Science.gov

Sample records for prefer cylindrical morphology

  1. Social Preference in Preschoolers: Effects of Morphological Self-Similarity and Familiarity

    PubMed Central

    Richter, Nadja; Tiddeman, Bernard; Haun, Daniel B. M.

    2016-01-01

    Adults prefer to interact with others that are similar to themselves. Even slight facial self-resemblance can elicit trust towards strangers. Here we investigate if preschoolers at the age of 5 years already use facial self-resemblance when they make social judgments about others. We found that, in the absence of any additional knowledge about prospective peers, children preferred those who look subtly like themselves over complete strangers. Thus, subtle morphological similarities trigger social preferences well before adulthood. PMID:26727132

  2. Dentoalveolar morphology: evaluation of natural root form versus cylindrical implant fixtures.

    PubMed

    Daftary, F

    1997-05-01

    The function of implant-supported restorations is now routinely achieved. As a result, the emphasis in restorative implant dentistry has shifted from function to aesthetics and the biocompatibility of the materials utilized. The learning objective of this article is to review the three major components essential to achieving natural aesthetics in implant-supported restorations--hard tissue dynamics, soft tissue dynamics, and dental aesthetics. Particular emphasis is directed to the dentoalveolar anatomy and morphology. Analysis of the tooth root morphology and dimensions has resulted in the design and fabrication of restorative components with dimensions that closely resemble the natural tooth anatomy and aesthetics. A system of transmucosal abutments has been designed, and its utilization is presented in this review.

  3. A high-accuracy roundness measurement for cylindrical components by a morphological filter considering eccentricity, probe offset, tip head radius and tilt error

    NASA Astrophysics Data System (ADS)

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Zhou, Tong; Kuang, Ye

    2016-08-01

    A morphological filter is proposed to obtain a high-accuracy roundness measurement based on the four-parameter roundness measurement model, which takes into account eccentricity, probe offset, probe tip head radius and tilt error. This paper analyses the sample angle deviations caused by the four systematic errors to design a morphological filter based on the distribution of the sample angle. The effectiveness of the proposed method is verified through simulations and experiments performed with a roundness measuring machine. Compared to the morphological filter with the uniform sample angle, the accuracy of the roundness measurement can be increased by approximately 0.09 μm using the morphological filter with a non-uniform sample angle based on the four-parameter roundness measurement model, when eccentricity is above 16 μm, probe offset is approximately 1000 μm, tilt error is approximately 1″, the probe tip head radius is 1 mm and the cylindrical component radius is approximately 37 mm. The accuracy and reliability of roundness measurements are improved by using the proposed method for cylindrical components with a small radius, especially if the eccentricity and probe offset are large, and the tilt error and probe tip head radius are small. The proposed morphological filter method can be used for precision and ultra-precision roundness measurements, especially for functional assessments of roundness profiles.

  4. Associations between body morphology, mating success and mate preferences among Slovak males and females.

    PubMed

    Prokop, Pavol; Fedor, Peter

    2013-01-01

    Human body morphology is thought to be correlated with sexual behaviour and sociosexuality (defined as an increased willingness to engage in sex without commitment) influences the perception of certain cues of physical attractiveness. Based on a sample of Slovak university students, we investigated relationships between 1) male and female mating success and reported body morphology (body mass index, BMI and waist-to-hip ratio, WHR) and 2) mate preference characteristics and mating success. Both males and females reported a similar number of long-term sexual partners and frequency of engaging in extra-pair copulation (EPC). The mating success of both sexes was positively mediated by self-perceived attractiveness. However, female BMI was inversely associated with mating success whereas increasing BMI was positively associated with male mating success (the total number of lifetime sexual partners) as well as with the likelihood of engaging in EPC. Unrestricted sociosexuality positively correlated with direct and indirect benefits from mating and negatively with the religious/political background of a potential mate and with the desire for a home/ children. These results confirm the hypothesis that human body morphology is associated with sexual behaviour and that cues of direct/indirect benefits in a potential mate positively correlate with sociosexuality. PMID:23980387

  5. Associations between body morphology, mating success and mate preferences among Slovak males and females.

    PubMed

    Prokop, Pavol; Fedor, Peter

    2013-01-01

    Human body morphology is thought to be correlated with sexual behaviour and sociosexuality (defined as an increased willingness to engage in sex without commitment) influences the perception of certain cues of physical attractiveness. Based on a sample of Slovak university students, we investigated relationships between 1) male and female mating success and reported body morphology (body mass index, BMI and waist-to-hip ratio, WHR) and 2) mate preference characteristics and mating success. Both males and females reported a similar number of long-term sexual partners and frequency of engaging in extra-pair copulation (EPC). The mating success of both sexes was positively mediated by self-perceived attractiveness. However, female BMI was inversely associated with mating success whereas increasing BMI was positively associated with male mating success (the total number of lifetime sexual partners) as well as with the likelihood of engaging in EPC. Unrestricted sociosexuality positively correlated with direct and indirect benefits from mating and negatively with the religious/political background of a potential mate and with the desire for a home/ children. These results confirm the hypothesis that human body morphology is associated with sexual behaviour and that cues of direct/indirect benefits in a potential mate positively correlate with sociosexuality.

  6. Morphology, dimension, and composition dependence of thermodynamically preferred atomic arrangements in Ag-Pt nanoalloys.

    PubMed

    Deng, Lei; Deng, Huiqiu; Xiao, Shifang; Tang, Jianfeng; Hu, Wangyu

    2013-01-01

    The present article is on Metropolis Monte Carlo simulations coupled with semiempirical potentials to obtain the thermodynamically preferred configurations of Ag-Pt nanoalloys. The effects of particle size, morphology or alloy composition on the surface segregation and the chemical ordering patterns were investigated. Surface segregation of Ag is observed in all Ag-Pt nanoalloys. Such segregation develops quickly as the increase of particle sizes or global Ag composition. Generally, Ag surface enrichment is more apparent for more open particles except for large sized icosahedron (ICO) nanoalloys. The most energetically favorable chemical ordering patterns gradually evolve from Pt-core/Ag-shell to onion-like structures when the global Ag composition increases. Due to the site preference of Ag segregation, the presence of partly alloyed facets and Ag blocked vertices or edges at low global Ag compositions can modify the electronic and geometric structures on the nanoalloys' surface. The coupling between Pt and Ag sites is a topic of particular interest for catalysis. The detailed atomistic understanding of atomic arrangements in Ag-Pt nanoalloys is essential to intelligently design robust and active nanocatalysts with a low cost. PMID:24015590

  7. Cylindrical wormholes

    SciTech Connect

    Bronnikov, K. A.; Lemos, Jose P. S.

    2009-05-15

    It is shown that the existence of static, cylindrically symmetric wormholes does not require violation of the weak or null energy conditions near the throat, and cylindrically symmetric wormhole geometries can appear with less exotic sources than wormholes whose throats have a spherical topology. Examples of exact wormhole solutions are given with scalar, spinor and electromagnetic fields as sources, and these fields are not necessarily phantom. In particular, there are wormhole solutions for a massless, minimally coupled scalar field in the presence of a negative cosmological constant, and for an azimuthal Maxwell electromagnetic field. All these solutions are not asymptotically flat. A no-go theorem is proved, according to which a flat (or string) asymptotic behavior on both sides of a cylindrical wormhole throat is impossible if the energy density of matter is everywhere nonnegative.

  8. Male genital morphology and its influence on female mating preferences and paternity success in guppies.

    PubMed

    Gasparini, Clelia; Pilastro, Andrea; Evans, Jonathan P

    2011-01-01

    In internally fertilizing species male genitalia often show a higher degree of elaboration than required for simply transferring sperm to females. Among the hypotheses proposed to explain such diversity, sexual selection has received the most empirical support, with studies revealing that genital morphology can be targeted by both pre-and postcopulatory sexual selection. Until now, most studies have focused on these two episodes of selection independently. Here, we take an alternative approach by considering both components simultaneously in the livebearing fish, Poecilia reticulata. We allowed females to mate successively (and cooperatively) with two males and determined whether male genital length influenced the female's propensity to mate with a male (precopulatory selection, via female choice) and whether male genital size and shape predicted the relative paternity share of subsequent broods (postcopulatory selection, via sperm competition/cryptic female choice). We found no evidence that either episode of sexual selection targets male genital size or shape. These findings, in conjunction with our recent work exposing a role of genital morphology in mediating unsolicited (forced) matings in guppies, further supports our prior speculation that sexual conflict may be an important broker of genital evolution in this species.

  9. Lactic acid aided electrochemical deposition of c -axis preferred orientation of zinc oxide thin films: Structural and morphological features

    NASA Astrophysics Data System (ADS)

    Whang, Thou-Jen; Hsieh, Mu-Tao; Tsai, Jia-Ming; Lee, Shyan-Jer

    2011-09-01

    Compact and homogeneous c-axis preferred orientation of zinc oxide (ZnO) films on indium tin oxide (ITO) coated glass have been prepared electrochemically at -1.2 V vs. Ag|AgCl in a weak acidic condition from 0.06 M Zn(NO 3) 2 with 3 mM lactic acid (LA) added. LA was found having strong influence on the electrodeposition of c-axis preferred orientation of zinc oxide films. Other experimental variables such as deposition temperature, potential, and precursor concentration were also conducted in this article. Among these variables, it was found that precursor concentration of zinc nitrate influenced significantly on growth direction and crystal diameter of zinc oxide. Cyclic voltammetry was used to observe the electrochemistry of the deposition. Crystallinities of the films were examined by X-ray diffractometer. The morphologies of zinc oxide films were observed with a field emitting scanning electron microscope. Optical characteristics of zinc oxide layers were measured with UV-vis spectrophotometer. The band gap of the deposited zinc oxide thin films was evaluated from the Tauc relationship of ( αhν) 2 vs. hν, which was found to be 3.31 eV.

  10. Incompatibility and preferred morphology in the self-accommodation microstructure of β-titanium shape memory alloy

    NASA Astrophysics Data System (ADS)

    Inamura, T.; Hosoda, H.; Miyazaki, S.

    2013-02-01

    The frequency distribution of habit plane variant (HPV) clusters and the deviation from twin orientation relationships (ORs) at the junction plane (JP) are investigated by transmission electron microscopy together with theoretical evaluation of the kinematic compatibility (KC) at the JP in a β-titanium shape memory alloy. Even though there are more than 10 types of possible HPV clusters, only three types are formed. V-shaped couplings of HPVs by {111} type I twins (VI: 49%) and by ⟨211⟩ type II twins (VII: 42%) are the predominant types. A triangular morphology due to coupling of {111} type I twins is observed with a frequency of only 9%. These preferred morphologies are well explained by the degree of incompatibility (the rotation necessary for compatible connection of HPVs). The exact twin OR and KC are maintained at the JP in a VI cluster instead of KC at the habit plane (HP), whereas the JP in a VII cluster is incompatible and the ⟨211⟩ type II twin OR shows slight deviation at the JP by about 0.4°. The competition between KC at the JP and KC at the HP (invariant plane) is responsible for the frequency distribution of HPV clusters and the character of the interfaces in the self-accommodation microstructure.

  11. Cylindrical Brushes

    NASA Astrophysics Data System (ADS)

    Schmidt

    1998-03-01

    Homopolymerization of macromonomers, i.e. polymerizable oligomers, yields macromolecules of cylindrical shape, because the main chain is considerably stretched due to the steric overcrowding of the side chains.(M. Wintermantel et al., Macromolecules 1996, 29,978.) Irrespective of the chemical nature of the macromonomer (styrene, methylmethacrylate, vinylpyridine, propylene) the chain stiffness in terms of the Kuhn statistical segment length lk lies in the range of 50 nm < lk < 200 nm. In accordance to the high degree of stiffness polymacromonomers form lyotropic liquid crystalline phases in solution and in the bulk.(M. Wintermantel et. al, Angew. Chemie 1995, 107, 1606.) Upon drying a dilute solution on mica or silicon wafer ordered monolayers are formed.(S.S. Sheiko et al., Langmuir 1997, 13, 5368.)^, (P. Dziezok et al., Angew. Chemie 1997, 00, 000.) Recently, stable monolayers of polyvinylpyridine macromonomers were successfully prepared on a Langmuir-Blodgett trough. Up to 15 monolayers were transferred onto a planar silicon wafer and characterized by x-ray reflection. The individual brush molecules within the monolayer could be visualized by atomic force microscopy. Frequently occurring hairpin formations by one molecule could not yet be explained. AFM on isolated, single molecules, however, have confirmed the cylindrical structure of polymacromonomers.

  12. Cylindrical Scanner

    1999-04-29

    The CS system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The Cylindrical Scanner moves a vertical transceiver array rapidly around a person standing stationary. The software can be segmented in to three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver array to sendmore » data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 10 to 12 seconds. At the completion of the array movement the second software task automatically reconstructs the high-resolution image from the radar data utilizing the integrated DSP boards. The third task displays the resulting images, as they become available, to the computer screen for user review and analysis.« less

  13. Poly(ethylene oxide) Crystal Orientation Changes in an Inverse Hexagonal Cylindrical Phase Morphology Constructed by a Poly(ethylene oxide)-block-polystyrene Diblock Copolymer

    SciTech Connect

    Huang,P.; Zheng, J.; Leng, S.; Van Horn, R.; Jeong, K.; Thomas, E.; Hsiao, B.

    2006-01-01

    A poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer with number-average molecular weights of 7.7k g/mol for the PS block and 21.4k g/mol for the PEO block was used to study the PEO crystal orientation changes at different crystallization temperatures (T{sub x}) via small- and wide-angle X-ray scattering techniques. For this diblock copolymer, an inverse hexagonal cylinder (IHC) phase morphology was identified with PX cylinders hexagonally packed within the PEO matrix. In this IHC morphology, the PEO blocks were tethered on the convex interfaces of the PS domains, and the crystallization of PEO blocks was outside of the cylinders. The crystal orientation of the PEO blocks (the c-axis of the PEO crystals) after crystallization among the PS cylinders was, for the first time, found to change with respect to the long cylinder axis, a, depending solely on T{sub x}. At very low T{sub x}'s, when the samples were quenched into liquid nitrogen, the crystals possessed a random orientation. When -30 {sup o}C {<=} T{sub x} {<=} 5 {sup o}C, PEO crystals had an orientation with their c-axis parallel to a. Within the temperature region of 10 {sup o}C < T{sub x} {<=} 20 {sup o}C, the c-axis crystal orientation changed to be tilted with respect to a (the tilting angle was defined to be between the c-axis of the PEO crystals and a). This tilting angle increased with increasing T{sub x}. Finally, a major crystal orientation with the c-axes of PEO crystals perpendicular to a was observed with T{sub x} reached 30 {sup o}C. Furthermore, it was particularly interesting that the PEO crystals in the IHC phase were oriented in two dimensions when T{sub x} = 30 {sup o}C. Namely, the PEO crystal growth was specifically grown along the {l_brace}1010{r_brace} planes of the hexagonal PS cylinders. The crystallite sizes were estimated by the Scherrer equation. The PEO crystal sizes, at least along on dimension, were on the scale of the sizes limited by the distance between the

  14. Poly(ethylene oxide) Crystal Orientation Changes in an Inverse Hexagonal Cylindrical Phase Morphology Constructed by a Poly(ethylene oxide)-block-Polystyrene Diblock Copolymer

    SciTech Connect

    Huang,P.; Zheng, J.; Leng, S.; Van Horn, R.; Jeong, K.; Guo, Y.; Quirk, R.; Cheng, S.; Lotz, B.; et al.

    2007-01-01

    A poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer with number-average molecular weights of 7.7k g/mol for the PS block and 21.4k g/mol for the PEO block was used to study the PEO crystal orientation changes at different crystallization temperatures (T{sub x}) via small- and wide-angle X-ray scattering techniques. For this diblock copolymer, an inverse hexagonal cylinder (IHC) phase morphology was identified with PS cylinders hexagonally packed within the PEO matrix. In this IHC morphology, the PEO blocks were tethered on the convex interfaces of the PS domains, and the crystallization of PEO blocks was outside of the cylinders. The crystal orientation of the PEO blocks (the c-axis of the PEO crystals) after crystallization among the PS cylinders was, for the first time, found to change with respect to the long cylinder axis, {cflx a}, depending solely on T{sub x}. At very low T{sub x}'s, when the samples were quenched into liquid nitrogen, the crystals possessed a random orientation. When -30 C {<=}T{sub x} {<=} 5 C, PEO crystals had an orientation with their c-axis parallel to {cflx a}. Within the temperature region of 10 C {<=} T{sub x} {<=} 20 C, the c-axis crystal orientation changed to be tilted with respect to {cflx a} (the tilting angle was defined to be between the c-axis of the PEO crystals and {cflx a}). This tilting angle increased with increasing T{sub x}. Finally, a major crystal orientation with the c-axes of PEO crystals perpendicular to {cflx a} was observed when Tx reached 30 C. Furthermore, it was particularly interesting that the PEO crystals in the IHC phase were oriented in two dimensions when T{sub x} = 30 C. Namely, the PEO crystal growth was specifically grown along the {l_brace}100{r_brace} planes of the hexagonal PS cylinders. The crystallite sizes were estimated by the Scherrer equation. The PEO crystal sizes, at least along one dimension, were on the scale of the sizes limited by the distance between the neighboring

  15. Arecoline Alters Taste Bud Cell Morphology, Reduces Body Weight, and Induces Behavioral Preference Changes in Gustatory Discrimination in C57BL/6 Mice.

    PubMed

    Peng, Wei-Hau; Chau, Yat-Pang; Lu, Kuo-Shyan; Kung, Hsiu-Ni

    2016-01-01

    Arecoline, a major alkaloid in areca nuts, is involved in the pathogenesis of oral diseases. Mammalian taste buds are the structural unit for detecting taste stimuli in the oral cavity. The effects of arecoline on taste bud morphology are poorly understood. Arecoline was injected intraperitoneally (IP) into C57BL/6 mice twice daily for 1-4 weeks. After arecoline treatment, the vallate papillae were processed for electron microscopy and immunohistochemistry analysis of taste receptor proteins (T1R2, T1R3, T1R1, and T2R) and taste associated proteins (α-gustducin, PLCβ2, and SNAP25). Body weight, food intake and water consumption were recorded. A 2-bottle preference test was also performed. The results demonstrated that 1) arecoline treatment didn't change the number and size of the taste buds or taste bud cells, 2) electron microscopy revealed the change of organelles and the accumulation of autophagosomes in type II cells, 3) immunohistochemistry demonstrated a decrease of taste receptor T1R2- and T1R3-expressing cells, 4) the body weight and food intake were markedly reduced, and 5) the sweet preference behavior was reduced. We concluded that the long-term injection of arecoline alters the morphology of type II taste bud cells, retards the growth of mice, and affects discrimination competencies for sweet tastants.

  16. Arecoline Alters Taste Bud Cell Morphology, Reduces Body Weight, and Induces Behavioral Preference Changes in Gustatory Discrimination in C57BL/6 Mice.

    PubMed

    Peng, Wei-Hau; Chau, Yat-Pang; Lu, Kuo-Shyan; Kung, Hsiu-Ni

    2016-01-01

    Arecoline, a major alkaloid in areca nuts, is involved in the pathogenesis of oral diseases. Mammalian taste buds are the structural unit for detecting taste stimuli in the oral cavity. The effects of arecoline on taste bud morphology are poorly understood. Arecoline was injected intraperitoneally (IP) into C57BL/6 mice twice daily for 1-4 weeks. After arecoline treatment, the vallate papillae were processed for electron microscopy and immunohistochemistry analysis of taste receptor proteins (T1R2, T1R3, T1R1, and T2R) and taste associated proteins (α-gustducin, PLCβ2, and SNAP25). Body weight, food intake and water consumption were recorded. A 2-bottle preference test was also performed. The results demonstrated that 1) arecoline treatment didn't change the number and size of the taste buds or taste bud cells, 2) electron microscopy revealed the change of organelles and the accumulation of autophagosomes in type II cells, 3) immunohistochemistry demonstrated a decrease of taste receptor T1R2- and T1R3-expressing cells, 4) the body weight and food intake were markedly reduced, and 5) the sweet preference behavior was reduced. We concluded that the long-term injection of arecoline alters the morphology of type II taste bud cells, retards the growth of mice, and affects discrimination competencies for sweet tastants. PMID:26453050

  17. Leaf Morphological Characters Can Be a Factor for Intra-Varietal Preference of Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) among Eggplant Varieties

    PubMed Central

    Zhang, Yi; Zhang, Chen-Yang; Liu, Tong-Xian

    2016-01-01

    The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1, is considered a serious pest of horticultural and many other crops. While eggplant (Solanum melongena) is one of the most favored host plants, the whiteflies exhibit preferences among different varieties. We hypothesized that certain morphological leaf characteristics of different varieties, like leaf trichome density, trichome length, leaf lamina thickness and leaf color, may affect whitefly landing, feeding and oviposition. In this study, we investigated the variation in leaf morphological characters among selected eggplant varieties and evaluated the effect of these leaf characteristics in rendering eggplant varieties either susceptible or resistant to B. tabaci. We evaluated eight eggplant varieties in choice feeding tests, and we found that the varieties JinSheng Zilongchangqie (JSZ) and H149 were the highly preferred varieties with the highest numbers of whitefly adults and eggs. Significantly lower numbers of whitefly adult eggs were found on the resistant variety Tuo Lu Bamu (TLB). The varieties JinGuangbo Luqie (JGL), JinGuangbo Ziquanqie (JGZ), DaYang Ziguanqie (DYZ), QinXing Ziguanqie (QXZ), and QinXing Niuxinqie (QXN) were moderately favored by B. tabaci. Leaf trichome density, trichome length and leaf lamina thickness were positively correlated with numbers of whitefly adults and eggs. B. tabaci was less attracted to the leaves that reflect long and middle wavelength light (higher R and G values) than to the bright green leaves (medium G value), but the short wavelength light (higher B value) had no significant effect on whitefly preference. The degree of hue had a positive effect, and saturation and brightness had a negative effect on whitefly attraction. PMID:27081849

  18. Leaf Morphological Characters Can Be a Factor for Intra-Varietal Preference of Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) among Eggplant Varieties.

    PubMed

    Hasanuzzaman, Abu Tayeb Mohammad; Islam, Md Nazrul; Zhang, Yi; Zhang, Chen-Yang; Liu, Tong-Xian

    2016-01-01

    The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1, is considered a serious pest of horticultural and many other crops. While eggplant (Solanum melongena) is one of the most favored host plants, the whiteflies exhibit preferences among different varieties. We hypothesized that certain morphological leaf characteristics of different varieties, like leaf trichome density, trichome length, leaf lamina thickness and leaf color, may affect whitefly landing, feeding and oviposition. In this study, we investigated the variation in leaf morphological characters among selected eggplant varieties and evaluated the effect of these leaf characteristics in rendering eggplant varieties either susceptible or resistant to B. tabaci. We evaluated eight eggplant varieties in choice feeding tests, and we found that the varieties JinSheng Zilongchangqie (JSZ) and H149 were the highly preferred varieties with the highest numbers of whitefly adults and eggs. Significantly lower numbers of whitefly adult eggs were found on the resistant variety Tuo Lu Bamu (TLB). The varieties JinGuangbo Luqie (JGL), JinGuangbo Ziquanqie (JGZ), DaYang Ziguanqie (DYZ), QinXing Ziguanqie (QXZ), and QinXing Niuxinqie (QXN) were moderately favored by B. tabaci. Leaf trichome density, trichome length and leaf lamina thickness were positively correlated with numbers of whitefly adults and eggs. B. tabaci was less attracted to the leaves that reflect long and middle wavelength light (higher R and G values) than to the bright green leaves (medium G value), but the short wavelength light (higher B value) had no significant effect on whitefly preference. The degree of hue had a positive effect, and saturation and brightness had a negative effect on whitefly attraction.

  19. Leaf Morphological Characters Can Be a Factor for Intra-Varietal Preference of Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) among Eggplant Varieties.

    PubMed

    Hasanuzzaman, Abu Tayeb Mohammad; Islam, Md Nazrul; Zhang, Yi; Zhang, Chen-Yang; Liu, Tong-Xian

    2016-01-01

    The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1, is considered a serious pest of horticultural and many other crops. While eggplant (Solanum melongena) is one of the most favored host plants, the whiteflies exhibit preferences among different varieties. We hypothesized that certain morphological leaf characteristics of different varieties, like leaf trichome density, trichome length, leaf lamina thickness and leaf color, may affect whitefly landing, feeding and oviposition. In this study, we investigated the variation in leaf morphological characters among selected eggplant varieties and evaluated the effect of these leaf characteristics in rendering eggplant varieties either susceptible or resistant to B. tabaci. We evaluated eight eggplant varieties in choice feeding tests, and we found that the varieties JinSheng Zilongchangqie (JSZ) and H149 were the highly preferred varieties with the highest numbers of whitefly adults and eggs. Significantly lower numbers of whitefly adult eggs were found on the resistant variety Tuo Lu Bamu (TLB). The varieties JinGuangbo Luqie (JGL), JinGuangbo Ziquanqie (JGZ), DaYang Ziguanqie (DYZ), QinXing Ziguanqie (QXZ), and QinXing Niuxinqie (QXN) were moderately favored by B. tabaci. Leaf trichome density, trichome length and leaf lamina thickness were positively correlated with numbers of whitefly adults and eggs. B. tabaci was less attracted to the leaves that reflect long and middle wavelength light (higher R and G values) than to the bright green leaves (medium G value), but the short wavelength light (higher B value) had no significant effect on whitefly preference. The degree of hue had a positive effect, and saturation and brightness had a negative effect on whitefly attraction. PMID:27081849

  20. Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering

    SciTech Connect

    Abadias, G.; Tse, Y.Y.; Guerin, Ph.; Pelosin, V.

    2006-06-01

    To clarify the underlying mechanisms that cause the preferred orientation in TiN films, we investigated the evolution with the thickness of the texture, surface morphology, and residual stress in TiN thin films deposited by dual ion beam sputtering. The films, with thickness h ranging from 50 to 300 nm, were grown on oxidized Si substrates using a primary Ar ion beam accelerated under 1.2 kV and different voltages V{sub a} of the (Ar+N{sub 2}) assistance beam: 25, 50, and 150 V. The influence of temperature was also investigated by varying the substrate temperature T{sub s} (25-300 deg. C) during growth or by performing a postdeposition annealing. X-ray diffraction (XRD) as well as transmission electron microscopy were used to study the microstructure and changes of texture with thickness h, while x-ray reflectivity and atomic force microscopy measurements were performed to determine the surface roughness. Residual stresses were measured by XRD and analyzed using a triaxial stress model. The crystallite group method was used for a strain determination of crystallites having different fiber axis directions, i.e., when a mixed texture exists. The surface roughness is found to increase with V{sub a} and T{sub s} due to the resputtering effect of the film surface. XRD reveals that for a small thickness (h{approx}50 nm) the TiN films exhibit a strong (002) texture independent of V{sub a}. For a larger thickness (100preferred orientation is observed together with a grain size increase, except at T{sub s}=300 deg. C, where the predominant texture remains (002). A minor (220) texture is also found, but its contribution strongly decreases with V{sub a} and T{sub s}. The residual stresses are highly compressive, ranging from -8 to -5 GPa, depending on the deposition conditions. When a mixed texture exists, the analysis reveals that (111)-oriented grains sustain stresses that are about 20% more compressive than those sustained by (002

  1. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  2. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  3. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  4. Cylindrically symmetric wormholes

    SciTech Connect

    Kuhfittig, Peter K.F.

    2005-05-15

    This paper discusses traversable wormholes that differ slightly but significantly from those of the Morris-Thorne type under the assumption of cylindrical symmetry. The throat is a piecewise smooth cylindrical surface resulting in a shape function that is not differentiable at some value. It is proposed that the regular derivative be replaced by a one-sided derivative at this value. The resulting wormhole geometry satisfies the weak energy condition.

  5. Antimicrobial Peptides in Toroidal and Cylindrical Pores

    PubMed Central

    Mihajlovic, Maja

    2010-01-01

    Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize biological membranes. Their mechanism of action is still not well understood. Here we investigate the preference of alamethicin and melittin for pores of different shapes, using molecular dynamics (MD) simulations of the peptides in pre-formed toroidal and cylindrical pores. When an alamethicin hexamer is initially embedded in a cylindrical pore, at the end of the simulation the pore remains cylindrical or closes if glutamines in the N-termini are not located within the pore. On the other hand, when a melittin tetramer is embedded in toroidal pore or in a cylindrical pore, at the end of the simulation the pore is lined both with peptides and lipid headgroups, and, thus, can be classified as a toroidal pore. These observations agree with the prevailing views that alamethicin forms barrel-stave pores whereas melittin forms toroidal pores. Both alamethicin and melittin form amphiphilic helices in the presence of membranes, but their net charge differs; at pH ~7, the net charge of alamethicin is −1 whereas that of melittin is +5. This gives rise to stronger electrostatic interactions of melittin with membranes than those of alamethicin. The melittin tetramer interacts more strongly with lipids in the toroidal pore than in the cylindrical one, due to more favorable electrostatic interactions. PMID:20403332

  6. Microfabricated cylindrical ion trap

    DOEpatents

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  7. Examining Cylindrical Dice

    ERIC Educational Resources Information Center

    Jones, Dustin L.

    2009-01-01

    The author describes an activity where prospective mathematics teachers made hypotheses about the dimensions of a fair cylindrical die and conducted experiments with different cylinders. He also provides a model that estimates the probability that a cylinder would land on the lateral surface, depending on the height and diameter of the cylinder.…

  8. Static cylindrical matter shells

    NASA Astrophysics Data System (ADS)

    Arık, Metin; Delice, Özgür

    2005-08-01

    Static cylindrical shells composed of massive particles arising from matching of two different Levi-Civita space-times are studied for the shell satisfying either an isotropic or an anisotropic equation of state. We find that these solutions satisfy the energy conditions for certain ranges of the parameters.

  9. Differentiation between cooking bananas and dessert bananas. 1. Morphological and compositional characterization of cultivated Colombian Musaceae (Musa sp.) in relation to consumer preferences.

    PubMed

    Gibert, Olivier; Dufour, Dominique; Giraldo, Andrés; Sánchez, Teresa; Reynes, Max; Pain, Jean-Pierre; González, Alonso; Fernández, Alejandro; Díaz, Alberto

    2009-09-01

    The morphological, physical, and chemical characteristics of 23 unripe cultivated varieties of Colombian Musaceae were assessed. Fresh pulp dry matter helped to discriminate the following consumption subgroups: FHIA dessert hybrids (hydes: 24.6%) < dessert bananas (des: 29.4%) < nonplantain cooking bananas (cook: 32.0%) < FHIA cooking hybrids (hycook: 34.2%) < plantains (pl: 41.1%). Banana flour starch content on dry basis (db) varied from 74.2 to 88.2% among the varieties, with: pl: 86.5% > cook and hycook: 84% > des: 81.9% > hydes: 79.7% (p preferences. PMID:19691321

  10. Differentiation between cooking bananas and dessert bananas. 1. Morphological and compositional characterization of cultivated Colombian Musaceae (Musa sp.) in relation to consumer preferences.

    PubMed

    Gibert, Olivier; Dufour, Dominique; Giraldo, Andrés; Sánchez, Teresa; Reynes, Max; Pain, Jean-Pierre; González, Alonso; Fernández, Alejandro; Díaz, Alberto

    2009-09-01

    The morphological, physical, and chemical characteristics of 23 unripe cultivated varieties of Colombian Musaceae were assessed. Fresh pulp dry matter helped to discriminate the following consumption subgroups: FHIA dessert hybrids (hydes: 24.6%) < dessert bananas (des: 29.4%) < nonplantain cooking bananas (cook: 32.0%) < FHIA cooking hybrids (hycook: 34.2%) < plantains (pl: 41.1%). Banana flour starch content on dry basis (db) varied from 74.2 to 88.2% among the varieties, with: pl: 86.5% > cook and hycook: 84% > des: 81.9% > hydes: 79.7% (p preferences.

  11. Static cylindrically symmetric spacetimes

    NASA Astrophysics Data System (ADS)

    Fjällborg, Mikael

    2007-05-01

    We prove the existence of static solutions to the cylindrically symmetric Einstein Vlasov system, and we show that the matter cylinder has finite extension in two of the three spatial dimensions. The same results are also proved for a quite general class of equations of state for perfect fluids coupled to the Einstein equations, extending the class of equations of state considered by Bicak et al (2004 Class. Quantum Grav.21 1583). We also obtain this result for the Vlasov Poisson system.

  12. Conformal approach to cylindrical DLA

    NASA Astrophysics Data System (ADS)

    Taloni, A.; Caglioti, E.; Loreto, V.; Pietronero, L.

    2006-09-01

    We extend the conformal mapping approach elaborated for the radial diffusion limited aggregation model (DLA) to cylindrical geometry. We introduce in particular a complex function which allows a cylindrical cluster to be grown using as an intermediate step a radial aggregate. The aggregate grown exhibits the same self-affine features as the original cylindrical DLA. The specific choice of the transformation allows us to study the relationship between the radial and the cylindrical geometry. In particular the cylindrical aggregate can be seen as a radial aggregate with particles of size increasing with the radius. On the other hand, the radial aggregate can be seen as a cylindrical aggregate with particles of size decreasing with the height. This framework, which shifts the point of view from the geometry to the size of the particles, can open the way to more quantitative studies on the relationship between radial and cylindrical DLA.

  13. Cylindrical geometry hall thruster

    DOEpatents

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  14. Stage Cylindrical Immersive Display

    NASA Technical Reports Server (NTRS)

    Abramyan, Lucy; Norris, Jeffrey S.; Powell, Mark W.; Mittman, David S.; Shams, Khawaja S.

    2011-01-01

    Panoramic images with a wide field of view intend to provide a better understanding of an environment by placing objects of the environment on one seamless image. However, understanding the sizes and relative positions of the objects in a panorama is not intuitive and prone to errors because the field of view is unnatural to human perception. Scientists are often faced with the difficult task of interpreting the sizes and relative positions of objects in an environment when viewing an image of the environment on computer monitors or prints. A panorama can display an object that appears to be to the right of the viewer when it is, in fact, behind the viewer. This misinterpretation can be very costly, especially when the environment is remote and/or only accessible by unmanned vehicles. A 270 cylindrical display has been developed that surrounds the viewer with carefully calibrated panoramic imagery that correctly engages their natural kinesthetic senses and provides a more accurate awareness of the environment. The cylindrical immersive display offers a more natural window to the environment than a standard cubic CAVE (Cave Automatic Virtual Environment), and the geometry allows multiple collocated users to simultaneously view data and share important decision-making tasks. A CAVE is an immersive virtual reality environment that allows one or more users to absorb themselves in a virtual environment. A common CAVE setup is a room-sized cube where the cube sides act as projection planes. By nature, all cubic CAVEs face a problem with edge matching at edges and corners of the display. Modern immersive displays have found ways to minimize seams by creating very tight edges, and rely on the user to ignore the seam. One significant deficiency of flat-walled CAVEs is that the sense of orientation and perspective within the scene is broken across adjacent walls. On any single wall, parallel lines properly converge at their vanishing point as they should, and the sense of

  15. Shearfree cylindrical gravitational collapse

    SciTech Connect

    Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.

    2009-09-15

    We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.

  16. Optimization of Cylindrical Hall Thrusters

    SciTech Connect

    Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fi

    2007-07-24

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation. __________________________________________________

  17. Optimization of Cylindrical Hall Thrusters

    SciTech Connect

    Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fisch

    2007-11-27

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  18. Optical inspection system for cylindrical objects

    DOEpatents

    Brenden, Byron B.; Peters, Timothy J.

    1989-01-01

    In the inspection of cylindrical objects, particularly O-rings, the object is translated through a field of view and a linear light trace is projected on its surface. An image of the light trace is projected on a mask, which has a size and shape corresponding to the size and shape which the image would have if the surface of the object were perfect. If there is a defect, light will pass the mask and be sensed by a detector positioned behind the mask. Preferably, two masks and associated detectors are used, one mask being convex to pass light when the light trace falls on a projection from the surface and the other concave, to pass light when the light trace falls on a depression in the surface. The light trace may be either dynamic, formed by a scanned laser beam, or static, formed by such a beam focussed by a cylindrical lens. Means are provided to automatically keep the illuminating receiving systems properly aligned.

  19. Wrinkling pattern evolution of cylindrical biological tissues with differential growth

    NASA Astrophysics Data System (ADS)

    Jia, Fei; Li, Bo; Cao, Yan-Ping; Xie, Wei-Hua; Feng, Xi-Qiao

    2015-01-01

    Three-dimensional surface wrinkling of soft cylindrical tissues induced by differential growth is explored. Differential volumetric growth can cause their morphological stability, leading to the formation of hexagonal and labyrinth wrinkles. During postbuckling, multiple bifurcations and morphological transitions may occur as a consequence of continuous growth in the surface layer. The physical mechanisms underpinning the morphological evolution are examined from the viewpoint of energy. Surface curvature is found to play a regulatory role in the pattern evolution. This study may not only help understand the morphogenesis of soft biological tissues, but also inspire novel routes for creating desired surface patterns of soft materials.

  20. Cylindrical acoustic levitator/concentrator

    DOEpatents

    Kaduchak, Gregory; Sinha, Dipen N.

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  1. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  2. Optics Demonstrations Using Cylindrical Lenses

    ERIC Educational Resources Information Center

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  3. Notes on static cylindrical shells

    NASA Astrophysics Data System (ADS)

    Bicák, J.; Zofka, M.

    2002-07-01

    Static cylindrical shells made of various types of matter are studied as sources of the vacuum Levi-Civita metrics. Their internal physical properties are related to the two essential parameters of the metrics outside. The total mass per unit length of the cylinders is always less than ¼. The results are illustrated by a number of figures.

  4. Cylindrical magnets and ideal solenoids

    NASA Astrophysics Data System (ADS)

    Derby, Norman; Olbert, Stanislaw

    2010-03-01

    Both wire-wound solenoids and cylindrical magnets can be approximated as ideal azimuthally symmetric solenoids. We present an exact solution for the magnetic field of an ideal solenoid in an easy to use form. The field is expressed in terms of a single function that can be rapidly computed by means of a compact efficient algorithm, which can be coded as an add-in function to a spreadsheet, making field calculations accessible to introductory students. These expressions are not only accurate but are also as fast as most approximate expressions. We demonstrate their utility by simulating the dropping of a cylindrical magnet through a nonmagnetic conducting tube and comparing the calculation with data obtained from experiments suitable for an undergraduate laboratory.

  5. Dynamics of tilted cylindrical geometry

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Sadiq, Sobia

    2016-09-01

    In this paper, we study the dynamics of tilted cylindrical model with imperfect matter distribution. We formulate the field equations and develop relations between tilted and non-tilted variables. We evaluate kinematical as well as dynamical quantities and discuss the inhomogeneity factor. We also obtain the Raychaudhuri equation to study evolution of expansion scalar. The solutions of field equations are also investigated for static cylinder under isotropy and conformally flat condition. Finally, we analyze some thermoinertial aspects of the system.

  6. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  7. Supercooling Water in Cylindrical Capsules

    NASA Astrophysics Data System (ADS)

    Guzman, J. J. Milón; Braga, S. L.

    2005-11-01

    An experimental apparatus was developed to investigate the supercooling phenomenon of water inside cylindrical capsules used for a cold storage process. The coolant is a water-alcohol mixture controlled by a constant temperature bath (CTB). Temperatures varying with time are measured inside and outside the capsule. Cylinders with an internal diameter and thickness of 45 and 1.5 mm, respectively, were made from four different materials: acrylic, PVC, brass, and aluminum. The supercooling period of the water and the nucleation temperature were investigated for different coolant temperatures. The supercooling and nucleation probabilities are shown as a function of the coolant temperature for the four different materials.

  8. Multi-stable cylindrical lattices

    NASA Astrophysics Data System (ADS)

    Pirrera, Alberto; Lachenal, Xavier; Daynes, Stephen; Weaver, Paul M.; Chenchiah, Isaac V.

    2013-11-01

    We present a cylindrical lattice structure that mimics the behaviour of the virus bacteriophage T4 in having two (or more) stable states which differ in their radii and length. While the virus achieves bistability through molecular mechanisms we use composite materials to exploit the interplay between pre-stress, material properties and structural geometry. We demonstrate (computationally) that multi-stability is a robust phenomenon. We also show (analytically) that it is possible to choose the design variables so that the energy is independent of the radius, thus resulting in every state of the structure being stable.

  9. Loads for pulsed power cylindrical implosion experiments

    SciTech Connect

    Anderson, W.E.; Armijo, E.V.; Barthell, B.L.; Bartos, J.J.; Bush, H.; Foreman, L.R.; Garcia, F.P.; Gobby, P.L.; Gomez, V.M.; Gurule, V.A.

    1994-07-01

    Pulse power can be used to generate high energy density conditions in convergent hollow cylindrical geometry through the use of appropriate electrode configuration and cylindrical loads. Cylindrically symmetric experiments are conducted with the Pegasus-H inductive store, capacitor energized pulse power facility at Los Alamos using both precision machined cylindrical liner loads and low mass vapor deposited cylindrical foil loads. The liner experiments investigate solid density hydrodynamic topics. Foil loads vaporize from Joule heating to generate an imploding cylindrical plasma which can be used to simulate some fluxes associated with fusion energy processes. Similar experiments are conducted with {open_quotes}Procyon{close_quotes} inductive store pulse power assemblies energized by explosively driven magnetic flux compression.

  10. Models of cylindrical bubble pulsation

    PubMed Central

    Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.

    2012-01-01

    Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863

  11. Chiral structures from achiral liquid crystals in cylindrical capillaries.

    PubMed

    Jeong, Joonwoo; Kang, Louis; Davidson, Zoey S; Collings, Peter J; Lubensky, Tom C; Yodh, A G

    2015-04-14

    We study chiral symmetry-broken configurations of nematic liquid crystals (LCs) confined to cylindrical capillaries with homeotropic anchoring on the cylinder walls (i.e., perpendicular surface alignment). Interestingly, achiral nematic LCs with comparatively small twist elastic moduli relieve bend and splay deformations by introducing twist deformations. In the resulting twisted and escaped radial (TER) configuration, LC directors are parallel to the cylindrical axis near the center, but to attain radial orientation near the capillary wall, they escape along the radius through bend and twist distortions. Chiral symmetry-breaking experiments in polymer-coated capillaries are carried out using Sunset Yellow FCF, a lyotropic chromonic LC with a small twist elastic constant. Its director configurations are investigated by polarized optical microscopy and explained theoretically with numerical calculations. A rich phenomenology of defects also arises from the degenerate bend/twist deformations of the TER configuration, including a nonsingular domain wall separating domains of opposite twist handedness but the same escape direction and singular point defects (hedgehogs) separating domains of opposite escape direction. We show the energetic preference for singular defects separating domains of opposite twist handedness compared with those of the same handedness, and we report remarkable chiral configurations with a double helix of disclination lines along the cylindrical axis. These findings show archetypally how simple boundary conditions and elastic anisotropy of confined materials lead to multiple symmetry breaking and how these broken symmetries combine to create a variety of defects. PMID:25825733

  12. Chiral structures from achiral liquid crystals in cylindrical capillaries

    NASA Astrophysics Data System (ADS)

    Jeong, Joonwoo; Kang, Louis; Davidson, Zoey S.; Collings, Peter J.; Lubensky, Tom C.; Yodh, A. G.

    2015-04-01

    We study chiral symmetry-broken configurations of nematic liquid crystals (LCs) confined to cylindrical capillaries with homeotropic anchoring on the cylinder walls (i.e., perpendicular surface alignment). Interestingly, achiral nematic LCs with comparatively small twist elastic moduli relieve bend and splay deformations by introducing twist deformations. In the resulting twisted and escaped radial (TER) configuration, LC directors are parallel to the cylindrical axis near the center, but to attain radial orientation near the capillary wall, they escape along the radius through bend and twist distortions. Chiral symmetry-breaking experiments in polymer-coated capillaries are carried out using Sunset Yellow FCF, a lyotropic chromonic LC with a small twist elastic constant. Its director configurations are investigated by polarized optical microscopy and explained theoretically with numerical calculations. A rich phenomenology of defects also arises from the degenerate bend/twist deformations of the TER configuration, including a nonsingular domain wall separating domains of opposite twist handedness but the same escape direction and singular point defects (hedgehogs) separating domains of opposite escape direction. We show the energetic preference for singular defects separating domains of opposite twist handedness compared with those of the same handedness, and we report remarkable chiral configurations with a double helix of disclination lines along the cylindrical axis. These findings show archetypally how simple boundary conditions and elastic anisotropy of confined materials lead to multiple symmetry breaking and how these broken symmetries combine to create a variety of defects.

  13. Chiral structures from achiral liquid crystals in cylindrical capillaries

    PubMed Central

    Jeong, Joonwoo; Kang, Louis; Davidson, Zoey S.; Collings, Peter J.; Lubensky, Tom C.; Yodh, A. G.

    2015-01-01

    We study chiral symmetry-broken configurations of nematic liquid crystals (LCs) confined to cylindrical capillaries with homeotropic anchoring on the cylinder walls (i.e., perpendicular surface alignment). Interestingly, achiral nematic LCs with comparatively small twist elastic moduli relieve bend and splay deformations by introducing twist deformations. In the resulting twisted and escaped radial (TER) configuration, LC directors are parallel to the cylindrical axis near the center, but to attain radial orientation near the capillary wall, they escape along the radius through bend and twist distortions. Chiral symmetry-breaking experiments in polymer-coated capillaries are carried out using Sunset Yellow FCF, a lyotropic chromonic LC with a small twist elastic constant. Its director configurations are investigated by polarized optical microscopy and explained theoretically with numerical calculations. A rich phenomenology of defects also arises from the degenerate bend/twist deformations of the TER configuration, including a nonsingular domain wall separating domains of opposite twist handedness but the same escape direction and singular point defects (hedgehogs) separating domains of opposite escape direction. We show the energetic preference for singular defects separating domains of opposite twist handedness compared with those of the same handedness, and we report remarkable chiral configurations with a double helix of disclination lines along the cylindrical axis. These findings show archetypally how simple boundary conditions and elastic anisotropy of confined materials lead to multiple symmetry breaking and how these broken symmetries combine to create a variety of defects. PMID:25825733

  14. Sympatric speciation: perfume preferences of orchid bee lineages.

    PubMed

    Jackson, Duncan E

    2008-12-01

    Female attraction to an environmentally derived mating signal released by male orchid bees may be tightly linked to shared olfactory preferences of both sexes. A change in perfume preference may have led to divergence of two morphologically distinct lineages.

  15. Propagation Mechanism of Cylindrical Cellular Detonation

    NASA Astrophysics Data System (ADS)

    Han, Wen-Hu; Wang, Cheng; Ning, Jian-Guo

    2012-10-01

    We investigate the evolution of cylindrical cellular detonation with different instabilities. The numerical results show that with decreasing initial temperature, detonation becomes more unstable and the cells of the cylindrical detonation tend to be irregular. For stable detonation, a divergence of cylindrical detonation cells is formed eventually due to detonation instability resulting from a curved detonation front. For mildly unstable detonation, local overdriven detonation occurs. The detonation cell diverges and its size decreases. For highly unstable detonation, locally driven detonation is more obvious and the front is highly wrinkled. As a result, the diverging cylindrical detonation cell becomes highly irregular.

  16. Turbulence in the cylindrical slab

    SciTech Connect

    Gentle, K. W.; Rowan, W. L.; Williams, C. B.; Brookman, M. W.

    2014-09-15

    The cylindrical slab was the first and simplest model of intrinsically unstable microturbulence. The Helimak is an experimental realization of this model. Although finite, it is sufficiently large to escape boundary effects, with dimensionless parameters similar to those of a tokamak edge or scrape off layer. The essential drive is interchange-like, a pressure gradient with unfavorable magnetic curvature, leading to a non-linearly saturated state of large-amplitude turbulence, Δn{sub rms}/n ∼ 0.5. The nonlinear processes governing this saturation are unique, unlike any of those posited for the much weaker turbulence typical of confined plasma, e.g., in a tokamak. Neither linear stability theory, quasi-linear theory, zonal flows, nor flow shear stabilization is consistent with the observations. The mechanisms determining the non-linearly saturated state constitute an important challenge to our understanding of strongly nonlinear systems.

  17. Experimental results for absolute cylindrical wavefront testing

    NASA Astrophysics Data System (ADS)

    Reardon, Patrick J.; Alatawi, Ayshah

    2014-09-01

    Applications for Cylindrical and near-cylindrical surfaces are ever-increasing. However, fabrication of high quality cylindrical surfaces is limited by the difficulty of accurate and affordable metrology. Absolute testing of such surfaces represents a challenge to the optical testing community as cylindrical reference wavefronts are difficult to produce. In this paper, preliminary results for a new method of absolute testing of cylindrical wavefronts are presented. The method is based on the merging of the random ball test method with the fiber optic reference test. The random ball test assumes a large number of interferograms of a good quality sphere with errors that are statistically distributed such that the average of the errors goes to zero. The fiber optic reference test utilizes a specially processed optical fiber to provide a clean high quality reference wave from an incident line focus from the cylindrical wave under test. By taking measurements at different rotation and translations of the fiber, an analogous procedure can be employed to determine the quality of the converging cylindrical wavefront with high accuracy. This paper presents and discusses the results of recent tests of this method using a null optic formed by a COTS cylindrical lens and a free-form polished corrector element.

  18. From Cylindrical to Stretching Ridges and Wrinkles in Twisted Ribbons

    NASA Astrophysics Data System (ADS)

    Pham Dinh, Huy; Démery, Vincent; Davidovitch, Benny; Brau, Fabian; Damman, Pascal

    2016-09-01

    Twisted ribbons under tension exhibit a remarkably rich morphology, from smooth and wrinkled helicoids, to cylindrical or faceted patterns. This complexity emanates from the instability of the natural, helicoidal symmetry of the system, which generates both longitudinal and transverse stresses, thereby leading to buckling of the ribbon. Here, we focus on the tessellation patterns made of triangular facets. Our experimental observations are described within an "asymptotic isometry" approach that brings together geometry and elasticity. The geometry consists of parametrized families of surfaces, isometric to the undeformed ribbon in the singular limit of vanishing thickness and tensile load. The energy, whose minimization selects the favored structure among those families, is governed by the tensile work and bending cost of the pattern. This framework describes the coexistence lines in a morphological phase diagram, and determines the domain of existence of faceted structures.

  19. From Cylindrical to Stretching Ridges and Wrinkles in Twisted Ribbons.

    PubMed

    Pham Dinh, Huy; Démery, Vincent; Davidovitch, Benny; Brau, Fabian; Damman, Pascal

    2016-09-01

    Twisted ribbons under tension exhibit a remarkably rich morphology, from smooth and wrinkled helicoids, to cylindrical or faceted patterns. This complexity emanates from the instability of the natural, helicoidal symmetry of the system, which generates both longitudinal and transverse stresses, thereby leading to buckling of the ribbon. Here, we focus on the tessellation patterns made of triangular facets. Our experimental observations are described within an "asymptotic isometry" approach that brings together geometry and elasticity. The geometry consists of parametrized families of surfaces, isometric to the undeformed ribbon in the singular limit of vanishing thickness and tensile load. The energy, whose minimization selects the favored structure among those families, is governed by the tensile work and bending cost of the pattern. This framework describes the coexistence lines in a morphological phase diagram, and determines the domain of existence of faceted structures. PMID:27636477

  20. Growing yeast into cylindrical colonies.

    PubMed

    Vulin, Clément; Di Meglio, Jean-Marc; Lindner, Ariel B; Daerr, Adrian; Murray, Andrew; Hersen, Pascal

    2014-05-20

    Microorganisms often form complex multicellular assemblies such as biofilms and colonies. Understanding the interplay between assembly expansion, metabolic yield, and nutrient diffusion within a freely growing colony remains a challenge. Most available data on microorganisms are from planktonic cultures, due to the lack of experimental tools to control the growth of multicellular assemblies. Here, we propose a method to constrain the growth of yeast colonies into simple geometric shapes such as cylinders. To this end, we designed a simple, versatile culture system to control the location of nutrient delivery below a growing colony. Under such culture conditions, yeast colonies grow vertically and only at the locations where nutrients are delivered. Colonies increase in height at a steady growth rate that is inversely proportional to the cylinder radius. We show that the vertical growth rate of cylindrical colonies is not defined by the single-cell division rate, but rather by the colony metabolic yield. This contrasts with cells in liquid culture, in which the single-cell division rate is the only parameter that defines the population growth rate. This method also provides a direct, simple method to estimate the metabolic yield of a colony. Our study further demonstrates the importance of the shape of colonies on setting their expansion. We anticipate that our approach will be a starting point for elaborate studies of the population dynamics, evolution, and ecology of microbial colonies in complex landscapes. PMID:24853750

  1. Crack problems in cylindrical and spherical shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1976-01-01

    Standard plate or shell theories were used as a starting point to study the fracture problems in thin-walled cylindrical and spherical shells, assuming that the plane of the crack is perpendicular to the surface of the sheet. Since recent studies have shown that local shell curvatures may have a rather considerable effect on the stress intensity factor, the crack problem was considered in conjunction with a shell rather than a plate theory. The material was assumed to be isotropic and homogeneous, so that approximate solutions may be obtained by approximating the local shell crack geometry with an ideal shell which has a solution, namely a spherical shell with a meridional crack, a cylindrical shell with a circumferential crack, or a cylindrical shell with an axial crack. A method of solution for the specially orthotropic shells containing a crack was described; symmetric and skew-symmetric problems are considered in cylindrical shells with an axial crack.

