momentum along the Ne-H2O internuclear axis. End-over-end tumbling of the ortho Ne-H2O cluster is evident via rotational band contours observed, with band origins and rotational progressions in excellent agreement with ab initio frequency and intensity predictions. A clear Q branch in the corresponding |02+⟩fΠ (111) ←eΣ (000) para Ne-H2O spectrum provides evidence for a novel e/f parity-dependent metastability in these weakly bound clusters, in agreement with ab initio bound state calculations and attributable to the symmetry blocking of an energetically allowed channel for internal rotor predissociation. Finally, Boltzmann analysis of the rotational spectra reveals anomalously low jet temperatures (Trot ≈ 4(1) K), which are attributed to "evaporative cooling" of weakly bound Ne-H2O clusters and provide support for similar cooling dynamics in rare gas-tagging studies.
NASA Astrophysics Data System (ADS)
Liang, Wenkel
This dissertation consists of two general parts: (I) developments of optimization algorithms (both nuclear and electronic degrees of freedom) for time-independent molecules and (II) novel methods, first-principle theories and applications in time dependent molecular structure modeling. In the first part, we discuss in specific two new algorithms for static geometry optimization, the eigenspace update (ESU) method in nonredundant internal coordinate that exhibits an enhanced performace with up to a factor of 3 savings in computational cost for large-sized molecular systems; the Car-Parrinello density matrix search (CP-DMS) method that enables direct minimization of the SCF energy as an effective alternative to conventional diagonalization approach. For the second part, we consider the time dependence and first presents two nonadiabatic dynamic studies that model laser controlled molecular photo-dissociation for qualitative understandings of intense laser-molecule interaction, using ab initio direct Ehrenfest dynamics scheme implemented with real-time time-dependent density functional theory (RT-TDDFT) approach developed in our group. Furthermore, we place our special interest on the nonadiabatic electronic dynamics in the ultrafast time scale, and presents (1) a novel technique that can not only obtain energies but also the electron densities of doubly excited states within a single determinant framework, by combining methods of CP-DMS with RT-TDDFT; (2) a solvated first-principles electronic dynamics method by incorporating the polarizable continuum solvation model (PCM) to RT-TDDFT, which is found to be very effective in describing the dynamical solvation effect in the charge transfer process and yields a consistent absorption spectrum in comparison to the conventional linear response results in solution. (3) applications of the PCM-RT-TDDFT method to study the intramolecular charge-transfer (CT) dynamics in a C60 derivative. Such work provides insights into the characteristics of ultrafast dynamics in photoexcited fullerene derivatives, and aids in the rational design for pre-dissociative exciton in the intramolecular CT process in organic solar cells.
Shen, Huan; Chen, Jianjun; Hua, Linqiang; Zhang, Bing
2014-06-26
The photodissociation dynamics of allyl chloride at 200 and 266 nm has been studied by femtosecond time-resolved mass spectrometry coupled with photoelectron imaging. The molecule was prepared to different excited states by selectively pumping with 400 or 266 nm pulse. The dissociated products were then probed by multiphoton ionization with 800 nm pulse. After absorbing two photons at 400 nm, several dissociation channels were directly observed from the mass spectrum. The two important channels, C-Cl fission and HCl elimination, were found to decay with multiexponential functions. For C-Cl fission, two time constants, 48 ± 1 fs and 85 ± 40 ps, were observed. The first one was due to the fast predissociation process on the repulsive nσ*/πσ* state. The second one could be ascribed to dissociation on the vibrationally excited ground state which is generated after internal conversion from the initially prepared ππ* state. HCl elimination, which is a typical example of a molecular elimination reaction, was found to proceed with two time constants, 600 ± 135 fs and 14 ± 2 ps. We assigned the first one to dissociation on the excited state and the second one to the internal conversion from the ππ* state to the ground state and then dissociation on the ground state. As we excited the molecule with 266 nm light, the transient signals decayed exponentially with a time constant of ∼48 fs, which is coincident with the time scale of C-halogen direct dissociation. Photoelectron images, which provided translational and angular distributions of the generated electron, were also recorded. Detailed analysis of the kinetic energy distribution strongly suggested that C3H4(+) and C3H5(+) were generated from ionization of the neutral radical. The present study reveals the dissociation dynamics of allyl chloride in a time-resolved way.
