Sample records for preisach type models

  1. Attempts at a numerical realisation of stochastic differential equations containing Preisach operator

    NASA Astrophysics Data System (ADS)

    McCarthy, S.; Rachinskii, D.

    2011-01-01

    We describe two Euler type numerical schemes obtained by discretisation of a stochastic differential equation which contains the Preisach memory operator. Equations of this type are of interest in areas such as macroeconomics and terrestrial hydrology where deterministic models containing the Preisach operator have been developed but do not fully encapsulate stochastic aspects of the area. A simple price dynamics model is presented as one motivating example for our studies. Some numerical evidence is given that the two numerical schemes converge to the same limit as the time step decreases. We show that the Preisach term introduces a damping effect which increases on the parts of the trajectory demonstrating a stronger upwards or downwards trend. The results are preliminary to a broader programme of research of stochastic differential equations with the Preisach hysteresis operator.

  2. Preisach modeling and compensation for smart material hysteresis

    NASA Astrophysics Data System (ADS)

    Hughes, Declan C.; Wen, John T.

    1995-02-01

    Many of the Smart materials being investigated (e.g., Shape Memory Alloys (SMAs), piezoceramics, and magnetostrictives) exhibit significant hysteresis effects, especially when driven with large control signals. In this paper the similarity between the microscopic domain kinematics that generate static hysteresis effects, or ferromagnetics, piezoceramics and SMAs is noted. The Preisach independent domain hysteresis model, and its derivatives, have been shown to be a comprehensive class of hysteresis operator that captures the major features of ferromagnetic hysteresis, and hence it is proposed here as a suitable model for piezoceramic and SMA hysteresis also. This basic Preisach model is used to model piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of the beam. A numerical inverse Preisach hysteresis series compensator is also proposed and applied in a real time experiment thereby reducing the apparent nonlinear hysteresis effects for the piezoceramic actuator quasi-static case.

  3. Preisach modeling of piezoceramic and shape memory alloy hysteresis

    NASA Astrophysics Data System (ADS)

    Hughes, Declan; Wen, John T.

    1997-06-01

    Smart materials such as piezoceramics, magnetostrictive materials, and shape memory alloys exhibit hysteresis, and the larger the input signal the larger the effect. Hysteresis can lead to unwanted harmonics, inaccuracy in open loop control, and instability in closed loop control. The Preisach independent domain hysteresis model has been shown to capture the major features of hysteresis arising in ferromagnetic materials. Noting the similarity between the microscopic domain kinematics that generate static hysteresis effects in ferromagnetics, piezoceramics, and shape memory alloys (SMAs), we apply the Preisach model for the hysteresis in piezoceramic and shape memory alloy materials. This paper reviews the basic properties of the Preisach model, discusses control-theoretic issues such as identification, simulation, and inversion, and presents experimental results for piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of a beam.

  4. Preisach modeling of piezoceramic and shape memory alloy hysteresis

    NASA Astrophysics Data System (ADS)

    Hughes, Declan C.; Wen, John T.

    1996-05-01

    Smart materials such as piezoceramics, magnetostrictive materials, and shape memory alloys exhibit significant hysteresis, especially when driven with large input signals. Hysteresis can lead to unwanted harmonics, inaccuracy in open loop control, and instability in closed loop control. The Preisach independent domain hysteresis model has been shown to capture the major features of hysteresis arising in ferromagnetic materials. Noting the similarity between the microscopic domain kinematics that generate static hysteresis effects in ferromagnetics, piezoceramics, and shape memory alloys, we apply the Preisach model for the hysteresis in piezoceramic and shape memory alloy materials. This paper reviews the basic properties of the Preisach model, discusses control-theoretic issues such as identification, simulation, and inversion, and presents experimental results for piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of a beam.

  5. Hysteresis modeling and identification of a dielectric electro-active polymer actuator using an APSO-based nonlinear Preisach NARX fuzzy model

    NASA Astrophysics Data System (ADS)

    Truong, Bui Ngoc Minh; Nam, Doan Ngoc Chi; Ahn, Kyoung Kwan

    2013-09-01

    Dielectric electro-active polymer (DEAP) materials are attractive since they are low cost, lightweight and have a large deformation capability. They have no operating noise, very low electric power consumption and higher performance and efficiency than competing technologies. However, DEAP materials generally have strong hysteresis as well as uncertain and nonlinear characteristics. These disadvantages can limit the efficiency in the use of DEAP materials. To address these limitations, this research will present the combination of the Preisach model and the dynamic nonlinear autoregressive exogenous (NARX) fuzzy model-based adaptive particle swarm optimization (APSO) identification algorithm for modeling and identification of the nonlinear behavior of one typical type of DEAP actuator. Firstly, open loop input signals are applied to obtain nonlinear features and to investigate the responses of the DEAP actuator system. Then, a Preisach model can be combined with a dynamic NARX fuzzy structure to estimate the tip displacement of a DEAP actuator. To optimize all unknown parameters of the designed combination, an identification scheme based on a least squares method and an APSO algorithm is carried out. Finally, experimental validation research is carefully completed, and the effectiveness of the proposed model is evaluated by employing various input signals.

  6. Spectral properties of the Preisach hysteresis model with random input. II. Universality classes for symmetric elementary loops

    NASA Astrophysics Data System (ADS)

    Radons, Günter

    2008-06-01

    The Preisach model with symmetric elementary hysteresis loops and uncorrelated input is treated analytically in detail. It is shown that the appearance of long-time tails in the output correlations is a quite general feature of this model. The exponent η of the algebraic decay t-η , which may take any positive value, is determined by the tails of the input and the Preisach density. We identify the system classes leading to identical algebraic tails. These results imply the occurrence of 1/f noise for a large class of hysteretic systems.

  7. Development of a Numerical Model for High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.; Gaydosh, Darrell J.

    2006-01-01

    A thermomechanical hysteresis model for a high-temperature shape memory alloy (HTSMA) actuator material is presented. The model is capable of predicting strain output of a tensile-loaded HTSMA when excited by arbitrary temperature-stress inputs for the purpose of actuator and controls design. Common quasi-static generalized Preisach hysteresis models available in the literature require large sets of experimental data for model identification at a particular operating point, and substantially more data for multiple operating points. The novel algorithm introduced here proposes an alternate approach to Preisach methods that is better suited for research-stage alloys, such as recently-developed HTSMAs, for which a complete database is not yet available. A detailed description of the minor loop hysteresis model is presented in this paper, as well as a methodology for determination of model parameters. The model is then qualitatively evaluated with respect to well-established Preisach properties and against a set of low-temperature cycled loading data using a modified form of the one-dimensional Brinson constitutive equation. The computationally efficient algorithm demonstrates adherence to Preisach properties and excellent agreement to the validation data set.

  8. The Bilinear Product Model of Hysteresis Phenomena

    NASA Astrophysics Data System (ADS)

    Kádár, György

    1989-01-01

    In ferromagnetic materials non-reversible magnetization processes are represented by rather complex hysteresis curves. The phenomenological description of such curves needs the use of multi-valued, yet unambiguous, deterministic functions. The history dependent calculation of consecutive Everett-integrals of the two-variable Preisach-function can account for the main features of hysteresis curves in uniaxial magnetic materials. The traditional Preisach model has recently been modified on the basis of population dynamics considerations, removing the non-real congruency property of the model. The Preisach-function was proposed to be a product of two factors of distinct physical significance: a magnetization dependent function taking into account the overall magnetization state of the body and a bilinear form of a single variable, magnetic field dependent, switching probability function. The most important statement of the bilinear product model is, that the switching process of individual particles is to be separated from the book-keeping procedure of their states. This empirical model of hysteresis can easily be extended to other irreversible physical processes, such as first order phase transitions.

  9. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control.

    PubMed

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-08-25

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.

  10. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control

    PubMed Central

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-01-01

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved. PMID:27571081

  11. Residual stresses and vector hysteresis modeling

    NASA Astrophysics Data System (ADS)

    Ktena, Aphrodite

    2016-04-01

    Residual stresses in magnetic materials, whether the result of processing or intentional loading, leave their footprint on macroscopic data, such hysteresis loops and differential permeability measurements. A Preisach-type vector model is used to reproduce the phenomenology observed based on assumptions deduced from the data: internal stresses lead to smaller and misaligned grains, hence increased domain wall pinning and angular dispersion of local easy axes, favouring rotation as a magnetization reversal mechanism; misaligned grains contribute to magnetostatic fields opposing the direction of the applied field. The model is using a vector operator which accounts for both reversible and irreversible processes; the Preisach concept for interactions for the role of stress related demagnetizing fields; and a characteristic probability density function which is constructed as a weighed sum of constituent functions: the material is modeled as consisting of various subsystems, e.g. reversal mechanisms or areas subject to strong/weak long range interactions and each subsystem is represented by a constituent probability density function. Our assumptions are validated since the model reproduces the hysteresis loops and differential permeability curves observed experimentally and calculations involving rotating inputs at various residual stress levels are consistent and in agreement with experimental evidence.

  12. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp; Nishikawa, Kazutaka; Iizuka, Hideo

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO{sub 2}) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO{sub 2} film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

  13. Stroke maximizing and high efficient hysteresis hybrid modeling for a rhombic piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Shao, Shubao; Xu, Minglong; Zhang, Shuwen; Xie, Shilin

    2016-06-01

    Rhombic piezoelectric actuator (RPA), which employs a rhombic mechanism to amplify the small stroke of PZT stack, has been widely used in many micro-positioning machineries due to its remarkable properties such as high displacement resolution and compact structure. In order to achieve large actuation range along with high accuracy, the stroke maximizing and compensation for the hysteresis are two concerns in the use of RPA. However, existing maximization methods based on theoretical model can hardly accurately predict the maximum stroke of RPA because of approximation errors that are caused by the simplifications that must be made in the analysis. Moreover, despite the high hysteresis modeling accuracy of Preisach model, its modeling procedure is trivial and time-consuming since a large set of experimental data is required to determine the model parameters. In our research, to improve the accuracy of theoretical model of RPA, the approximation theory is employed in which the approximation errors can be compensated by two dimensionless coefficients. To simplify the hysteresis modeling procedure, a hybrid modeling method is proposed in which the parameters of Preisach model can be identified from only a small set of experimental data by using the combination of discrete Preisach model (DPM) with particle swarm optimization (PSO) algorithm. The proposed novel hybrid modeling method can not only model the hysteresis with considerable accuracy but also significantly simplified the modeling procedure. Finally, the inversion of hysteresis is introduced to compensate for the hysteresis non-linearity of RPA, and consequently a pseudo-linear system can be obtained.

  14. Variable variance Preisach model for multilayers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Franco, A. F.; Gonzalez-Fuentes, C.; Morales, R.; Ross, C. A.; Dumas, R.; Åkerman, J.; Garcia, C.

    2016-08-01

    We present a variable variance Preisach model that fully accounts for the different magnetization processes of a multilayer structure with perpendicular magnetic anisotropy by adjusting the evolution of the interaction variance as the magnetization changes. We successfully compare in a quantitative manner the results obtained with this model to experimental hysteresis loops of several [CoFeB/Pd ] n multilayers. The effect of the number of repetitions and the thicknesses of the CoFeB and Pd layers on the magnetization reversal of the multilayer structure is studied, and it is found that many of the observed phenomena can be attributed to an increase of the magnetostatic interactions and subsequent decrease of the size of the magnetic domains. Increasing the CoFeB thickness leads to the disappearance of the perpendicular anisotropy, and such a minimum thickness of the Pd layer is necessary to achieve an out-of-plane magnetization.

  15. Preisach modeling of temperature-dependent ferroelectric response of piezoceramics at sub-switching regime

    NASA Astrophysics Data System (ADS)

    Ochoa, Diego Alejandro; García, Jose Eduardo

    2016-04-01

    The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL-NTS properties soften around its orthorhombic to tetragonal phase transition.

  16. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yue; Xu, Ke; Jiang, Weilin

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversalmore » curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.« less

  17. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    DOE PAGES

    Cao, Yue; Xu, Ke; Jiang, Weilin; ...

    2015-07-03

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversalmore » curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.« less

  18. Hysteresis in the trade cycle

    NASA Astrophysics Data System (ADS)

    Mc Namara, Hugh A.; Pokrovskii, Alexei V.

    2006-02-01

    The Kaldor model-one of the first nonlinear models of macroeconomics-is modified to incorporate a Preisach nonlinearity. The new dynamical system thus created shows highly complicated behaviour. This paper presents a rigorous (computer aided) proof of chaos in this new model, and of the existence of unstable periodic orbits of all minimal periods p>57.

  19. New realisation of Preisach model using adaptive polynomial approximation

    NASA Astrophysics Data System (ADS)

    Liu, Van-Tsai; Lin, Chun-Liang; Wing, Home-Young

    2012-09-01

    Modelling system with hysteresis has received considerable attention recently due to the increasing accurate requirement in engineering applications. The classical Preisach model (CPM) is the most popular model to demonstrate hysteresis which can be represented by infinite but countable first-order reversal curves (FORCs). The usage of look-up tables is one way to approach the CPM in actual practice. The data in those tables correspond with the samples of a finite number of FORCs. This approach, however, faces two major problems: firstly, it requires a large amount of memory space to obtain an accurate prediction of hysteresis; secondly, it is difficult to derive efficient ways to modify the data table to reflect the timing effect of elements with hysteresis. To overcome, this article proposes the idea of using a set of polynomials to emulate the CPM instead of table look-up. The polynomial approximation requires less memory space for data storage. Furthermore, the polynomial coefficients can be obtained accurately by using the least-square approximation or adaptive identification algorithm, such as the possibility of accurate tracking of hysteresis model parameters.

  20. Interpreting remanence isotherms: a Preisach-based study

    NASA Astrophysics Data System (ADS)

    Roshko, R. M.; Viddal, C.

    2004-07-01

    Numerical simulations of the field dependence of the isothermal remanent moment (IRM) and the thermoremanent moment (TRM) are presented, based on a Preisach formalism which decomposes the free energy landscape into an ensemble of thermally activated, temperature dependent, double well subsystems, each characterized by a dissipation field H d and a bias field H s . The simulations show that the TRM approaches saturation much more rapidly than the corresponding IRM and that, as a consequence, the characteristics of the IRM are determined primarily by the distribution of dissipation fields, as defined by the mean field bar {H}_d (T) and the dispersion σ_d (T), while the characteristics of the TRM are determined primarily by a mixture of the mean dissipation field bar {H}_d (T) and the dispersion of bias fields σ_s (T). The simulations also identify a regime bar {H}_d ≫σ_s , where the influence of bar {H}_d (T) on the TRM is negligible, and hence where the TRM and the IRM provide essentially independent scans of the Preisach distribution along the two orthogonal H s and H d directions, respectively. The systematics established by the model simulations are exploited to analyze TRM and IRM data from a mixed ferromagnetic perovskite Ca0.4Sr0.6RuO3, and to reconstruct the distribution of characteristic fields H d and H s , and its variation with temperature.

  1. Efficient modeling of vector hysteresis using a novel Hopfield neural network implementation of Stoner–Wohlfarth-like operators

    PubMed Central

    Adly, Amr A.; Abd-El-Hafiz, Salwa K.

    2012-01-01

    Incorporation of hysteresis models in electromagnetic analysis approaches is indispensable to accurate field computation in complex magnetic media. Throughout those computations, vector nature and computational efficiency of such models become especially crucial when sophisticated geometries requiring massive sub-region discretization are involved. Recently, an efficient vector Preisach-type hysteresis model constructed from only two scalar models having orthogonally coupled elementary operators has been proposed. This paper presents a novel Hopfield neural network approach for the implementation of Stoner–Wohlfarth-like operators that could lead to a significant enhancement in the computational efficiency of the aforementioned model. Advantages of this approach stem from the non-rectangular nature of these operators that substantially minimizes the number of operators needed to achieve an accurate vector hysteresis model. Details of the proposed approach, its identification and experimental testing are presented in the paper. PMID:25685446

  2. Automatic Control via Thermostats of a Hyperbolic Stefan Problem with Memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colli, P.; Grasselli, M.; Sprekels, J.

    1999-03-15

    A hyperbolic Stefan problem based on the linearized Gurtin-Pipkin heat conduction law is considered. The temperature and free boundary are controlled by a thermostat acting on the boundary. This feedback control is based on temperature measurements performed by real thermal sensors located within the domain containing the two-phase system and/or at its boundary. Three different types of thermostats are analyzed: simple switch, relay switch, and a Preisach hysteresis operator. The resulting models lead to integrodifferential hyperbolic Stefan problems with nonlinear and nonlocal boundary conditions. Existence results are proved in all the cases. Uniqueness is also shown, except in the situationmore » corresponding to the ideal switch.« less

  3. Micromagnetics and second-order reversal-curves as a route to understanding FORC diagrams of nanoparticles

    NASA Astrophysics Data System (ADS)

    Winklhofer, M.

    2007-05-01

    First-order-reversal curve (FORC) diagrams have proven useful in characterizing fine magnetic particle systems in terms of microscopic switching field distributions, characteristic interaction strengths and mean-field effects. Despite the profusion of measured FORC data, we still lack a simple, generally valid recipe for the quantitative analysis of FORC diagrams, the reason being that most samples do not act like classical linear Preisach systems, giving rise to reversible magnetization changes that tend to blur contributions from irreversible switching events. A good example illustrating the confounding influence of reversible contributions are FORC diagrams for particle systems in which vortex configurations occur as remanent states. For non-interacting Fe nanodots with well-defined grain sizes around the zero-field SD/PSD transition and random easy-axis orientation, we will show how a combination of micromagnetic modelling and second-order- reversal-curves can be used to disentangle reversible and irreversible contributions to the FORC diagram. It will also be shown that remanence-based Preisach diagrams do not fully capture the irreversible parts.

  4. A survey on hysteresis modeling, identification and control

    NASA Astrophysics Data System (ADS)

    Hassani, Vahid; Tjahjowidodo, Tegoeh; Do, Thanh Nho

    2014-12-01

    The various mathematical models for hysteresis such as Preisach, Krasnosel'skii-Pokrovskii (KP), Prandtl-Ishlinskii (PI), Maxwell-Slip, Bouc-Wen and Duhem are surveyed in terms of their applications in modeling, control and identification of dynamical systems. In the first step, the classical formalisms of the models are presented to the reader, and more broadly, the utilization of the classical models is considered for development of more comprehensive models and appropriate controllers for corresponding systems. In addition, the authors attempt to encourage the reader to follow the existing mathematical models of hysteresis to resolve the open problems.

  5. Modeling dynamic acousto-elastic testing experiments: validation and perspectives.

    PubMed

    Gliozzi, A S; Scalerandi, M

    2014-10-01

    Materials possessing micro-inhomogeneities often display a nonlinear response to mechanical solicitations, which is sensitive to the confining pressure acting on the sample. Dynamic acoustoelastic testing allows measurement of the instantaneous variations in the elastic modulus due to the change of the dynamic pressure induced by a low-frequency wave. This paper shows that a Preisach-Mayergoyz space based hysteretic multi-state elastic model provides an explanation for experimental observations in consolidated granular media and predicts memory and nonlinear effects comparable to those measured in rocks.

  6. On some approaches to model reversible magnetization processes

    NASA Astrophysics Data System (ADS)

    Chwastek, K.; Baghel, A. P. S.; Sai Ram, B.; Borowik, B.; Daniel, L.; Kulkarni, S. V.

    2018-04-01

    This paper focuses on the problem of how reversible magnetization processes are taken into account in contemporary descriptions of hysteresis curves. For comparison, three versions of the phenomenological T(x) model based on hyperbolic tangent mapping are considered. Two of them are based on summing the output of the hysteresis operator with a linear or nonlinear mapping. The third description is inspired by the concept of the product Preisach model. Total susceptibility is modulated with a magnetization-dependent function. The models are verified using measurement data for grain-oriented electrical steel. The proposed third description represents minor loops most accurately.

  7. Properties of Vector Preisach Models

    NASA Technical Reports Server (NTRS)

    Kahler, Gary R.; Patel, Umesh D.; Torre, Edward Della

    2004-01-01

    This paper discusses rotational anisotropy and rotational accommodation of magnetic particle tape. These effects have a performance impact during the reading and writing of the recording process. We introduce the reduced vector model as the basis for the computations. Rotational magnetization models must accurately compute the anisotropic characteristics of ellipsoidally magnetizable media. An ellipticity factor is derived for these media that computes the two-dimensional magnetization trajectory for all applied fields. An orientation correction must be applied to the computed rotational magnetization. For isotropic materials, an orientation correction has been developed and presented. For anisotropic materials, an orientation correction is introduced.

  8. Nonlinear Hysteretic Torsional Waves

    NASA Astrophysics Data System (ADS)

    Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.

    2015-07-01

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

  9. Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pries, Jason L.; Tang, Lixin; Burress, Timothy A.

    This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequencymore » and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.« less

  10. [A dynamic model of the extravehicular (correction of extravehicuar) activity space suit].

    PubMed

    Yang, Feng; Yuan, Xiu-gan

    2002-12-01

    Objective. To establish a dynamic model of the space suit base on the particular configuration of the space suit. Method. The mass of the space suit components, moment of inertia, mobility of the joints of space suit, as well as the suit-generated torques, were considered in this model. The expressions to calculate the moment of inertia were developed by simplifying the geometry of the space suit. A modified Preisach model was used to mathematically describe the hysteretic torque characteristics of joints in a pressurized space suit, and it was implemented numerically basing on the observed suit parameters. Result. A dynamic model considering mass, moment of inertia and suit-generated torques was established. Conclusion. This dynamic model provides some elements for the dynamic simulation of the astronaut extravehicular activity.

  11. Robust independent modal space control of a coupled nano-positioning piezo-stage

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Yang, Fufeng; Rui, Xiaoting

    2018-06-01

    In order to accurately control a coupled 3-DOF nano-positioning piezo-stage, this paper designs a hybrid controller. In this controller, a hysteresis observer based on a Bouc-Wen model is established to compensate the hysteresis nonlinearity of the piezoelectric actuator first. Compared to hysteresis compensations using Preisach model and Prandt-Ishlinskii model, the compensation method using the hysteresis observer is computationally lighter. Then, based on the proposed dynamics model, by constructing the modal filter, a robust H∞ independent modal space controller is designed and utilized to decouple the piezo-stage and deal with the unmodeled dynamics, disturbance, and hysteresis compensation error. The effectiveness of the proposed controller is demonstrated experimentally. The experimental results show that the proposed controller can significantly achieve the high-precision positioning.

  12. Multiphase magnetic systems: Measurement and simulation

    NASA Astrophysics Data System (ADS)

    Cao, Yue; Ahmadzadeh, Mostafa; Xu, Ke; Dodrill, Brad; McCloy, John S.

    2018-01-01

    Multiphase magnetic systems are common in nature and are increasingly being recognized in technical applications. One characterization method which has shown great promise for determining separate and collective effects of multiphase magnetic systems is first order reversal curves (FORCs). Several examples are given of FORC patterns which provide distinguishing evidence of multiple phases. In parallel, a visualization method for understanding multiphase magnetic interaction is given, which allocates Preisach magnetic elements as an input "Preisach hysteron distribution pattern" to enable simulation of different "wasp-waisted" magnetic behaviors. These simulated systems allow reproduction of different major hysteresis loops and FORC patterns of real systems and parameterized theoretical systems. The experimental FORC measurements and FORC diagrams of four commercially obtained magnetic materials, particularly those sold as nanopowders, show that these materials are often not phase pure. They exhibit complex hysteresis behaviors that are not predictable based on relative phase fraction obtained by characterization methods such as diffraction. These multiphase materials, consisting of various fractions of BaFe12O19, ɛ-Fe2O3, and γ-Fe2O3, are discussed.

  13. Rhombic micro-displacement amplifier for piezoelectric actuator and its linear and hybrid model

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Zhang, Chunlin; Xu, Minglong; Zi, Yanyang; Zhang, Xinong

    2015-01-01

    This paper proposes rhombic micro-displacement amplifier (RMDA) for piezoelectric actuator (PA). First, the geometric amplification relations are analyzed and linear model is built to analyze the mechanical and electrical properties of this amplifier. Next, the accurate modeling method of amplifier is studied for important application of precise servo control. The classical Preisach model (CPM) is generally implemented using a numerical technique based on the first-order reversal curves (FORCs). The accuracy of CPM mainly depends on the number of FORCs. However, it is generally difficult to achieve enough number of FORCs in practice. So, Support Vector Machine (SVM) is employed in the work to circumvent the deficiency of the CPM. Then the hybrid model, which is based on discrete CPM and SVM is developed to account for hysteresis and dynamic effects. Finally, experimental validation is carried out. The analyzed result shows that this amplifier with the hybrid model is suitable for control application.

  14. Multiscale Approach For Simulating Nonlinear Wave Propagation In Materials with Localized Microdamage

    NASA Astrophysics Data System (ADS)

    Vanaverbeke, Sigfried; Van Den Abeele, Koen

    2006-05-01

    A multiscale model for the simulation of two-dimensional nonlinear wave propagation in microcracked materials exhibiting hysteretic nonlinearity is presented. We use trigger-like elements with a two state nonlinear stress-strain relation to simulate microcracks at the microlevel. A generalized Preisach space approach, based on the eigenstress-eigenstrain formulation, upscales the microscopic state relation to the mesoscopic level. The macroscopic response of the sample to an arbitrary excitation signal is then predicted using a staggered grid Elastodynamic Finite Integration Technique (EFIT) formalism. We apply the model to investigate spectral changes of a pulsed signal traversing a localized microdamaged region with hysteretic nonlinearity in a plate, and to study the influence of a superficial region with hysteretic nonlinearity on the nonlinear Rayleigh wave propagation.

  15. Analysis of an operator-differential model for magnetostrictive energy harvesting

    NASA Astrophysics Data System (ADS)

    Davino, D.; Krejčí, P.; Pimenov, A.; Rachinskii, D.; Visone, C.

    2016-10-01

    We present a model of, and analysis of an optimization problem for, a magnetostrictive harvesting device which converts mechanical energy of the repetitive process such as vibrations of the smart material to electrical energy that is then supplied to an electric load. The model combines a lumped differential equation for a simple electronic circuit with an operator model for the complex constitutive law of the magnetostrictive material. The operator based on the formalism of the phenomenological Preisach model describes nonlinear saturation effects and hysteresis losses typical of magnetostrictive materials in a thermodynamically consistent fashion. We prove well-posedness of the full operator-differential system and establish global asymptotic stability of the periodic regime under periodic mechanical forcing that represents mechanical vibrations due to varying environmental conditions. Then we show the existence of an optimal solution for the problem of maximization of the output power with respect to a set of controllable parameters (for the periodically forced system). Analytical results are illustrated with numerical examples of an optimal solution.

  16. On a low-dimensional model for magnetostriction

    NASA Astrophysics Data System (ADS)

    Iyer, R. V.; Manservisi, S.