  2. Stability analysis of cylindrical Vlasov equilibria

    SciTech Connect

    Short, R W

    1980-02-01

    A method is presented for the fully kinetic, nonlocal stability analysis of cylindrically symmetric equilibria. Applications to the lower hybrid drift instability and the modes associated with a finite-width relativistic E-layer are discussed.

  3. View factors of cylindrical spiral surfaces

    NASA Astrophysics Data System (ADS)

    Lebedev, Vladimir A.; Solovjov, Vladimir P.

    2016-03-01

    Analytical expressions are presented for the view factors (radiative configuration factors) associated with the flat right cylindrical spiral surface. Such cylindrical spiral systems are widely applied as electrical resistance heating elements for lighting devices, electronic radio tubes, high-speed gas flow heaters, and other appliances used for scientific, industrial and domestic purposes. Derivation of the view factors is based on the invariant principles and the results presented in Lebedev (2000, 2003,1988) [1-3].

  4. Damage experiments in cylindrical geometry update

    SciTech Connect

    Kaul, Anne; Holtkamp, David; Rodriguez, George

    2009-01-01

    Using a cylindrical configuration to study spallation damage allows for a natural recollection of the damaged material under proper driving conditions. Previous experiments provided data about failure initiation in aluminum in a cylindrical geometry and the behavior of material recollected after damage from pressures in the damage initiation regime. The current series of experiments studied the behavior of material recollected after complete failure. Results from the current experiments will be presented.

  5. Simulating flow and segregation of cylindrical particles

    NASA Astrophysics Data System (ADS)

    Zhao, Yongzhi; Umbanhowar, Paul B.; Lueptow, Richard M.

    2015-11-01

    Efficient and accurate simulation of cylindrical particles using discrete element method (DEM) is a challenge. Typical approaches to simulating cylindrical particle systems are based on the glued spheres method, which has low accuracy, or real shape models, which have high computational cost. In this work we utilize super-ellipsoids, which belong to super-quadrics, to model cylindrical particles in DEM simulations. Simulations of a single cylinder impacting a flat wall indicate that super-ellipsoids provide the same accuracy as real shape models and much better accuracy than the glued sphere method. Simulations of super-ellipsoid cylindrical particles in rotating tumblers result in nearly the same angle of repose as experiments and real shape simulations, demonstrating the accuracy of super-ellipsoid DEM simulations for multi-particle systems. The segregation of bidisperse cylindrical particles differing in length in a bounded heap was simulated by super-ellipsoid DEM, and the results are similar to the experiment. In spite of these advantages of using super-ellipsoid cylindrical particles, simulations of filling a box with particles indicate that the simulation times for super-ellipsoid cylinders is about an order of magnitude longer than that for the same number of spherical particles.

  6. How Are Preferences Revealed?

    PubMed

    Beshears, John; Choi, James J; Laibson, David; Madrian, Brigitte C

    2008-08-01

    Revealed preferences are tastes that rationalize an economic agent's observed actions. Normative preferences represent the agent's actual interests. It sometimes makes sense to assume that revealed preferences are identical to normative preferences. But there are many cases where this assumption is violated. We identify five factors that increase the likelihood of a disparity between revealed preferences and normative preferences: passive choice, complexity, limited personal experience, third-party marketing, and intertemporal choice. We then discuss six approaches that jointly contribute to the identification of normative preferences: structural estimation, active decisions, asymptotic choice, aggregated revealed preferences, reported preferences, and informed preferences. Each of these approaches uses consumer behavior to infer some property of normative preferences without equating revealed and normative preferences. We illustrate these issues with evidence from savings and investment outcomes. PMID:24761048

  7. How Are Preferences Revealed?

    PubMed Central

    Beshears, John; Choi, James J.; Laibson, David; Madrian, Brigitte C.

    2009-01-01

    Revealed preferences are tastes that rationalize an economic agent’s observed actions. Normative preferences represent the agent’s actual interests. It sometimes makes sense to assume that revealed preferences are identical to normative preferences. But there are many cases where this assumption is violated. We identify five factors that increase the likelihood of a disparity between revealed preferences and normative preferences: passive choice, complexity, limited personal experience, third-party marketing, and intertemporal choice. We then discuss six approaches that jointly contribute to the identification of normative preferences: structural estimation, active decisions, asymptotic choice, aggregated revealed preferences, reported preferences, and informed preferences. Each of these approaches uses consumer behavior to infer some property of normative preferences without equating revealed and normative preferences. We illustrate these issues with evidence from savings and investment outcomes. PMID:24761048

  8. Broaden Students' Music Preferences.

    ERIC Educational Resources Information Center

    Le Blanc, Albert

    1983-01-01

    A model of music preference theory suggests ways that teachers can broaden their students' musical preferences. Teachers can change preferences by changing something in the listener, the social environment, the music, or the ways that the listener processes information. (AM)

  9. Values and preferences: defining preference construction.

    PubMed

    Warren, Caleb; McGraw, A Peter; Van Boven, Leaf

    2011-03-01

    Extensive research in the values and preferences literature suggests that preferences are sensitive to context and calculated at the time of choice. This has led to the view that preferences are constructed. Recent work calls for a better understanding of when preferences are constructed and when they are not. We contend that the answer to this question depends on the meaning of the term constructed. Constructed can mean that a preference changes across contexts. If construction is synonymous with context sensitivity, we contend that preferences are always constructed because context influences nearly every aspect of the judgment and choice process. As a motivating example, we show that preferences are influenced by goals and goals are highly context sensitive. Constructed, however, can mean instead that a preference is calculated or formulated during the judgment and choice process. If construction is synonymous with calculation, we contend that many preferences are calculated and the more important question is to what degree preferences are calculated. We review the literature that shows that the degree to which decision makers calculate preferences is influenced by goals, cognitive constraints, and experience. WIREs Cogni Sci 2011 2 193-205 DOI: 10.1002/wcs.98 For further resources related to this article, please visit the WIREs website.

  10. Kinetic assembly of block copolymers in solution helical cylindrical micelles and patchy nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhong, Sheng

    uniform structural parameters, including the width of the micelles, width of the helix, and the pitch distance. There is no preference to the handedness, and both handednesses are observed, which is understandable since there are no chiral molecules or specific binding effects applied during the assembly. The helical structure is a product of kinetic process. Cryogenic transmission electron microscopy has been employed to monitor the morphological transformation. The study indicates there are two complicated but reproducible kinetic pathways to form the helices. One pathway involves the stacks of bended cylinders at early stages and the subsequent interconnection of these bended cylinders. Spherical micelles bud off of the interconnected nanostructure as the final step towards a defect-free helix. Another kinetic pathway shows very short helices are formed at first and aligned via head-to-tail style in the solution, and the subsequent sequential addition of these short helices results in prolonged mature helices. By using a ninhydrin-staining technique, amine molecules within the micellar corona are visualized and confirmed to preferentially locate in the inner side of the helical turns. The aggregation of amine molecules provides a strong attraction force due to electrostatic association between oppositely charged amine and acid groups and accumulation of hydrogen bonding among amine molecules to coil the cylindrical micelles into helical twisting features which are stabilized by the repulsion forces due to the chain packing frustration within the hydrophobic core, steric hindrance of amine molecules as well as the Coulomb repulsion of the excess charged amine groups. The formation mechanism of the helix offers the feasibility to manipulate the helical pitch distance and formation kinetics. The helical pitch distance can be enlarged or shrunk by varying the type and amount of amine molecules used in assembly, introducing inorganic salts, and changing pH. Luckily, the

  11. Multipole analysis of circular cylindrical magnetic systems

    NASA Astrophysics Data System (ADS)

    Selvaggi, Jerry P.

    This thesis deals with an alternate method for computing the external magnetic field from a circular cylindrical magnetic source. The primary objective is to characterize the magnetic source in terms of its equivalent multipole distribution. This multipole distribution must be valid at points close to the cylindrical source and a spherical multipole expansion is ill-equipped to handle this problem; therefore a new method must be introduced. This method, based upon the free-space Green's function in cylindrical coordinates, is developed as an alternative to the more familiar spherical harmonic expansion. A family of special functions, called the toroidal functions or Q-functions, are found to exhibit the necessary properties for analyzing circular cylindrical geometries. In particular, the toroidal function of zeroth order, which comes from the integral formulation of the free-space Green's function in cylindrical coordinates, is employed to handle magnetic sources which exhibit circular cylindrical symmetry. The toroidal functions, also called Q-functions, are the weighting coefficients in a "Fourier series-like" expansion which represents the free-space Green's function. It is also called a toroidal expansion. This expansion can be directly employed in electrostatic, magnetostatic, and electrodynamic problems which exhibit cylindrical symmetry. Also, it is shown that they can be used as an alternative to the Elliptic integral formulation. In fact, anywhere that an Elliptic integral appears, one can replace it with its corresponding Q-function representation. A number of problems, using the toroidal expansion formulation, are analyzed and compared to existing known methods in order to validate the results. Also, the equivalent multipole distribution is found for most of the solved problems along with its corresponding physical interpretation. The main application is to characterize the external magnetic field due to a six-pole permanent magnet motor in terms of its

  12. The Dizzying Depths of the Cylindrical Mirror

    NASA Astrophysics Data System (ADS)

    DeWeerd, Alan J.; Hill, S. Eric

    2005-02-01

    A typical introduction to geometrical optics treats plane and spherical mirrors. At first glance, it may be surprising that texts seldom mention the cylindrical mirror, except for the occasional reference to use in fun houses and to viewing anamorphic art.1,2 However, even a cursory treatment reveals its complexity. Holzberlein used an extended object to qualitatively illustrate that images are produced both before and behind a concave cylindrical mirror.3 He also speculated on how this extreme astigmatism results in an observer's dizziness. By considering a simple point object, we make a more detailed analysis of the cylindrical mirror and the dizziness it induces. First, we illustrate how rays from a point object reflect to form not one point image but two line images. Next, we describe how an observer perceives a likeness of the object. Finally, we suggest how confusing depth cues induce dizziness. Although we focus on the concave cylindrical mirror, the discussion is easy to generalize to the convex cylindrical mirror.

  13. Scattering cancellation by metamaterial cylindrical multilayers

    NASA Astrophysics Data System (ADS)

    Tricarico, S.; Bilotti, F.; Vegni, L.

    2009-05-01

    In this paper, we present the theoretical analysis and the design of cylindrical multilayered electromagnetic cloaks based on the scattering cancellation technique. We propose at first the analysis and the design of bi-layered cylindrical shells, made of homogenous and isotropic metamaterials, in order to effectively reduce the scattered field from a dielectric cylindrical object. The single shell and the bi-layered shell cases are compared in terms of scattering reduction and loss effects. The comparison shows that the bi-layered configuration exhibits superior performances. The scattering cancellation approach, is, then, extended to the case of generic multilayered cylindrical shells, considering again homogeneous and isotropic metamaterials. The employment of the proposed technique to the case of cloaking devices working at multiple frequencies is also envisaged and discussed. Finally, some practical layouts of cylindrical electromagnetic cloaks working at optical frequencies are also proposed. In these configurations, the homogenous and isotropic metamaterials are replaced by their actual counterparts, obtained using alternating stacked plasmonic and non-plasmonic layers. The theoretical formulation and the design approaches presented throughout the paper are validated through proper full-wave numerical simulations.

  14. Solid particle impingement erosion characteristics of cylindrical surfaces, pre-existing holes and slits

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1983-01-01

    The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.

  15. Transitivity of Preferences

    ERIC Educational Resources Information Center

    Regenwetter, Michel; Dana, Jason; Davis-Stober, Clintin P.

    2011-01-01

    Transitivity of preferences is a fundamental principle shared by most major contemporary rational, prescriptive, and descriptive models of decision making. To have transitive preferences, a person, group, or society that prefers choice option "x" to "y" and "y" to "z" must prefer "x" to "z". Any claim of empirical violations of transitivity by…

  16. Risk Preference and Diagnosticity.

    ERIC Educational Resources Information Center

    Rocklin, Thomas

    Researchers have suggested two models of risk preference to account for subjects' preference for tasks of moderate difficulty. The affective model proposes that pride of success and shame of failure are responsible for the observed preference. The cognitive model suggests preference for tasks of moderate difficulty because they are the most…

  17. Cylindrical electrochemical cells with a diaphragm seal

    SciTech Connect

    Georgopoulos, P.

    1993-07-13

    A cylindrical electrochemical cell is described comprising an anode, a cathode and electrolyte contained in a cylindrical container, the container having an open end and a closed end; wherein the open end of the container is sealed with a seal assembly comprising: (a) a disc-shaped seal member, made from an electrically insulative material, having an outer edge wall connected via a base to a centrally located cylindrical hub that defines an orifice; which base has a ventable diaphragm portion and a nonventable diaphragm portion that is thicker than the ventable diaphragm portion; and wherein the ventable diaphragm portion joins the hub at an interface and becomes gradually thicker in the direction away from the interface toward the outer edge wall so that the ventable diaphragm portion is thinnest at the interface; and (b) a current collector extending through the orifice defined by the hub into the cell's interior to contact one of the cell's electrodes.

  18. Laser diode assembly including a cylindrical lens

    DOEpatents

    Snyder, J.J.; Reichert, P.

    1992-01-14

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. 11 figs.

  19. Laser diode assembly including a cylindrical lens

    DOEpatents

    Snyder, James J.; Reichert, Patrick

    1992-01-01

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing.

  20. Current pulse effects on cylindrical damage experiments

    SciTech Connect

    Kaul, Ann M; Rousculp, Christopher L

    2009-01-01

    A series of joint experiments between LANL and VNIIEF use a VNIIEF-designed helical generator to provide currents for driving a LANL-designed cylindrical spallation experimental load. Under proper driving conditions, a cylindrical configuration allows for a natural recollection of the damaged material. In addition, the damaged material is able to come to a complete stop due to its strength, avoiding application of further forces. Thus far, experiments have provided data about failure initiation of a well-characterized material (aluminum) in a cylindrical geometry, behavior of material recollected after damage from pressures in the damage initiation regime, and behavior of material recollected after complete failure. In addition to post-shot collection of the damaged target material for subsequent metallographic analysis, dynamic in-situ experimental diagnostics include velocimetry and transverse radial radiography. This paper will focus on the effects of tailoring the driving current pulse to obtain the desired data.

  1. Self-referenced interferometer for cylindrical surfaces.

    PubMed

    Šarbort, Martin; Řeřucha, Šimon; Holá, Miroslava; Buchta, Zdeněk; Lazar, Josef

    2015-11-20

    We present a new interferometric method for shape measurement of hollow cylindrical tubes. We propose a simple and robust self-referenced interferometer where the reference and object waves are represented by the central and peripheral parts, respectively, of the conical wave generated by a single axicon lens. The interferogram detected by a digital camera is characterized by a closed-fringe pattern with a circular carrier. The interference phase is demodulated using spatial synchronous detection. The capabilities of the interferometer are experimentally tested for various hollow cylindrical tubes with lengths up to 600 mm.

  2. Distributed neural signals on parabolic cylindrical shells

    NASA Astrophysics Data System (ADS)

    Hu, S. D.; Li, H.; Tzou, H. S.

    2013-06-01

    Parabolic cylindrical shells are commonly used as key components in communication antennas, space telescopes, solar collectors, etc. This study focuses on distributed modal neural sensing signals on a flexible simply-supported parabolic cylindrical shell panel. The parabolic cylindrical shell is fully laminated with a piezoelectric layer on its outer surface and the piezoelectric layer is segmented into infinitesimal elements (neurons) to investigate the microscopic distributed neural sensing signals. Since the dominant vibration component of the shell is usually the transverse oscillation, a new transverse mode shape function is defined. Two shell cases, i.e., the ratio of the meridian height to the half span distance of a parabola at 1:4 (shallow) and 1:1 (deep), are studied to reveal the curvature effect to the neural sensing signals. Studies suggest that the membrane signal component dominates for lower natural modes and the bending signal component dominates for higher natural modes. The meridional membrane and bending signal components are mostly concentrated on the high-curvature areas, while the longitudinal bending component is mostly concentrated on the relatively flat areas. The concentration behavior becomes more prominent as the parabolic cylindrical shell deepens, primarily resulting from the enhanced membrane effect due to the increased curvature.

  3. Matching a static cylindrically symmetric elastic spacetime

    NASA Astrophysics Data System (ADS)

    Brito, I.; Carot, J.; Mena, F. C.; Vaz, E. G. L. R.

    2012-07-01

    We consider a static cylindrically symmetric spacetime with elastic matter and study the matching problem of this spacetime with a suitable exterior. For the exterior, we take the Levi-Civita spacetime and its generalization including a cosmological constant, the Linet-Tian spacetime. We show that the matching is only possible with the Linet-Tian solution.

  4. Rotational Preference in Gymnastics

    PubMed Central

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M.; Velentzas, Konstantinos

    2012-01-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast’s rotational preference. Therefore, we sought to explore relationships in gymnast’s rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  5. Rotational preference in gymnastics.

    PubMed

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M; Velentzas, Konstantinos

    2012-06-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast's rotational preference. Therefore, we sought to explore relationships in gymnast's rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  6. Synthetic aperture imaging for multilayer cylindrical object using an exterior rotating transducer

    NASA Astrophysics Data System (ADS)

    Wu, Shiwei; Skjelvareid, Martin H.; Yang, Keji; Chen, Jian

    2015-08-01

    The synthetic aperture focusing technique (SAFT) with significant improvements in lateral resolution has been adapted for ultrasound imaging of multilayer objects. To apply SAFT to imaging of cylindrical objects such as solid axles or pipes with small diameter, exterior cylindrical scan is much preferred. In this paper, a frequency-domain algorithm is proposed for such cylindrical scan performed with an exterior rotating transducer. The algorithm is derived from Fourier-domain solutions to the waveequation in cylindrical coordinates, and then extended to the multilayer case. A simulation model for multilayer structure is established, and the algorithm is demonstrated for both simulated and experimental data. Compared with the raw images, the reconstructed images with proposed algorithm attain better lateral resolution for multilayer objects. It is shown that the attainable angular resolution for each layer is approximately consistent with that achieved in the single-layer case, as long as the transmission factors are approximately uniform within the divergence angle of the transducer. The performance of proposed algorithm is verified with experimental C-scan image and demonstrates that it is capable of improving the lateral resolution in both scanning directions.

  7. Synthetic aperture imaging for multilayer cylindrical object using an exterior rotating transducer.

    PubMed

    Wu, Shiwei; Skjelvareid, Martin H; Yang, Keji; Chen, Jian

    2015-08-01

    The synthetic aperture focusing technique (SAFT) with significant improvements in lateral resolution has been adapted for ultrasound imaging of multilayer objects. To apply SAFT to imaging of cylindrical objects such as solid axles or pipes with small diameter, exterior cylindrical scan is much preferred. In this paper, a frequency-domain algorithm is proposed for such cylindrical scan performed with an exterior rotating transducer. The algorithm is derived from Fourier-domain solutions to the waveequation in cylindrical coordinates, and then extended to the multilayer case. A simulation model for multilayer structure is established, and the algorithm is demonstrated for both simulated and experimental data. Compared with the raw images, the reconstructed images with proposed algorithm attain better lateral resolution for multilayer objects. It is shown that the attainable angular resolution for each layer is approximately consistent with that achieved in the single-layer case, as long as the transmission factors are approximately uniform within the divergence angle of the transducer. The performance of proposed algorithm is verified with experimental C-scan image and demonstrates that it is capable of improving the lateral resolution in both scanning directions. PMID:26329199

  8. The sound field in a finite cylindrical shell

    NASA Technical Reports Server (NTRS)

    Junger, M. C.

    1985-01-01

    The sound field excited by vibrating boundaries in a finite cylindrical space, e.g., in a cylindrical shell, differs from the pressure distribution in an infinite cylindrical shell of comparable structural wavelength by the pressure diffracted by the end caps. The latter pressure component is comparable in magnitude to the pressure generated by the vibrating cylindrical boundary, but does not introduce additional resonances or antiresonances. Finally, a third pressure component associated with end cap vibrations is formulated.

  9. Surface superconductivity in thin cylindrical Bi nanowire.

    PubMed

    Tian, Mingliang; Wang, Jian; Ning, Wei; Mallouk, Thomas E; Chan, Moses H W

    2015-03-11

    The physical origin and the nature of superconductivity in nanostructured Bi remains puzzling. Here, we report transport measurements of individual cylindrical single-crystal Bi nanowires, 20 and 32 nm in diameter. In contrast to nonsuperconducting Bi nanoribbons with two flat surfaces, cylindrical Bi nanowires show superconductivity below 1.3 K. However, their superconducting critical magnetic fields decrease with their diameter, which is the opposite of the expected behavior for thin superconducting wires. Quasiperiodic oscillations of magnetoresistance were observed in perpendicular fields but were not seen in the parallel orientation. These results can be understood by a model of surface superconductivity with an enhanced surface-to-bulk volume in small diameter wires, where the superconductivity originates from the strained surface states of the nanowires due to the surface curvature-induced stress.

  10. Buckling optimisation of sandwich cylindrical panels

    NASA Astrophysics Data System (ADS)

    Abouhamzeh, M.; Sadighi, M.

    2016-06-01

    In this paper, the buckling load optimisation is performed on sandwich cylindrical panels. A finite element program is developed in MATLAB to solve the governing differential equations of the global buckling of the structure. In order to find the optimal solution, the genetic algorithm Toolbox in MATLAB is implemented. Verifications are made for both the buckling finite element code and also the results from the genetic algorithm by comparisons to the results available in literature. Sandwich cylindrical panels are optimised for the buckling strength with isotropic or orthotropic cores with different boundary conditions. Results are presented in terms of stacking sequence of fibers in the face sheets and core to face sheet thickness ratio.

  11. Gravitational radiation from a cylindrical naked singularity

    SciTech Connect

    Nakao, Ken-ichi; Morisawa, Yoshiyuki

    2005-06-15

    We construct an approximate solution which describes the gravitational emission from a naked singularity formed by the gravitational collapse of a cylindrical thick shell composed of dust. The assumed situation is that the collapsing speed of the dust is very large. In this situation, the metric variables are obtained approximately by a kind of linear perturbation analysis in the background Morgan solution which describes the motion of cylindrical null dust. The most important problem in this study is what boundary conditions for metric and matter variables should be imposed at the naked singularity. We find a boundary condition that all the metric and matter variables are everywhere finite at least up to the first order approximation. This implies that the spacetime singularity formed by this high-speed dust collapse is very similar to that formed by the null dust and the final singularity will be a conical one. Weyl curvature is completely released from the collapsed dust.

  12. Cylindrically converging blast waves in air

    NASA Astrophysics Data System (ADS)

    Matsuo, H.; Nakamura, Y.

    1981-07-01

    Cylindrically converging shock waves are produced by utilizing the detonation of cylindrical explosive shells. The production and the propagation of shock waves are observed by framing and streak camera photographs, and the trajectory of shock propagations is determined by using an electrical ionization probing system. The effect of the quantity of explosives on the stability, or the axial symmetry, of shock fronts and on the strength of shocks produced is investigated. It has been shown that, for practical purposes, the approximation of shock trajectories by Guderley's formulas would be sufficiently acceptable in an unexpectedly wide region near the implosion center, and that the axial symmetry of the shock front is improved by increasing the quantity of explosives, and thus, strong shocks are produced by merely increasing the quantity of explosives. The reflected diverging shock seems to be very stable. Piezoelectric elements have also been used to detect reflected diverging waves.

  13. Damage experiments in a cylindrical geometry

    SciTech Connect

    Kaul, Ann M

    2010-09-21

    Studying spallation damage with a cylindrical configuration allows for a natural recollection of the damaged material under proper driving conditions. Additionally, the damaged material can come to a complete rest without the application of further stopping forces. Specific areas of research include the damage initiation regime in convergent geometry, behavior of material recollected after damage, and effects of convergent geometry on the material response. Such experiments produce unique strain and shear stress states, motivating improvements in existing computational material models and increasing the predictive capabilities of codes. A LANL/VNIIEF joint experimental series has produced cylindrical aluminum failure initiation data and studied the behavior of material recollected after damage initiation and after complete failure. In addition to post-shot collection of the damaged target material for subsequent metallographic analysis, dynamic in-situ experimental diagnostics include velocimetry and transverse radial radiography. This paper will discuss the current experimental status.

  14. Design of magnets inside cylindrical superconducting shields

    NASA Technical Reports Server (NTRS)

    Rigby, K. W.

    1988-01-01

    The design of magnets inside closed, cylindrical, superconducting shields is discussed. The Green function is given for the magnetic vector potential for cylindrically symmetric currents inside such a shield. The magnetic field everywhere inside the shield can be obtained from this function, which includes the effects of the induced shield currents exactly. The field is given for a thin solenoid as an example and the convergence of the series solution for this case is discussed. The shield can significantly reduce the strength and improve the homogeneity of a magnet. The improvement in homogeneity is of particular importance in the design of correction coils. These effects, and the maximum field on the shield, are examined for a typical solenoid. The results given are also useful, although not exact, for long shields with one or two open ends.

  15. Surface superconductivity in thin cylindrical Bi nanowire.

    PubMed

    Tian, Mingliang; Wang, Jian; Ning, Wei; Mallouk, Thomas E; Chan, Moses H W

    2015-03-11

    The physical origin and the nature of superconductivity in nanostructured Bi remains puzzling. Here, we report transport measurements of individual cylindrical single-crystal Bi nanowires, 20 and 32 nm in diameter. In contrast to nonsuperconducting Bi nanoribbons with two flat surfaces, cylindrical Bi nanowires show superconductivity below 1.3 K. However, their superconducting critical magnetic fields decrease with their diameter, which is the opposite of the expected behavior for thin superconducting wires. Quasiperiodic oscillations of magnetoresistance were observed in perpendicular fields but were not seen in the parallel orientation. These results can be understood by a model of surface superconductivity with an enhanced surface-to-bulk volume in small diameter wires, where the superconductivity originates from the strained surface states of the nanowires due to the surface curvature-induced stress. PMID:25658139

  16. Multiple Bifurcations of a Cylindrical Dynamical System

    NASA Astrophysics Data System (ADS)

    Han, Ning; Cao, Qingjie

    2016-03-01

    This paper focuses on multiple bifurcations of a cylindrical dynamical system, which is evolved from a rotating pendulum with SD oscillator. The rotating pendulum system exhibits the coupling dynamics property of the bistable state and conventional pendulum with the ho- moclinic orbits of the first and second type. A double Andronov-Hopf bifurcation, two saddle-node bifurcations of periodic orbits and a pair of homoclinic bifurcations are detected by using analytical analysis and nu- merical calculation. It is found that the homoclinic orbits of the second type can bifurcate into a pair of rotational limit cycles, coexisting with the oscillating limit cycle. Additionally, the results obtained herein, are helpful to explore different types of limit cycles and the complex dynamic bifurcation of cylindrical dynamical system.

  17. Nanolaminate Membranes as Cylindrical Telescope Reflectors

    NASA Technical Reports Server (NTRS)

    Dooley, Jennifer; Dragovan, Mark; Hickey, Gregory; Lih, Shyh-Shiu Lih

    2010-01-01

    A document discusses a proposal to use axially stretched metal nanolaminate membranes as lightweight parabolic cylindrical reflectors in the Dual Anamorphic Reflector Telescope (DART) - a planned spaceborne telescope in which the cylindrical reflectors would be arranged to obtain a point focus. The discussion brings together a combination of concepts reported separately in several prior NASA Tech Briefs articles, the most relevant being "Nanolaminate Mirrors With Integral Figure-Control Actuators" NPO -30221, Vol. 26, No. 5 (May 2002), page 90; and "Reflectors Made From Membranes Stretched Between Beams" NPO -30571, Vol. 33, No. 10 (October 2009), page 11a. The engineering issues receiving the greatest emphasis in the instant document are (1) the change in curvature associated with the Poisson contraction of a stretched nanolaminate reflector membrane and (2) the feasibility of using patches of poly(vinylidene fluoride) on the rear membrane surface as piezoelectric actuators to correct the surface figure for the effect of Poisson contraction and other shape errors.

  18. Omnidirectional, circularly polarized, cylindrical microstrip antenna

    NASA Technical Reports Server (NTRS)

    Stanton, Philip H. (Inventor)

    1985-01-01

    A microstrip cylindrical antenna comprised of two concentric subelements on a ground cylinder, a vertically polarized (E-field parallel to the axis of the antenna cylinder) subelement on the inside and a horizontally polarized (E-field perpendicular to the axis) subelement on the outside. The vertical subelement is a wraparound microstrip radiator. A Y-shaped microstrip patch configuration is used for the horizontally polarized radiator that is wrapped 1.5 times to provide radiating edges on opposite sides of the cylindrical antenna for improved azimuthal pattern uniformity. When these subelements are so fed that their far fields are equal in amplitude and phased 90.degree. from each other, a circularly polarized EM wave results. By stacking a plurality of like antenna elements on the ground cylinder, a linear phased array antenna is provided that can be beam steered to the desired elevation angle.

  19. Jamming of Cylindrical Grains in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Spier, Gregory; Barr, Nicholas; Steel, Fiona

    2012-02-01

    We study jamming of low aspect-ratio cylindrical Delrin grains in a vertical channel. These cylindrical grains resemble antacid tablets, poker chips, or coins since their height is less than their diameter. Grains are allowed to fall through a vertical channel with a square cross section where the channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. Within this channel, grains are sometimes observed to form jams, stable structures supported by the channel walls with no support beneath them. The probability of jam occurrence and the strength or robustness of a jam is effected by the grain dimensions and channel size. We will present experimental measurements of the jamming probability and jam strength in this system and discuss the relationship of these results to other experiments and theories.

  20. Machining Thin-Walled Cylindrical Parts

    NASA Technical Reports Server (NTRS)

    Cimbak, Joe; Spagnolo, Jim; Kraus, Dan

    1988-01-01

    Cylindrical walls only few thousandths of inch thick machined accurately and without tears or punctures with aid of beryllium copper mandrel. Chilled so it contracts, then inserted in cylinder. As comes to room temperature, mandrel expands and fits snugly inside cylinder. Will not allow part to slide and provides solid backup to prevent deflection when part machined by grinding wheel. When machining finished, cylinder-and-mandrel assembly inserted in dry ice, mandrel contracts and removed from part.

  1. Shock initiated instabilities in underwater cylindrical structures

    NASA Astrophysics Data System (ADS)

    Gupta, Sachin; Matos, Helio; LeBlanc, James M.; Shukla, Arun

    2016-10-01

    An experimental investigation to understand the mechanisms of dynamic buckling instability in cylindrical structures due to underwater explosive loadings is conducted. In particular, the effects of initial hydrostatic pressure coupled with a dynamic pressure pulse on the stability of metallic cylindrical shells are evaluated. The experiments are conducted at varying initial hydrostatic pressures, below the critical buckling pressure, to estimate the threshold after which dynamic buckling will initiate. The transient underwater full-field deformations of the structures during shock wave loading are captured using high-speed stereo photography coupled with modified 3-D Digital Image Correlation (DIC) technique. Experimental results show that increasing initial hydrostatic pressure decreases the natural vibration frequency of the structure indicating loss in structural stiffness. DIC measurements reveal that the initial structural excitations primarily consist of axisymmetric vibrations due to symmetrical shock wave loading in the experiments. Following their decay after a few longitudinal reverberations, the primary mode of vibration evolves which continues throughout later in time. At the initial hydrostatic pressures below the threshold value, these vibrations are stable in nature. The analytical solutions for the vibration frequency and the transient response of cylindrical shell are discussed in the article by accounting for both (1) the added mass effect of the surrounding water and (2) the effect of initial stress on the shell imposed by the hydrostatic pressure. The analytical solutions match reasonably well with the experimental vibration frequencies. Later, the transient response of a cylindrical shell subjected to a general underwater pressure wave loading is derived which leads to the analytical prediction of dynamic stability.

  2. Electronic quantum confinement in cylindrical potential well

    NASA Astrophysics Data System (ADS)

    Baltenkov, Arkadiy S.; Msezane, Alfred Z.

    2016-04-01

    The effects of quantum confinement on the momentum distribution of electrons confined within a cylindrical potential well have been analyzed. The motivation is to understand specific features of the momentum distribution of electrons when the electron behavior is completely controlled by the parameters of a non-isotropic potential cavity. It is shown that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the three-dimensional space within the framework of the same mathematical model. Some low-lying electronic states with different symmetries have been considered and the corresponding wave functions have been calculated; the behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well has been analyzed. Additionally, the momentum distributions of electrons in these states have been calculated. The limiting cases of the ratio of the cylinder length H and its radius R0 have been considered; when the cylinder length H significantly exceeds its radius R0 and when the cylinder radius is much greater than its length. The cylindrical quantum confinement effects on the momentum distribution of electrons in these potential wells have been analyzed. The possible application of the results obtained here for the description of the general features in the behavior of electrons in nanowires with metallic type of conductivity (or nanotubes) and ultrathin epitaxial films (or graphene sheets) are discussed. Possible experiments are suggested where the quantum confinement can be manifested. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  3. Aberrations of sphero-cylindrical ophthalmic lenses.

    PubMed

    Malacara, Z; Malacara, D

    1990-04-01

    The authors have presented in two previous articles the graphic solutions resembling Tscherning ellipses, for spherical as well as for aspherical ophthalmic lenses free of astigmatism or power error. These solutions were exact, inasmuch as they were based on exact ray tracing, and not third-order theory as frequently done. In this paper sphero-cylindrical lenses are now analyzed, also using exact ray tracing. The functional dependence of the astigmatism and the power error for these lenses is described extensively.

  4. Handedness and hobby preference.

    PubMed

    Giotakos, Orestis

    2004-06-01

    The objective of this study was to investigate the relationship between handedness and hobby preference in healthy individuals. For this reason, the Annett handedness questionnaire and a standard questionnaire on preference for hobbies were administered to 879 healthy young men (age, M = 22.3, SD = 4.8 yr.). Analysis showed more cultured individuals were much less likely to be strongly right-handed. Especially, pure right-handedness highly overrepresented among those who mainly preferred doing sports, pure left-handedness among those who preferred reading books, collecting, or going to the cinema/theater, and mixed-handedness among those who preferred arts, like playing music, drawing, or handicraft. The findings support evidence that handedness is associated with hobby preference. PMID:15209302

  5. Effectiveness of the magnetostatic shielding by the cylindrical shells

    NASA Astrophysics Data System (ADS)

    Grabchikov, S. S.; Trukhanov, A. V.; Trukhanov, S. V.; Kazakevich, I. S.; Solobay, A. A.; Erofeenko, V. T.; Vasilenkov, N. A.; Volkova, O. S.; Shakin, A.

    2016-01-01

    The experimental research of the magnetostatic shielding effectiveness and the analytical calculations of the average magnetic permeability of single-layer cylindrical sample of the shields based on electrolytically deposited Ni80Fe20 alloy are carried out. The locations of maxima on the Ef(H) and μ(H) curves do not match each other, which is difficult to interpret in terms of the shunting model. The results are explained by the non-linear distribution of the magnetic permeability through the thickness of the shield. It has been shown that in the magnetic fields range from 100 A/m up to 2700 A/m, the shields based on the Ni80Fe20 alloy are preferred over ones based on the 84KHSR amorphous ribbon. It is concluded that at the selection of shield materials it should take into account not only the main magnetic characteristics - μ; Hs; Hc but also Hmax parameter, which is important to evaluate the effectiveness of magnetic shielding.

  6. Fabrication Studies for a Cylindrical DDS Structure at 90 GHz

    SciTech Connect

    Bowden, G.B.; Chou, P.J.; Kirby, R.E.; Menegat, A.; Siemann, R.H.; Spencer, J.E.; Wang, J.W.; /SLAC

    2011-08-26

    A natural extension of work on the next generation of high power RF sources and accelerating cavities for Linear Colliders implies cylindrical, damped, detuned structures for millimeter wavelengths. Commercial availability of WR-10 waveguides and other components in the 75-110 GHz range provides a practical goal. Fabrication methods are surveyed, compared and, in some cases, tested to determine whether they can provide the imposed tolerances. Different techniques and tolerances are compared to previous methods at longer wavelengths. The higher gradients and corresponding surface fields indicate that a better understanding of the surface physics is required as well as how the different fabrication steps influence those surface characteristics that impact the final operation. We consider existing systems at SLAC and elsewhere as a function of frequency to determine what is desirable to measure and control for all phases of the fabrication, testing, conditioning and use of these systems. For example, the importance of crystal structure to the different steps is discussed. The preferred method allows a variety of design alternatives to be pursued simultaneously and extends to shorter wavelengths as well as provides possibilities for embedded test and control elements.

  7. Cylindrical nonlinear Schroedinger equation versus cylindrical Korteweg-de Vries equation

    SciTech Connect

    Fedele, Renato; De Nicola, Sergio; Grecu, Dan; Visinescu, Anca; Shukla, Padma K.

    2008-10-15

    A correspondence between the family of cylindrical nonlinear Schroedinger (cNLS) equations and the one of cylindrical Korteweg-de Vries (cKdV) equations is constructed. It associates non stationary solutions of the first family with the ones of the second family. This is done by using a correspondence, recently found, between the families of generalized NLS equation and generalized KdV equation, and their solutions in the form of travelling waves, respectively. In particular, non-stationary soliton-like solutions of the cNLS equation can be associated with non-stationary soliton-like solutions of cKdV equation.

  8. Motion parallax in immersive cylindrical display systems

    NASA Astrophysics Data System (ADS)

    Filliard, N.; Reymond, G.; Kemeny, A.; Berthoz, A.

    2012-03-01

    Motion parallax is a crucial visual cue produced by translations of the observer for the perception of depth and selfmotion. Therefore, tracking the observer viewpoint has become inevitable in immersive virtual (VR) reality systems (cylindrical screens, CAVE, head mounted displays) used e.g. in automotive industry (style reviews, architecture design, ergonomics studies) or in scientific studies of visual perception. The perception of a stable and rigid world requires that this visual cue be coherent with other extra-retinal (e.g. vestibular, kinesthetic) cues signaling ego-motion. Although world stability is never questioned in real world, rendering head coupled viewpoint in VR can lead to the perception of an illusory perception of unstable environments, unless a non-unity scale factor is applied on recorded head movements. Besides, cylindrical screens are usually used with static observers due to image distortions when rendering image for viewpoints different from a sweet spot. We developed a technique to compensate in real-time these non-linear visual distortions, in an industrial VR setup, based on a cylindrical screen projection system. Additionally, to evaluate the amount of discrepancies tolerated without perceptual distortions between visual and extraretinal cues, a "motion parallax gain" between the velocity of the observer's head and that of the virtual camera was introduced in this system. The influence of this artificial gain was measured on the gait stability of free-standing participants. Results indicate that, below unity, gains significantly alter postural control. Conversely, the influence of higher gains remains limited, suggesting a certain tolerance of observers to these conditions. Parallax gain amplification is therefore proposed as a possible solution to provide a wider exploration of space to users of immersive virtual reality systems.

  9. Single-mode cylindrical graphene plasmon waveguide

    NASA Astrophysics Data System (ADS)

    Yang, Jianfeng; Yang, Jingjing; Huang, Ming

    2016-08-01

    A cylindrical graphene plasmon waveguide (CGPW) which consists of two rolled graphene ribbons, a dielectric core and a dielectric interlayer is proposed. An analytical model for the single-mode condition and cutoff frequency of high-order graphene surface plasmon (GSP) modes is presented and verified by finite element method (FEM) simulations. Single-mode operation region of CGPW is identified in the frequency-radius space. By varying the separation between two graphene sheets and the Fermi level of graphene, a large tunability of the mode behavior is also demonstrated. The proposed structure may provide a new freedom to manipulate GSPs, and would lead to novel applications in optics.

  10. Cullet Manufacture Using the Cylindrical Induction Melter

    SciTech Connect

    Miller, D. H.

    2000-01-20

    The base process for vitrification of the Am/Cm solution stored in F-canyon uses 25SrABS cullet as the glass former. A small portion of the cullet used in the SRTC development work was purchased from Corning while the majority was made in the 5 inch Cylindrical Induction Melter (CIM5). Task 1.01 of TTR-NMSS/SE-006, Additional Am-Cm Process Development Studies, requested that a process for the glass former (cullet) fabrication be specified. This report provides the process details for 25SrAB cullet production thereby satisfying Task 1.01.

  11. Periodic Arrays of Interfacial Cylindrical reverse Micelles

    SciTech Connect

    Nelson,M.; Cain, N.; Ocko, B.; Gin, D.; Hammond, S.; Schwartz, D.

    2005-01-01

    We report an approach for the fabrication of periodic molecular nanostructures on surfaces. The approach involves biomimetic self-organization of synthetic wedge-shaped amphiphilic molecules into multilayer arrays of cylindrical reverse micelles. The films were characterized by atomic force microscopy and X-ray reflectivity. These nanostructured films self-assemble in solution but remain stable upon removal and exposure to ambient conditions, making them potentially suitable for a variety of dry pattern transfer methods. We illustrate the generality of this approach by using two distinct molecular systems that vary in size by a factor of 2.

  12. Liquid crystal alignment in cylindrical microcapillaries

    NASA Astrophysics Data System (ADS)

    Chychłowski, M.; Yaroshchuk, O.; Kravchuk, R.; Woliński, T.

    2011-09-01

    A variety of alignment configurations of liquid crystals (LCs) inside the glassy cylindrical capillaries is realized by using alignment materials providing different anchoring. The radial configuration with central disclination line is obtained for homeotropic boundary conditions. In turn, the axial, transversal and tilted alignment structures are realized by using materials for planar anchoring. The uniformity and controlling of the latter structures were provided by photoalignment method. This approach can be further used to control LC alignment in the photonic crystal fibers recognized as advanced elements for different optical devices.

  13. Liquid crystal alignment in cylindrical microcapillaries

    NASA Astrophysics Data System (ADS)

    Chychłowski, M.; Yaroshchuk, O.; Kravchuk, R.; Woliński, T.

    2012-03-01

    A variety of alignment configurations of liquid crystals (LCs) inside the glassy cylindrical capillaries is realized by using alignment materials providing different anchoring. The radial configuration with central disclination line is obtained for homeotropic boundary conditions. In turn, the axial, transversal and tilted alignment structures are realized by using materials for planar anchoring. The uniformity and controlling of the latter structures were provided by photoalignment method. This approach can be further used to control LC alignment in the photonic crystal fibers recognized as advanced elements for different optical devices.

  14. High convergence implosion symmetry in cylindrical hohlraums

    SciTech Connect

    Amendt, P A; Bradley, D K; Hammel, B A; Landen, O L; Suter, L J; Turner, R E; Wallace, R J

    1999-09-01

    High convergence, hohlraum-driven implosions will require control of time-integrated drive asymmetries to 1% levels for ignition to succeed on the NIF. We review how core imaging provides such asymmetry measurement accuracy for the lowest order asymmetry modes, and describe recent improvements in imaging techniques that should allow detection of higher order asymmetry modes. We also present a simple analytic model explaining how the sensitivity of symmetry control to beam pointing scales as we progress from single ring per side Nova cylindrical hohlraum illumination geometries to NIF-like multiple rings per side Omega hohlraum illumination geometries and ultimately to NIF-scale hohlraums.

  15. Radiation of sound from unflanged cylindrical ducts

    NASA Technical Reports Server (NTRS)

    Hartharan, S. L.; Bayliss, A.

    1983-01-01

    Calculations of sound radiated from unflanged cylindrical ducts are presented. The numerical simulation models the problem of an aero-engine inlet. The time dependent linearized Euler equations are solved from a state of rest until a harmonic solution is attained. A fourth order accurate finite difference scheme is used and solutions are obtained from a fully vectorized Cyber-203 computer program. Cases of both plane waves and spin modes are treated. Spin modes model the sound generated by a turbofan engine. Boundary conditions for both plane waves and spin modes are treated. Solutions obtained are compared with experiments conducted at NASA Langley Research Center.

  16. Current to a moving cylindrical electrostatic probe

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Wharton, L. E.

    1972-01-01

    The current collection characteristics of a moving cylindrical Langmuir probe are evaluated for a range of probe speeds and potentials which are applicable to earth and planetary measurements. The current expressions derived include the cases of the general accelerated current, sheath area limited current, orbital motion limited current, and retarded current. For the orbital motion limited current, a simple algebraic expression is obtained which includes and generalizes the Mott-Smith and Langmuir expressions for both a stationary probe and a rapidly moving probe. For a rapidly moving probe a single formula adequately represents both the accelerated and the retarded current.

  17. Order, topology and preference

    NASA Technical Reports Server (NTRS)

    Sertel, M. R.

    1971-01-01

    Some standard order-related and topological notions, facts, and methods are brought to bear on central topics in the theory of preference and the theory of optimization. Consequences of connectivity are considered, especially from the viewpoint of normally preordered spaces. Examples are given showing how the theory of preference, or utility theory, can be applied to social analysis.

  18. Preference pulses without reinforcers.

    PubMed

    McLean, Anthony P; Grace, Randolph C; Pitts, Raymond C; Hughes, Christine E

    2014-05-01

    Preference pulses are thought to represent strong, short-term effects of reinforcers on preference in concurrent schedules. However, the general shape of preference pulses is substantially determined by the distributions of responses-per-visit (visit lengths) for the two choice alternatives. In several series of simulations, we varied the means and standard deviations of distributions describing visits to two concurrently available response alternatives, arranged "reinforcers" according to concurrent variable-interval schedules, and found a range of different preference pulses. Because characteristics of these distributions describe global aspects of behavior, and the simulations assumed no local effects of reinforcement, these preference pulses derive from the visit structure alone. This strongly questions whether preference pulses should continue to be interpreted as representing local effects of reinforcement. We suggest an alternative approach whereby local effects are assessed by subtracting the artifactual part, which derives from visit structure, from the observed preference pulses. This yields "residual" preference pulses. We illustrate this method in application to published data from mixed dependent concurrent schedules, revealing evidence that the delivery of reinforcers had modest lengthening effects on the duration of the current visit, a conclusion that is quantitatively consistent with early research on short-term effects of reinforcement.

  19. Paw preferences in dogs.

    PubMed

    Tan, U

    1987-02-01

    The distribution of paw preferences were studied in 28 dogs. The paw preference was assessed by counting the right and left paw movements performed to remove an adhesive plaster from the eyes. The significance of the right minus left paw reaches in percentages was evaluated statistically in each animal. There were three distinct groups in respect to paw preferences in dogs: right-preferent (57.1%), left-preferent (17.9%), and ambidextrous (25.0%). Statistical analysis showed that the observed frequencies for each group were not merely chance variations which would be expected in a random sample. It was concluded that the population bias can be expressed in a distribution skewed toward a right-hand bias as seen in man.

  20. Design parameters for rotating cylindrical filtration

    NASA Technical Reports Server (NTRS)

    Schwille, John A.; Mitra, Deepanjan; Lueptow, Richard M.

    2002-01-01

    Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. c2002 Elsevier Science B.V. All rights reserved.

  1. Design parameters for rotating cylindrical filtration.

    PubMed

    Schwille, John A; Mitra, Deepanjan; Lueptow, Richard M

    2002-07-15

    Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. PMID:12238523

  2. Thermal Convection in a cylindrical enclosure

    NASA Astrophysics Data System (ADS)

    Shukla, K.

    The microgravity experiment in the Apollo space mission during 1973 has established the importance of the surface tension as a propulsive force on the onset of convection because surface tension varies with temperature. Any temperature gradient established across the surface of the fluid is accompanied by a gradient in surface tension. However, the surface tension driven convection experiment flown in the shuttle flight has not shown any evidence of oscillatory flow even for Marangoni number as high as 105. The paper discusses thermal convection in a cylindrical enclosure with free boundary in a microgravity environment. The surface deformation caused by g-jitter and its relation to the oscillatory flow is studied. The system to be investigated in cylindrical layers of fluid heated from beneath with upper boundary free, initially in mechanical equilibrium, but subjected to the gradient of heat. At any instant of time, in a microgravity environment, the oscillatory part of g-jitter can be as high as 10 -3 g, where g is the gravitational acceleration on the surface of the earth [1]. The instability of a Boussinesq fluid [2] is analyzed in terms of the dimensionless parameters Raleigh number, Ra, Prandtl number, Pr, Marangoni number, M and the aspect ratio, A and relative importance of these parameters is established. References [1] Bannister, T C., etal, NASA, TMX-64772, 1973 [2] Shukla, K N, Applied Mechanics Review, Vol. 54, (5), PP 391-404, 2001

  3. Scattering and radiation from cylindrically conformal antennas

    NASA Astrophysics Data System (ADS)

    Kempel, Leo Charles

    Microstrip patch antennas offer considerable advantages in terms of weight, aerodynamic drag, cost, flexibility, and observability over more conventional protruding antennas. Two hybrid finite element methods are presented and are used to examine the scattering and radiation behavior of cylindrically conformal patches. In conjunction with a new divergence-free cylindrical shell element, the finite element-boundary integral method is shown to have low computational and memory requirements when compared with competing approaches. This method uses an efficient creeping wave series for the computation of the dyadic Green's function and a uniform surface mesh so that a fast Fourier transform may be used to reduce the computational and memory burden of the method. An alternative finite element-absorbing boundary condition approach incorporates a new conformal vector condition which minimizes the computational domain. The latter method is more flexible than the former because it can incorporate surface coatings and protruding antennas. Guidelines are established for minimal ABC displacement from the aperture. These two hybrid finite element methods are used to study the scattering, radiation, and input impedance of typical conformal antenna arrays. In particular, the effect of curvature and cavity size is examined for both discrete and wraparound antenna arrays.

  4. Thermal stress in high temperature cylindrical fasteners

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    1988-01-01

    Uninsulated structures fabricated from carbon or silicon-based materials, which are allowed to become hot during flight, are attractive for the design of some components of hypersonic vehicles. They have the potential to reduce weight and increase vehicle efficiency. Because of manufacturing contraints, these structures will consist of parts which must be fastened together. The thermal expansion mismatch between conventional metal fasteners and carbon or silicon-based structural materials may make it difficult to design a structural joint which is tight over the operational temperature range without exceeding allowable stress limits. In this study, algebraic, closed-form solutions for calculating the thermal stresses resulting from radial thermal expansion mismatch around a cylindrical fastener are developed. These solutions permit a designer to quickly evaluate many combinations of materials for the fastener and the structure. Using the algebraic equations developed, material properties and joint geometry were varied to determine their effect on thermal stresses. Finite element analyses were used to verify that the closed-form solutions derived give the correct thermal stress distribution around a cylindrical fastener and to investigate the effect of some of the simplifying assumptions made in developing the closed-form solutions for thermal stresses.

  5. Motion of a Cylindrical Dielectric Boundary.

    PubMed

    Cheng, Li-Tien; Li, Bo; White, Michael; Zhou, Shenggao

    2013-01-01

    The interplay between geometry and electrostatics contributes significantly to hydrophobic interactions of biomolecules in an aqueous solution. With an implicit solvent, such a system can be described macroscopically by the dielectric boundary that separates the high-dielectric solvent from low-dielectric solutes. This work concerns the motion of a model cylindrical dielectric boundary as the steepest descent of a free-energy functional that consists of both the surface and electrostatic energies. The effective dielectric boundary force is defined and an explicit formula of the force is obtained. It is found that such a force always points from the solvent region to solute region. In the case that the interior of a cylinder is of a lower dielectric, the motion of the dielectric boundary is initially driven dominantly by the surface force but is then driven inward quickly to the cylindrical axis by both the surface and electrostatic forces. In the case that the interior of a cylinder is of a higher dielectric, the competition between the geometrical and electrostatic contributions leads to the existence of equilibrium boundaries that are circular cylinders. Linear stability analysis is presented to show that such an equilibrium is only stable for a perturbation with a wavenumber larger than a critical value. Numerical simulations are reported for both of the cases, confirming the analysis on the role of each component of the driving force. Implications of the mathematical findings to the understanding of charged molecular systems are discussed.