Vibrational dynamics of aniline(Ar)1 and aniline(CH4)1 clusters
NASA Astrophysics Data System (ADS)
Nimlos, M. R.; Young, M. A.; Bernstein, E. R.; Kelley, D. F.
1989-11-01
The first excited electronic state (S1) vibrational dynamics of aniline(Ar)1 and aniline(CH4)1 van der Waals (vdW) clusters have been studied using molecular jet and time resolved emission spectroscopic techniques. The rates of intramolecular vibrational energy redistribution (IVR) and vibrational predissociation (VP) as functions of vibrational energy are reported for both clusters. For vibrational energy in excess of the cluster binding energy, both clusters are observed to dissociate. The dispersed emission spectra of these clusters demonstrate that aniline(Ar)1 dissociates to all energetically accessible bare molecule states and that aniline(CH4)1 dissociates selectively to only the bare molecule vibrationless state. The emission kinetics show that in the aniline(Ar)1 case, the initially excited states have nanosecond lifetimes, and intermediate cluster states have very short lifetimes. In contrast, the initially excited aniline(CH4)1 states and other intermediate vibrationally excited cluster states are very short lived (<100 ps), and the intermediate cluster 00 state is observed. These results can be understood semiquantitatively in terms of an overall serial IVR/VP mechanism which consists of the following: (1) the rates of chromophore to vdW mode IVR are given by Fermi's golden rule, and the density of vdW vibrational states is the most important factor in determining the relative [aniline(Ar)1 vs aniline(CH4)1] rates of IVR; (2) IVR among the vdW modes is rapid; and (3) VP rates can be calculated by a restricted vdW mode phase space Rice-Ramsberger-Kassel-Marcus theory. Since the density of vdW states is three orders of magnitude greater for aniline(CH4)1 than aniline(Ar)1 at 700 cm-1, the model predicts that IVR is slow and rate limiting in aniline(Ar)1, whereas VP is slow and rate limiting in aniline(CH4)1. The agreement of these predictions with the experimental results is very good and is discussed in detail.
Laser Raman Diagnostics in Subsonic and Supersonic Turbulent Jet Diffusion Flames.
NASA Astrophysics Data System (ADS)
Cheng, Tsarng-Sheng
1991-02-01
UV spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. For the first time, simultaneous measurements of temperature, major species (H_2, O_2, N_2, H_2O), and minor species (OH) concentrations are made with a "single" narrowband KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat -flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. Single-shot uncertainties for temperature and concentration measurements are analyzed with photon statistics. Calibration constants and bandwidth factors are used in the data reduction program to arrive at temperature and species concentration measurements. UV Raman measurements in the subsonic lifted turbulent diffusion flame indicate that fuel and oxidizer are in rich, premixed, and unignited conditions in the center core of the lifted flame base. The unignited mixtures are due to rapid turbulent mixing that affects chemical reaction. Combustion occurs in an intermittent annular turbulent flame brush with strong finite-rate chemistry effects. The OH radical exists in sub-equilibrium and super-equilibrium concentrations. Major species and temperature are found with non-equilibrium values. Further downstream the super-equilibrium OH radicals decay toward equilibrium through slow three-body recombination reactions. In the supersonic lifted flame, a little reaction occurs upstream of the flame base, due to shock wave interactions and mixing with hot vitiated air. The strong turbulent mixing and total enthalpy fluctuations lead to temperature, major, and minor species concentrations with non-equilibrium values. Combustion occurs farther downstream of the lifted region. Slow three-body recombination reactions result in super-equilibrium OH concentrations that depress temperature below the equilibrium values. Near the equilibrium region, ambient air entrainment contaminates flame properties. These simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.