    2006-02-01

    In recent years, a low-dimensional model for thin magnetostrictive actuators that incorporated magneto-elastic coupling, inertial and damping effects, ferromagnetic hysteresis and classical eddy current losses was developed using energy-balance principles by Venkataraman and Krishnaprasad. This model, with the classical Preisach operator representing the hysteretic constitutive relation between the magnetic field and magnetization in the axial direction, proved to be very successful in capturing dynamic hysteresis effects with electrical inputs in the 0-50 Hz range and constant mechanical loading. However, it is well known that for soft ferromagnetic materials there exist excess losses in addition to the classical eddy current losses. In this work, we propose to extend the above mentioned model for a magnetostrictive rod actuator by including excess losses via a nonlinear resistive element in the actuator circuit. We then show existence and uniqueness of solutions for the proposed model for electrical voltage input in the space L2(0,T)∩L∞(0,T) and mechanical force input in the space L2(0,T).

  17. Rock magnetic properties of dusty olivine: a potential carrier of pre-accretionary remanence in unequilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Lappe, S. C. L. L.; Harrison, R. J.; Feinberg, J. M.

    2012-04-01

    The mechanism of chondrule formation is an important outstanding question in cosmochemistry. Magnetic signals recorded by Fe-Ni nanoparticles in chondrules could carry clues to their origin. Recently, research in this area has focused on 'dusty olivine' grains within ordinary chondrites as potential carriers of pre-accretionary remanence. Dusty olivine is characterised by the presence of sub-micron Fe-Ni inclusions within the olivine host. These metal particles form via subsolidus reduction of the olivine during chondrule formation and are thought to be protected from subsequent chemical and thermal alteration by the host olivine. Three sets of synthetic dusty olivines have been produced, using natural olivine (average Ni-content of 0.3 wt%), synthetic Ni-containing olivine (0.1wt% Ni) and synthetic Ni-free olivine as starting materials. The starting materials were ground to powders, packed into a 2-3 mm3 graphite crucible, heated up to 1350 °C under a pure CO gas flow and kept at this temperature for 10 minutes. After this the samples were held in a fixed orientation and quenched into water in a range of known magnetic fields, ranging from 0.2 mT to 1.5 mT. We present here for the first time an analysis of a new FORC-based method of paleointensity determination applied to metallic Fe-bearing samples [1, 2]. The method uses a first-order reversal curve (FORC) diagram to generate a Preisach distribution of coercivities and interaction fields within the sample and then physically models the acquisition of TRM as a function of magnetic field, temperature and time using thermal relaxation theory. The comparison of observed and calculated NRM demagnetisation spectra is adversely effected by a large population of particles in the single-vortex state. Comparison of observed and calculated REM' curves, however, yields much closer agreement in the high-coercivity SD-dominated range. Calculated values of the average REM' ratio show excellent agreement with the experimental values - including the observed non-linearity of the remanence acquisition curve - suggesting that this method has the potential to reduce the uncertainties in non-heating paleointensity methods for extraterrestrial samples. [1] AR Muxworthy and D Heslop(2011) A Preisach method for estimating absolute paleofield intensity under the constraint of using only isothermal measurements: 1. Theoretical framework. Journal of Geophysical Research, 116, B04102, doi:10.1029/2010JB007843. [2] AR Muxworthy, D Heslop, GA Paterson, and D Michalk. A Preisach method for estimating absolute paleofield intensity under the constraint of using only isothermal measurements: 2. Experimental testing. Journal of Geophysical Research, 116, B04103, doi:10.1029/2010JB007844.

  18. Hysteresis compensation for piezoelectric actuators in single-point diamond turning

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Hu, Dejin; Wan, Daping; Liu, Hongbin

    2006-02-01

    In recent years, interests have been growing for fast tool servo (FTS) systems to increase the capability of existing single-point diamond turning machines. Although piezoelectric actuator is the most universal base of FTS system due to its high stiffness, accuracy and bandwidth, nonlinearity in piezoceramics limits both the static and dynamic performance of piezoelectric-actuated control systems evidently. To compensate the nonlinear hysteresis behavior of piezoelectric actuators, a hybrid model coupled with Preisach model and feedforward neural network (FNN) has been described. Since the training of FNN does not require a special calibration sequence, it is possible for on-line identification and real-time implementation with general operating data of a specific piezoelectric actuator. To describe the rate dependent behavior of piezoelectric actuators, a hybrid dynamic model was developed to predict the response of piezoelectric actuators in a wider range of input frequency. Experimental results show that a maximal error of less than 3% was accomplished by this dynamic model.

  19. Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.

    PubMed

    Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin

    2011-01-01

    In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Hysteresis in column systems

    NASA Astrophysics Data System (ADS)

    Ivanyi, P.; Ivanyi, A.

    2015-02-01

    In this paper one column of a telescopic construction of a bell tower is investigated. The hinges at the support of the column and at the connecting joint between the upper and lower columns are modelled with rotational springs. The characteristics of the springs are assumed to be non-linear and the hysteresis property of them is represented with the Preisach hysteresis model. The mass of the columns and the bell with the fly are concentrated to the top of the column. The tolling process is simulated with a cycling load. The elements of the column are considered completely rigid. The time iteration of the non-linear equations of the motion is evaluated by the Crank-Nicolson schema and the implemented non-linear hysteresis is handled by the fix-point technique. The numerical simulation of the dynamic system is carried out under different combination of soft, medium and hard hysteresis properties of hinges.

  1. Non-equilibrium effects in nanoparticulate assemblies, bond-disordered ferromagnets, and collections of two-level subsystems

    NASA Astrophysics Data System (ADS)

    Viddal, Candice April Harder

    The central concern of this thesis is the study of non-equilibrium behaviour in magnetic materials and its interpretation within the framework of a theoretical model based on the Preisach hypothesis, which decomposes all magnetic materials into a collection of bistable units. More specifically, we have performed comprehensive experimental characterizations of a variety of magnetic materials, including a naturally occurring mineral of nanodimensional titanomagnetite particles embedded in volcanic glass, a compressed powder of nanodimensional magnetite particles immobilized in an organic binder, a thin film of nanodimensional Fe particles embedded in alumina, and a series of sintered, bond-disordered CaxSr1-xRuO3 ferromagnets. We have measured (a) the initial magnetizing curve, the magnetizing remanence, the descending branch of the major hysteresis loop and the demagnetizing remanence as a function of applied field over a broad range of temperatures, (b) the field cooled moment, the zero field cooled moment, the thermoremanent moment and the isothermal remanent moment as a function of temperature in a broad range of applied fields, and (c) viscosity isotherms in a series of negative holding fields following recoil from positive saturation as a function of time over a wide range of temperatures. The measurements were compared with numerical simulations based on a Preisach model ensemble of thermally activated two-level subsystems, characterized individually by a double well free energy profile in a two-dimensional configuration space, an elementary moment reversal, a dissipation field and a bias field, and characterized collectively by a distribution of these characteristic fields. Our efforts were concentrated on two principal spheres of investigation. (1) By performing detailed numerical simulations of the relaxation response of model Preisach collections of two-level subsystems under the same field and temperature protocols used to probe experimentally the relaxation dynamics of spin glasses, we have been able to show that aging, memory and rejuvenation effects are not unique to collectively ordered materials with spin glass correlations, but rather are an ubiquitous feature of materials with a broad distribution of energy barriers where relaxation proceeds as a superposition of independent overbarrier activation events, each with its own characteristic relaxation time constant. (2) The second line of inquiry pertains to probing the two principal mechanisms, thermal fluctuations and barrier growth, which are jointly responsible for shaping the measured temperature dependence of the magnetic properties of all magnetic materials which exhibit a history dependent response to an external field excitation. We have proposed a general strategy for isolating and quantifying these two mechanisms which is based on the analysis of viscosity isotherms and, in particular, on a plot of T ln(tr/tau0) versus Ha, where t r is the time at which a viscosity isotherm measured in a field H a at temperature T reverses sign. When the magnetic response is dominated by thermal activation events, this plot will yield a universal curve from which it is possible to extract the mean elementary moment reversal and to reconstruct the distribution of metastable state excitation energies. When barrier growth dominates, the plot fractures into a family of isothermal curves from which it is, in principle, possible to reconstruct the evolution of the free energy landscape with temperature and to observe the collapse of the barriers as the material is warmed through the critical ordering temperature. The strategy is applied to the analysis of all four materials listed above.

  2. Hysteresis in consumer markets with focus on the mobile communications market

    NASA Astrophysics Data System (ADS)

    Twomey, C.

    2008-11-01

    Our aim here is to try to identify hysteresis in the switching patterns of consumers in the Irish mobile phone industry. It was not until the introduction by the Communication Regulator of full-number portability that consumers began to take advantage of the savings that switching mobile phone operator could produce. As with most relatively new industries, the awareness of savings is clouded by a lack of understanding of whats on offer and an underlying fear of change from something they have only just started to comprehend. With people changing company loyalties more frequently than ever at the prospect of better, more cost-efficient services, it is now the million euro question for the phone companies on how close they should match each others' offers to maximize their profits, and what their best pricing strategy should be to obtain an even larger share of the market. Through the use of experimental economics and by modelling switching behaviour using the Preisach model, along with observed and market data, we hope to both pose this problem and start the journey to answering this question.

  3. Rock magnetic properties of dusty olivine: comparison and calibration of non-heating paleointensity methods

    NASA Astrophysics Data System (ADS)

    Lappe, S. L.; Harrison, R. J.; Feinberg, J. M.

    2012-12-01

    The mechanism of chondrule formation is an important outstanding question in cosmochemistry. Magnetic signals recorded by Fe-Ni nanoparticles in chondrules could carry clues to their origin. Recently, research in this area has focused on 'dusty olivine' in ordinary chondrites as potential carriers of pre-accretionary remanence. Dusty olivine is characterised by the presence of sub-micron Fe-Ni inclusions within the olivine host. These metal particles form via subsolidus reduction of the olivine during chondrule formation and are thought to be protected from subsequent chemical and thermal alteration by the host olivine. Three sets of synthetic dusty olivines have been produced, using natural olivine (average Ni-content of 0.3 wt%), synthetic Ni-containing olivine (0.1wt% Ni) and synthetic Ni-free olivine as starting materials. The starting materials were ground to powders, packed into a 8-27 mm3 graphite crucible, heated up to 1350°C under a pure CO gas flow and kept at this temperature for 10 minutes. After this the samples were held in fixed orientation and quenched into water in a range of known magnetic fields from 0.2 mT to 1.5 mT. We present a comparison of all non-heating methods commonly used for paleointensity determination of extraterrestrial material. All samples showed uni-directional, single-component demagnetization behaviour. Saturation REM ratio (NRM/SIRM) and REMc ratio show non-linear behaviour as function of applied field and a saturation value < 1. Using the REM' method the samples showed approximately constant REM' between 100 and 150 mT AF-field. Plotting the average values for this field range again shows non-linear behaviour and a saturation value < 1. Another approach we examined to obtain calibration curves for paleointensity determination is based on ARM measurents. We also present an analysis of a new FORC-based method of paleointensity determination applied to metallic Fe-bearing samples [1, 2]. The method uses a first-order reversal curve (FORC) diagram to generate a Preisach distribution of coercivities and interaction fields within the sample and then physically models the acquisition of TRM as function of magnetic field, temperature and time using thermal relaxation theory. The comparison of observed and calculated NRM demagnetisation spectra is adversely effected by a large population of particles in the single-vortex state. Comparison of observed and calculated REM' curves, however, yields much closer agreement in the high-coercivity SD-dominated range. Calculated values of the average REM' ratio show excellent agreement with the experimental values - including the observed non-linearity of the remanence acquisition curve - suggesting that this method has the potential to reduce the uncertainties in non-heating paleointensity methods for extraterrestrial samples. [1] AR Muxworthy and D Heslop(2011) A Preisach method for estimating absolute paleofield intensity under the constraint of using only isothermal measurements: 1. Theoretical framework. Journal of Geophysical Research, 116, B04102, doi:10.1029/2010JB007843. [2] AR Muxworthy, D Heslop, GA Paterson, and D Michalk. A Preisach method for estimating absolute paleofield intensity under the constraint of using only isothermal measurements: 2. Experimental testing. Journal of Geophysical Research, 116, B04103, doi:10.1029/2010JB007844.

  4. Faster modified protocol for first order reversal curve measurements

    NASA Astrophysics Data System (ADS)

    De Biasi, Emilio

    2017-10-01

    In this work we present a faster modified protocol for first order reversal curve (FORC) measurements. The main idea of this procedure is to use the information of the ascending and descending branches constructed through successive sweeps of magnetic field. The new method reduces the number of field sweeps to almost one half as compared to the traditional method. The length of each branch is reduced faster than in the usual FORC protocol. The new method implies not only a new measurement protocol but also a new recipe for the previous treatment of the data. After of these pre-processing, the FORC diagram can be obtained by the conventional methods. In the present work we show that the new FORC procedure leads to results identical to the conventional method if the system under study follows the Stoner-Wohlfarth model with interactions that do not depend of the magnetic state (up or down) of the entities, as in the Preisach model. More specifically, if the coercive and interactions fields are not correlated, and the hysteresis loops have a square shape. Some numerical examples show the comparison between the usual FORC procedure and the propose one. We also discuss that it is possible to find some differences in the case of real systems, due to the magnetic interactions. There is no reason to prefer one FORC method over the other from the point of view of the information to be obtained. On the contrary, the use of both methods could open doors for a more accurate and deep analysis.

  5. Magnetic characteristics of CV chondrules with paleointensity implications

    NASA Astrophysics Data System (ADS)

    Emmerton, Stacey; Muxworthy, Adrian R.; Hezel, Dominik C.; Bland, Philip A.

    2011-12-01

    We have conducted a detailed magnetic study on 45 chondrules from two carbonaceous chondrites of the CV type: (1) Mokoia and (2) Allende. Allende has been previously extensively studied and is thought to have a high potential of retaining an extra-terrestrial paleofield. Few paleomagnetic studies of Mokoia have previously been undertaken. We report a range of magnetic measurements including hysteresis, first-order reversal curve analysis (FORCs), demagnetization characteristics, and isothermal remanent (IRM) acquisition behavior on both Mokoia and Allende chondrules. The Mokoia chondrules displayed more single domain-like behavior than the Allende chondrules, suggesting smaller grain sizes and higher magnetic stability. The Mokoia chondrules also had higher average concentrations of magnetic minerals and a larger range of magnetic characteristics than the Allende chondrules. IRM acquisition analysis found that both sets of chondrules have the same dominant magnetic mineral, likely to be a FeNi phase (taenite, kamacite, and/or awaruite) contributing to 48% of the Mokoia chondrules and 42% of the Allende chondrule characteristics. FORC analysis revealed that generally the Allende chondrules displayed low-field coercivity distributions with little interactions, and the Mokoia chondrules show clear single-domain like distributions. Paleointensity estimates for the two meteorites using the REMc and Preisach methods yielded estimates between 13 and 60 μT and 3-56 μT, respectively, for Allende and 3-140 μT and 1-110 μT, respectively, for Mokoia. From the data, we suggest that Mokoia chondrules carry a non-primary remagnetization, and while Allende is more likely than Mokoia to retain its primary magnetization, it also displays signs of post accretionary magnetization.

  6. Measurement of Ferroelectric Films in MFM and MFIS Structures

    NASA Astrophysics Data System (ADS)

    Anderson, Jackson D.

    For many years ferroelectric memory has been used in applications requiring low power, yet mainstream adoption has been stifled due to integration and scaling issues. With the renewed interest in these devices due to the recent discovery of ferroelectricity in HfO2, it is imperative that the properties of these films are well understood. To aid that end, a ferroelectric analysis package has been developed and released on GitHub and PyPI under a creative commons non-commercial share-alike license. This package contains functions for visualization and analysis of data from polarization, leakage current, and FORC measurements as well as basic modeling capability. Functionality is verified via the analysis of lead zirconate titanate (PZT) capacitors, where a multi-domain simulation based on an experimental Preisach density shows decent agreement despite measurement noise. The package is then used in the analysis of ferroelectric HfO2 films deposited in metal-ferroelectric-metal (MFM) and metal-ferroelectric-insulator-semiconductor (MFIS) stacks. 13.5 nm HfO2 films deposited on a semiconductor surface are shown to have a coercive voltage of 2.5 V, rather than the 1.9 V of the film in an MFM stack. This value further increases to 3-5 V when a lightly doped semiconductor depletion and inversion capacitance is added to the stack. The magnitude of this change is more than can be accounted for from the 10% voltage drop across the interfacial oxide layer, indicating that the modified surface properties are impacting the formation of the ferroelectric phase during anneal. In light of this, care should be taken to map out ferroelectric HfO2 properties using the particular physical stack that will be used, rather than using an MFM stack as a proxy.

  7. Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at nanoscale

    DOE PAGES

    Kalinin, Sergei V.; Jesse, Stephen; Yang, Yaodong; ...

    2016-04-27

    Here, the nonlinear response of a ferroic to external fields has been studied for decades, garnering interest for both understanding fundamental physics, as well as technological applications such as memory devices. Yet, the behavior of ferroelectrics at mesoscopic regimes remains poorly understood, and the scale limits of theories developed for macroscopic regimes are not well tested experimentally. Here, we test the link between piezo-nonlinearity and local piezoelectric strain hysteresis, via AC-field dependent measurements in conjunction with first order reversal curve (FORC) measurements on (K,Na)NbO 3 crystals with band-excitation piezoelectric force microscopy. The correlation coefficient between nonlinearity amplitude and the FORCmore » of the polarization switching shows a clear decrease in correlation with increasing AC bias, suggesting the impact of domain wall clamping on the DC measurement case. Further, correlation of polynomial fitting terms from the nonlinear measurements with the hysteresis loop area reveals that the largest correlations are reserved for the quadratic terms, which is expected for irreversible domain wall motion contributions that impact both piezoelectric behavior as well as minor loop formation. These confirm the link between local piezoelectric nonlinearity, domain wall motion and minor loop formation, and suggest that existing theories (such as Preisach) are applicable at these length scales, with associated implications for future nanoscale devices.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, Sergei V.; Jesse, Stephen; Yang, Yaodong

    Here, the nonlinear response of a ferroic to external fields has been studied for decades, garnering interest for both understanding fundamental physics, as well as technological applications such as memory devices. Yet, the behavior of ferroelectrics at mesoscopic regimes remains poorly understood, and the scale limits of theories developed for macroscopic regimes are not well tested experimentally. Here, we test the link between piezo-nonlinearity and local piezoelectric strain hysteresis, via AC-field dependent measurements in conjunction with first order reversal curve (FORC) measurements on (K,Na)NbO 3 crystals with band-excitation piezoelectric force microscopy. The correlation coefficient between nonlinearity amplitude and the FORCmore » of the polarization switching shows a clear decrease in correlation with increasing AC bias, suggesting the impact of domain wall clamping on the DC measurement case. Further, correlation of polynomial fitting terms from the nonlinear measurements with the hysteresis loop area reveals that the largest correlations are reserved for the quadratic terms, which is expected for irreversible domain wall motion contributions that impact both piezoelectric behavior as well as minor loop formation. These confirm the link between local piezoelectric nonlinearity, domain wall motion and minor loop formation, and suggest that existing theories (such as Preisach) are applicable at these length scales, with associated implications for future nanoscale devices.« less

  9. Do 3D Printing Models Improve Anatomical Teaching About Hepatic Segments to Medical Students? A Randomized Controlled Study.

    PubMed

    Kong, Xiangxue; Nie, Lanying; Zhang, Huijian; Wang, Zhanglin; Ye, Qiang; Tang, Lei; Huang, Wenhua; Li, Jianyi

    2016-08-01

    It is a difficult and frustrating task for young surgeons and medical students to understand the anatomy of hepatic segments. We tried to develop an optimal 3D printing model of hepatic segments as a teaching aid to improve the teaching of hepatic segments. A fresh human cadaveric liver without hepatic disease was CT scanned. After 3D reconstruction, three types of 3D computer models of hepatic structures were designed and 3D printed as models of hepatic segments without parenchyma (type 1) and with transparent parenchyma (type 2), and hepatic ducts with segmental partitions (type 3). These models were evaluated by six experts using a five-point Likert scale. Ninety two medical freshmen were randomized into four groups to learn hepatic segments with the aid of the three types of models and traditional anatomic atlas (TAA). Their results of two quizzes were compared to evaluate the teaching effects of the four methods. Three types of models were successful produced which displayed the structures of hepatic segments. By experts' evaluation, type 3 model was better than type 1 and 2 models in anatomical condition, type 2 and 3 models were better than type 1 model in tactility, and type 3 model was better than type 1 model in overall satisfaction (P < 0.05). The first quiz revealed that type 1 model was better than type 2 model and TAA, while type 3 model was better than type 2 and TAA in teaching effects (P < 0.05). The second quiz found that type 1 model was better than TAA, while type 3 model was better than type 2 model and TAA regarding teaching effects (P < 0.05). Only TAA group had significant declines between two quizzes (P < 0.05). The model with segmental partitions proves to be optimal, because it can best improve anatomical teaching about hepatic segments.

  10. Taylor O(h³) Discretization of ZNN Models for Dynamic Equality-Constrained Quadratic Programming With Application to Manipulators.

    PubMed

    Liao, Bolin; Zhang, Yunong; Jin, Long

    2016-02-01

    In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.

  11. The statistical geometry of transcriptome divergence in cell-type evolution and cancer.

    PubMed

    Liang, Cong; Forrest, Alistair R R; Wagner, Günter P

    2015-01-14

    In evolution, body plan complexity increases due to an increase in the number of individualized cell types. Yet, there is very little understanding of the mechanisms that produce this form of organismal complexity. One model for the origin of novel cell types is the sister cell-type model. According to this model, each cell type arises together with a sister cell type through specialization from an ancestral cell type. A key prediction of the sister cell-type model is that gene expression profiles of cell types exhibit tree structure. Here we present a statistical model for detecting tree structure in transcriptomic data and apply it to transcriptomes from ENCODE and FANTOM5. We show that transcriptomes of normal cells harbour substantial amounts of hierarchical structure. In contrast, cancer cell lines have less tree structure, suggesting that the emergence of cancer cells follows different principles from that of evolutionary cell-type origination.

  12. Multivariate poisson lognormal modeling of crashes by type and severity on rural two lane highways.

    PubMed

    Wang, Kai; Ivan, John N; Ravishanker, Nalini; Jackson, Eric

    2017-02-01

    In an effort to improve traffic safety, there has been considerable interest in estimating crash prediction models and identifying factors contributing to crashes. To account for crash frequency variations among crash types and severities, crash prediction models have been estimated by type and severity. The univariate crash count models have been used by researchers to estimate crashes by crash type or severity, in which the crash counts by type or severity are assumed to be independent of one another and modelled separately. When considering crash types and severities simultaneously, this may neglect the potential correlations between crash counts due to the presence of shared unobserved factors across crash types or severities for a specific roadway intersection or segment, and might lead to biased parameter estimation and reduce model accuracy. The focus on this study is to estimate crashes by both crash type and crash severity using the Integrated Nested Laplace Approximation (INLA) Multivariate Poisson Lognormal (MVPLN) model, and identify the different effects of contributing factors on different crash type and severity counts on rural two-lane highways. The INLA MVPLN model can simultaneously model crash counts by crash type and crash severity by accounting for the potential correlations among them and significantly decreases the computational time compared with a fully Bayesian fitting of the MVPLN model using Markov Chain Monte Carlo (MCMC) method. This paper describes estimation of MVPLN models for three-way stop controlled (3ST) intersections, four-way stop controlled (4ST) intersections, four-way signalized (4SG) intersections, and roadway segments on rural two-lane highways. Annual Average Daily traffic (AADT) and variables describing roadway conditions (including presence of lighting, presence of left-turn/right-turn lane, lane width and shoulder width) were used as predictors. A Univariate Poisson Lognormal (UPLN) was estimated by crash type and severity for each highway facility, and their prediction results are compared with the MVPLN model based on the Average Predicted Mean Absolute Error (APMAE) statistic. A UPLN model for total crashes was also estimated to compare the coefficients of contributing factors with the models that estimate crashes by crash type and severity. The model coefficient estimates show that the signs of coefficients for presence of left-turn lane, presence of right-turn lane, land width and speed limit are different across crash type or severity counts, which suggest that estimating crashes by crash type or severity might be more helpful in identifying crash contributing factors. The standard errors of covariates in the MVPLN model are slightly lower than the UPLN model when the covariates are statistically significant, and the crash counts by crash type and severity are significantly correlated. The model prediction comparisons illustrate that the MVPLN model outperforms the UPLN model in prediction accuracy. Therefore, when predicting crash counts by crash type and crash severity for rural two-lane highways, the MVPLN model should be considered to avoid estimation error and to account for the potential correlations among crash type counts and crash severity counts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Comparison of the CEAS and Williams-type barley yield models for North Dakota and Minnesota

    NASA Technical Reports Server (NTRS)

    Leduc, S. (Principal Investigator)

    1982-01-01

    The CEAS and Williams type models were compared based on specified selection criteria which includes a ten year bootstrap test (1970-1979). Based on this, the models were quite comparable; however, the CEAS model was slightly better overall. The Williams type model seemed better for the 1974 estimates. Because that year spring wheat yield was particularly low, the Williams type model should not be excluded from further consideration.

  14. A dynamical systems approach to the tilted Bianchi models of solvable type

    NASA Astrophysics Data System (ADS)

    Coley, Alan; Hervik, Sigbjørn

    2005-02-01

    We use a dynamical systems approach to analyse the tilting spatially homogeneous Bianchi models of solvable type (e.g., types VIh and VIIh) with a perfect fluid and a linear barotropic γ-law equation of state. In particular, we study the late-time behaviour of tilted Bianchi models, with an emphasis on the existence of equilibrium points and their stability properties. We briefly discuss the tilting Bianchi type V models and the late-time asymptotic behaviour of irrotational Bianchi type VII0 models. We prove the important result that for non-inflationary Bianchi type VIIh models vacuum plane-wave solutions are the only future attracting equilibrium points in the Bianchi type VIIh invariant set. We then investigate the dynamics close to the plane-wave solutions in more detail, and discover some new features that arise in the dynamical behaviour of Bianchi cosmologies with the inclusion of tilt. We point out that in a tiny open set of parameter space in the type IV model (the loophole) there exist closed curves which act as attracting limit cycles. More interestingly, in the Bianchi type VIIh models there is a bifurcation in which a set of equilibrium points turns into closed orbits. There is a region in which both sets of closed curves coexist, and it appears that for the type VIIh models in this region the solution curves approach a compact surface which is topologically a torus.

  15. 46 CFR 160.064-2 - Types and models.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Types and models. 160.064-2 Section 160.064-2 Shipping...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Marine Buoyant Devices § 160.064-2 Types and models. (a) Types. Water safety buoyant devices covered by this subpart shall be of two general types, viz, those intended...

  16. Predicting crash frequency for multi-vehicle collision types using multivariate Poisson-lognormal spatial model: A comparative analysis.