  6. Propagation properties of cylindrical sinc Gaussian beam

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.; Bayraktar, Mert

    2016-09-01

    We investigate the propagation properties of cylindrical sinc Gaussian beam in turbulent atmosphere. Since an analytic solution is hardly derivable, the study is carried out with the aid of random phase screens. Evolutions of the beam intensity profile, beam size and kurtosis parameter are analysed. It is found that on the source plane, cylindrical sinc Gaussian beam has a dark hollow appearance, where the side lobes also start to emerge with increase in width parameter and Gaussian source size. During propagation, beams with small width and Gaussian source size exhibit off-axis behaviour, losing the dark hollow shape, accumulating the intensity asymmetrically on one side, whereas those with large width and Gaussian source size retain dark hollow appearance even at long propagation distances. It is seen that the beams with large widths expand more in beam size than the ones with small widths. The structure constant values chosen do not seem to alter this situation. The kurtosis parameters of the beams having small widths are seen to be larger than the ones with the small widths. Again the choice of the structure constant does not change this trend.

  7. Design parameters for rotating cylindrical filtration.

    PubMed

    Schwille, John A; Mitra, Deepanjan; Lueptow, Richard M

    2002-07-15

    Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions.

  8. Electron Confinement in Cylindrical Potential Well

    NASA Astrophysics Data System (ADS)

    Baltenkov, A. S.; Msezane, A. Z.

    2016-05-01

    We show that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the remaining three-dimensional space within the framework of the same mathematical model of the potential well. Some low-lying electronic states with different symmetries are considered and the corresponding wave functions are calculated. The behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well is analyzed. Additionally, the momentum distributions of electrons in these states are calculated. The limiting cases of the ratio of the cylinder length H to its radius R0 are considered; when H significantly exceeds R0 and when R0 is much greater than H. The possible application of the results obtained here for the description of the general features in the behavior of electrons in nanowires with metallic type of conductivity (or nanotubes) and ultrathin epitaxial films (or graphene sheets) are discussed. Possible experiments are suggested as well where the quantum confinement can be manifested. Work supported by the Uzbek Foundation (ASB) and by the U.S. DOE, Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, Office of Energy Research (AZM).

  9. Preferred Orientation in Polymer Fiber Scattering

    SciTech Connect

    Burger, C.; Hsiao , B; Chu, B

    2010-01-01

    Fiber symmetry is one of the most important sample geometries encountered in both wide-angle x-ray scattering (WAXS) and small-angle x-ray scattering (SAXS) of polymers, applicable both to natural polymers like collagen or cellulose and to many synthetic polymers that come in fiber form or otherwise exhibit cylindrical rotational symmetry. The structural information to be determined in scattering experiments from such fiber systems includes both the structure of the individual structural unit and qualitative and quantitative information about the preferred orientation state of the ensemble. Existing approaches and new developments to analyze fiber scattering patterns are rigorously reviewed. Special emphasis is placed on the calculation of complete SAXS and WAXS fiber scattering patterns, and various practical examples including collagen and cellulose fibers as well as fibers based on copolymers of polyethylene and polypropylene are discussed.

  10. Note: Electrochemical etching of cylindrical nanoprobes using a vibrating electrolyte

    SciTech Connect

    Wang, Yufeng; Zeng, Yongbin Qu, Ningsong; Zhu, Di

    2015-07-15

    An electrochemical etching process using a vibrating electrolyte of potassium hydroxide to prepare tungsten cylindrical nanotips is developed. The vibrating electrolyte eases the effects of a diffusion layer and extends the etching area, which aid in the production of cylindrical nanotips. Larger amplitudes and a vibration frequency of 35 Hz are recommended for producing cylindrical nanotips. Nanotips with a tip radius of approximately 43 nm and a conical angle of arctan 0.0216 are obtained.

  11. Static, cylindrically symmetric strings in general relativity with cosmological constant

    SciTech Connect

    Linet, B.

    1986-07-01

    The static, cylindrically symmetric solutions to Einstein's equations with a cosmological term describing cosmic strings are determined. The discussion depends on the sign of the cosmological constant.

  12. [Osteoporosis and beverage preference].

    PubMed

    Tsukahara, Noriko; Ezawa, Ikuko

    2005-02-01

    Opinions regarding beverage preference ingestion and osteoporosis differ with cultural background as well as by eating habits, food customs and other lifestyle factors in addition to climate, differences in each country and area. Furthermore, it is conceivable that it differs with or depends on life stages of the individual. Currently, beverage preferences are enjoyed as part of the eating habits in, daily life considered an indispensable food to be enjoyed thoroughly. Therefore, it may be important to drink a beverage preferences in moderate but not to indulge in excessive ingestion in order to build a healthy lifestyle contributing to both a sound mind and a sound body at each individual life stage.

  13. Preference for newspaper size.

    PubMed

    Tsang, Steve N H; Hoffmann, Errol R; Chan, Alan H S

    2014-05-01

    The past few years has seen a change in the size of newspapers, with publishers moving to a smaller size format. Five 'standard' newspaper sizes are used in different countries: Broadsheet, Rhensch, Tabloid, Tall Tabloid and Berliner. These papers vary in both width and height of pages and hence there are implications for human reading comfort, which may be dependent on reading location such as on a lounge chair or on a train. Experiments were carried out to determine preferences for the different sizes and to relate these preferences to the geometric characteristics of the newspapers. For both comfortable and cramped/uncomfortable reading conditions, the rank order of preference for paper types was, from least to most-preferred, Broadsheet, Rhensch, Berliner, Tall Tabloid and Tabloid. Preferences were much stronger when determined in cramped/uncomfortable reading conditions, where most comparisons were significantly different. There was good correlation between participant ratings on several scales and preference, where most factors were related to comfort of holding and controlling the paper. PMID:23987982

  14. Preference for newspaper size.

    PubMed

    Tsang, Steve N H; Hoffmann, Errol R; Chan, Alan H S

    2014-05-01

    The past few years has seen a change in the size of newspapers, with publishers moving to a smaller size format. Five 'standard' newspaper sizes are used in different countries: Broadsheet, Rhensch, Tabloid, Tall Tabloid and Berliner. These papers vary in both width and height of pages and hence there are implications for human reading comfort, which may be dependent on reading location such as on a lounge chair or on a train. Experiments were carried out to determine preferences for the different sizes and to relate these preferences to the geometric characteristics of the newspapers. For both comfortable and cramped/uncomfortable reading conditions, the rank order of preference for paper types was, from least to most-preferred, Broadsheet, Rhensch, Berliner, Tall Tabloid and Tabloid. Preferences were much stronger when determined in cramped/uncomfortable reading conditions, where most comparisons were significantly different. There was good correlation between participant ratings on several scales and preference, where most factors were related to comfort of holding and controlling the paper.

  15. Method for making generally cylindrical underground openings

    DOEpatents

    Routh, J.W.

    1983-05-26

    A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

  16. Naked singularity resolution in cylindrical collapse

    SciTech Connect

    Kurita, Yasunari; Nakao, Ken-ichi

    2006-03-15

    In this paper, we study the gravitational collapse of null dust in cylindrically symmetric spacetime. The naked singularity necessarily forms at the symmetry axis. We consider the situation in which null dust is emitted again from the naked singularity formed by the collapsed null dust and investigate the backreaction by this emission for the naked singularity. We show a very peculiar but physically important case in which the same amount of null dust as that of the collapsed one is emitted from the naked singularity as soon as the ingoing null dust hits the symmetry axis and forms the naked singularity. In this case, although this naked singularity satisfies the strong curvature condition by Krolak (limiting focusing condition), geodesics which hit the singularity can be extended uniquely across the singularity. Therefore, we may say that the collapsing null dust passes through the singularity formed by itself and then leaves for infinity. Finally, the singularity completely disappears and the flat spacetime remains.

  17. Electrochemical cell having cylindrical electrode elements

    DOEpatents

    Nelson, Paul A.; Shimotake, Hiroshi

    1982-01-01

    A secondary, high temperature electrochemical cell especially adapted for lithium alloy negative electrodes, transition metal chalcogenide positive electrodes and alkali metal halide or alkaline earth metal halide electrolyte is disclosed. The cell is held within an elongated cylindrical container in which one of the active materials is filled around the outside surfaces of a plurality of perforate tubular current collectors along the length of the container. Each of the current collector tubes contain a concentric tubular layer of electrically insulative ceramic as an interelectrode separator. The active material of opposite polarity in elongated pin shape is positioned longitudinally within the separator layer. A second electrically conductive tube with perforate walls can be swagged or otherwise bonded to the outer surface of the pin as a current collector and the electrically insulative ceramic layer can be coated or otherwise layered onto the outer surface of this second current collector. Alternatively, the central pin electrode can include an axial core as a current collector.

  18. Scattering by buried dielectric cylindrical structures

    NASA Astrophysics Data System (ADS)

    di Vico, M.; Frezza, F.; Pajewski, L.; Schettini, G.

    2005-12-01

    An analytical-numerical technique for the solution of the two-dimensional electromagnetic plane wave scattering by a finite set of dielectric circular cylinders buried in a dielectric half-space is presented. The problem is solved for both the near- and far-field regions, for transverse magnetic and transverse electric polarizations. The scattered field is represented in terms of a superposition of cylindrical waves, and use is made of the plane wave spectrum to take into account the reflection and transmission of such waves by the interface. The validity of the approach is confirmed by comparisons with results available in the literature, with very good agreement, and by self-consistency tests. Applications of the method to objects of arbitrary cross section simulated by suitable configurations of circular cylinders are shown.

  19. Polymer translocation through a cylindrical channel

    PubMed Central

    Wong, Chiu TaiAndrew; Muthukumar, M.

    2008-01-01

    A formalism of polymer translocation through a cylindrical channel of finite diameter and length between two spherical compartments is developed. Unlike previous simplified systems, the finite diameter of the channel allows the number of polymer segments inside the channel to be adjusted during translocation according to the free energy of possible conformations. The translocation process of a Gaussian chain without excluded volume and hydrodynamic interactions is studied using exact formulas of confinement free energy under this formalism. The free energy landscape for the translocation process, the distribution of the translocation time, and the average translocation time are presented. The complex dependencies of the average translocation time on the length and diameter of the channel, the sizes of the donor and receptor compartments, and the chain length are illustrated. PMID:18433273

  20. Stresses in rotating composite cylindrical shells

    NASA Astrophysics Data System (ADS)

    Wang, James T.-S.; Lin, Chien-Chang

    Stresses in composite cylindrical shells rotating with a constant speed about their longitudinal axis are analyzed. Each ply or ply group is treated as a separate thin layer of homogeneous and orthotropic material under the interfacial stresses as surface loading. There is no limitation on the total thickness of the shell. The circumferential stress, motivated by the conventional thin shell theory, is assumed to vary linearly through the thickness of the layer. The radial stress is determined in terms of the circumferential stress through the equilibrium condition, and an average compatibility condition through the thickness of the thin layer is used. Numerical results using the present analysis show nearly perfect agreement with the exact solution for homogeneous and isotropic cylinders. Some results for cylinders having orthotropic layers are presented for illustrative purposes.

  1. Magnetosheath effects on cylindrical Langmuir probes

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.; Takacs, P. Z.

    1979-01-01

    A study of the response of cylindrical Langmuir probes in magnetoplasmas focusing on the relative magnitudes of Larmor radius and sheath size is presented. The approach results in a classification of magnetic field effects which involves the magnetic field strength and plasma parameters of density, temperature, and the applied probe potential. It is shown that a 0.25 G field can have similar effects on the current collection properties of the probe in ionospheric plasma as a 30 kG field would have in a hot, dense laboratory plasma. The data also show: (1) the effects of probe orientation on electron current collection from magnetoplasmas; (2) that these effects can be important even when the electron Larmor radius is larger than the radius of the probe; and (3) that substantial magnetic field effects occur when the probe sheath is comparable to or greater than the Larmor radius.

  2. Cathode Effects in Cylindrical Hall Thrusters

    SciTech Connect

    Granstedt, E.M.; Raitses, Y.; Fisch, N. J.

    2008-09-12

    Stable operation of a cylindrical Hall thruster (CHT) has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode-neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

  3. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    NASA Astrophysics Data System (ADS)

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens’ eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus et al. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells.

  4. Premixed flames in closed cylindrical tubes

    NASA Astrophysics Data System (ADS)

    Metzener, Philippe; Matalon, Moshe

    2001-09-01

    We consider the propagation of a premixed flame, as a two-dimensional sheet separating unburned gas from burned products, in a closed cylindrical tube. A nonlinear evolution equation, that describes the motion of the flame front as a function of its mean position, is derived. The equation contains a destabilizing term that results from the gas motion induced by thermal expansion and has a memory term associated with vorticity generation. Numerical solutions of this equation indicate that, when diffusion is stabilizing, the flame evolves into a non-planar form whose shape, and its associated symmetry properties, are determined by the Markstein parameter, and by the initial data. In particular, we observe the development of convex axisymmetric or non-axisymmetric flames, tulip flames and cellular flames.

  5. Cylindrical spreading due to downwind refraction.

    PubMed

    Makarewicz, Rufin

    2016-04-01

    Downwind propagation is analyzed for a low level jet (LLJ). The LLJ is characterized by a wind speed maximum (at least 10-20 m/s with peak speeds up to 30 m/s) a few hundred meters above the ground. Close to an elevated point source, such as a wind turbine or an aircraft, spherical spreading results in a 6 dB decrease in sound level per doubling of the distance. Wind turbine noise measurements show that at a transition distance, the downwind propagation changes the spherical spreading into a cylindrical spreading with a 3 dB decrease. It is shown how the transition distance and sound intensity depend on the LLJ parameters. The pivotal phenomenon is the non-coherent superposition of ground reflected rays in the turbulent atmosphere. PMID:27106309

  6. Ion orbits in a cylindrical Langmuir probe

    SciTech Connect

    Taccogna, Francesco; Longo, Savino; Capitelli, Mario

    2006-04-15

    It has been suggested that in weakly collisional sheaths, potential wells and barriers could appear due to ion-neutral momentum and charge transfer collisions. These can cause the presence of repulsed and trapped ions in the region surrounding a negatively biased Langmuir probe, invalidating the commonly used orbital-motion-limited theory of ion current. This is still an open question concerning also the charging and shielding of dust grains, and at present, no fully self-consistent treatment exists. For this reason, a particle-in-cell/test-particle Monte Carlo simulation of the dynamics of an argon plasma in the region surrounding an attracting cylindrical probe at medium gas pressure has been developed. The results of the present simulation for different probe potentials and discharge pressures demonstrate the complex structure of electric potential around the probe and the failure of collisionless theories.

  7. Concentration profiles in drying cylindrical filaments

    NASA Astrophysics Data System (ADS)

    Czaputa, Klaus; Brenn, Günter; Meile, Walter

    2008-12-01

    We analyze theoretically the drying of cylindrical filaments. For modelling the mass transfer on the gas side of the liquid-gas interface of the shrinking circular cylindrical filament, we apply the model of Abramzon and Sirignano, which was originally developed for spherical geometry. As a consequence of mass transfer at constant Sherwood number, we obtain a d2-law for the shrinkage of the cylinder as in the case of the spherical geometry, which expresses that the cross-sectional area of the cylinder shrinks at a constant rate with time. For this situation, the diffusion equation for the liquid phase mixture components becomes separable upon transformation into similarity coordinates and is solved analytically to obtain the concentration profiles inside the filament as functions of time. The dependency of the profiles on the radial coordinate is determined by a series of Kummer’s functions. Applying this result, we study the evolution of the concentration profiles in the liquid phase with time as dependent on a parameter given as the ratio of rate of shrinkage of the cross-sectional area of the cylinder to liquid-phase diffusion coefficient, which was identified as relevant for the shape of the concentration profiles formed in the liquid during the drying process. As an example, we present computed results for the constant evaporation rate regime in the dry-spinning process of a polyvinyl-alcohol (PVA)-water system. Comparison of our analytical results with full numerical solutions of the diffusion equation from the literature, achieved with concentration-dependent diffusion coefficient, reveals very good agreement.

  8. Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures.

    PubMed

    Wang, Fei; Gong, Haoran; Chen, Xi; Chen, C Q

    2016-01-01

    Origami structures enrich the field of mechanical metamaterials with the ability to convert morphologically and systematically between two-dimensional (2D) thin sheets and three-dimensional (3D) spatial structures. In this study, an in-plane design method is proposed to approximate curved surfaces of interest with generalized Miura-ori units. Using this method, two combination types of crease lines are unified in one reprogrammable procedure, generating multiple types of cylindrical structures. Structural completeness conditions of the finite-thickness counterparts to the two types are also proposed. As an example of the design method, the kinematics and elastic properties of an origami-based circular cylindrical shell are analysed. The concept of Poisson's ratio is extended to the cylindrical structures, demonstrating their auxetic property. An analytical model of rigid plates linked by elastic hinges, consistent with numerical simulations, is employed to describe the mechanical response of the structures. Under particular load patterns, the circular shells display novel mechanical behaviour such as snap-through and limiting folding positions. By analysing the geometry and mechanics of the origami structures, we extend the design space of mechanical metamaterials and provide a basis for their practical applications in science and engineering.

  9. Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures

    PubMed Central

    Wang, Fei; Gong, Haoran; Chen, Xi; Chen, C. Q.

    2016-01-01

    Origami structures enrich the field of mechanical metamaterials with the ability to convert morphologically and systematically between two-dimensional (2D) thin sheets and three-dimensional (3D) spatial structures. In this study, an in-plane design method is proposed to approximate curved surfaces of interest with generalized Miura-ori units. Using this method, two combination types of crease lines are unified in one reprogrammable procedure, generating multiple types of cylindrical structures. Structural completeness conditions of the finite-thickness counterparts to the two types are also proposed. As an example of the design method, the kinematics and elastic properties of an origami-based circular cylindrical shell are analysed. The concept of Poisson’s ratio is extended to the cylindrical structures, demonstrating their auxetic property. An analytical model of rigid plates linked by elastic hinges, consistent with numerical simulations, is employed to describe the mechanical response of the structures. Under particular load patterns, the circular shells display novel mechanical behaviour such as snap-through and limiting folding positions. By analysing the geometry and mechanics of the origami structures, we extend the design space of mechanical metamaterials and provide a basis for their practical applications in science and engineering. PMID:27624892

  10. Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Gong, Haoran; Chen, Xi; Chen, C. Q.

    2016-09-01

    Origami structures enrich the field of mechanical metamaterials with the ability to convert morphologically and systematically between two-dimensional (2D) thin sheets and three-dimensional (3D) spatial structures. In this study, an in-plane design method is proposed to approximate curved surfaces of interest with generalized Miura-ori units. Using this method, two combination types of crease lines are unified in one reprogrammable procedure, generating multiple types of cylindrical structures. Structural completeness conditions of the finite-thickness counterparts to the two types are also proposed. As an example of the design method, the kinematics and elastic properties of an origami-based circular cylindrical shell are analysed. The concept of Poisson’s ratio is extended to the cylindrical structures, demonstrating their auxetic property. An analytical model of rigid plates linked by elastic hinges, consistent with numerical simulations, is employed to describe the mechanical response of the structures. Under particular load patterns, the circular shells display novel mechanical behaviour such as snap-through and limiting folding positions. By analysing the geometry and mechanics of the origami structures, we extend the design space of mechanical metamaterials and provide a basis for their practical applications in science and engineering.

  11. Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures.

    PubMed

    Wang, Fei; Gong, Haoran; Chen, Xi; Chen, C Q

    2016-01-01

    Origami structures enrich the field of mechanical metamaterials with the ability to convert morphologically and systematically between two-dimensional (2D) thin sheets and three-dimensional (3D) spatial structures. In this study, an in-plane design method is proposed to approximate curved surfaces of interest with generalized Miura-ori units. Using this method, two combination types of crease lines are unified in one reprogrammable procedure, generating multiple types of cylindrical structures. Structural completeness conditions of the finite-thickness counterparts to the two types are also proposed. As an example of the design method, the kinematics and elastic properties of an origami-based circular cylindrical shell are analysed. The concept of Poisson's ratio is extended to the cylindrical structures, demonstrating their auxetic property. An analytical model of rigid plates linked by elastic hinges, consistent with numerical simulations, is employed to describe the mechanical response of the structures. Under particular load patterns, the circular shells display novel mechanical behaviour such as snap-through and limiting folding positions. By analysing the geometry and mechanics of the origami structures, we extend the design space of mechanical metamaterials and provide a basis for their practical applications in science and engineering. PMID:27624892

  12. Development of the Cylindrical Wire Electrical Discharge Machining Process.

    SciTech Connect

    McSpadden, SB

    2002-01-22

    Results of applying the wire Electrical Discharge Machining (EDM) process to generate precise cylindrical forms on hard, difficult-to-machine materials are presented. A precise, flexible, and corrosion-resistant underwater rotary spindle was designed and added to a conventional two-axis wire EDM machine to enable the generation of free-form cylindrical geometries. A detailed spindle error analysis identifies the major source of error at different frequency. The mathematical model for the material removal of cylindrical wire EDM process is derived. Experiments were conducted to explore the maximum material removal rate for cylindrical and 2D wire EDM of carbide and brass work-materials. Compared to the 2D wire EDM, higher maximum material removal rates may be achieved in the cylindrical wire EDM. This study also investigates the surface integrity and roundness of parts created by the cylindrical wire EDM process. For carbide parts, an arithmetic average surface roughness and roundness as low as 0.68 and 1.7 {micro}m, respectively, can be achieved. Surfaces of the cylindrical EDM parts were examined using Scanning Electron Microscopy (SEM) to identify the craters, sub-surface recast layers and heat-affected zones under various process parameters. This study has demonstrated that the cylindrical wire EDM process parameters can be adjusted to achieve either high material removal rate or good surface integrity.

  13. Cylindrical thin-shell wormholes supported by phantom energy

    NASA Astrophysics Data System (ADS)

    Eid, A.

    2016-09-01

    In the framework of Darmois-Israel formalism, the general equations describing the motion of cylindrical thin-shell wormholes supported by equation of state of phantom energy are derived. The linear perturbation approach is used to investigate the stability of a cylindrical thin-shell wormhole of a static solution.

  14. Technical Note: Experimental determination of the effective point of measurement of two cylindrical ionization chambers in a clinical proton beam

    SciTech Connect

    Sugama, Yuya; Nishio, Teiji; Onishi, Hiroshi

    2015-07-15

    Purpose: IAEA TRS-398 notes that cylindrical ionization chambers are preferred for reference proton dosimetry. If a cylindrical ionization chamber is used in a phantom to measure the dose as a function of depth, the effective point of measurement (EPOM) must be taken into account. IAEA TRS-398 recommends a displacement of 0.75 times the inner cavity radius (0.75R) for heavy ion beams. Theoretical models by Palmans and by Bhullar and Watchman confirmed this value. However, the experimental results vary from author to author. The purpose of this study is to accurately measure the displacement and explain the past experimental discrepancies. Methods: In this work, we measured the EPOM of cylindrical ionization chambers with high accuracy by comparing the Bragg-peak position obtained with cylindrical ionization chambers (PTW 30013, PTW 31016) to that obtained using a plane-parallel ionization chamber (PTW 34045). Results: The EPOMs of PTW 30013 and 31016 were shifted by 0.92 ± 0.07 R with R = 3.05 mm and 0.90 ± 0.14 R with R = 1.45 mm, respectively, from the reference point toward the source. Conclusions: The EPOMs obtained were greater than the value of 0.75R proposed by the IAEA TRS-398 and the analytical results.

  15. The preference for potential.

    PubMed

    Tormala, Zakary L; Jia, Jayson S; Norton, Michael I

    2012-10-01

    When people seek to impress others, they often do so by highlighting individual achievements. Despite the intuitive appeal of this strategy, we demonstrate that people often prefer potential rather than achievement when evaluating others. Indeed, compared with references to achievement (e.g., "this person has won an award for his work"), references to potential (e.g., "this person could win an award for his work") appear to stimulate greater interest and processing, which can translate into more favorable reactions. This tendency creates a phenomenon whereby the potential to be good at something can be preferred over actually being good at that very same thing. We document this preference for potential in laboratory and field experiments, using targets ranging from athletes to comedians to graduate school applicants and measures ranging from salary allocations to online ad clicks to admission decisions.

  16. Son preference in Vietnam.

    PubMed

    Haughton, J; Haughton, D

    1995-01-01

    This article assesses the strength of son preference in Vietnam, as reflected in fertility behavior. It formulates and estimates a proportional hazards model applied to birth intervals, and a contraceptive prevalence model, using household survey data from 2,636 ever-married women aged 15-49 with at least one living child who were interviewed for the Vietnam Living Standards Survey 1992-1993. Son preference is found to be strong by world standards, but nevertheless, it has a minor effect on fertility; in its absence, the total fertility rate would fall by roughly 10 percent from the current level of about 3.2 children per woman of reproductive age.

  17. Metal Preferences and Metallation*

    PubMed Central

    Foster, Andrew W.; Osman, Deenah; Robinson, Nigel J.

    2014-01-01

    The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ∼25% acquiring preassembled metal cofactors. The remaining ∼70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells. PMID:25160626

  18. Focal field interactions from cylindrical vector beams

    NASA Astrophysics Data System (ADS)

    Biss, David Paul

    In optical imaging there is always a push to improve image quality or find methods to gain new imaging information. This is apparent in the optical lithography and semiconductor inspection industries, where optical metrology and imaging systems are using larger numerical aperture systems and finding new imaging methods, such as immersion imaging, to shrink focal fields. At high numerical apertures, scalar diffraction theories break down and polarization effects play a large role in focal field interactions. With this interest in polarization, new models for local polarization effects are needed. Along with new models, cylindrically-symmetric polarized beams known as cylindrical vector (CV) beams, can provide new methods of imaging in this high NA regime. In this thesis, we examine the modeling of radially and azimuthally polarized beams focused at high numerical aperture in the presence of a planar interface. These focal fields are also modeled with primary spherical, coma, and astigmatism wavefront aberrations in the entrance pupil of the focusing system. Particular attention is given to the longitudinal field component generated by the focused radial beam, and the correlation between the magnetic and electric fields of radial and azimuthal beams. A scanning edge test using linearly polarized beams is modeled using a rigorous coupled wave (RCW) method and is compared to experimental data. The ability of the scanning edge test to predict spot asymmetry is investigated though the comparison of the RCW scanning edge model with free space vector diffraction theories. This RCW model is extended to include CV beam illumination and mode filtering of the system's exit pupil fields. This extension provides a model to accurately predict the performance of a dark-field imaging modality using radially and azimuthally polarized beams. Predictions from this model are compared to experimental results with attention given to defocus effects and the ability to accurately measure

  19. Cylindrical Implosion Experiments using Laser Direct Drive

    NASA Astrophysics Data System (ADS)

    Tubbs, David

    1998-11-01

    Development of high-gain targets for the National Ignition Facility relies considerably on computational modeling, and it is important that our codes are validated against relevant experimental data in convergent geometry.(W. J. Krauser et al., Phys. Plasmas 3, 2084 (1996); D. C. Wilson et al., Phys. Plasmas 5, 1953 (1998)) In collaboration with the University of Rochester, we have begun a campaign of hydrodynamic instability experiments in cylindrical geometry using direct drive,(D. L. Tubbs et al., submitted to Laser and Particle Beams (1998); C. W. Barnes et al., submitted to Rev. Sci. Instrm. (1998)) building on our success in indirect drive.( W. W. Hsing et al., Phys. Plasmas 5, 1832 (1997); W. W. Hsing and N. M. Hoffman, Phys. Rev. Lett., 3876 (1997)) Cylindrical targets facilitate direct diagnostic access to the convergent, hydrodynamic flow. The energy advantage of direct drive and its excellent target-illumination symmetry (achieved at OMEGA through use of Distributed Phase Plates and SSD) permit more energetic implosions, larger target scale (hence greater diagnostic resolution), longer acceleration timescales, and higher convergence than were possible using indirect drive. We estimate that specific laser energy delivered to the target for direct drive at OMEGA is roughly 4 times that achieved for indirect drive at Nova. Our first experiments (January 1998) yield excellent data for the first highly symmetrical direct-drive implosions, with which we benchmark zeroth-order hydrodynamic simulations. Two-dimensional (2-D) LASNEX calculations, using as-shot laser power histories and no further physics adjustments, match measured target-implosion data within theoretical and experimental errors. In addition, 2-D LASNEX simulations of single-mode (m=28, azimuthally symmetric) perturbation growth agree well with data obtained during our first week of experiments. For 1.5-micron initial perturbation amplitude, we observe Rayleigh-Taylor growth factors of order 10

  20. Converging cylindrical shocks in ideal magnetohydrodynamics

    SciTech Connect

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-09-15

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The

  1. Converging cylindrical shocks in ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=sqrt{μ _0/p_0} I/(2 π ) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field

  2. QUANTITATIVE MORPHOLOGY

    EPA Science Inventory

    Abstract: In toxicology, the role of quantitative assessment of brain morphology can be understood in the context of two types of treatment-related alterations. One type of alteration is specifically associated with treatment and is not observed in control animals. Measurement ...

  3. Inservice Education Preferences of Teachers.

    ERIC Educational Resources Information Center

    Schreiber, Fred O.; Anderson, Robert L.

    A teacher inservice preference questionnaire was used to identify, categorize, and compare inservice preferences of educators, and findings indicated that workshops were ranked first as the inservice activity most preferred with conventions and professional conferences least preferred. Other categorical analysis indicated that professional…

  4. Surface tension and long range corrections of cylindrical interfaces

    SciTech Connect

    Bourasseau, E.; Ghoufi, A.

    2015-12-21

    The calculation of the surface tension of curved interfaces has been deeply investigated from molecular simulation during this last past decade. Recently, the thermodynamic Test-Area (TA) approach has been extended to the calculation of surface tension of curved interfaces. In the case of the cylindrical vapour-liquid interfaces of water and Lennard-Jones fluids, it was shown that the surface tension was independent of the curvature of the interface. In addition, the surface tension of the cylindrical interface is higher than that of the planar interface. Molecular simulations of cylindrical interfaces have been so far performed (i) by using a shifted potential, (ii) by means of large cutoff without periodic boundary conditions, or (iii) by ignoring the long range corrections to the surface tension due to the difficulty to estimate them. Indeed, unlike the planar interfaces there are no available operational expressions to consider the tail corrections to the surface tension of cylindrical interfaces. We propose here to develop the long range corrections of the surface tension for cylindrical interfaces by using the non-exponential TA (TA2) method. We also extend the formulation of the Mecke-Winkelmann corrections initially developed for planar surfaces to cylindrical interfaces. We complete this study by the calculation of the surface tension of cylindrical surfaces of liquid tin and copper using the embedded atom model potentials.

  5. Theoretical study of interactions between striated cylindrical particles and membrane

    NASA Astrophysics Data System (ADS)

    Wang, Jing-Jing; Jia-Wei, Feng; Ren, Chun-Lai

    2015-08-01

    The interaction of nanoparticles with cell membranes is of great importance because of their potential biomedical applications. In this paper, we investigate the adhesion of stripe-patterned cylinders to a fluid membrane with a full consideration of the Helfrich free energy. Three situations are considered: one striated cylindrical particle, two pure cylindrical particles, and two Janus cylindrical particles. It is found that, with the adhesion of a single sparse striated cylinder, there are a variety of steady-states with energy barriers and the stable state is determined by the pattern of the cylinder. However, when the particle is densely striped, it has no effect on the stable state. By comparing the wrapping degree of two cylindrical particles with that of a single cylindrical particle, we find that two pure cylindrical particles can promote or suppress their interaction with the membrane under different situations. However, two Janus cylindrical particles can only inhibit their interaction with the membrane. Besides, this interaction is related to a first-order transition which is a shallow-to-deep wrapping transition for two pure cylinders while it is a shallow-to-half wrapping transition for two Janus cylinders. Furthermore, the position where the transition happens as a function of adhesion energy is given for fixed membrane tension and the precondition of the transition is presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 91027040 and 21274062).

  6. Surface tension and long range corrections of cylindrical interfaces.

    PubMed

    Bourasseau, E; Malfreyt, P; Ghoufi, A

    2015-12-21

    The calculation of the surface tension of curved interfaces has been deeply investigated from molecular simulation during this last past decade. Recently, the thermodynamic Test-Area (TA) approach has been extended to the calculation of surface tension of curved interfaces. In the case of the cylindrical vapour-liquid interfaces of water and Lennard-Jones fluids, it was shown that the surface tension was independent of the curvature of the interface. In addition, the surface tension of the cylindrical interface is higher than that of the planar interface. Molecular simulations of cylindrical interfaces have been so far performed (i) by using a shifted potential, (ii) by means of large cutoff without periodic boundary conditions, or (iii) by ignoring the long range corrections to the surface tension due to the difficulty to estimate them. Indeed, unlike the planar interfaces there are no available operational expressions to consider the tail corrections to the surface tension of cylindrical interfaces. We propose here to develop the long range corrections of the surface tension for cylindrical interfaces by using the non-exponential TA (TA2) method. We also extend the formulation of the Mecke-Winkelmann corrections initially developed for planar surfaces to cylindrical interfaces. We complete this study by the calculation of the surface tension of cylindrical surfaces of liquid tin and copper using the embedded atom model potentials.

  7. Cylindrical Hall Thrusters with Permanent Magnets

    SciTech Connect

    Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.

    2010-10-18

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT. __________________________________________________

  8. Force Balances in Systems of Cylindrical Polyelectrolytes

    PubMed Central

    Brenner, Stephen L.; McQuarrie, Donald A.

    1973-01-01

    A detailed analysis is made of the model system of two parallel cylindrical polyelectrolytes which contain ionizable groups on their surfaces and are immersed in an ionic bathing medium. The interaction between the cylinders is examined by considering the interplay between repulsive electrostatic forces and attractive forces of electrodynamic origin. The repulsive force arises from the screened coulomb interaction between the surface charge distributions on the cylinders and has been treated by developing a solution to the linearized Poisson-Boltzmann equation. The boundary condition at the cylinder surfaces is determined as a self-consistent functional of the potential, with the input consisting of the density of ionizable groups and their dissociation constants. It is suggested that a reasonably accurate representation for the form of the attractive force can be obtained by performing a pairwise summation of the individual interatomic forces. A quantitative estimate is obtained using a Hamaker constant chosen on the basis of rigorous calculations on simpler systems. It is found that a balance exists between these repulsive and attractive forces at separations in good agreement with those observed in arrays of tobacco mosaic virus and in the A band myosin lattice in striated muscle. The behavior of the balance point as a function of the pH and ionic strength of the bathing medium closely parallels that seen experimentally. PMID:4696760

  9. Cylindrical converging shock initiation of reactive materials

    NASA Astrophysics Data System (ADS)

    Jenkins, Charles M.; Horie, Yasuyuki; Lindsay, Christopher Michael; Butler, George C.; Lambert, David; Welle, Eric

    2012-03-01

    Recent research has been conducted that builds on the Forbes et al. (1997) study of inducing a rapid solid state reaction in a highly porous core using a converging cylindrical shock driven by a high explosive. The high explosive annular charge used in this research to compress the center reactive core was comparable to PBXN-110. Some modifications were made on the physical configuration of the test item for scale-up and ease of production. The reactive materials (I2O5/Al and I2O5/Al/Teflon) were hand mixed and packed to a tap density of about 32 percent. Data provided by a Cordon 114 high speed framing camera and a Photon Doppler Velocimetry instrument provided exit gas expansion, core particle and cylinder wall velocities. Analysis indicates that the case expansion velocity differs according to the core formulation and behaved similar to the baseline high explosive core with the exit gas of the reactive materials producing comparable velocities. Results from CTH hydrocode used to model the test item compares favorably to the experimental results.

  10. Technology Selections for Cylindrical Compact Fabrication

    SciTech Connect

    Jeffrey A. Phillips

    2010-10-01

    A variety of process approaches are available and have been used historically for manufacture of cylindrical fuel compacts. The jet milling, fluid bed overcoating, and hot press compacting approach being adopted in the U.S. AGR Fuel Development Program for scale-up of the compacting process involves significant paradigm shifts from historical approaches. New methods are being pursued because of distinct advantages in simplicity, yield, and elimination of process mixed waste. Recent advances in jet milling technology allow simplified dry matrix powder preparation. The matrix preparation method is well matched with patented fluid bed powder overcoating technology recently developed for the pharmaceutical industry and directly usable for high density fuel particle matrix overcoating. High density overcoating places fuel particles as close as possible to their final position in the compact and is matched with hot press compacting which fully fluidizes matrix resin to achieve die fill at low compacting pressures and without matrix end caps. Overall the revised methodology provides a simpler process that should provide very high yields, improve homogeneity, further reduce defect fractions, eliminate intermediate grading and QC steps, and allow further increases in fuel packing fractions.

  11. Jet mixing in a reacting cylindrical crossflow

    NASA Technical Reports Server (NTRS)

    Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.

    1995-01-01

    This paper addresses the mixing of air jets into the hot, fuel-rich products of a gas turbine primary zone. The mixing, as a result, occurs in a reacting environment with chemical conversion and substantial heat release. The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from round orifices. A specially designed reactor, operating on propane, presents a uniform mixture without swirl to mixing modules consisting of 8, 9, 10, and 12 holes at a momentum-flux ratio of 57 and a jet-to-mainstream mass-flow ratio of 2.5. Concentrations of O2, CO2, CO, and HC are obtained upstream, downstream, and within the orifice plane. O2 profiles indicate jet penetration while CO2, CO, and HC profiles depict the extent of reaction. Jet penetration is observed to be a function of the number of orifices and is found to affect the mixing in the reacting system. The results demonstrate that one module (the 12-hole) produces near-optimal penetration defined here as a jet penetration closest to the module half-radius, and hence the best uniform mixture at a plane one duct radius from the orifice leading edge.

  12. Rotating cylindrical wormholes and energy conditions

    NASA Astrophysics Data System (ADS)

    Bronnikov, K. A.; Krechet, V. G.

    2016-01-01

    We seek wormholes among rotating cylindrically symmetric configurations in general relativity. Exact wormhole solutions are presented with such sources of gravity as a massless scalar field, a cosmological constant, and a scalar field with an exponential potential. However, none of these solutions are asymptotically flat, which excludes the existence of wormhole entrances as local objects in our Universe. To overcome this difficulty, we try to build configurations with flat asymptotic regions using the cut-and-paste procedure: on both sides of the throat, a wormhole solution is matched to a properly chosen region of flat space-time at some surfaces Σ- and Σ+. It is shown, however, that if the source of gravity in the throat region is a scalar field with an arbitrary potential, then one or both thin shells appearing on Σ- and Σ+ inevitably violate the null energy condition. Thus, although rotating wormhole solutions are easily found without exotic matter, such matter is still necessary for obtaining asymptotic flatness.

  13. Cylindrical isentropic compression by ultrahigh magnetic field

    NASA Astrophysics Data System (ADS)

    Gu, Zhuowei; Luo, Hao; Zhang, Hengdi; Zhao, Shichao; Tang, Xiaosong; Tong, Yanjin; Song, Zhenfei; Tan, Fuli; Zhao, Jianheng; Sun, Chengwei

    2014-05-01

    The cylindrical isentropic compression by ultrahigh magnetic field (MC-1) is a kind of unique high energy density technique. It has characters like ultrahigh pressure and low temperature rising, and would have widely used in areas like high pressure physics, new material synthesis and ultrahigh magnetic field physics. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) has begun the experiment since 2011 and a primary experimental device had been set-up. In the experiments, a seed magnetic field of 5 Tesla were set-up first and compressed by a stainless steel liner which is driven by high explosive initiated synchronously. The internal diameter of the liner is 97 mm, and its thickness is 1.5 mm. The movement of liner was recorded optically and a typical turnaround phenomenon was observed. From the photography results the liner was compressed smoothly and evenly and its average velocity was about 5-6 km/s. In the experiment a axial magnetic field of over 1400 Tesla has been recorded. The MC-1 process was numerical simulated by 1D MHD code MC11D and the simulations are in accord with the experiments.

  14. Cylindrical gate valve apparatus and method

    SciTech Connect

    Hynes, J. H.; Morrill, C. D.

    1985-04-30

    A safety valve is disclosed which may be installed on an offshore wellhead above the tubing head and below the Christmas tree. The valve has a housing with upper and lower vertical passages and a lateral housing passage. A cylindrical gate is disposed within the lateral passage and includes a ''T'' shaped passage therein. The gate may be moved laterally and angularly within the lateral passage. During completion or workover of the well, the gate is moved laterally until the upper and lower vertical passages are in full open communication to run drills, hangers or other large diameter devices into the well via a BOP which may be attached to the top of the housing. During normal production, the gate may be laterally moved into the intersection of the vertical and lateral passages and the small through head part of the ''T'' passage serves to provide a vertical flow path through the production bore which is sealed off from the larger upper and lower vertical passages. Flow through side outlets in the housing is possible through the base of the ''T'' passage. The gate may be angularly moved to have production to the lateral outlets via the head part of the ''T'' when the base part of the ''T'' is aligned with production tubing. Should the need arise, the valve may be angularly rotated to a position where the fluid flow path of the production tubing is completely shut in.

  15. Electron emitter pulsed-type cylindrical IEC

    SciTech Connect

    Miley, G.H.; Gu, Y.; Stubbers, R.; Zich, R.; Sved, J.; Anderl, R.; Hartwell, J.

    1997-12-31

    A cylindrical version of the single grid Inertial Electrostatic Confinement (IEC) device (termed the C-device) has been developed for use as a 2.5-MeV D-D fusion neutron source for neutron activation analysis. The C-device employs a hollow-tube type cathode with similar anodes backed up by ``reflector`` dishes. The resulting discharge differs from a conventional hollow cathode discharge, by creating an explicit ion beam which is ``pinched`` in the cathode region. Resulting fusion reactions generate {approximately}10{sup 6} neutron/s. A pulsed version is under development for applications requiring higher fluxes. Several pulsing techniques are under study, including an electron emitter (e-emitter) assisted discharge in a thorated tungsten wire emitter located behind a slotted area in the reflector dishes. Pulsing is initiated after establishing a low power steady-state discharge by pulsing the e-emitter current using a capacitor switch type circuit. The resulting electron jet, coupled with the discharge by the biased slot array, creates a strong pulse in the pinched ion beam. The pulse length/repetition rate are controlled by the e-emitter pulse circuit. Typical parameters in present studies are {approximately}30{micro}s, 10Hz and 1-amp ion current. Corresponding neutron measurements are an In-foil type activation counter for time averaged rates. Results for a wide variety of operating conditions are presented.

  16. Cognitive Preferences and Ethnicity.

    ERIC Educational Resources Information Center

    O'Donnell, William J.; O'Donnell, Teresa Flores

    This document reports on a study into the relationships between cognitive preferences, achievement, and ethnicity of first year algebra students. The sample consisted of 175 students from two high schools in the Denver (Colorado) metropolitan area. The two schools were chosen because of the diversity of ethnic groups in the student populations.…

  17. Plasmonic Bloch oscillations in cylindrical metal-dielectric waveguide arrays.

    PubMed

    Shiu, Ruei-Cheng; Lan, Yung-Chiang; Chen, Chin-Min

    2010-12-01

    This study investigates plasmonic Bloch oscillations (PBOs) in cylindrical metal-dielectric waveguide arrays (MDWAs) by performing numerical simulations and theoretical analyses. Optical conformal mapping is used to transform cylindrical MDWAs into equivalent chirped structures with permittivity and permeability gradients across the waveguide arrays, which is caused by the curvature of the cylindrical waveguide. The PBOs are attributed to the transformed structure. The period of oscillation increases with the wavelength of the incident Gaussian beam. However, the amplitude of oscillation is almost independent of wavelength.

  18. Limit of concentration for cylindrical concentrators under extended light sources.

    PubMed

    Miñano, J C; Luque, A

    1983-08-15

    Cylindrical concentrators illuminated by an extended source with an arbitrary distribution of radiance are analyzed taking into account basic properties derived from the Fermat principle and not from the specific concentrator shape. The upper limit of concentration achievable with this type of concentrator is obtained and it is found to be lower than that of general (3-D) concentrators. Cylindrical compound parabolic concentrators are analyzed in the light of this theory, and it is shown that they achieve the highest optical concentration possible for a cylindrical concentrator. PMID:18196152

  19. Cylindrical array luminescent solar concentrators: performance boosts by geometric effects.

    PubMed

    Videira, Jose J H; Bilotti, Emiliano; Chatten, Amanda J

    2016-07-11

    This paper presents an investigation of the geometric effects within a cylindrical array luminescent solar concentrator (LSC). Photon concentration of a cylindrical LSC increases linearly with cylinder length up to 2 metres. Raytrace modelling on the shading effects of circles on their neighbours demonstrates effective incident light trapping in a cylindrical LSC array at angles of incidence between 60-70 degrees. Raytrace modelling with real-world lighting conditions shows optical efficiency boosts when the suns angle of incidence is within this angle range. On certain days, 2 separate times of peak optical efficiency can be attained over the course of sunrise-solar noon. PMID:27410904

  20. Cylindrically symmetric Einstein-Yang-Mills-Higgs gauge configurations.

    NASA Astrophysics Data System (ADS)

    Mondaini, R. P.

    1985-02-01

    Two solutions are obtained for coupled Einstein-Yang-Mills-Higgs fields with cylindrical symmetry and rigid rotation. The Higgs fields are responsible for the creation of singularities and infinite energy densities at the cylinder's axis.

  1. Numerical analysis of cocurrent conical and cylindrical axial cyclone separators

    NASA Astrophysics Data System (ADS)

    Nor, M. A. M.; Al-Kayiem, H. H.; Lemma, T. A.

    2015-12-01

    Axial concurrent liquid-liquid separator is seen as an alternative unit to the traditional tangential counter current cyclone due to lower droplet break ups, turbulence and pressure drop. This paper presents the numerical analysis of a new conical axial cocurrent design along with a comparison to the cylindrical axial cocurrent type. The simulation was carried out using CFD technique in ANSYS-FLUENT software. The simulation results were validated by comparison with experimental data from literature, and mesh independency and quality were performed. The analysis indicates that the conical version achieves better separation performance compared to the cylindrical type. Simulation results indicate tangential velocity with 8% higher and axial velocity with 80% lower recirculation compared to the cylindrical type. Also, the flow visualization counters shows smaller recirculation region relative to the cylindrical unit. The proposed conical design seems more efficient and suits the crude/water separation in O&G industry.

  2. Cylindrical deformity of the nail plate secondary to subungual myxoma.

    PubMed

    Gourdin, F W; Lang, P G

    1996-11-01

    Digital myxomas are rare neoplasms. We describe a subungual myxoma arising in a previously unreported location, the nail matrix. This produced an interesting cylindrical deformity of the nail. Complete surgical excision is usually curative. PMID:8912602

  3. 16. DETAIL OF SOUTH ABUTMENT, SHOWING GIRDER, CYLINDRICAL FIXED BEARING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL OF SOUTH ABUTMENT, SHOWING GIRDER, CYLINDRICAL FIXED BEARING SHOE AND LATERAL BRACING. VIEW TO SOUTHWEST. - Rio Puerco Bridge, Mainline Road, spanning Rio Puerco, Holbrook, Navajo County, AZ

  4. dc electrokinetic transport of cylindrical cells in straight microchannels

    PubMed Central

    Ai, Ye; Beskok, Ali; Gauthier, David T.; Joo, Sang W.; Qian, Shizhi

    2009-01-01

    Electrokinetic transport of cylindrical cells under dc electric fields in a straight microfluidic channel is experimentally and numerically investigated with emphasis on the dielectrophoretic (DEP) effect on their orientation variations. A two-dimensional multiphysics model, composed of the Navier–Stokes equations for the fluid flow and the Laplace equation for the electric potential defined in an arbitrary Lagrangian–Eulerian framework, is employed to capture the transient electrokinetic motion of cylindrical cells. The numerical predictions of the particle transport are in quantitative agreement with the obtained experimental results, suggesting that the DEP effect should be taken into account to study the electrokinetic transport of cylindrical particles even in a straight microchannel with uniform cross-sectional area. A comprehensive parametric study indicates that cylindrical particles would experience an oscillatory motion under low electric fields. However, they are aligned with their longest axis parallel to the imposed electric field under high electric fields due to the induced DEP effect. PMID:20216972

  5. 108. Cylindrical chamber where gas exits stove to below ground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    108. Cylindrical chamber where gas exits stove to below ground flue that leads to stack. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  6. Laser differential confocal radius measurement method for the cylindrical surfaces.

    PubMed

    Qiu, Lirong; Xiao, Yang; Zhao, Weiqian

    2016-05-30

    This paper proposes a laser differential confocal cylindrical radius of curvature measurement (DCCRM) method for high accuracy measurement of the radius of curvature of the cylindrical lens. Based on the property that the null point of an axial intensity curve precisely corresponds to the focus of the objective in a differential confocal system (DCS), the DCCRM uses the null point of the DCS axial intensity curve to precisely identify the cat's eye position and confocal position of the test cylindrical lens. The distance between the two positions is measured accurately using a laser distance instrument, thus achieving high precision radius measurement. In comparison with existing measurement methods, the proposed DCCRM has high measurement precision and strong environmental anti-interference capability. Theoretical analyses and preliminary experimental results indicate that the DCCRM has a relative measurement uncertainty of better than 0.03% and provides a new approach for a high precision radius measurement of the cylindrical lens.

  7. Drag coefficient and settling velocity for particles of cylindrical shape

    SciTech Connect

    Gabitto, Jorge; Tsouris, Costas

    2008-01-01

    Solid particles of cylindrical shape play a significant role in many separations processes. Explicit equations for the drag coefficient and the terminal velocity of free-falling cylindrical particles have been developed in this work. The developed equations are based on available experimental data for falling cylindrical particles in all flow regimes. The aspect ratio (i.e., length-over-diameter ratio) has been used to account for the particle shape. Comparisons with correlations proposed by other researchers using different parameters to account for the geometry are presented. Good agreement is found for small aspect ratios, and increasing differences appear when the aspect ratio increases. The aspect ratio of cylindrical particles satisfactorily accounts for the geometrical influence on fluid flow of settling particles.

  8. Theory and modeling of cylindrical thermo-acoustic transduction

    NASA Astrophysics Data System (ADS)

    Tong, Lihong; Lim, C. W.; Zhao, Xiushao; Geng, Daxing

    2016-06-01

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media.

  9. 109. Detail view of structural frame supporting torch arm; cylindrical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    109. Detail view of structural frame supporting torch arm; cylindrical object in foreground is part of ventilating system. February 1984. - Statue of Liberty, Liberty Island, Manhattan, New York County, NY

  10. Multianode cylindrical proportional counter for high count rates

    DOEpatents

    Hanson, J.A.; Kopp, M.K.

    1980-05-23

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (< 60 keV) at count rates of greater than 10/sup 5/ counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  11. Multianode cylindrical proportional counter for high count rates

    DOEpatents

    Hanson, James A.; Kopp, Manfred K.

    1981-01-01

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (<60 keV) at count rates of greater than 10.sup.5 counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  12. Preferences, needs and QALYs.

    PubMed

    Cohen, J

    1996-10-01

    Quality Adjusted Life Years (QALYs) have become a household word among health economists. Their use as a means of comparing the value of health programmes and medical interventions has stirred up controversy in the medical profession and the academic community. In this paper, I argue that QALY analysis does not adequately take into account the differentiated nature of the health state values it measures. Specifically, it does not distinguish between needs and preferences with respect to its valuation of health states. I defend the view that needs and preferences are clearly distinguishable, and that the concept of needs cannot be dispensed with, as many health economists suggest. It is argued that the scale along which health states are measured in QALY analysis is not a continuous interval scale, but one which concerns two distinctly different value dimensions. Measuring the values of health state intervals may reveal the weighting attached to the different value dimensions. PMID:8910777

  13. Interfacial slip friction at a fluid-solid cylindrical boundary.

    PubMed

    Kannam, Sridhar Kumar; Todd, B D; Hansen, J S; Daivis, Peter J

    2012-06-28

    Recently we proposed a method to calculate the interfacial friction coefficient between fluid and solid at a planar interface. In this work we extend the method to cylindrical systems where the friction coefficient is curvature dependent. We apply the method to methane flow in carbon nanotubes, and find good agreement with non-equilibrium molecular dynamics simulations. The proposed method is robust, general, and can be used to predict the slip for cylindrical nanofluidic systems.