Cirtog, M; Asselin, P; Soulard, P; Madebène, B; Alikhani, M E
2010-10-14
A series of Fourier transform infrared spectra (FTIR) of the hydrogen bonded complexes (CH(2))(2)O-HF and -DF have been recorded in the 50-750 cm(-1) range up to 0.1 cm(-1) resolution in a static cell maintained at near room temperature. The direct observation of three intermolecular transitions enabled us to perform band contour analysis of congested cell spectra and to determine reliable rovibrational parameters such as intermolecular frequencies, rovibrational and anharmonic coupling constants involving two l(1) and l(2) librations and one σ stretching intermolecular motion. Inter-inter anharmonic couplings could be identified between ν(l(1)), ν(l(2)), ν(σ) and the two lowest frequency bending modes. The positive sign of coupling constants (opposite with respect to acid stretching intra-inter ones) reveals a weakening of the hydrogen bond upon intermolecular excitation. The four rovibrational parameters ν(σ) and x(σj) (j = σ, δ(1), δ(2)) derived in the present far-infrared study and also in a previous mid-infrared one [Phys. Chem. Chem. Phys. 2005, 1, 592] make deviations appear smaller than 1% for frequencies and 12% for coupling constants which gives confidence to the reliability of the data obtained. Anharmonic frequencies obtained at the MP2 level with Aug-cc-pvTZ basis set agree well with experimental values over a large set of frequencies and coupling constants. An estimated anharmonic corrected value of the dissociation energy D for both oxirane-HF (2424 cm(-1)) and -DF (2566 cm(-1)) has been derived using a level of theory as high as CCSD(T)/Aug-cc-pvQZ, refining the harmonic value previously calculated for oxirane-HF with the MP2 method and a smaller basis set. Finally, contrary to short predissociation lifetimes evidenced for acid stretching excited states, any homogeneous broadening related to vibrational dynamics of (CH(2))(2)O-HF and -DF has been observed within the three highest frequency intermolecular states, as expected with low excitation energies largely below the dissociation limit as well as a negligible IVR contribution.
Line Profile of H Lyman (alpha) from Dissociative Excitation of H2 with Application to Jupiter
NASA Technical Reports Server (NTRS)
Ajello, Joseph M.; Kasnik, Isik; Ahmed, Syed M.; Clarke, John T.
1995-01-01
Observations of the H Lyman(alpha) (Ly-alpha) emission from Jupiter have shown pronounced emissions, exceeding solar fluorescence, in the polar aurora and equatorial "bulge" regions. The H Ly-alpha line profiles from these regions are broader than expected, indicating high-energy processes producing fast atoms as determined from the observed Doppler broadening. Toward understanding that process a high-resolution ultraviolet (UV) spectrometer was employed for the first measurement of the H Ly-alpha emission Doppler profile from dissociative excitation of H2 by electron impact. Analysis of the deconvolved line profile reveals the existence of a narrow central peak of 40 +/- 4 mA full width at half maximum and a broad pedestal base about 240 mA wide. Two distinct dissociation mechanisms account for this Doppler structure. Slow H(2p) atoms characterized by a distribution function with peak energy near 80 meV produce the peak profile, which is nearly independent of the electron impact energy. Slow H(2p) atoms arise from direct dissociation and predissociation of singly excited states which have a dissociation limit of 14.68 eV. The wings of H Ly-alpha arise from dissociative excitation of a series of doubly excited states which cross the Franck-Condon region between 23 and 40 eV. The profile of the wings is dependent on the electron impact energy, and the distribution function of fast H(2p) atoms is therefore dependent on the electron impact energy. The fast atom kinetic energy distribution at 100 eV electron impact energy spans the energy range from 1 to 10 eV with a peak near 4 eV. For impact energies above 23 eV the fast atoms contribute to a slightly asymmetric structure of the line profile. The absolute cross sections of the H Ly-alpha line peak and wings were measured over the range from 0 to 200 eV. Analytic model coefficients are given for the measured cross sections which can be applied to planetary atmosphere auroral and dayglow calculations. The dissociative excitation process, while one contributing process, appears insufficient by itself to explain the line broadening observed at Jupiter.
NASA Astrophysics Data System (ADS)
Cho, Young-Sang; Le Roy, Robert
2014-06-01
CH^+ has been a species of interest since the dawn of molecular astrophysics,and it is an important intermediate in combustion processes. In the domain of `conventional' spectroscopy there have been a number of studies of low v' and v" portions of the A ^1Π-X ^1Σ^+ band system of various isotopologues, and Amano recently reported microwave measurements of the ground-state R(0) lines of 12CH^+, 13CH^+ and 12CD^+. used photodissociation spectroscopy to observe transitions to very high-J' tunneling-predissociation levels (shape resonances) involving v(A)=0-10, for many of which they also measured the photo-fragment kinetic energy release. More recently Hechtfischer et al. used photodissociation spectroscopy of `Feschbach resonance' levels at very high v'(A) and low J' to obtain the first direct measurement of the 12CH^+ dissociation energy with near-spectroscopic accuracy (± 1.1 cm-1). However, to date, all analyses of the data for this system had been performed using traditional band-constant or Dunham-expansion fits to data for the lowest vibrational levels, and there have been no attempts to combine the `conventional' low-v data with the high-J' and high-v' photodissociation data in a single treatment. The present work has addressed this problem by performing a Direct-Potential-Fit (DPF) analysis that obtains full analytic potential energy functions for the X ^1Σ^+ and A ^1Π states of CH^+ that are able to account for all of the available data (on average) within their uncertainties. A.E. Douglas and G. Herzberg, Astrophys. J. 94, 381 (1941). T. Amano, Astrophys. J. Lett. {716}, L1 (2010) H. Helm, P.C. Crosby, M.M. Graff and J.T. Mosley, Phys. Rev. A 25, 304 (1982) U. Hechtfischer and C. J. Williams, M. Lange, J. Linkemann, D. Schwalm, R. Wester, A. Wolf and D. Zajfman, J.Chem.Phys. 117, 8754 (2002). H.S.P. Müller, Astron. Astrophys. 514, L7 (2010)
Computational Studies on the Anharmonic Dynamics of Molecular Clusters
NASA Astrophysics Data System (ADS)
Mancini, John S.