    PubMed

    Hosseinpour, Mehdi; Sahebi, Sina; Zamzuri, Zamira Hasanah; Yahaya, Ahmad Shukri; Ismail, Noriszura

    2018-06-01

    According to crash configuration and pre-crash conditions, traffic crashes are classified into different collision types. Based on the literature, multi-vehicle crashes, such as head-on, rear-end, and angle crashes, are more frequent than single-vehicle crashes, and most often result in serious consequences. From a methodological point of view, the majority of prior studies focused on multivehicle collisions have employed univariate count models to estimate crash counts separately by collision type. However, univariate models fail to account for correlations which may exist between different collision types. Among others, multivariate Poisson lognormal (MVPLN) model with spatial correlation is a promising multivariate specification because it not only allows for unobserved heterogeneity (extra-Poisson variation) and dependencies between collision types, but also spatial correlation between adjacent sites. However, the MVPLN spatial model has rarely been applied in previous research for simultaneously modelling crash counts by collision type. Therefore, this study aims at utilizing a MVPLN spatial model to estimate crash counts for four different multi-vehicle collision types, including head-on, rear-end, angle, and sideswipe collisions. To investigate the performance of the MVPLN spatial model, a two-stage model and a univariate Poisson lognormal model (UNPLN) spatial model were also developed in this study. Detailed information on roadway characteristics, traffic volume, and crash history were collected on 407 homogeneous segments from Malaysian federal roads. The results indicate that the MVPLN spatial model outperforms the other comparing models in terms of goodness-of-fit measures. The results also show that the inclusion of spatial heterogeneity in the multivariate model significantly improves the model fit, as indicated by the Deviance Information Criterion (DIC). The correlation between crash types is high and positive, implying that the occurrence of a specific collision type is highly associated with the occurrence of other crash types on the same road segment. These results support the utilization of the MVPLN spatial model when predicting crash counts by collision manner. In terms of contributing factors, the results show that distinct crash types are attributed to different subsets of explanatory variables. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Boosting multi-state models.

    PubMed

    Reulen, Holger; Kneib, Thomas

    2016-04-01

    One important goal in multi-state modelling is to explore information about conditional transition-type-specific hazard rate functions by estimating influencing effects of explanatory variables. This may be performed using single transition-type-specific models if these covariate effects are assumed to be different across transition-types. To investigate whether this assumption holds or whether one of the effects is equal across several transition-types (cross-transition-type effect), a combined model has to be applied, for instance with the use of a stratified partial likelihood formulation. Here, prior knowledge about the underlying covariate effect mechanisms is often sparse, especially about ineffectivenesses of transition-type-specific or cross-transition-type effects. As a consequence, data-driven variable selection is an important task: a large number of estimable effects has to be taken into account if joint modelling of all transition-types is performed. A related but subsequent task is model choice: is an effect satisfactory estimated assuming linearity, or is the true underlying nature strongly deviating from linearity? This article introduces component-wise Functional Gradient Descent Boosting (short boosting) for multi-state models, an approach performing unsupervised variable selection and model choice simultaneously within a single estimation run. We demonstrate that features and advantages in the application of boosting introduced and illustrated in classical regression scenarios remain present in the transfer to multi-state models. As a consequence, boosting provides an effective means to answer questions about ineffectiveness and non-linearity of single transition-type-specific or cross-transition-type effects.

  18. Using Factor Mixture Models to Evaluate the Type A/B Classification of Alcohol Use Disorders in a Heterogeneous Treatment Sample

    PubMed Central

    Hildebrandt, Tom; Epstein, Elizabeth E.; Sysko, Robyn; Bux, Donald A.

    2017-01-01

    Background The type A/B classification model for alcohol use disorders (AUDs) has received considerable empirical support. However, few studies examine the underlying latent structure of this subtyping model, which has been challenged as a dichotomization of a single drinking severity dimension. Type B, relative to type A, alcoholics represent those with early age of onset, greater familial risk, and worse outcomes from alcohol use. Method We examined the latent structure of the type A/B model using categorical, dimensional, and factor mixture models in a mixed gender community treatment-seeking sample of adults with an AUD. Results Factor analytic models identified 2-factors (drinking severity/externalizing psychopathology and internalizing psychopathology) underlying the type A/B indicators. A factor mixture model with 2-dimensions and 3-classes emerged as the best overall fitting model. The classes reflected a type A class and two type B classes (B1 and B2) that differed on the respective level of drinking severity/externalizing pathology and internalizing pathology. Type B1 had a greater prevalence of women and more internalizing pathology and B2 had a greater prevalence of men and more drinking severity/externalizing pathology. The 2-factor, 3-class model also exhibited predictive validity by explaining significant variance in 12-month drinking and drug use outcomes. Conclusions The model identified in the current study may provide a basis for examining different sources of heterogeneity in the course and outcome of AUDs. PMID:28247423

  19. Modeling neuropeptide transport in various types of nerve terminals containing en passant boutons.

    PubMed

    Kuznetsov, I A; Kuznetsov, A V

    2015-03-01

    We developed a mathematical model for simulating neuropeptide transport inside dense core vesicles (DCVs) in axon terminals containing en passant boutons. The motivation for this research is a recent experimental study by Levitan and colleagues (Bulgari et al., 2014) which described DCV transport in nerve terminals of type Ib and type III as well as in nerve terminals of type Ib with the transcription factor DIMM. The goal of our modeling is validating the proposition put forward by Levitan and colleagues that the dramatic difference in DCV number in type Ib and type III terminals can be explained by the difference in DCV capture in type Ib and type III boutons rather than by differences in DCV anterograde transport and half-life of resident DCVs. The developed model provides a tool for studying the dynamics of DCV transport in various types of nerve terminals. The model is also an important step in gaining a better mechanistic understanding of transport processes in axons and identifying directions for the development of new models in this area. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Nonlinear convective pulsation models of type II Cepheids

    NASA Astrophysics Data System (ADS)

    Smolec, Radoslaw

    2015-08-01

    We present a grid of nonlinear convective pulsation models of type-II Cepheids: BL Her stars, W Vir stars and RV Tau stars. The models cover a wide range of masses, luminosities, effective temperatures and chemical compositions. The most interesting result is detection of deterministic chaos in the models. Different routes to chaos are detected (period doubling, intermittent route) as well as variety of phenomena intrinsic to chaotic dynamics (periodic islands within chaotic bands, crisis bifurcation, type-I and type-III intermittency). Some of the phenomena (period doubling in BL Her and in RV Tau stars, irregular pulsation of RV Tau stars) are well known in the pulsation of type-II Cepheids. Prospects of discovering the other are briefly discussed. Transition from BL Her type pulsation through W Vir type till RV Tau type is analysed. In the most luminous models a dynamical instability is detected, which indicates that pulsation driven mass loss is important process occurring in type-II Cepheids.

  1. 75 FR 66700 - Airworthiness Directives; Cessna Aircraft Company (Cessna) Model 402C Airplanes Modified by...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... Company (Cessna) Model 402C Airplanes Modified by Supplemental Type Certificate (STC) SA927NW and Model... Company (Cessna) Model 402C airplanes modified by Supplemental Type Certificate (STC) SA927NW and Model... products of the same type design. Proposed AD Requirements This proposed AD would require accomplishing the...

  2. Takagi-Sugeno-Kang fuzzy models of the rainfall-runoff transformation

    NASA Astrophysics Data System (ADS)

    Jacquin, A. P.; Shamseldin, A. Y.

    2009-04-01

    Fuzzy inference systems, or fuzzy models, are non-linear models that describe the relation between the inputs and the output of a real system using a set of fuzzy IF-THEN rules. This study deals with the application of Takagi-Sugeno-Kang type fuzzy models to the development of rainfall-runoff models operating on a daily basis, using a system based approach. The models proposed are classified in two types, each intended to account for different kinds of dominant non-linear effects in the rainfall-runoff relationship. Fuzzy models type 1 are intended to incorporate the effect of changes in the prevailing soil moisture content, while fuzzy models type 2 address the phenomenon of seasonality. Each model type consists of five fuzzy models of increasing complexity; the most complex fuzzy model of each model type includes all the model components found in the remaining fuzzy models of the respective type. The models developed are applied to data of six catchments from different geographical locations and sizes. Model performance is evaluated in terms of two measures of goodness of fit, namely the Nash-Sutcliffe criterion and the index of volumetric fit. The results of the fuzzy models are compared with those of the Simple Linear Model, the Linear Perturbation Model and the Nearest Neighbour Linear Perturbation Model, which use similar input information. Overall, the results of this study indicate that Takagi-Sugeno-Kang fuzzy models are a suitable alternative for modelling the rainfall-runoff relationship. However, it is also observed that increasing the complexity of the model structure does not necessarily produce an improvement in the performance of the fuzzy models. The relative importance of the different model components in determining the model performance is evaluated through sensitivity analysis of the model parameters in the accompanying study presented in this meeting. Acknowledgements: We would like to express our gratitude to Prof. Kieran M. O'Connor from the National University of Ireland, Galway, for providing the data used in this study.

  3. A bivariate model for analyzing recurrent multi-type automobile failures

    NASA Astrophysics Data System (ADS)

    Sunethra, A. A.; Sooriyarachchi, M. R.

    2017-09-01

    The failure mechanism in an automobile can be defined as a system of multi-type recurrent failures where failures can occur due to various multi-type failure modes and these failures are repetitive such that more than one failure can occur from each failure mode. In analysing such automobile failures, both the time and type of the failure serve as response variables. However, these two response variables are highly correlated with each other since the timing of failures has an association with the mode of the failure. When there are more than one correlated response variables, the fitting of a multivariate model is more preferable than separate univariate models. Therefore, a bivariate model of time and type of failure becomes appealing for such automobile failure data. When there are multiple failure observations pertaining to a single automobile, such data cannot be treated as independent data because failure instances of a single automobile are correlated with each other while failures among different automobiles can be treated as independent. Therefore, this study proposes a bivariate model consisting time and type of failure as responses adjusted for correlated data. The proposed model was formulated following the approaches of shared parameter models and random effects models for joining the responses and for representing the correlated data respectively. The proposed model is applied to a sample of automobile failures with three types of failure modes and up to five failure recurrences. The parametric distributions that were suitable for the two responses of time to failure and type of failure were Weibull distribution and multinomial distribution respectively. The proposed bivariate model was programmed in SAS Procedure Proc NLMIXED by user programming appropriate likelihood functions. The performance of the bivariate model was compared with separate univariate models fitted for the two responses and it was identified that better performance is secured by the bivariate model. The proposed model can be used to determine the time and type of failure that would occur in the automobiles considered here.

  4. A note on tilted Bianchi type VIh models: the type III bifurcation

    NASA Astrophysics Data System (ADS)

    Coley, A. A.; Hervik, S.

    2008-10-01

    In this note we complete the analysis of Hervik, van den Hoogen, Lim and Coley (2007 Class. Quantum Grav. 24 3859) of the late-time behaviour of tilted perfect fluid Bianchi type III models. We consider models with dust, and perfect fluids stiffer than dust, and eludicate the late-time behaviour by studying the centre manifold which dominates the behaviour of the model at late times. In the dust case, this centre manifold is three-dimensional and can be considered a double bifurcation as the two parameters (h and γ) of the type VIh model are varied. We therefore complete the analysis of the late-time behaviour of tilted ever-expanding Bianchi models of types I VIII.

  5. Shared or Integrated: Which Type of Integration is More Effective Improves Students’ Creativity?

    NASA Astrophysics Data System (ADS)

    Mariyam, M.; Kaniawati, I.; Sriyati, S.

    2017-09-01

    Integrated science learning has various types of integration. This study aims to apply shared and integrated type of integration with project based learning (PjBL) model to improve students’ creativity on waste recycling theme. The research method used is a quasi experiment with the matching-only pre test-post test design. The samples of this study are 108 students consisting of 36 students (experiment class 1st), 35 students (experiment class 2nd) and 37 students (control class 3rd) at one of Junior High School in Tanggamus, Lampung. The results show that there is difference of creativity improvement in the class applied by PjBL model with shared type of integration, integrated type of integration and without any integration in waste recycling theme. Class applied by PjBL model with shared type of integration has the higher creativity improvement than the PjBL model with integrated type of integration and without any integration. Integrated science learning using shared type only combines 2 lessons, hence an intact concept is resulted. So, PjBL model with shared type of integration more effective improves students’ creativity than integrated type.

  6. Intonation and dialog context as constraints for speech recognition.

    PubMed

    Taylor, P; King, S; Isard, S; Wright, H

    1998-01-01

    This paper describes a way of using intonation and dialog context to improve the performance of an automatic speech recognition (ASR) system. Our experiments were run on the DCIEM Maptask corpus, a corpus of spontaneous task-oriented dialog speech. This corpus has been tagged according to a dialog analysis scheme that assigns each utterance to one of 12 "move types," such as "acknowledge," "query-yes/no" or "instruct." Most ASR systems use a bigram language model to constrain the possible sequences of words that might be recognized. Here we use a separate bigram language model for each move type. We show that when the "correct" move-specific language model is used for each utterance in the test set, the word error rate of the recognizer drops. Of course when the recognizer is run on previously unseen data, it cannot know in advance what move type the speaker has just produced. To determine the move type we use an intonation model combined with a dialog model that puts constraints on possible sequences of move types, as well as the speech recognizer likelihoods for the different move-specific models. In the full recognition system, the combination of automatic move type recognition with the move specific language models reduces the overall word error rate by a small but significant amount when compared with a baseline system that does not take intonation or dialog acts into account. Interestingly, the word error improvement is restricted to "initiating" move types, where word recognition is important. In "response" move types, where the important information is conveyed by the move type itself--for example, positive versus negative response--there is no word error improvement, but recognition of the response types themselves is good. The paper discusses the intonation model, the language models, and the dialog model in detail and describes the architecture in which they are combined.

  7. Simulation for Wind Turbine Generators -- With FAST and MATLAB-Simulink Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M.; Muljadi, E.; Jonkman, J.

    This report presents the work done to develop generator and gearbox models in the Matrix Laboratory (MATLAB) environment and couple them to the National Renewable Energy Laboratory's Fatigue, Aerodynamics, Structures, and Turbulence (FAST) program. The goal of this project was to interface the superior aerodynamic and mechanical models of FAST to the excellent electrical generator models found in various Simulink libraries and applications. The scope was limited to Type 1, Type 2, and Type 3 generators and fairly basic gear-train models. Future work will include models of Type 4 generators and more-advanced gear-train models with increased degrees of freedom. Asmore » described in this study, implementation of the developed drivetrain model enables the software tool to be used in many ways. Several case studies are presented as examples of the many types of studies that can be performed using this tool.« less

  8. Functional response and capture timing in an individual-based model: predation by northern squawfish (Ptychocheilus oregonensis) on juvenile salmonids in the Columbia River

    USGS Publications Warehouse

    Petersen, James H.; DeAngelis, Donald L.

    1992-01-01

    The behavior of individual northern squawfish (Ptychocheilus oregonensis) preying on juvenile salmonids was modeled to address questions about capture rate and the timing of prey captures (random versus contagious). Prey density, predator weight, prey weight, temperature, and diel feeding pattern were first incorporated into predation equations analogous to Holling Type 2 and Type 3 functional response models. Type 2 and Type 3 equations fit field data from the Columbia River equally well, and both models predicted predation rates on five of seven independent dates. Selecting a functional response type may be complicated by variable predation rates, analytical methods, and assumptions of the model equations. Using the Type 2 functional response, random versus contagious timing of prey capture was tested using two related models. ln the simpler model, salmon captures were assumed to be controlled by a Poisson renewal process; in the second model, several salmon captures were assumed to occur during brief "feeding bouts", modeled with a compound Poisson process. Salmon captures by individual northern squawfish were clustered through time, rather than random, based on comparison of model simulations and field data. The contagious-feeding result suggests that salmonids may be encountered as patches or schools in the river.

  9. Linking Remotely Sensed Aerosol Types to Their Chemical Composition

    NASA Technical Reports Server (NTRS)

    Dawson, Kyle William; Kacenelenbogen, Meloe S.; Johnson, Matthew S.; Burton, Sharon P.; Hostetler, Chris A.; Meskhidze, Nicholas

    2016-01-01

    Aerosol types measured during the Ship-Aircraft Bio-Optical Research (SABOR) experiment are related to GEOS-Chem model chemical composition. The application for this procedure to link model chemical components to aerosol type is desirable for understanding aerosol evolution over time. The Mahalanobis distance (DM) statistic is used to cluster model groupings of five chemical components (organic carbon, black carbon, sea salt, dust and sulfate) in a way analogous to the methods used by Burton et al. [2012] and Russell et al. [2014]. First, model-to-measurement evaluation is performed by collocating vertically resolved aerosol extinction from SABOR High Spectral Resolution LiDAR (HSRL) to the GEOS-Chem nested high-resolution data. Comparisons of modeled-to-measured aerosol extinction are shown to be within 35% +/- 14%. Second, the model chemical components are calculation into five variables to calculate the DM and cluster means and covariances for each HSRL-retrieved aerosol type. The layer variables from the model are aerosol optical depth (AOD) ratios of (i) sea salt and (ii) dust to total AOD, mass ratios of (iii) total carbon (i.e. sum of organic and black carbon) to the sum of total carbon and sulfate (iv) organic carbon to black carbon, and (v) the natural log of the aerosol-to-molecular extinction ratio. Third, the layer variables and at most five out of twenty SABOR flights are used to form the pre-specified clusters for calculating DM and to assign an aerosol type. After determining the pre-specified clusters, model aerosol types are produced for the entire vertically resolved GEOS-Chem nested domain over the United States and the model chemical component distributions relating to each type are recorded. Resulting aerosol types are Dust/Dusty Mix, Maritime, Smoke, Urban and Fresh Smoke (separated into 'dark' and 'light' by a threshold of the organic to black carbon ratio). Model-calculated DM not belonging to a specific type (i.e. not meeting a threshold probability) is termed an outlier and those DM values that can belong to multiple types (i.e. showing weak probability of belonging to a specific cluster) are termed as Overlap. MODIS active fires are overlaid on the model domain to qualitatively evaluate the model-predicted Smoke aerosol types.

  10. Linking remotely sensed aerosol types to their chemical composition

    NASA Astrophysics Data System (ADS)

    Dawson, K. W.; Kacenelenbogen, M. S.; Johnson, M. S.; Burton, S. P.; Hostetler, C. A.; Meskhidze, N.

    2016-12-01

    Aerosol types measured during the Ship-Aircraft Bio-Optical Research (SABOR) experiment are related to GEOS-Chem model chemical composition. The application for this procedure to link model chemical components to aerosol type is desirable for understanding aerosol evolution over time. The Mahalanobis distance (DM) statistic is used to cluster model groupings of five chemical components (organic carbon, black carbon, sea salt, dust and sulfate) in a way analogous to the methods used by Burton et al. [2012] and Russell et al. [2014]. First, model-to-measurement evaluation is performed by collocating vertically resolved aerosol extinction from SABOR High Spectral Resolution LiDAR (HSRL) to the GEOS-Chem nested high-resolution data. Comparisons of modeled-to-measured aerosol extinction are shown to be within 35% ± 14%. Second, the model chemical components are calculation into five variables to calculate the DM and cluster means and covariances for each HSRL-retrieved aerosol type. The layer variables from the model are aerosol optical depth (AOD) ratios of (i) sea salt and (ii) dust to total AOD, mass ratios of (iii) total carbon (i.e. sum of organic and black carbon) to the sum of total carbon and sulfate (iv) organic carbon to black carbon, and (v) the natural log of the aerosol-to-molecular extinction ratio. Third, the layer variables and at most five out of twenty SABOR flights are used to form the pre-specified clusters for calculating DM and to assign an aerosol type. After determining the pre-specified clusters, model aerosol types are produced for the entire vertically resolved GEOS-Chem nested domain over the United States and the model chemical component distributions relating to each type are recorded. Resulting aerosol types are Dust/Dusty Mix, Maritime, Smoke, Urban and Fresh Smoke (separated into `dark' and `light' by a threshold of the organic to black carbon ratio). Model-calculated DM not belonging to a specific type (i.e. not meeting a threshold probability) is termed an outlier and those DM values that can belong to multiple types (i.e. showing weak probability of belonging to a specific cluster) are termed as Overlap. MODIS active fires are overlaid on the model domain to qualitatively evaluate the model-predicted Smoke aerosol types.

  11. Large eddy simulation on buoyant gas diffusion near building

    NASA Astrophysics Data System (ADS)

    Tominaga, Yoshihide; Murakami, Shuzo; Mochida, Akashi

    1992-12-01

    Large eddy simulations on turbulent diffusion of buoyant gases near a building model are carried out for three cases in which the densimetric Froude Number (Frd) was specified at - 8.6, zero and 8.6 respectively. The accuracy of these simulations is examined by comparing the numerically predicted results with wind tunnel experiments conducted. Two types of sub-grid scale models, the standard Smagorinsky model (type 1) and the modified Smagorinsky model (type 2) are compared. The former does not take account of the production of subgrid energy by buoyancy force but the latter incorporates this effect. The latter model (type 2) gives more accurate results than those given by the standard Smagorinsky model (type 1) in terms of the distributions of kappa greater than sign C less than sign greater than sign C(sup - 2) less than sign.

  12. Creating Aerosol Types from CHemistry (CATCH): A New Algorithm to Extend the Link Between Remote Sensing and Models

    NASA Astrophysics Data System (ADS)

    Dawson, K. W.; Meskhidze, N.; Burton, S. P.; Johnson, M. S.; Kacenelenbogen, M. S.; Hostetler, C. A.; Hu, Y.

    2017-11-01

    Current remote sensing methods can identify aerosol types within an atmospheric column, presenting an opportunity to incrementally bridge the gap between remote sensing and models. Here a new algorithm was designed for Creating Aerosol Types from CHemistry (CATCH). CATCH-derived aerosol types—dusty mix, maritime, urban, smoke, and fresh smoke—are based on first-generation airborne High Spectral Resolution Lidar (HSRL-1) retrievals during the Ship-Aircraft Bio-Optical Research (SABOR) campaign, July/August 2014. CATCH is designed to derive aerosol types from model output of chemical composition. CATCH-derived aerosol types are determined by multivariate clustering of model-calculated variables that have been trained using retrievals of aerosol types from HSRL-1. CATCH-derived aerosol types (with the exception of smoke) compare well with HSRL-1 retrievals during SABOR with an average difference in aerosol optical depth (AOD) <0.03. Data analysis shows that episodic free tropospheric transport of smoke is underpredicted by the Goddard Earth Observing System- with Chemistry (GEOS-Chem) model. Spatial distributions of CATCH-derived aerosol types for the North American model domain during July/August 2014 show that aerosol type-specific AOD values occurred over representative locations: urban over areas with large population, maritime over oceans, smoke, and fresh smoke over typical biomass burning regions. This study demonstrates that model-generated information on aerosol chemical composition can be translated into aerosol types analogous to those retrieved from remote sensing methods. In the future, spaceborne HSRL-1 and CATCH can be used to gain insight into chemical composition of aerosol types, reducing uncertainties in estimates of aerosol radiative forcing.

  13. Rational GARCH model: An empirical test for stock returns

    NASA Astrophysics Data System (ADS)

    Takaishi, Tetsuya

    2017-05-01

    We propose a new ARCH-type model that uses a rational function to capture the asymmetric response of volatility to returns, known as the "leverage effect". Using 10 individual stocks on the Tokyo Stock Exchange and two stock indices, we compare the new model with several other asymmetric ARCH-type models. We find that according to the deviance information criterion, the new model ranks first for several stocks. Results show that the proposed new model can be used as an alternative asymmetric ARCH-type model in empirical applications.

  14. A comparison of different statistical methods analyzing hypoglycemia data using bootstrap simulations.

    PubMed

    Jiang, Honghua; Ni, Xiao; Huster, William; Heilmann, Cory

    2015-01-01

    Hypoglycemia has long been recognized as a major barrier to achieving normoglycemia with intensive diabetic therapies. It is a common safety concern for the diabetes patients. Therefore, it is important to apply appropriate statistical methods when analyzing hypoglycemia data. Here, we carried out bootstrap simulations to investigate the performance of the four commonly used statistical models (Poisson, negative binomial, analysis of covariance [ANCOVA], and rank ANCOVA) based on the data from a diabetes clinical trial. Zero-inflated Poisson (ZIP) model and zero-inflated negative binomial (ZINB) model were also evaluated. Simulation results showed that Poisson model inflated type I error, while negative binomial model was overly conservative. However, after adjusting for dispersion, both Poisson and negative binomial models yielded slightly inflated type I errors, which were close to the nominal level and reasonable power. Reasonable control of type I error was associated with ANCOVA model. Rank ANCOVA model was associated with the greatest power and with reasonable control of type I error. Inflated type I error was observed with ZIP and ZINB models.

  15. Roof Type Selection Based on Patch-Based Classification Using Deep Learning for High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Partovi, T.; Fraundorfer, F.; Azimi, S.; Marmanis, D.; Reinartz, P.

    2017-05-01

    3D building reconstruction from remote sensing image data from satellites is still an active research topic and very valuable for 3D city modelling. The roof model is the most important component to reconstruct the Level of Details 2 (LoD2) for a building in 3D modelling. While the general solution for roof modelling relies on the detailed cues (such as lines, corners and planes) extracted from a Digital Surface Model (DSM), the correct detection of the roof type and its modelling can fail due to low quality of the DSM generated by dense stereo matching. To reduce dependencies of roof modelling on DSMs, the pansharpened satellite images as a rich resource of information are used in addition. In this paper, two strategies are employed for roof type classification. In the first one, building roof types are classified in a state-of-the-art supervised pre-trained convolutional neural network (CNN) framework. In the second strategy, deep features from deep layers of different pre-trained CNN model are extracted and then an RBF kernel using SVM is employed to classify the building roof type. Based on roof complexity of the scene, a roof library including seven types of roofs is defined. A new semi-automatic method is proposed to generate training and test patches of each roof type in the library. Using the pre-trained CNN model does not only decrease the computation time for training significantly but also increases the classification accuracy.

  16. Bianchi VI cosmological models representing perfect fluid and radiation with electric-type free gravitational fields

    NASA Astrophysics Data System (ADS)

    Roy, S. R.; Banerjee, S. K.

    1992-11-01

    A homogeneous Bianchi type VIh cosmological model filled with perfect fluid, null electromagnetic field and streaming neutrinos is obtained for which the free gravitational field is of the electric type. The barotropic equation of statep = (γ-1)ɛ is imposed in the particular case of Bianchi VI0 string models. Various physical and kinematical properties of the models are discussed.

  17. A Simulation Study Comparing Epidemic Dynamics on Exponential Random Graph and Edge-Triangle Configuration Type Contact Network Models

    PubMed Central

    Rolls, David A.; Wang, Peng; McBryde, Emma; Pattison, Philippa; Robins, Garry

    2015-01-01

    We compare two broad types of empirically grounded random network models in terms of their abilities to capture both network features and simulated Susceptible-Infected-Recovered (SIR) epidemic dynamics. The types of network models are exponential random graph models (ERGMs) and extensions of the configuration model. We use three kinds of empirical contact networks, chosen to provide both variety and realistic patterns of human contact: a highly clustered network, a bipartite network and a snowball sampled network of a “hidden population”. In the case of the snowball sampled network we present a novel method for fitting an edge-triangle model. In our results, ERGMs consistently capture clustering as well or better than configuration-type models, but the latter models better capture the node degree distribution. Despite the additional computational requirements to fit ERGMs to empirical networks, the use of ERGMs provides only a slight improvement in the ability of the models to recreate epidemic features of the empirical network in simulated SIR epidemics. Generally, SIR epidemic results from using configuration-type models fall between those from a random network model (i.e., an Erdős-Rényi model) and an ERGM. The addition of subgraphs of size four to edge-triangle type models does improve agreement with the empirical network for smaller densities in clustered networks. Additional subgraphs do not make a noticeable difference in our example, although we would expect the ability to model cliques to be helpful for contact networks exhibiting household structure. PMID:26555701

  18. Novel strategy for typing Mycoplasma pneumoniae isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry coupled with ClinProTools.