  14. On cylindrically converging shock waves shaped by obstacles

    SciTech Connect

    Eliasson, V; Henshaw, W D; Appelo, D

    2007-07-16

    Motivated by recent experiments, numerical simulations were performed of cylindrically converging shock waves. The converging shocks impinged upon a set of zero to sixteen regularly space obstacles. For more than two obstacles the resulting diffracted shock fronts formed polygonal shaped patterns near the point of focus. The maximum pressure and temperature as a function of number of obstacles were studied. The self-similar behavior of cylindrical, triangular and square-shaped shocks were also investigated.

  15. Cylindrical bubbles and blobs from a Class II Hydrophobin

    NASA Astrophysics Data System (ADS)

    Russo, Paul; Pham, Michael; Blalock, Brad

    2012-02-01

    Cerato ulmin is a class II hydrophobin. In aqueous suspensions, it easily forms cylindrical air bubbles and cylindrical oil blobs. The conditions for formation of these unusual structures will be discussed, along with scattering and microscopic investigations of their remarkable stability. Possible applications in diverse fields including polymer synthesis and oil spill remediation will be considered. Acknowledgment is made to Dr. Wayne C. Richards of the Canadian Forest Service for the gift of Cerato ulmin.

  16. Extrusion printing for fabrication of spherical and cylindrical microlens arrays.

    PubMed

    Xing, Jiyao; Rong, Weibin; Sun, Ding; Wang, Lefeng; Sun, Lining

    2016-09-01

    In this paper, we present an extrusion printing technique for producing spherical and cylindrical plano-convex microlens arrays with controllable feature dimensions. This technique employs a robotic adhesive dispenser for robotically controlled microextrusion of ultraviolet (UV) curable polymer onto a glass substrate surface to directly deposit the microlens arrays. It provides a simple and flexible alternative to fabricate both spherical and cylindrical microlens arrays. PMID:27607269

  17. Clay Mineral Preferred Orientation

    NASA Astrophysics Data System (ADS)

    Day-Stirrat, R. J.

    2014-12-01

    Anisotropy of the orientation of clay minerals, often referred to as texture, may be unique to sediments' deposition, composition, deformation or diagenetic history. The literature is rich with studies that include preferred orientation generation in fault gouge, low-grade metamorphic rocks, sediments with variable clay content and during the smectite-to-illite transformation. Untangling the interplay between many competing factors in any one geologic situation has proven a significant challenge over many years. Understanding how, where and when clay minerals develop a preferred orientation has significant implications for permeability anisotropy in shallow burial, the way mechanical properties are projected from shallower to deeper settings in basin modeling packages and the way velocity anisotropy is accounted for in seismic data processing. The assessment of the anisotropic properties of fine-grained siliciclastic rocks is gaining significant momentum in rock physics research. Therefore, a fundamental understanding of how clay minerals develop a preferred orientation in space and time is crucial to the understanding of anisotropy of physical properties. The current study brings together a wealth of data that may be used in a predictive sense to account for fabric anisotropy that may impact any number of rock properties.

  18. Coaching preferences of athletes.

    PubMed

    Terry, P C; Howe, B L

    1984-12-01

    The study examined the coaching preferences of 80 male and 80 female athletes, as measured by the Leadership Scale for Sports (Chelladurai and Saleh, 1978, 1980). In addition, it attempted to assess the applicability to sport of the Life-cycle and Path-goal theories of leadership. Comparisons between groups were made on the basis of sex, age, and type of sport. A MANOVA indicated that athletes in independent sports preferred more democratic behaviour (p less than .001) and less autocratic behaviour (p = .028) than athletes in interdependent sports. No differences in coaching preferences were found which could be attributed to the age or sex of the athlete, or the variability of the sports task. These results partially supported the Path-goal theory, but did not support the Life-cycle theory. Athletes of all groups tended to favour coaches who displayed training behaviour and rewarding behaviour "often", democratic behaviour and social support behaviour "occasionally", and autocratic behaviour "seldom". This consistency may be a useful finding for those organizations and institutions interested in preparing coaches.

  19. Developing a reversible rapid coordinate transformation model for the cylindrical projection

    NASA Astrophysics Data System (ADS)

    Ye, Si-jing; Yan, Tai-lai; Yue, Yan-li; Lin, Wei-yan; Li, Lin; Yao, Xiao-chuang; Mu, Qin-yun; Li, Yong-qin; Zhu, De-hai

    2016-04-01

    Numerical models are widely used for coordinate transformations. However, in most numerical models, polynomials are generated to approximate "true" geographic coordinates or plane coordinates, and one polynomial is hard to make simultaneously appropriate for both forward and inverse transformations. As there is a transformation rule between geographic coordinates and plane coordinates, how accurate and efficient is the calculation of the coordinate transformation if we construct polynomials to approximate the transformation rule instead of "true" coordinates? In addition, is it preferable to compare models using such polynomials with traditional numerical models with even higher exponents? Focusing on cylindrical projection, this paper reports on a grid-based rapid numerical transformation model - a linear rule approximation model (LRA-model) that constructs linear polynomials to approximate the transformation rule and uses a graticule to alleviate error propagation. Our experiments on cylindrical projection transformation between the WGS 84 Geographic Coordinate System (EPSG 4326) and the WGS 84 UTM ZONE 50N Plane Coordinate System (EPSG 32650) with simulated data demonstrate that the LRA-model exhibits high efficiency, high accuracy, and high stability; is simple and easy to use for both forward and inverse transformations; and can be applied to the transformation of a large amount of data with a requirement of high calculation efficiency. Furthermore, the LRA-model exhibits advantages in terms of calculation efficiency, accuracy and stability for coordinate transformations, compared to the widely used hyperbolic transformation model.

  20. Asymmetric Bulkheads for Cylindrical Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Ford, Donald B.

    2007-01-01

    Asymmetric bulkheads are proposed for the ends of vertically oriented cylindrical pressure vessels. These bulkheads, which would feature both convex and concave contours, would offer advantages over purely convex, purely concave, and flat bulkheads (see figure). Intended originally to be applied to large tanks that hold propellant liquids for launching spacecraft, the asymmetric-bulkhead concept may also be attractive for terrestrial pressure vessels for which there are requirements to maximize volumetric and mass efficiencies. A description of the relative advantages and disadvantages of prior symmetric bulkhead configurations is prerequisite to understanding the advantages of the proposed asymmetric configuration: In order to obtain adequate strength, flat bulkheads must be made thicker, relative to concave and convex bulkheads; the difference in thickness is such that, other things being equal, pressure vessels with flat bulkheads must be made heavier than ones with concave or convex bulkheads. Convex bulkhead designs increase overall tank lengths, thereby necessitating additional supporting structure for keeping tanks vertical. Concave bulkhead configurations increase tank lengths and detract from volumetric efficiency, even though they do not necessitate additional supporting structure. The shape of a bulkhead affects the proportion of residual fluid in a tank that is, the portion of fluid that unavoidably remains in the tank during outflow and hence cannot be used. In this regard, a flat bulkhead is disadvantageous in two respects: (1) It lacks a single low point for optimum placement of an outlet and (2) a vortex that forms at the outlet during outflow prevents a relatively large amount of fluid from leaving the tank. A concave bulkhead also lacks a single low point for optimum placement of an outlet. Like purely concave and purely convex bulkhead configurations, the proposed asymmetric bulkhead configurations would be more mass-efficient than is the flat

  1. Cognitive Preference and Student Performance.

    ERIC Educational Resources Information Center

    McDaniel, Ernest D.; Barnes, Shelba

    As early as 1964, cognitive preference was introduced as a way of describing an individual's preference for applying, relating or questioning information. To determine the role of cognitive preference in the pattern of variables predicting teachers' ratings of students' performance, 44 high school students completed a 61-item cognitive preference…

  2. Cognitive Preferences: A Validation Study.

    ERIC Educational Resources Information Center

    Van den Berg, Euwe, Ed.; And Others

    1978-01-01

    This study successfully replicated and extended previous research on cognitive preferences of talented high school students, using the Science Cognitive Preference Inventory (SCPI). Four modes of cognitive preference were interpreted: (1) factual information or recall; (2) principles; (3) questioning; and (4) practical applications. (CP)

  3. The Speed of Axial Propagation of a Cylindrical Bubble Through a Cylindrical Vortex

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    Inspired by the rapid elongation of air columns injected into vortices by dolphins, we present an exact inviscid solution for the axial speed (assumed steady) of propagation of the tip of a semi-infinite cylindrical bubble along the axis of a cylindrical vortex. The bubble is assumed to be held at constant pressure by being connected to a reservoir, the lungs of the dolphin, say. For a given bubble pressure, there is a modest critical rotation rate above which steadily propagating bubbles exist. For a bubble at ambient pressure, the propagation speed of the bubble (relative to axial velocity within the vortex) varies between 0.5 and 0.6 of the maximum rotational speed of the vortex. Surprisingly, the bubble tip can propagate (almost as rapidly) even when the pressure minimum in the vortex core is greater than the bubble pressure; in this case, solutions exhibit a dimple on the nose of the bubble. A situation important for incipient vortex cavitation, and one which dolphins also demonstrate, is elongation of a free bubble, i.e., one whose internal pressure may vary. Under the assumption that the acceleration term is small (checked a posteriori), the steady solution is applied at each instant during the elongation. Three types of behavior are then possible depending on physical parameters and initial conditions: (A) Unabated elongation with slowly increasing bubble pressure, and nearly constant volume. Volume begins to decrease in the late stages. (B1) Elongation with decreasing bubble pressure. A limit point of the steady solution is encountered at a finite bubble length. (B2) Unabated elongation with decreasing bubble pressure and indefinite creation of volume. This is made possible by the existence of propagating solutions at bubble pressures below the minimum vortex pressure. As the bubble stretches, its radius initially decreases but then becomes constant; this is also observed in experiments on incipient vortex cavitation.

  4. Monolithic Cylindrical Fused Silica Resonators with High Q Factors.

    PubMed

    Pan, Yao; Wang, Dongya; Wang, Yanyan; Liu, Jianping; Wu, Suyong; Qu, Tianliang; Yang, Kaiyong; Luo, Hui

    2016-01-01

    The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is determined by the Q factor and frequency mismatch of the cylindrical resonator. Enhancing the Q factor is crucial for improving the rate sensitivity and noise performance of the CRG. In this paper, for the first time, a monolithic cylindrical fused silica resonator with a Q factor approaching 8 × 10⁵ (ring-down time over 1 min) is reported. The resonator is made of fused silica with low internal friction and high isotropy, with a diameter of 25 mm and a center frequency of 3974.35 Hz. The structure of the resonator is first briefly introduced, and then the experimental non-contact characterization method is presented. In addition, the post-fabrication experimental procedure of Q factor improvement, including chemical and thermal treatment, is demonstrated. The Q factor improvement by both treatments is compared and the primary loss mechanism is analyzed. To the best of our knowledge, the work presented in this paper represents the highest reported Q factor for a cylindrical resonator. The proposed monolithic cylindrical fused silica resonator may enable high performance inertial sensing with standard manufacturing process and simple post-fabrication treatment. PMID:27483263

  5. Elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide.

    PubMed

    Zhang, Li; Xiong, Qiulin; Li, Xiaopeng; Ma, Junxian

    2015-08-10

    We researched an elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide and evaluated its mode characteristics using the finite element method software COMSOL. The waveguide consists of three parts: an elliptic cylindrical silicon nanowire, a silver film layer, and a silica covering layer between them. All of the components are surrounded by air. After optimizing the geometrical parameters of the waveguide, we can achieve the waveguide's strong field confinement (ranging from λ2/270 to λ2/27) and long propagation distances (119-485 μm). In order to further understand the impact of the waveguide's architecture on its performance, we also studied the ridge hybrid waveguide. The results show that the ridge waveguide has moderate local field confinement ranging from λ2/190 to λ2/20 and its maximum propagation distance is about 340 μm. We compared the elliptic cylindrical and ridge nanowire hybrid waveguides with the cylindrical hybrid waveguide that we studied before. The elliptic cylindrical waveguide achieves a better trade-off between reasonable mode confinement and maximum propagation length in the three waveguides. The researched hybrid surface plasmon polaritons waveguides are useful to construct devices such as a directional coupler and may find potential applications in photonic integrated circuits or other novel SPP devices.

  6. Adhesive contact of cylindrical lens and a flat sheet

    NASA Astrophysics Data System (ADS)

    Chaudhury, Manoj K.; Weaver, Timothy; Hui, C. Y.; Kramer, E. J.

    1996-07-01

    Methods are developed to estimate the adhesion and surface free energies of compliant materials from the contact deformations of cylindrical lenses with flat sheets. Some important differences are found between the cylindrical contact studied here and the widely studied geometry of spherical contact. For example, while the pull-off force is completely independent of the elastic constants (K) of the materials for spherical contacts, the pull-off force for cylindrical contact is proportional to K1/3. Furthermore, for cylindrical contacts the contact width at separation reaches to a value of 39% of the width (a0) at zero load, whereas the corresponding value is 0.63a0 for spherical contact. The feasibility of using cylindrical contacts to estimate the surface and adhesive energies of polymers was investigated using elastomeric polydimethylsiloxane (PDMS) as a model system. PDMS was used in two ways: (1) unmodified and (2) with its surface hydrolyzed with dilute hydrochloric acid. Significant hysteresis of adhesion was observed with the hydrolyzed PDMS surfaces due to H-bonding interactions, which appeared to depend on normal stress.

  7. Elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide.

    PubMed

    Zhang, Li; Xiong, Qiulin; Li, Xiaopeng; Ma, Junxian

    2015-08-10

    We researched an elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide and evaluated its mode characteristics using the finite element method software COMSOL. The waveguide consists of three parts: an elliptic cylindrical silicon nanowire, a silver film layer, and a silica covering layer between them. All of the components are surrounded by air. After optimizing the geometrical parameters of the waveguide, we can achieve the waveguide's strong field confinement (ranging from λ2/270 to λ2/27) and long propagation distances (119-485 μm). In order to further understand the impact of the waveguide's architecture on its performance, we also studied the ridge hybrid waveguide. The results show that the ridge waveguide has moderate local field confinement ranging from λ2/190 to λ2/20 and its maximum propagation distance is about 340 μm. We compared the elliptic cylindrical and ridge nanowire hybrid waveguides with the cylindrical hybrid waveguide that we studied before. The elliptic cylindrical waveguide achieves a better trade-off between reasonable mode confinement and maximum propagation length in the three waveguides. The researched hybrid surface plasmon polaritons waveguides are useful to construct devices such as a directional coupler and may find potential applications in photonic integrated circuits or other novel SPP devices. PMID:26368373

  8. Monolithic Cylindrical Fused Silica Resonators with High Q Factors

    PubMed Central

    Pan, Yao; Wang, Dongya; Wang, Yanyan; Liu, Jianping; Wu, Suyong; Qu, Tianliang; Yang, Kaiyong; Luo, Hui

    2016-01-01

    The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is determined by the Q factor and frequency mismatch of the cylindrical resonator. Enhancing the Q factor is crucial for improving the rate sensitivity and noise performance of the CRG. In this paper, for the first time, a monolithic cylindrical fused silica resonator with a Q factor approaching 8 × 105 (ring-down time over 1 min) is reported. The resonator is made of fused silica with low internal friction and high isotropy, with a diameter of 25 mm and a center frequency of 3974.35 Hz. The structure of the resonator is first briefly introduced, and then the experimental non-contact characterization method is presented. In addition, the post-fabrication experimental procedure of Q factor improvement, including chemical and thermal treatment, is demonstrated. The Q factor improvement by both treatments is compared and the primary loss mechanism is analyzed. To the best of our knowledge, the work presented in this paper represents the highest reported Q factor for a cylindrical resonator. The proposed monolithic cylindrical fused silica resonator may enable high performance inertial sensing with standard manufacturing process and simple post-fabrication treatment. PMID:27483263

  9. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames

    SciTech Connect

    Burke, Michael P.; Chen, Zheng; Ju, Yiguang; Dryer, Frederick L.

    2009-04-15

    elevated pressures. Flow-corrected flame speeds in the small cylindrical chamber used here agree well with previously reported flame speeds from large spherical chambers. Previous papers presenting burning velocities from cylindrical chambers report performing data analysis on flame radii less than 0.5 or 0.6 times the wall radius, where the flame speed calculated neglecting confinement effects may be low by {proportional_to}15 or 20%, respectively. For cylindrical chambers, data analysis should be restricted to flame radii less than 0.3 times the wall radius or a flow correction should be employed to account for the burned gas motions. With regard to the design of future vessels, larger vessels that minimize the flow aberrations for the same flame radius are preferred. Larger vessels maximize the relatively unaffected region of data allowing for a more straightforward approach to interpret the experimental data. (author)

  10. Resonance in cylindrical-rectangular and wraparound microstrip structures

    NASA Technical Reports Server (NTRS)

    Ali, Sami M.; Kong, Jin AU; Habashy, Tarek M.; Kiang, Jean-Fu

    1989-01-01

    A rigorous analysis of the resonance frequency problem of both the cylindrical-rectangular and the wraparound microstrip structure is presented. The problem is formulated in terms of a set of vector integral equations. Using Galerkin's method to solve the integral equations, the complex resonance frequencies are studied with sinusoidal basis functions which incorporate the edge singularity. The complex resonance frequencies are computed using a perturbation approach. Modes suitable for resonator or antenna applications are investigated. The edge singularity of the patch current is shown to have no significant effect on the accuracy of the results. It is shown that the HE10 modes of the cylindrical-rectangular and wraparound patches are more appropriate for resonator applications. The HE01 and TE01 modes of the cylindrical-rectangular and wraparound patches, respectively, are efficient radiating modes.

  11. Sound generation by flow over relatively deep cylindrical cavities

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Cho, Y. I.; Back, L. H.

    1985-01-01

    To develop a system for acoustic coding of moving objects containing drilled cylindrical cavities, the production of high-intensity tones by deep cylindrical cavities in a flat surface at low (0.12-0.24) Mach numbers was investigated. The sound intensity and frequency have been determined as functions of flow velocity, diameter, and depth of the cavities. It is shown that whistles can be designed for a given frequency (in the range of 5-17 kHz) and flow, and the sound pressure levels can be calculated by the equations given. Using these equations a whistle producing 106 dB at a 30.5-cm distance from a cylindrical cavity of 0.508 cm in diameter and 1.32 cm in depth with an airflow of 57.7 m/s past the cavity was designed.

  12. Rotating cylindrical magnetron sputtering: Simulation of the reactive process

    SciTech Connect

    Depla, D.; Mahieu, S.; Van Aeken, K.; Leroy, W. P.; Haemers, J.; De Gryse, R.; Li, X. Y.; Bogaerts, A.

    2010-06-15

    A rotating cylindrical magnetron consists of a cylindrical tube, functioning as the cathode, which rotates around a stationary magnet assembly. In stationary mode, the cylindrical magnetron behaves similar to a planar magnetron with respect to the influence of reactive gas addition to the plasma. However, the transition from metallic mode to poisoned mode and vice versa depends on the rotation speed. An existing model has been modified to simulate the influence of target rotation on the well known hysteresis behavior during reactive magnetron sputtering. The model shows that the existing poisoning mechanisms, i.e., chemisorption, direct reactive ion implantation and knock on implantation, are insufficient to describe the poisoning behavior of the rotating target. A better description of the process is only possible by including the deposition of sputtered material on the target.

  13. Experiments of cylindrical isentropic compression by ultrahigh magnetic field

    NASA Astrophysics Data System (ADS)

    Gu, Zhuowei; Zhou, Zhongyu; Zhang, Chunbo; Tang, Xiaosong; Tong, Yanjin; Zhao, Jianheng; Sun, Chengwei

    2015-09-01

    The high Explosive Magnetic Flux Implosion Compression Generator (EMFICG) is a kind of unique high energy density dynamic technique with characters like ultrahigh pressure and low temperature rising and could be suitable as a tool of cylindrical isentropic compression. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) have developed EMFICG technique and realized cylindrical isentropic compression. In the experiments, a seed magnetic field of 5-6 Tesla were built first and compressed by a stainless steel liner which is driven by high explosive. The inner free surface velocity of sample was measured by PDV. The isentropic compression of a copper sample was verified and the isentropic pressure is over 100 GPa. The cylindrical isentropic compression process has been numerical simulated by 1D MHD code and the simulation results were compared with the experiments. Compared with the transitional X-ray flash radiograph measurement, this method will probably promote the data accuracy.

  14. Radiation and scattering from printed antennas on cylindrically conformal platforms

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.; Bindiganavale, Sunil

    1994-01-01

    The goal was to develop suitable methods and software for the analysis of antennas on cylindrical coated and uncoated platforms. Specifically, the finite element boundary integral and finite element ABC methods were employed successfully and associated software were developed for the analysis and design of wraparound and discrete cavity-backed arrays situated on cylindrical platforms. This work led to the successful implementation of analysis software for such antennas. Developments which played a role in this respect are the efficient implementation of the 3D Green's function for a metallic cylinder, the incorporation of the fast Fourier transform in computing the matrix-vector products executed in the solver of the finite element-boundary integral system, and the development of a new absorbing boundary condition for terminating the finite element mesh on cylindrical surfaces.

  15. Determination of thermal diffusivities of cylindrical bodies being cooled

    SciTech Connect

    Dincer, I.

    1996-09-01

    This paper deals with the development of an analytical model for determining the thermal diffusivities of the individual solid cylindrical bodies subjected to cooling is presented. Applications of this model were made using the experimental center temperature data obtained from the cylindrical products (e.g., cucumber and grape) during air cooling at the flow velocity of 2 m/s. As an experimental result, the thermal diffusivities of products were found to be 1.45{times}10{sup {minus}7} m{sup 2}/s for cucumber and 1.68{times}10{sup {minus}7} m{sup 2}/s for grape. It can be concluded that the present model is capable of determining the thermal diffusivities of cylindrical bodies during cooling in a simple and effective form.

  16. Sex preferences in Turkey.

    PubMed

    Unalan, T

    1993-01-01

    The analysis of data from the 1988 Turkish Population and Health Survey showed an overall sex ratio of 103 males per 100 females. The sex ratio was 125 for women with one child and 95 for women with 5 or more children. The sex ratio was 119 for the last child and 94 for all children. The sex ratio was 74 for women desiring another child and 108 for women wanting no more children. The sex ratio was high for women who wanted to stop childbearing after the first birth. The implication was that women were willing to stop or delay childbearing after a son's first birth. 33% of women had no sex preference for their next child, among those women desiring an additional child. 41.9% desired a boy and 25.0% desired a girl in 1978; in 1988, 38.8% desired a boy and 29.2% desired a girl. Those answering that future births were up to God declined from 7% in 1978 to 4% in 1988. Among women with 1 child, over 70% desired a child of the opposite sex. Almost 90% of women with no boy or girl wanted a child of that sex. 36.5% desired a boy if their first child was a boy and 6.8% desired a girl. If there were 2 sons, 87.5% desired a girl and 5.5% desired a boy. 59.7% desired a boy and a girl, and 12.1% desired 2 boys and 1 girl. Almost 10% desired no children. There was a stronger desire for sons, particularly among those desiring only 1 child. The sex ratio was 112 for women without children but desiring children. In the absence of sex preference, 3.5% more would desire no more children and contraceptive use would increase by 1.8%.

  17. Gamma-ray bursts: afterglows from cylindrical jets

    NASA Astrophysics Data System (ADS)

    Cheng, K. S.; Huang, Y. F.; Lu, T.

    2001-08-01

    Nearly all previous discussions on beaming effects in gamma-ray bursts (GRBs) have assumed a conical geometry. However, more and more observations on relativistic jets in radio galaxies, active galactic nuclei, and `microquasars' in the Galaxy have shown that many of these outflows are not conical, but cylindrical, i.e. they maintain constant cross-sections at large scales. Thus it is necessary to discuss the possibility of gamma-ray bursts being due to highly collimated cylindrical jets, not conical ones. Here we study the dynamical evolution of cylindrical jets and discuss their afterglows. Both analytical and numerical results are presented. It is shown that when the lateral expansion is not taken into account, a cylindrical jet typically remains highly relativistic for ~108-109s. During this relativistic phase, the optical afterglow at first decays as Sν~t-p/2, where p is the index characterizing the power-law energy distribution of electrons. Then the light curve steepens to Sν~t-(p+1)/2 due to cooling of electrons. After entering the non-relativistic phase (i.e. t>=1011s), the afterglow is Sν~t-(5p-4)/6. However, if the cylindrical jet expands laterally at the comoving sound speed, then the decay becomes Sν~t-p and Sν~t-(15p-21)/10-t-(15p-20)/10 in the ultrarelativistic and in the non-relativistic phase respectively. Note that in both cases the light curve turns flatter after the relativistic-Newtonian transition point, which differs markedly from the behaviour of a conical jet. It is suggested that some GRBs with afterglows decaying as t-1.1-t-1.3 may be due to cylindrical jets, not necessarily isotropic fireballs.

  18. Ultrasonic Characterization of the Biological Objects of Spherical or Cylindrical Shape Using an Acoustic Microscope

    NASA Astrophysics Data System (ADS)

    Maeva, A. R.; Bakulin, E. Yu.; Sinisac, A.; Bajic, N.; Denisova, L. A.; Severin, F. M.; Maev, R. Gr.; Khramtsova, E. A.

    The ability of an acoustic microscope in the investigation of biological objects with irregular surface, layered structure, different physical and acoustical properties has been estimated. Acoustic images and the results of tissue layers thickness measurements have been analyzed with 3 objects: extracted human tooth, cats' knee joint in vitro and human nail in vivo. It has been demonstrated, that unlike metal or polymeric samples the biological objects of a ball or cylindrical shape due to the fine surface irregularities can produce acoustic images of their internal structures, which are in a good correspondence with the real microanatomical parameters. Morphological resemblance of the biological objects shape in acoustical and optical images provides precise measuring of separate tissue layers in a noninvasive mode that can not be performed with any other method

  19. Centimeter to Decimeter Size Spherical and Cylindrical Features in Gale Crater Sediments

    NASA Technical Reports Server (NTRS)

    Wiens, R. C.; Maurice, S.; Gasnault, O.; Clegg, S.; Fabre, C.; Nachon, M.; Rubin, D.; Goetz, W.; Mangold, N.; Schroeder, S.; Rapin, W.; Milliken, R.; Fairen, A. G.; Oehler, D.; Forni, O.; Sautter, V.; Blaney, D.; Le Moulelic, S.; Anderson, R. B.; Cousin, A.; Vasavada, A.; Grotzinger, J.

    2015-01-01

    The Curiosity rover traverse in Gale crater has explored a large series of sedimentary deposits in an ancient lake on Mars. Over the nine kilometers of traverse a recurrent observation has been southward-dipping sedimentary strata, from Shaler at the edge of Yellowknife Bay to the striated units near the Kimberley. Within the sedimentary strata cm- to decimeter- size hollow spheroidal objects and some apparent cylindrical objects have been observed. These features have not been seen by previous landed missions. The first of these were observed on sol 122 in the Gillespie Lake member at Yellowknife Bay. Additional hollow features were observed in the Point Lake outcrop in the same area. More recently a spherical and apparently hollow object, Winnipesaukee, was observed by ChemCam and Mastcam on sol 653. Here we describe the settings, morphology, and associated compositions, and we discuss possible origins of these objects.

  20. Prefrontal mechanisms in preference and non-preference-based judgments.

    PubMed

    Foo, Jerome Clifford; Haji, Tomoki; Sakai, Katsuyuki

    2014-07-15

    When we decide between two options, we can make our decision based on what we prefer, (preference-based choice), or we can also choose based on which option we want to avoid more (non-preference-based choice). Most decision making research has examined preference-based choice but has not differentiated it from non-preference-based choice. The decision making process can be decomposed into multiple value-based computational processes, which are shown to be subserved by different regions in the prefrontal cortex (PFC). Here we show that the same decision circuits within the PFC are configured differently depending on whether decisions are made based on preference or non-preference criteria (decision rule). Activation in the dorsolateral PFC changed depending on both the values of the two choice options and decision rule. We also found that activation in the medial and lateral PFC was modulated linearly according to the difference in value between the two items and according to the value of the chosen item, respectively. In the medial and lateral PFC, there were distinct patterns of activation between dorsal and ventral regions: in dorsal regions value-related changes in activation were modulated by the decision rule, whereas in ventral regions activation patterns were not modulated. We propose that preference and non-preference decision rules represented in the dorsal PFC differently configure decision processes, resulting in context-specific significance being attached to the choice values represented in the ventral PFC.

  1. Parametric Investigations of Miniaturized Cylindrical and Annular Hall Thrusters

    SciTech Connect

    A. Smirnov; Y. Raitses; N.J. Fisch

    2001-10-16

    A cylindrical geometry Hall thruster may overcome certain physical and technological limitations in scaling down of Hall thrusters to miniature sizes. The absence of the inner wall and use of the cusp magnetic field can potentially reduce heating of the thruster parts and erosion of the channel. A 2.6 cm miniaturized Hall thruster of a flexible design was built and successfully operated in the power range of 50-300 W. Comparison of preliminary results obtained for cylindrical and annular thruster configurations is presented.

  2. Experiments on cylindrically converging blast waves in atmospheric air

    NASA Astrophysics Data System (ADS)

    Matsuo, Hideo; Nakamura, Yuichi

    1980-06-01

    Cylindrically converging blast waves have been produced in normal atmospheric conditions by the detonation of the explosives, pentaerythritoltetranitrate, (PETN), over cylindrical surfaces. The shocks generated in this way are so strong that the fronts propagating through the air become luminous of themselves. The production and the propagation of the shocks have been monitored with a framing camera and a streak camera, and the time-space relations of the shock propagations have been determined using an electrical ionization probing system. The results have shown that the trajectory of the shock fronts near the axis of the cylinder can be approximately represented by the Guderley's formula.

  3. Trapping of Microparticles in Cylindrical Standing Wave Fields

    NASA Astrophysics Data System (ADS)

    Yang, Jeongwon; Hwang, Haerang; Bae, Young Min; Kim, Moojoon; Ha, Kanglyeol

    2013-07-01

    In this study, in order to determine the positions where microparticles are trapped in a cylindrical standing wave field, we derived equations giving the radiation force and potential energy distribution. Then, the trapped pattern and its variation with time in a hollow cylindrical transducer were simulated. The simulation results showed that polystyrene particles moved to and aggregated near positions corresponding to pressure nodes, which were estimated from the derived equations. These were confirmed by measurement. In addition, it was demonstrated that biological particles of the green algae chlorella show similar trapping phenomena to polystyrene particles.

  4. The magnetic properties of the hollow cylindrical ideal remanence magnet

    NASA Astrophysics Data System (ADS)

    Bjørk, R.

    2016-10-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown to generate a field exactly twice as large as the equivalent ideal remanence magnet.

  5. Aerodynamic sound generation induced by flow over small, cylindrical cavities

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Cho, Y. I.; Back, L. H.

    1984-01-01

    An experimental investigation has been conducted on the production of high intensity tones by small cylindrical cavities in a flat surface. The application of such a mechanism is to the acoustic coding of moving objects containing drilled holes. The sound intensity and frequency have been determined as functions of flow velocity, diameter and depth of the cavities. As a practical matter, it is possible to produce a whistle producing 106 dB at 30.5 cm distance from a cylindrical hole of 0.5 cm diameter and 1.2 cm deep with an airflow of 60 m/s past the hole.

  6. Microwave guiding in air by a cylindrical filament array waveguide

    SciTech Connect

    Chateauneuf, M.; Dubois, J.; Payeur, S.; Kieffer, J.-C.

    2008-03-03

    Microwave guiding was demonstrated over 16 cm in air using a large diameter hollow plasma waveguide. The waveguide was generated with the 100 TW femtosecond laser system at the Advanced Laser Light Source facility. A deformable mirror was used to spatially shape the intense laser pulses in order to generate hundreds of filaments judiciously distributed in a cylindrical shape, creating a cylindrical plasma wall that acts as a microwave waveguide. The microwaves were confined for about 10 ns, which corresponds to the free electron plasma wall recombination time. The characteristics of the plasma waveguide and the results of microwave guiding are presented.

  7. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium.

    PubMed

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-01-01

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium.

  8. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium

    PubMed Central

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-01-01

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066

  9. Cylindrical diffuser axial detection profile is dependent on fiber design

    PubMed Central

    Baran, Timothy M.

    2015-01-01

    Abstract. The axial emission and detection profiles of 1- and 2-cm cylindrical diffusing fibers based on concentration gradients of scatterers were measured. Based on these measurements, we describe a method for determination of the scatterer concentration gradient within the diffusers. Using a Monte Carlo model incorporating these concentrations, detection was simulated and found to agree with measurements. The measured and simulated detection profiles for these diffusers were found to be drastically different from those previously measured in an alternative diffuser design incorporating an end reflector. When using cylindrical diffusers as detection fibers, it is, therefore, important to understand the design of the fiber and characterize the detection behavior. PMID:25839428

  10. The evanescent wavefield part of a cylindrical vector beam

    PubMed Central

    Chen, Rui-Pin; Li, Guoqiang

    2013-01-01

    The evanescent wave of the cylindrical vector field is analyzed using the vector angular spectrum of the electromagnetic beam. Comparison between the contributions of the TE and TM terms of both the propagating and the evanescent waves associated with the cylindrical vector field in free space is demonstrated. The physical pictures of the evanescent wave and the propagating wave are well illustrated from the vectorial structure, which provides a new approach to manipulating laser beams by choosing the states of polarization in the cross-section of the field. PMID:24104116

  11. Cylindrically symmetric distributions of matter taking into account pressure

    SciTech Connect

    Dandash, N.F.

    1986-06-01

    This paper considers a non-steady-state cosmological field for describing the distribution of matter with nonzero pressure; the assumption of cylindrical symmetry is taken into consideration. A new class of non-steady-state solutions to the Einstein equations is found. A homogeneous, anisotropic universe and an analog of the Schwarzschild solution are considered as particular cases. The obtained results can be used for describing cylindrical regions in the universe, especially in the vicinity of linear mass ejection from galaxies and quasars and linear super-large-scale structures.

  12. On the integrable elliptic cylindrical Kadomtsev-Petviashvili equation.

    PubMed

    Khusnutdinova, K R; Klein, C; Matveev, V B; Smirnov, A O

    2013-03-01

    There exist two versions of the Kadomtsev-Petviashvili (KP) equation, related to the Cartesian and cylindrical geometries of the waves. In this paper, we derive and study a new version, related to the elliptic cylindrical geometry. The derivation is given in the context of surface waves, but the derived equation is a universal integrable model applicable to generic weakly nonlinear weakly dispersive waves. We also show that there exist nontrivial transformations between all three versions of the KP equation associated with the physical problem formulation, and use them to obtain new classes of approximate solutions for water waves.

  13. Real-time wideband cylindrical holographic surveillance system

    DOEpatents

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.; Severtsen, Ronald H.

    1999-01-01

    A wideband holographic cylindrical surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply Fast Fourier Transforms and obtain a three dimensional cylindrical image.

  14. Real-time wideband cylindrical holographic surveillance system

    DOEpatents

    Sheen, D.M.; McMakin, D.L.; Hall, T.E.; Severtsen, R.H.

    1999-01-12

    A wideband holographic cylindrical surveillance system is disclosed including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply Fast Fourier Transforms and obtain a three dimensional cylindrical image. 13 figs.

  15. Music preferences and tobacco smoking.

    PubMed

    Posluszna, Joanna; Burtowy, Agnieszka; Palusinski, Robert

    2004-02-01

    This study investigated the association of music preferences with tobacco smoking in a group of 152 high school and college students. Both the questionnaire and the listening survey indicated a higher preference for music associated with anxiety and depressed mood among smokers. These findings may reflect a common etiology of tobacco addiction and a specific type of music preferences. To elucidate this phenomenon further studies are needed. PMID:15077771

  16. Eye preferences in captive chimpanzees.

    PubMed

    Braccini, Stephanie N; Lambeth, Susan P; Schapiro, Steven J; Fitch, W Tecumseh

    2012-09-01

    Over the last century, the issue of brain lateralization in primates has been extensively investigated and debated, yet no previous study has reported eye preference in great apes. This study examined eye preference in 45 captive chimpanzees (Pan troglodytes) in response to various stimuli. Eye preference was assessed when animals looked through a hole that only accommodated one eye at an empty box, a mirror, a picture of a dog, a rubber snake, food biscuits, bananas, a rubber duck, and a video camera. Main effects of stimulus type were found for direction of eye preference, number of looks, and looking duration, but not for strength of eye preference. A left-eye bias was found for viewing the rubber snake and a right-eye bias was found for viewing the bananas, supporting theories that emotional valence may affect lateralized behaviors. In addition, a significant shift in eye preference took place from the initial look to subsequent looks when viewing the snake. These results are not consistent with previous reports of human eye preference and may reflect lateralization differences for emotional processing. No relationship between eye preference and previously recorded hand preference was found. PMID:22733385

  17. Challenges in Fabrication of Mesoporous Carbon Films with Ordered Cylindrical Pores via Phenolic Oligomer Self-Assembly with Triblock Copolymers

    SciTech Connect

    Song, Lingyan; Feng, Dan; Fredin, Nathaniel J.; Yager, Kevin G.; Jones, Ronald L.; Wu, Quanyan; Zhao, Dongyuan; Vogt, Bryan D.

    2010-06-22

    Mesoporous phenol formaldehyde (PF) polymer resin and carbon films are prepared by a solution self-assembly of PF oligomers with amphiphilic triblock copolymers. After thermopolymerization of the PF to cross-link the network, the films show an ordered morphology as determined by X-ray diffraction and grazing incidence small-angle X-ray scattering (GISAXS). Our results show that the amphiphilic triblock copolymer template greatly influences the stability of the final porous mesostructures. The pyrolysis of the two-dimensional (2-D) hexagonal films with p6mm symmetry templated by Pluronic F127 yields a disordered porous structure following the template removal. Conversely, films templated by Pluronic P123 can exhibit well-ordered cylindrical pores after the template removal, but the solution composition range to yield ordered cylindrical mesopores is significantly reduced (nearly 70%) for thin films in comparison to bulk powders. We propose two dominant difficulties in fabricating well-ordered cylindrical mesopores in films: first, the stress from contraction during the pyrolysis can lead to a collapse of the mesostructure if the wall thickness is insufficient, and second, the surface wetting behavior in thin films leads to a small compositional range.

  18. Analysis of cylindrical Langmuir probe using experiment and different theories

    SciTech Connect

    Hassouba, M. A.; Galaly, A. R.; Rashed, U. M.

    2013-03-15

    Cylindrical probe data have been analyzed using different theories in order to determine some plasma parameters (electron temperature and electron and ion densities). Langmuir probe data are obtained in a cylindrical DC glow discharge in the positive column plasma at argon gas pressures varied from 0.5 to 6 Torr and at constant discharge current equal to 10 mA. The electron density has calculated from the electron current at the space potential and from Orbital Motion Limited (OML) collisionless theory. Ion density has obtained from the OML analysis of the ion saturation currents. In addition, the electron temperature has measured by three different methods using probe and electrons currents. The electron temperature T{sub e}, plasma density n{sub e}, and space potential V{sub s}, have been obtained from the measured single cylindrical probe I-V characteristic curves. The radial distribution of the electron temperature and plasma density along the glow discharge are measured and discussed. Using the collisionless theories by Langmuir cylindrical probe and up to several Torr argon gas pressures the differences between the values of electron temperature and electron and ion densities stay within reasonable error limits.

  19. Calibrated cylindrical Mach probe in a plasma wind tunnel

    SciTech Connect

    Zhang, X.; Dandurand, D.; Gray, T.; Brown, M. R.; Lukin, V. S.

    2011-03-15

    A simple cylindrical Mach probe is described along with an independent calibration procedure in a magnetized plasma wind tunnel. A particle orbit calculation corroborates our model. The probe operates in the weakly magnetized regime in which probe dimension and ion orbit are of the same scale. Analytical and simulation models are favorably compared with experimental calibration.

  20. QUASI-PML FOR WAVES IN CYLINDRICAL COORDINATES. (R825225)

    EPA Science Inventory

    We prove that the straightforward extension of Berenger's original perfectly matched layer (PML) is not reflectionless at a cylindrical interface in the continuum limit. A quasi-PLM is developed as an absorbing boundary condition (ABC) for the finite-difference time-domain method...

  1. Hypersonic Magneto-Fluid-Dynamic Compression in Cylindrical Inlet

    NASA Technical Reports Server (NTRS)

    Shang, Joseph S.; Chang, Chau-Lyan

    2007-01-01

    Hypersonic magneto-fluid-dynamic interaction has been successfully performed as a virtual leading-edge strake and a virtual cowl of a cylindrical inlet. In a side-by-side experimental and computational study, the magnitude of the induced compression was found to be depended on configuration and electrode placement. To better understand the interacting phenomenon the present investigation is focused on a direct current discharge at the leading edge of a cylindrical inlet for which validating experimental data is available. The present computational result is obtained by solving the magneto-fluid-dynamics equations at the low magnetic Reynolds number limit and using a nonequilibrium weakly ionized gas model based on the drift-diffusion theory. The numerical simulation provides a detailed description of the intriguing physics. After validation with experimental measurements, the computed results further quantify the effectiveness of a magnet-fluid-dynamic compression for a hypersonic cylindrical inlet. At a minuscule power input to a direct current surface discharge of 8.14 watts per square centimeter of electrode area produces an additional compression of 6.7 percent for a constant cross-section cylindrical inlet.

  2. Static Solutions of Einstein's Equations with Cylindrical Symmetry

    ERIC Educational Resources Information Center

    Trendafilova, C. S.; Fulling, S. A.

    2011-01-01

    In analogy with the standard derivation of the Schwarzschild solution, we find all static, cylindrically symmetric solutions of the Einstein field equations for vacuum. These include not only the well-known cone solution, which is locally flat, but others in which the metric coefficients are powers of the radial coordinate and the spacetime is…

  3. 15. CYLINDRICAL FISH SCALER Remnants of the wire screen remain, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. CYLINDRICAL FISH SCALER Remnants of the wire screen remain, through which the fish tumbled as the cylinder revolved. Note geared ring around cylinder, and the small drive shaft by which it was driven. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  4. Double focusing ion mass spectrometer of cylindrical symmetry

    NASA Technical Reports Server (NTRS)

    Coplan, M. A.; Moore, J. H.; Hoffman, R. A.

    1984-01-01

    A mass spectrometer consisting of an electric sector followed by a magnetic sector is described. The geometry is a cylindrically symmetric generalization of the Mattauch-Herzog spectrometer (1934). With its large annular entrance aperture and a position-sensitive detector, the instrument provides a large geometric factor and 100-percent duty factor, making it appropriate for spacecraft experiments.

  5. Efficient Generation of Truncated Bessel Beams using Cylindrical Waveguides

    NASA Technical Reports Server (NTRS)

    Ilchenko, Vladimir S.; Mohageg, Makan; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Maleki, Lute

    2007-01-01

    In this paper we address efficient conversion between a Gaussian beam (a truncated plane wave) and a truncated Bessel beam of agiven order, using cylindrical optical waveguides and whispering gallery mode resonators. Utilizing a generator based on waveguides combined with whispering gallery mode resonators, we have realized Bessel beams of the order of 200 with a conversion efficiency exceeding 10 %.

  6. Screen of cylindrical lenses produces stereoscopic television pictures

    NASA Technical Reports Server (NTRS)

    Nork, C. L.

    1966-01-01

    Stereoscopic television pictures are produced by placing a colorless, transparent screen of adjacent parallel cylindrical lenses before a raster from two synchronized TV cameras. Alternate frames from alternate cameras are displayed. The viewers sensory perception fuses the two images into one three-dimensional picture.

  7. Dynamics of a Liquid Dielectric Attracted by a Cylindrical Capacitor

    ERIC Educational Resources Information Center

    Nardi, Rafael; Lemos, Nivaldo A.

    2007-01-01

    The dynamics of a liquid dielectric attracted by a vertical cylindrical capacitor are studied. Contrary to what might be expected from the standard calculation of the force exerted by the capacitor, the motion of the dielectric is different depending on whether the charge or the voltage of the capacitor is held constant. The problem turns out to…

  8. Electron beam current in high power cylindrical diode

    SciTech Connect

    Roy, Amitava; Menon, R.; Mitra, S.; Sharma, Vishnu; Singh, S. K.; Nagesh, K. V.; Chakravarthy, D. P.

    2010-01-15

    Intense electron beam generation studies were carried out in high power cylindrical diode to investigate the effect of the accelerating gap and diode voltage on the electron beam current. The diode voltage has been varied from 130 to 356 kV, whereas the current density has been varied from 87 to 391 A/cm{sup 2} with 100 ns pulse duration. The experimentally obtained electron beam current in the cylindrical diode has been compared with the Langmuir-Blodgett law. It was found that the diode current can be explained by a model of anode and cathode plasma expanding toward each other. However, the diode voltage and current do not follow the bipolar space-charge limited flow model. It was also found that initially only a part of the cathode take part in the emission process. The plasma expands at 4.2 cm/mus for 1.7 cm anode-cathode gap and the plasma velocity decreases for smaller gaps. The electrode plasma expansion velocity of the cylindrical diode is much smaller as compared with the planar diode for the same accelerating gap and diode voltage. Therefore, much higher voltage can be obtained for the cylindrical diodes as compared with the planar diodes for the same accelerating gap.

  9. PCM thermal energy storage in cylindrical containers of various configurations

    SciTech Connect

    Mujumdar, A.S.; Ali Ashraf, F.; Menon, A.S.; Weber, M.E.

    1981-01-01

    Experimental measurements are reported for the time variation of surface-averaged rate of heat storage during melting in single, thin-walled cylindrical containers of copper filled with a commercially available paraffin wax. For the wax used the enthalpy-temperature curve was obtained using a differential scanning calorimeter according to the ASTM method. 12 refs.

  10. Applications of bent cylindrical mirrors to x-ray beamlines

    SciTech Connect

    Heald, S.M.

    1981-07-01

    Bent cylindrical mirrors are considered as substitutes for paraboloidal and ellipsoidal mirrors in x-ray beamlines. Analytic and raytracing studies are used to compare their optical performance with the corresponding ideal elements. Particular emphasis is placed on obtaining the practical limitations in the application of bent cylinders to typical beamline configurations.

  11. On Ideal Stability of Cylindrical Localized Interchange Modes

    SciTech Connect

    Umansky, M V

    2007-05-15

    Stability of cylindrical localized ideal pressure-driven interchange plasma modes is revisited. Converting the underlying eigenvalue problem into the form of the Schroedinger equation gives a new simple way of deriving the Suydam stability criterion and calculating the growth rates of unstable modes. Near the marginal stability limit the growth rate is exponentially small and the mode has a double-peak structure.

  12. Microfabrication of cylindrical microfluidic channel networks for microvascular research.

    PubMed

    Huang, Zhouchun; Li, Xiang; Martins-Green, Manuela; Liu, Yuxin

    2012-10-01

    Current methods for formation of microvascular channel scaffolds are limited with non-circular channel cross-sections, complicated fabrication, and less flexibility in microchannel network design. To address current limitations in the creation of engineered microvascular channels with complex three-dimensional (3-D) geometries in the shape of microvessels, we have developed a reproducible, cost-effective, and flexible micromanufacturing process combined with photolithographic reflowable photoresist and soft lithography techniques to fabricate cylindrical microchannel and networks. A positive reflowable photoresist AZ P4620 was used to fabricate a master microchannel mold with semi-circular cross-sections. By the alignment and bonding of two polydimethylsiloxane (PDMS) microchannels replicated from the master mold together, a cylindrical microchannel or microchannel network was created. Further examination of the channel dimensions and surface profiles at different branching levels showed that the shape of the microfluidic channel was well approximated by a semi-circular surface, and a multi-level, multi-depth channel network was created. In addition, a computational fluidic dynamics (CFD) model was used to simulate shear flows and corresponding pressure distributions inside of the microchannel and channel network based on the dimensions of the fabricated channels. The fabricated multi-depth cylindrical microchannel network can provide platforms for the investigation of microvascular cells growing inside of cylindrical channels under shear flows and lumen pressures, and work as scaffolds for the investigation of morphogenesis and tubulogenesis. PMID:22729782

  13. Cylindrical surface profile and diameter measuring tool and method

    NASA Technical Reports Server (NTRS)

    Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Smith, Earnest C. (Inventor); Oliver, Charles E. (Inventor); Redmon, John W., Sr. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)

    1987-01-01

    A tool is shown having a cross beam assembly made of beams joined by a center box structure. The assembly is adapted to be mounted by brackets to the outer end of a cylindrical case. The center box structure has a vertical shaft rotatably mounted therein and extending beneath the assembly. Secured to the vertical shaft is a radius arm which is adapted to rotate with the shaft. On the longer end of the radius arm is a measuring tip which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm. An electric servomotor rotates the vertical shaft and an electronic resolver provides an electric signal representing the angle of rotation of the shaft. The electric signals are provided to a computer station which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.

  14. Cylindrical surface profile and diameter measuring tool and method

    NASA Technical Reports Server (NTRS)

    Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Oliver, Charles E. (Inventor); Smith, Earnest C. (Inventor); Redmon, John W. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)

    1989-01-01

    A tool is shown having a cross beam assembly (15) made of beams (18, 19, 20, 21) joined by a center box structure (23). The assembly (15) is adapted to be mounted by brackets (16) to the outer end of a cylindrical case (11). The center box structure (23) has a vertical shaft (25) rotatably mounted therein and extending beneath the assembly (15). Secured to the vertical shaft (25) is a radius arm (28) which is adapted to rotate with shaft (25). On the longer end of the radius arm (28) is a measuring tip (30) which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm (28). An electric servomotor (49) rotates the vertical shaft (25) and an electronic resolver (61) provides an electric signal representing the angle of rotation of the shaft (25). The electric signals are provided to a computer station (73) which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.

  15. Optical scanning apparatus for indicia imprinted about a cylindrical axis

    DOEpatents

    Villarreal, Richard A.

    1987-01-01

    An optical scanner employed in a radioactive environment for reading indicia imprinted about a cylindrical surface of an article by means of an optical system including metallic reflective and mirror surfaces resistant to degradation and discoloration otherwise imparted to glass surfaces exposed to radiation.

  16. Microfabrication of cylindrical microfluidic channel networks for microvascular research.

    PubMed

    Huang, Zhouchun; Li, Xiang; Martins-Green, Manuela; Liu, Yuxin

    2012-10-01

    Current methods for formation of microvascular channel scaffolds are limited with non-circular channel cross-sections, complicated fabrication, and less flexibility in microchannel network design. To address current limitations in the creation of engineered microvascular channels with complex three-dimensional (3-D) geometries in the shape of microvessels, we have developed a reproducible, cost-effective, and flexible micromanufacturing process combined with photolithographic reflowable photoresist and soft lithography techniques to fabricate cylindrical microchannel and networks. A positive reflowable photoresist AZ P4620 was used to fabricate a master microchannel mold with semi-circular cross-sections. By the alignment and bonding of two polydimethylsiloxane (PDMS) microchannels replicated from the master mold together, a cylindrical microchannel or microchannel network was created. Further examination of the channel dimensions and surface profiles at different branching levels showed that the shape of the microfluidic channel was well approximated by a semi-circular surface, and a multi-level, multi-depth channel network was created. In addition, a computational fluidic dynamics (CFD) model was used to simulate shear flows and corresponding pressure distributions inside of the microchannel and channel network based on the dimensions of the fabricated channels. The fabricated multi-depth cylindrical microchannel network can provide platforms for the investigation of microvascular cells growing inside of cylindrical channels under shear flows and lumen pressures, and work as scaffolds for the investigation of morphogenesis and tubulogenesis.

  17. Squirrel Foraging Preferences: Gone Nuts?

    ERIC Educational Resources Information Center

    Darling, Randi A.

    2007-01-01

    This field exercise examines the feeding preferences of Gray Squirrels ("Sciurus carolinensis"). Students present squirrels with a variety of food types in a cafeteria-style arrangement in order to test hypotheses about foraging preferences. This exercise, which is appropriate for introductory biology, ecology, and animal behavior classes, is…

  18. Temporal Constraint Reasoning With Preferences

    NASA Technical Reports Server (NTRS)

    Khatib, Lina; Morris, Paul; Morris, Robert; Rossi, Francesca

    2001-01-01

    A number of reasoning problems involving the manipulation of temporal information can naturally be viewed as implicitly inducing an ordering of potential local decisions involving time (specifically, associated with durations or orderings of events) on the basis of preferences. For example. a pair of events might be constrained to occur in a certain order, and, in addition. it might be preferable that the delay between them be as large, or as small, as possible. This paper explores problems in which a set of temporal constraints is specified, where each constraint is associated with preference criteria for making local decisions about the events involved in the constraint, and a reasoner must infer a complete solution to the problem such that, to the extent possible, these local preferences are met in the best way. A constraint framework for reasoning about time is generalized to allow for preferences over event distances and durations, and we study the complexity of solving problems in the resulting formalism. It is shown that while in general such problems are NP-hard, some restrictions on the shape of the preference functions, and on the structure of the preference set, can be enforced to achieve tractability. In these cases, a simple generalization of a single-source shortest path algorithm can be used to compute a globally preferred solution in polynomial time.