Molecular nanoclusters present ideal systems to probe the physical forces and dynamics that drive the behavior of larger bulk systems. At the nanocluster limit the first instances of several phenomena can be observed including the breaking of hydrogen and molecular bonds. Advancements in experimental and theoretical techniques have made it possible to explore these phenomena in great detail. The most fruitful of these studies have involved the use of both experimental and theoretical techniques to leverage to strengths of the two approaches. This dissertation seeks to explore several important phenomena of molecular clusters using new and existing theoretical methodologies. Three specific systems are considered, hydrogen chloride clusters, mixed water and hydrogen chloride clusters and the first cluster where hydrogen chloride autoionization occurs. The focus of these studies remain as close as possible to experimentally observable phenomena with the intention of validating, simulating and expanding on experimental work. Specifically, the properties of interested are those related to the vibrational ground and excited state dynamics of these systems. Studies are performed using full and reduced dimensional potential energy surface alongside advanced quantum mechanical methods including diffusion Monte Carlo, vibrational configuration interaction theory and quasi-classical molecular dynamics. The insight gained from these studies are great and varied. A new on-they-fly ab initio method for studying molecular clusters is validated for (HCl)1--6. A landmark study of the dissociation energy and predissociation mechanism of (HCl)3 is reported. The ground states of mixed (HCl)n(H2O)m are found to be highly delocalized across multiple stationary point configurations. Furthermore, it is identified that the consideration of this delocalization is required in vibrational excited state calculations to achieve agreement with experimental measurements. Finally, the theoretical infrared spectra for the first case of HCl ionization in (H 2O)m is reported, H+(H2O) 3Cl--. The calculation indicates that the ionized cluster's spectra is much more complex than any pervious harmonic predictions, with a large number of the system's infrared active peaks resulting from overtones of lower frequency molecular motions.
Han, Hui-Ling; Camacho, Cristopher; Witek, Henryk A; Lee, Yuan-Pern
2011-04-14
We investigated IR spectra in the CH- and OH-stretching regions of size-selected methanol clusters, (CH(3)OH)(n) with n = 2-6, in a pulsed supersonic jet by using the IR-VUV (vacuum-ultraviolet) ionization technique. VUV emission at 118 nm served as the source of ionization in a time-of-flight mass spectrometer. The tunable IR laser emission served as a source of predissociation or excitation before ionization. The variations of intensity of protonated methanol cluster ions (CH(3)OH)(n)H(+) and CH(3)OH(+) and (CH(3)OH)(2)(+) were monitored as the IR laser light was tuned across the range 2650-3750 cm(-1). Careful processing of these action spectra based on photoionization efficiencies and the production and loss of each cluster due to photodissociation yielded IR spectra of the size-selected clusters. Spectra of methanol clusters in the OH region have been extensively investigated; our results are consistent with previous reports, except that the band near 3675 cm(-1) is identified as being associated with the proton acceptor of (CH(3)OH)(2). Spectra in the CH region are new. In the region 2800-3050 cm(-1), bands near 2845, 2956, and 3007 cm(-1) for CH(3)OH split into 2823, 2849, 2934, 2955, 2984, and 3006 cm(-1) for (CH(3)OH)(2) that correspond to proton donor and proton acceptor, indicating that the methanol dimer has a preferred open-chain structure. In contrast, for (CH(3)OH)(3), the splitting diminishes and the bands near 2837, 2954, and 2987 cm(-1) become narrower, indicating a preferred cyclic structure. Anharmonic vibrational wavenumbers predicted for the methanol open-chain dimer and the cyclic trimer with the B3LYP∕VPT2∕ANO1 level of theory are consistent with experimental results. For the tetramer and pentamer, the spectral pattern similar to that of the trimer but with greater widths was observed, indicating that the most stable structures are also cyclic.