    PubMed

    Xiao, Di; Zhao, Fei; Zhang, Huifang; Meng, Fanliang; Zhang, Jianzhong

    2014-08-01

    The typing of Mycoplasma pneumoniae mainly relies on the detection of nucleic acid, which is limited by the use of a single gene target, complex operation procedures, and a lengthy assay time. Here, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) coupled to ClinProTools was used to discover MALDI-TOF MS biomarker peaks and to generate a classification model based on a genetic algorithm (GA) to differentiate between type 1 and type 2 M. pneumoniae isolates. Twenty-five M. pneumoniae strains were used to construct an analysis model, and 43 Mycoplasma strains were used for validation. For the GA typing model, the cross-validation values, which reflect the ability of the model to handle variability among the test spectra and the recognition capability value, which reflects the model's ability to correctly identify its component spectra, were all 100%. This model contained 7 biomarker peaks (m/z 3,318.8, 3,215.0, 5,091.8, 5,766.8, 6,337.1, 6,431.1, and 6,979.9) used to correctly identify 31 type 1 and 7 type 2 M. pneumoniae isolates from 43 Mycoplasma strains with a sensitivity and specificity of 100%. The strain distribution map and principle component analysis based on the GA classification model also clearly showed that the type 1 and type 2 M. pneumoniae isolates can be divided into two categories based on their peptide mass fingerprints. With the obvious advantages of being rapid, highly accurate, and highly sensitive and having a low cost and high throughput, MALDI-TOF MS ClinProTools is a powerful and reliable tool for M. pneumoniae typing. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Studying the highly bent spectra of FR II-type radio galaxies with the KDA EXT model

    NASA Astrophysics Data System (ADS)

    Kuligowska, Elżbieta

    2018-04-01

    Context. The Kaiser, Dennett-Thorpe & Alexander (KDA, 1997, MNRAS, 292, 723) EXT model, that is, the extension of the KDA model of Fanaroff & Riley (FR) II-type source evolution, is applied and confronted with the observational data for selected FR II-type radio sources with significantly aged radio spectra. Aim. A sample of FR II-type radio galaxies with radio spectra strongly bent at their highest frequencies is used for testing the usefulness of the KDA EXT model. Methods: The dynamical evolution of FR II-type sources predicted with the KDA EXT model is briefly presented and discussed. The results are then compared to the ones obtained with the classical KDA approach, assuming the source's continuous injection and self-similarity. Results: The results and corresponding diagrams obtained for the eight sample sources indicate that the KDA EXT model predicts the observed radio spectra significantly better than the best spectral fit provided by the original KDA model.

  20. Anisotropic Bianchi Type-I and Type-II Bulk Viscous String Cosmological Models Coupled with Zero Mass Scalar Field

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, R.; Sreenivas, K.

    2014-06-01

    The LRS Bianchi type-I and type-II string cosmological models are studied when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings together with zero-mass scalar field. We have obtained the solutions of the field equations assuming a functional relationship between metric coefficients when the metric is Bianchi type-I and constant deceleration parameter in case of Bianchi type-II metric. The physical and kinematical properties of the models are discussed in each case. The effects of Viscosity on the physical and kinematical properties are also studied.

  1. 76 FR 41432 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Model Galaxy, Gulfstream... Aerospace LP (Type Certificate previously held by Israel Aircraft Industries, Ltd.) Model Galaxy airplanes... Bulletin 150-27- 123, Revision 1, dated January 27, 2011. (2) For Model Galaxy and Gulfstream 200 airplanes...

  2. An Interval Type-2 Fuzzy Multiple Echelon Supply Chain Model

    NASA Astrophysics Data System (ADS)

    Miller, Simon; John, Robert

    Planning resources for a supply chain is a major factor determining its success or failure. In this paper we build on previous work introducing an Interval Type-2 Fuzzy Logic model of a multiple echelon supply chain. It is believed that the additional degree of uncertainty provided by Interval Type-2 Fuzzy Logic will allow for better representation of the uncertainty and vagueness present in resource planning models. First, the subject of Supply Chain Management is introduced, then some background is given on related work using Type-1 Fuzzy Logic. A description of the Interval Type-2 Fuzzy model is given, and a test scenario detailed. A Genetic Algorithm uses the model to search for a near-optimal plan for the scenario. A discussion of the results follows, along with conclusions and details of intended further work.

  3. A generalized predictive model for direct gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Givoni, B.

    In the correlational model for direct gain developed by the Los Alamos National Laboratory, a list of constants applicable to different types of buildings or passive solar systems was specified separately for each type. In its original form, the model was applicable only to buildings similar in their heat capacity, type of glazing, or night insulation to the types specified by the model. While maintaining the general form of the predictive equations, the new model, the predictive model for direct gain (PMDG), replaces the constants with functions dependent upon the thermal properties of the building, or the components of themore » solar system, or both. By this transformation, the LANL model for direct gain becomes a generalized one. The new model predicts the performance of buildings heated by direct gain with any heat capacity, glazing, and night insulation as functions of their thermophysical properties and climatic conditions.« less

  4. Comparison of CEAS and Williams-type models for spring wheat yields in North Dakota and Minnesota

    NASA Technical Reports Server (NTRS)

    Barnett, T. L. (Principal Investigator)

    1982-01-01

    The CEAS and Williams-type yield models are both based on multiple regression analysis of historical time series data at CRD level. The CEAS model develops a separate relation for each CRD; the Williams-type model pools CRD data to regional level (groups of similar CRDs). Basic variables considered in the analyses are USDA yield, monthly mean temperature, monthly precipitation, and variables derived from these. The Williams-type model also used soil texture and topographic information. Technological trend is represented in both by piecewise linear functions of year. Indicators of yield reliability obtained from a ten-year bootstrap test of each model (1970-1979) demonstrate that the models are very similar in performance in all respects. Both models are about equally objective, adequate, timely, simple, and inexpensive. Both consider scientific knowledge on a broad scale but not in detail. Neither provides a good current measure of modeled yield reliability. The CEAS model is considered very slightly preferable for AgRISTARS applications.

  5. Equivalent Dynamic Models.

    PubMed

    Molenaar, Peter C M

    2017-01-01

    Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.

  6. Adaptive transmission disequilibrium test for family trio design.

    PubMed

    Yuan, Min; Tian, Xin; Zheng, Gang; Yang, Yaning

    2009-01-01

    The transmission disequilibrium test (TDT) is a standard method to detect association using family trio design. It is optimal for an additive genetic model. Other TDT-type tests optimal for recessive and dominant models have also been developed. Association tests using family data, including the TDT-type statistics, have been unified to a class of more comprehensive and flexable family-based association tests (FBAT). TDT-type tests have high efficiency when the genetic model is known or correctly specified, but may lose power if the model is mis-specified. Hence tests that are robust to genetic model mis-specification yet efficient are preferred. Constrained likelihood ratio test (CLRT) and MAX-type test have been shown to be efficiency robust. In this paper we propose a new efficiency robust procedure, referred to as adaptive TDT (aTDT). It uses the Hardy-Weinberg disequilibrium coefficient to identify the potential genetic model underlying the data and then applies the TDT-type test (or FBAT for general applications) corresponding to the selected model. Simulation demonstrates that aTDT is efficiency robust to model mis-specifications and generally outperforms the MAX test and CLRT in terms of power. We also show that aTDT has power close to, but much more robust, than the optimal TDT-type test based on a single genetic model. Applications to real and simulated data from Genetic Analysis Workshop (GAW) illustrate the use of our adaptive TDT.

  7. Study of a Terrain-Based Motion Estimation Model to Predict the Position of a Moving Target to Enhance Weapon Probability of Kill

    DTIC Science & Technology

    2017-09-01

    target is modeled based on the kinematic constraints for the type of vehicle and the type of path on which it is traveling . The discrete- time position...is modeled based on the kinematic constraints for the type of vehicle and the type of path on which it is traveling . The discrete- time position...49 A. TRAVELING TIME COMPUTATION ............................................. 49 B. CONVERSION TO

  8. Desensitization and Modeling Treatments of Spider Fear Using Two Types of Scenes

    ERIC Educational Resources Information Center

    Denney, Douglas R.; Sullivan, Bernard J.

    1976-01-01

    Three types of therapy were combined with two types of scenes. Spider-phobic subjects were assigned to one of the six treatment conditions or to an untreated control group. In general, (a) Desensitization and modeling therapies were equally effective; (b) modeling alone was more effective than mere exposure to the phobic object. (Author)

  9. Comparison of human gastrocnemius forces predicted by Hill-type muscle models and estimated from ultrasound images

    PubMed Central

    Biewener, Andrew A.; Wakeling, James M.

    2017-01-01

    ABSTRACT Hill-type models are ubiquitous in the field of biomechanics, providing estimates of a muscle's force as a function of its activation state and its assumed force–length and force–velocity properties. However, despite their routine use, the accuracy with which Hill-type models predict the forces generated by muscles during submaximal, dynamic tasks remains largely unknown. This study compared human gastrocnemius forces predicted by Hill-type models with the forces estimated from ultrasound-based measures of tendon length changes and stiffness during cycling, over a range of loads and cadences. We tested both a traditional model, with one contractile element, and a differential model, with two contractile elements that accounted for independent contributions of slow and fast muscle fibres. Both models were driven by subject-specific, ultrasound-based measures of fascicle lengths, velocities and pennation angles and by activation patterns of slow and fast muscle fibres derived from surface electromyographic recordings. The models predicted, on average, 54% of the time-varying gastrocnemius forces estimated from the ultrasound-based methods. However, differences between predicted and estimated forces were smaller under low speed–high activation conditions, with models able to predict nearly 80% of the gastrocnemius force over a complete pedal cycle. Additionally, the predictions from the Hill-type muscle models tested here showed that a similar pattern of force production could be achieved for most conditions with and without accounting for the independent contributions of different muscle fibre types. PMID:28202584

  10. SimCheck: An Expressive Type System for Simulink

    NASA Technical Reports Server (NTRS)

    Roy, Pritam; Shankar, Natarajan

    2010-01-01

    MATLAB Simulink is a member of a class of visual languages that are used for modeling and simulating physical and cyber-physical systems. A Simulink model consists of blocks with input and output ports connected using links that carry signals. We extend the type system of Simulink with annotations and dimensions/units associated with ports and links. These types can capture invariants on signals as well as relations between signals. We define a type-checker that checks the wellformedness of Simulink blocks with respect to these type annotations. The type checker generates proof obligations that are solved by SRI's Yices solver for satisfiability modulo theories (SMT). This translation can be used to detect type errors, demonstrate counterexamples, generate test cases, or prove the absence of type errors. Our work is an initial step toward the symbolic analysis of MATLAB Simulink models.

  11. Reduced epidermal thickness, nerve degeneration and increased pain-related behavior in rats with diabetes type 1 and 2.

    PubMed

    Boric, Matija; Skopljanac, Ivan; Ferhatovic, Lejla; Jelicic Kadic, Antonia; Banozic, Adriana; Puljak, Livia

    2013-11-01

    To examine the mechanisms contributing to pain genesis in diabetic neuropathy, we investigated epidermal thickness and number of intraepidermal nerve fibers in rat foot pad of the animal model of diabetes type 1 and type 2 in relation to pain-related behavior. Male Sprague-Dawley rats were used. Diabetes type 1 was induced with intraperitoneal injection of streptozotocin (STZ) and diabetes type 2 was induced with a combination of STZ and high-fat diet. Control group for diabetes type 1 was fed with regular laboratory chow, while control group for diabetes type 2 received high-fat diet. Body weights and blood glucose levels were monitored to confirm induction of diabetes. Pain-related behavior was analyzed using thermal (hot, cold) and mechanical stimuli (von Frey fibers, number of hyperalgesic responses). Two months after induction of diabetes, glabrous skin samples from plantar surface of the both hind paws were collected. Epidermal thickness was evaluated with hematoxylin and eosin staining. Intraepidermal nerve fibers quantification was performed after staining skin with polyclonal antiserum against protein gene product 9.5. We found that induction of diabetes type 1 and type 2 causes significant epidermal thinning and loss of intraepidermal nerve fibers in a rat model, and both changes were more pronounced in diabetes type 1 model. Significant increase of pain-related behavior two months after induction of diabetes was observed only in a model of diabetes type 1. In conclusion, animal models of diabetes type 1 and diabetes type 2 could be used in pharmacological studies, where cutaneous changes could be used as outcome measures for predegenerative markers of neuropathies. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Characterization and modelling of the boron-oxygen defect activation in compensated n-type silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schön, J.; Niewelt, T.; Broisch, J.

    2015-12-28

    A study of the activation of the light-induced degradation in compensated n-type Czochralski grown silicon is presented. A kinetic model is established that verifies the existence of both the fast and the slow components known from p-type and proves the quadratic dependence of the defect generation rates of both defects on the hole concentration. The model allows for the description of lifetime degradation kinetics in compensated n-type silicon under various intensities and is in accordance with the findings for p-type silicon. We found that the final concentrations of the slow defect component in compensated n-type silicon only depend on themore » interstitial oxygen concentration and on neither the boron concentration nor the equilibrium electron concentration n{sub 0}. The final concentrations of the fast defect component slightly increase with increasing boron concentration. The results on n-type silicon give new insight to the origin of the BO defect and question the existing models for the defect composition.« less

  13. The development and evaluation of accident predictive models

    NASA Astrophysics Data System (ADS)

    Maleck, T. L.

    1980-12-01

    A mathematical model that will predict the incremental change in the dependent variables (accident types) resulting from changes in the independent variables is developed. The end product is a tool for estimating the expected number and type of accidents for a given highway segment. The data segments (accidents) are separated in exclusive groups via a branching process and variance is further reduced using stepwise multiple regression. The standard error of the estimate is calculated for each model. The dependent variables are the frequency, density, and rate of 18 types of accidents among the independent variables are: district, county, highway geometry, land use, type of zone, speed limit, signal code, type of intersection, number of intersection legs, number of turn lanes, left-turn control, all-red interval, average daily traffic, and outlier code. Models for nonintersectional accidents did not fit nor validate as well as models for intersectional accidents.

  14. Performance modeling for large database systems

    NASA Astrophysics Data System (ADS)

    Schaar, Stephen; Hum, Frank; Romano, Joe

    1997-02-01

    One of the unique approaches Science Applications International Corporation took to meet performance requirements was to start the modeling effort during the proposal phase of the Interstate Identification Index/Federal Bureau of Investigations (III/FBI) project. The III/FBI Performance Model uses analytical modeling techniques to represent the III/FBI system. Inputs to the model include workloads for each transaction type, record size for each record type, number of records for each file, hardware envelope characteristics, engineering margins and estimates for software instructions, memory, and I/O for each transaction type. The model uses queuing theory to calculate the average transaction queue length. The model calculates a response time and the resources needed for each transaction type. Outputs of the model include the total resources needed for the system, a hardware configuration, and projected inherent and operational availability. The III/FBI Performance Model is used to evaluate what-if scenarios and allows a rapid response to engineering change proposals and technical enhancements.

  15. Ontology for Life-Cycle Modeling of Heating, Ventilating, and Air Conditioning (HVAC) Systems: Experimental Applications Using Revit

    DTIC Science & Technology

    2012-03-01

    Revit object IFCExportType IFCExportAs Radiator Radiator IfcSpaceHeaterType Pump Circulator IfcPumpType Boiler Water IfcBoilerType Fan VaneAxial...modeling is assumed to be a traditional water-based system comprised of boilers and fan coil units (heating) and chillers and air handling units...the properties that a particular engineer would want to specify as part of the BIM model. For instance, the default pump families in Revit do not

  16. Application of the CERES Flux-by-Cloud Type Simulator to GCM Output

    NASA Technical Reports Server (NTRS)

    Eitzen, Zachary; Su, Wenying; Xu, Kuan-Man; Loeb, Norman G.; Sun, Moguo; Doelling, David R.; Bodas-Salcedo, Alejandro

    2016-01-01

    The CERES Flux By CloudType data product produces CERES top-of-atmosphere (TOA) fluxes by region and cloud type. Here, the cloud types are defined by cloud optical depth (t) and cloud top pressure (pc), with bins similar to those used by ISCCP (International Satellite Cloud Climatology Project). This data product has the potential to be a powerful tool for the evaluation of the clouds produced by climate models by helping to identify which physical parameterizations have problems (e.g., boundary-layer parameterizations, convective clouds, processes that affect surface albedo). Also, when the flux-by-cloud type and frequency of cloud types are simultaneously used to evaluate a model, the results can determine whether an unrealistically large or small occurrence of a given cloud type has an important radiative impact for a given region. A simulator of the flux-by-cloud type product has been applied to three-hourly data from the year 2008 from the UK Met Office HadGEM2-A model using the Langley Fu-Lour radiative transfer model to obtain TOA SW and LW fluxes.

  17. Stochastic analysis of a pulse-type prey-predator model

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zhu, W. Q.

    2008-04-01

    A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.

  18. Stochastic analysis of a pulse-type prey-predator model.

    PubMed

    Wu, Y; Zhu, W Q

    2008-04-01

    A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.

  19. An investigation of CMIP5 model biases in simulating the impacts of central Pacific El Niño on the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Chen, Wen; Gong, Hainan; Ying, Jun; Jiang, Wenping

    2018-06-01

    The delayed impacts of the central Pacific (CP) El Niño on the East Asian summer monsoon (EASM) are evaluated by comparing historical runs from Coupled Model Intercomparison Project Phase 5 models against reanalysis data. In observations, an anomalous western North Pacific anticyclone (WNPAC), linking CP El Niño to the EASM, forms due to the transition of sea surface temperature (SST) warming into SST cooling over the CP, which generates a WNPAC through a Gill-Matsuno response. In comparison with the observational result, only one-third of the models (i.e., the type-I models) capture a weaker and smaller WNPAC, whereas the other two-thirds (i.e., the type-II models) fail to reproduce a WNPAC. The simulation biases in both of type-I models and type-II models mainly arise from an unrealistic, long-lasting CP El Niño warming, which causes a north Indian Ocean SST warming bias in models through air-sea interaction process. This north Indian Ocean SST warming generates the WNPAC through capacitor effects, which is different from the WNPAC formation mechanism in observations. This discrepancy leads to simulation biases in type-I models. In type-II models, the unrealistic CP El Niño warming persists into summer, which produces an anomalous cyclone over the central-western Pacific. The opposite effect of the CP and north Indian Ocean SST warming on the WNP atmospheric circulation leads to disappearance of the WNPAC. Hence, large simulation biases are produced in type-II models. Further analysis demonstrates the slow decay of CP El Niño is caused by the unrealistically simulated climatological SST, which creates strong warm meridional oceanic advection and results in a sustained CP El Niño warming.

  20. Refinement of the magnetic composite model of type 304 stainless steel by considering misoriented ferromagnetic martensite particles

    NASA Astrophysics Data System (ADS)

    Kinoshita, Katsuyuki

    2017-05-01

    We improved a magnetic composite model that combines the Jiles-Atherton model and Eshelby's equivalent inclusion method to consider misoriented martensite particles. The magnetic permeability of type 304 stainless steel were analyzed by using both experimental data on the orientation distribution of type 304 stainless steel specimens and the improved model. We found that the model is able to qualitatively explain the variation of permeability with the orientation angle and orientation distribution, an effect that depends on the direction of the excitation magnetic field.

  1. Moving beyond Type I and Type II neuron types.

    PubMed

    Skinner, Frances K

    2013-01-01

    In 1948, Hodgkin delineated different classes of axonal firing.  This has been mathematically translated allowing insight and understanding to emerge.  As such, the terminology of 'Type I' and 'Type II' neurons is commonplace in the Neuroscience literature today.  Theoretical insights have helped us realize that, for example, network synchronization depends on whether neurons are Type I or Type II.  Mathematical models are precise with analyses (considering Type I/II aspects), but experimentally, the distinction can be less clear.  On the other hand, experiments are becoming more sophisticated in terms of distinguishing and manipulating particular cell types but are limited in terms of being able to consider network aspects simultaneously.   Although there is much work going on mathematically and experimentally, in my opinion it is becoming common that models are either superficially linked with experiment or not described in enough detail to appreciate the biological context.  Overall, we all suffer in terms of impeding our understanding of brain networks and applying our understanding to neurological disease.  I suggest that more modelers become familiar with experimental details and that more experimentalists appreciate modeling assumptions. In other words, we need to move beyond our comfort zones.

  2. An Arrhenius-type viscosity function to model sintering using the Skorohod Olevsky viscous sintering model within a finite element code.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewsuk, Kevin Gregory; Arguello, Jose Guadalupe, Jr.; Reiterer, Markus W.

    2006-02-01

    The ease and ability to predict sintering shrinkage and densification with the Skorohod-Olevsky viscous sintering (SOVS) model within a finite-element (FE) code have been improved with the use of an Arrhenius-type viscosity function. The need for a better viscosity function was identified by evaluating SOVS model predictions made using a previously published polynomial viscosity function. Predictions made using the original, polynomial viscosity function do not accurately reflect experimentally observed sintering behavior. To more easily and better predict sintering behavior using FE simulations, a thermally activated viscosity function based on creep theory was used with the SOVS model. In comparison withmore » the polynomial viscosity function, SOVS model predictions made using the Arrhenius-type viscosity function are more representative of experimentally observed viscosity and sintering behavior. Additionally, the effects of changes in heating rate on densification can easily be predicted with the Arrhenius-type viscosity function. Another attribute of the Arrhenius-type viscosity function is that it provides the potential to link different sintering models. For example, the apparent activation energy, Q, for densification used in the construction of the master sintering curve for a low-temperature cofire ceramic dielectric has been used as the apparent activation energy for material flow in the Arrhenius-type viscosity function to predict heating rate-dependent sintering behavior using the SOVS model.« less

  3. The epistemic and aleatory uncertainties of the ETAS-type models: an application to the Central Italy seismicity.

    PubMed

    Lombardi, A M

    2017-09-18

    Stochastic models provide quantitative evaluations about the occurrence of earthquakes. A basic component of this type of models are the uncertainties in defining main features of an intrinsically random process. Even if, at a very basic level, any attempting to distinguish between types of uncertainty is questionable, an usual way to deal with this topic is to separate epistemic uncertainty, due to lack of knowledge, from aleatory variability, due to randomness. In the present study this problem is addressed in the narrow context of short-term modeling of earthquakes and, specifically, of ETAS modeling. By mean of an application of a specific version of the ETAS model to seismicity of Central Italy, recently struck by a sequence with a main event of Mw6.5, the aleatory and epistemic (parametric) uncertainty are separated and quantified. The main result of the paper is that the parametric uncertainty of the ETAS-type model, adopted here, is much lower than the aleatory variability in the process. This result points out two main aspects: an analyst has good chances to set the ETAS-type models, but he may retrospectively describe and forecast the earthquake occurrences with still limited precision and accuracy.

  4. Waldmeier's Rules in the Solar and Stellar Dynamos

    NASA Astrophysics Data System (ADS)

    Pipin, Valery; Kosovichev, Alexander

    2015-08-01

    The Waldmeier's rules [1] establish important empirical relations between the general parameters of magnetic cycles (such as the amplitude, period, growth rate and time profile) on the Sun and solar-type stars [2]. Variations of the magnetic cycle parameters depend on properties of the global dynamo processes operating in the stellar convection zones. We employ nonlinear mean-field axisymmetric dynamo models [3] and calculate of the magnetic cycle parameters, such as the dynamo cycle period, total magnetic and Poynting fluxes for the Sun and solar-type stars with rotational periods from 15 to 30 days. We consider two types of the dynamo models: 1) distributed (D-type) models employing the standard α - effect distributed in the whole convection zone, and 2) Babcock-Leighton (BL-type) models with a non-local α - effect. The dynamo models take into account the principal mechanisms of the nonlinear dynamo generation and saturation, including the magnetic helicity conservation, magnetic buoyancy effects, and the feedback on the angular momentum balance inside the convection zones. Both types of models show that the dynamo generated magnetic flux increases with the increase of the rotation rate. This corresponds to stronger brightness variations. The distributed dynamo model reproduces the observed dependence of the cycle period on the rotation rate for the Sun analogs better than the BL-type model. For the solar-type stars rotating more rapidly than the Sun we find dynamo regimes with multiple periods. Such stars with multiple cycles form a separate branch in the variability-rotation diagram.1. Waldmeier, M., Prognose für das nächste Sonnenfleckenmaximum, 1936, Astron. Nachrichten, 259,262. Soon,W.H., Baliunas,S.L., Zhang,Q.,An interpretation of cycle periods of stellar chromospheric activity, 1993, ApJ, 414,333. Pipin,V.V., Dependence of magnetic cycle parameters on period of rotation in nonlinear solar-type dynamos, 2015, astro-ph: 14125284

  5. Disseminated flake graphite and amorphous graphite deposit types. An analysis using grade and tonnage models

    USGS Publications Warehouse

    Sutphin, David M.; Bliss, James D.

    1990-01-01

    On the basis of differences derived from genetic, descriptive, and grade-tonnage data, graphite deposits are classified here into three deposit types: disseminated flake, amorphous (microcrystalline), or graphite veins. Descriptive models have been constructed for each of these deposit types, and grade-tonnage models are constructed for disseminated flake and amorphous deposit types. Grade and tonnage data are used also to construct grade-tonnage models that assist in predicting the size and grade of undiscovered graphite deposits. The median tonnage and carbon grade of disseminated flake deposits are 240 000 tonnes and 9% carbon and for amorphous deposits, 130 000 tonnes and 40% carbon. The differences in grade between disseminated flake and amorphous deposit types are statistically significant, whereas the differences in amount of contained carbon are not.

  6. 76 FR 27239 - Airworthiness Directives; Cessna Aircraft Company (Cessna) Model 172 Airplanes Modified by...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... Airworthiness Directives; Cessna Aircraft Company (Cessna) Model 172 Airplanes Modified by Supplemental Type... months for Cessna Aircraft Company (Cessna) Model 172 Airplanes modified by Supplemental Type Certificate...

  7. Modeling Hurricane Katrina's merchantable timber and wood damage in south Mississippi using remotely sensed and field-measured data

    NASA Astrophysics Data System (ADS)

    Collins, Curtis Andrew

    Ordinary and weighted least squares multiple linear regression techniques were used to derive 720 models predicting Katrina-induced storm damage in cubic foot volume (outside bark) and green weight tons (outside bark). The large number of models was dictated by the use of three damage classes, three product types, and four forest type model strata. These 36 models were then fit and reported across 10 variable sets and variable set combinations for volume and ton units. Along with large model counts, potential independent variables were created using power transforms and interactions. The basis of these variables was field measured plot data, satellite (Landsat TM and ETM+) imagery, and NOAA HWIND wind data variable types. As part of the modeling process, lone variable types as well as two-type and three-type combinations were examined. By deriving models with these varying inputs, model utility is flexible as all independent variable data are not needed in future applications. The large number of potential variables led to the use of forward, sequential, and exhaustive independent variable selection techniques. After variable selection, weighted least squares techniques were often employed using weights of one over the square root of the pre-storm volume or weight of interest. This was generally successful in improving residual variance homogeneity. Finished model fits, as represented by coefficient of determination (R2), surpassed 0.5 in numerous models with values over 0.6 noted in a few cases. Given these models, an analyst is provided with a toolset to aid in risk assessment and disaster recovery should Katrina-like weather events reoccur.