  19. Voter-Weighted Environmental Preferences

    ERIC Educational Resources Information Center

    Bell, Jason; Huber, Joel; Viscusi, W. Kip

    2009-01-01

    This article examines the political economy of preferences with respect to the environment using a new stated preference survey that presents the first benefit values for national water quality levels. The mean valuation greatly exceeds the median value, as the distribution of valuations is highly skewed. The study couples the survey valuations…

  20. Assessing Preference for Social Interactions

    ERIC Educational Resources Information Center

    Clay, Casey J.; Samaha, Andrew L.; Bloom, Sarah E.; Bogoev, Bistra K.; Boyle, Megan A.

    2013-01-01

    We examined a procedure to assess preference for social interactions in individuals with intellectual and developmental disabilities. Preferences were identified in five individuals using a paired-choice procedure in which participants approached therapists who provided different forms of social interactions. A subsequent tracking test showed that…

  1. Children Reason about Shared Preferences

    ERIC Educational Resources Information Center

    Fawcett, Christine A.; Markson, Lori

    2010-01-01

    Two-year-old children's reasoning about the relation between their own and others' preferences was investigated across two studies. In Experiment 1, children first observed 2 actors display their individual preferences for various toys. Children were then asked to make inferences about new, visually inaccessible toys and books that were described…

  2. Do children prefer mentalistic descriptions?

    PubMed

    Dore, Rebecca A; Lillard, Angeline S

    2014-01-01

    Against a long tradition of childhood realism (Piaget, 1929), A. S. Lillard and J. H. Flavell (1990) found that 3-year-olds prefer to characterize people by their mental states (beliefs, desires, emotions) than by their visible behaviors. In this exploratory study, we extend this finding to a new cohort of 3-year-olds, examine how these preferences change from 3-4 years, and explore relationships with theory of mind and parental mind-mindedness. The results showed a developmental change and a possible cohort difference: at 3 years, children in the sample preferred behavioral descriptions, although by 4 years of age, they preferred mentalistic ones. Interestingly, mentalistic preferences were unrelated to theory of mind or parental mind-mindedness, concurrently or over time. Perspective-taking skills at 3 years, however, predicted an increase in mentalistic responses from 3 years to 4 years. Possible explanations for each finding are discussed. PMID:24796151

  3. [Cereal grain preference of rats].

    PubMed

    Wang, P Y

    1990-07-01

    Cereal grains are usually used as the main material for preparing rodenticide baits. However, the preferences for different grains varies according to species and habitats of rats, and locations. A formula accepted at one location may not be suitable in other places, where rats are accustomed to different types of food. It is therefore important to understand the feeding habits of local rat species before implementing a control program. Seven kinds of grains, including hulled rice, corn, barley, wheat, sorghum, pranuts, and sweet potatoes were tested to study the preferences of rats in the laboratory. The results revealed that Bandicota nemorivaga, Rattus losea and R. norvegicus prefer hulled rice; Apodemus agrarius and Mus musculus prefer peanuts, and R. rattus prefers corn. The influence of quality and nutrient contents of baits on the consumption of the rats is also discussed. PMID:2402029

  4. Residential preferences and population distribution.

    PubMed

    Fuguitt, G V; Zuiches, J J

    1975-08-01

    Public opinion research has revealed decided preferences for living in rural areas and small towns, and proponents of population deconcentration have interpreted this as support for their policies. This study, based on a national sample, yielded similar results, but when we introduced the additional possibility of a preference for proximity to a larger city, then the rural areas preferred were found, for most respondents, to be those within the commuting range of a metropolitan central city. Although persons wishing to live near large cities were found to be looking for the same qualities of living sought by those who prefer a more remote location, these findings are not, in general, consistent with the argument that public preferences support strategies of population dispersal into nonmetropolitan areas. Instead they indicate that most of those who wish to live in a different location favor the peripheral metropolitan ring areas that have, in fact, been growing rapidly by in-migration.

  5. [Cereal grain preference of rats].

    PubMed

    Wang, P Y

    1990-07-01

    Cereal grains are usually used as the main material for preparing rodenticide baits. However, the preferences for different grains varies according to species and habitats of rats, and locations. A formula accepted at one location may not be suitable in other places, where rats are accustomed to different types of food. It is therefore important to understand the feeding habits of local rat species before implementing a control program. Seven kinds of grains, including hulled rice, corn, barley, wheat, sorghum, pranuts, and sweet potatoes were tested to study the preferences of rats in the laboratory. The results revealed that Bandicota nemorivaga, Rattus losea and R. norvegicus prefer hulled rice; Apodemus agrarius and Mus musculus prefer peanuts, and R. rattus prefers corn. The influence of quality and nutrient contents of baits on the consumption of the rats is also discussed.

  6. Shaping of parabolic cylindrical membrane reflectors for the DART precision test bed

    NASA Technical Reports Server (NTRS)

    White, C.; Salama, M.; Dragovan, M.; Schroeder, J.; Barber, D.; Dooley, J.

    2003-01-01

    The DART is a new telescope architecture consisting of two cylindrical parabolic reflectors. The system is ideally suited to using tensioned membranes for the reflective surfaces, owing to the zero Gaussian curvature of a cylindrical parabola.

  7. An Interactive Point Kernel Program For Photon Dose Rate Prediction of Cylindrical Source/Shield Arrangements.

    1990-10-26

    Version 00 The program ZYLIND is an interactive point kernel program for photon dose rate prediction of a homogeneous cylindrical source shielded by cylindrical (radial) or plane (axial) layered shields.

  8. Neural Signatures of Intransitive Preferences

    PubMed Central

    Kalenscher, Tobias; Tobler, Philippe N.; Huijbers, Willem; Daselaar, Sander M.; Pennartz, Cyriel M.A.

    2010-01-01

    It is often assumed that decisions are made by rank-ordering and thus comparing the available choice options based on their subjective values. Rank-ordering requires that the alternatives’ subjective values are mentally represented at least on an ordinal scale. Because one alternative cannot be at the same time better and worse than another alternative, choices should satisfy transitivity (if alternative A is preferred over B, and B is preferred over C, A should be preferred over C). Yet, individuals often demonstrate striking violations of transitivity (preferring C over A). We used functional magnetic resonance imaging to study the neural correlates of intransitive choices between gambles varying in magnitude and probability of financial gains. Behavioral intransitivities were common. They occurred because participants did not evaluate the gambles independently, but in comparison with the alternative gamble presented. Neural value signals in prefrontal and parietal cortex were not ordinal-scaled and transitive, but reflected fluctuations in the gambles’ local, pairing-dependent preference-ranks. Detailed behavioral analysis of gamble preferences showed that, depending on the difference in the offered gambles’ attributes, participants gave variable priority to magnitude or probability and thus shifted between preferring richer or safer gambles. The variable, context-dependent priority given to magnitude and probability was tracked by insula (magnitude) and posterior cingulate (probability). Their activation-balance may reflect the individual decision rules leading to intransitivities. Thus, the phenomenon of intransitivity is reflected in the organization of the neural systems involved in risky decision-making. PMID:20814565

  9. A Method to Calculate the Surface Tension of a Cylindrical Droplet

    ERIC Educational Resources Information Center

    Wang, Xiaosong; Zhu, Ruzeng

    2010-01-01

    The history of Laplace's equations for spherical and cylindrical droplets and the concept of dividing surface in Gibbs' thermodynamic theory of capillary phenomena are briefly reviewed. The existing theories of surface tensions of cylindrical droplets are briefly reviewed too. For cylindrical droplets, a new method to calculate the radius and the…

  10. Preferences in Data Production Planning

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Brafman, Ronen; Pang, Wanlin

    2005-01-01

    This paper discusses the data production problem, which consists of transforming a set of (initial) input data into a set of (goal) output data. There are typically many choices among input data and processing algorithms, each leading to significantly different end products. To discriminate among these choices, the planner supports an input language that provides a number of constructs for specifying user preferences over data (and plan) properties. We discuss these preference constructs, how we handle them to guide search, and additional challenges in the area of preference management that this important application domain offers.

  11. Assessing preference for social interactions.

    PubMed

    Clay, Casey J; Samaha, Andrew L; Bloom, Sarah E; Bogoev, Bistra K; Boyle, Megan A

    2013-01-01

    We examined a procedure to assess preference for social interactions in individuals with intellectual and developmental disabilities. Preferences were identified in five individuals using a paired-choice procedure in which participants approached therapists who provided different forms of social interactions. A subsequent tracking test showed that participants' approaches were under control of the form of social interaction provided as opposed to idiosyncratic features of the therapists. Results of a reinforcer assessment found that the social interaction identified as preferred also functioned as a reinforcer for all five participants. PMID:23009945

  12. Selective decay in a long cylindrical geometry in SSX

    NASA Astrophysics Data System (ADS)

    Gray, T.; Brown, M.; Dandurand, D.; Zhang, X.

    2010-11-01

    A helical, minimum-energy relaxed plasma state has been observed in a long cylindrical volume. The cylinder is long enough (L/R = 13) so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v >=50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. The relaxed state is rapidly attained in 1--2 axial Alfvén times after initiation of the plasma. Magnetic data is favorably compared with an analytical model. Magnetic data exhibits broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement to the minimum energy eigenstate of ∇xB = λB. Merging experiments are planned and additional data will be presented if available.

  13. Field emission of electrons from cylindrical metallic surfaces

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Dixit, Amrit

    2008-10-01

    In this communication the authors have derived an almost exact expression for the tunneling probability of an electron through the surface potential barrier on account of a negative charge on a cylindrical metallic dust particle and have used it to obtain the field emission current density from the surface of the particle. Based on these results, a parametric analysis of the phenomenon and comparison to the results of JWKB approximation (similar to Fowler-Nordheim theory) has been presented. These results are also applicable to a number of applications based on electric field emission from a thin metallic wire surrounded by a coaxial cylindrical surface at a high electric potential with respect to the wire. The investigation is of relevance to dusty plasmas in space and laboratory and carbon nanotubes.

  14. Sound Transmission through a Cylindrical Sandwich Shell with Honeycomb Core

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Robinson, Jay H.; Silcox, Richard J.

    1996-01-01

    Sound transmission through an infinite cylindrical sandwich shell is studied in the context of the transmission of airborne sound into aircraft interiors. The cylindrical shell is immersed in fluid media and excited by an oblique incident plane sound wave. The internal and external fluids are different and there is uniform airflow in the external fluid medium. An explicit expression of transmission loss is derived in terms of modal impedance of the fluids and the shell. The results show the effects of (a) the incident angles of the plane wave; (b) the flight conditions of Mach number and altitude of the aircraft; (c) the ratios between the core thickness and the total thickness of the shell; and (d) the structural loss factors on the transmission loss. Comparisons of the transmission loss are made among different shell constructions and different shell theories.

  15. Plasmon modes of circular cylindrical double-layer graphene.

    PubMed

    Zhao, Tao; Hu, Min; Zhong, Renbin; Chen, Xiaoxing; Zhang, Ping; Gong, Sen; Zhang, Chao; Liu, Shenggang

    2016-09-01

    In this paper, a theoretical investigation on plasmon modes in a circular cylindrical double-layer graphene structure is presented. Due to the interlayer electromagnetic interaction, there exist two branches of plasmon modes, the optical plasmon mode and the acoustic plasmon mode. The characteristics of these two modes, such as mode pattern, effective mode index and propagation loss, are analyzed. The modal behaviors can be effectively tuned by changing the distance between two graphene layers, the chemical potential of graphene and the permittivity of interlayer dielectric. Importantly, the breakup of tradeoff between mode confinement and propagation loss is discovered in the distance-dependent modal behavior, which originates from the unique dispersion properties of a double-layer graphene system. As a consequence, both strong mode confinement and longer propagation length can be achieved. Our results may provide good opportunities for developing applications based on graphene plasmonics in circular cylindrical structure. PMID:27607651

  16. Reflection of solar radiation by a cylindrical cloud

    NASA Technical Reports Server (NTRS)

    Smith, G. L.

    1989-01-01

    Potential applications of an analytic method for computing the solar radiation reflected by a cylindrical cloud are discussed, including studies of radiative transfer within finite clouds and evaluations of these effects on other clouds and on remote sensing problems involving finite clouds. The pattern of reflected sunlight from a cylindrical cloud as seen at a large distance has been considered and described by the bidirectional function method for finite cloud analysis, as previously studied theoretically for plane-parallel atmospheres by McKee and Cox (1974); Schmetz and Raschke (1981); and Stuhlmann et al. (1985). However, the lack of three-dimensional radiative transfer solutions for anisotropic scattering media have hampered theoretical investigations of bidirectional functions for finite clouds. The present approach permits expression of the directional variation of the radiation field as a spherical harmonic series to any desired degree and order.

  17. Plasmon modes of circular cylindrical double-layer graphene.

    PubMed

    Zhao, Tao; Hu, Min; Zhong, Renbin; Chen, Xiaoxing; Zhang, Ping; Gong, Sen; Zhang, Chao; Liu, Shenggang

    2016-09-01

    In this paper, a theoretical investigation on plasmon modes in a circular cylindrical double-layer graphene structure is presented. Due to the interlayer electromagnetic interaction, there exist two branches of plasmon modes, the optical plasmon mode and the acoustic plasmon mode. The characteristics of these two modes, such as mode pattern, effective mode index and propagation loss, are analyzed. The modal behaviors can be effectively tuned by changing the distance between two graphene layers, the chemical potential of graphene and the permittivity of interlayer dielectric. Importantly, the breakup of tradeoff between mode confinement and propagation loss is discovered in the distance-dependent modal behavior, which originates from the unique dispersion properties of a double-layer graphene system. As a consequence, both strong mode confinement and longer propagation length can be achieved. Our results may provide good opportunities for developing applications based on graphene plasmonics in circular cylindrical structure.

  18. Coupled domain wall oscillations in magnetic cylindrical nanowires

    SciTech Connect

    Murapaka, Chandrasekhar; Goolaup, S.; Purnama, I.; Lew, W. S.

    2015-02-07

    We report on transverse domain wall (DW) dynamics in two closely spaced cylindrical nanowires. The magnetostatically coupled DWs are shown to undergo an intrinsic oscillatory motion along the nanowire length in addition to their default rotational motion. In the absence of external forces, the amplitude of the DW oscillation is governed by the change in the frequency of the DW rotation. It is possible to sustain the DW oscillations by applying spin-polarized current to the nanowires to balance the repulsive magnetostatic coupling. The current density required to sustain the DW oscillation is found to be in the order of 10{sup 5 }A/cm{sup 2}. Morover, our analysis of the oscillation reveals that the DWs in cylindrical nanowires possess a finite mass.

  19. Nonlinear dynamo action in a cylindrical container driven by precession

    NASA Astrophysics Data System (ADS)

    Nore, C.; Léorat, J.; Guermond, J.-L.; Luddens, F.

    2011-12-01

    Precession, which results simply from the composition of two rotations with distinct axes, is an efficient way to drive a 3D flow in a closed rigid container. Are such flows relevant to dynamo action in some astrophysical bodies? Positive answers are available for a spherical and a spheroidal containers, using parameters which are, however, not realistic. An experimental approach could be relevant to natural dynamos and seems within reach using a cylindrical container (cf. the experiment now planned at the DREsden Sodium facility for DYNamo and thermohydraulic studies in Germany (DRESDYN), F. Stefani, personal communication, 2011). Using a nonlinear magnetohydrodynamics (MHD) code (SFEMaNS), we numerically demonstrate that precession is able to drive a cylindrical dynamo.

  20. Single-file diffusion of protein drugs through cylindrical nanochannels.

    PubMed

    Yang, Seung Yun; Yang, Jeong-A; Kim, Eung-Sam; Jeon, Gumhye; Oh, Eun Ju; Choi, Kwan Yong; Hahn, Sei Kwang; Kim, Jin Kon

    2010-07-27

    A new drug delivery device using cylindrical block copolymer nanochannels was successfully developed for controlled protein drug delivery applications. Depending on the hydrodynamic diameter of the protein drugs, the pore size in cylindrical nanochannels could be controlled precisely down to 6 nm by Au deposition. Zero-order release of bovine serum albumin (BSA) and human growth hormone (hGH) by single-file diffusion, which has been observed for gas diffusion through zeolite pores, was realized up to 2 months without protein denaturation. Furthermore, a nearly constant in vivo release of hGH from the drug delivery nanodevice implanted to Sprague-Dawley (SD) rats was continued up to 3 weeks, demonstrating the feasibility for long-term controlled delivery of therapeutic protein drugs.

  1. Precession of cylindrical dust particles in the plasma sheath

    SciTech Connect

    Banu, N.; Ticoş, C. M.

    2015-10-15

    The vertical precession of cylindrical dust particles levitated in the sheath of an rf plasma is experimentally investigated. Typically, the dust particles have two equilibrium positions depending on the orientation of their longitudinal axis: horizontal and vertical. A transition between these two states is induced by rapidly increasing the neutral gas pressure in the plasma chamber. During this transition, the cylindrical dust particles make an angle with the horizontal and rotate about their center of mass. The rotation speed increases as the dust rods aligned with the vertical axis. All dust particles will eventually end up in the vertical state while spinning fast about their longitudinal axis. Dust-dust interaction and the attracting ion wakes are possible mechanisms for inducing the observed dust precession.

  2. Novel design of a compact 'cylindrical mirror analyzer' array

    SciTech Connect

    Herting, C.; Juettemann, F.; Petuker, Z.; Schmitter, S.; Hanne, G. F.

    2008-02-15

    The design of a compact multiangle electron analyzer array for simultaneous detection of scattered and ejected electrons at nine different angles is described. It consists of eight slim 'simulated' cylindrical mirror analyzers (CMAs) providing electron detection for scattering/ejected angles of 14 deg. apart from each other. A ninth analyzer is arranged to a scattering angle on the opposite side. A single analyzer has cylindrical symmetry equipotential lines in the region of the beam trajectories, whereas its electrodes are noncylindrical, except for the inner cylinder. The new spectrometer is easy to build because only a few electrodes of simple shape are needed for each of the analyzers. The electron optical properties of the new device are very close to those of a true CMA. Its geometric width, however, is only less than one-fifth of that of a conventional CMA, which allows one to arrange several analyzers close to each other. Example results with the new device are presented.

  3. Cylindrical PVDF film transmitters and receivers for air ultrasound.

    PubMed

    Toda, Minoru

    2002-05-01

    Cylindrical polyvinylidene fluoride (PVDF) film transducers for transmission and reception of 40-kHz ultrasonic waves in air have been investigated. A key feature of such transducers is their omni-directional polar response. An optimized structure comprises a cylindrical PVDF film element resting on a spool without a mechanical bond to it. Various key design equations to obtain the required ultrasonic performance both as transmitter and receiver are shown, which include resonance frequency, acoustic pressure, angle performance, back air cavity effect, and receiver sensitivity. Measurements of actual frequency response of transmitter output and receiver sensitivity, angular performance, back air space effect, and temperature effect are presented. The results agree well with the theoretical predictions. It has been shown that this device is well-suited for practical application as an ultrasonic ranging device. PMID:12046938

  4. Laser holographic interferometry for investigations of cylindrical transparent tubes

    NASA Astrophysics Data System (ADS)

    Ralea, Mihai F.; Rosu, Nicu; Iova, Iancu

    1996-05-01

    A new double differential refractometer for student laboratories, based on holographic interferometry in real time with reference hologram and reference fringes, is presented. By studying the interferograms one gets a graphical record of the radial, axial, and temporal distribution of the refraction index in cylindrical tubes. This method permits the determination of the experimental parameters for cases when the relationship between these parameters and the refraction index is known. The paper presents experimental results for gas-discharge parameters.

  5. The geometric factor of a cylindrical plate electrostatic analyzer

    NASA Technical Reports Server (NTRS)

    Johnstone, A. D.

    1971-01-01

    A method for calculating the geometric factor of cylindrical plate electrostatic energy analyzers with various detector geometries is described. The effects of the fringe-field are estimated. For a special simple case an exact geometric factor is calculated enabling an estimate of the inaccuracies of the approximations used in other cases. The results of some calculations are presented and a simple approximate expression for the geometric factor is deduced.

  6. Charged cylindrical polytropes with generalized polytropic equation of state

    NASA Astrophysics Data System (ADS)

    Azam, M.; Mardan, S. A.; Noureen, I.; Rehman, M. A.

    2016-09-01

    We study the general formalism of polytropes in the relativistic regime with generalized polytropic equations of state in the vicinity of cylindrical symmetry. We take a charged anisotropic fluid distribution of matter with a conformally flat condition for the development of a general framework of the polytropes. We discuss the stability of the model by the Whittaker formula and conclude that one of the models developed is physically viable.

  7. Four-Sector Cylindrical Radio-Frequency Ion Trap

    NASA Technical Reports Server (NTRS)

    Melbourne, Ruthann K.; Prestage, John D.; Maleki, Lutfollah

    1992-01-01

    Proposed linear radio-frequency ion trap consists of closed metal cylinder partitioned into four equal cylindrical-sector electrodes and two circular end electrodes. Features include relatively large ion-storage capacity and shielding against external fields. Used in frequency-standard laboratories to confine 199Hg+ ions electrodynamically in isolation from external environment. Similar to device described in "Linear Ion Trap for Atomic Clock" (NPO-17758).

  8. Ideal internal kink modes in a differentially rotating cylindrical plasma

    SciTech Connect

    Mikhailovskii, A. B.; Lominadze, J. G.; Galvao, R. M. O.; Churikov, A. P.; Erokhin, N. N.; Pustovitov, V. D.; Konovalov, S. V.; Smolyakov, A. I.; Tsypin, V. S.

    2008-07-15

    The Velikhov effect leading to magnetorotational instability (MRI) is incorporated into the theory of ideal internal kink modes in a differentially rotating cylindrical plasma column. It is shown that this effect can play a stabilizing role for suitably organized plasma rotation profiles, leading to suppression of MHD (magnetohydrodynamic) instabilities in magnetic confinement systems. The role of this effect in the problem of the Suydam and the m = 1 internal kink modes is elucidated, where m is the poloidal mode number.

  9. Theory of semicollisional drift-interchange modes in cylindrical plasmas

    SciTech Connect

    Hahm, T.S.; Chen, L.

    1985-01-01

    Resistive interchange instabilities in cylindrical plasmas are studied, including the effects of electron diamagnetic drift, perpendicular resistivity, and plasma compression. The analyses are pertinent to the semicollisional regime where the effective ion gyro-radius is larger than the resistive layer width. Both analytical and numerical results show that the modes can be completely stabilized by the perpendicular plasma transport. Ion sound effects, meanwhile, are found to be negligible in the semicollisional regime.

  10. High power impulse magnetron sputtering using a rotating cylindrical magnetron

    SciTech Connect

    Leroy, W. P.; Mahieu, S.; Depla, D.; Ehiasarian, A. P.

    2010-01-15

    Both the industrially favorable deposition technique, high power impulse magnetron sputtering (HIPIMS), and the industrially popular rotating cylindrical magnetron have been successfully combined. A stable operation without arcing, leaks, or other complications for the rotatable magnetron was attained, with current densities around 11 A cm{sup -2}. For Ti and Al, a much higher degree in ionization in the plasma region was observed for the HIPIMS mode compared to the direct current mode.

  11. Plane-wave expansion of elliptic cylindrical functions

    NASA Astrophysics Data System (ADS)

    Santini, Carlo; Frezza, Fabrizio; Tedeschi, Nicola

    2015-08-01

    Elliptic Cylindrical Waves (ECW), defined as the product of an angular Mathieu function by its corresponding radial Mathieu function, occur in the solution of scattering problems involving two-dimensional structures with elliptic cross sections. In this paper, we explicitly derive the expansion of ECW, along a plane surface, in terms of homogeneous and evanescent plane waves, showing the accuracy of the numerical implementation of the formulas and discussing possible applications of the result.

  12. Evolution of bulk strain solitons in cylindrical inhomogeneous shells

    SciTech Connect

    Shvartz, A. Samsonov, A.; Dreiden, G.; Semenova, I.

    2015-10-28

    Bulk strain solitary waves in nonlinearly elastic thin-walled cylindrical shells with variable geometrical and physical parameters are studied, and equation for the longitudinal strain component with the variable coefficients is derived. A conservative finite difference scheme is proposed, and the results of numerical simulation of the strain soliton evolution in a shell with the abrupt variations of cross section and physical properties of the material are presented.

  13. Transition in Electron Transport in a Cylindrical Hall Thruster

    SciTech Connect

    J.B. Parker, Y. Raitses, and N.J. Fisch

    2010-06-02

    Through the use of high-speed camera and Langmuir probe measurements in a cylindrical Hall thruster, we report the discovery of a rotating spoke of increased plasma density and light emission which correlates with increased electron transport across the magnetic field. As cathode electron emission is increased, a sharp transition occurs where the spoke disappears and electron transport decreases. This suggests that a significant fraction of the electron current might be directed through the spoke.

  14. Transition in electron transport in a cylindrical Hall thruster

    SciTech Connect

    Parker, J. B.; Raitses, Y.; Fisch, N. J.

    2010-08-30

    Through the use of high-speed camera and Langmuir probe measurements in a cylindrical Hall thruster, we report the discovery of a rotating spoke of increased plasma density and light emission which correlates with increased electron transport across the magnetic field. As cathode electron emission is increased, a sharp transition occurs where the spoke disappears and electron transport decreases. This suggests that a significant fraction of the electron current might be directed through the spoke.

  15. Evaluation of direct-exchange areas for a cylindrical enclosure

    SciTech Connect

    Sika, J. )

    1991-11-01

    This paper reports on a method for calculating the radiative heat transfer direct-exchange areas for surface-to-surface, volume-to-surface, and volume-to-volume pairs of zones in axisymmetric cylindrical geometries. With this method the calculation of the direct-exchange areas can be transformed from the original four-, five-, and sixfold integrals in the defining relations to just single and/or double integrals. Gray gas with absorption coefficient K is assumed.

  16. A tool for installation and removal of cylindrical baffles

    NASA Technical Reports Server (NTRS)

    Pessin, R.

    1980-01-01

    Simple tool based on principle of automobile oil wrench slips over cylindrical thread-on baffle to install or remove it from baffle assembly. Tool consists of curled metal sheet brazed onto handgrip. Handgrip is adapted to be driven by wrench, ratchet, extension, torque wrench, or some other convenient tool. Clockwise twist of handgrip, tightens metal sheet around baffle to advance it into threaded joint. Counterclockwise twist loosens sheet for repositioning or tool removal.

  17. Sensitive cylindrical SERS substrate array for rapid microanalysis of nucleobases.

    PubMed

    Rajapandiyan, Panneerselvam; Yang, Jyisy

    2012-12-01

    In this work, a cylindrical-substrate array for surface-enhanced Raman scattering (SERS) measurements was developed to enable analysis of nucleobases in a few microliters of liquid. To eliminate uncertainties associated with SERS detection of aqueous samples, a new type of cylindrical SERS substrate was designed to confine the aqueous sample at the tip of the SERS probe. Poly(methyl methacrylate) (PMMA) optical fibers in a series of different diameters were used as the basic substrate. A solution of poly(vinylidene fluoride)/dimethylformamide (PVDF/DMF) was used to coat the tip of each fiber to increase the surface roughness and facilitate adsorption of silver nanoparticles (AgNPs) for enhancing Raman signals. A chemical reduction method was used to form AgNPs in and on the PVDF coating layer. The reagents and reaction conditions were systematically examined with the aim of estimating the optimum parameters. Unlike the spreading of aqueous sample on most SERS substrates, particularly flat ones, the new SERS substrates showed enough hydrophobicity to restrict aqueous sample to the tip area, thus enabling quantitative analysis. The required volume of sample could be as low as 1 μL with no need for a drying step in the procedure. By aligning the cylindrical SERS substrates into a solid holder, an array of cylindrical substrates was produced for mass analysis of aqueous samples. This new substrate improves both reproducibility and sensitivity for detection in aqueous samples. The enhancement factor approaches 7 orders in magnitude with a relative standard error close to 8%. Using the optimized conditions, nucleobases of adenine, cytosine, thymine, and uracil could be detected with limits approaching a few hundreds nanomolar in only a few microliters of solution. PMID:23140099

  18. Enriching tortoises: assessing color preference.

    PubMed

    Passos, Luiza F; Mello, Humberto Espirito Santo; Young, Robert John

    2014-01-01

    Environmental enrichment is a principle that is used to enhance the quality of care for nonhuman animals in captivity. To achieve this, it is necessary to understand the animal's needs. This study focused on color preference to provide food stimuli as a source of environmental enrichment for the tortoise, Chelonoidis denticulata. During this study, the stimuli green-, blue-, yellow-, and red-colored bananas and plaster blocks were randomly offered to the tortoises. Analysis of the data showed that the tortoises had a preference for the stimuli dyed with colors red and yellow over the other presented colors. It was possible to conclude that presenting food in different colors stimulated the animals to evaluate their environment and make choices in relation to their color preference. Thus, this experiment introduced an element of choice into their lives, beyond identifying color food preferences for the tortoises. The element of choice is known to be important to animal welfare.

  19. Method for fabrication of cylindrical microlenses of selected shape

    DOEpatents

    Snyder, James J.; Baer, Thomas M.

    1992-01-01

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. The present invention has many applications, such as integrated optics, optical detectors and laser diodes. The lens, when connected to a laser diode bar, can provide a high intensity source of laser radiation for pumping a high average power solid state laser. In integrated optics, a lens can be used to couple light into and out of apertures such as waveguides. The lens can also be used to collect light, and focus it on a detector.

  20. Electromagnetic field and cylindrical compact objects in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem ul Haq

    2016-05-01

    In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.

  1. Hierarchical structure formation of cylindrical brush polymer-surfactant complexes.

    PubMed

    Cong, Yang; Gunari, Nikhil; Zhang, Bin; Janshoff, Andreas; Schmidt, Manfred

    2009-06-01

    The complex formation of cylindrical brush polymers with poly(l-lysine) side chains (PLL) and sodium dodecyl sulfate (SDS) can induce a helical conformation of the cylindrical brush polymer in aqueous solution (Gunari, N.; Cong, Y.; Zhang, B.; Fischer, K.; Janshoff, A.; Schmidt, M. Macromol. Rapid Commun. 2008, 29, 821-825). Herein, we have systematically investigated the influence of surfactant, salt, and pH on the supramolecular structure formation. The cylindrical brush polymers and their complexes with surfactants were directly visualized by atomic force microscopy in air and in aqueous solution. The alkyl chain length (measured by the carbon number, n) of the surfactant plays a key role. While helical structures were formed with n=10, 11, and 12, no helices were observed with n<10 and n>13. Addition of salt destroys the helical structures as do pH conditions below 4 and above 6, most probably because the polymer-surfactant complexes start to disintegrate. Circular dichroism was utilized to monitor the PLL side chain conformation and clearly revealed that beta-sheet formation of the side chains induces the helical conformation of the atactic main chain. PMID:19326944

  2. Method for fabrication of cylindrical microlenses of selected shape

    DOEpatents

    Snyder, J.J.; Baer, T.M.

    1992-01-14

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. The present invention has many applications, such as integrated optics, optical detectors and laser diodes. The lens, when connected to a laser diode bar, can provide a high intensity source of laser radiation for pumping a high average power solid state laser. In integrated optics, a lens can be used to couple light into and out of apertures such as waveguides. The lens can also be used to collect light, and focus it on a detector. 11 figs.

  3. Chain-Based Communication in Cylindrical Underwater Wireless Sensor Networks

    PubMed Central

    Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios

    2015-01-01

    Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate. PMID:25658394

  4. The Athena Astrophysical MHD Code in Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Skinner, M. A.; Ostriker, E. C.

    2011-10-01

    We have developed a method for implementing cylindrical coordinates in the Athena MHD code (Skinner & Ostriker 2010). The extension has been designed to alter the existing Cartesian-coordinates code (Stone et al. 2008) as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport, a central feature of the Athena algorithm, while making use of previously implemented code modules such as the eigensystems and Riemann solvers. Angular-momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully. We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic evolution steps as well as the finite-volume and constrained transport updates. Finally, we have developed a test suite of standard and novel problems in one-, two-, and three-dimensions designed to validate our algorithms and implementation and to be of use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is freely available for download on the web.

  5. Rayleigh-Taylor instability experiments in a cylindrically convergent geometry

    SciTech Connect

    Goodwin, B.; Weir, S.

    1995-08-25

    Due to the sensitivity of Rayleigh-Taylor instabilities to initial conditions and due to the difficulty of forming well controlled cylindrical or spherical fluid interfaces, Rayleigh-Taylor experiments are often performed with simple, planar interfaces. Rayleigh-Taylor instability phenomena of practical interest, however, (e.g., underwater explosions, supernova core collapses, and inertial confinement fusion capsule implosions) are typically associated with cylindrical or spherical interfaces in which convergent flow effects have an important influence on the dynamics of instability growth. Recently, Meshkov et.al. have developed a novel technique for studying Rayleigh-Taylor instability growth in a cylindrically convergent geometry. Their experiments utilized low-strength gelatin rings which are imploded by a detonating gas mixture of oxygen and acetylene. Since the gelatin itself has sufficient strength to resist significant deformation by gravity, no membranes are needed to define the ring shape. This experimental technique is attractive because it offers a high degree of control over the interfacial geometry and over the material`s strength and rigidity, which can be varied by adjusting the gelatin concentration. Finally, since both the gelatin and the explosive product gases are transparent, optical diagnostics can be used.

  6. Tunnel Point Cloud Filtering Method Based on Elliptic Cylindrical Model

    NASA Astrophysics Data System (ADS)

    Zhua, Ningning; Jiaa, Yonghong; Luo, Lun

    2016-06-01

    The large number of bolts and screws that attached to the subway shield ring plates, along with the great amount of accessories of metal stents and electrical equipments mounted on the tunnel walls, make the laser point cloud data include lots of non-tunnel section points (hereinafter referred to as non-points), therefore affecting the accuracy for modeling and deformation monitoring. This paper proposed a filtering method for the point cloud based on the elliptic cylindrical model. The original laser point cloud data was firstly projected onto a horizontal plane, and a searching algorithm was given to extract the edging points of both sides, which were used further to fit the tunnel central axis. Along the axis the point cloud was segmented regionally, and then fitted as smooth elliptic cylindrical surface by means of iteration. This processing enabled the automatic filtering of those inner wall non-points. Experiments of two groups showed coincident results, that the elliptic cylindrical model based method could effectively filter out the non-points, and meet the accuracy requirements for subway deformation monitoring. The method provides a new mode for the periodic monitoring of tunnel sections all-around deformation in subways routine operation and maintenance.

  7. Chain-based communication in cylindrical underwater wireless sensor networks.

    PubMed

    Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios

    2015-01-01

    Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.

  8. Determining the axis orientation of cylindrical magnetic flux rope

    NASA Astrophysics Data System (ADS)

    Rong, Zhaojin; Wan, Weixing; Shen, Chao; Zhang, Tielong; Lui, Anthony; Wang, Yuming; Dunlop, malcolm; Zhang, Yongcun; Zong, Qiugang

    2013-04-01

    We develop a new simple method for inferring the orientation of a magnetic flux rope, which is assumed to be a time-independent cylindrically symmetric structure via the direct single-point analysis of magnetic field structure. The model tests demonstrate that, for the cylindrical flux rope regardless of whether it is force-free or not, the method can consistently yield the axis orientation of the flux rope with higher accuracy and stability than the minimum variance analysis of the magnetic field and the Grad-Shafranov reconstruction technique. Moreover, the radial distance to the axis center and the current density can also be estimated consistently. Application to two actual flux transfer events observed by the four satellites of the Cluster mission demonstrates that the method is more appropriate to be used for the inner part of flux rope, which might be closer to the cylindrical structure, showing good agreement with the results obtained from the optimal Grad-Shafranov reconstruction and the least squares technique of Faraday's law, but fails to produce such agreement for the outer satellite that grazes the flux rope. Therefore, the method must be used with caution.

  9. Cylindrical millimeter-wave imaging technique for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    1998-03-01

    A novel cylindrical millimeter-wave imaging technique has been developed at the Pacific Northwest National Laboratory for the detection of metallic and non-metallic concealed weapons. This technique uses a vertical array of millimeter- wave antennas which is mechanically swept around a person in a cylindrical fashion. The wideband millimeter-wave data is mathematically reconstructed into a series of high- resolution images of the person being screened. Clothing is relatively transparent to millimeter-wave illumination,whereas the human body and concealed items are reflective at millimeter wavelengths. Differences in shape and reflectivity are revealed in the images and allow a human operator to detect and identify concealed weapons. A full 360 degree scan is necessary to fully inspect a person for concealed items. The millimeter-wave images can be formed into a video animation sequence in which the person appears to rotate in front of a fixed illumination source.This is s convenient method for presenting the 3D image data for analysis. This work has been fully sponsored by the FAA. An engineering prototype based on the cylindrical imaging technique is presently under development. The FAA is currently opposed to presenting the image data directly to the operator due to personal privacy concerns. A computer automated system is desired to address this problem by eliminating operator viewing of the imagery.

  10. A Novel Automated Method for Analyzing Cylindrical Computed Tomography Data

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Burke, E. R.; Rauser, R. W.; Martin, R. E.

    2011-01-01

    A novel software method is presented that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography. This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2-D sheets in the vertical direction in addition to volume rendering and normal plane views provided by traditional CT software. The method is based on interior and exterior surface edge detection and under proper conditions, is FULLY AUTOMATED and requires no input from the user except the correct voxel dimension from the CT scan. The software is available from NASA in 32- and 64-bit versions that can be applied to gigabyte-sized data sets, processing data either in random access memory or primarily on the computer hard drive. Please inquire with the presenting author if further interested. This software differentiates itself in total from other possible re-slicing software solutions due to complete automation and advanced processing and analysis capabilities.

  11. Some implications of satellite spin effects in cylindrical probe measurements

    NASA Technical Reports Server (NTRS)

    Miller, N. J.

    1971-01-01

    In-situ measurements of ambient electron densities with satellite-borne cylindrical probes exhibit periodic variations synchronous with the satellite's spin cycle. Representing these fluctuations as a superposition of effects attributable to both the presence of the satellite wake and the geomagnetic field leads to a model of the modulations of accelerated electron current to cylindrical probes in which one modulation component displays current variations dependent upon the probe-velocity angle (psi) and the other displays variations dependent upon the angle between the probe axis and the geomagnetic field lines (beta). The modulations produce an electron current decrease whenever the probe axis rotates into the satellite wake or whenever the probe axis rotates toward alignment with the geomagnetic field lines. With increasing altitude, the modulation dependent upon psi decreases whereas the modulation dependent upon beta increases. The analysis results imply that the most accurate of atmospheric electron densities by satellite-borne cylindrical probes come from measurements taken out of the satellite's wake and when the probe axis is within 20 degrees of being perpendicular to the geomagnetic field lines.

  12. Fabrication of hierarchical structures for stable superhydrophobicity on metallic planar and cylindrical inner surfaces

    NASA Astrophysics Data System (ADS)

    Hao, Xiuqing; Wang, Li; Lv, Danhui; Wang, Quandai; Li, Liang; He, Ning; Lu, Bingheng

    2015-01-01

    Recently, the construction of stable superhydrophobicity on metallic wetting surfaces has gained increasing attention due to its potential wide applications. In this paper, we propose an economic fabricating method, which not only is suitable for metallic planar surfaces, but also could be applied onto cylindrical inner surfaces. It mainly involves two steps: etching micro-concaves by a movable mask electrochemical micromachining (EMM) technique and fabricating nanopillars of ZnO by a hydrothermal method. Then the influences of surface morphology on the static and dynamic behaviors of water droplets are investigated. The energy loss during impact on the surfaces is quantified in terms of the restitution coefficient for droplets bouncing off the surfaces. For hierarchical structures with excellent superhydrophobicity (contact angle ≈180° and sliding angle ≤1°), the droplet bounces off the surface several times, superior to the droplet's response on single nanopillars (contact angle ≈165.8° and sliding angle ≈6.29°) where droplet bounces off only for limited a number of times, and even far better than the dynamics of a liquid droplet impinging on microstructures (contact angle ≈132.1° and sliding angle >90°) where droplet does not rebound and remains pinned. The highest elasticity is obtained on the hierarchical surface, where the restitution coefficient can be as large as 0.94. The fabricating method is then applied onto the cylindrical inner surface and the wetting behavior is confirmed to be consistent with the planar surface. This method, which can be generalized to any kind of solid electroconductive metal or other surfaces with different shapes, could find wide practical applications in self-cleaning surfaces, chemical industry, microfluidic devices, mechanical engineering and aviation.

  13. Alcohol demand and risk preference.

    PubMed

    Dave, Dhaval; Saffer, Henry

    2008-12-01

    Both economists and psychologists have studied the concept of risk preference. Economists categorize individuals as more or less risk-tolerant based on the marginal utility of income. Psychologists categorize individuals' propensity towards risk based on harm avoidance, novelty seeking and reward dependence traits. The two concepts of risk are related, although the instruments used for empirical measurement are quite different. Psychologists have found risk preference to be an important determinant of alcohol consumption; however economists have not included risk preference in studies of alcohol demand. This is the first study to examine the effect of risk preference on alcohol consumption in the context of a demand function. The specifications employ multiple waves from the Panel Study of Income Dynamics (PSID) and the Health and Retirement Study (HRS), which permit the estimation of age-specific models based on nationally representative samples. Both of these data sets include a unique and consistent survey instrument designed to directly measure risk preference in accordance with the economist's definition. This study estimates the direct impact of risk preference on alcohol demand and also explores how risk preference affects the price elasticity of demand. The empirical results indicate that risk preference has a significant negative effect on alcohol consumption, with the prevalence and consumption among risk-tolerant individuals being 6-8% higher. Furthermore, the tax elasticity is similar across both risk-averse and risk-tolerant individuals. This suggests that tax policies are as equally effective in deterring alcohol consumption among those who have a higher versus a lower propensity for alcohol use. PMID:19956353

  14. Human preference for individual colors

    NASA Astrophysics Data System (ADS)

    Palmer, Stephen E.; Schloss, Karen B.

    2010-02-01

    Color preference is an important aspect of human behavior, but little is known about why people like some colors more than others. Recent results from the Berkeley Color Project (BCP) provide detailed measurements of preferences among 32 chromatic colors as well as other relevant aspects of color perception. We describe the fit of several color preference models, including ones based on cone outputs, color-emotion associations, and Palmer and Schloss's ecological valence theory. The ecological valence theory postulates that color serves an adaptive "steering' function, analogous to taste preferences, biasing organisms to approach advantageous objects and avoid disadvantageous ones. It predicts that people will tend to like colors to the extent that they like the objects that are characteristically that color, averaged over all such objects. The ecological valence theory predicts 80% of the variance in average color preference ratings from the Weighted Affective Valence Estimates (WAVEs) of correspondingly colored objects, much more variance than any of the other models. We also describe how hue preferences for single colors differ as a function of gender, expertise, culture, social institutions, and perceptual experience.

  15. A Solid Core Heatpipe Reactor with Cylindrical Thermoelectric Converter Modules

    SciTech Connect

    Sayre, Edwin D.; Vaidyanathan, Sam

    2006-01-20

    A nuclear space power system that consists of a solid metal nuclear reactor core with heat pipes carrying energy to a cylindrical thermoelectric converter surrounding each of the heat pipes with a heat pipe radiator surrounding the thermoelectric converter is the most simple and reliable space power system. This means no single point of failure since each heat pipe and cylindrical converter is a separate power system and if one fails it will not affect the others. The heat pipe array in the solid core is designed so that if an isolated heat pipe or even two adjacent heat pipes fail, the remaining heat pipes will still transport the core heat without undue overheating of the uranium nitride fuel. The primary emphasis in this paper is on simplicity, reliability and fabricability of such a space nuclear power source. The core and heat pipes are made of Niobium 1% Zirconium alloy (Nb1Zr), with rhenium lined fuel tubes, bonded together by hot isostatic pressure (HIPing) and with sodium as the heat pipe working fluid, can be operated up to 1250K. The cylindrical thermoelectric converter is made by depositing the constituents of the converter around a Nb1%Zr tube and encasing it in a Nb 1% Zr alloy tube and HIPing the structure to get final bonding and to produce residual compressive stresses in all brittle materials in the converter. A radiator heat pipe filled with potassium that operates at 850K is bonded to the outside of the cylindrical converter for cooling. The solid core heat pipe and cylindrical converter are mated by welding during the final assembly. A solid core reactor with 150 heat pipes with a 0.650-inch (1.65 cm) ID and a 30-inch (76.2 cm) length with an output of 8 Watts per square inch as demonstrated by the SP100 PD2 cell tests will produce about 80 KW of electrical power. An advanced solid core reactor made with molybdenum 47% rhenium alloy, with lithium heat pipes and the PD2 theoretical output of 11 watts per square inch or advanced higher

  16. A Solid Core Heatpipe Reactor with Cylindrical Thermoelectric Converter Modules

    NASA Astrophysics Data System (ADS)

    Sayre, Edwin D.; Vaidyanathan, Sam

    2006-01-01

    A nuclear space power system that consists of a solid metal nuclear reactor core with heat pipes carrying energy to a cylindrical thermoelectric converter surrounding each of the heat pipes with a heat pipe radiator surrounding the thermoelectric converter is the most simple and reliable space power system. This means no single point of failure since each heat pipe and cylindrical converter is a separate power system and if one fails it will not affect the others. The heat pipe array in the solid core is designed so that if an isolated heat pipe or even two adjacent heat pipes fail, the remaining heat pipes will still transport the core heat without undue overheating of the uranium nitride fuel. The primary emphasis in this paper is on simplicity, reliability and fabricability of such a space nuclear power source. The core and heat pipes are made of Niobium 1% Zirconium alloy (Nb1Zr), with rhenium lined fuel tubes, bonded together by hot isostatic pressure, (HIPing) and with sodium as the heat pipe working fluid, can be operated up to 1250K. The cylindrical thermoelectric converter is made by depositing the constituents of the converter around a Nb1%Zr tube and encasing it in a Nb 1% Zr alloy tube and HIPing the structure to get final bonding and to produce residual compressive stresses in all brittle materials in the converter. A radiator heat pipe filled with potassium that operates at 850K is bonded to the outside of the cylindrical converter for cooling. The solid core heat pipe and cylindrical converter are mated by welding during the final assembly. A solid core reactor with 150 heat pipes with a 0.650-inch (1.65 cm) ID and a 30-inch (76.2 cm) length with an output of 8 Watts per square inch as demonstrated by the SP100 PD2 cell tests will produce about 80 KW of electrical power. An advanced solid core reactor made with molybdenum 47% rhenium alloy, with lithium heat pipes and the PD2 theoretical output of 11 watts per square inch or advanced higher

  17. Client Preference for a Disabled Counselor.

    ERIC Educational Resources Information Center

    Allen, Harry A., Jr.; Cohen, Marc S.

    1980-01-01

    Preference for an able-bodied v disabled counselor was rated across three problem areas by disabled and nondisabled volunteers. Data demonstrated that nondisabled persons preferred nondisabled counselors, and disabled persons preferred disabled counselors. (Author)

  18. Electromagnetic response of buried cylindrical structures for line current excitation

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Ponti, Cristina

    2013-04-01

    The Cylindrical-Wave Approach (CWA) rigorously solves, in the spectral domain, the electromagnetic forward scattering by a finite set of buried two-dimensional perfectly-conducting or dielectric objects [1]-[2]. In this technique, the field scattered by underground objects is represented in terms of a superposition of cylindrical waves. Use is made of the plane-wave spectrum [1] to take into account the interaction of such waves with the planar interface between air and soil, and between different layers eventually present in the ground [3]. Obstacles of general shape can be simulated through the CWA with good results, by using a suitable set of small circular-section cylinders [4]. Recently, we improved the CWA by facing the fundamental problem of losses in the ground [5]: this is of significant importance in remote-sensing applications, since real soils often have complex permittivity and conductivity, and sometimes also a complex permeability. While in previous works concerning the CWA a monochromatic or pulsed plane-wave incident field was considered, in the present work a different source of scattering is present: a cylindrical wave radiated by a line source. Such a source is more suitable to model the practical illumination field used in GPR surveys. The electric field radiated by the line current is expressed by means of a first-kind Hankel function of 0-th order. The theoretical solution to the scattering problem is developed for both dielectric and perfectly-conducting cylinders buried in a dielectric half-space. The approach is implemented in a Fortran code; an accurate numerical evaluation of the involved spectral integrals is performed, the highly-oscillating behavior of the homogeneous waves is correctly followed and evanescent contributions are taken into account. The electromagnetic field scattered in both air and ground can be obtained, in near- and far-field regions, for arbitrary radii and permittivity of the buried cylinders, as well as for

  19. A cylindrical model for rotational MHD instabilities in aluminum reduction cells

    NASA Astrophysics Data System (ADS)

    Munger, David; Vincent, Alain

    2008-08-01

    Large-scale horizontal vortices associated with deformations of the aluminum-electrolyte interface have been observed in operating aluminum reduction cells as well as in physical and numerical models. To expose their importance, we analyze a particular class of magnetohydrodynamic (MHD) interfacial instabilities which are induced by rotation. As we focus on a single vortex, a cylindrical geometry is preferred. Two analytical models are proposed. In a first model based on the MHD shallow-water approximation, we consider a vortex that has a solid rotation profile to obtain a wave equation and a dispersion relation. A more realistic second model includes a viscous rotation profile and the treatment of the base-state interface deformation. Energetics of the flow gives further insight on how an initial perturbation evolves as an oscillatory or a non-oscillatory instability, depending on the direction of rotation. We find that the mechanism at the very origin of these instabilities is neither due to a shear between the two layers—and are therefore not Kelvin Helmholtz instabilities—nor simply due to magnetic force alone, but rather to the indirect action of the centripetal pressure due to the rotation induced by magnetic force.

  20. The Allometry of Prey Preferences

    PubMed Central

    Kalinkat, Gregor; Rall, Björn Christian; Vucic-Pestic, Olivera; Brose, Ulrich

    2011-01-01

    The distribution of weak and strong non-linear feeding interactions (i.e., functional responses) across the links of complex food webs is critically important for their stability. While empirical advances have unravelled constraints on single-prey functional responses, their validity in the context of complex food webs where most predators have multiple prey remain uncertain. In this study, we present conceptual evidence for the invalidity of strictly density-dependent consumption as the null model in multi-prey experiments. Instead, we employ two-prey functional responses parameterised with allometric scaling relationships of the functional response parameters that were derived from a previous single-prey functional response study as novel null models. Our experiments included predators of different sizes from two taxonomical groups (wolf spiders and ground beetles) simultaneously preying on one small and one large prey species. We define compliance with the null model predictions (based on two independent single-prey functional responses) as passive preferences or passive switching, and deviations from the null model as active preferences or active switching. Our results indicate active and passive preferences for the larger prey by predators that are at least twice the size of the larger prey. Moreover, our approach revealed that active preferences increased significantly with the predator-prey body-mass ratio. Together with prior allometric scaling relationships of functional response parameters, this preference allometry may allow estimating the distribution of functional response parameters across the myriads of interactions in natural ecosystems. PMID:21998724

  1. Minimum weight design of ring and stringer stiffeners for axially compressed cylindrical shells with and without internal pressure

    NASA Technical Reports Server (NTRS)

    Block, D. L.

    1972-01-01

    Results of analytical study to determine desirable ring and stringer stiffener parameters and proportions for axially compressed stiffened isotropic cylinders with and without internal pressure are presented. This investigation examines the panel and general instability buckling modes of a stiffened cylindrical shell and from this determines desirable stiffener parameters and proportions. Classical buckling equations are used which retain the important effects of the stiffeners. The results determined by using the simpler classical buckling equations are then spot checked and verified using buckling equations which considered discrete ring stiffeners and nonlinear prebuckling deformations. For both rings and stringers, T-shaped stiffeners are preferable and the effects to stiffener shape are much more pronounced at low or zero values of the internal pressure parameter. Simple analytical expressions are developed and presented which express the stiffener area parameter, the ratio of stiffener area and elastics to shell wall area and elastic modulus, in terms of the cylinder geometry and internal pressure parameter.