The Spectroscopy and Photophysics of Aniline, 2-AMINOPYRIDINE, and 3-AMINOPYRIDINE
NASA Astrophysics Data System (ADS)
Kim, Byungjoo
1995-01-01
Two-photon ionization photoelectron spectroscopic techniques have been employed in concert with a picosecond laser system and molecular beam machine to study the vibrational structure of molecular ions and the intramolecular dynamics of optically prepared intermediate states. From photoelectron spectra of 2-aminopyridine via various S_1 vibronic resonances, the frequencies of several vibrations in the ionic state are assigned. The ionization potential of the molecule is found to be 8.099 +/- 0.003 eV. Using two-color ionization techniques, the electronic overlap effects in the photoionization of excited molecules have been studied, on the example of 2-aminopyridine, 3-aminopyridine, and aniline. The molecules are excited to their S_1 states, and ionized by a 200 nm laser pulse within 50 ps. The spectra of the aminopyridines show a striking absence of transitions to excited electronic states of the ions, indicating small electronic overlap factors in the ionization transitions and very little configuration interaction in the S _1 states. The spectra of aniline show the vibrationally resolved first excited electronic state band of the ion, which is very weak compared to the ground electronic state band, indicating a small amount of orbital mixing in the S_1 state. The vibrational peaks in the band were assigned by comparison of the spectra via two different vibronic resonances. The observations demonstrate that electronic overlap effects play a very general role in the ionization of polyatomic molecules in electronically excited states, and that orbital mixing patterns of the excited electronic states may become observable by projecting molecular electronic wavefunctions onto the ion states. In the time-delayed experiments for these molecules, all spectra reveal only one product of the nonradiative relaxation process. Careful considerations of electronic and vibrational overlap propensity rules for the ionization step lead to the conclusion that the dominant nonradiative decay mechanism in these molecules is the intersystem crossing to excited vibrational states of the T_1 state. This technique has been applied to study the predissociation process of CS_2 in the S_3 vibronic levels near 200 nm. The spectra show extensive vibrational structure, with unusual activity in the antisymmetric vibrations, indicating the possibility of level mixing in the intermediate state by the IVR couplings.
NASA Astrophysics Data System (ADS)
Zyrianov, M.; Droz-Georget, Th.; Sanov, A.; Reisler, H.
1996-11-01
The photoinitiated unimolecular decomposition of jet-cooled HNCO has been studied following S1(1A″)←S0(1A') excitation near the thresholds of the spin-allowed dissociation channels: (1) H(2S)+NCO(X2Π) and (2) NH(a1Δ)+CO(X1Σ+), which are separated by 4470 cm-1. Photofragment yield spectra of NCO(X2Π) and NH (a1Δ) were obtained in selected regions in the 260-220 nm photolysis range. The NCO(X2Π)yield rises abruptly at 38 380 cm-1 and the spectrum exhibits structures as narrow as 0.8 cm-1 near the threshold. The linewidths increase only slowly with photolysis energy. The jet-cooled absorption spectrum near the channel (1) threshold [D0(H+NCO)] was obtained using two-photon excitation via the S1 state, terminating in a fluorescent product. The absorption spectrum is similar to the NCO yield spectrum, and its intensity does not diminish noticeably above D0(H+NCO), indicating that dissociation near threshold is slow. The NCO product near threshold is cold, as is typical of a barrierless reaction. NH (a1Δ) products appear first at 42 840 cm-1, but their yield is initially very small, as evidenced also by the insignificant decrease in the NCO yield in the threshold region of channel (2). The NH (a1Δ) yield increases faster at higher photolysis energies and the linewidths increase as well. At the channel (2) threshold, the NH (a1Δ) product is generated only in the lowest rotational level, J=2, and rotational excitation increases with photolysis energy. We propose that in the range 260-230 nm, HNCO (S1) undergoes radiationless decay terminating in S0/T1 followed by unimolecular reaction. Decompositions via channels (1) and (2) proceed without significant exit channel barriers. At wavelengths shorter than 230 nm, the participation of an additional, direct pathway cannot be ruled out. The jet-cooled photofragment yield spectra allow the determination, with good accuracy, of thermochemical values relevant to HNCO decomposition. The following heats of formation are recommended: ΔH0f(HNCO)=-27.8±0.4 kcal/mol, and ΔH0f(NCO)=30.3±0.4 kcal/mol. These results are in excellent agreement with recent determinations using different experimental techniques.