  8. A new social-family model for eating disorders: A European multicentre project using a case-control design.

    PubMed

    Krug, Isabel; Fuller-Tyszkiewicz, Matthew; Anderluh, Marija; Bellodi, Laura; Bagnoli, Silvia; Collier, David; Fernandez-Aranda, Fernando; Karwautz, Andreas; Mitchell, Sarah; Nacmias, Benedetta; Ricca, Valdo; Sorbi, Sandro; Tchanuria, Kate; Wagner, Gudrun; Treasure, Janet; Micali, Nadia

    2015-12-01

    To examine a new socio-family risk model of Eating Disorders (EDs) using path-analyses. The sample comprised 1264 (ED patients = 653; Healthy Controls = 611) participants, recruited into a multicentre European project. Socio-family factors assessed included: perceived maternal and parental parenting styles, family, peer and media influences, and body dissatisfaction. Two types of path-analyses were run to assess the socio-family model: 1.) a multinomial logistic path-model including ED sub-types [Anorexia Nervosa-Restrictive (AN-R), AN-Binge-Purging (AN-BP), Bulimia Nervosa (BN) and EDNOS)] as the key polychotomous categorical outcome and 2.) a path-model assessing whether the socio-family model differed across ED sub-types and healthy controls using body dissatisfaction as the outcome variable. The first path-analyses suggested that family and media (but not peers) were directly and indirectly associated (through body dissatisfaction) with all ED sub-types. There was a weak effect of perceived parenting directly on ED sub-types and indirectly through family influences and body dissatisfaction. For the second path-analyses, the socio-family model varied substantially across ED sub-types. Family and media influences were related to body dissatisfaction in the EDNOS and control sample, whereas perceived abusive parenting was related to AN-BP and BN. This is the first study providing support for this new socio-family model, which differed across ED sub-types. This suggests that prevention and early intervention might need to be tailored to diagnosis-specific ED profiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effects of stimulus order on discrimination processes in comparative and equality judgements: data and models.

    PubMed

    Dyjas, Oliver; Ulrich, Rolf

    2014-01-01

    In typical discrimination experiments, participants are presented with a constant standard and a variable comparison stimulus and their task is to judge which of these two stimuli is larger (comparative judgement). In these experiments, discrimination sensitivity depends on the temporal order of these stimuli (Type B effect) and is usually higher when the standard precedes rather than follows the comparison. Here, we outline how two models of stimulus discrimination can account for the Type B effect, namely the weighted difference model (or basic Sensation Weighting model) and the Internal Reference Model. For both models, the predicted psychometric functions for comparative judgements as well as for equality judgements, in which participants indicate whether they perceived the two stimuli to be equal or not equal, are derived and it is shown that the models also predict a Type B effect for equality judgements. In the empirical part, the models' predictions are evaluated. To this end, participants performed a duration discrimination task with comparative judgements and with equality judgements. In line with the models' predictions, a Type B effect was observed for both judgement types. In addition, a time-order error, as indicated by shifts of the psychometric functions, and differences in response times were observed only for the equality judgement. Since both models entail distinct additional predictions, it seems worthwhile for future research to unite the two models into one conceptual framework.

  10. Comparing Two Types of Model Progression in an Inquiry Learning Environment with Modelling Facilities

    ERIC Educational Resources Information Center

    Mulder, Yvonne G.; Lazonder, Ard W.; de Jong, Ton

    2011-01-01

    The educational advantages of inquiry learning environments that incorporate modelling facilities are often challenged by students' poor inquiry skills. This study examined two types of model progression as means to compensate for these skill deficiencies. Model order progression (MOP), the predicted optimal variant, gradually increases the…

  11. 26 CFR 48.4064-1 - Gas guzzler tax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to model types of 1980 and later model year automobiles that have a fuel economy level below the..., manufacturer, automobile, model year, model type, fuel economy, and fuel. Paragraph (c) of this section... tax-free sales of emergency vehicles. (2) Tables. (i) In the case of a 1980 model year automobile: If...

  12. Existence, uniqueness and positivity of solutions for BGK models for mixtures

    NASA Astrophysics Data System (ADS)

    Klingenberg, C.; Pirner, M.

    2018-01-01

    We consider kinetic models for a multi component gas mixture without chemical reactions. In the literature, one can find two types of BGK models in order to describe gas mixtures. One type has a sum of BGK type interaction terms in the relaxation operator, for example the model described by Klingenberg, Pirner and Puppo [20] which contains well-known models of physicists and engineers for example Hamel [16] and Gross and Krook [15] as special cases. The other type contains only one collision term on the right-hand side, for example the well-known model of Andries, Aoki and Perthame [1]. For each of these two models [20] and [1], we prove existence, uniqueness and positivity of solutions in the first part of the paper. In the second part, we use the first model [20] in order to determine an unknown function in the energy exchange of the macroscopic equations for gas mixtures described by Dellacherie [11].

  13. Comparison of human gastrocnemius forces predicted by Hill-type muscle models and estimated from ultrasound images.

    PubMed

    Dick, Taylor J M; Biewener, Andrew A; Wakeling, James M

    2017-05-01

    Hill-type models are ubiquitous in the field of biomechanics, providing estimates of a muscle's force as a function of its activation state and its assumed force-length and force-velocity properties. However, despite their routine use, the accuracy with which Hill-type models predict the forces generated by muscles during submaximal, dynamic tasks remains largely unknown. This study compared human gastrocnemius forces predicted by Hill-type models with the forces estimated from ultrasound-based measures of tendon length changes and stiffness during cycling, over a range of loads and cadences. We tested both a traditional model, with one contractile element, and a differential model, with two contractile elements that accounted for independent contributions of slow and fast muscle fibres. Both models were driven by subject-specific, ultrasound-based measures of fascicle lengths, velocities and pennation angles and by activation patterns of slow and fast muscle fibres derived from surface electromyographic recordings. The models predicted, on average, 54% of the time-varying gastrocnemius forces estimated from the ultrasound-based methods. However, differences between predicted and estimated forces were smaller under low speed-high activation conditions, with models able to predict nearly 80% of the gastrocnemius force over a complete pedal cycle. Additionally, the predictions from the Hill-type muscle models tested here showed that a similar pattern of force production could be achieved for most conditions with and without accounting for the independent contributions of different muscle fibre types. © 2017. Published by The Company of Biologists Ltd.

  14. Optical telescope refocussing mechanism concept design on remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Kuo, Jen-Chueh; Ling, Jer

    2017-09-01

    The optical telescope system in remote sensing satellite must be precisely aligned to obtain high quality images during its mission life. In practical, because the telescope mirrors could be misaligned due to launch loads, thermal distortion on supporting structures or hygroscopic distortion effect in some composite materials, the optical telescope system is often equipped with refocussing mechanism to re-align the optical elements while optical element positions are out of range during image acquisition. This paper is to introduce satellite Refocussing mechanism function model design development process and the engineering models. The design concept of the refocussing mechanism can be applied on either cassegrain type telescope or korsch type telescope, and the refocussing mechanism is located at the rear of the secondary mirror in this paper. The purpose to put the refocussing mechanism on the secondary mirror is due to its higher sensitivity on MTF degradation than other optical elements. There are two types of refocussing mechanism model to be introduced: linear type model and rotation type model. For the linear refocussing mechanism function model, the model is composed of ceramic piezoelectric linear step motor, optical rule as well as controller. The secondary mirror is designed to be precisely moved in telescope despace direction through refocussing mechanism. For the rotation refocussing mechanism function model, the model is assembled with two ceramic piezoelectric rotational motors around two orthogonal directions in order to adjust the secondary mirror attitude in tilt angle and yaw angle. From the validation test results, the linear type refocussing mechanism function model can be operated to adjust the secondary mirror position with minimum 500 nm resolution with close loop control. For the rotation type model, the attitude angle of the secondary mirror can be adjusted with the minimum 6 sec of arc resolution and 5°/sec of angle velocity.

  15. Efficient Non-Hydrostatic Modeling of Rotational, Turbulent, Dispersive, and Variable-Density Flows in the Vicinity of River Mouths and Inlets: Development and Field Support

    DTIC Science & Technology

    2013-09-30

    numerical efforts undertaken here implement established aspects of Boussinesq -type modeling, developed by the PI and other researchers. These aspects...the Boussinesq -type framework, and then implement in a numerical model. Once this comprehensive model is developed and tested against established...phenomena that might be observed at New River. WORK COMPLETED In FY13 we have continued the development of a Boussinesq -type formulation that

  16. Simulating a Skilled Typist: A Study of Skilled Cognitive-Motor Performance.

    DTIC Science & Technology

    1981-05-01

    points out, such behavior is to be expected from a metronome model of typing in which the typist ini- tiates a stroke regularly to some sort of...long. As we show, this behavior is also to be expected from models not involving such an internal clock. All other things being equal, the model... behavior actually engaged in by expert typ- ists. The Units of Typing Seem to Be Largely at the Word Level or Smaller The units of typing in our model are

  17. On aggregation in CA models in biology

    NASA Astrophysics Data System (ADS)

    Alber, Mark S.; Kiskowski, Audi

    2001-12-01

    Aggregation of randomly distributed particles into clusters of aligned particles is modeled using a cellular automata (CA) approach. The CA model accounts for interactions between more than one type of particle, in which pressures for angular alignment with neighbors compete with pressures for grouping by cell type. In the case of only one particle type clusters tend to unite into one big cluster. In the case of several types of particles the dynamics of clusters is more complicated and for specific choices of parameters particle sorting occurs simultaneously with the formation of clusters of aligned particles.

  18. Development of the diabetes typology model for discerning Type 2 diabetes mellitus with national survey data.

    PubMed

    Bellatorre, Anna; Jackson, Sharon H; Choi, Kelvin

    2017-01-01

    To classify individuals with diabetes mellitus (DM) into DM subtypes using population-based studies. Population-based survey. Individuals participated in 2003-2004, 2005-2006, or 2009-2010 the National Health and Nutrition Examination Survey (NHANES), and 2010 Coronary Artery Risk Development in Young Adults (CARDIA) survey (research materials obtained from the National Heart, Lung, and Blood Institute Biologic Specimen and Data Repository Information Coordinating Center). 3084, 3040 and 3318 US adults from the 2003-2004, 2005-2006 and 2009-2010 NHANES samples respectively, and 5,115 US adults in the CARDIA cohort. We proposed the Diabetes Typology Model (DTM) through the use of six composite measures based on the Homeostatic Model Assessment (HOMA-IR, HOMA-%β, high HOMA-%S), insulin and glucose levels, and body mass index and conducted latent class analyses to empirically classify individuals into different classes. Three empirical latent classes consistently emerged across studies (entropy = 0.81-0.998). These three classes were likely Type 1 DM, likely Type 2 DM, and atypical DM. The classification has high sensitivity (75.5%), specificity (83.3%), and positive predictive value (97.4%) when validated against C-peptide level. Correlates of Type 2 DM were significantly associated with model-identified Type 2 DM. Compared to regression analysis on known correlates of Type 2 DM using all diabetes cases as outcomes, using DTM to remove likely Type 1 DM and atypical DM cases results in a 2.5-5.3% r-square improvement in the regression analysis, as well as model fits as indicated by significant improvement in -2 log likelihood (p<0.01). Lastly, model-defined likely Type 2 DM was significantly associated with known correlates of Type 2 DM (e.g., age, waist circumference), which provide additional validation of the DTM-defined classes. Our Diabetes Typology Model reflects a promising first step toward discerning likely DM types from population-based data. This novel tool will improve how large population-based studies can be used to examine behavioral and environmental factors associated with different types of DM.

  19. Nucleosynthesis of Iron-Peak Elements in Type-Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Leung, Shing-Chi; Nomoto, Ken'ichi

    The observed features of typical Type Ia supernovae are well-modeled as the explosions of carbon-oxygen white dwarfs both near Chandrasekhar mass and sub-Chandrasekhar mass. However, observations in the last decade have shown that Type Ia supernovae exhibit a wide diversity, which implies models for wider range of parameters are necessary. Based on the hydrodynamics code we developed, we carry out a parameter study of Chandrasekhar mass models for Type Ia supernovae. We conduct a series of two-dimensional hydrodynamics simulations of the explosion phase using the turbulent flame model with the deflagration-detonation-transition (DDT). To reconstruct the nucleosynthesis history, we use the particle tracer scheme. We examine the role of model parameters by examining their influences on the final product of nucleosynthesis. The parameters include the initial density, metallicity, initial flame structure, detonation criteria and so on. We show that the observed chemical evolution of galaxies can help constrain these model parameters.

  20. Interplanetary density models as inferred from solar Type III bursts

    NASA Astrophysics Data System (ADS)

    Oppeneiger, Lucas; Boudjada, Mohammed Y.; Lammer, Helmut; Lichtenegger, Herbert

    2016-04-01

    We report on the density models derived from spectral features of solar Type III bursts. They are generated by beams of electrons travelling outward from the Sun along open magnetic field lines. Electrons generate Langmuir waves at the plasma frequency along their ray paths through the corona and the interplanetary medium. A large frequency band is covered by the Type III bursts from several MHz down to few kHz. In this analysis, we consider the previous empirical density models proposed to describe the electron density in the interplanetary medium. We show that those models are mainly based on the analysis of Type III bursts generated in the interplanetary medium and observed by satellites (e.g. RAE, HELIOS, VOYAGER, ULYSSES,WIND). Those models are confronted to stereoscopic observations of Type III bursts recorded by WIND, ULYSSES and CASSINI spacecraft. We discuss the spatial evolution of the electron beam along the interplanetary medium where the trajectory is an Archimedean spiral. We show that the electron beams and the source locations are depending on the choose of the empirical density models.

  1. A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers.

    PubMed

    Jiang, Xiaoyan; Lu, Qiang; Hu, Bin; Liu, Ji; Dong, Changqing; Yang, Yongping

    2017-11-09

    In order to understand the pyrolysis mechanism of β- O -4 type lignin dimers, a pyrolysis model is proposed which considers the effects of functional groups (hydroxyl, hydroxymethyl and methoxyl) on the alkyl side chain and aromatic ring. Furthermore, five specific β- O -4 type lignin dimer model compounds are selected to investigate their integrated pyrolysis mechanism by density functional theory (DFT) methods, to further understand and verify the proposed pyrolysis model. The results indicate that a total of 11 pyrolysis mechanisms, including both concerted mechanisms and homolytic mechanisms, might occur for the initial pyrolysis of the β- O -4 type lignin dimers. Concerted mechanisms are predominant as compared with homolytic mechanisms throughout unimolecular decomposition pathways. The competitiveness of the eleven pyrolysis mechanisms are revealed via different model compounds, and the proposed pyrolysis model is ranked in full consideration of functional groups effects. The proposed pyrolysis model can provide a theoretical basis to predict the reaction pathways and products during the pyrolysis process of β- O -4 type lignin dimers.

  2. A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers

    PubMed Central

    Jiang, Xiaoyan; Lu, Qiang; Hu, Bin; Liu, Ji; Dong, Changqing; Yang, Yongping

    2017-01-01

    In order to understand the pyrolysis mechanism of β-O-4 type lignin dimers, a pyrolysis model is proposed which considers the effects of functional groups (hydroxyl, hydroxymethyl and methoxyl) on the alkyl side chain and aromatic ring. Furthermore, five specific β-O-4 type lignin dimer model compounds are selected to investigate their integrated pyrolysis mechanism by density functional theory (DFT) methods, to further understand and verify the proposed pyrolysis model. The results indicate that a total of 11 pyrolysis mechanisms, including both concerted mechanisms and homolytic mechanisms, might occur for the initial pyrolysis of the β-O-4 type lignin dimers. Concerted mechanisms are predominant as compared with homolytic mechanisms throughout unimolecular decomposition pathways. The competitiveness of the eleven pyrolysis mechanisms are revealed via different model compounds, and the proposed pyrolysis model is ranked in full consideration of functional groups effects. The proposed pyrolysis model can provide a theoretical basis to predict the reaction pathways and products during the pyrolysis process of β-O-4 type lignin dimers. PMID:29120350

  3. Mobile phone types and SAR characteristics of the human brain.

    PubMed

    Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth

    2017-04-07

    Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.

  4. Mobile phone types and SAR characteristics of the human brain

    NASA Astrophysics Data System (ADS)

    Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth

    2017-04-01

    Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.

  5. A Model Independent S/W Framework for Search-Based Software Testing

    PubMed Central

    Baik, Jongmoon

    2014-01-01

    In Model-Based Testing (MBT) area, Search-Based Software Testing (SBST) has been employed to generate test cases from the model of a system under test. However, many types of models have been used in MBT. If the type of a model has changed from one to another, all functions of a search technique must be reimplemented because the types of models are different even if the same search technique has been applied. It requires too much time and effort to implement the same algorithm over and over again. We propose a model-independent software framework for SBST, which can reduce redundant works. The framework provides a reusable common software platform to reduce time and effort. The software framework not only presents design patterns to find test cases for a target model but also reduces development time by using common functions provided in the framework. We show the effectiveness and efficiency of the proposed framework with two case studies. The framework improves the productivity by about 50% when changing the type of a model. PMID:25302314

  6. Neutrinoless double beta decay in type I+II seesaw models

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Dasgupta, Arnab

    2015-11-01

    We study neutrinoless double beta decay in left-right symmetric extension of the standard model with type I and type II seesaw origin of neutrino masses. Due to the enhanced gauge symmetry as well as extended scalar sector, there are several new physics sources of neutrinoless double beta decay in this model. Ignoring the left-right gauge boson mixing and heavy-light neutrino mixing, we first compute the contributions to neutrinoless double beta decay for type I and type II dominant seesaw separately and compare with the standard light neutrino contributions. We then repeat the exercise by considering the presence of both type I and type II seesaw, having non-negligible contributions to light neutrino masses and show the difference in results from individual seesaw cases. Assuming the new gauge bosons and scalars to be around a TeV, we constrain different parameters of the model including both heavy and light neutrino masses from the requirement of keeping the new physics contribution to neutrinoless double beta decay amplitude below the upper limit set by the GERDA experiment and also satisfying bounds from lepton flavor violation, cosmology and colliders.

  7. AC loss modelling and experiment of two types of low-inductance solenoidal coils

    NASA Astrophysics Data System (ADS)

    Liang, Fei; Yuan, Weijia; Zhang, Min; Zhang, Zhenyu; Li, Jianwei; Venuturumilli, Sriharsha; Patel, Jay

    2016-11-01

    Low-inductance solenoidal coils, which usually refer to the nonintersecting type and the braid type, have already been employed to build superconducting fault current limiters because of their fast recovery and low inductance characteristics. However, despite their usage there is still no systematical simulation work concerning the AC loss characteristics of the coils built with 2G high temperature superconducting tapes perhaps because of their complicated structure. In this paper, a new method is proposed to simulate both types of coils with 2D axisymmetric models solved by H formulation. Following the simulation work, AC losses of both types of low inductance solenoidal coils are compared numerically and experimentally, which verify that the model works well in simulating non-inductive coils. Finally, simulation works show that pitch has significant impact to AC loss of both types of coils and the inter-layer separation has different impact to the AC loss of braid type of coil in case of different applied currents. The model provides an effective tool for the design optimisation of SFCLs built with non-inductive solenoidal coils.

  8. Hybrid Forecasting of Daily River Discharges Considering Autoregressive Heteroscedasticity

    NASA Astrophysics Data System (ADS)

    Szolgayová, Elena Peksová; Danačová, Michaela; Komorniková, Magda; Szolgay, Ján

    2017-06-01

    It is widely acknowledged that in the hydrological and meteorological communities, there is a continuing need to improve the quality of quantitative rainfall and river flow forecasts. A hybrid (combined deterministic-stochastic) modelling approach is proposed here that combines the advantages offered by modelling the system dynamics with a deterministic model and a deterministic forecasting error series with a data-driven model in parallel. Since the processes to be modelled are generally nonlinear and the model error series may exhibit nonstationarity and heteroscedasticity, GARCH-type nonlinear time series models are considered here. The fitting, forecasting and simulation performance of such models have to be explored on a case-by-case basis. The goal of this paper is to test and develop an appropriate methodology for model fitting and forecasting applicable for daily river discharge forecast error data from the GARCH family of time series models. We concentrated on verifying whether the use of a GARCH-type model is suitable for modelling and forecasting a hydrological model error time series on the Hron and Morava Rivers in Slovakia. For this purpose we verified the presence of heteroscedasticity in the simulation error series of the KLN multilinear flow routing model; then we fitted the GARCH-type models to the data and compared their fit with that of an ARMA - type model. We produced one-stepahead forecasts from the fitted models and again provided comparisons of the model's performance.

  9. Uniqueness of Petrov Type D Spatially Inhomogeneous Irrotational Silent Models

    NASA Astrophysics Data System (ADS)

    Apostolopoulos, Pantelis S.; Carot, Jaume

    The consistency of the constraint with the evolution equations for spatially inhomogeneous and irrotational silent (SIIS) models of Petrov type I, demands that the former are preserved along the timelike congruence represented by the velocity of the dust fluid, leading to new nontrivial constraints. This fact has been used to conjecture that the resulting models correspond to the spatially homogeneous (SH) models of Bianchi type I, at least for the case where the cosmological constant vanish. By exploiting the full set of the constraint equations as expressed in the 1+3 covariant formalism and using elements from the theory of the spacelike congruences, we provide a direct and simple proof of this conjecture for vacuum and dust fluid models, which shows that the Szekeres family of solutions represents the most general class of SIIS models. The suggested procedure also shows that, the uniqueness of the SIIS of the Petrov type D is not, in general, affected by the presence of a nonzero pressure fluid. Therefore, in order to allow a broader class of Petrov type I solutions apart from the SH models of Bianchi type I, one should consider more general "silent" configurations by relaxing the vanishing of the vorticity and the magnetic part of the Weyl tensor but maintaining their "silence" properties, i.e. the vanishing of the curls of Eab, Hab and the pressure p.

  10. Multiplicity Control in Structural Equation Modeling

    ERIC Educational Resources Information Center

    Cribbie, Robert A.

    2007-01-01

    Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…

  11. 46 CFR 160.060-2 - Type and model.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS..., Adult and Child § 160.060-2 Type and model. Each buoyant vest specified in this subpart is a: (a) Standard: (1) Model AY, adult (for persons weighing over 90 pounds); or (2) Model CYM, child, medium (for...

  12. Business Models for Training and Performance Improvement Departments

    ERIC Educational Resources Information Center

    Carliner, Saul

    2004-01-01

    Although typically applied to entire enterprises, the concept of business models applies to training and performance improvement groups. Business models are "the method by which firm[s] build and use [their] resources to offer.. value." Business models affect the types of projects, services offered, skills required, business processes, and type of…

  13. On the Bayesian Nonparametric Generalization of IRT-Type Models

    ERIC Educational Resources Information Center

    San Martin, Ernesto; Jara, Alejandro; Rolin, Jean-Marie; Mouchart, Michel

    2011-01-01

    We study the identification and consistency of Bayesian semiparametric IRT-type models, where the uncertainty on the abilities' distribution is modeled using a prior distribution on the space of probability measures. We show that for the semiparametric Rasch Poisson counts model, simple restrictions ensure the identification of a general…

  14. Aqueous and Tissue Residue-Based Interspecies Correlation Estimation Models Provide Conservative Hazard Estimates for Aromatic Compounds

    EPA Science Inventory

    Interspecies correlation estimation (ICE) models were developed for 30 nonpolar aromatic compounds to allow comparison of prediction accuracy between 2 data compilation approaches. Type 1 models used data combined across studies, and type 2 models used data combined only within s...

  15. Palaeodistribution modelling of European vegetation types at the Last Glacial Maximum using modern analogues from Siberia: Prospects and limitations

    NASA Astrophysics Data System (ADS)

    Janská, Veronika; Jiménez-Alfaro, Borja; Chytrý, Milan; Divíšek, Jan; Anenkhonov, Oleg; Korolyuk, Andrey; Lashchinskyi, Nikolai; Culek, Martin

    2017-03-01

    We modelled the European distribution of vegetation types at the Last Glacial Maximum (LGM) using present-day data from Siberia, a region hypothesized to be a modern analogue of European glacial climate. Distribution models were calibrated with current climate using 6274 vegetation-plot records surveyed in Siberia. Out of 22 initially used vegetation types, good or moderately good models in terms of statistical validation and expert-based evaluation were computed for 18 types, which were then projected to European climate at the LGM. The resulting distributions were generally consistent with reconstructions based on pollen records and dynamic vegetation models. Spatial predictions were most reliable for steppe, forest-steppe, taiga, tundra, fens and bogs in eastern and central Europe, which had LGM climate more similar to present-day Siberia. The models for western and southern Europe, regions with a lower degree of climatic analogy, were only reliable for mires and steppe vegetation, respectively. Modelling LGM vegetation types for the wetter and warmer regions of Europe would therefore require gathering calibration data from outside Siberia. Our approach adds value to the reconstruction of vegetation at the LGM, which is limited by scarcity of pollen and macrofossil data, suggesting where specific habitats could have occurred. Despite the uncertainties of climatic extrapolations and the difficulty of validating the projections for vegetation types, the integration of palaeodistribution modelling with other approaches has a great potential for improving our understanding of biodiversity patterns during the LGM.

  16. Using vertebrate prey capture locations to identify cover type selection patterns of nocturnally foraging Burrowing Owls.

    PubMed

    Marsh, Alan; Bayne, Erin M; Wellicome, Troy I

    2014-07-01

    Studies of habitat selection often measure an animal's use of space via radiotelemetry or GPS-based technologies. Such data tend to be analyzed using a resource selection function, despite the fact that the actual resources acquired are typically not recorded. Without explicit proof of resource use, conclusions from RSF models are based on assumptions regarding an animal's behavior and the resources gained. Conservation initiatives are often based on space-use models, and could be detrimental to the target species if these assumptions are incorrect. We used GPS dataloggers and digital video recorders to determine precise locations where nocturnally foraging Burrowing Owls acquired food resources (vertebrate prey). We compared land cover type selection patterns using a presence-only resource selection function (RSF) to a model that incorporated prey capture locations (CRSF). We also compared net prey returns in each cover type to better measure reward relative to foraging effort. The RSF method did not reflect prey capture patterns and cover-type rankings from this model were quite different from models that used only locations where prey was known to have been obtained. Burrowing Owls successfully foraged across all cover types; however, return vs. effort models indicate that different cover types were of higher quality than those identified using resource selection functions. Conclusions about the type of resources acquired should not be made from RSF-style models without evidence that the actual resource of interest was acquired. Conservation efforts based on RSF models alone may be ineffective or detrimental to the target species if the limiting resource and where it is acquired are not properly identified.