  2. Social preferences in Rett syndrome.

    PubMed

    Djukic, Aleksandra; McDermott, Maria Valicenti

    2012-04-01

    Children with Rett syndrome manifest profound impairments in their ability to speak and use their hands, and exhibit a very limited repertoire of abilities to express themselves, to be neuropsychologically tested, and consequently to be understood. This study examined nonverbal cognitive abilities and visual preferences by analyzing the pattern of visual fixation in 49 girls with Rett syndrome, compared with a group of typical control subjects. The girls with Rett syndrome demonstrated a tendency toward socially weighted stimuli/social preferences. They looked at people, and into people's eyes. Eye tracking represents a feasible method to assess cognition, and provide insights into the burden of isolation of these children and the mismatch between their social preferences and incompetence, caused by movement disorder and apraxia. PMID:22490770

  3. Sculpture preferences and personality traits.

    PubMed

    Moffett, L A; Dreger, R M

    1975-02-01

    Factor analyzed the preference ratings of 70 male and 70 female undergraduates for 36 slides of sculpture. A principal factors solution with orthogonal rotations yielded 6 factors: ambiguous abstraction vs. controlled human realism, mildly distorted representation, emotional detachment, traditional portraiture vs. surrealism, highly distorted representation, and geometric abstraction. Some of these factors were similar to the Apollonian, the Dionysian, and the Pythagorean dimensions previously postualted by Nietzsche and Knapp. Preference scores for each factor were computed and correlated with scores on the 16 PF and with selected educational and physical variables. A few small, significant (p less than .05) correlations were found, supporting the hypothesis that artistic style preferences resemble the personality traits of the spectator. PMID:1113250

  4. [Ovipositional preference of Grapholitha molesta].

    PubMed

    Gong, Qing-Tao; Li, Su-Hong; Zhang, Kun-Peng; Wu, Hai-Bin; Liu, Wei; Zhang, Xue-Ping; Sun, Rui-Hong

    2014-09-01

    In order to gain better understanding of the oviposition preference of Grapholitha molesta, we studied the ovipositional preference on different host fruit leaves, different parts of peach bran- ches and different varieties of peach in simulated outdoor conditions. The adult ovipositional preference on the host fruit leaves was in descending order, i. e. peach > cherry > apple > plum > pear > crabapple > apricot, and 33.5% of eggs were laid on the peach leaves with the average number of egg on one peach leaf being 8.3. There were differences in egg distribution on both sides of the leaves in different hosts. The number of egg laid on the positive surface was more than on the reverse surface of apple and crabapple leaves, and vice versus for peach, plum, pear and apricot leaves, and 3.3 times more eggs were laid on the reverse surface of peach leaves than on the positive surface. The egg distribution had no significant difference on both sides of cherry leaves. The adult ovipositional preference on peach branches was in descending order of leaf > stipule > petiole > branch. The leaves were the major ovipositonal places with 88.7% of total eggs on. 72.5% of eggs were laid on the 10 leaves near the top unexpanded leaflets, and the maximum number was on the 3rd leaf accounting for 9.3%, while only 1.1% of eggs were laid on the peach leaves after 25th. The ovipositional preference on different peach fruits was in descending order of nectarine > flat peach > prunus persica. The density and characteristics of the hair on host fruits and leaves were the primary factors affecting the ovipositional preference. PMID:25757320

  5. Cylindrical Taylor states conserving total absolute magnetic helicity

    NASA Astrophysics Data System (ADS)

    Low, B. C.; Fang, F.

    2014-09-01

    The Taylor state of a three-dimensional (3D) magnetic field in an upright cylindrical domain V is derived from first principles as an extremum of the total magnetic energy subject to a conserved, total absolute helicity Habs. This new helicity [Low, Phys. Plasmas 18, 052901 (2011)] is distinct from the well known classical total helicity and relative total helicity in common use to describe wholly-contained and anchored fields, respectively. A given field B, tangential along the cylindrical side of V, may be represented as a unique linear superposition of two flux systems, an axially extended system along V and a strictly transverse system carrying information on field-circulation. This specialized Chandrasekhar-Kendall representation defines Habs and permits a neat formulation of the boundary-value problem (BVP) for the Taylor state as a constant-α force-free field, treating 3D wholly-contained and anchored fields on the same conceptual basis. In this formulation, the governing equation is a scalar integro-partial differential equation (PDE). A family of series solutions for an anchored field is presented as an illustration of this class of BVPs. Past treatments of the constant-α field in 3D cylindrical geometry are based on a scalar Helmholtz PDE as the governing equation, with issues of inconsistency in the published field solutions discussed over time in the journal literature. The constant-α force-free equation reduces to a scalar Helmholtz PDE only as special cases of the 3D integro-PDE derived here. In contrast, the constant-α force-free equation and the scalar Helmholtz PDE are absolutely equivalent in the spherical domain as discussed in Appendix. This theoretical study is motivated by the investigation of the Sun's corona but the results are also relevant to laboratory plasmas.

  6. Matching Learner Preference to Preferred Amounts of Instruction.

    ERIC Educational Resources Information Center

    Schnackenberg, Heidi L.; And Others

    Some research indicates that individuals learn more when given control over their instruction, while other data suggests that individuals learn less effectively when given control over their instruction. This document describes a study which investigated the effects of matching university-level learners with the amount of instruction they prefer.…

  7. The value of customer preference

    SciTech Connect

    Herig, C.; Houston, A.

    1996-05-01

    Customer preference (CP), or green pricing, may be the financial hedge for electric supply industry integration of photovoltaics. CP is currently defined as a voluntary contribution for energy generated with renewable resources. Several utilities have examined the CP financing of renewables through experimental or implemented programs and market research. This paper first expands the concept of customer preference to include both voluntary and involuntary customer contributions. It then categorizes the features of existing and proposed CP programs. The connections between these features and market research and marketing strategies for new product development from a competitive industry are analyzed.

  8. Distributional preferences and competitive behavior.

    PubMed

    Balafoutas, Loukas; Kerschbamer, Rudolf; Sutter, Matthias

    2012-06-01

    We study experimentally the relationship between distributional preferences and competitive behavior. We find that spiteful subjects react strongest to competitive pressure and win in a tournament significantly more often than efficiency-minded and inequality averse subjects. However, when given the choice between a tournament and a piece rate scheme, efficiency-minded subjects choose the tournament most often, while spiteful and inequality averse subjects avoid it. When controlling for distributional preferences, risk attitudes and past performance, the gender gap in the willingness to compete is no longer significant, indicating that gender-related variables explain why twice as many men as women self-select into competition.

  9. WSRC Am/Cm Stabilization Program - Cylindrical Induction Melter Studies

    SciTech Connect

    Henderson, W.A.

    1999-02-17

    1.1.1 Kilogram quantities of Americium and Curium isotopes (Am/Cm) have been produced at the U.S. Department of Energy (DOE), Savannah River Site (SRS), Aiken, South Carolina. These highly radioactive isotopes have both government and commercial value and are currently stored as a nitric acid solution at the Savannah River Site. The material represents the largest source term in the F canyon at SRS. It is proposed that the Am/Cm material be vitrified to stabilize the material for long term, recoverable storage. This paper reviews the progress made during the process development phase of this program using the Cylindrical Induction Melter.

  10. Axial jet mixing of ethanol in cylindrical containers during weightlessness

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.

    1979-01-01

    An experimental program was conducted to examine the liquid flow patterns that result from the axial jet mixing of ethanol in 10-centimeter-diameter cylindrical tanks in weightlessness. A convex hemispherically ended tank and two Centaur liquid-hydrogen-tank models were used for the study. Four distinct liquid flow patterns were observed to be a function of the tank geometry, the liquid-jet velocity, the volume of liquid in the tank, and the location of the tube from which the liquid jet exited.

  11. Preliminary analysis techniques for ring and stringer stiffened cylindrical shells

    NASA Technical Reports Server (NTRS)

    Graham, J.

    1993-01-01

    This report outlines methods of analysis for the buckling of thin-walled circumferentially and longitudinally stiffened cylindrical shells. Methods of analysis for the various failure modes are presented in one cohesive package. Where applicable, more than one method of analysis for a failure mode is presented along with standard practices. The results of this report are primarily intended for use in launch vehicle design in the elastic range. A Microsoft Excel worksheet with accompanying macros has been developed to automate the analysis procedures.

  12. Rotating cylindrical wormholes: a no-go theorem

    NASA Astrophysics Data System (ADS)

    Bronnikov, K. A.

    2016-02-01

    The existing solutions to the Einstein equations describing rotating cylindrical wormholes are not asymptotically flat and therefore cannot describe wormhole entrances as local objects in our Universe. To overcome this difficulty, flat asymptotic regions are added to wormhole solutions by matching them at some surfaces ∑- and ∑+. It is shown, however, that if the wormhole solution is obtained for scalar fields with arbitrary potentials, possibly interacting with an azimuthal electric or magnetic field, then the matter content of one or both thin shells appearing on ∑- and ∑+ violate the Null Energy Condition. Thus exotic matter is still necessary for obtaining a twice asymptotically flat wormhole.

  13. Polar POLICRYPS diffractive structures generate cylindrical vector beams

    SciTech Connect

    Alj, Domenico; Caputo, Roberto Umeton, Cesare; Paladugu, Sathyanarayana; Volpe, Giovanni

    2015-11-16

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.

  14. Entropic selectivity of binary mixtures in cylindrical pores

    NASA Astrophysics Data System (ADS)

    González, A.; White, J. A.; Román, F. L.; Velasco, S.

    2011-10-01

    We show that a simple model consisting of a binary hard-sphere mixture in a narrow cylindrical pore can lead to strong size selectivity by considering a situation where each species of the mixture sees a different radius of the cylinder. Two mechanisms are proposed to explain the observed results depending on the radius of the cylinder: for large radii the selectivity is driven by an enhancement of the depletion forces at the cylinder walls whereas for the narrowest cylinders excluded-volume effects lead to a shift of the effective chemical potential of the particles in the pore.

  15. Testing of a single cell cylindrical inverted converter

    NASA Astrophysics Data System (ADS)

    Desplat, Jean-Louis

    2002-01-01

    A Cylindrical Inverted Converter (CIC), made by Lutch, with the emitter on the outside was tested in a vacuum furnace supplying radiant heat to the emitter outer surface. The collector, coaxial with the emitter, has an integral heat pipe with sodium as the working fluid, which carries the heat dissipated in the collector to a radiating area with a coating of alumina and sub-stoichiometric TiO2. The CIC is a proof-of-principle device which will lead to the development of multi-cell inverted converter assemblies for space solar power systems. The thermionic performance at emitter temperatures of 1800 and 1900 K is presented. .

  16. A new cylindrical drift chamber for the MEG II experiment

    NASA Astrophysics Data System (ADS)

    Baldini, A. M.; Baracchini, E.; Berretta, L.; Bianucci, S.; Cavoto, G.; Chiarello, G.; Chiri, C.; Cei, F.; Corvaglia, A.; Dussoni, S.; Fahrni, D.; Galli, L.; Grancagnolo, F.; Grassi, M.; Hofer, A.; Hildebrandt, M.; Ignatov, F.; Miccoli, A.; Nicolò, D.; Orsini, A.; Panareo, M.; Pepino, A.; Pinto, C.; Piredda, G.; Signorelli, G.; Raffaelli, F.; Recchia, L.; Renga, F.; Ripiccini, E.; Tassielli, G.; Tazzioli, A.; Tenchini, F.; Venturini, M.; Voena, C.; Zullo, A.

    2016-07-01

    A new cylindrical drift chamber is currently under construction for the MEG II experiment. The chamber is meant to track low momentum positrons from μ+ decays to search for μ+ →e+ γ events. The detector is segmented in very small drift cells, placed in stereo configuration and operated in a helium-isobutane gas mixture. The use of thin aluminium wires and light gas mixture set the total radiation length of the chamber to only 1.6 ×10-3X0 per track turn allowing for a momentum resolution of ~120 keV/c.

  17. Apparatus for scanning the surface of a cylindrical body

    NASA Technical Reports Server (NTRS)

    Nakich, R. B.; Woodbury, R. C. (Inventor)

    1974-01-01

    A laser scanning system for providing a two-dimensional display of a cylindrical surface, such as to display striae of a fired bullet is described. The cylinder is scanned along its axis by vibrating one mirror in the laser beam path, and is scanned in a direction normal to its axis by vibrating a second mirror in a direction normal to the first or by rotating the bullet. Scan control signals are adjusted in phase to produce a synchronized display of a video signal obtained from detection of scattered light from the surface thus scanned by a laser beam.

  18. Formation of prominences by condensation modes in magnetized cylindrical plasmas

    NASA Technical Reports Server (NTRS)

    An, C.-H.

    1985-01-01

    Condensation modes in a magnetized cylindrical plasma are studied to shed light on the formation and stability of solar prominences. A rigorous mathematical derivation of the perturbation equation is developed, and the effect of field twist on the stability is studied for an equilibrium with uniform field twist, in which temperature increases, but density does not, as pressure increases. The results imply that prominences may form in globally magnetohydrodynamic-stable magnetic loops with very low field twist. Also, prominences are more likely to form in a region of weaker area-averaged magnetic field.

  19. Cylindrical plasmas generated by an annular beam of ultraviolet light

    SciTech Connect

    Thomas, D. M.; Allen, J. E.

    2015-07-15

    We investigate a cylindrical plasma system with ionization, by an annular beam of ultraviolet light, taking place only in the cylinder's outer region. In the steady state, both the outer and inner regions contain a plasma, with that in the inner region being uniform and field-free. At the interface between the two regions, there is an infinitesimal jump in ion density, the magnitude approaching zero in the quasi-neutral (λ{sub D} → 0) limit. The system offers the possibility of producing a uniform stationary plasma in the laboratory, hitherto obtained only with thermally produced alkali plasmas.

  20. Finite-amplitude waves in cylindrical lined ducts

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Tsai, M.-S.

    1974-01-01

    A second-order uniformly valid expansion is obtained for nonlinear waves propagating in a cylindrical duct lined with a point-reacting acoustic material that consists of a porous sheet followed by honey-comb cavities and backed by the impervious walls of the duct. The effect of the liner is taken into account by coupling the waves in the duct with those in the liner. As in the two-dimensional case, the nonlinearity increases the attenuation rate at all frequencies except in narrow bandwidths around the resonant frequencies, irrespective of the geometrical dimensions of the liner or the acoustic properties of the porous sheet.

  1. Application of cylindrical Langmuir probes to streaming plasma diagnostics.

    NASA Technical Reports Server (NTRS)

    Segall, S. B.; Koopman, D. W.

    1973-01-01

    The current-voltage characteristics of cylindrical probes in a high velocity collisionless plasma flow have been investigated experimentally and theoretically. The plasma was generated by a focused laser pulse incident on a metallic target in vacuum. An analysis, developed from a stationary plasma analog to the flowing case, demonstrated a failure of plasma shielding of probe potential in the electron attracting region. Modifications of relatively simple previous treatments were found to be valid for computing electron current to a probe. The electron characteristics derived from the present analysis agree well with experimental results. The ion and electron portions of the characteristics are consistent with each other and with independent diagnostic measurements.

  2. Measuring cylindrically symmetric refractive-index profiles: a method.

    PubMed

    Gregoris, D; Iizuka, K

    1983-02-01

    This paper describes a new nondestructive method to measure cylindrically symmetric refractive-index profiles of transparent cylinders. The technique is based on the measurement of the axial displacement of rays that are refracted within the cylinder. Three different types of index profile were experimentally determined. Profile errors of better than one part in 10(3) were achieved using very modest equipment. The effects of certain experimental parameters on the profile accuracy are noted. The technique may be applied to the characterization of optical fiber preforms and graded-index rod lenses. PMID:18195804

  3. An experimental investigation of flame behavior during cylindrical vessel explosions

    SciTech Connect

    Starke, R.; Roth, P.

    1986-12-01

    The propagation of premixed flames centrally ignited at one of the end flanges of a closed cylindrical vessel and the flame-induced fluid flow have been investigated in the present study. Photographic records show that under specific geometrical conditions the flame exhibits a cone form with a backward directed top, called ''tulip'' -shaped. This appears after the flame has lost a main part of its area by side wall quenching. With a laser-Doppler anemometer the instantaneous flow velocity during the short explosion process was measured together with pressure records.

  4. An experimental investigation of flame behavior during cylindrical vessel explosions

    NASA Astrophysics Data System (ADS)

    Starke, R.; Roth, P.

    1986-12-01

    The propagation of premixed flames centrally ignited at one of the end flanges of a closed cylindrical vessel and the flame-induced flow have been investigated. Photographic records show that under specific geometrical conditions the flame exhibits a cone form with a backward directed top, called tulip-shaped. This appears after the flame has lost a main part of its area by side wall quenching. The instantaneous flow velocity during the short explosion process was measured, together with pressure records, with an LDV. An analogy to the experiments of Markstein (1964), is shown, and the explanations of several authors for the 'tulip' formation are given.

  5. Optimization of multilayer cylindrical cloaks using genetic algorithms and NEWUOA

    NASA Astrophysics Data System (ADS)

    Sakr, Ahmed A.; Abdelmageed, Alaa K.

    2016-06-01

    The problem of minimizing the scattering from a multilayer cylindrical cloak is studied. Both TM and TE polarizations are considered. A two-stage optimization procedure using genetic algorithms and NEWUOA (new unconstrained optimization algorithm) is adopted for realizing the cloak using homogeneous isotropic layers. The layers are arranged such that they follow a repeated pattern of alternating DPS and DNG materials. The results show that a good level of invisibility can be realized using a reasonable number of layers. Maintaining the cloak performance over a finite range of frequencies without sacrificing the level of invisibility is achieved.

  6. Self shielding in cylindrical fissile sources in the APNea system

    SciTech Connect

    Hensley, D.

    1997-02-01

    In order for a source of fissile material to be useful as a calibration instrument, it is necessary to know not only how much fissile material is in the source but also what the effective fissile content is. Because uranium and plutonium absorb thermal neutrons so Efficiently, material in the center of a sample is shielded from the external thermal flux by the surface layers of the material. Differential dieaway measurements in the APNea System of five different sets of cylindrical fissile sources show the various self shielding effects that are routinely encountered. A method for calculating the self shielding effect is presented and its predictions are compared with the experimental results.

  7. Polar POLICRYPS diffractive structures generate cylindrical vector beams

    NASA Astrophysics Data System (ADS)

    Alj, Domenico; Paladugu, Sathyanarayana; Volpe, Giovanni; Caputo, Roberto; Umeton, Cesare

    2015-11-01

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.

  8. Infinitesimal structure of inverse pinch effect cylindrical MHD shocks

    SciTech Connect

    Baty, Roy S; Stanescu, Dan; Tucker, Don H

    2008-01-01

    Nonstandard analysis is used to derive the relationships between the jump functions for density, pressure, velocity and magnetic field within a diverging cylindrical magnetohydrodynamic shock caused by the inverse pinch effect. The shock is assumed to have infinitesimal thickness. The obtained relationships allow explicit numerical constructions of the shock structure once the variation in one variable, here chosen to be the density, is specified. The shapes thus constructed offer additional insight into the physics of such shock waves from a perspective which would be extremely difficult to investigate experimentally.

  9. 5 CFR 337.304 - Veterans' preference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Veterans' preference. 337.304 Section 337... Alternative Rating and Selection Procedures § 337.304 Veterans' preference. In this subpart: (a) Veterans' preference must be applied as prescribed in 5 U.S.C. 3319(b) and (c)(2); (b) Veterans' preference points...

  10. 13 CFR 120.925 - Preferences.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Preferences. 120.925 Section 120... Loan Program (504) Third Party Loans § 120.925 Preferences. No Third Party Lender shall establish a Preference. (See § 120.10 for a definition of Preference.)...

  11. 24 CFR 904.122 - Statutory preferences.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... preferences. In selecting applicants for assistance under this part, the LHA must give preference, in accordance with the authorized preference requirements described in 24 CFR 5.410 through 5.430... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Statutory preferences....

  12. 4 CFR 2.6 - Veterans' preference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Veterans' preference. 2.6 Section 2.6 Accounts GOVERNMENT ACCOUNTABILITY OFFICE PERSONNEL SYSTEM PURPOSE AND GENERAL PROVISION § 2.6 Veterans' preference. (a) GAO will provide preference, for any individual who would be a preference eligible in the executive branch, in...

  13. Morphologies of poly(cyclohexadiene) diblock copolymers

    SciTech Connect

    Kumar, Rajeev; Mays, Jimmy; Sides, Scott; Goswami, Monojoy; Sumpter, Bobby G; Hong, Kunlun; Avgeropoulos, Apostolos; Russell, Thomas P; Gido, Samuel; Tsoukatos, Thodoris; Beyer, Fredrick

    2012-01-01

    Concerted experimental and theoretical investigations have been carried out to understand the micro-phase separation in diblock copolymer melts containing poly (1,3-cyclohexadiene), PCHD, as one of the constituents. In particular, we have studied diblock copolymer melts containing polystyrene (PS), polybutadiene (PB), and polyisoprene (PI) as the second block. We have systematically varied the ratio of 1,2- /1,4-microstructures of poly (1,3-cyclohexadiene) to tune the conformational asymmetry between the two blocks and characterized the effects of these changes on the morphologies using transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). Our experimental investigations reveal that the melts of PCHD-b-PB, PCHD-b-PS and PCHD-b-PI containing nearly equal fractions of each component and high percentage of 1,4-microstructures in the PCHD block form cylindrical rather than lamellar morphologies as expected in symmetric diblock copolymers. In contrast, the morphologies of PCHD-b-PB, PCHD-b-PS and PCHD-b-PI containing PCHD block with higher 1,2-microstructure are found to be disordered at 110 C. The change in the morphological behavior is in good agreement with our numerical calculations using the random phase approximation and self-consistent field theory for conformationally asymmetric diblock copolymer melts. Also, the effects of composition fluctuations are studied by extending the Brazovskii-Leibler-Fredrickson-Helfand (J. Chem. Phys. 87, 697 (1987)) theory to conformationally asymmetric diblock copolymer melts. These results allow the understanding of the underlying self-assembly process that highlights the importance of the conformational asymmetry in tuning the morphologies in block copolymers.

  14. [Neotropical plant morphology].

    PubMed

    Pérez-García, Blanca; Mendoza, Aniceto

    2002-01-01

    An analysis on plant morphology and the sources that are important to the morphologic interpretations is done. An additional analysis is presented on all published papers in this subject by the Revista de Biología Tropical since its foundation, as well as its contribution to the plant morphology development in the neotropics.

  15. Training Implications of Work Preferences.

    ERIC Educational Resources Information Center

    Margerison, C. J.; And Others

    1978-01-01

    An important factor in job choice, both at the start of and during one's career, is one's psychological makeup, which must be taken into account in training and development programs. The authors relate the Jungian introvert-extrovert, judgment-perception theories to work and management, presenting data from a management work preferences sampling.…

  16. Preference Reversal in Multiattribute Choice

    ERIC Educational Resources Information Center

    Tsetsos, Konstantinos; Usher, Marius; Chater, Nick

    2010-01-01

    A central puzzle for theories of choice is that people's preferences between options can be reversed by the presence of decoy options (that are not chosen) or by the presence of other irrelevant options added to the choice set. Three types of reversal effect reported in the decision-making literature, the attraction, compromise, and similarity…

  17. Bad Arguments Defending Racial Preference

    ERIC Educational Resources Information Center

    Cohen, Carl

    2008-01-01

    Professor Cohen describes the arduous path to the passage of Proposition 2 in Michigan in 2006. In considering the reasons for its victory, he shows how claims (sometimes well-intended) "for" preferences rest on truly bad arguments. (Contains 8 footnotes.)

  18. Ethnicity and Children's TV Preferences.

    ERIC Educational Resources Information Center

    Eastman, Harvey A.; Liss, Marsha B.

    1980-01-01

    A survey of California intermediate-grade children revealed that Anglo and Hispanic children showed a strong preference for action/adventure shows, while Black children chose situation comedies at more than twice the rate of the other ethnic groups. Other differences were observed between ethnic groups and between sexes within ethnic groups. (GT)

  19. Cylindrical acoustical holography applied to full-scale jet noise.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; Krueger, David W; James, Michael M

    2014-09-01

    Near-field acoustical holography methods are used to predict sound radiation from an engine installed on a high-performance military fighter aircraft. Cylindrical holography techniques are an efficient approach to measure the large and complex sound fields produced by full-scale jets. It is shown that a ground-based, one-dimensional array of microphones can be used in conjunction with a cylindrical wave function field representation to provide a holographic reconstruction of the radiated sound field at low frequencies. In the current work, partial field decomposition methods and numerical extrapolation of data beyond the boundaries of the hologram aperture are required prior to holographic projection. Predicted jet noise source distributions and directionality are shown for four frequencies between 63 and 250 Hz. It is shown that the source distribution narrows and moves upstream, and that radiation directionality shifts toward the forward direction, with increasing frequency. A double-lobe feature of full-scale jet radiation is also demonstrated. PMID:25190387

  20. Rotational statistics in dense granular flows of smooth cylindrical particles

    NASA Astrophysics Data System (ADS)

    Olafsen, Jeffrey; Jantzi, Jacob

    2011-03-01

    We report the results of an experiment to investigate the dissipation in the rotational degree of freedom for smooth cylindrical particles in a dense, driven granular flow. The flow is studied in a rotating drum of radius R = 30 cm for particles of radius r = 0.635 cm while the cell is rotated at speeds between 0.25 and 0.75 Hz. The 2D geometry of the experimental design allows for the measurement of two translational degrees of freedom as well as the rotation of the disks within the driven flow. The rotational velocity statistics demonstrate non-Gaussian behavior as well as a significant amount of energy being dissipated within the flow via the tangential friction between the particles. The results of this experiment are significant in that many driven granular experiments use smooth cylindrical or spherical particles to investigate granular dynamics, but the contribution from the rotational degrees of freedom are often unmeasured. A novel imaging technique is used to extract both the translational and rotational velocity statistics to a high degree of precision in the entire cell during the experiment.

  1. Cylindrical diffractive lenses recorded on PVA/AA photopolymers

    NASA Astrophysics Data System (ADS)

    Fernández, R.; Gallego, S.; Márquez, A.; Navarro-Fuster, V.; Francés, J.; Neipp, C.; Beléndez, A.; Pascual, I.

    2016-04-01

    Photopolymers are optical recording materials appealing for many different applications such as holography, data storage, interconnectors, solar concentrations, or wave-guides fabrication. Recently the capacity of photopolymers to record diffractive optical elements (DOE's) has been investigated. Different authors have reported proposes to record DOE like fork gratings, photonics structures, lenses, sinusoidal, blazed or fork gratings. In these experiments there are different experimental set-ups and different photopolymers. In this work due to the improvement in the spatial light modulation technology together with the photopolymer science we propose a recording experimental system of DOE using a Liquid Cristal based on Silicon (LCoS) display as a master to store complex DOE like cylindrical lenses. This technology permits us an accurate control of the phase and the amplitude of the recording beam, with a very small pixel size. The main advantage of this display is that permit us to modify the DOE automatically, we use the software of the LCoS to send the voltage to each pixel In this work we use a photopolymer composed by acrylamide (AA) as polymerizable monomer and polyvinyl alcohol (PVA). We use a coverplated and index matched photopolymer to avoid the influence of the thickness variation on the transmitted light. In order to reproduce the material behaviour during polymerization, we have designed our model to simulate cylindrical lenses and used Fresnel propagation to simulate the light propagation through the DOE and analyze the focal plane and the properties of the recorded lenses.

  2. An evaluation of active noise control in a cylindrical shell

    NASA Technical Reports Server (NTRS)

    Silcox, R. J.; Lester, H. C.; Abler, S. B.

    1987-01-01

    The physical mechanisms governing the use of active noise control in an extended volume of a cylindrical shell are discussed. Measured data was compared with computer results from a previously derived analytical model based on an infinite shell theory. For both the analytical model and experiment, the radiation of the external monopoles is coupled to the internal acoustic field through the radial displacement of the thin, elastic cylindrical shell. An active noise control system was implemented in the cylinder using a fixed array of discrete monopole sources, all of which lie in the plane of the exterior noise sources. Good agreement between measurement and prediction was obtained for both internal pressure response and overall noise reduction. Attenuations in the source plane greater than 15 dB were recorded along with a uniformly quieted noise environment over the entire length of the experimental model. Results indicate that for extended axial forcing distributions or very low shell damping, axial arrays of control sources may be required. Finally, the Nyquist criteria for the number of azimuthal control sources is shown to provide for effective control over the full cylinder cross section.

  3. An evaluation of active noise control in a cylindrical shell

    NASA Technical Reports Server (NTRS)

    Silcox, R. J.; Lester, H. C.; Abler, S. B.

    1989-01-01

    The physical mechanisms governing the use of active noise control in an extended volume of a cylindrical shell are discussed. Measured data was compared with computer results from a previously derived analytical model based on an infinite shell theory. For both the analytical model and experiment, the radiation of the external monopoles is coupled to the internal acoustic field through the radial displacement of the thin, elastic cylindrical shell. An active noise control system was implemented in the cylinder using a fixed array of discrete monopole sources, all of which lie in the plane of the exterior noise sources. Good agreement between measurement and prediction was obtained for both internal pressure response and overall noise reduction. Attenuations in the source plane greater than 15 dB were recorded along with a uniformly quieted noise environment over the entire length of the experimental model. Results indicate that for extended axial forcing distributions or very low shell damping, axial arrays of control sources may be required. Finally, the Nyquist criteria for the number of azimuthal control sources is shown to provide for effective control over the full cylinder cross section.

  4. Experimental fatigue life investigation of cylindrical thrust chambers

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.

    1977-01-01

    Twenty-two cylindrical test sections of a cylindrical rocket thrust chamber were fabricated and 21 of them were cycled to failure to explore the failure mechanisms, determine the effects of wall temperature on cyclic life, and to rank the material life characteristics for comparison with results from isothermal tests of 12 alloys at 538 C. Cylinder liners were fabricated from OFHC copper, Amzirc, and NAR1loy-Z. Tests were conducted at a chamber pressure of 4.14 MW/sq m using hydrogen-oxygen propellants at an oxidant-fuel ratio of 6.0, which resulted in an average throat heat flux of 54 MW/sq m. The cylinders were cooled with liquid hydrogen at an average rate of 0.91 Kg/sec. All failures were characterized by a thinning of the cooling channel wall at the centerline and eventual failure by tensile rupture. Cyclic life rankings of the materials based on temperature do not agree with published rankings based on uniaxial, isothermal strain tests.

  5. On the optimal pretensioning of cylindrical and spherical pressure vessels

    SciTech Connect

    Kalamkarov, A.L.; Drozdov, A.D.

    1995-11-01

    Filament winding of pressure vessels and pipes is always realized with some pretensioning, and some external loads may be applied. It is important to determine such an optimal preload regime that ensures the maximum load-carrying capacity of the vessel subject to internal pressure. In the present study, the optimal preload distribution is analyzed in the filament winding fabrication of the cylindrical or spherical pressure vessels that are treated as growing elastic solids subjected to aging. In the case of cylindrical vessels, the dependence of the optimal preload intensity versus the polar radius is obtained for both nonaging and aging material of the fibers. In the case of spherical pressure vessels, the optimal regime of internal pressure applied during the winding process is obtained. The optimal loading of a spherical vessel at both infinitesimal and finite strains is analyzed. The new solutions obtained and the recommendations formulated are of a special practical importance for the optimal design and fabrication of the composite pressure vessels and pipes.

  6. Finite-amplitude dynamics of coupled cylindrical menisci.

    PubMed

    Cox, B L; Steen, P H

    2011-10-01

    The cylindrical meniscus is a liquid/gas interface of circular-cap cross-section constrained along its axis and bounded by end-planes. The inviscid motions of coupled cylindrical menisci are studied here. Motions result from the competition between inertia and surface tension forces. Restriction to shapes that are of circular-cap cross-section leads to an ordinary differential equation (ode) model, with the advantage that finite-amplitude stability can be examined. The second-order nonlinear ode model has a Hamiltonian structure, showing dynamical behavior like the Duffing-oscillator. The energy landscape has either a single- or double-welled potential depending on the extent of volume overfill. Total liquid volume is a bifurcation parameter, as in the corresponding problem for coupled spherical-cap droplets. Unlike the spherical-cap problem, however, axial disturbances can also destabilize, depending on overfill. For large volumes, previously known axial stability results are applied to find the limit at which axial symmetry is lost and comparison is made to the Plateau-Rayleigh limit. PMID:21723560

  7. A cylindrical specimen holder for electron cryo-tomography.

    PubMed

    Palmer, Colin M; Löwe, Jan

    2014-02-01

    The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the "missing wedge" problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. PMID:24275523

  8. Cylindrical boiloff calorimeters for testing of thermal insulation systems

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Johnson, W. L.; Meneghelli, B. J.; Coffman, B. E.

    2015-12-01

    Cryostats have been developed and standardized for laboratory testing of thermal insulation systems in a cylindrical configuration. Boiloff calorimetry is the measurement principle for determining the effective thermal conductivity (ke) and heat flux (q) of a test specimen at a fixed environmental condition (boundary temperatures, cold vacuum pressure, and residual gas composition). Through its heat of vaporization, liquid nitrogen serves as the energy meter, but the design is adaptable for various cryogens. The main instrument, Cryostat-100, is thermally guarded and directly measures absolute thermal performance. A cold mass assembly and all fluid and instrumentation feedthroughs are suspended from a lid of the vacuum canister; and a custom lifting mechanism allows the assembly and specimen to be manipulated easily. Each of three chambers is filled and vented through a single feedthrough for minimum overall heat leakage. The cold mass design precludes direct, solid-conduction heat transfer (other than through the vessel's outer wall itself) from one liquid volume to another, which is critical for achieving very low heat measurements. The cryostat system design details and test methods are discussed, as well as results for select thermal insulation materials. Additional cylindrical boiloff calorimeters and progress toward a liquid hydrogen apparatus are also discussed.

  9. Residual Stress Measurements of Explosively Clad Cylindrical Pressure Vessels

    SciTech Connect

    Taylor, Douglas J; Watkins, Thomas R; Hubbard, Camden R; Hill, M. R.; Meith, W. A.

    2012-01-01

    Tantalum refractory liners were explosively clad into cylindrical pressure vessels, some of which had been previously autofrettaged. Using explosive cladding, the refractory liner formed a metallurgical bond with the steel of the pressure vessel at a cost of induced strain. Two techniques were employed to determine the residual stress state of the clad steel cylinders: neutron diffraction and mechanical slitting. Neutron diffraction is typically nondestructive; however, due to attenuation along the beam path, the cylinders had to be sectioned into rings that were nominally 25 mm thick. Slitting is a destructive method, requiring the sectioning of the cylindrical samples. Both techniques provided triaxial stress data and useful information on the effects of explosive cladding. The stress profiles in the hoop and radial directions were similar for an autofrettaged, nonclad vessel and a clad, nonautofrettaged vessel. The stress profiles in the axial direction appeared to be different. Further, the data suggested that residual stresses from the autofrettage and explosive cladding processes were not additive, in part due to evidence of reverse yielding. The residual stress data are presented, compared and discussed.

  10. Optimisation of a Horizontal Capsule Transporting Pipeline carrying Cylindrical Capsules

    NASA Astrophysics Data System (ADS)

    Asim, Taimoor; Mishra, Rakesh; Kollar, Laszlo; Ubbi, Kuldip

    2012-05-01

    Pipelines carrying fluids and slurries are quite common. The third-generation pipelines carrying spherical or cylindrical capsules (hollow containers) filled with minerals or other materials including hazardous liquids are rather a new concept. These pipelines need to be designed optimally for commercial viability. An optimal design of such a pipeline results in minimum pressure drop in the pipeline. This corresponds to minimum head loss and hence minimum pumping power required to drive the capsules and the transporting fluid. This study uses a rigorous approach to predict pumping cost based on Computational Fluid Dynamics (CFD) and hence optimize the design of the capsule transporting pipelines. Pressure drop relationship developed has been incorporated to calculate the pumping requirements for the system. Based on the least-cost principle, a methodology has been developed for the determination of the optimal diameter of cylindrical capsule carrying hydraulic pipeline. This procedure can be applied to obtain the optimal size of the capsule pipeline for minimum pumping and capital costs.

  11. Transurethral canine prostatectomy with a cylindrically diffusing fiber

    NASA Astrophysics Data System (ADS)

    Cromeens, Douglas M.; Johnson, Douglas E.; Price, Roger E.

    1994-09-01

    In this study, visual laser ablation of the prostate (VLAP) was performed on eight mongrel dogs utilizing a cylindrically diffusing fiber attached to a 1.06 neodymium:YAG (Nd:YAG) laser. All dogs received one continuous dose totaling 15,000 J (25 W for 10 min) applied from the vesical neck to the colliculus seminalis. There was no visible hemorrhage from the lasing intraoperatively in any dog. Postoperative recovery was uneventful with no dog experiencing urinary incontinence and only one incident of dysuria with urinary retention during their observation period. Gross and histopathologic examinations of serial sections of the prostate were performed from 2 hours to 7 weeks postoperatively and demonstrated a consistent spherical zone of destruction 2.9 cm (average) in diameter. We believe the simplified fiber placement and complete lack of postoperative complications in this small group of dogs suggest that the cylindrically diffusing fiber offers significant advantage over laterally deflecting fibers for transurethral prostatectomies in the dog.

  12. Investigation of a scanned cylindrical ultrasound system for breast hyperthermia.

    PubMed

    Ju, Kuen-Cheng; Tseng, Li-Te; Chen, Yung-Yaw; Lin, Win-Li

    2006-02-01

    This paper investigates the feasibility of a scanned cylindrical ultrasound system for producing uniform heating from the central to the superficial portions of the breast or localized heating within the breast at a specific location. The proposed system consists of plane ultrasound transducer(s) mounted on a scanned cylindrical support. The breast was immersed in water and surrounded by this system during the treatment. The control parameters considered are the size of the transducer, the ultrasound frequency, the scan angle and the shifting distance between the axes of the breast and the system. Three-dimensional acoustical and thermal models were used to calculate the temperature distribution. Non-perfused phantom experiments were performed to verify the simulation results. Simulation results indicate that high frequency ultrasound could be used for the superficial heating, and the scan angle of the transducer could be varied to obtain an appropriate high temperature region to cover the desired treatment region. Low frequency ultrasound could be used for deep heating and the high temperature region could be moved by shifting the system. In addition, a combination of low and high frequency ultrasound could result in a portion treatment from the central to the superficial breast or an entire breast treatment. Good agreement was obtained between non-perfused experiments and simulation results. The findings of this study can be used to determine the effects of the control parameters of this system, as well as to select the optimal parameters for a specific treatment.

  13. A cylindrical specimen holder for electron cryo-tomography

    PubMed Central

    Palmer, Colin M.; Löwe, Jan

    2014-01-01

    The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the “missing wedge” problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. PMID:24275523

  14. RBF network with cylindrical coordinate features for multispectral MRI segmentation

    NASA Astrophysics Data System (ADS)

    Yanez-Suarez, Oscar; Valdes-Cristerna, Raquel; Medina, Veronica; Barrios, Fernando A.

    2001-07-01

    Spatial quantification of relevant brain structures, is usually carried out through the analysis of a stack of magnetic resonance (MR) images by means of some image segmentation approach. In this paper, multispectral MR imaging segmentation based on a modified radial-basis function network is presented. Multispectral MR image sets are constructed by collecting data for the same anatomical structures under T1, T2 and FLAIR excitation sequences. Classification features for the network are extended beyond the normalized intensities in each band to also include the cylindrical coordinates of the image pixels. Such coordinates are determined within a reference image space upon which all targets are registered to. The network classifier was designed to differentiate three structures: gray matter, white matter and image background. The classification layer was also modified to accommodate the pixel cylindrical coordinates as inputs. With the designed network, background pixels are correctly classified for all cases, while gray and white matter pixels are misclassified for about 10% of the cases in the validation set. The source of these errors can be traced to smooth transitions in the output nodes for these two classes. Thresholding the outputs of these nodes to include a reject class reduces the misclassification error. The small and simple architecture of the network shows good generalization, and thus good segmentation over unseen stacks.

  15. Acoustic Microscope Inspection of Cylindrical Butt Laser Welds

    NASA Astrophysics Data System (ADS)

    Maev, R. Gr.; Severin, F.

    Presented work was made in order to develop the ultrasound technique for quality control of critical butt laser welds in automotive production. The set of powertrain assemblies was tested by high resolution acoustic microscopy method. The pulse-echo Tessonics AM 1102 scanning acoustic microscope was modified to accommodate cylindrical configuration of the parts. The spherically focused transducers with frequencies 15, 25 and 50 MHz were used; ultrasonic beam was focused on the joint area. Three-dimensional acoustic images were obtained and analyzed. The clear distinction between weld seam and remaining gap was demonstrated on the B- and C-scans representation. Seam depth varying from 0 up to 3.2 mm was measured along the weld. Different types of defects (porosity, cracks, lack of fusion) were detected and classified. The optimized analytical procedures for signal processing and advanced seam visualization were determined. The results were used as a basis for development of specialized instrumentation for inspection of this kind of parts in industrial environment. The technical requirements were established and the general design of new cylindrical acoustical scanner was made.

  16. Microwave Plasma Excitation Using Cylindrical Cavity with Dual Injection

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yuichi; Nakamura, Keiji; Park, Soonam; Kobayashi, Satoru; Sugai, Hideo; Chubu University Team; Applied Materials Team; Nagoya Industrial Science Research Institute Team

    2015-09-01

    Large high-density plasmas have been generated by injecting magnetron-based microwaves radiated from slots cut on a wall of a rectangular or coaxial waveguide. However, a standing structural microwave in the waveguide often causes non-uniformity of plasma density. To minimize such inhomogeneity excited by the conventional waveguide, we adopt a resonant cylindrical cavity combined with a solid-state microwave amplifier. Microwave is injected into the cavity from two ports azimuthally apart by 90 degrees to each other (dual injection). FDTD simulations are performed for a TE111 mode resonant cavity excited by single or dual microwave injection. In the case of the dual injection with a phase difference of π/2, the wave field azimuthally rotates in the cavity, and hence the slots cut on a cavity bottom wall launch travelling waves, thus minimizing the azimuthal inhomogeneity of the resultant plasma. 40-cm-diameter plasmas are experimentally generated in argon at 0.1 ~ 5 Torr with microwaves of 2.4-2.5GHz and 400W. Threshold powers for plasma ignition are much less in dual injection than those in single injection. Optical emission images of the cylindrical plasmas show that the plasma uniformity is considerably improved in dual injection, particularly at high-pressure and low-power.

  17. The magnetic field of a permanent hollow cylindrical magnet

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Stahn, Oliver; Müller, Wolfgang H.

    2016-09-01

    Based on the rational version of M AXWELL's equations according to T RUESDELL and T OUPIN or KOVETZ, cf. (Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000; Truesdell and Toupin in Handbuch der Physik, Bd. III/1, Springer, Berlin, pp 226-793; appendix, pp 794-858, 2000), we present, for stationary processes, a closed-form solution for the magnetic flux density of a hollow cylindrical magnet. Its magnetization is constant in axial direction. We consider M AXWELL's equations in regular and singular points that are obtained by rational electrodynamics, adapted to stationary processes. The magnetic flux density is calculated analytically by means of a vector potential. We obtain a solution in terms of complete elliptic integrals. Therefore, numerical evaluation can be performed in a computationally efficient manner. The solution is written in dimensionless form and can easily be applied to cylinders of arbitrary shape. The relation between the magnetic flux density and the magnetic field is linear, and an explicit relation for the field is presented. With a slight modification the result can be used to obtain the field of a solid cylindrical magnet. The mathematical structure of the solution and, in particular, singularities are discussed.

  18. Nonlinear RF spurious in a cylindrical cavity with superconducting endplates

    NASA Astrophysics Data System (ADS)

    Mateu, Jordi; Collado, Carlos; Shaw, Timothy J.; O'Callaghan, Juan M.

    2002-08-01

    We have developed a method to calculate the distribution of fundamental and spurious fields in a metallic cylindrical cavity with superconducting endplates in which signals at two different frequencies are injected. The nonlinearity in the superconductor produces the typical intermodulation effects if the frequencies of the injected signals are sufficiently close to each other and near a resonant mode. Our method uses harmonic balance to match the fields in the cavity with the currents on the endplates. The method can be used for a variety of nonlinear models of the superconducting endplate, and could be the base for a nondestructive procedure to extract the nonlinear parameters of an HTS sample from RF measurements. Our analysis is restricted to the TE0 1 1 mode, but the method can be applied to any propagating mode in the cylindrical cavity. Closed-form equations for the case of square-law nonlinearities in the superconductor are derived and used to check the validity of the harmonic balance calculation.

  19. Finite-amplitude dynamics of coupled cylindrical menisci.

    PubMed

    Cox, B L; Steen, P H

    2011-10-01

    The cylindrical meniscus is a liquid/gas interface of circular-cap cross-section constrained along its axis and bounded by end-planes. The inviscid motions of coupled cylindrical menisci are studied here. Motions result from the competition between inertia and surface tension forces. Restriction to shapes that are of circular-cap cross-section leads to an ordinary differential equation (ode) model, with the advantage that finite-amplitude stability can be examined. The second-order nonlinear ode model has a Hamiltonian structure, showing dynamical behavior like the Duffing-oscillator. The energy landscape has either a single- or double-welled potential depending on the extent of volume overfill. Total liquid volume is a bifurcation parameter, as in the corresponding problem for coupled spherical-cap droplets. Unlike the spherical-cap problem, however, axial disturbances can also destabilize, depending on overfill. For large volumes, previously known axial stability results are applied to find the limit at which axial symmetry is lost and comparison is made to the Plateau-Rayleigh limit.

  20. Ultrasound cylindrical phased array for transoesophageal thermal therapy: initial studies

    NASA Astrophysics Data System (ADS)

    Melodelima, David; Lafon, Cyril; Prat, Frederic; Birer, Alain; Cathignol, Dominique

    2002-12-01

    This work was undertaken to investigate the feasibility of constructing a cylindrical phased array composed of 64 elements spread around the periphery (OD 10.6 mm) for transoesophageal ultrasound thermotherapy. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were successively excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. For these feasibility studies, we used a cylindrical prototype (OD 10.6 mm) composed of 16 elementary transducers distributed over a quarter of the cylinder, all operating at 4.55 MHz. The active part was mechanically reinforced by a rigid damper structure behind the transducers. It was shown that an ultrasound field similar to that emitted by a plane transducer could be generated. Ex vivo experiments on pig's liver demonstrated that the ultrasound beam could be accurately rotated to generate sector-based lesions to a suitable depth (up to 19 mm). Throughout these experiments, exposures lasting 20 s were delivered at an acoustic intensity of 17 W cm-2. By varying the power from exposure to exposure, the depth of the lesion at different angles could be controlled.

  1. Reflection of cylindrical converging shock wave over a plane wedge

    NASA Astrophysics Data System (ADS)

    Zhang, Fu; Si, Ting; Zhai, Zhigang; Luo, Xisheng; Yang, Jiming; Lu, Xiyun

    2016-08-01

    The cylindrical converging shock reflection over a plane wedge is investigated experimentally and numerically in a specially designed shock tube which converts a planar shock into a cylindrical one. When the converging shock is moving along the wedge, both the shock strength and the incident angle are changing, which provides the possibility for the wave transition. The results show that both regular reflection (RR) and Mach reflection (MR) are found on the wedge with different initial incident angles. The wave transitions from direct Mach reflection (DiMR) to inverse Mach reflection (InMR) and further to transitioned regular reflection (TRR) are observed with appropriate initial incident angles. The instability development in the shear layer and strong vortices formation near the wall are evident, which are ascribed not only to the interaction of two shear layers but also to the shock impact and the shock converging effect. Because of the flow unsteadiness after the converging shock, the detachment criterion provides a good estimation for the RR → MR transition, but fails to predict the DiMR → InMR transition, and MR is found to persist slightly below the mechanical equilibrium condition. A hysteresis process is found in the MR → TRR transition and becomes more apparent as the increase of the initial incident angle due to the shock converging effect.

  2. Cylindrical 3D video display observable from all directions

    NASA Astrophysics Data System (ADS)

    Endo, Tomohiro; Kajiki, Yoshihiro; Honda, Toshio; Sato, Makoto

    2000-05-01

    We propose a 3D video displaying technique that multiple viewers can observe 3D images from 360 degrees of arc horizontally without 3D glasses. This technique uses a cylindrical parallax barrier and 1D light source array. We have developed an experimental display using this technique and have demonstrated 3D images observable form 360 degrees of arc horizontally without 3D glasses. Since this technique is based on the parallax panoramagram, the parallax number and resolution are limited by the diffraction at the parallax barrier. To avoid these limits, we improved the technique by revolving the parallax barrier. We have been developing a new experimental display using this improved technique. The display is capable of displaying cylindrical 3D video images within the diameter of 100 mm and the height of 128 mm. Images are described with the resolution of 1254 pixels circularly and 128 pixels vertically, and refreshed at 30Hz. Each pixel has the viewing angle of 60 degrees and that is divided into 70 views, therefore the angular parallax interval of each pixel is less than 1 degree. In such a case, observers may barely perceive parallax discretely. The pixels are arranged on a cylinder surface, therefore produced 3D images can be observed from all directions.

  3. Array gain for a cylindrical array with baffle scatter effects.

    PubMed

    Bertilone, Derek C; Killeen, Damien S; Bao, Chaoying

    2007-11-01

    Cylindrical arrays used in sonar for passive underwater surveillance often have sensors surrounding a cylindrical metal baffle. In some operational sonars, the phones in each stave (i.e., each line of phones aligned with the cylinder axis) are hardwired together so that the array is equivalent to a baffled circular array of directional elements, where each element corresponds to a line array of omnidirectional phones steered to broadside. In this paper a model is introduced for computing the array gain of such an array at high frequencies, which incorporates baffle scatter using infinite, rigid cylinder scattering theory, and with ambient noise described by an angular spectral density function. In practice the phones are often offset from the baffle surface, and the acoustic field sampled by the staves is distorted at high frequencies due to interference between the incident and scattered fields. Examples are given to illustrate the resulting array gain degradation, using three noise distributions that are frequently used in sonar performance modeling: three-dimensional isotropic, two-dimensional isotropic, and surface dipole noise.

  4. Modal vibrations of a cylindrical radiator over an impedance plane

    NASA Astrophysics Data System (ADS)

    Hasheminejad, S. M.; Azarpeyvand, M.

    2004-12-01

    The problem of acoustic radiation from an infinite cylinder undergoing harmonic modal surface vibrations near a locally reacting planar boundary is considered. The formulation utilizes the appropriate wave field expansions, the classical method of images, and the translational addition theorem for cylindrical wave functions, along with a simple local surface reaction model involving a complex amplitude wave reflection coefficient applied to simulate the relevant boundary conditions for the given configuration. The analytical results are illustrated with a numerical example in which the cylindrical surface is immersed near a layer of fibrous material set on an impervious rigid wall. The numerical results reveal the important effects of interface local surface reaction and source position on the computed modal impedance component values and the radiated on-axis far-field pressure. The benchmark solution presented can lead to a better understanding of acoustic radiation from near-interface two-dimensional sources, which are commonly encountered problems in outdoor acoustics and noise control engineering. Eventually, it could be used to validate those found by numerical approximation techniques.

  5. A cylindrical SPECT camera with de-centralized readout scheme

    NASA Astrophysics Data System (ADS)

    Habte, F.; Stenström, P.; Rillbert, A.; Bousselham, A.; Bohm, C.; Larsson, S. A.

    2001-09-01

    An optimized brain single photon emission computed tomograph (SPECT) camera is being designed at Stockholm University and Karolinska Hospital. The design goal is to achieve high sensitivity, high-count rate and high spatial resolution. The sensitivity is achieved by using a cylindrical crystal, which gives a closed geometry with large solid angles. A de-centralized readout scheme where only a local environment around the light excitation is readout supports high-count rates. The high resolution is achieved by using an optimized crystal configuration. A 12 mm crystal plus 12 mm light guide combination gave an intrinsic spatial resolution better than 3.5 mm (140 keV) in a prototype system. Simulations show that a modified configuration can improve this value. A cylindrical configuration with a rotating collimator significantly simplifies the mechanical design of the gantry. The data acquisition and control system uses early digitization and subsequent digital signal processing to extract timing and amplitude information, and monitors the position of the collimator. The readout system consists of 12 or more modules each based on programmable logic and a digital signal processor. The modules send data to a PC file server-reconstruction engine via a Firewire (IEEE-1394) network.

  6. Machine Tool User Cylindrical Die Rolling Performance Support System

    SciTech Connect

    Bohley, M.C.; Grothe, V.D.