NASA Astrophysics Data System (ADS)
Ajello, J. M.; West, R. A.; Malone, C. P.; Gustin, J.; Esposito, L. W.; McClintock, W. E.; Holsclaw, G. M.; Stevens, M. H.
2011-12-01
Joseph M. Ajello, Robert A. West, Rao S. Mangina Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Charles P. Malone Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 & Department of Physics, California State University, Fullerton, CA 92834 Michael H. Stevens Space Science Division, Naval Research Laboratory, Washington, DC 20375 Jacques Gustin Laboratoire de Physique Atmosphérique et Planétaire, Université de Liège, Liège, Belgium A. Ian F. Stewart, Larry W. Esposito, William E. McClintock, Gregory M. Holsclaw Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 E. Todd Bradley Department of Physics, University of Central Florida, Orlando, FL 32816 The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including three eclipse observations from 2009 through 2010. The 77 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions (lifetimes less than ~100 μs), including the Lyman-Birge-Hopfield (LBH) band system, arising from photoelectron induced fluorescence and solar photo-fragmentation of molecular nitrogen (N2). The altitude of peak UV emission on the limb of Titan during daylight occurred inside the thermosphere/ionosphere (near 1000 km altitude). However, at night on the limb, the same emission features, but much weaker in intensity, arise in the lower atmosphere below 1000 km (lower thermosphere, mesosphere, haze layer) extending downwards to near the surface at ~300 km, possibly resulting from proton- and/or heavier ion-induced emissions as well as secondary-electron-induced emissions. The eclipse observations are unique. UV emissions were observed during only one of the three eclipse events, and no Vegard-Kaplan (VK) or LBH emissions were seen. Through regression analysis using laboratory spectra, we have analyzed the intensity and identified each spectral feature from the limb or disk emission spectrum. The strongest dipole-allowed transitions of N2 occur in the EUV. The electronic transitions proceed from the X 1Σg+ ground-state to about seven closely spaced (~12-15 eV) Rydberg-valence (RV) states, which are the source of the molecular emissions in the EUV observed by spacecraft and have recently been studied in our laboratory at medium-to-high spectral resolution (delta-λ = 0.1 Å FWHM). Three of these RV states (b 1Πu, b' 1Σu+, and c4' 1Σu+) are highly-perturbed, weakly-to-strongly predissociated, and have significant emission cross sections, which will be summarized in this paper. We will also discuss our recently published proton and electron impact emission cross sections for the LBH (a 1Πg - X 1Σg+) band system of N2, and their significance to the modeling of the day and night FUV spectra of the atmospheres of Earth and Titan.
Products of Dissociative Recombination in the Ionosphere
NASA Technical Reports Server (NTRS)
Cosby, Philip
1996-01-01
SRI International undertook a novel experimental measurement of the product states formed by dissociative recombination (DR) of O2(+), NO(+), and N2(+) as a function of both electron energy and reactant ion vibrational level. For these measurements we used a recently developed experimental technique for measuring dissociation product distributions that allows both the branching ratios to be accurately determined and the electronic and rovibrational state composition of the reactant ions to be specified. DR is the dominant electron loss mechanism in all regions of the ionosphere. In this process, electron attachment to the molecular ion produces an unstable neutral molecule that rapidly dissociates. For a molecular ion such as O2(+), the dissociation recombination reaction is (1) O2(+) + e yields O + O + W. The atomic products of this reaction, in this case two oxygen atoms, can be produced in a variety of excited states and with a variety of kinetic energies, as represented by W in Eq. (1). These atoms are not only active in the neutral chemistry of the ionosphere, but are also especially important because their optical emissions are often used to infer in situ concentrations of the parent molecular ion and ambient electron densities. Many laboratory measurements have been made of DR reaction rates under a wide range of electron temperatures, but very little is known about the actual distributions among the final states of the atomic products. This lack of knowledge seriously limits the validity and effectiveness of efforts to model both natural and man-made ionospheric disturbances. Bates recently identified major deficiencies in the currently accepted branching ratios for O2(+) as they relate to blue and green line emission measurements in the nocturnal F-region. During our two-year effort, we partially satisfied our ambitious goals. We constructed and operated a variable pressure, electron-impact ion source and a high pressure, hollow-cathode discharge ion source for O2(+), NO(+), and N2(+) beams. Translational spectroscopy of the products of dissociative charge transfer in Cs vapor was used to accurately assay the composition of the O2(+) and NO(+) beams and to develop a methodology for the vibrationally controlled preparation of the ground state ion beams. Attempts to assay the N2(+) beam revealed a novel two-electron process in the charge transfer reactions. A coaxial electron gun for the DR measurements was constructed following an extensive numerical design of the fields. Tests of the gun, however, found substantial perturbations of the magnetic fields by the soft iron (CMI-C) assembly containing the Langmuir probe that locates the electron beam. Hydrogen annealing of the iron failed to eliminate the field perturbations, necessitating the removal of the probe assembly. During this work on the coaxial electron gun, we discovered that predissociated high Rydberg states of O2 could be produced by subjecting the molecules to a sudden perturbation by an electromagnetic field. This technique allowed a measurement of the product branching to the atomic limits for the lowest seven vibrational levels of O2(+).