  17. Pareto optimal calibration of highly nonlinear reactive transport groundwater models using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Siade, A. J.; Prommer, H.; Welter, D.

    2014-12-01

    Groundwater management and remediation requires the implementation of numerical models in order to evaluate the potential anthropogenic impacts on aquifer systems. In many situations, the numerical model must, not only be able to simulate groundwater flow and transport, but also geochemical and biological processes. Each process being simulated carries with it a set of parameters that must be identified, along with differing potential sources of model-structure error. Various data types are often collected in the field and then used to calibrate the numerical model; however, these data types can represent very different processes and can subsequently be sensitive to the model parameters in extremely complex ways. Therefore, developing an appropriate weighting strategy to address the contributions of each data type to the overall least-squares objective function is not straightforward. This is further compounded by the presence of potential sources of model-structure errors that manifest themselves differently for each observation data type. Finally, reactive transport models are highly nonlinear, which can lead to convergence failure for algorithms operating on the assumption of local linearity. In this study, we propose a variation of the popular, particle swarm optimization algorithm to address trade-offs associated with the calibration of one data type over another. This method removes the need to specify weights between observation groups and instead, produces a multi-dimensional Pareto front that illustrates the trade-offs between data types. We use the PEST++ run manager, along with the standard PEST input/output structure, to implement parallel programming across multiple desktop computers using TCP/IP communications. This allows for very large swarms of particles without the need of a supercomputing facility. The method was applied to a case study in which modeling was used to gain insight into the mobilization of arsenic at a deepwell injection site. Multiple data types (e.g., hydrochemical, geophysical, tracer, temperature, etc.) were collected prior to, and during an injection trial. Visualizing the trade-off between the calibration of each data type has provided the means of identifying some model-structure deficiencies.

  18. Estimating disease prevalence from two-phase surveys with non-response at the second phase

    PubMed Central

    Gao, Sujuan; Hui, Siu L.; Hall, Kathleen S.; Hendrie, Hugh C.

    2010-01-01

    SUMMARY In this paper we compare several methods for estimating population disease prevalence from data collected by two-phase sampling when there is non-response at the second phase. The traditional weighting type estimator requires the missing completely at random assumption and may yield biased estimates if the assumption does not hold. We review two approaches and propose one new approach to adjust for non-response assuming that the non-response depends on a set of covariates collected at the first phase: an adjusted weighting type estimator using estimated response probability from a response model; a modelling type estimator using predicted disease probability from a disease model; and a regression type estimator combining the adjusted weighting type estimator and the modelling type estimator. These estimators are illustrated using data from an Alzheimer’s disease study in two populations. Simulation results are presented to investigate the performances of the proposed estimators under various situations. PMID:10931514

  19. Mathematical modeling for resource and energy saving control of extruders in multi-assortment productions of polymeric films

    NASA Astrophysics Data System (ADS)

    Polosin, A. N.; Chistyakova, T. B.

    2018-05-01

    In this article, the authors describe mathematical modeling of polymer processing in extruders of various types used in extrusion and calender productions of film materials. The method consists of the synthesis of a static model for calculating throughput, energy consumption of the extruder, extrudate quality indices, as well as a dynamic model for evaluating polymer residence time in the extruder, on which the quality indices depend. Models are adjusted according to the extruder type (single-screw, reciprocating, twin-screw), its screw and head configuration, extruder’s work temperature conditions, and the processed polymer type. Models enable creating extruder screw configurations and determining extruder controlling action values that provide the extrudate of required quality while satisfying extruder throughput and energy consumption requirements. Model adequacy has been verified using polyolefins’ and polyvinylchloride processing data in different extruders. The program complex, based on mathematical models, has been developed in order to control extruders of various types in order to ensure resource and energy saving in multi-assortment productions of polymeric films. Using the program complex in the control system for the extrusion stage of the polymeric film productions enables improving film quality, reducing spoilage, lessening the time required for production line change-over to other throughput and film type assignment.

  20. Learning Data Set Influence on Identification Accuracy of Gas Turbine Neural Network Model

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.; Makaryants, G. M.

    2018-01-01

    There are many gas turbine engine identification researches via dynamic neural network models. It should minimize errors between model and real object during identification process. Questions about training data set processing of neural networks are usually missed. This article presents a study about influence of data set type on gas turbine neural network model accuracy. The identification object is thermodynamic model of micro gas turbine engine. The thermodynamic model input signal is the fuel consumption and output signal is the engine rotor rotation frequency. Four types input signals was used for creating training and testing data sets of dynamic neural network models - step, fast, slow and mixed. Four dynamic neural networks were created based on these types of training data sets. Each neural network was tested via four types test data sets. In the result 16 transition processes from four neural networks and four test data sets from analogous solving results of thermodynamic model were compared. The errors comparison was made between all neural network errors in each test data set. In the comparison result it was shown error value ranges of each test data set. It is shown that error values ranges is small therefore the influence of data set types on identification accuracy is low.

  1. Developing a topographic model to predict the northern hardwood forest type within Carolina northern flying squirrel (Glaucomys sabrinus coloratus) recovery areas of the southern Appalachians

    USGS Publications Warehouse

    Evans, Andrew; Odom, Richard H.; Resler, Lynn M.; Ford, W. Mark; Prisley, Stephen

    2014-01-01

    The northern hardwood forest type is an important habitat component for the endangered Carolina northern flying squirrel (CNFS; Glaucomys sabrinus coloratus) for den sites and corridor habitats between boreo-montane conifer patches foraging areas. Our study related terrain data to presence of northern hardwood forest type in the recovery areas of CNFS in the southern Appalachian Mountains of western North Carolina, eastern Tennessee, and southwestern Virginia. We recorded overstory species composition and terrain variables at 338 points, to construct a robust, spatially predictive model. Terrain variables analyzed included elevation, aspect, slope gradient, site curvature, and topographic exposure. We used an information-theoretic approach to assess seven models based on associations noted in existing literature as well as an inclusive global model. Our results indicate that, on a regional scale, elevation, aspect, and topographic exposure index (TEI) are significant predictors of the presence of the northern hardwood forest type in the southern Appalachians. Our elevation + TEI model was the best approximating model (the lowest AICc score) for predicting northern hardwood forest type correctly classifying approximately 78% of our sample points. We then used these data to create region-wide predictive maps of the distribution of the northern hardwood forest type within CNFS recovery areas.

  2. A Mixture Modeling Framework for Differential Analysis of High-Throughput Data

    PubMed Central

    Taslim, Cenny; Lin, Shili

    2014-01-01

    The inventions of microarray and next generation sequencing technologies have revolutionized research in genomics; platforms have led to massive amount of data in gene expression, methylation, and protein-DNA interactions. A common theme among a number of biological problems using high-throughput technologies is differential analysis. Despite the common theme, different data types have their own unique features, creating a “moving target” scenario. As such, methods specifically designed for one data type may not lead to satisfactory results when applied to another data type. To meet this challenge so that not only currently existing data types but also data from future problems, platforms, or experiments can be analyzed, we propose a mixture modeling framework that is flexible enough to automatically adapt to any moving target. More specifically, the approach considers several classes of mixture models and essentially provides a model-based procedure whose model is adaptive to the particular data being analyzed. We demonstrate the utility of the methodology by applying it to three types of real data: gene expression, methylation, and ChIP-seq. We also carried out simulations to gauge the performance and showed that the approach can be more efficient than any individual model without inflating type I error. PMID:25057284

  3. A4 flavour model for Dirac neutrinos: Type I and inverse seesaw

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Karmakar, Biswajit

    2018-05-01

    We propose two different seesaw models namely, type I and inverse seesaw to realise light Dirac neutrinos within the framework of A4 discrete flavour symmetry. The additional fields and their transformations under the flavour symmetries are chosen in such a way that naturally predicts the hierarchies of different elements of the seesaw mass matrices in these two types of seesaw mechanisms. For generic choices of flavon alignments, both the models predict normal hierarchical light neutrino masses with the atmospheric mixing angle in the lower octant. Apart from predicting interesting correlations between different neutrino parameters as well as between neutrino and model parameters, the model also predicts the leptonic Dirac CP phase to lie in a specific range - π / 3 to π / 3. While the type I seesaw model predicts smaller values of absolute neutrino mass, the inverse seesaw predictions for the absolute neutrino masses can saturate the cosmological upper bound on sum of absolute neutrino masses for certain choices of model parameters.

  4. Evaluation of Intercomparisons of Four Different Types of Model Simulating TWP-ICE

    NASA Technical Reports Server (NTRS)

    Petch, Jon; Hill, Adrian; Davies, Laura; Fridlind, Ann; Jakob, Christian; Lin, Yanluan; Xie, Shaoecheng; Zhu, Ping

    2013-01-01

    Four model intercomparisons were run and evaluated using the TWP-ICE field campaign, each involving different types of atmospheric model. Here we highlight what can be learnt from having single-column model (SCM), cloud-resolving model (CRM), global atmosphere model (GAM) and limited-area model (LAM) intercomparisons all based around the same field campaign. We also make recommendations for anyone planning further large multi-model intercomparisons to ensure they are of maximum value to the model development community. CRMs tended to match observations better than other model types, although there were exceptions such as outgoing long-wave radiation. All SCMs grew large temperature and moisture biases and performed worse than other model types for many diagnostics. The GAMs produced a delayed and significantly reduced peak in domain-average rain rate when compared to the observations. While it was shown that this was in part due to the analysis used to drive these models, the LAMs were also driven by this analysis and did not have the problem to the same extent. Based on differences between the models with parametrized convection (SCMs and GAMs) and those without (CRMs and LAMs), we speculate that that having explicit convection helps to constrain liquid water whereas the ice contents are controlled more by the representation of the microphysics.

  5. MMM: A toolbox for integrative structure modeling.

    PubMed

    Jeschke, Gunnar

    2018-01-01

    Structural characterization of proteins and their complexes may require integration of restraints from various experimental techniques. MMM (Multiscale Modeling of Macromolecules) is a Matlab-based open-source modeling toolbox for this purpose with a particular emphasis on distance distribution restraints obtained from electron paramagnetic resonance experiments on spin-labelled proteins and nucleic acids and their combination with atomistic structures of domains or whole protomers, small-angle scattering data, secondary structure information, homology information, and elastic network models. MMM does not only integrate various types of restraints, but also various existing modeling tools by providing a common graphical user interface to them. The types of restraints that can support such modeling and the available model types are illustrated by recent application examples. © 2017 The Protein Society.

  6. Propulsion Airframe Integration Test Techniques for Hypersonic Airbreathing Configurations at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Huebner, Lawrence D.; Trexler, Carl A.; Cabell, Karen F.; Andrews, Earl H., Jr.

    2003-01-01

    The scope and significance of propulsion airframe integration (PAI) for hypersonic airbreathing vehicles is presented through a discussion of the PAI test techniques utilized at NASA Langley Research Center. Four primary types of PAI model tests utilized at NASA Langley for hypersonic airbreathing vehicles are discussed. The four types of PAI test models examined are the forebody/inlet test model, the partial-width/truncated propulsion flowpath test model, the powered exhaust simulation test model, and the full-length/width propulsion flowpath test model. The test technique for each of these four types of PAI test models is described, and the relevant PAI issues addressed by each test technique are illustrated through the presentation of recent PAI test data.

  7. Cellular-based modeling of oscillatory dynamics in brain networks.

    PubMed

    Skinner, Frances K

    2012-08-01

    Oscillatory, population activities have long been known to occur in our brains during different behavioral states. We know that many different cell types exist and that they contribute in distinct ways to the generation of these activities. I review recent papers that involve cellular-based models of brain networks, most of which include theta, gamma and sharp wave-ripple activities. To help organize the modeling work, I present it from a perspective of three different types of cellular-based modeling: 'Generic', 'Biophysical' and 'Linking'. Cellular-based modeling is taken to encompass the four features of experiment, model development, theory/analyses, and model usage/computation. The three modeling types are shown to include these features and interactions in different ways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. A comparative study on improved Arrhenius-type and artificial neural network models to predict high-temperature flow behaviors in 20MnNiMo alloy.

    PubMed

    Quan, Guo-zheng; Yu, Chun-tang; Liu, Ying-ying; Xia, Yu-feng

    2014-01-01

    The stress-strain data of 20MnNiMo alloy were collected from a series of hot compressions on Gleeble-1500 thermal-mechanical simulator in the temperature range of 1173 ∼ 1473 K and strain rate range of 0.01 ∼ 10 s(-1). Based on the experimental data, the improved Arrhenius-type constitutive model and the artificial neural network (ANN) model were established to predict the high temperature flow stress of as-cast 20MnNiMo alloy. The accuracy and reliability of the improved Arrhenius-type model and the trained ANN model were further evaluated in terms of the correlation coefficient (R), the average absolute relative error (AARE), and the relative error (η). For the former, R and AARE were found to be 0.9954 and 5.26%, respectively, while, for the latter, 0.9997 and 1.02%, respectively. The relative errors (η) of the improved Arrhenius-type model and the ANN model were, respectively, in the range of -39.99% ∼ 35.05% and -3.77% ∼ 16.74%. As for the former, only 16.3% of the test data set possesses η-values within ± 1%, while, as for the latter, more than 79% possesses. The results indicate that the ANN model presents a higher predictable ability than the improved Arrhenius-type constitutive model.

  9. Study on elevated-temperature flow behavior of Ni-Cr-Mo-B ultra-heavy-plate steel via experiment and modelling

    NASA Astrophysics Data System (ADS)

    Gao, Zhi-yu; Kang, Yu; Li, Yan-shuai; Meng, Chao; Pan, Tao

    2018-04-01

    Elevated-temperature flow behavior of a novel Ni-Cr-Mo-B ultra-heavy-plate steel was investigated by conducting hot compressive deformation tests on a Gleeble-3800 thermo-mechanical simulator at a temperature range of 1123 K–1423 K with a strain rate range from 0.01 s‑1 to10 s‑1 and a height reduction of 70%. Based on the experimental results, classic strain-compensated Arrhenius-type, a new revised strain-compensated Arrhenius-type and classic modified Johnson-Cook constitutive models were developed for predicting the high-temperature deformation behavior of the steel. The predictability of these models were comparatively evaluated in terms of statistical parameters including correlation coefficient (R), average absolute relative error (AARE), average root mean square error (RMSE), normalized mean bias error (NMBE) and relative error. The statistical results indicate that the new revised strain-compensated Arrhenius-type model could give prediction of elevated-temperature flow stress for the steel accurately under the entire process conditions. However, the predicted values by the classic modified Johnson-Cook model could not agree well with the experimental values, and the classic strain-compensated Arrhenius-type model could track the deformation behavior more accurately compared with the modified Johnson-Cook model, but less accurately with the new revised strain-compensated Arrhenius-type model. In addition, reasons of differences in predictability of these models were discussed in detail.

  10. Derivation of rigorous conditions for high cell-type diversity by algebraic approach.

    PubMed

    Yoshida, Hiroshi; Anai, Hirokazu; Horimoto, Katsuhisa

    2007-01-01

    The development of a multicellular organism is a dynamic process. Starting with one or a few cells, the organism develops into different types of cells with distinct functions. We have constructed a simple model by considering the cell number increase and the cell-type order conservation, and have assessed conditions for cell-type diversity. This model is based on a stochastic Lindenmayer system with cell-to-cell interactions for three types of cells. In the present model, we have successfully derived complex but rigorous algebraic relations between the proliferation and transition rates for cell-type diversity by using a symbolic method: quantifier elimination (QE). Surprisingly, three modes for the proliferation and transition rates have emerged for large ratios of the initial cells to the developed cells. The three modes have revealed that the equality between the development rates for the highest cell-type diversity is reduced during the development process of multicellular organisms. Furthermore, we have found that the highest cell-type diversity originates from order conservation.

  11. Improving the prediction of going concern of Taiwanese listed companies using a hybrid of LASSO with data mining techniques.

    PubMed

    Goo, Yeung-Ja James; Chi, Der-Jang; Shen, Zong-De

    2016-01-01

    The purpose of this study is to establish rigorous and reliable going concern doubt (GCD) prediction models. This study first uses the least absolute shrinkage and selection operator (LASSO) to select variables and then applies data mining techniques to establish prediction models, such as neural network (NN), classification and regression tree (CART), and support vector machine (SVM). The samples of this study include 48 GCD listed companies and 124 NGCD (non-GCD) listed companies from 2002 to 2013 in the TEJ database. We conduct fivefold cross validation in order to identify the prediction accuracy. According to the empirical results, the prediction accuracy of the LASSO-NN model is 88.96 % (Type I error rate is 12.22 %; Type II error rate is 7.50 %), the prediction accuracy of the LASSO-CART model is 88.75 % (Type I error rate is 13.61 %; Type II error rate is 14.17 %), and the prediction accuracy of the LASSO-SVM model is 89.79 % (Type I error rate is 10.00 %; Type II error rate is 15.83 %).

  12. A Two-Decision Model for Responses to Likert-Type Items

    ERIC Educational Resources Information Center

    Thissen-Roe, Anne; Thissen, David

    2013-01-01

    Extreme response set, the tendency to prefer the lowest or highest response option when confronted with a Likert-type response scale, can lead to misfit of item response models such as the generalized partial credit model. Recently, a series of intrinsically multidimensional item response models have been hypothesized, wherein tendency toward…

  13. The Effects of Sex Typing and Sex Appropriateness of Modeled Behavior on Children's Imitation

    ERIC Educational Resources Information Center

    Barkley, Russell A.; And Others

    1977-01-01

    Analysis of the modeled behaviors of 64 children from 4 to 11 years of age indicated that a major factor in sex differences in children's imitation is the sex appropriateness of the modeled behavior relative to the observer when a sex-typed behavior is modeled. (Author/JMB)

  14. 76 FR 70040 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... Aerospace LP (type certificate previously held by Israel Aircraft Industries, Ltd.) Model Galaxy and....) Model Galaxy airplanes; and Gulfstream Aerospace LP Model Gulfstream 200 airplanes; serial numbers 004... Bulletin 150-27- 123, Revision 1, dated January 27, 2011. (2) For Model Galaxy and Gulfstream 200 airplanes...

  15. eShopper modeling and simulation

    NASA Astrophysics Data System (ADS)

    Petrushin, Valery A.

    2001-03-01

    The advent of e-commerce gives an opportunity to shift the paradigm of customer communication into a highly interactive mode. The new generation of commercial Web servers, such as the Blue Martini's server, combines the collection of data on a customer behavior with real-time processing and dynamic tailoring of a feedback page. The new opportunities for direct product marketing and cross selling are arriving. The key problem is what kind of information do we need to achieve these goals, or in other words, how do we model the customer? The paper is devoted to customer modeling and simulation. The focus is on modeling an individual customer. The model is based on the customer's transaction data, click stream data, and demographics. The model includes the hierarchical profile of a customer's preferences to different types of products and brands; consumption models for the different types of products; the current focus, trends, and stochastic models for time intervals between purchases; product affinity models; and some generalized features, such as purchasing power, sensitivity to advertising, price sensitivity, etc. This type of model is used for predicting the date of the next visit, overall spending, and spending for different types of products and brands. For some type of stores (for example, a supermarket) and stable customers, it is possible to forecast the shopping lists rather accurately. The forecasting techniques are discussed. The forecasting results can be used for on- line direct marketing, customer retention, and inventory management. The customer model can also be used as a generative model for simulating the customer's purchasing behavior in different situations and for estimating customer's features.

  16. A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach.

    PubMed

    Wang, Hsin-Yao; Lee, Tzong-Yi; Tseng, Yi-Ju; Liu, Tsui-Ping; Huang, Kai-Yao; Chang, Yung-Ta; Chen, Chun-Hsien; Lu, Jang-Jih

    2018-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA), one of the most important clinical pathogens, conducts an increasing number of morbidity and mortality in the world. Rapid and accurate strain typing of bacteria would facilitate epidemiological investigation and infection control in near real time. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid and cost-effective tool for presumptive strain typing. To develop robust method for strain typing based on MALDI-TOF spectrum, machine learning (ML) is a promising algorithm for the construction of predictive model. In this study, a strategy of building templates of specific types was used to facilitate generating predictive models of methicillin-resistant Staphylococcus aureus (MRSA) strain typing through various ML methods. The strain types of the isolates were determined through multilocus sequence typing (MLST). The area under the receiver operating characteristic curve (AUC) and the predictive accuracy of the models were compared. ST5, ST59, and ST239 were the major MLST types, and ST45 was the minor type. For binary classification, the AUC values of various ML methods ranged from 0.76 to 0.99 for ST5, ST59, and ST239 types. In multiclass classification, the predictive accuracy of all generated models was more than 0.83. This study has demonstrated that ML methods can serve as a cost-effective and promising tool that provides preliminary strain typing information about major MRSA lineages on the basis of MALDI-TOF spectra.

  17. 14 CFR 21.267 - Production certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... certificates. Link to an amendment published at 74 FR 53390, October 16, 2009. To have a new model or new type... determining that the production certification requirements of subpart G, with respect to the new model or type... type certificate number under which the product is being manufactured; and (d) After placing the...

  18. Applying the Transtheoretical Model to Investigate Behavioural Change in Type 2 Diabetic Patients

    ERIC Educational Resources Information Center

    Lin, Shu-Ping; Wang, Ming-Jye

    2013-01-01

    Background: Long-term behaviour change in type 2 diabetic patients may provide effective glycemic control. Purpose: To investigate the key factors that promote behaviour change in diabetic subjects using the transtheoretical model. Methods: Subjects were selected by purposive sampling from type 2 diabetes outpatients. Self-administered…

  19. Relationship between circadian typology and big five personality domains.

    PubMed

    Tonetti, Lorenzo; Fabbri, Marco; Natale, Vincenzo

    2009-02-01

    We explored the relationship between personality, based on the five-factor model, and circadian preference. To this end, 503 participants (280 females, 223 males) were administered the Morningness-Eveningness Questionnaire (MEQ) and the self-report version of the Big Five Observer (BFO) to determine circadian preference and personality features, respectively. Morning types scored significantly higher than evening and intermediate types on the conscientiousness factor. Evening types were found to be more neurotic than morning types. With reference to the big five personality model, our data, together with those of all the previous studies, indicate that the conscientiousness domain is the one that best discriminates among the three circadian types. Results are discussed with reference to neurobiological models of personality.

  20. Complex networks: Effect of subtle changes in nature of randomness

    NASA Astrophysics Data System (ADS)

    Goswami, Sanchari; Biswas, Soham; Sen, Parongama

    2011-03-01

    In two different classes of network models, namely, the Watts Strogatz type and the Euclidean type, subtle changes have been introduced in the randomness. In the Watts Strogatz type network, rewiring has been done in different ways and although the qualitative results remain the same, finite differences in the exponents are observed. In the Euclidean type networks, where at least one finite phase transition occurs, two models differing in a similar way have been considered. The results show a possible shift in one of the phase transition points but no change in the values of the exponents. The WS and Euclidean type models are equivalent for extreme values of the parameters; we compare their behaviour for intermediate values.

  1. [Use of theories and models on papers of a Latin-American journal in public health, 2000 to 2004].

    PubMed

    Cabrera Arana, Gustavo Alonso

    2007-12-01

    To characterize frequency and type of use of theories or models on papers of a Latin-American journal in public health between 2000 and 2004. The Revista de Saúde Pública was chosen because of its history of periodic publication without interruption and current impact on the scientific communication of the area. A standard procedure was applied for reading and classifying articles in an arbitrary typology of four levels, according to the depth of the use of models or theoretical references to describe problems or issues, to formulate methods and to discuss results. Of 482 articles included, 421 (87%) were research studies, 42 (9%) reviews or special contributions and 19 (4%) opinion texts or assays . Of 421 research studies, 286 (68%) had a quantitative focus, 110 (26%) qualitative and 25 (6%) mixed. Reference to theories or models is uncommon, only 90 (19%) articles mentioned a theory or model. According to the depth of the use, 29 (6%) were classified as type I, 9 (2%) as type II, 6 (1.3%) were type III and the 46 remaining texts (9.5%) were type IV. Reference to models was nine-fold more frequent than the use of theoretical references. The ideal use, type IV, occurred in one of every ten articles studied. It is of relevance to show theoretical and models frames used when approaching topics, formulating hypothesis, designing methods and discussing findings in papers.

  2. Developing logistic regression models using purchase attributes and demographics to predict the probability of purchases of regular and specialty eggs.

    PubMed

    Bejaei, M; Wiseman, K; Cheng, K M

    2015-01-01

    Consumers' interest in specialty eggs appears to be growing in Europe and North America. The objective of this research was to develop logistic regression models that utilise purchaser attributes and demographics to predict the probability of a consumer purchasing a specific type of table egg including regular (white and brown), non-caged (free-run, free-range and organic) or nutrient-enhanced eggs. These purchase prediction models, together with the purchasers' attributes, can be used to assess market opportunities of different egg types specifically in British Columbia (BC). An online survey was used to gather data for the models. A total of 702 completed questionnaires were submitted by BC residents. Selected independent variables included in the logistic regression to develop models for different egg types to predict the probability of a consumer purchasing a specific type of table egg. The variables used in the model accounted for 54% and 49% of variances in the purchase of regular and non-caged eggs, respectively. Research results indicate that consumers of different egg types exhibit a set of unique and statistically significant characteristics and/or demographics. For example, consumers of regular eggs were less educated, older, price sensitive, major chain store buyers, and store flyer users, and had lower awareness about different types of eggs and less concern regarding animal welfare issues. However, most of the non-caged egg consumers were less concerned about price, had higher awareness about different types of table eggs, purchased their eggs from local/organic grocery stores, farm gates or farmers markets, and they were more concerned about care and feeding of hens compared to consumers of other eggs types.

  3. The feasibility of using a universal Random Forest model to map tree height across different locations and vegetation types

    NASA Astrophysics Data System (ADS)

    Su, Y.; Guo, Q.; Jin, S.; Gao, S.; Hu, T.; Liu, J.; Xue, B. L.

    2017-12-01

    Tree height is an important forest structure parameter for understanding forest ecosystem and improving the accuracy of global carbon stock quantification. Light detection and ranging (LiDAR) can provide accurate tree height measurements, but its use in large-scale tree height mapping is limited by the spatial availability. Random Forest (RF) has been one of the most commonly used algorithms for mapping large-scale tree height through the fusion of LiDAR and other remotely sensed datasets. However, how the variances in vegetation types, geolocations and spatial scales of different study sites influence the RF results is still a question that needs to be addressed. In this study, we selected 16 study sites across four vegetation types in United States (U.S.) fully covered by airborne LiDAR data, and the area of each site was 100 km2. The LiDAR-derived canopy height models (CHMs) were used as the ground truth to train the RF algorithm to predict canopy height from other remotely sensed variables, such as Landsat TM imagery, terrain information and climate surfaces. To address the abovementioned question, 22 models were run under different combinations of vegetation types, geolocations and spatial scales. The results show that the RF model trained at one specific location or vegetation type cannot be used to predict tree height in other locations or vegetation types. However, by training the RF model using samples from all locations and vegetation types, a universal model can be achieved for predicting canopy height across different locations and vegetation types. Moreover, the number of training samples and the targeted spatial resolution of the canopy height product have noticeable influence on the RF prediction accuracy.