    1998-08-06

    This project was initiated to provide the machine tool industry and the DOE a method for evaluating educating potential users about various aspects of the cylindrical die rolling process including: characteristics of the cylindrical die rolling processes, major productivity and material savings benefits, advantages for use in the fastener industry, production capabilities based on part parameters, and production capabilities based on machine specifications. AlliedSignal Federal Manufacturing and Technologies (ASFM and T) utilized data provided by Kinefac Corporation to develop an interactive performance support system. AlliedSignal developed one complete branch of the program and Kinefac will develop the remaining two branches. Macromedia Authorware version 3.5 and Microsoft Access version 7.0 were selected for development tools. These software tools maximize continued program development ease and program management with future machine technology advancements. Using this authoring tool and the external database resulted in development of a product that has many potential uses within the manufacturing industry. Source code for the product can be used as a template for other applications is reusable and can provide potential solutions to non-manufacturing needs. The final product will be released on CD-ROM.

  7. Transient Eddy Current Response Due to a Conductive Cylindrical Rod

    NASA Astrophysics Data System (ADS)

    Fu, Fangwei; Bowler, J. R.

    2007-03-01

    Transient eddy current test systems have been developed for the inspection of aircraft structures and for oil and gas pipelines. This work is supported by theoretical developments in which transient fields and time domain signals are determined for the geometry of interest. However most of the models to date have been aimed at structures that are planar, relatively little attention being paid to the corresponding problems in cylindrical geometries. In order to rectify this deficiency, we have examined theoretically the transient probe signal response due to a cylindrical conductive rod excited by an encircling coil. The transient fields can be calculated from a Fourier transform of the frequency domain solutions for infinite rods or tubes but, as with planar structures, we have found that it is better to use series solutions in the time domain since these provide more accurate and flexible representations of transient fields. Two types of series are used; one which converges faster at short times and one which converges faster at longer times. Calculations using these series show that they are in mutual agreement and agree with results computed using the fast Fourier transform.

  8. Pathways of cylindrical orientations in PS-b-P4VP diblock copolymer thin films upon solvent vapor annealing.

    PubMed

    Gowd, E Bhoje; Koga, Tadanori; Endoh, Maya K; Kumar, Kamlesh; Stamm, Manfred

    2014-10-21

    The orientation changes of perpendicular cylindrical microdomains in polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) thin films upon annealing in different solvent vapors were investigated by in situ grazing incidence small-angle X-ray scattering (GISAXS) and ex situ scanning force microscopy (SFM). The swelling of P4VP perpendicular cylinders (C⊥) in chloroform, a non-selective solvent vapor, leads to the reorientation to in-plane cylinders through a disordered state in a particular kinetic pathway in the phase diagram upon drying. On the other hand, the swelling of the P4VP perpendicular cylinders in a selective solvent vapor (i.e., 1,4-dioxane) induces a morphological transition from cylindrical to ellipsoidal as a transient structure to spherical microdomains; subsequent solvent evaporation resulted in shrinkage of the matrix in the vertical direction, merging the ellipsoidal domains into the perpendicularly aligned cylinders. In this paper, we have discussed the mechanism based on the selectivity of the solvent to the constituting blocks that is mainly responsible for the orientation changes. PMID:25142254

  9. Stabilizing Surfactant Templated Cylindrical Mesopores in Polymer and Carbon Films through Composite Formation with Silica Reinforcement

    SciTech Connect

    Song, Lingyan; Feng, Dan; Lee, Hae-Jeong; Wang, Chengqing; Wu, Quanyan; Zhao, Dongyuan; Vogt, Bryan D.

    2010-10-22

    A facile approach to maintain the periodic mesostructure of cylindrical pores in polymer-resin and carbon films after thermal template removal is explored through the reactive coassembly of resol (carbon precursor) and tetraethylorthosilicate (silica precursor) with triblock copolymer Pluronic F127. Without silica, a low porosity, disordered film is formed after pyrolysis despite the presence of an ordered mesostructure prior to template removal. However for silica concentration greater than 25 wt %, pyrolysis at 350 C yields a mesoporous silica-polymer film with well-defined pore mesostructure. These films remain well ordered upon carbonization at 800 C. In addition to the mesostructural stability, the addition of silica to the matrix impacts other morphological characteristics. For example, the average pore size and porosity of the films increase from 3.2 to 7.5 nm and 12 to 45%, respectively, as the concentration of silica in the wall matrix increases from 0 to 32 wt %. The improved thermal stability of the ordered mesostructure with the addition of silica to the matrix is attributed to the reinforcement of the mechanical properties leading to resistance to stress induced collapse of the mesostructure during template removal.

  10. Heat transfer during quenching of modified and unmodified gravity die-cast A357 cylindrical bars

    NASA Astrophysics Data System (ADS)

    Prabhu, K. N.; Hemanna, P.

    2006-06-01

    Heat transfer during quenching of chill-cast modified and unmodified A357 Al-Si alloy was examined using a computer-aided cooling curve analysis. Water at 60 °C and a vegetable oil (palm oil) were used as quench media. The measured temperatures inside cylindrical probes of the A357 alloy were used as inputs in an inverse heat-conduction model to estimate heat flux transients at the probe/quenchant interface and the surface temperature of the probe in contact with the quench medium. It was observed that modified alloy probes yielded higher cooling rates and heat flux transients. The investigation clearly showed that the heat transfer during quenching depends on the casting history. The increase in the cooling rate and peak heat flux was attributed to the increase in the thermal conductivity of the material on modification melt treatment owing to the change in silicon morphology. Fine and fibrous silicon particles in modified A357 probes increase the conductance of the probe resulting in higher heat transfer rates. This was confirmed by measuring the electrical conductivity of modified samples, which were found to be higher than those of unmodified samples. The ultrasound velocity in the probes decreased on modification.

  11. Topography-Correlated Confocal Raman Microscopy with Cylindrical Vector Beams for Probing Nanoscale Structural Order.

    PubMed

    Wang, Xiao; Broch, Katharina; Scholz, Reinhard; Schreiber, Frank; Meixner, Alfred J; Zhang, Dai

    2014-04-01

    Cylindrical vector beams, such as radially or azimuthally polarized doughnut beams, are combined with topography studies of pentacene thin films, allowing us to correlate Raman spectroscopy with intermolecular interactions depending on the particular pentacene polymorph. Polarization-dependent Raman spectra of the C-H bending vibrations are resolved layer by layer within a thin film of ∼20 nm thickness. The variation of the Raman peak positions indicates changes in the molecular orientation and in the local environment at different heights of the pentacene film. With the assistance of a theoretical model based on harmonic oscillator and perturbation theory, our method reveals the local structural order and the polymorph at different locations within the same pentacene thin film, depending mainly on its thickness. In good agreement with the crystallographic structures reported in the literature, our observations demonstrate that the first few monolayers grown in a structure are closer to the thin-film phase, but for larger film thicknesses, the morphology evolves toward the crystal-bulk phase with a larger tilting angle of the pentacene molecules against the substrate normal.

  12. A bio-inspired microstructure induced by slow injection moulding of cylindrical block copolymers.

    PubMed

    Stasiak, Joanna; Brubert, Jacob; Serrani, Marta; Nair, Sukumaran; de Gaetano, Francesco; Costantino, Maria Laura; Moggridge, Geoff D

    2014-08-28

    It is well known that block copolymers with cylindrical morphology show alignment with shear, resulting in anisotropic mechanical properties. Here we show that well-ordered bi-directional orientation can be achieved in such materials by slow injection moulding. This results in a microstructure, and anisotropic mechanical properties, similar to many natural tissues, making this method attractive for engineering prosthetic fibrous tissues. An application of particular interest to us is prosthetic polymeric heart valve leaflets, mimicking the shape, microstructure and hence performance of the native valve. Anisotropic layers have been observed for cylinder-forming block copolymers centrally injected into thin circular discs. The skin layers exhibit orientation parallel to the flow direction, whilst the core layer shows perpendicularly oriented domains; the balance of skin to core layers can be controlled by processing parameters such as temperature and injection rate. Heart valve leaflets with a similar layered structure have been prepared by injection moulding. Numerical modelling demonstrates that such complex orientation can be explained and predicted by the balance of shear and extensional flow.

  13. Effect of delayed light curing of a resin composite on marginal integrity in cylindrical dentine cavities.

    PubMed

    Manabe, A; Debari, K; Itoh, K; Hisamitsu, H; Wakumoto, S

    1993-12-01

    The effect of delayed light curing of resin composite on marginal adaptation has been examined by measuring the wall-to-wall polymerization contraction gap when using a commercial resin composite together with experimental dentine bonding systems to restore cylindrical preparations in dentine. Morphological changes in dentine during dentine bonding procedures were observed using a scanning electron microscope. In a previous report, the contraction gap width for a resin composite increased when irradiation of the resin system was delayed, despite the use of a dentine bonding system considered to be 'contraction' gap free. Such deterioration in marginal adaptation was minimized by use of an experimental dentine primer, 40% erythritol methacrylate aqueous solution (EM), followed by the use of a commercial dual- or autocured dentine bonding agent. Under scanning electron microscopy, the dentine surface microstructure became unclear after EM priming, and a polymer film was detected after polymerization of the dual-cured dentine bonding agent. The hydrogelled primer and the formation of a polymer network on the dentine surface may prevent the flow of fluid from the pulp through the dentine tubules, and maintain marginal integrity if there is delay in light curing of light-activated resin composite systems.

  14. Mechanism of titania deposition into cylindrical poly(styrene-block-4 vinyl pyridine) block copolymer templates.

    PubMed

    Lou, Qin; Chinthamanipeta, Pavan S; Shipp, Devon A

    2011-12-20

    A simple and effective way for TiO(2) to be deposited on silicon or indium tin oxide (ITO) substrates has been achieved by using a poly(styrene-block-4-vinyl pyridine) (PS-b-P4VP) block copolymer template. In particular, a mechanism for the formation of TiO(2) within the P4VP phase was developed. Within this model, the TiO(2) deposition occurs by swelling of the protonated P4VP segments followed by transport of Ti precursor, probably protonated Ti(OH)(4) given the low pH conditions used, into the swollen P4VP followed by condensation into TiO(2) during the heating/plasma etch processes. TiO(2) nanostructure morphology is affected by pH and deposition temperatures, because these parameters affect the degree of protonation of P4VP segments and diffusion of the titanium(IV) bis(ammonium lactato)dihydroxide (TALH) precursor into the film. A pH range of 2.1-2.5 for silicon substrates and pH = 2.1 for ITO substrates gave the narrower TiO(2) nanostructures distributions, and deposition at 70 °C gave TiO(2) nanostructures with more regular arrangements and smoother surface than those deposited at room temperature. The use of 1,4-diiodobutane as a P4VP cross-linking compound is demonstrated to be a critical parameter for maintaining good cylindrical surface morphology for both the block copolymer template and the TiO(2) nanostructures.

  15. Length shortening and surfactant mixing behavior of nonionic/ionic mixed cylindrical micelle

    NASA Astrophysics Data System (ADS)

    Kim, Sanghyun; Kwon, Su Yong; Moon, Jun hyuk; Kim, Mahn Won

    2008-10-01

    Cylindrical micelles, which are surfactant self-assembled structures with nm scale, usually grow in length as surfactant concentration increases. Small angle neutron scattering of nonionic/ionic (C 12E 5/DTAB) mixed cylindrical micellar solution showed the shape of aggregates maintained the cylindrical geometry while the micellar length shortened as the fraction of ionic surfactant increased. Unexpectedly, we observed, for the first time, the micellar length shortened as total surfactant concentration increased at constant DTAB mole fraction. This observation suggests that strong non-ideal mixing of the surfactants in the cylindrical micelles, leading to an end-cap energy lowering with increasing concentration, is responsible for the length shortening.

  16. DNA barcoding to identify leaf preference of leafcutting bees

    PubMed Central

    2016-01-01

    Leafcutting bees (Megachile: Megachilidae) cut leaves from various trees, shrubs, wildflowers and grasses to partition and encase brood cells in hollow plant stems, decaying logs or in the ground. The identification of preferred plant species via morphological characters of the leaf fragments is challenging and direct observation of bees cutting leaves from certain plant species are difficult. As such, data are poor on leaf preference of leafcutting bees. In this study, I use DNA barcoding of the rcbL and ITS2 regions to identify and compare leaf preference of three Megachile bee species widespread in Toronto, Canada. Nests were opened and one leaf piece from one cell per nest of the native M. pugnata Say (N=45 leaf pieces), and the introduced M. rotundata Fabricius (N=64) and M. centuncularis (L.) (N=65) were analysed. From 174 individual DNA sequences, 54 plant species were identified. Preference by M. rotundata was most diverse (36 leaf species, H′=3.08, phylogenetic diversity (pd)=2.97), followed by M. centuncularis (23 species, H′=2.38, pd=1.51) then M. pugnata (18 species, H′=1.87, pd=1.22). Cluster analysis revealed significant overlap in leaf choice of M. rotundata and M. centuncularis. There was no significant preference for native leaves, and only M. centuncularis showed preference for leaves of woody plants over perennials. Interestingly, antimicrobial properties were present in all but six plants collected; all these were exotic plants and none were collected by the native bee, M. pugnata. These missing details in interpreting what bees need offers valuable information for conservation by accounting for necessary (and potentially limiting) nesting materials. PMID:27069650

  17. DNA barcoding to identify leaf preference of leafcutting bees.

    PubMed

    MacIvor, J Scott

    2016-03-01

    Leafcutting bees (Megachile: Megachilidae) cut leaves from various trees, shrubs, wildflowers and grasses to partition and encase brood cells in hollow plant stems, decaying logs or in the ground. The identification of preferred plant species via morphological characters of the leaf fragments is challenging and direct observation of bees cutting leaves from certain plant species are difficult. As such, data are poor on leaf preference of leafcutting bees. In this study, I use DNA barcoding of the rcbL and ITS2 regions to identify and compare leaf preference of three Megachile bee species widespread in Toronto, Canada. Nests were opened and one leaf piece from one cell per nest of the native M. pugnata Say (N=45 leaf pieces), and the introduced M. rotundata Fabricius (N=64) and M. centuncularis (L.) (N=65) were analysed. From 174 individual DNA sequences, 54 plant species were identified. Preference by M. rotundata was most diverse (36 leaf species, H'=3.08, phylogenetic diversity (pd)=2.97), followed by M. centuncularis (23 species, H'=2.38, pd=1.51) then M. pugnata (18 species, H'=1.87, pd=1.22). Cluster analysis revealed significant overlap in leaf choice of M. rotundata and M. centuncularis. There was no significant preference for native leaves, and only M. centuncularis showed preference for leaves of woody plants over perennials. Interestingly, antimicrobial properties were present in all but six plants collected; all these were exotic plants and none were collected by the native bee, M. pugnata. These missing details in interpreting what bees need offers valuable information for conservation by accounting for necessary (and potentially limiting) nesting materials. PMID:27069650

  18. Visual aesthetics and human preference.

    PubMed

    Palmer, Stephen E; Schloss, Karen B; Sammartino, Jonathan

    2013-01-01

    Human aesthetic preference in the visual domain is reviewed from definitional, methodological, empirical, and theoretical perspectives. Aesthetic science is distinguished from the perception of art and from philosophical treatments of aesthetics. The strengths and weaknesses of important behavioral techniques are presented and discussed, including two-alternative forced-choice, rank order, subjective rating, production/adjustment, indirect, and other tasks. Major findings are reviewed about preferences for colors (single colors, color combinations, and color harmony), spatial structure (low-level spatial properties, shape properties, and spatial composition within a frame), and individual differences in both color and spatial structure. Major theoretical accounts of aesthetic response are outlined and evaluated, including explanations in terms of mere exposure effects, arousal dynamics, categorical prototypes, ecological factors, perceptual and conceptual fluency, and the interaction of multiple components. The results of the review support the conclusion that aesthetic response can be studied rigorously and meaningfully within the framework of scientific psychology.

  19. Assortative mating without assortative preference

    PubMed Central

    Xie, Yu; Cheng, Siwei; Zhou, Xiang

    2015-01-01

    Assortative mating—marriage of a man and a woman with similar social characteristics—is a commonly observed phenomenon. In the existing literature in both sociology and economics, this phenomenon has mainly been attributed to individuals’ conscious preferences for assortative mating. In this paper, we show that patterns of assortative mating may arise from another structural source even if individuals do not have assortative preferences or possess complementary attributes: dynamic processes of marriages in a closed system. For a given cohort of youth in a finite population, as the percentage of married persons increases, unmarried persons who newly enter marriage are systematically different from those who married earlier, giving rise to the phenomenon of assortative mating. We use microsimulation methods to illustrate this dynamic process, using first the conventional deterministic Gale–Shapley model, then a probabilistic Gale–Shapley model, and then two versions of the encounter mating model. PMID:25918366

  20. Natural selection and social preferences.

    PubMed

    Weibull, Jörgen W; Salomonsson, Marcus

    2006-03-01

    A large number of individuals are randomly matched into groups, where each group plays a finite symmetric game. Individuals breed true. The expected number of surviving offspring depends on own material payoff, but may also, due to cooperative breeding and/or reproductive competition, depend on the material payoffs to other group members. The induced population dynamic is equivalent with the replicator dynamic for a game with payoffs derived from those in the original game. We apply this selection dynamic to a number of examples, including prisoners' dilemma games with and without a punishment option, coordination games, and hawk-dove games. For each of these, we compare the outcomes with those obtained under the standard replicator dynamic. By way of a revealed-preference argument, our selection dynamic can explain certain "altruistic" and "spiteful" behaviors that are consistent with individuals having social preferences.

  1. Review: Thermal preference in Drosophila

    PubMed Central

    Dillon, Michael E.; Wang, George; Garrity, Paul A.; Huey, Raymond B.

    2009-01-01

    Environmental temperature strongly affects physiology of ectotherms. Small ectotherms, like Drosophila, cannot endogenously regulate body temperature so must rely on behavior to maintain body temperature within a physiologically permissive range. Here we review what is known about Drosophila thermal preference. Work on thermal behavior in this group is particularly exciting because it provides the opportunity to connect genes to neuromolecular mechanisms to behavior to fitness in the wild. PMID:20161211

  2. Where Would Refinancing Preferences Go?

    NASA Astrophysics Data System (ADS)

    Chai, Yajun; Liu, Bo

    We study the relation between the non-tradable shares reform and the refinancing preferences. From the viewpoints of change in market and policy environments led by the reform, we find that right issues dominate before the reform, however, public offerings (including private placement) dominate after reform, which could be attributed to more money encirclement induced by the shift of the public offering mechanism from in discount to in premium after reform and no requirements for large shareholders' participation commitments in public offerings.

  3. The gourmet ape: evolution and human food preferences.

    PubMed

    Krebs, John R

    2009-09-01

    This review explores the relation between evolution, ecology, and culture in determining human food preferences. The basic physiology and morphology of Homo sapiens sets boundaries to our eating habits, but within these boundaries human food preferences are remarkably varied, both within and between populations. This does not mean that variation is entirely cultural or learned, because genes and culture may coevolve to determine variation in dietary habits. This coevolution has been well elucidated in some cases, such as lactose tolerance (lactase persistence) in adults, but is less well understood in others, such as in favism in the Mediterranean and other regions. Genetic variation in bitter taste sensitivity has been well documented, and it affects food preferences (eg, avoidance of cruciferous vegetables). The selective advantage of this variation is not clear. In African populations, there is an association between insensitivity to bitter taste and the prevalence of malaria, which suggests that insensitivity may have been selected for in regions in which eating bitter plants would confer some protection against malaria. Another, more general, hypothesis is that variation in bitter taste sensitivity has coevolved with the use of spices in cooking, which, in turn, is thought to be a cultural tradition that reduces the dangers of microbial contamination of food. Our evolutionary heritage of food preferences and eating habits leaves us mismatched with the food environments we have created, which leads to problems such as obesity and type 2 diabetes.

  4. The shy prefer familiar congeners.

    PubMed

    Benhaïm, David; Ferrari, Sébastien; Chatain, Béatrice; Bégout, Marie-Laure

    2016-05-01

    The shy-bold continuum is both a fundamental aspect of human behavior and a relatively stable behavioral trait for many other species. Here we assessed whether shy individuals prefer familiar congeners, taking the European sea bass, a recently domesticated fish showing similar behavioral responses to wild fish, as a model to better understand the inter-individual variability in social behavior previously observed in this species. In the wild, the link between familiarity i.e., the preference of fish for familiar congeners and boldness could be part of the mechanism underlying shoaling formation in fish. Thirty fish were individually tested in a device designed to assess the preference for a familiar vs. an unfamiliar congener on the basis of visual cues only. An open field test (OFT) with shelter was performed on the same fish 32 days later to assess the boldness of each individual. Variables of interest included the proportion of time spent in the shelter, border and center zone of the arena and variables of activity. Variables measured in OFT were collapsed into first principal component scores using Principal Components Analysis (PCA) which allowed characterizing a shy-bold continuum. Time spent near the familiar congener was negatively correlated with boldness i.e., shy individuals spent most of the time near the familiar congener. We discuss the relevance of these findings to the understanding of the behavior of European sea bass and suggest that the link between familiarity and shyness is a general aspect of both animal and human behavior.

  5. Preferred and actual relative height among homosexual male partners vary with preferred dominance and sex role.

    PubMed

    Valentova, Jaroslava Varella; Stulp, Gert; Třebický, Vít; Havlíček, Jan

    2014-01-01

    Previous research has shown repeatedly that human stature influences mate preferences and mate choice in heterosexuals. In general, it has been shown that tall men and average height women are most preferred by the opposite sex, and that both sexes prefer to be in a relationship where the man is taller than the woman. However, little is known about such partner preferences in homosexual individuals. Based on an online survey of a large sample of non-heterosexual men (N = 541), we found that the majority of men prefer a partner slightly taller than themselves. However, these preferences were dependent on the participant's own height, such that taller men preferred shorter partners, whereas shorter men preferred taller partners. We also examined whether height preferences predicted the preference for dominance and the adoption of particular sexual roles within a couple. Although a large proportion of men preferred to be in an egalitarian relationship with respect to preferred dominance (although not with respect to preferred sexual role), men that preferred a more dominant and more "active" sexual role preferred shorter partners, whereas those that preferred a more submissive and more "passive" sexual role preferred taller partners. Our results indicate that preferences for relative height in homosexual men are modulated by own height, preferred dominance and sex role, and do not simply resemble those of heterosexual women or men.

  6. Vole preference of bilberry along gradients of simulated moose density and site productivity.

    PubMed

    Pedersen, Simen; Andreassen, Harry P; Persson, Inga-Lill; Julkunen-Tiitto, Riitta; Danell, Kjell; Skarpe, Christina

    2011-12-01

    Browsing by large herbivores might either increase or decrease preference for the plant by other herbivores, depending on the plant response. Using a cafeteria test, we studied the preference by root voles (Microtus oeconomus [Pallas, 1776]) for bilberry (Vaccinium myrtillus L.) previously subjected to 4 levels of simulated moose (Alces alces [Linnaeus, 1758]) density. The different levels of moose density were simulated at population densities relevant for Fennoscandian conditions, in exclosures situated along a site productivity gradient. We expected: (i) voles to prefer bilberry from high productivity sites over low productivity sites; (ii) voles to prefer browsed bilberry, if plants allocate resources to compensatory growth or to avoid browsed bilberry if plants allocate resources to defense; (iii) these effects to increase with increasing simulated moose density; and (iv) the concentration of plant chemicals and the plant morphology to explain vole preference. Specifically, we predicted that voles would prefer: (i) plants with high nitrogen content; (ii) plants with low content of defensive substances; and (iii) tall plants with long shoots. Voles preferred bilberry from the high productivity sites compared to the low productivity sites. We also found an interaction between site productivity and simulated moose density, where voles preferred unbrowsed plants at low productivity sites and intermediate levels of browsing at high productivity sites. There was no effect of plant chemistry or morphology on vole preference. We conclude that moose browsing impacts the food preference of voles. With the current high densities of moose in Fennoscandia, this could potentially influence vole food selection and population dynamics over large geographical areas.

  7. Human Preferences for Conformation Attributes and Head-And-Neck Positions in Horses.

    PubMed

    Caspar, Georgina L; Dhand, Navneet K; McGreevy, Paul D

    2015-01-01

    Human preferences for certain morphological attributes among domestic animals may be entirely individual or, more generally, may reflect evolutionary pressures that favor certain conformation. Artificial selection for attributes, such as short heads and crested necks of horses, may have functional and welfare implications because there is evidence from other species that skull shape co-varies with behaviour. Crested necks can be accentuated by flexion of the neck, a quality that is often manipulated in photographs vendors use when selling horses. Equine head-and-neck positions acquired through rein tension can compromise welfare. Our investigation was designed to identify conformations and postures that people are attracted to when choosing their 'ideal' horse. Participants of an internet survey were asked to rate their preference for horse silhouettes that illustrated three gradations of five variables: facial shape, crest height, ear length, ear position and head-and-neck carriage. There were 1,234 usable responses. The results show that overall preferences are for the intermediate, rather than extreme, morphological choices (p=<0.001). They also indicate that males are 2.5 times less likely to prefer thicker necks rather than the intermediate shape, and 4 times more likely to prefer the thinner neck shape. When compared to the novice participants, experienced participants were 1.9 times more likely to prefer a thicker neck shape than the intermediate neck shape and 2.8 times less likely to prefer a thinner neck shape than the intermediate neck shape. There was overall preference of 93% (n=939) for the category of head carriage 'In front of the vertical'. However, novice participants were 1.8 times more likely to choose 'behind the vertical' than 'in front of the vertical'. Our results suggest that people prefer a natural head carriage, concave facial profile (dished face), larger ears and thicker necks. From these survey data, it seems that some innate

  8. Multipactor Modeling in Cylindrical Dielectric-Loaded Accelerators

    SciTech Connect

    Power, John G.; Gold, Steven H.

    2006-11-27

    The observation of strong multipactor loading of a cylindrical dielectric-loaded accelerator (DLA) structure with an alumina liner was previously reported. Conventional multipactor loading of dielectric rf windows is due to a tangential rf electric field and generally saturates at a few percent power loss. However, this resonant single-surface multipactor is driven by a combination of normal and tangential rf electric fields, is a strong function of the incident power, and is capable of absorbing a large fraction (over 1/2) of the incident rf power. Since the initial report, several additional structures have been tested, fabricated from a variety of materials, some with low secondary-emission surface coatings, and having different physical dimensions. In this paper, we summarize the results of these tests and analyze the results in terms of a physical model of the multipactor phenomenon.

  9. Quantum Hall physics with cold atoms in cylindrical optical lattices

    NASA Astrophysics Data System (ADS)

    Łåcki, Mateusz; Pichler, Hannes; Sterdyniak, Antoine; Lyras, Andreas; Lembessis, Vassilis E.; Al-Dossary, Omar; Budich, Jan Carl; Zoller, Peter

    2016-01-01

    We propose and study various realizations of a Hofstadter-Hubbard model on a cylinder geometry with fermionic cold atoms in optical lattices. The cylindrical optical lattice is created by copropagating Laguerre-Gauss beams, i.e., light beams carrying orbital angular momentum. By strong focusing of the light beams we create a real-space optical lattice in the form of rings, which are offset in energy. A second set of Laguerre-Gauss beams then induces a Raman-hopping between these rings, imprinting phases corresponding to a synthetic magnetic field (artificial gauge field). In addition, by rotating the lattice potential, we achieve a slowly varying flux through the hole of the cylinder, which allows us to probe the Hall response of the system as a realization of Laughlin's thought experiment. We study how in the presence of interactions fractional quantum Hall physics could be observed in this setup.

  10. The cylindrical magnetic Rayleigh-Taylor instability for viscous fluids

    SciTech Connect

    Chambers, K.; Forbes, L. K.

    2012-10-15

    This paper considers a cylindrical Rayleigh-Taylor instability, in which a heavy fluid surrounds a light fluid, and gravity is directed radially inwards. A massive object is located at the centre of the light fluid, and it behaves like a line dipole both for fluid flow and magnetic field strength. The initially circular interface between the two conducting fluids evolves into plumes, dependent on the magnetic and fluid dipole strengths and the nature of the initial disturbance to the interface. A spectral method is presented to solve the time-dependent interface shapes, and results are presented and discussed. Bipolar solutions are possible, and these are of particular relevance to astrophysics. The solutions obtained resemble structures of some HII regions and nebulae.

  11. Large Deformation Behavior of Long Shallow Cylindrical Composite Panels

    NASA Technical Reports Server (NTRS)

    Carper, Douglas M.; Hyer, Michael W.; Johnson, Eric R.

    1991-01-01

    An exact solution is presented for the large deformation response of a simply supported orthotropic cylindrical panel subjected to a uniform line load along a cylinder generator. The cross section of the cylinder is circular and deformations up to the fully snapped through position are investigated. The orthotropic axes are parallel to the generator and circumferential directions. The governing equations are derived using laminated plate theory, nonlinear strain-displacement relations, and applying variational principles. The response is investigated for the case of a panel loaded exactly at midspan and for a panel with the load offset from midspan. The mathematical formulation is one dimensional in the circumferential coordinate. Solutions are obtained in closed-form. An experimental apparatus was designed to load the panels. Experimental results of displacement controlled tests performed on graphite-epoxy curved panels are compared with analytical predictions.

  12. Stiffness Coefficients Measurement of Cylindrical Rods by Laser Ultrasonics

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Rossignol, C.; Audoin, B.

    2004-02-01

    A non-contact laser-ultrasonic technique is applied to the nondestructive measurement of the stiffness properties of cylindrical rods. Acoustic waves generated in a cylinder by a laser line source under thermoelastic regime are identified by the comparison between experiment and theory. Two stiffness coefficients c11 and c12 are determined by measuring the arrival time of the reflected longitudinal wave (LL) and that of the head wave (HW). The effects of laser beamwidth and time duration on the measurement are found by numerical simulations. For such an application, a radius of 0.3 mm appears as a minimum limit for the sample size using a laser source of 0.1 mm beamwidth and 20 ns time duration. Stiffness coefficients of three aluminum rods are experimentally measured with good accuracy.

  13. Nonlinear saturation amplitude of cylindrical Rayleigh—Taylor instability

    NASA Astrophysics Data System (ADS)

    Liu, Wan-Hai; Yu, Chang-Ping; Ye, Wen-Hua; Wang, Li-Feng

    2014-09-01

    The nonlinear saturation amplitude (NSA) of the fundamental mode in the classical Rayleigh—Taylor instability with a cylindrical geometry for an arbitrary Atwood number is analytically investigated by considering the nonlinear corrections up to the third order. The analytic results indicate that the effects of the initial radius of the interface (r0) and the Atwood number (A) play an important role in the NSA of the fundamental mode. The NSA of the fundamental mode first increases gently and then decreases quickly with increasing A. For a given A, the smaller the r0/λ (λ is the perturbation wavelength), the larger the NSA of the fundamental mode. When r0/λ is large enough (r0 ≫ λ), the NSA of the fundamental mode is reduced to the prediction in the previous literatures within the framework of the third-order perturbation theory.

  14. Fiber grating systems used to measure strain in cylindrical structures

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Corona-Bittick, Kelli; Slattery, Kerry T.; Dorr, Donald J.; Crowe, C. Robert; Vandiver, Terry L.; Evans, Robert N.

    1997-07-01

    Fiber optic grating systems are described that have been used to measure strain in cylindrical structures. The applications of these systems to a composite utility pole and to a composite missile body are described. Composite utility poles have significant advantages with respect to wooden utility poles that include superior strength and uniformity; light weight for ease of deployment; the ability to be recycled, reducing hazardous waste associated with chemically treated wooden poles; and compatibility with embedded fiber optic sensors, allowing structural loads to be monitored. Tests conducted of fiber optic grating sensors in combination with an overcoupled coupler demodulation system to support structural testing of a 22-ft composite pole are reported. Monitoring strain in composite missile bodies has the potential to improve the quality of manufactured parts, support performance testing, and enhance safety during long periods of storage. Strain measurements made with fiber optic grating and electrical strain gauges are described.

  15. A cylindrical shell with an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1982-01-01

    The general problem of a shallow shell with constant curvatures is considered. It is assumed that the shell contains an arbitrarily oriented through crack and the material is specially orthotropic. The nonsymmetric problem is solved for arbitrary self equilibrating crack surface tractions, which, added to an appropriate solution for an uncracked shell, would give the result for a cracked shell under most general loading conditions. The problem is reduced to a system of five singular integral equations in a set of unknown functions representing relative displacements and rotations on the crack surfaces. The stress state around the crack tip is asymptotically analyzed and it is shown that the results are identical to those obtained from the two dimensional in plane and antiplane elasticity solutions. The numerical results are given for a cylindrical shell containing an arbitrarily oriented through crack. Some sample results showing the effect of the Poisson's ratio and the material orthotropy are also presented.

  16. Traveling circumferential unstable wave of cylindrical flame front

    NASA Astrophysics Data System (ADS)

    Trilis, A. V.; Vasiliev, A. A.; Sukhinin, S. V.

    2016-06-01

    The researches of stability of cylindrical front of deflagration combustion in an annular combustion chamber were made using phenomenological model. The flame front is described as discontinuity of gasdynamic parameters. It is considered that the combustion products are under chemical equilibrium. The combustible mixture and the combustion products are ideal gases. The velocity of deflagration combustion is determined using the Chapman-Jouget theory. It depends on the temperature of combustible mixture only. It is found that the combustible flame front is unstable for several types of small disturbances in the system Mechanics of instabilities are examined using both the numeric and analytical methods. The cases of evolution of the unstable waves rotating in circular channel are presented.

  17. The converging shock wave from a spherical or cylindrical piston

    NASA Astrophysics Data System (ADS)

    van Dyke, M.; Guttmann, A. J.

    1982-07-01

    A spherical or cylindrical cavity containing quiescent gas begins to contract at high constant radial speed, driving an axisymmetric shock wave inward to collapse at the center. We analyze the flow field by expanding the solution in powers of time, and calculate 40 terms by delegating the arithmetic to a computer. Analysis of the series for the radius of the shock wave confirms Guderley's local self-similar solution for the focusing, including recent refined values for his similarity exponent, and yields higher terms in his local expansion. In the range of adiabatic exponent where the Guderley solution has been shown not to be unique we find, in accord with a conjecture of Gel'fand, that the smallest admissible similarity exponent is realized.

  18. Performance of a Low-Power Cylindrical Hall Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.; Dehoyos, Amado; Raitses, Yevgeny; Smirnov, Artem; Fisch, Nathaniel J.

    2007-01-01

    Recent mission studies have shown that a Hall thruster which operates at relatively constant thrust efficiency (45-55%) over a broad power range (300W - 3kW) is enabling for deep space science missions when compared with slate-of-the-art ion thrusters. While conventional (annular) Hall thrusters can operate at high thrust efficiency at kW power levels, it is difficult to construct one that operates over a broad power envelope down to 0 (100 W) while maintaining relatively high efficiency. In this note we report the measured performance (I(sub sp), thrust and efficiency) of a cylindrical Hall thruster operating at 0 (100 W) input power.

  19. Kaluza-Klein magnetized cylindrical wormhole and its gravitational lensing

    NASA Astrophysics Data System (ADS)

    Hashemi, S. Sedigheh; Riazi, Nematollah

    2016-10-01

    A new exact vacuum solution in five dimensions, which describes a magnetized cylindrical wormhole in 3+1 dimensions is presented. The magnetic field lines are stretched along the wormhole throat and are concentrated near to it. We study the motion of neutral and charged test particles under the influence of the magnetized wormhole. The effective potential for a neutral test particle around and across the magnetized wormhole has a repulsive character. The gravitational lensing for the magnetized wormhole for various lens parameters are calculated and compared. The total magnetic flux on either side of the wormhole is obtained. We present analytic expressions which show regions in which the null energy condition is violated.

  20. Explicit excluded volume of cylindrically symmetric convex bodies.

    PubMed

    Piastra, Marco; Virga, Epifanio G

    2015-06-01

    We represent explicitly the excluded volume V(e){B(1),B(2)} of two generic cylindrically symmetric, convex rigid bodies, B(1) and B(2), in terms of a family of shape functionals evaluated separately on B(1) and B(2). We show that V(e){B(1),B(2)} fails systematically to feature a dipolar component, thus making illusory the assignment of any shape dipole to a tapered body in this class. The method proposed here is applied to cones and validated by a shape-reconstruction algorithm. It is further applied to spheroids (ellipsoids of revolution), for which it shows how some analytic estimates already regarded as classics should indeed be emended. PMID:26172727

  1. High-speed velocimetry inside imploding cylindrical liners

    NASA Astrophysics Data System (ADS)

    Dolan, Daniel; Lemke, Ray; Dalton, Devon; Harding, Eric; McBride, Ryan; Martin, Matthew; Blue, Brent; Walker, Scott

    2014-03-01

    Dynamic planar compression is conceptually simple but difficult to maintain at extreme pressure (>5 Mbar). Higher pressures are attainable with imploding cylindrical liners, using Photonic Doppler velocimetry (PDV) to track the liner interior. PDV measures Doppler shift directly--1 GHz of beat frequency for every 1 km/s of velocity--requiring a special ``leapfrog'' approach for liners traveling in excess of 20 km/s. Single-point and multi-point PDV measurements have been performed in aluminum, beryllium, and tantalum liners under ramp compression, and the technique can readily applied to other implosion experiments. Combined with electrical current diagnostics, these measurements test thermodynamic equations of state at pressures up to 10 MBar and beyond. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.

  2. Viscoplastic analysis of an experimental cylindrical thrust chamber liner

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Arnold, Steven M.

    1992-01-01

    A viscoplastic stress-strain analysis of an experimental cylindrical thrust chamber is presented. A viscoelastic constitutive model incorporating a single internal state variable that represents kinematic hardening was employed to investigate whether such a viscoplastic model could predict the experimentally observed behavior of the thrust chamber. Two types of loading cycles were considered: a short cycle of 3.5-s duration that corresponded to the experiments, and an extended loading cycle of 485.1 s duration that is typical of the Space Shuttle Main Engine (SSME) operating cycle. The analysis qualitatively replicated the deformation behavior of the component as observed in experiments designed to simulate SSME operating conditions. The analysis also showed that the mode and location of failure in the component may depend on the loading cycle. The results indicate that using viscoplastic models for structural analysis can lead to a more realistic life assessment of thrust chambers.

  3. Fast-electron transport in cylindrically laser-compressed matter

    NASA Astrophysics Data System (ADS)

    Perez, F.; Koenig, M.; Batani, D.; Baton, S. D.; Beg, F. N.; Benedetti, C.; Brambrink, E.; Chawla, S.; Dorchies, F.; Fourment, C.; Galimberti, M.; Gizzi, L. A.; Heathcote, R.; Higginson, D. P.; Hulin, S.; Jafer, R.; Koester, P.; Labate, L.; Lancaster, K.; Mac Kinnon, A. J.; McPhee, A. G.; Nazarov, W.; Nicolai, P.; Pasley, J.; Ravasio, A.; Richetta, M.; Santos, J. J.; Sgattoni, A.; Spindloe, C.; Vauzour, B.; Volpe, L.

    2009-12-01

    Experimental and theoretical results of relativistic electron transport in cylindrically compressed matter are presented. This experiment, which is a part of the HiPER roadmap, was achieved on the VULCAN laser facility (UK) using four long pulses beams (~4 × 50 J, 1 ns, at 0.53 µm) to compress a hollow plastic cylinder filled with plastic foam of three different densities (0.1, 0.3 and 1 g cm-3). 2D simulations predict a density of 2-5 g cm-3 and a plasma temperature up to 100 eV at maximum compression. A short pulse (10 ps, 160 J) beam generated fast electrons that propagate through the compressed matter by irradiating a nickel foil at an intensity of 5 × 1018 W cm-2. X-ray spectrometer and imagers were implemented in order to estimate the compressed plasma conditions and to infer the hot electron characteristics. Results are discussed and compared with simulations.

  4. Global modes of flute instability of a rotating cylindrical plasma

    SciTech Connect

    Sorokina, E. A.

    2009-05-15

    The influence of rotation on the flute instability of a cylindrical gravitating plasma in a straight inhomogeneous magnetic field is studied in the framework of one-fluid magnetohydrodynamics. The dispersion relation and integral expression for the instability growth rate of eigenmodes are derived. It is shown that, in the framework of the given problem, rotation is a destabilizing factor, and the corresponding theorem is proved for the general case. For a linear radial profile of the rotation frequency, the structure of eigenmodes is calculated. The growth rate of these modes is shown to increase with increasing rotation velocity and azimuthal mode number. It is found that plasma rotation in the eigenmode localization region leads to the displacement of perturbation from the rotation region, which results in a decrease in the instability growth rate. The absence of eigenmodes (i.e., exponential instability of the system) for certain profiles of the density and rotation frequency is demonstrated.

  5. Influences of subcooling on burnout of horizontal cylindrical heaters

    SciTech Connect

    Elkassabgi, Y.; Lienhard, J.H. )

    1988-05-01

    The peak pool boiling heat flux is observed on horizontal cylindrical heaters in acetone, Freon-113, methanol, and isopropanol over ranges of subcooling from zero to 130C. Photographs, and the data themselves, revealed that there are three distinct burnout mechanisms at different levels of subcooling. Three interpretive models provide the basis for accurate correlations of the present data, and data from the literature, in each of the three regimes. Burnout is dictated by condensation on the walls of the vapor jets and columns at low subcooling. In the intermediate regime, burnout is limited by natural convection, which becomes very effective as vapor near the heater reduces boundary layer resistance. Burnout in the high-subcooling regime is independent of the level of subcooling, and is limited by the process of molecular effusion.

  6. Unstable Mixing of Compressible Fluids Driven by Cylindrical Shocks

    NASA Astrophysics Data System (ADS)

    Graham, Mary Jane; Zhang, Qiang

    1996-11-01

    As an incident shock wave hits a material interface between two compressible fluids of different densities, the interface becomes unstable. Small disturbances at the interface start to grow forming spikes and bubbles. This interfacial instability is known as the Richtmyer-Meshkov (RM) instability. To date, the majority of the numerical and theoretical studies are for the RM instability in plane geometry. We present a systematic study of the RM instabiliy in cylindrical geometry with curved shocks for all four classes: shock exploding from light fluid to heavy fluid; (2) shock imploding from light fluid to heavy fluid; (3) shock exploding from heavy fluid to light fluid; and (4) shock imploding from heavy fluid to light fluid. A careful study and understanding of the effects of various physical parameters will be presented: including the curvature of the geometry, the incident shock strength, the amplitude of the perturbation as well as the number of fingers at the material interface, and the phenomenon of reshock.

  7. Planar and cylindrical active microwave temperature imaging: numerical simulations.

    PubMed

    Rius, J M; Pichot, C; Jofre, L; Bolomey, J C; Joachimowicz, N; Broquetas, A; Ferrando, M

    1992-01-01

    A comparative study at 2.45 GHz concerning both measurement and reconstruction parameters for planar and cylindrical configurations is presented. For the sake of comparison, a numerical model consisting of two nonconcentric cylinders is considered and reconstructed using both geometries from simulated experimental data. The scattered fields and reconstructed images permit extraction of very useful information about dynamic range, sensitivity, resolution, and quantitative image accuracy for the choice of the configuration in a particular application. Both geometries can measure forward and backward scattered fields. The backscattering measurement improves the image resolution and reconstruction in lossy mediums, but, on the other hand, has several dynamic range difficulties. This tradeoff between forward only and forward-backward field measurement is analyzed. As differential temperature imaging is a weakly scattering problem, Born approximation algorithms can be used. The simplicity of Born reconstruction algorithms and the use of FFT make them very attractive for real-time biomedical imaging systems. PMID:18222887

  8. Cylindrical Antenna With Partly Adaptive Phased-Array Feed

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad; Hilland, Jeff

    2003-01-01

    A proposed design for a phased-array fed cylindrical-reflector microwave antenna would enable enhancement of the radiation pattern through partially adaptive amplitude and phase control of its edge radiating feed elements. Antennas based on this design concept would be attractive for use in radar (especially synthetic-aperture radar) and other systems that could exploit electronic directional scanning and in which there are requirements for specially shaped radiation patterns, including ones with low side lobes. One notable advantage of this design concept is that the transmitter/ receiver modules feeding all the elements except the edge ones could be identical and, as a result, the antenna would cost less than in the cases of prior design concepts in which these elements may not be identical.

  9. Magnetic confinement of a high-density cylindrical plasma

    SciTech Connect

    Ahedo, Eduardo

    2011-10-15

    The stationary structure of a weakly collisional plasma column, confined by an axial magnetic field and a cylindrical vessel, is studied for the high-density case, when the diamagnetic azimuthal current is large enough to demagnetize partially the plasma. The plasma response is characterized mainly by two dimensionless parameters: the ratios of the electron gyroradius and the electron skin-depth to the plasma radius, and each of them measures the independent influence of the applied magnetic field and the plasma density on the plasma response. The strong magnetic confinement regime, characterized by very small wall losses, is limited to the small gyroradius and large skin-depth ranges. In the high-density case, when the electron skin-depth is smaller than the electron gyroradius, the skin-depth turns out to be the magnetic screening length, so that the bulk of the plasma behaves as unmagnetized.

  10. Fracture strength of flawed cylindrical pressure vessels under cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Christopher, T.; Sankarnarayanasamy, K.; Nageswara Rao, B.

    2002-11-01

    Damage tolerant and fail-safe approaches have been employed increasingly in the design of critical engineering components. In these approaches, one has to assess the residual strength of a component with an assumed pre-existing crack. In other cases, cracks may be detected during service. Then, there is a need to evaluate the residual strength of the cracked components in order to decide whether they can be continued safely or repair and replacement are imperative. A three-parameter fracture criterion is applied to correlate the fracture data on aluminium, titanium and steel materials from test results on cylindrical tanks/pressure vessels at cryogenic temperatures. Fracture parameters to generate the failure assessment diagram are determined for the materials considered in the present study. Failure pressure estimates were found to be in good agreement with test results.

  11. Multiple shock-shock interference on a cylindrical leading edge

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.

    1991-01-01

    The details of an experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet are presented. This Mach 8 study has provided the first detailed pressure and heat transfer rate distributions on a cylinder resulting from a two-dimensional shockwave interference pattern created by two incident oblique shock waves intersecting the cylinder bow shock wave. The peak heat transfer rate was 38 times the undisturbed flow stagnation point level and occurred when the two oblique shock waves coalesced prior to intersecting the cylinder bow shock wave. Development of pressure deflection diagrams identified a new interference pattern consisting of concomitant supersonic jets separated from each other by a shear layer and submerged in the subsonic region between the bow shock wave and body.

  12. The Moduli Space of Asymptotically Cylindrical Calabi-Yau Manifolds

    NASA Astrophysics Data System (ADS)

    Conlon, Ronan J.; Mazzeo, Rafe; Rochon, Frédéric

    2015-09-01

    We prove that the deformation theory of compactifiable asymptotically cylindrical Calabi-Yau manifolds is unobstructed. This relies on a detailed study of the Dolbeault-Hodge theory and its description in terms of the cohomology of the compactification. We also show that these Calabi-Yau metrics admit a polyhomogeneous expansion at infinity, a result that we extend to asymptotically conical Calabi-Yau metrics as well. We then study the moduli space of Calabi-Yau deformations that fix the complex structure at infinity. There is a Weil-Petersson metric on this space, which we show is Kähler. By proving a local families L 2-index theorem, we exhibit its Kähler form as a multiple of the curvature of a certain determinant line bundle.

  13. Modulational Instability of Cylindrical and Spherical NLS Equations. Statistical Approach

    SciTech Connect

    Grecu, A. T.; Grecu, D.; Visinescu, Anca; De Nicola, S.; Fedele, R.

    2010-01-21

    The modulational (Benjamin-Feir) instability for cylindrical and spherical NLS equations (c/s NLS equations) is studied using a statistical approach (SAMI). A kinetic equation for a two-point correlation function is written and analyzed using the Wigner-Moyal transform. The linear stability of the Fourier transform of the two-point correlation function is studied and an implicit integral form for the dispersion relation is found. This is solved for different expressions of the initial spectrum (delta-spectrum, Lorentzian, Gaussian), and in the case of a Lorentzian spectrum the total growth of the instability is calculated. The similarities and differences with the usual one-dimensional NLS equation are emphasized.

  14. Non-linear dynamic analysis of anisotropic cylindrical shells

    SciTech Connect

    Lakis, A.A.; Selmane, A.; Toledano, A.

    1996-12-01

    A theory to predict the influence of geometric non-linearities on the natural frequencies of an empty anisotropic cylindrical shell is presented in this paper. It is a hybrid of finite element and classical thin shell theories. Sanders-Koiter non-linear and strain-displacement relations are used. Displacement functions are evaluated using linearized equations of motion. Modal coefficients are then obtained for these displacement functions. Expressions for the mass, linear and non-linear stiffness matrices are derived through the finite element method. The uncoupled equations are solved with the help of elliptic functions. The period and frequency variations are first determined as a function of shell amplitudes and then compared with the results in the literature.

  15. Light detonation wave in a cylindrical Z-pinch

    NASA Astrophysics Data System (ADS)

    Yusupaliev, U.; Sysoev, N. N.; Shuteev, S. A.; Elenskii, V. G.

    2015-09-01

    A secondary compression wave previously observed by other researchers in a cylindrical Z-pinch has been identified in this work as a light detonation wave. It appears on the inner surface of a discharge chamber under the action of the intense ultraviolet radiation from a plasma pinch at the stage of its maximum compression. The condition of the light detonation wave has been determined experimentally. The dependence of its Mach number on a generalized dimensionless variable has been determined taking into account the conservation laws for the light detonation wave including the pressure of the gas, expenses on the formation of the surface plasma, and the energy of ionization of the gas involved in the wave. An analogy with the laser-supported detonation wave created by intense laser radiation has been revealed. The indicated dependence is within the error of measurement in agreement with the experimental data for light detonation waves created by both methods.

  16. On the question of instabilities upstream of cylindrical bodies

    NASA Technical Reports Server (NTRS)

    Morkovin, M. V.

    1979-01-01

    In an attempt to understand the unsteady vortical phenomena in perturbed stagnation regions of cylindrical bodies, a critical review of the theoretical and experimental evidence was made. Current theory is revealed to be incomplete, incorrect, or inapplicable to the phenomena observed experimentally. The formalistic approach via the principle of exchange of instabilities should most likely be replaced by a forced-disturbance approach. Also, many false conclusions were reached by ignoring that treatment of the base and perturbed flows in Hiemenz coordinate eta is asymptotic in nature. Almost surely the techniques of matched asymptotic expansions are expected to be used to capture correctly the diffusive and vorticity amplifying processes of the disturbances regarding the mean-flow boundary layer and outer potential field as eta and y/diameter approach infinity. The serious uncertainties in the experiments are discussed in detail.

  17. Viscoplastic analysis of an experimental cylindrical thrust chamber liner

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Arnold, Steven M.

    1991-01-01

    A viscoplastic stress-strain analysis of an experimental cylindrical thrust chamber is presented. A viscoelastic constitutive model incorporating a single internal state variable that represents kinematic hardening was employed to investigate whether such a viscoplastic model could predict the experimentally observed behavior of the thrust chamber. Two types of loading cycles were considered: a short cycle of 3.5 sec. duration that corresponded to the experiments, and an extended loading cycle of 485.1 sec. duration that is typical of the Space Shuttle Main Engine (SSME) operating cycle. The analysis qualitatively replicated the deformation behavior of the component as observed in experiments designed to simulate SSME operating conditions. The analysis also showed that the mode and location in the component may depend on the loading cycle. The results indicate that using viscoplastic models for structural analysis can lead to a more realistic life assessment of thrust chambers.

  18. Noise radiated from a rotating submerged elastic cylindrical thin shell

    NASA Astrophysics Data System (ADS)

    Caspall, Jayme J.; Yoda, Minami; Rogers, Peter H.

    2002-11-01

    Although the aeroacoustics of high Reynolds number boundary layers is reasonably well understood, less is known about the hydroacoustics of such flows, and the effect of fluid loading. The noise generated by the turbulent boundary layer around an elastic, thin-walled and cylindrical shell rotating in quiescent water was studied in the Georgia Tech. Underwater Acoustic Tank for Reynolds numbers up to 200000. The steel shell, which is filled with air, has a diameter D of 0.625 m, a wall thickness of 0.004D, and an aspect ratio of unity; the tank dimensions are 19D by 12D by 11D. Extraneous noise sources (e.g., bearing and motor vibration) were isolated from the net signal to estimate flow noise. Radiated noise power was calculated from hydrophone data under a diffuse field assumption. To our knowledge, these results are unique in both their structural acoustics and fluid mechanics scaling.