NASA Astrophysics Data System (ADS)
Gao, Hong
The tunable vacuum ultraviolet (VUV) laser generated through the two-photon resonance-enhanced four-wave mixing scheme is combined with the newly developed time-slice velocity map imaging photoion method to study the photodissociation of small molecules in the VUV region, and with the velocity map imaging photoelectron method to study the photoionization of free radicals. The photodissociation dynamics of NO in the energy region around 13.5 eV has been investigated. Branching ratios of the three lowest dissociation channels of 12C 16O that produce C(3P) + O(3P), C( 1D) + O(3P) and C(3P) + O(1D) are measured for the first time in the VUV region from 102,500 cm-1 to 110,500 cm-1, valuable information of the dissociation dynamics for this prototype system has been deduced. We demonstrated an experiment that has two independently tunable VUV lasers and a time-slice velocity map imaging setup, this provides us a global way to perform systematic state-selected photodissociation of small molecules via state-selected detection of the atomic products in the VUV region. The velocity map imaging photoelectron method was successfully used to obtain the photoelectron spectrum of the propargyl radical (C3H3) via a single VUV photoionization process. The propargyl radical is generated by the 193 nm laser photodissociation of the precursor C3H3Cl. This is the first time that the velocity map imaging photoelectron method is used to get the photoelectron spectra of free radicals, indicating that it is a powerful technique for studying the photoionization of free radicals which are always hard to be produced with high enough number densities for spectroscopic studies. This dissertation is mainly based on the following peer-reviewed journal articles: 1. Hong Gao, Yang Pan, Lei Yang, Jingang Zhou, C. Y. Ng and William M. Jackson. "Time-slice velocity-map ion imaging studies of the Photodissociation of NO in the vacuum ultraviolet region", the Journal of Chemical Physics, 136, 134302 (2012). (Chapter 2) 2. Hong Gao, Yu Song, Lei Yang, Xiaoyu Shi, Qing-Zhu Yin, C. Y. Ng and William M. Jackson. "Branching ratio measurements of the predissociation of 12C16O by time-slice velocity-map ion imaging in the energy region from 108,000 to 110,500 cm-1", the Journal of Chemical Physics, 137, 034305 (2012). (Chapter 3) 3. Hong Gao, Yu Song, Yih-Chung Chang, Xiaoyu Shi, Qing-Zhu Yin, Roger C. Wiens, William M. Jackson, C. Y. Ng, "Branching Ratio Measurements for Vacuum Ultraviolet Photodissociation of 12C16O", the Journal of Physical Chemistry A. (article online ASAP). (Chapter 4) 4. Hong Gao, Yu Song, C. Y. Ng, William M. Jackson, " Communication: State-to-state photodissociation study by the two-color VUV-VUV laser pump-probe time-slice velocity-map-imaging-photoion method", the Journal of Chemical Physics, 138, 191102(2013). (Chapter 5) 5. Hong Gao, Zhou Lu, Lei Yang, Jingang Zhou, C. Y. Ng, "Communication: A vibrational study of propargyl cation using the vacuum ultraviolet laser velocity-map imaging photoelectron method", the Journal of Chemical Physics, 137, 161101(2012). (Chapter 6)