  4. Accuracy of gastrocnemius muscles forces in walking and running goats predicted by one-element and two-element Hill-type models.

    PubMed

    Lee, Sabrina S M; Arnold, Allison S; Miara, Maria de Boef; Biewener, Andrew A; Wakeling, James M

    2013-09-03

    Hill-type models are commonly used to estimate muscle forces during human and animal movement-yet the accuracy of the forces estimated during walking, running, and other tasks remains largely unknown. Further, most Hill-type models assume a single contractile element, despite evidence that faster and slower motor units, which have different activation-deactivation dynamics, may be independently or collectively excited. This study evaluated a novel, two-element Hill-type model with "differential" activation of fast and slow contractile elements. Model performance was assessed using a comprehensive data set (including measures of EMG intensity, fascicle length, and tendon force) collected from the gastrocnemius muscles of goats during locomotor experiments. Muscle forces predicted by the new two-element model were compared to the forces estimated using traditional one-element models and to the forces measured in vivo using tendon buckle transducers. Overall, the two-element model resulted in the best predictions of in vivo gastrocnemius force. The coefficient of determination, r(2), was up to 26.9% higher and the root mean square error, RMSE, was up to 37.4% lower for the two-element model than for the one-element models tested. All models captured salient features of the measured muscle force during walking, trotting, and galloping (r(2)=0.26-0.51), and all exhibited some errors (RMSE=9.63-32.2% of the maximum in vivo force). These comparisons provide important insight into the accuracy of Hill-type models. The results also show that incorporation of fast and slow contractile elements within muscle models can improve estimates of time-varying, whole muscle force during locomotor tasks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Accuracy of gastrocnemius muscles forces in walking and running goats predicted by one-element and two-element Hill-type models

    PubMed Central

    Lee, Sabrina S.M.; Arnold, Allison S.; Miara, Maria de Boef; Biewener, Andrew A.; Wakeling, James M.

    2013-01-01

    Hill-type models are commonly used to estimate muscle forces during human and animal movement —yet the accuracy of the forces estimated during walking, running, and other tasks remains largely unknown. Further, most Hill-type models assume a single contractile element, despite evidence that faster and slower motor units, which have different activation-deactivation dynamics, may be independently or collectively excited. This study evaluated a novel, two-element Hill-type model with “differential” activation of fast and slow contractile elements. Model performance was assessed using a comprehensive data set (including measures of EMG intensity, fascicle length, and tendon force) collected from the gastrocnemius muscles of goats during locomotor experiments. Muscle forces predicted by the new two-element model were compared to the forces estimated using traditional one-element models and to the forces measured in vivo using tendon buckle transducers. Overall, the two-element model resulted in the best predictions of in vivo gastrocnemius force. The coefficient of determination, r2, was up to 26.9% higher and the root mean square error, RMSE, was up to 37.4% lower for the two-element model than for the one-element models tested. All models captured salient features of the measured muscle force during walking, trotting, and galloping (r2 = 0.26 to 0.51), and all exhibited some errors (RMSE = 9.63 to 32.2% of the maximum in vivo force). These comparisons provide important insight into the accuracy of Hill-type models. The results also show that incorporation of fast and slow contractile elements within muscle models can improve estimates of time-varying, whole muscle force during locomotor tasks. PMID:23871235

  6. Evaluation of Thompson-type trend and monthly weather data models for corn yields in Iowa, Illinois, and Indiana

    NASA Technical Reports Server (NTRS)

    French, V. (Principal Investigator)

    1982-01-01

    An evaluation was made of Thompson-Type models which use trend terms (as a surrogate for technology), meteorological variables based on monthly average temperature, and total precipitation to forecast and estimate corn yields in Iowa, Illinois, and Indiana. Pooled and unpooled Thompson-type models were compared. Neither was found to be consistently superior to the other. Yield reliability indicators show that the models are of limited use for large area yield estimation. The models are objective and consistent with scientific knowledge. Timely yield forecasts and estimates can be made during the growing season by using normals or long range weather forecasts. The models are not costly to operate and are easy to use and understand. The model standard errors of prediction do not provide a useful current measure of modeled yield reliability.

  7. Numerical investigation on effect of blade shape for stream water wheel performance.

    NASA Astrophysics Data System (ADS)

    Yah, N. F.; Oumer, A. N.; Aziz, A. A.; Sahat, I. M.

    2018-04-01

    Stream water wheels are one of the oldest and commonly used types of wheels for the production of energy. Moreover, they are economical, efficient and sustainable. However, few amounts of research works are available in the open literature. This paper aims to develop numerical model for investigation of the effect of blade shape on the performance of stream water wheel. The numerical model was simulated using Computational Fluid Dynamics (CFD) method and the developed model was validated by comparing the simulation results with experimental data obtained from literature. The performance of straight, curved type 1 and curved type 2 was observed and the power generated by each blade design was identified. The inlet velocity was set to 0.3 m/s static pressure outlet. The obtained results indicate that the highest power was generated by the Curved type 2 compared to straight blade and curved type 1. From the CFD result, Curved type 1 was able to generate 0.073 Watt while Curved type 2 generate 0.064 Watt. The result obtained were consistent with the experiment result hence can be used the numerical model as a guide to numerically predict the water wheel performance

  8. Dynamics of the exponential integrate-and-fire model with slow currents and adaptation.

    PubMed

    Barranca, Victor J; Johnson, Daniel C; Moyher, Jennifer L; Sauppe, Joshua P; Shkarayev, Maxim S; Kovačič, Gregor; Cai, David

    2014-08-01

    In order to properly capture spike-frequency adaptation with a simplified point-neuron model, we study approximations of Hodgkin-Huxley (HH) models including slow currents by exponential integrate-and-fire (EIF) models that incorporate the same types of currents. We optimize the parameters of the EIF models under the external drive consisting of AMPA-type conductance pulses using the current-voltage curves and the van Rossum metric to best capture the subthreshold membrane potential, firing rate, and jump size of the slow current at the neuron's spike times. Our numerical simulations demonstrate that, in addition to these quantities, the approximate EIF-type models faithfully reproduce bifurcation properties of the HH neurons with slow currents, which include spike-frequency adaptation, phase-response curves, critical exponents at the transition between a finite and infinite number of spikes with increasing constant external drive, and bifurcation diagrams of interspike intervals in time-periodically forced models. Dynamics of networks of HH neurons with slow currents can also be approximated by corresponding EIF-type networks, with the approximation being at least statistically accurate over a broad range of Poisson rates of the external drive. For the form of external drive resembling realistic, AMPA-like synaptic conductance response to incoming action potentials, the EIF model affords great savings of computation time as compared with the corresponding HH-type model. Our work shows that the EIF model with additional slow currents is well suited for use in large-scale, point-neuron models in which spike-frequency adaptation is important.

  9. Evaluation of Applicability of a Flare Trigger Model Based on a Comparison of Geometric Structures

    NASA Astrophysics Data System (ADS)

    Bamba, Yumi; Kusano, Kanya

    2018-03-01

    The triggering mechanism(s) and critical condition(s) of solar flares are still not completely clarified, although various studies have attempted to elucidate them. We have also proposed a theoretical flare-trigger model based on MHD simulations in which two types of small-scale bipole fields, the so-called opposite polarity (OP) and reversed shear (RS), can trigger flares. In this study, we evaluated the applicability of our flare-trigger model to the observation of 32 flares that were observed by the Solar Dynamics Observatory, by focusing on geometrical structures. We classified the events into six types, including the OP and RS types, based on photospheric magnetic field configuration, presence of precursor brightenings, and shape of the initial flare ribbons. As a result, we found that approximately 30% of the flares were consistent with our flare-trigger model, and the number of RS-type triggered flares is larger than that of the OP type. We found that none of the sampled events contradict our flare model; though, we cannot clearly determine the trigger mechanism of 70% of the flares in this study. We carefully investigated the applicability of our flare-trigger model and the possibility that other models can explain the other 70% of the events. Consequently, we concluded that our flare-trigger model has certainly proposed important conditions for flare-triggering.

  10. Comparison effectiveness of cooperative learning type STAD with cooperative learning type TPS in terms of mathematical method of Junior High School students

    NASA Astrophysics Data System (ADS)

    Wahyuni, A.

    2018-05-01

    This research is aimed to find out whether the model of cooperative learning type Student Team Achievement Division (STAD) is more effective than cooperative learning type Think-Pair-Share in SMP Negeri 7 Yogyakarta. This research was a quasi-experimental research, using two experimental groups. The population of research was all students of 7thclass in SMP Negeri 7 Yogyakarta that consists of 5 Classes. From the population were taken 2 classes randomly which used as sample. The instrument to collect data was a description test. Measurement of instrument validity use content validity and construct validity, while measuring instrument reliability use Cronbach Alpha formula. To investigate the effectiveness of cooperative learning type STAD and cooperative learning type TPS on the aspect of student’s mathematical method, the datas were analyzed by one sample test. Comparing the effectiveness of cooperative learning type STAD and TPS in terms of mathematical communication skills by using t-test. Normality test was not conducted because the sample of research more than 30 students, while homogeneity tested by using Kolmogorov Smirnov test. The analysis was performed at 5% confidence level.The results show as follows : 1) The model of cooperative learning type STAD and TPS are effective in terms of mathematical method of junior high school students. 2). STAD type cooperative learning model is more effective than TPS type cooperative learning model in terms of mathematical methods of junior high school students.

  11. Friction-term response to boundary-condition type in flow models

    USGS Publications Warehouse

    Schaffranek, R.W.; Lai, C.

    1996-01-01

    The friction-slope term in the unsteady open-channel flow equations is examined using two numerical models based on different formulations of the governing equations and employing different solution methods. The purposes of the study are to analyze, evaluate, and demonstrate the behavior of the term in a set of controlled numerical experiments using varied types and combinations of boundary conditions. Results of numerical experiments illustrate that a given model can respond inconsistently for the identical resistance-coefficient value under different types and combinations of boundary conditions. Findings also demonstrate that two models employing different dependent variables and solution methods can respond similarly for the identical resistance-coefficient value under similar types and combinations of boundary conditions. Discussion of qualitative considerations and quantitative experimental results provides insight into the proper treatment, evaluation, and significance of the friction-slope term, thereby offering practical guidelines for model implementation and calibration.

  12. Stellar model chromospheres. IX - Chromospheric activity in dwarf stars

    NASA Technical Reports Server (NTRS)

    Kelch, W. L.; Worden, S. P.; Linsky, J. L.

    1979-01-01

    High-resolution Ca II K line profiles are used to model the upper photospheres and lower chromospheres of eight main-sequence stars ranging in spectral type from F0 to M0 and exhibiting different degrees of chromospheric activity. The model chromospheres are studied as a function of spectral type and activity for stars of similar spectral type in order to obtain evidence of enhanced nonradiative heating in the upper-photospheric models and in the ratio of minimum temperature at the base of the chromosphere to effective temperature, a correlation between activity and temperature in the lower chromospheres, and a correlation of the width at the base of the K-line emission core and at the K2 features with activity. Chromospheric radiative losses are estimated for the modelled stars and other previously analyzed main-sequence stars. The results obtained strengthen the argument that dMe flare stars exhibit fundamentally solar-type activity but on an increased scale.

  13. ASSESSING CLIMATE CHANGE IMPACTS ON THE STABILITY OF SMALL TIDAL INLETS: Part 2- DATA RICH ENVIRONMENTS.

    PubMed

    Duong, Trang Minh; Ranasinghe, Roshanka; Thatcher, Marcus; Mahanama, Sarith; Wang, Zheng Bing; Dissanayake, Pushpa Kumara; Hemer, Mark; Luijendijk, Arjen; Bamunawala, Janaka; Roelvink, Dano; Walstra, Dirkjan

    2018-01-01

    Climate change (CC) is likely to affect the thousands of bar-built or barrier estuaries (here referred to as Small tidal inlets - STIs) around the world. Any such CC impacts on the stability of STIs, which governs the dynamics of STIs as well as that of the inlet-adjacent coastline, can result in significant socio-economic consequences due to the heavy human utilisation of these systems and their surrounds. This article demonstrates the application of a process based snap-shot modelling approach, using the coastal morphodynamic model Delft3D , to 3 case study sites representing the 3 main STI types; Permanently open, locationally stable inlets (Type 1), Permanently open, alongshore migrating inlets (Type 2) and Seasonally/Intermittently open, locationally stable inlets (Type 3). The 3 case study sites (Negombo lagoon - Type 1, Kalutara lagoon - Type 2, and Maha Oya river - Type 3) are all located along the southwest coast of Sri Lanka. After successful hydrodynamic and morphodynamic model validation at the 3 case study sites, CC impact assessment are undertaken for a high end greenhouse gas emission scenario. Future CC modified wave and riverflow conditions are derived from a regional scale application of spectral wave models (WaveWatch III and SWAN) and catchment scale applications of a hydrologic model (CLSM) respectively, both of which are forced with IPCC Global Climate Model output dynamically downscaled to ~ 50 km resolution over the study area with the stretched grid Conformal Cubic Atmospheric Model CCAM. Results show that while all 3 case study STIs will experience significant CC driven variations in their level of stability, none of them will change Type by the year 2100. Specifically, the level of stability of the Type 1 inlet will decrease from 'Good' to 'Fair to poor' by 2100, while the level of (locational) stability of the Type 2 inlet will also decrease with a doubling of the annual migration distance. Conversely, the stability of the Type 3 inlet will increase, with the time till inlet closure increasing by ~75%. The main contributor to the overall CC effect on the stability of all 3 STIs is CC driven variations in wave conditions and resulting changes in longshore sediment transport, not Sea level rise as commonly believed.

  14. Testing a Model of Diabetes Self-Care Management: A Causal Model Analysis with LISREL.

    ERIC Educational Resources Information Center

    Nowacek, George A.; And Others

    1990-01-01

    A diabetes-management model is presented, which includes an attitudinal element and depicts relationships among causal elements. LISREL-VI was used to analyze data from 115 Type-I and 105 Type-II patients. The data did not closely fit the model. Results support the importance of the personal meaning of diabetes. (TJH)

  15. 49 CFR 537.7 - Pre-model year and mid-model year reports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... List the model types in order of increasing average inertia weight from top to bottom down the left... form. List the model types in order of increasing average inertia weight from top to bottom down the... trucks in your fleet that meet the mild and strong hybrid vehicle definitions. For each mild and strong...

  16. 49 CFR 537.7 - Pre-model year and mid-model year reports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... List the model types in order of increasing average inertia weight from top to bottom down the left... form. List the model types in order of increasing average inertia weight from top to bottom down the... trucks in your fleet that meet the mild and strong hybrid vehicle definitions. For each mild and strong...

  17. Modeling the data management system of Space Station Freedom with DEPEND

    NASA Technical Reports Server (NTRS)

    Olson, Daniel P.; Iyer, Ravishankar K.; Boyd, Mark A.

    1993-01-01

    Some of the features and capabilities of the DEPEND simulation-based modeling tool are described. A study of a 1553B local bus subsystem of the Space Station Freedom Data Management System (SSF DMS) is used to illustrate some types of system behavior that can be important to reliability and performance evaluations of this type of spacecraft. A DEPEND model of the subsystem is used to illustrate how these types of system behavior can be modeled, and shows what kinds of engineering and design questions can be answered through the use of these modeling techniques. DEPEND's process-based simulation environment is shown to provide a flexible method for modeling complex interactions between hardware and software elements of a fault-tolerant computing system.

  18. Current and Future Flight Operating Systems

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan

    2007-01-01

    This viewgraph presentation reviews the current real time operating system (RTOS) type in use with current flight systems. A new RTOS model is described, i.e. the process model. Included is a review of the challenges of migrating from the classic RTOS to the Process Model type.

  19. Impact of exposure measurement error in air pollution epidemiology: effect of error type in time-series studies.

    PubMed

    Goldman, Gretchen T; Mulholland, James A; Russell, Armistead G; Strickland, Matthew J; Klein, Mitchel; Waller, Lance A; Tolbert, Paige E

    2011-06-22

    Two distinctly different types of measurement error are Berkson and classical. Impacts of measurement error in epidemiologic studies of ambient air pollution are expected to depend on error type. We characterize measurement error due to instrument imprecision and spatial variability as multiplicative (i.e. additive on the log scale) and model it over a range of error types to assess impacts on risk ratio estimates both on a per measurement unit basis and on a per interquartile range (IQR) basis in a time-series study in Atlanta. Daily measures of twelve ambient air pollutants were analyzed: NO2, NOx, O3, SO2, CO, PM10 mass, PM2.5 mass, and PM2.5 components sulfate, nitrate, ammonium, elemental carbon and organic carbon. Semivariogram analysis was applied to assess spatial variability. Error due to this spatial variability was added to a reference pollutant time-series on the log scale using Monte Carlo simulations. Each of these time-series was exponentiated and introduced to a Poisson generalized linear model of cardiovascular disease emergency department visits. Measurement error resulted in reduced statistical significance for the risk ratio estimates for all amounts (corresponding to different pollutants) and types of error. When modelled as classical-type error, risk ratios were attenuated, particularly for primary air pollutants, with average attenuation in risk ratios on a per unit of measurement basis ranging from 18% to 92% and on an IQR basis ranging from 18% to 86%. When modelled as Berkson-type error, risk ratios per unit of measurement were biased away from the null hypothesis by 2% to 31%, whereas risk ratios per IQR were attenuated (i.e. biased toward the null) by 5% to 34%. For CO modelled error amount, a range of error types were simulated and effects on risk ratio bias and significance were observed. For multiplicative error, both the amount and type of measurement error impact health effect estimates in air pollution epidemiology. By modelling instrument imprecision and spatial variability as different error types, we estimate direction and magnitude of the effects of error over a range of error types.

  20. Reconstruction of genome-scale human metabolic models using omics data.

    PubMed

    Ryu, Jae Yong; Kim, Hyun Uk; Lee, Sang Yup

    2015-08-01

    The impact of genome-scale human metabolic models on human systems biology and medical sciences is becoming greater, thanks to increasing volumes of model building platforms and publicly available omics data. The genome-scale human metabolic models started with Recon 1 in 2007, and have since been used to describe metabolic phenotypes of healthy and diseased human tissues and cells, and to predict therapeutic targets. Here we review recent trends in genome-scale human metabolic modeling, including various generic and tissue/cell type-specific human metabolic models developed to date, and methods, databases and platforms used to construct them. For generic human metabolic models, we pay attention to Recon 2 and HMR 2.0 with emphasis on data sources used to construct them. Draft and high-quality tissue/cell type-specific human metabolic models have been generated using these generic human metabolic models. Integration of tissue/cell type-specific omics data with the generic human metabolic models is the key step, and we discuss omics data and their integration methods to achieve this task. The initial version of the tissue/cell type-specific human metabolic models can further be computationally refined through gap filling, reaction directionality assignment and the subcellular localization of metabolic reactions. We review relevant tools for this model refinement procedure as well. Finally, we suggest the direction of further studies on reconstructing an improved human metabolic model.

  1. Predictability of two types of El Niño and their climate impacts in boreal spring to summer in coupled models

    NASA Astrophysics Data System (ADS)

    Lee, Ray Wai-Ki; Tam, Chi-Yung; Sohn, Soo-Jin; Ahn, Joong-Bae

    2017-12-01

    The predictability of the two El Niño types and their different impacts on the East Asian climate from boreal spring to summer have been studied, based on coupled general circulation models (CGCM) simulations from the APEC Climate Center (APCC) multi-model ensemble (MME) hindcast experiments. It was found that both the spatial pattern and temporal persistence of canonical (eastern Pacific type) El Niño sea surface temperature (SST) are much better simulated than those for El Niño Modoki (central Pacific type). In particular, most models tend to have El Niño Modoki events that decay too quickly, in comparison to those observed. The ability of these models in distinguishing between the two types of ENSO has also been assessed. Based on the MME average, the two ENSO types become less and less differentiated in the model environment as the forecast leadtime increases. Regarding the climate impact of ENSO, in spring during canonical El Niño, coupled models can reasonably capture the anomalous low-level anticyclone over the western north Pacific (WNP)/Philippine Sea area, as well as rainfall over coastal East Asia. However, most models have difficulties in predicting the springtime dry signal over Indochina to South China Sea (SCS) when El Niño Modoki occurs. This is related to the location of the simulated anomalous anticyclone in this region, which is displaced eastward over SCS relative to the observed. In boreal summer, coupled models still exhibit some skills in predicting the East Asian rainfall during canonical El Nino, but not for El Niño Modoki. Overall, models' performance in spring to summer precipitation forecasts is dictated by their ability in capturing the low-level anticyclonic feature over the WNP/SCS area. The latter in turn is likely to be affected by the realism of the time mean monsoon circulation in models.

  2. ABO/Rh Blood-Typing Model: A Problem-Solving Activity

    ERIC Educational Resources Information Center

    Wake, Carol

    2005-01-01

    An ARO/Rh Blood-Typing kit useful for students to visualize blood-typing activities and practice problem-solving skills with transfusion reactions is presented. The model also enables students to identify relationships between A, B, and Rh antigens and antibodies in blood and to understand molecular mechanisms involved in transfusion agglutination…

  3. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    NASA Astrophysics Data System (ADS)

    Wang, B.; Zheng, J.; Che, T.; Zheng, B. T.; Si, S. S.; Deng, Z. G.

    2015-12-01

    The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  4. Optical signal splitting and chirping device modeling

    NASA Astrophysics Data System (ADS)

    Vinogradova, Irina L.; Andrianova, Anna V.; Meshkov, Ivan K.; Sultanov, Albert Kh.; Abdrakhmanova, Guzel I.; Grakhova, Elizaveta P.; Ishmyarov, Arsen A.; Yantilina, Liliya Z.; Kutlieva, Gulnaz R.

    2017-04-01

    This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.

  5. Analysis of crash proportion by vehicle type at traffic analysis zone level: A mixed fractional split multinomial logit modeling approach with spatial effects.

    PubMed

    Lee, Jaeyoung; Yasmin, Shamsunnahar; Eluru, Naveen; Abdel-Aty, Mohamed; Cai, Qing

    2018-02-01

    In traffic safety literature, crash frequency variables are analyzed using univariate count models or multivariate count models. In this study, we propose an alternative approach to modeling multiple crash frequency dependent variables. Instead of modeling the frequency of crashes we propose to analyze the proportion of crashes by vehicle type. A flexible mixed multinomial logit fractional split model is employed for analyzing the proportions of crashes by vehicle type at the macro-level. In this model, the proportion allocated to an alternative is probabilistically determined based on the alternative propensity as well as the propensity of all other alternatives. Thus, exogenous variables directly affect all alternatives. The approach is well suited to accommodate for large number of alternatives without a sizable increase in computational burden. The model was estimated using crash data at Traffic Analysis Zone (TAZ) level from Florida. The modeling results clearly illustrate the applicability of the proposed framework for crash proportion analysis. Further, the Excess Predicted Proportion (EPP)-a screening performance measure analogous to Highway Safety Manual (HSM), Excess Predicted Average Crash Frequency is proposed for hot zone identification. Using EPP, a statewide screening exercise by the various vehicle types considered in our analysis was undertaken. The screening results revealed that the spatial pattern of hot zones is substantially different across the various vehicle types considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Personality and diabetes mellitus incidence in a national sample.

    PubMed

    Cukić, Iva; Weiss, Alexander

    2014-09-01

    To test whether personality traits were prospectively associated with type 2 diabetes incidence. The sample (n=6798) was derived from the National Health and Nutrition Examination Survey Epidemiological Follow-up Study cohort. We fit four logistic regression models to test whether neuroticism, extraversion, openness to experience, or the Type A behavior pattern predicted type 2 diabetes incidence. Model 1 included sex, age, and race/ethnicity. Model 2 added personality traits, Model 3 added depressive symptoms, and Model 4 added body mass index (BMI), hypertension, and cigarette smoking status as predictors. In Model 1 age was associated with increased risk of diabetes (2% per year); being black as opposed to white was associated with a three-fold increase in risk. In Model 2 age and being black were still significant and extraversion was associated with decreased risk (17% per standard deviation [SD]). In Model 3 age, being black, and extraversion were still significant. In addition, neuroticism was associated with decreased risk (26% per SD) and depressive symptoms were associated with increased risk (28% per SD). In Model 4 age, being black, neuroticism, and depressive symptoms were still significant. BMI was associated with increased risk (14% per SD) and extraversion was no longer significant. Higher neuroticism was associated with reduced type 2 diabetes risk even after controlling for race/ethnicity, age, depressive symptoms, and BMI. Extraversion and Type A behavior were not significant after including covariates. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. A Comparative Study on Improved Arrhenius-Type and Artificial Neural Network Models to Predict High-Temperature Flow Behaviors in 20MnNiMo Alloy

    PubMed Central

    Yu, Chun-tang; Liu, Ying-ying; Xia, Yu-feng

    2014-01-01

    The stress-strain data of 20MnNiMo alloy were collected from a series of hot compressions on Gleeble-1500 thermal-mechanical simulator in the temperature range of 1173∼1473 K and strain rate range of 0.01∼10 s−1. Based on the experimental data, the improved Arrhenius-type constitutive model and the artificial neural network (ANN) model were established to predict the high temperature flow stress of as-cast 20MnNiMo alloy. The accuracy and reliability of the improved Arrhenius-type model and the trained ANN model were further evaluated in terms of the correlation coefficient (R), the average absolute relative error (AARE), and the relative error (η). For the former, R and AARE were found to be 0.9954 and 5.26%, respectively, while, for the latter, 0.9997 and 1.02%, respectively. The relative errors (η) of the improved Arrhenius-type model and the ANN model were, respectively, in the range of −39.99%∼35.05% and −3.77%∼16.74%. As for the former, only 16.3% of the test data set possesses η-values within ±1%, while, as for the latter, more than 79% possesses. The results indicate that the ANN model presents a higher predictable ability than the improved Arrhenius-type constitutive model. PMID:24688358

  8. Predictable quantum efficient detector based on n-type silicon photodiodes

    NASA Astrophysics Data System (ADS)

    Dönsberg, Timo; Manoocheri, Farshid; Sildoja, Meelis; Juntunen, Mikko; Savin, Hele; Tuovinen, Esa; Ronkainen, Hannu; Prunnila, Mika; Merimaa, Mikko; Tang, Chi Kwong; Gran, Jarle; Müller, Ingmar; Werner, Lutz; Rougié, Bernard; Pons, Alicia; Smîd, Marek; Gál, Péter; Lolli, Lapo; Brida, Giorgio; Rastello, Maria Luisa; Ikonen, Erkki

    2017-12-01

    The predictable quantum efficient detector (PQED) consists of two custom-made induced junction photodiodes that are mounted in a wedged trap configuration for the reduction of reflectance losses. Until now, all manufactured PQED photodiodes have been based on a structure where a SiO2 layer is thermally grown on top of p-type silicon substrate. In this paper, we present the design, manufacturing, modelling and characterization of a new type of PQED, where the photodiodes have an Al2O3 layer on top of n-type silicon substrate. Atomic layer deposition is used to deposit the layer to the desired thickness. Two sets of photodiodes with varying oxide thicknesses and substrate doping concentrations were fabricated. In order to predict recombination losses of charge carriers, a 3D model of the photodiode was built into Cogenda Genius semiconductor simulation software. It is important to note that a novel experimental method was developed to obtain values for the 3D model parameters. This makes the prediction of the PQED responsivity a completely autonomous process. Detectors were characterized for temperature dependence of dark current, spatial uniformity of responsivity, reflectance, linearity and absolute responsivity at the wavelengths of 488 nm and 532 nm. For both sets of photodiodes, the modelled and measured responsivities were generally in agreement within the measurement and modelling uncertainties of around 100 parts per million (ppm). There is, however, an indication that the modelled internal quantum deficiency may be underestimated by a similar amount. Moreover, the responsivities of the detectors were spatially uniform within 30 ppm peak-to-peak variation. The results obtained in this research indicate that the n-type induced junction photodiode is a very promising alternative to the existing p-type detectors, and thus give additional credibility to the concept of modelled quantum detector serving as a primary standard. Furthermore, the manufacturing of PQEDs is no longer dependent on the availability of a certain type of very lightly doped p-type silicon wafers.