  19. Iterative Calculation of Plasma Density from a Cylindrical Probe Characteristic

    NASA Astrophysics Data System (ADS)

    Xu, Zhenfeng; Lu, Wenqi

    2013-08-01

    A novel method is proposed for treating cylindrical probe characteristics to obtain plasma density. The method consists of exponential extrapolation of the transitional part of the I-V curve to the floating potential for the ion saturation current, other than the existing theories which use the ion branch, and an iterative sheath thickness correction procedure for improved accuracy. The method was tested by treating Langmuir probe I-V characteristics obtained from inductively coupled Ar discharges at various pressures, and comparing the present results with those deduced by existing theories. It was shown that the plasma densities obtained by the present method are in good agreement with those calculated by the Allen-Boyd-Reynolds (ABR) theory, suggesting the effectiveness of the proposed method. Without need of manual setting and adjustment of fitting parameters, the method may be suitable for automatic and real time processing of probe characteristics.

  20. Predictors of food preferences in adult humans.

    PubMed

    Logue, A W; Smith, M E

    1986-06-01

    Predictors of preferences for a wide variety of foods were examined in 303 male and female human subjects ranging from 14-68 years of age. The subjects completed questionnaires which requested information on the subject's sex, age, thinness, sensation seeking and ethnic background, as well as on the subjects' food preferences. Largely consistent with previous studies, female subjects reported higher preferences for low-calorie foods, candy and wine, and lower preferences for meat, beer, spicy foods and milk. Younger subjects reported higher preferences for sweet foods and lower preferences for foods such as chili pepper that are considered acquired tastes. Thinner subjects tended to rate both sweet foods and meat lower than did other subjects. Preferences for spicy foods or foods likely to cause illness were positively correlated with sensation seeking while preferences for sweet or bland foods or foods unlikely to cause illness were negatively correlated with sensation seeking. Subjects for whom the primary cuisine on which they were raised was Oriental cuisine preferred alcoholic beverages and non-Oriental foods less than did other subjects. A factor analysis of the food preferences yielded ten factors including those for meat and potatoes, alcohol, spices and junk food. Data on predictors of food preferences can assist research on the determinants of food preferences, however much of the variance in food preferences remains to be explained.

  1. Cylindrical gravitational waves in expanding universes: Models for waves from compact sources

    SciTech Connect

    Gowdy, Robert H.; Edmonds, B. Douglas

    2007-04-15

    New boundary conditions are imposed on the familiar cylindrical gravitational wave vacuum spacetimes. The new spacetime family represents cylindrical waves in a flat expanding (Kasner) universe. Space sections are flat and nonconical where the waves have not reached and wave amplitudes fall off more rapidly than they do in Einstein-Rosen solutions, permitting a more regular null inifinity.

  2. Method For Plasma Source Ion Implantation And Deposition For Cylindrical Surfaces

    DOEpatents

    Fetherston, Robert P. , Shamim, Muhammad M. , Conrad, John R.

    1997-12-02

    Uniform ion implantation and deposition onto cylindrical surfaces is achieved by placing a cylindrical electrode in coaxial and conformal relation to the target surface. For implantation and deposition of an inner bore surface the electrode is placed inside the target. For implantation and deposition on an outer cylindrical surface the electrode is placed around the outside of the target. A plasma is generated between the electrode and the target cylindrical surface. Applying a pulse of high voltage to the target causes ions from the plasma to be driven onto the cylindrical target surface. The plasma contained in the space between the target and the electrode is uniform, resulting in a uniform implantation or deposition of the target surface. Since the plasma is largely contained in the space between the target and the electrode, contamination of the vacuum chamber enclosing the target and electrodes by inadvertent ion deposition is reduced. The coaxial alignment of the target and the electrode may be employed for the ion assisted deposition of sputtered metals onto the target, resulting in a uniform coating of the cylindrical target surface by the sputtered material. The independently generated and contained plasmas associated with each cylindrical target/electrode pair allows for effective batch processing of multiple cylindrical targets within a single vacuum chamber, resulting in both uniform implantation or deposition, and reduced contamination of one target by adjacent target/electrode pairs.

  3. High Speed Cylindrical Roller Bearing Analysis, SKF Computer Program CYBEAN. Volume 1: Analysis

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.; Pirvics, J.

    1978-01-01

    The CYBEAN (CYlindrical BEaring ANalysis) program was created to detail radially loaded, aligned and misaligned Cylindrical roller bearing performance under a variety of operating conditions. The models and associated mathematics used within CYBEAN are described. The user is referred to the material for formulation assumptions and algorithm detail.

  4. Numerical solution of the scalar-wave equation for inhomogeneous cylindrical dielectric waveguides.

    PubMed

    Rose, J W; Mitra, S S

    1981-09-01

    An initial-value algorithm derived from the Ricatti transformation of the scalar-wave equation is used to find the eigenvalues of inhomogeneous cylindrical dielectric waveguides. The numerical accuracy of the technique is investigated for cladded parabolic and step-index cylindrical refractive-index profiles.

  5. A study of cylindrical Hall thruster for low power space applications

    SciTech Connect

    Y. Raitses; N.J. Fisch; K.M. Ertmer; C.A. Burlingame

    2000-07-27

    A 9 cm cylindrical thruster with a ceramic channel exhibited performance comparable to the state-of-the-art Hall thrusters at low and moderate power levels. Significantly, its operation is not accompanied by large amplitude discharge low frequency oscillations. Preliminary experiments on a 2 cm cylindrical thruster suggest the possibility of a high performance micro Hall thruster.

  6. Infants' preference for native audiovisual speech dissociated from congruency preference.

    PubMed

    Shaw, Kathleen; Baart, Martijn; Depowski, Nicole; Bortfeld, Heather

    2015-01-01

    Although infant speech perception in often studied in isolated modalities, infants' experience with speech is largely multimodal (i.e., speech sounds they hear are accompanied by articulating faces). Across two experiments, we tested infants' sensitivity to the relationship between the auditory and visual components of audiovisual speech in their native (English) and non-native (Spanish) language. In Experiment 1, infants' looking times were measured during a preferential looking task in which they saw two simultaneous visual speech streams articulating a story, one in English and the other in Spanish, while they heard either the English or the Spanish version of the story. In Experiment 2, looking times from another group of infants were measured as they watched single displays of congruent and incongruent combinations of English and Spanish audio and visual speech streams. Findings demonstrated an age-related increase in looking towards the native relative to non-native visual speech stream when accompanied by the corresponding (native) auditory speech. This increase in native language preference did not appear to be driven by a difference in preference for native vs. non-native audiovisual congruence as we observed no difference in looking times at the audiovisual streams in Experiment 2.

  7. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOEpatents

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  8. The DRESOR method for radiative heat transfer in semitransparent graded index cylindrical medium

    NASA Astrophysics Data System (ADS)

    Cheng, Qiang; Zhang, Xian; Huang, Zhifeng; Wang, Zhichao; Zhou, Huaichun

    2014-08-01

    During a numerical analysis of radiative transfer in some cylindrical optical thermal analysis and thermal design, applying a cylindrical coordinate system would be much more convenient and precise than that using a Cartesian coordinate system. In this paper, the DRESOR method under a cylindrical coordinate system is proposed to address radiative transfer in a semitransparent graded index cylindrical medium. The dimensionless incident radiation and net radiative heat flux are obtained using the DRESOR method. The accuracy and validity of the proposed method is verified by comparison with other techniques. The effects of isotropic scattering albedo and graded index on radiative transfer are also considered. Additionally, the high directional radiative intensity information is obtained to show the performance of the DRESOR method. It shows that the DRESOR method is an effective technique to address the radiative transfer problem in the graded index cylindrical medium with complex surface temperature characteristics.

  9. A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones

    PubMed Central

    Zhang, Yongmeng; Wu, Yulie; Wu, Xuezhong; Xi, Xiang; Wang, Jianqiu

    2015-01-01

    Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes. PMID:25602269

  10. Cognitive Preferences as Components of Student Interest.

    ERIC Educational Resources Information Center

    Rost, Jurgen

    1983-01-01

    The concept of students' cognitive preferences was analyzed considering empirical findings with cognitive preference tests. Cognitive preferences were identified as the modes of attending to the course subject matter: memory of specific facts, practical application, critical questioning of information, and identification of a fundamental…

  11. Biology Cognitive Preferences of Preservice Biology Teachers.

    ERIC Educational Resources Information Center

    Cheng, Yeong-Jing

    1991-01-01

    The Biology Cognitive Preference Inventory (BCPI) for investigating the biology cognitive preference styles of 143 students in the biology teacher education program was developed and validated. The cognitive preferences include factual information or recall, principles, questioning, and applications. Preservice biology teachers exhibited a strong…

  12. Minimal Mimicry: Mere Effector Matching Induces Preference

    ERIC Educational Resources Information Center

    Sparenberg, Peggy; Topolinski, Sascha; Springer, Anne; Prinz, Wolfgang

    2012-01-01

    Both mimicking and being mimicked induces preference for a target. The present experiments investigate the minimal sufficient conditions for this mimicry-preference link to occur. We argue that mere effector matching between one's own and the other person's movement is sufficient to induce preference, independent of which movement is actually…

  13. Measurement of Client Preferences for Therapist Behavior.

    ERIC Educational Resources Information Center

    Richert, Alphons J.

    While past research has found conflicting results on the place for client role preferences in psychotherapy, none of this research has examined the client role preferences in an actual client population seeking outpatient therapy. This study involved the development of a measure of client role preferences which attempted to survey a wider range of…

  14. Employer Preferences for Resumes and Cover Letters

    ERIC Educational Resources Information Center

    Schullery, Nancy M.; Ickes, Linda; Schullery, Stephen E.

    2009-01-01

    This article reports the results of a survey of employers' preferences for resume style, resume delivery method, and cover letters. Employers still widely prefer the standard chronological resume, with only 3% desiring a scannable resume. The vast majority of employers prefer electronic delivery, either by email (46%) or at the company's Web site…

  15. Generalization of a Modified Food Preference.

    ERIC Educational Resources Information Center

    Birch, Leann Lipps

    1981-01-01

    Assesses preschool children's preferences for eight snack foods and tests procedures to modify preferences for certain foods by having children sort foods according to self-determined categories. Enhanced preferences for target foods generalized to other foods in the same category only for children using semantic sorting categories. (Author/DB)

  16. 47 CFR 1.1622 - Preferences.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Preferences. 1.1622 Section 1.1622... Mass Media Services General Procedures § 1.1622 Preferences. (a) Any applicant desiring a perference in... owners. (b) Preference factors as incorporated in the percentage calculations in § 1.1623, shall...

  17. 25 CFR 273.45 - Indian preference.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Indian preference. 273.45 Section 273.45 Indians BUREAU... preference. (a) Any contract made by the Bureau with a State, school district or Indian corporation shall provide that the contractor shall, to the greatest extent feasible, give preference in and...

  18. 24 CFR 891.230 - Selection preferences.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Housing for the Elderly § 891.230 Selection preferences. For purposes of the Section 202 Program, the selection preferences in 24 CFR part 5, subpart D apply. ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Selection preferences....

  19. 24 CFR 886.337 - Selection preferences.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Selection preferences. 886.337... Assistance Program for the Disposition of HUD-Owned Projects § 886.337 Selection preferences. Sections 5.410 through 5.430 govern the use of preferences in the selection of tenants under this subpart....

  20. Intergenerational transfer of time and risk preferences

    PubMed Central

    Brown, Heather; van der Pol, Marjon

    2015-01-01

    There is a growing interest in individual time and risk preferences. Little is known about how these preferences are formed. It is hypothesised that parents may transmit their preferences to their offspring. This paper examines the correlation in offspring and parental time and risk preferences using data from an annual household survey in Australia (the HILDA survey). Both time and risk preferences are examined and we explored whether the correlation in time and risk preferences varies across the distribution of preferences and across the across the four parent–child dyads (mother/daughter, mother/son, father/daughter, father/son). The results show that there is a significant relationship between parents and their young adult offspring risk and time preference measures. The correlation varies across the distribution of time preferences. The correlation was largest for longer planning horizons. Risk averse parents are more likely to have risk averse children. Except for the father/daughter dyad risk seeking parents are more likely to have risk seeking offspring. Some gender differences were found. The association in parental and offspring time preference was larger for mothers than fathers. Daughters are more likely to be influenced by their mother’s risk preferences, however, sons are equally influenced by both parents. The results of this study suggest that the transmission in preferences is more nuanced than previously thought and parental gender may be important. PMID:26412913

  1. Preference and Performance Measures of Handedness

    ERIC Educational Resources Information Center

    Brown, Susan G.; Roy, Eric A.; Rohr, Linda E.; Snider, Benjamin R.; Bryden, Pamela J.

    2004-01-01

    Handedness cannot be predicted using a single performance measure, and preference measures of handedness are unreliable because of their subjectivity. This report was designed to examine the relationship between hand performance and hand preference using six different measures: the Waterloo Handedness Questionnaire (a measure of hand preference),…

  2. Preferred Attachment in Affiliation Networks

    NASA Astrophysics Data System (ADS)

    Bloznelis, Mindaugas; Götze, Friedrich

    2014-08-01

    Vertices of an affiliation network are linked to attributes and two vertices are declared adjacent whenever they share a common attribute. For example, two customers of an internet shop (or video-sharing website) are called adjacent if they have purchased (or downloaded) the same or similar items. Assuming that each newly arrived customer is linked preferentially to already popular items we obtain a preferred attachment affiliation network that evolves in time. We show that the fraction of customers having neighbours scales as for large . Here is the ratio between the two intensities: intensity of the flow of customers and that of the newly arriving items.

  3. Neural representation of preference relationships.

    PubMed

    Shimokawa, Tetsuya; Misawa, Tadanobu; Suzuki, Kyoko

    2008-10-29

    This paper indicates that the human product-preference relationship can, using a product selection task, be predicted to an extent on the basis of changes in the oxygenated hemoglobin concentration in the ventromedial prefrontal cortex and that functional near-infrared spectroscopy allows this prediction despite the shallow depth at which brain information is measured. A Bayesian three-layer perceptron was used as a predictive model. Results of this work help to lay the foundations for the concept of utility in economics and marketing theories from the perspective of neuroscience and have important significance from a practical standpoint as well.

  4. Kinematics of preferred and non-preferred handballing in Australian football.

    PubMed

    Parrington, Lucy; Ball, Kevin; MacMahon, Clare

    2015-01-01

    In Australian football (AF), handballing proficiently with both the preferred and non-preferred arm is important at elite levels; yet, little information is available for handballing on the non-preferred arm. This study compared preferred and non-preferred arm handballing techniques. Optotrak Certus (100 Hz) collected three-dimensional data for 19 elite AF players performing handballs with the preferred and non-preferred arms. Position data, range of motion (ROM), and linear and angular velocities were collected and compared between preferred and non-preferred arms using dependent t-tests. The preferred arm exhibited significantly greater forearm and humerus ROM and angular velocity and significantly greater shoulder angular velocity at ball contact compared to the non-preferred arm. In addition, the preferred arm produced a significantly greater range of lateral bend and maximum lower-trunk speed, maximum strike-side hip speed and hand speed at ball contact than the non-preferred arm. The non-preferred arm exhibited a significantly greater shoulder angle and lower- and upper-trunk orientation angle, but significantly lower support-elbow angle, trunk ROM, and trunk rotation velocity compared to the preferred arm. Reduced ROM and angular velocities found in non-preferred arm handballs indicates a reduction in the degrees of freedom and a less developed skill. Findings have implication for development of handballing on the non-preferred arm. PMID:24863906

  5. Preference of the herbivorous marine teleost Siganus canaliculatus for different macroalgae

    NASA Astrophysics Data System (ADS)

    You, Cuihong; Zeng, Fangui; Wang, Shuqi; Li, Yuanyou

    2014-06-01

    The decomposition of a large amount of unexploited macroalgal resource along the coast of China often results in heavy environmental pollution. In order to pave a way of using macroalgae as the dietary ingredient of rabbitfish Siganus canaliculatus, one of a few farmed herbivorous marine teleosts in China, its preference (feeding selectivity) for different macroalgae was determined in this study. Seven seaweed species abundantly inhabiting the coast of east Guangdong Province were exposed simultaneously to rabbitfish juveniles in laboratory (multiple-choice feeding) with their content and absolute intake assayed. It was found that the most preferred algae were Ulva prolifera, Gracilaria lemaneiformis and Chaetomorpha linum, less preferred algae were U. pertusa and Porphyra haitanensis, and least preferred ones were Sargassum fusiforme and Corallina sessilis. Such an order did not change when one to four relatively preferred seaweeds were removed. The preferred seaweeds were richer in protein and soluble sugar thus higher in energy than the least preferred. In addition, this fish was found to favor filamentous and flat algae rather than calcified ones. Accordingly, the richness of nutrients and morphological characteristics determined the preference of S. canaliculatus for tested macroalgae.

  6. Investigation of a Nonlinear Outcoupling Feature Observed in Optically-Pumped Cylindrical Liquid Jets Supporting Stimulated Raman Scattering.

    NASA Astrophysics Data System (ADS)

    Ruekgauer, Thomas Eric

    1995-01-01

    Two processes associated with the generation of stimulated Raman scattering (SRS) in optically-pumped cylindrical liquid jets are investigated. First, the mechanism of frequency selectivity occurring in a micro-cavity with a continuum of resonant frequencies is discussed. It appears that the restrictions placed on the continuous parameter beta, which describes the z dependence of the normal modes of the micro-cylinder, results in a discrete emission spectrum for the stimulated processes (e.g., dye-lasing and SRS) occurring in the dielectric micro-cylinder. A simple model, based on geometric optics, describing the gain and leakage loss for a semi-infinite dielectric slab containing a (semi-infinite) gain region is used to illuminate the role which the parameter beta plays in the generation of stimulated processes in the dielectric micro-cylinder. The results of the model, along with various experimental results, indicate that beta = 0 is the preferred condition for the stimulated processes. Second, it appears as if SRS occurring in the optically-pumped cylindrical liquid jets is responsible for the generation of a newly-observed outcoupling (scattering) feature. This geometrically well-defined feature takes the form of a thin ring, lying in the rm e_{r}-rm e_ {phi} plane, with a spatial extent along the cylinder axis direction of <=q 5 mum. The ring feature is found to be a threshold process, as it is observed to outcouple resident SRS light only above a well-defined optical pump intensity. Finally, it is observed that the ring feature can take on a periodic (in phi) character for particular liquids (ethanol and water) and over a range of optical pump intensities. An explanation for the mechanism responsible for the generation of the ring feature based on plasma generation resulting from self-focusing of the SRS fields is offered.

  7. Color preference in red-green dichromats.

    PubMed

    Álvaro, Leticia; Moreira, Humberto; Lillo, Julio; Franklin, Anna

    2015-07-28

    Around 2% of males have red-green dichromacy, which is a genetic disorder of color vision where one type of cone photoreceptor is missing. Here we investigate the color preferences of dichromats. We aim (i) to establish whether the systematic and reliable color preferences of normal trichromatic observers (e.g., preference maximum at blue, minimum at yellow-green) are affected by dichromacy and (ii) to test theories of color preference with a dichromatic sample. Dichromat and normal trichromat observers named and rated how much they liked saturated, light, dark, and focal colors twice. Trichromats had the expected pattern of preference. Dichromats had a reliable pattern of preference that was different to trichromats, with a preference maximum rather than minimum at yellow and a much weaker preference for blue than trichromats. Color preference was more affected in observers who lacked the cone type sensitive to long wavelengths (protanopes) than in those who lacked the cone type sensitive to medium wavelengths (deuteranopes). Trichromats' preferences were summarized effectively in terms of cone-contrast between color and background, and yellow-blue cone-contrast could account for dichromats' pattern of preference, with some evidence for residual red-green activity in deuteranopes' preference. Dichromats' color naming also could account for their color preferences, with colors named more accurately and quickly being more preferred. This relationship between color naming and preference also was present for trichromat males but not females. Overall, the findings provide novel evidence on how dichromats experience color, advance the understanding of why humans like some colors more than others, and have implications for general theories of aesthetics. PMID:26170287

  8. Color preference in red-green dichromats.

    PubMed

    Álvaro, Leticia; Moreira, Humberto; Lillo, Julio; Franklin, Anna

    2015-07-28

    Around 2% of males have red-green dichromacy, which is a genetic disorder of color vision where one type of cone photoreceptor is missing. Here we investigate the color preferences of dichromats. We aim (i) to establish whether the systematic and reliable color preferences of normal trichromatic observers (e.g., preference maximum at blue, minimum at yellow-green) are affected by dichromacy and (ii) to test theories of color preference with a dichromatic sample. Dichromat and normal trichromat observers named and rated how much they liked saturated, light, dark, and focal colors twice. Trichromats had the expected pattern of preference. Dichromats had a reliable pattern of preference that was different to trichromats, with a preference maximum rather than minimum at yellow and a much weaker preference for blue than trichromats. Color preference was more affected in observers who lacked the cone type sensitive to long wavelengths (protanopes) than in those who lacked the cone type sensitive to medium wavelengths (deuteranopes). Trichromats' preferences were summarized effectively in terms of cone-contrast between color and background, and yellow-blue cone-contrast could account for dichromats' pattern of preference, with some evidence for residual red-green activity in deuteranopes' preference. Dichromats' color naming also could account for their color preferences, with colors named more accurately and quickly being more preferred. This relationship between color naming and preference also was present for trichromat males but not females. Overall, the findings provide novel evidence on how dichromats experience color, advance the understanding of why humans like some colors more than others, and have implications for general theories of aesthetics.

  9. Color preference in red–green dichromats

    PubMed Central

    Álvaro, Leticia; Moreira, Humberto; Lillo, Julio; Franklin, Anna

    2015-01-01

    Around 2% of males have red–green dichromacy, which is a genetic disorder of color vision where one type of cone photoreceptor is missing. Here we investigate the color preferences of dichromats. We aim (i) to establish whether the systematic and reliable color preferences of normal trichromatic observers (e.g., preference maximum at blue, minimum at yellow-green) are affected by dichromacy and (ii) to test theories of color preference with a dichromatic sample. Dichromat and normal trichromat observers named and rated how much they liked saturated, light, dark, and focal colors twice. Trichromats had the expected pattern of preference. Dichromats had a reliable pattern of preference that was different to trichromats, with a preference maximum rather than minimum at yellow and a much weaker preference for blue than trichromats. Color preference was more affected in observers who lacked the cone type sensitive to long wavelengths (protanopes) than in those who lacked the cone type sensitive to medium wavelengths (deuteranopes). Trichromats’ preferences were summarized effectively in terms of cone-contrast between color and background, and yellow-blue cone-contrast could account for dichromats’ pattern of preference, with some evidence for residual red–green activity in deuteranopes’ preference. Dichromats’ color naming also could account for their color preferences, with colors named more accurately and quickly being more preferred. This relationship between color naming and preference also was present for trichromat males but not females. Overall, the findings provide novel evidence on how dichromats experience color, advance the understanding of why humans like some colors more than others, and have implications for general theories of aesthetics. PMID:26170287

  10. Phase Transitions and Honeycomb Morphology in an Incompatible Blend of Enantiomeric Polylactide Block Copolymers

    NASA Astrophysics Data System (ADS)

    Sun, Lu; Ginorio, Jorge; Zhu, Lei; Rong, Lixia; Sics, Igor; Hsiao, Benjamin

    2007-03-01

    Enantiomeric PLAs, poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA), are known to form stereocomplexes. In this work, by using controlled ring-opening polymerization of L- and D-lactides from monohydroxyl-terminated hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(ethylene-co-1-butene) (PEB) oligomers, respectively, well-defined PEO-b-PLLA (2k-5.4k) and PEB-b-PDLA (4.2-5.4k) block copolymers were synthesized. Quantitative stereocomplex formation was achieved by casting an equimolar mixture of incompatible PEO-b-PLLA and PEB-b-PDLA from chloroform at room temperature. Depending on different thermal histories, either lamellar or inverted cylindrical morphology was observed in the molten state. Intriguingly, novel honeycomb morphology with the minor PEB component forming the matrix was observed in the inverted cylindrical phase.

  11. Observing of tree trunks and other cylindrical objects using GPR

    NASA Astrophysics Data System (ADS)

    Jezova, Jana; Lambot, Sebastien

    2016-04-01

    Trees are a part of our everyday life, hence it is important to prevent their collapse to protect people and urban infrastructures. It is also important to characterize tree wood properties for usages in construction. In order to investigate internal parts of tree trunks non-invasively, ground-penetrating radar (GPR), or in this case, ultra-wideband microwave radar as a general tool, appears to be a very promising technology. Nevertheless, tree trunk tomography using microwave radar is a complicated task due to the circular shape of the trunk and the very complex (heterogeneous and anisotropic) internal structures of the trunk. Microwave sensing of tree trunks is also complicated due to the electromagnetic properties of living wood, which strongly depend on water content, density and temperature of wood. The objective of this study is to describe tree trunk radar cross sections including specific features originating from the particular circumferential data acquisition geometry. In that respect, three experiments were performed: (1) numerical simulations using a finite-difference time-domain software, namely, gprMax 2D, (2) measurements on a simplified laboratory trunk model including plastic and cardboard pipes, sand and air, and (3) measurements over a real tree trunk. The analysis was further deepened by considering: (1) common zero-offset reflection imaging, (2) imaging with a planar perfect electrical conductor (PEC) at the opposite side of the trunk, and (3) imaging with a PEC arc at the opposite side of the trunk. Furthermore, the shape of the reflection curve of a cylindrical target was analytically derived based on the straight-ray propagation approximation. Subsequently, the total internal reflection (TIR) phenomenon occurring in cylindrical objects was observed and analytically described. Both the straight-ray reflection curve and TIR were well observed on the simulated and laboratory radar data. A comparison between all experiments and radar

  12. Ultrasonic Concentration in a Line-Driven Cylindrical Tube

    SciTech Connect

    Goddard, Gregory Russ

    2004-01-01

    The fractionation of particles from their suspending fluid or noninvasive micromanipulation of particles in suspension has many applications ranging from the recovery of valuable reagents from process flows to the fabrication of microelectromechanical devices. Techniques based on size, density, solubility, or electromagnetic properties exist for fulfilling these needs, but many particles have traits that preclude their use such as small size, neutral buoyancy, or uniform electromagnetic characteristics. While separation by those techniques may not be possible, often compressibility differences exist between the particle and fluid that would allow fractionation by acoustic forces. The potential of acoustic separation is known, but due to inherent difficulties in achieving and maintaining accurate alignment of the transduction system, it is rarely utilized. The objective of this project is to investigate the use of structural excitation as a potentially efficient concentration/fractionation method for particles in suspension. It is demonstrated that structural excitation of a cylindrically symmetric cavity, such as a tube, allows non-invasive, fast, and low power concentration of particles suspended in a fluid. The inherent symmetry of the system eliminates the need for careful alignment inherent in current acoustic concentration devices. Structural excitation distributes the acoustic field throughout the volume of the cavity, which also significantly reduces temperature gradients and acoustic streaming in the fluid; cavitation is no longer an issue. The lowest-order coupled modes of a long cylindrical glass tube and fluid-filled cavity, driven by a line contact, are tuned, via material properties and aspect ratio, to achieve a coupled dipolar vibration of the system, shown to generate efficient concentration of particles to the central axis of the tube. A two dimensional elastodynamic model of the system was developed and subsequently utilized to optimize particle

  13. Real-time cylindrical curvilinear 3-D ultrasound imaging.

    PubMed

    Pua, E C; Yen, J T; Smith, S W

    2003-07-01

    In patients who are obese or exhibit signs of pulmonary disease, standard transthoracic scanning may yield poor quality cardiac images. For these conditions, two-dimensional transesophageal echocardiography (TEE) is established as an essential diagnostic tool. Current techniques in transesophageal scanning, though, are limited by incomplete visualization of cardiac structures in close proximity to the transducer. Thus, we propose a 2D curvilinear array for 3D transesophageal echocardiography in order to widen the field of view and increase visualization close to the transducer face. In this project, a 440 channel 5 MHz two-dimensional array with a 12.6 mm aperture diameter on a flexible interconnect circuit has been molded to a 4 mm radius of curvature. A 75% element yield was achieved during fabrication and an average -6dB bandwidth of 30% was observed in pulse-echo tests. Using this transducer in conjunction with modifications to the beam former delay software and scan converter display software of the our 3D scanner, we obtained cylindrical real-time curvilinear volumetric scans of tissue phantoms, including a field of view of greater than 120 degrees in the curved, azimuth direction and 65 degrees phased array sector scans in the elevation direction. These images were achieved using a stepped subaperture across the cylindrical curvilinear direction of the transducer face and phased array sector scanning in the noncurved plane. In addition, real-time volume rendered images of a tissue mimicking phantom with holes ranging from 1 cm to less than 4 mm have been obtained. 3D color flow Doppler results have also been acquired. This configuration can theoretically achieve volumes displaying 180 degrees by 120 degrees. The transducer is also capable of obtaining images through a curvilinear stepped subaperture in azimuth in conjunction with a rectilinear stepped subaperture in elevation, further increasing the field of view close to the transducer face. Future work

  14. 25 CFR 170.914 - What is the difference between tribal preference and Indian preference?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What is the difference between tribal preference and Indian preference? 170.914 Section 170.914 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR... Indian Preference § 170.914 What is the difference between tribal preference and Indian...

  15. The shape of female mating preferences

    PubMed Central

    Ritchie, Michael G.

    1996-01-01

    The “shape” of a female mating preference is the relationship between a male trait and the probability of acceptance as a mating partner. The shape of preferences is important in many models of sexual selection, mate recognition, communication, and speciation, yet it has rarely been measured precisely. Here I examine preference shape for male calling song in a bushcricket (katydid). Preferences change dramatically between races of a species, from strongly directional to broadly stabilizing (but with a net directional effect). Preference shape generally matches the distribution of the male trait. This is compatible with a coevolutionary model of signal-preference evolution, although it does not rule out an alternative model, sensory exploitation. Preference shapes are shown to be genetic in origin. PMID:8962104

  16. Game theory, conditional preferences, and social influence.

    PubMed

    Stirling, Wynn C; Felin, Teppo

    2013-01-01

    Neoclassical noncooperative game theory is based on a simple, yet powerful synthesis of mathematical and logical concepts: unconditional and immutable preference orderings and individual rationality. Although this structure has proven useful for characterizing competitive multi-player behavior, its applicability to scenarios involving complex social relationships is problematic. In this paper we directly address this limitation by the introduction of a conditional preference structure that permits players to modulate their preference orderings as functions of the preferences of other players. Embedding this expanded preference structure in a formal and graphical framework provides a systematic approach for characterizing a complex society. The result is an influence network that allows conditional preferences to propagate through the community, resulting in an emergent social model which characterizes all of the social relationships that exist and which leads to solution concepts that account for both group and individual interests. The Ultimatum game is presented as an example of how social influence can be modeled with conditional preferences.

  17. Rational controlled morphological transitions in the self-assembled multi-headed giant surfactants in solution.

    PubMed

    Chu, Yang; Zhang, Wei; Lu, Xinlin; Mu, Gaoyan; Zhang, Baofang; Li, Yiwen; Cheng, Stephen Z D; Liu, Tianbo

    2016-07-01

    A series of multi-headed giant surfactants based on polystyrene (PS)-polyhedral oligomeric silsesquioxane(s) (POSS) conjugates, with a different number and topology of POSS heads, are found to self-assemble into different supramolecular structures including vesicles, cylindrical and spherical micelles in H2O/DMF mixed solvents. The transitions among different morphologies can be rationally controlled by tuning the number and topology of POSS heads, as well as the macromolecular concentration. PMID:27331607

  18. Musical Preferences are Linked to Cognitive Styles.

    PubMed

    Greenberg, David M; Baron-Cohen, Simon; Stillwell, David J; Kosinski, Michal; Rentfrow, Peter J

    2015-01-01

    Why do we like the music we do? Research has shown that musical preferences and personality are linked, yet little is known about other influences on preferences such as cognitive styles. To address this gap, we investigated how individual differences in musical preferences are explained by the empathizing-systemizing (E-S) theory. Study 1 examined the links between empathy and musical preferences across four samples. By reporting their preferential reactions to musical stimuli, samples 1 and 2 (Ns = 2,178 and 891) indicated their preferences for music from 26 different genres, and samples 3 and 4 (Ns = 747 and 320) indicated their preferences for music from only a single genre (rock or jazz). Results across samples showed that empathy levels are linked to preferences even within genres and account for significant proportions of variance in preferences over and above personality traits for various music-preference dimensions. Study 2 (N = 353) replicated and extended these findings by investigating how musical preferences are differentiated by E-S cognitive styles (i.e., 'brain types'). Those who are type E (bias towards empathizing) preferred music on the Mellow dimension (R&B/soul, adult contemporary, soft rock genres) compared to type S (bias towards systemizing) who preferred music on the Intense dimension (punk, heavy metal, and hard rock). Analyses of fine-grained psychological and sonic attributes in the music revealed that type E individuals preferred music that featured low arousal (gentle, warm, and sensual attributes), negative valence (depressing and sad), and emotional depth (poetic, relaxing, and thoughtful), while type S preferred music that featured high arousal (strong, tense, and thrilling), and aspects of positive valence (animated) and cerebral depth (complexity). The application of these findings for clinicians, interventions, and those on the autism spectrum (largely type S or extreme type S) are discussed.

  19. Musical Preferences are Linked to Cognitive Styles

    PubMed Central

    Greenberg, David M.; Baron-Cohen, Simon; Stillwell, David J.; Kosinski, Michal; Rentfrow, Peter J.

    2015-01-01

    Why do we like the music we do? Research has shown that musical preferences and personality are linked, yet little is known about other influences on preferences such as cognitive styles. To address this gap, we investigated how individual differences in musical preferences are explained by the empathizing-systemizing (E-S) theory. Study 1 examined the links between empathy and musical preferences across four samples. By reporting their preferential reactions to musical stimuli, samples 1 and 2 (Ns = 2,178 and 891) indicated their preferences for music from 26 different genres, and samples 3 and 4 (Ns = 747 and 320) indicated their preferences for music from only a single genre (rock or jazz). Results across samples showed that empathy levels are linked to preferences even within genres and account for significant proportions of variance in preferences over and above personality traits for various music-preference dimensions. Study 2 (N = 353) replicated and extended these findings by investigating how musical preferences are differentiated by E-S cognitive styles (i.e., ‘brain types’). Those who are type E (bias towards empathizing) preferred music on the Mellow dimension (R&B/soul, adult contemporary, soft rock genres) compared to type S (bias towards systemizing) who preferred music on the Intense dimension (punk, heavy metal, and hard rock). Analyses of fine-grained psychological and sonic attributes in the music revealed that type E individuals preferred music that featured low arousal (gentle, warm, and sensual attributes), negative valence (depressing and sad), and emotional depth (poetic, relaxing, and thoughtful), while type S preferred music that featured high arousal (strong, tense, and thrilling), and aspects of positive valence (animated) and cerebral depth (complexity). The application of these findings for clinicians, interventions, and those on the autism spectrum (largely type S or extreme type S) are discussed. PMID:26200656

  20. Musical Preferences are Linked to Cognitive Styles.

    PubMed

    Greenberg, David M; Baron-Cohen, Simon; Stillwell, David J; Kosinski, Michal; Rentfrow, Peter J

    2015-01-01

    Why do we like the music we do? Research has shown that musical preferences and personality are linked, yet little is known about other influences on preferences such as cognitive styles. To address this gap, we investigated how individual differences in musical preferences are explained by the empathizing-systemizing (E-S) theory. Study 1 examined the links between empathy and musical preferences across four samples. By reporting their preferential reactions to musical stimuli, samples 1 and 2 (Ns = 2,178 and 891) indicated their preferences for music from 26 different genres, and samples 3 and 4 (Ns = 747 and 320) indicated their preferences for music from only a single genre (rock or jazz). Results across samples showed that empathy levels are linked to preferences even within genres and account for significant proportions of variance in preferences over and above personality traits for various music-preference dimensions. Study 2 (N = 353) replicated and extended these findings by investigating how musical preferences are differentiated by E-S cognitive styles (i.e., 'brain types'). Those who are type E (bias towards empathizing) preferred music on the Mellow dimension (R&B/soul, adult contemporary, soft rock genres) compared to type S (bias towards systemizing) who preferred music on the Intense dimension (punk, heavy metal, and hard rock). Analyses of fine-grained psychological and sonic attributes in the music revealed that type E individuals preferred music that featured low arousal (gentle, warm, and sensual attributes), negative valence (depressing and sad), and emotional depth (poetic, relaxing, and thoughtful), while type S preferred music that featured high arousal (strong, tense, and thrilling), and aspects of positive valence (animated) and cerebral depth (complexity). The application of these findings for clinicians, interventions, and those on the autism spectrum (largely type S or extreme type S) are discussed. PMID:26200656

  1. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities and Mixing in Stratified Cylindrical Shells

    SciTech Connect

    Mikaelian, K O

    2004-04-15

    We study the linear stability of an arbitrary number N of cylindrical concentric shells undergoing a radial implosion or explosion.We derive the evolution equation for the perturbation {eta}{sub i} at interface i; it is coupled to the two adjacent interfaces via {eta}{sub i{+-}1}. For N=2, where there is only one interface, we verify Bell's conjecture as to the form of the evolution equation for arbitrary {rho}{sub 1} and {rho}{sub 2}, the fluid densities on either side of the interface. We obtain several analytic solutions for the N=2 and 3 cases. We discuss freeze-out, a phenomenon that can occur in all three geometries (planar, cylindrical, or spherical), and ''critical modes'' that are stable for any implosion or explosion history and occur only in cylindrical or spherical geometries. We present numerical simulations of possible gelatin-ring experiments illustrating perturbation feedthrough from one interface to another. We also develop a simple model for the evolution of turbulent mix in cylindrical geometry and define a geometrical factor G as the ratio h{sub cylindrical}/h{sub planar} between cylindrical and planar mixing layers. We find that G is a decreasing function of R/R{sub o}, implying that in our model h{sub cylindrical} evolves faster (slower) than h{sub planar} during an implosion (explosion).

  2. Stress Analysis of Composite Cylindrical Shells With an Elliptical Cutout

    NASA Technical Reports Server (NTRS)

    Nemeth, M. P.; Oterkus, E.; Madenci, E.

    2005-01-01

    A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; nonuniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.

  3. Stress Analysis of Composite Cylindrical Shells with an Elliptical Cutout

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Madenci, E.; Nemeth, M. P.

    2007-01-01

    A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; non-uniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.

  4. Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding

    SciTech Connect

    Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan

    2013-01-15

    We have explored here a hollow cylindrical laser plasma multifilament waveguide with discontinuous finite thickness cladding, in which the separation between individual filaments is in the range of several millimeters and the waveguide cladding thickness is in the order of the microwave penetration depth. Such parameters give a closer representation of a realistic laser filament waveguide sustained by a long stable propagation of femtosecond (fs) laser pulses. We report how the waveguide losses depend on structural parameters like normalized plasma filament spacing, filament to filament distance or pitch, normal spatial frequency, and radius of the plasma filament. We found that for typical plasma parameters, the proposed waveguide can support guided modes of microwaves in extremely high frequency even with a cladding consisting of only one ring of plasma filaments. The loss of the microwave radiation is mainly caused by tunneling through the discontinuous finite cladding, i.e., confinement loss, and is weakly dependent on the plasma absorption. In addition, the analysis indicates that the propagation loss is fairly large compared with the loss of a plasma waveguide with a continuous infinite thickness cladding, while they are comparable when using a cladding contains more than one ring. Compared to free space propagation, this waveguide still presents a superior microwave transmission to some distance in the order of the filamentation length; thus, the laser plasma filaments waveguide may be a potential channel for transporting pulsed-modulated microwaves if ensuring a long and stable propagation of fs laser pulses.

  5. Cylindrically symmetric Fresnel lens for high concentration photovoltaic

    NASA Astrophysics Data System (ADS)

    Hung, Yu-Ting; Su, Guo-Dung

    2009-08-01

    High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAX®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.

  6. Theory of a cylindrical probe in a collisionless magnetoplasma

    NASA Technical Reports Server (NTRS)

    Laframboise, J. G.; Rubinstein, J.

    1976-01-01

    A theory is presented for a cylindrical electrostatic probe in a collisionless plasma in the case where the probe axis is inclined at an angle to a uniform magnetic field. The theory is applicable to electron collection, and under more restrictive conditions, to ion collection. For a probe at space potential, the theory is exact in the limit where probe radius is much less than Debye length. At attracting probe potentials, the theory yields an upper bound and an adiabatic limit for current collection. At repelling probe potentials, it provides a lower bound. The theory is valid if the ratios of probe radius to Debye length and probe radius to mean gyroradius are not simultaneously large enough to produce extrema in the probe sheath potential. The numerical current calculations are based on the approximation that particle orbits are helices near the probe, together with the use of kinetic theory to relate velocity distributions near the probe to those far from it. Probe characteristics are presented for inclination angles from 0 to 90 deg and for probe-radius mean-gyroradius ratios from 0.1 to infinity. For an angle of 0 deg, the end-effect current is calculated separately.

  7. Acoustic resonance in MEMS scale cylindrical tubes with side branches

    NASA Astrophysics Data System (ADS)

    Schill, John F.; Holthoff, Ellen L.; Pellegrino, Paul M.; Marcus, Logan S.

    2014-05-01

    Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace gas detection. This method routinely exhibits detection limits at the parts-per-million (ppm) or parts-per-billion (ppb) level for gaseous samples. PAS also possesses favorable detection characteristics when the system dimensions are scaled to a microelectromechanical system (MEMS) design. One of the central issues related to sensor miniaturization is optimization of the photoacoustic cell geometry, especially in relationship to high acoustical amplification and reduced system noise. Previous work relied on a multiphysics approach to analyze the resonance structures of the MEMS scale photo acoustic cell. This technique was unable to provide an accurate model of the acoustic structure. In this paper we describe a method that relies on techniques developed from musical instrument theory and electronic transmission line matrix methods to describe cylindrical acoustic resonant cells with side branches of various configurations. Experimental results are presented that demonstrate the ease and accuracy of this method. All experimental results were within 2% of those predicted by this theory.

  8. Evaluation of cylindrical shear joints for composite materials

    NASA Astrophysics Data System (ADS)

    Groves, Scott; Sanchez, Roberto; Lyon, Richard; Magness, Frank

    1992-01-01

    An evaluation is made of the strength of four candidate cylindrical shear joints for composite tubes. The basic joint design is of one inch axial length with an external 15 deg tapered cone. The purpose of the joint is to transfer axial loads from a cylinder through a steel shear attachment with a matching internal conical seat. The candidate designs are a bonded wedge cone, a pinned wedge cone, a bonded and pinned wedge cone attached to a two-inch diameter composite tube, and a wedge cone integrally wound into the tube. The actual joint strengths were found to be dependent on the amount of hydrostatic or radial compression applied to the joint. The bonded wedge ring and the integral wedge ring both achieved over 96 MPa (14 ksi) of shear strength without failure. The bonded and pinned joint reached a peak shear strength of 78.9 MPa (11.5 ksi), and the pinned only configuration achieved 70.6 MPa (10.3 ksi). Without any hydrostatic compression loading, the joint strengths were less than 34.3 MPa (5 ksi); however, the failure mode was hoop compression buckling of the tube itself as opposed to a joint shear failure.

  9. High speed laser shadowgraphy for electromagnetically driven cylindrical implosions

    SciTech Connect

    Rodriguez, G.; Roberts, J. P.; Echave, J. A.; Taylor, A. J.

    2001-08-01

    A laser shadowgraphy system for high-speed imaging of a convergent cylindrical shockwave generated by an electromagnetically driven solid density liner implosion in Lucite is described. The laser shadowgraphy system utilizes an advanced high-energy, long-pulse, frequency-doubled Nd:YAG laser for target illumination and a fast framing camera for multiple frame imaging of the shockwave as it radially converges and transits the Lucite. The time window resolution is 10 ns as determined by the fastest exposure time capable with the camera. Two on-axis symmetric implosions and two off-axis asymmetric implosion experiments were fielded at the Air Force Research Laboratory's Shiva Star 4.2 MJ capacitor bank z-pinch facility. For each experimental shot, the shadowgraphy system captured several frames of shadowgraph images as the shockwave moved through the Lucite. Analysis of the shockwave shadowgraph image shapes is done by fitting each shadowgraph image to a generic elliptical fit function and plotting the resultant two-dimensional image fits for comparison. For the on-axis symmetric implosion shots, a radial trajectory plot is extracted and a radial shock velocity is calculated. The Lucite shock speed is seen to increase monotonically from an initial velocity of 7.9 mm/{mu}s to a near final velocity of 13.4 mm/{mu}s as convergence effects dominate the shock speed calculated at small radii.

  10. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.

  11. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  12. Cylindrical sound wave generated by shock-vortex interaction

    NASA Technical Reports Server (NTRS)

    Ribner, H. S.

    1985-01-01

    The passage of a columnar vortex broadside through a shock is investigated. This has been suggested as a crude, but deterministic, model of the generation of 'shock noise' by the turbulence in supersonic jets. The vortex is decomposed by Fourier transform into plane sinusoidal shear waves disposed with radial symmetry. The plane sound waves produced by each shear wave/shock interaction are recombined in the Fourier integral. The waves possess an envelope that is essentially a growing cylindrical sound wave centered at the transmitted vortex. The pressure jump across the nominal radius R = ct attenuates with time as 1/(square root of R) and varies around the arc in an antisymmetric fashion resembling a quadrupole field. Very good agreement, except near the shock, is found with the antisymmetric component of reported interferometric measurements in a shock tube. Beyond the front r approximately equals R is a precursor of opposite sign, that decays like 1/R, generated by the 1/r potential flow around the vortex core. The present work is essentially an extension and update of an early approximate study at M = 1.25. It covers the range (R/core radius) = 10, 100, 1000, and 10,000 for M = 1.25 and (in part) for M = 1.29 and, for fixed (R/core radius) = 1000, the range M = 1.01 to infinity.

  13. Sound Transmission through Two Concentric Cylindrical Sandwich Shells

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.

  14. Optoacoustic sensing for target detection inside cylindrical catheters

    NASA Astrophysics Data System (ADS)

    Tavakoli, Behnoosh; Guo, Xiaoyu; Taylor, Russell H.; Kang, Jin U.; Boctor, Emad M.

    2014-03-01

    Optoacoustic sensing is a hybrid technique that combines the advantages of high sensing depth of ultrasound with contrast of optical absorption. In this study a miniature optoacoustic probe that can characterize the target properties located at the distal end of a catheter is investigated. The probe includes an optical fiber to illuminate the target with the pulsed laser light and a hydrophone to detect the generated optoacoustic signal. The probe is designed for the forwardsensing and therefore the acoustic signal propagates along the tube before being detected. Due to the circular geometry, the waves inside the tube are highly complex. A three dimensional numerical simulation is performed to model the optoacoustic wave generation and propagation inside the water filled cylindrical tubes. The effect of the boundary condition, tube diameter and target size on the detected signal is systematically evaluated. A prototype of the probe is made and tested for detecting an absorbing target inside a 2mm diameter tube submerged in water. The preliminary experimental results corresponding to the simulation is acquired. Although many different medical applications for this miniature probe may exist, our main focus is on detecting the occlusion inside the ventricular shunts. These catheters are used to divert the excess cerebrospinal fluid to the absorption site and regulate inter cranial pressure of hydrocephalous patients. Unfortunately the malfunction rate of these catheters due to blockage is very high. This sensing tool could locate the occluding tissue non-invasively and can potentially characterize the occlusion composites by scanning at different wavelengths of the light.

  15. Thermal Behavior of Cylindrical Buckling Restrained Braces at Elevated Temperatures

    PubMed Central

    Talebi, Elnaz; Tahir, Mahmood Md.; Yasreen, Airil

    2014-01-01

    The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system. PMID:24526915

  16. Scattering of obliquely incident shear waves from a cylindrical cavity.

    PubMed

    Aldrin, John C; Blodgett, Mark P; Lindgren, Eric A; Steffes, Gary J; Knopp, Jeremy S

    2011-06-01

    Prior work has proposed the use of ultrasonic angle-beam shear wave techniques to detect cracks of varying angular location around fastener sites by generating and detecting creeping waves. To better understand the nature of the scattering problem and quantify the role of creeping waves in fastener site inspections, a 3D analytical model was developed for the propagation and scattering of an obliquely incident plane shear wave from a cylindrical cavity with arbitrary shear wave polarization. The generation and decay of the spiral creeping waves was found to be dependent on both the angle of incidence and polarization of the plane shear wave. A difference between the angle of displacement in 3D and the direction of propagation for the spiral creeping wave was observed and attributed to differences in the curvature of the cavity surface for the tangential and vertical (z) directions. Using the model, practical insight was presented on measuring the displacement response in the far-field from the hole. Both analytical and experimental results highlighted the value of the diffracted and leaky spiral creeping wave signals for nondestructive evaluation of a crack located on the cavity. Last, array and signal processing methods are discussed to improve the resolution of the weaker creeping wave signals in the presence of noise.

  17. A cylindrical standing wave ultrasonic motor using bending vibration transducer.

    PubMed

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2011-07-01

    A cylindrical standing wave ultrasonic motor using bending vibration transducer was proposed in this paper. The proposed stator contains a cylinder and a bending vibration transducer. The two combining sites between the cylinder and the transducer locate at the adjacent wave loops of bending vibration of the transducer and have a distance that equal to the half wave length of bending standing wave excited in the cylinder. Thus, the bending mode of the cylinder can be excited by the bending vibration of the transducer. Two circular cone type rotors are pressed in contact to the end rims of the teeth, and the preload between the rotors and stator is accomplished by a spring and nut system. The working principle of the proposed motor was analyzed. The motion trajectories of teeth were deduced. The stator was designed and analyzed with FEM. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 165rpm and maximum torque of 0.45Nm at an exciting voltage of 200V(rms).

  18. The cylindrical GEM detector for the KLOE-2 Inner Tracker

    NASA Astrophysics Data System (ADS)

    Balla, A.; Bencivenni, G.; Branchini, P.; Budano, A.; Capodiferro, M.; Cerioni, S.; Ciambrone, P.; Czerwinski, E.; De Lucia, E.; De Robertis, G.; Di Domenico, A.; Domenici, D.; Dong, J.; Fanizzi, G.; Felici, G.; Gatta, M.; Lacalamita, N.; Liuzzi, R.; Loddo, F.; Mongelli, M.; Morello, G.; Palladino, A.; Pelosi, A.; Quintieri, L.; Ranieri, A.; Tskhadadze, E.; Valentino, V.

    2014-01-01

    Part of the upgrade of the KLOE detector at the DAΦNE Φ-factory consists of the insertion of a tracking device around the interaction region, composed of four tracking layers with radii from 130 mm to 205 mm and an active length of 700 mm. Each layer was realized as a cylindrical triple-GEM (CGEM) kapton-based detector, a solution that allows us to keep the total material budget below 2% of X0, of utmost importance to limit the multiple scattering of low-momentum tracks at KLOE-2, and to minimize dead spaces. The peculiar readout pattern with XV strips provides a spatial resolution of about 200 μm on both views, while a dedicated readout system has been developed by the KLOE-2 collaboration. It is composed of a digital readout front-end card based on the GASTONE ASIC and a General Interface Board with a configurable FPGA architecture and Gigabit Ethernet. The construction of the four CGEM layers has been completed and the detectors have been tested with a beta source and cosmic-ray muons. The insertion inside the KLOE apparatus was performed in July 2013. The construction procedure and the results of the validation tests will be reported.

  19. Sludge mobilization with submerged nozzles in horizontal cylindrical tanks

    SciTech Connect

    Hylton, T.D.; Cummins, R.L.; Youngblood, E.L.; Perona, J.J.

    1995-10-01

    The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code.

  20. A fiber-optic hydrophone with a cylindrical Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Wang, Zefeng; Hu, Yongming; Ni, Ming; Meng, Zhou; Luo, Hong

    2007-11-01

    A passive homodyne Michelson interferometric fiber-optic hydrophone with a single-hole cylindrical Helmholtz resonator has been manufactured. To validate the theoretical results that the fluid coefficient of viscosity has great influence on the maximum sensitivity at the resonant frequency, the acoustic sensitivity frequency response of the fiber-optic hydrophone has been measured in a standing-wave tank filled with castor oil. The viscosity coefficient of castor oil will change with the variation of the temperature. Experimental Results show that the fiber-optic hydrophone frequency responses of different temperature have identical form except that the maximum sensitivities are different. The acoustic sensitivities of low frequency are about -159dB re 1rad/μPa. While the maximum sensitivities near the measured resonant frequency of 800Hz go down with the fall of the temperature, i.e. with the increase of the viscosity coefficient, which is agree with the theoretical conclusions. This fiber-optic hydrophone is a prototype device for a class of sensors that used to eliminate aliasing in the future sonar systems.