  9. Critical frontier of the Potts and percolation models on triangular-type and kagome-type lattices. II. Numerical analysis

    NASA Astrophysics Data System (ADS)

    Ding, Chengxiang; Fu, Zhe; Guo, Wenan; Wu, F. Y.

    2010-06-01

    In the preceding paper, one of us (F. Y. Wu) considered the Potts model and bond and site percolation on two general classes of two-dimensional lattices, the triangular-type and kagome-type lattices, and obtained closed-form expressions for the critical frontier with applications to various lattice models. For the triangular-type lattices Wu’s result is exact, and for the kagome-type lattices Wu’s expression is under a homogeneity assumption. The purpose of the present paper is twofold: First, an essential step in Wu’s analysis is the derivation of lattice-dependent constants A,B,C for various lattice models, a process which can be tedious. We present here a derivation of these constants for subnet networks using a computer algorithm. Second, by means of a finite-size scaling analysis based on numerical transfer matrix calculations, we deduce critical properties and critical thresholds of various models and assess the accuracy of the homogeneity assumption. Specifically, we analyze the q -state Potts model and the bond percolation on the 3-12 and kagome-type subnet lattices (n×n):(n×n) , n≤4 , for which the exact solution is not known. Our numerical determination of critical properties such as conformal anomaly and magnetic correlation length verifies that the universality principle holds. To calibrate the accuracy of the finite-size procedure, we apply the same numerical analysis to models for which the exact critical frontiers are known. The comparison of numerical and exact results shows that our numerical values are correct within errors of our finite-size analysis, which correspond to 7 or 8 significant digits. This in turn infers that the homogeneity assumption determines critical frontiers with an accuracy of 5 decimal places or higher. Finally, we also obtained the exact percolation thresholds for site percolation on kagome-type subnet lattices (1×1):(n×n) for 1≤n≤6 .

  10. Aerosol-type retrieval and uncertainty quantification from OMI data

    NASA Astrophysics Data System (ADS)

    Kauppi, Anu; Kolmonen, Pekka; Laine, Marko; Tamminen, Johanna

    2017-11-01

    We discuss uncertainty quantification for aerosol-type selection in satellite-based atmospheric aerosol retrieval. The retrieval procedure uses precalculated aerosol microphysical models stored in look-up tables (LUTs) and top-of-atmosphere (TOA) spectral reflectance measurements to solve the aerosol characteristics. The forward model approximations cause systematic differences between the modelled and observed reflectance. Acknowledging this model discrepancy as a source of uncertainty allows us to produce more realistic uncertainty estimates and assists the selection of the most appropriate LUTs for each individual retrieval.This paper focuses on the aerosol microphysical model selection and characterisation of uncertainty in the retrieved aerosol type and aerosol optical depth (AOD). The concept of model evidence is used as a tool for model comparison. The method is based on Bayesian inference approach, in which all uncertainties are described as a posterior probability distribution. When there is no single best-matching aerosol microphysical model, we use a statistical technique based on Bayesian model averaging to combine AOD posterior probability densities of the best-fitting models to obtain an averaged AOD estimate. We also determine the shared evidence of the best-matching models of a certain main aerosol type in order to quantify how plausible it is that it represents the underlying atmospheric aerosol conditions.The developed method is applied to Ozone Monitoring Instrument (OMI) measurements using a multiwavelength approach for retrieving the aerosol type and AOD estimate with uncertainty quantification for cloud-free over-land pixels. Several larger pixel set areas were studied in order to investigate the robustness of the developed method. We evaluated the retrieved AOD by comparison with ground-based measurements at example sites. We found that the uncertainty of AOD expressed by posterior probability distribution reflects the difficulty in model selection. The posterior probability distribution can provide a comprehensive characterisation of the uncertainty in this kind of problem for aerosol-type selection. As a result, the proposed method can account for the model error and also include the model selection uncertainty in the total uncertainty budget.

  11. Explicit modeling of groundwater-surface water interactions using a simple bucket-type model

    NASA Astrophysics Data System (ADS)

    Staudinger, Maria; Carlier, Claire; Brunner, Philip; Seibert, Jan

    2017-04-01

    Longer dry spells can become critical for water supply and groundwater dependent ecosystems. During these dry spells groundwater is often the most relevant source for streams. Hence, the hydrological behavior of a catchment is often dominated by groundwater surface water interactions, which can vary considerably in space and time. While classical hydrological approaches hardly consider this spatial dependence, quantitative, hydrogeological modeling approaches can couple surface runoff processes and groundwater processes. Hydrogeological modeling can help to gain an improved understanding of catchment processes during low flow. However, due to their complex parametrization and large computational requirements, such hydrogeological models are difficult to employ at catchment scale, particularly for a larger set of catchments. Then bucket-type hydrological models remain a practical alternative. In this study we combine the strengths of both the hydrogeological and bucket-type hydrological models to better understand low flow processes and ultimately to use this knowledge for low flow projections. Bucket-type hydrological models have traditionally not been developed with focus on the simulation of low flow. One consequence is that interactions between surface and groundwater are not explicitly considered. Water fluxes in bucket-type hydrological models are commonly simulated only in one direction, namely from the groundwater to the stream but not from the stream to the groundwater. This latter flux, however, can become more important during low flow situations. We therefore further developed the bucket-type hydrological model HBV to simulate low flow situations by allowing for exchange in both directions i.e. also from the stream to the groundwater. The additional HBV exchange box is developed by using a variety of synthetic hydrogeological models as training set that were generated using a fully coupled, physically based hydrogeological model. In this way processes that occur in different spatial settings within the catchment are translated to functional relationships and effective parameter values for the conceptual exchange box can be extracted. Here, we show the development and evaluation of the HBV exchange box. We further show a first application in real catchments and evaluate the model performance by comparing the simulations to benchmark models that do not consider groundwater surface water interaction.

  12. Continuum mesoscopic framework for multiple interacting species and processes on multiple site types and/or crystallographic planes.

    PubMed

    Chatterjee, Abhijit; Vlachos, Dionisios G

    2007-07-21

    While recently derived continuum mesoscopic equations successfully bridge the gap between microscopic and macroscopic physics, so far they have been derived only for simple lattice models. In this paper, general deterministic continuum mesoscopic equations are derived rigorously via nonequilibrium statistical mechanics to account for multiple interacting surface species and multiple processes on multiple site types and/or different crystallographic planes. Adsorption, desorption, reaction, and surface diffusion are modeled. It is demonstrated that contrary to conventional phenomenological continuum models, microscopic physics, such as the interaction potential, determines the final form of the mesoscopic equation. Models of single component diffusion and binary diffusion of interacting particles on single-type site lattice and of single component diffusion on complex microporous materials' lattices consisting of two types of sites are derived, as illustrations of the mesoscopic framework. Simplification of the diffusion mesoscopic model illustrates the relation to phenomenological models, such as the Fickian and Maxwell-Stefan transport models. It is demonstrated that the mesoscopic equations are in good agreement with lattice kinetic Monte Carlo simulations for several prototype examples studied.

  13. A test of the cognitive social learning model of type A behavior.

    PubMed

    Matteson, M T; Ivancevich, J M; Gamble, G O

    1987-01-01

    Portions of the cognitive social learning model proposed by Price as an explanation for the development and maintenance of Type A behavior were examined empirically. Specifically, the hypothesis that Type A behavior is fostered by various beliefs and fears and that these same beliefs and fears arise, in part, as the result of certain parental characteristics was investigated. A questionnaire assessing Type A behavior and the beliefs, fears, and parental characteristics proposed by Price was constructed and administered to a sample of males and females. The results indicated moderate associations between the variables examined for both males and females, with no significant gender differences in the pattern of relationships. The findings are congruent with relationships proposed by Price's model. Implications of the model are discussed in terms of additional research needed.

  14. Two risk score models for predicting incident Type 2 diabetes in Japan.

    PubMed

    Doi, Y; Ninomiya, T; Hata, J; Hirakawa, Y; Mukai, N; Iwase, M; Kiyohara, Y

    2012-01-01

    Risk scoring methods are effective for identifying persons at high risk of Type 2 diabetes mellitus, but such approaches have not yet been established in Japan. A total of 1935 subjects of a derivation cohort were followed up for 14 years from 1988 and 1147 subjects of a validation cohort independent of the derivation cohort were followed up for 5 years from 2002. Risk scores were estimated based on the coefficients (β) of Cox proportional hazards model in the derivation cohort and were verified in the validation cohort. In the derivation cohort, the non-invasive risk model was established using significant risk factors; namely, age, sex, family history of diabetes, abdominal circumference, body mass index, hypertension, regular exercise and current smoking. We also created another scoring risk model by adding fasting plasma glucose levels to the non-invasive model (plus-fasting plasma glucose model). The area under the curve of the non-invasive model was 0.700 and it increased significantly to 0.772 (P < 0.001) in the plus-fasting plasma glucose model. The ability of the non-invasive model to predict Type 2 diabetes was comparable with that of impaired glucose tolerance, and the plus-fasting plasma glucose model was superior to it. The cumulative incidence of Type 2 diabetes was significantly increased with elevating quintiles of the sum scores of both models in the validation cohort (P for trend < 0.001). We developed two practical risk score models for easily identifying individuals at high risk of incident Type 2 diabetes without an oral glucose tolerance test in the Japanese population. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  15. A risk score for in-hospital death in patients admitted with ischemic or hemorrhagic stroke.

    PubMed

    Smith, Eric E; Shobha, Nandavar; Dai, David; Olson, DaiWai M; Reeves, Mathew J; Saver, Jeffrey L; Hernandez, Adrian F; Peterson, Eric D; Fonarow, Gregg C; Schwamm, Lee H

    2013-01-28

    We aimed to derive and validate a single risk score for predicting death from ischemic stroke (IS), intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). Data from 333 865 stroke patients (IS, 82.4%; ICH, 11.2%; SAH, 2.6%; uncertain type, 3.8%) in the Get With The Guidelines-Stroke database were used. In-hospital mortality varied greatly according to stroke type (IS, 5.5%; ICH, 27.2%; SAH, 25.1%; unknown type, 6.0%; P<0.001). The patients were randomly divided into derivation (60%) and validation (40%) samples. Logistic regression was used to determine the independent predictors of mortality and to assign point scores for a prediction model in the overall population and in the subset with the National Institutes of Health Stroke Scale (NIHSS) recorded (37.1%). The c statistic, a measure of how well the models discriminate the risk of death, was 0.78 in the overall validation sample and 0.86 in the model including NIHSS. The model with NIHSS performed nearly as well in each stroke type as in the overall model including all types (c statistics for IS alone, 0.85; for ICH alone, 0.83; for SAH alone, 0.83; uncertain type alone, 0.86). The calibration of the model was excellent, as demonstrated by plots of observed versus predicted mortality. A single prediction score for all stroke types can be used to predict risk of in-hospital death following stroke admission. Incorporation of NIHSS information substantially improves this predictive accuracy.

  16. 46 CFR 154.449 - Model test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.449 Model test. The following analyzed data of a model test of structural elements for independent tank type B must be submitted to the Commandant (CG-ENG) for special approval: (a) Stress concentration...

  17. 78 FR 31863 - Airworthiness Directives; Sikorsky Aircraft Corporation-Manufactured (Sikorsky) Model Helicopters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... Corporation- Manufactured (Sikorsky) Model Helicopters (type certificate currently held by Erickson Air-Crane... Corporation-manufactured Model S-64E helicopters (type certificate currently held by Erickson Air-Crane Incorporated (Erickson)). That AD currently requires inspecting and reworking the main gearbox (MGB) assembly...

  18. A Multidisciplinary Model for Development of Intelligent Computer-Assisted Instruction.

    ERIC Educational Resources Information Center

    Park, Ok-choon; Seidel, Robert J.

    1989-01-01

    Proposes a schematic multidisciplinary model to help developers of intelligent computer-assisted instruction (ICAI) identify the types of required expertise and integrate them into a system. Highlights include domain types and expertise; knowledge acquisition; task analysis; knowledge representation; student modeling; diagnosis of learning needs;…

  19. Using NASTRAN to model missile inertia loads

    NASA Technical Reports Server (NTRS)

    Marvin, R.; Porter, C.

    1985-01-01

    An important use of NASTRAN is in the area of structural loads analysis on weapon systems carried aboard aircraft. The program is used to predict bending moments and shears in missile bodies, when subjected to aircraft induced accelerations. The missile, launcher and aircraft wing are idealized, using rod and beam type elements for solution economy. Using the inertia relief capability of NASTRAN, the model is subjected to various acceleration combinations. It is found to be difficult to model the launcher sway braces and hooks which transmit compression only or tension only type forces respectively. A simple, iterative process was developed to overcome this modeling difficulty. A proposed code modification would help model compression or tension only contact type problems.

  20. Analysis of Predominance of Sexual Reproduction and Quadruplicity of Bases by Computer Simulation

    NASA Astrophysics Data System (ADS)

    Dasgupta, Subinay

    We have presented elsewhere a model for computer simulation of a colony of individuals reproducing sexually, by meiotic parthenogenesis and by cloning. Our algorithm takes into account food and space restriction, and attacks of some diseases. Each individual is characterized by a string of L ``base'' units, each of which can be of four types (quaternary model) or two types (binary model). Our previous report was for the case of L=12 (quaternary model) and L=24 (binary model) and contained the result that the fluctuation of population was the lowest for sexual reproduction with four types of base units. The present communication reports that the same conclusion also holds for L=10 (quaternary model) and L=20 (binary model), and for L=8 (quaternary model) and L=16 (binary model). This model however, suffers from the drawback that it does not show the effect of aging. A modification of the model was attempted to remove this drawback, but the results were not encouraging.

  1. Future projections of synoptic weather types over the Arabian Peninsula during the twenty-first century using an ensemble of CMIP5 models

    NASA Astrophysics Data System (ADS)

    El Kenawy, Ahmed M.; McCabe, Matthew F.

    2017-10-01

    An assessment of future change in synoptic conditions over the Arabian Peninsula throughout the twenty-first century was performed using 20 climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. We employed the mean sea level pressure (SLP) data from model output together with NCEP/NCAR reanalysis data and compared the relevant circulation types produced by the Lamb classification scheme for the base period 1975-2000. Overall, model results illustrated good agreement with the reanalysis, albeit with a tendency to underestimate cyclonic (C) and southeasterly (SE) patterns and to overestimate anticyclones and directional flows. We also investigated future projections for each circulation-type during the rainy season (December-May) using three Representative Concentration Pathways (RCPs), comprising RCP2.6, RCP4.5, and RCP8.5. Overall, two scenarios (RCP4.5 and RCP 8.5) revealed a statistically significant increase in weather types favoring above normal rainfall in the region (e.g., C and E-types). In contrast, weather types associated with lower amounts of rainfall (e.g., anticyclones) are projected to decrease in winter but increase in spring. For all scenarios, there was consistent agreement on the sign of change (i.e., positive/negative) for the most frequent patterns (e.g., C, SE, E and A-types), whereas the sign was uncertain for less recurrent types (e.g., N, NW, SE, and W). The projected changes in weather type frequencies in the region can be viewed not only as indicators of change in rainfall response but may also be used to inform impact studies pertinent to water resource planning and management, extreme weather analysis, and agricultural production.

  2. The Potential of Computational Fluid Dynamics Simulation on Serial Monitoring of Hemodynamic Change in Type B Aortic Dissection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Simon C. H., E-mail: simonyu@cuhk.edu.hk; Liu, Wen; Wong, Randolph H. L.

    PurposeWe aimed to assess the potential of computational fluid dynamics simulation (CFD) in detecting changes in pressure and flow velocity in response to morphological changes in type B aortic dissection.Materials and MethodsPressure and velocity in four morphological models of type B aortic dissection before and after closure of the entry tear were calculated with CFD and analyzed for changes among the different scenarios. The control model (Model 1) was patient specific and built from the DICOM data of CTA, which bore one entry tear and three re-entry tears. Models 2–4 were modifications of Model 1, with two re-entry tears lessmore » in Model 2, one re-entry tear more in Model 3, and a larger entry tear in Model 4.ResultsThe pressure and velocity pertaining to each of the morphological models were unique. Changes in pressure and velocity findings were accountable by the changes in morphological features of the different models. There was no blood flow in the false lumen across the entry tear after its closure, the blood flow direction across the re-entry tears was reversed after closure of the entry tear.ConclusionCFD simulation is probably useful to detect hemodynamic changes in the true and false lumens of type B aortic dissection in response to morphological changes, it may potentially be developed into a non-invasive and patient-specific tool for serial monitoring of hemodynamic changes of type B aortic dissection before and after treatment.« less

  3. PTSD's factor structure and measurement invariance across subgroups with differing count of trauma types.

    PubMed

    Contractor, Ateka A; Caldas, Stephanie V; Dolan, Megan; Lagdon, Susan; Armour, Chérie

    2018-06-01

    To investigate the effect of the count of traumatizing event (TE) types on post-trauma mental health, several studies have compared posttraumatic stress disorder (PTSD) severity between individuals experiencing one versus multiple TE types. However, the validity of these studies depends on the establishment of measurement invariance of the construct(s) of interest. The current study examined the stability of the most optimal PTSD Model symptom cluster constructs (assessed by the PTSD Checklist for DSM-5 [PCL-5]) across subgroups experiencing one versus multiple TE types. The sample included university students (n = 556) endorsing at least one TE (Stressful Life Events Screening Questionnaire). Using data from the entire sample, results suggest that the PCL-5-assessed Hybrid Model provided a significantly better fit compared to other models. Results also indicated invariance of factor loadings (metric), and intercepts (scalar) for the PCL-5-assessed Hybrid Model factors across subgroups endorsing one (n = 191) versus multiple TE types (n = 365). Our findings thus support the stability, applicability, and meaningful comparison of the PCL-assessed Hybrid Model factor structure (including subscale severity scores) across subgroups experiencing one versus multiple TE types. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Modelling Farm Animal Welfare

    PubMed Central

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  5. Modelling healthcare systems with phase-type distributions.

    PubMed

    Fackrell, Mark

    2009-03-01

    Phase-type distributions constitute a very versatile class of distributions. They have been used in a wide range of stochastic modelling applications in areas as diverse as telecommunications, finance, biostatistics, queueing theory, drug kinetics, and survival analysis. Their use in modelling systems in the healthcare industry, however, has so far been limited. In this paper we introduce phase-type distributions, give a survey of where they have been used in the healthcare industry, and propose some ideas on how they could be further utilized.

  6. Circadian typology, age, and the alternative five-factor personality model in an adult women sample.

    PubMed

    Muro, Anna; Gomà-i-Freixanet, Montserrat; Adan, Ana; Cladellas, Ramon

    2011-10-01

    Research on personality and circadian typology indicates evening-type women are more impulsive and novelty seeking, neither types are more anxious, and morning types tend to be more active, conscientious, and persistent. The purpose of this study is to examine the differences between circadian typologies in the light of the Zuckerman's Alternative Five-Factor Model (AFFM) of personality, which has a strong biological basis, in an adult sample of 412 women 18 to 55 yrs of age. The authors found morning-type women had significant higher scores than evening-type and neither-type women on Activity, and its subscales General Activity and Work Activity. In contrast, evening-type women scored significantly higher than morning-type women on Aggression-Hostility, Impulsive Sensation Seeking, and its subscale Sensation Seeking. In all groups, results were independent of age. These findings are in accordance with those previously obtained in female student samples and add new data on the AFFM. The need of using personality models that are biologically based in the study of circadian rhythms is discussed.

  7. Hydrodynamic endurance test of the prosthetic valve used in the various types of the ventricular assist device.

    PubMed

    Nitta, S; Yambe, T; Katahira, Y; Sonobe, T; Saijoh, Y; Naganuma, S; Akiho, H; Kakinuma, Y; Tanaka, M; Miura, M

    1991-12-01

    To evaluate the various basic designs of the pump chambers used in the ventricular assist devices (VADs), hydrodynamic endurance test was performed from the viewpoint of the durability of the prosthetic valves used in the VAD. For the hydrodynamic analysis, we designed three basic types of pump (sac type, diaphragm type, and pusher plate type) using the same material and having the same capacity and shape. Prosthetic valves in these VADs were tested from the standpoint of the water hammer effect, which affects the valve durability, to determine which pump design would be most durable as a prosthetic valve in the VAD. The water-hammer phenomenon was evaluated using the maximum pressure gradient (MPG) across the prosthetic valve in the moc circulatory loop. Maximum pump output was recorded when we used the diaphragm type model, and minimum MPG in the commonly used driving condition of the VAD were recorded when we used the sac type model. The results suggest that the sac type VAD model is the most durable design for the prosthetic value.

  8. A Budyko-type Model for Human Water Consumption

    NASA Astrophysics Data System (ADS)

    Lei, X.; Zhao, J.; Wang, D.; Sivapalan, M.

    2017-12-01

    With the expansion of human water footprint, water crisis is no longer only a conflict or competition for water between different economic sectors, but also increasingly between human and the environment. In order to describe the emergent dynamics and patterns of the interaction, a theoretical framework that encapsulates the physical and societal controls impacting human water consumption is needed. In traditional hydrology, Budyko-type models are simple but efficient descriptions of vegetation-mediated hydrologic cycle in catchments, i.e., the partitioning of mean annual precipitation into runoff and evapotranspiration. Plant water consumption plays a crucial role in the process. Hypothesized similarities between human-water and vegetation-water interactions, including water demand, constraints and system functioning, give the idea of corresponding Budyko-type framework for human water consumption at the catchment scale. Analogous to variables of Budyko-type models for hydrologic cycle, water demand, water consumption, environmental water use and available water are corresponding to potential evaporation, actual evaporation, runoff and precipitation respectively. Human water consumption data, economic and hydro-meteorological data for 51 human-impacted catchments and 10 major river basins in China are assembled to look for the existence of a Budyko-type relationship for human water consumption, and to seek explanations for the spread in the observed relationship. Guided by this, a Budyko-type analytical model is derived based on application of an optimality principle, that of maximum water benefit. The model derived has the same functional form and mathematical features as those that apply for the original Budyko model. Parameters of the new Budyko-type model for human consumption are linked to economic and social factors. The results of this paper suggest that the functioning of both social and hydrologic subsystems within catchment systems can be explored within a common conceptual framework, thus providing a unified socio-hydrologic basis for the study of coupled human-water systems. The exploration of the theoretical connections between the two subsystems pushes the water system modeling from a problem-solving orientation to puzzle-solving orientation.

  9. Statistical analysis of target acquisition sensor modeling experiments

    NASA Astrophysics Data System (ADS)

    Deaver, Dawne M.; Moyer, Steve

    2015-05-01

    The U.S. Army RDECOM CERDEC NVESD Modeling and Simulation Division is charged with the development and advancement of military target acquisition models to estimate expected soldier performance when using all types of imaging sensors. Two elements of sensor modeling are (1) laboratory-based psychophysical experiments used to measure task performance and calibrate the various models and (2) field-based experiments used to verify the model estimates for specific sensors. In both types of experiments, it is common practice to control or measure environmental, sensor, and target physical parameters in order to minimize uncertainty of the physics based modeling. Predicting the minimum number of test subjects required to calibrate or validate the model should be, but is not always, done during test planning. The objective of this analysis is to develop guidelines for test planners which recommend the number and types of test samples required to yield a statistically significant result.

  10. Inclusion of thin target and source regions in alimentary and respiratory tract systems of mesh-type ICRP adult reference phantoms

    NASA Astrophysics Data System (ADS)

    Kim, Han Sung; Yeom, Yeon Soo; Tat Nguyen, Thang; Choi, Chansoo; Han, Min Cheol; Lee, Jai Ki; Kim, Chan Hyeong; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik; Qiu, Rui; Eckerman, Keith; Chung, Beom Sun

    2017-03-01

    It is not feasible to define very small or complex organs and tissues in the current voxel-type adult reference computational phantoms of the International Commission on Radiological Protection (ICRP), which limit dose coefficients for weakly penetrating radiations. To address the problem, the ICRP is converting the voxel-type reference phantoms into mesh-type phantoms. In the present study, as a part of the conversion project, the micrometer-thick target and source regions in the alimentary and respiratory tract systems as described in ICRP Publications 100 and 66 were included in the mesh-type ICRP reference adult male and female phantoms. In addition, realistic lung airway models were simulated to represent the bronchial (BB) and bronchiolar (bb) regions. The electron specific absorbed fraction (SAF) values for the alimentary and respiratory tract systems were then calculated and compared with the values calculated with the stylized models of ICRP Publications 100 and 66. The comparisons show generally good agreement for the oral cavity, oesophagus, and BB, whereas for the stomach, small intestine, large intestine, extrathoracic region, and bb, there are some differences (e.g. up to ~9 times in the large intestine). The difference is mainly due to anatomical difference in these organs between the realistic mesh-type phantoms and the simplified stylized models. The new alimentary and respiratory tract models in the mesh-type ICRP reference phantoms preserve the topology and dimensions of the voxel-type ICRP phantoms and provide more reliable SAF values than the simplified models adopted in previous ICRP Publications.

  11. What makes us think? A three-stage dual-process model of analytic engagement.

    PubMed

    Pennycook, Gordon; Fugelsang, Jonathan A; Koehler, Derek J

    2015-08-01

    The distinction between intuitive and analytic thinking is common in psychology. However, while often being quite clear on the characteristics of the two processes ('Type 1' processes are fast, autonomous, intuitive, etc. and 'Type 2' processes are slow, deliberative, analytic, etc.), dual-process theorists have been heavily criticized for being unclear on the factors that determine when an individual will think analytically or rely on their intuition. We address this issue by introducing a three-stage model that elucidates the bottom-up factors that cause individuals to engage Type 2 processing. According to the model, multiple Type 1 processes may be cued by a stimulus (Stage 1), leading to the potential for conflict detection (Stage 2). If successful, conflict detection leads to Type 2 processing (Stage 3), which may take the form of rationalization (i.e., the Type 1 output is verified post hoc) or decoupling (i.e., the Type 1 output is falsified). We tested key aspects of the model using a novel base-rate task where stereotypes and base-rate probabilities cued the same (non-conflict problems) or different (conflict problems) responses about group membership. Our results support two key predictions derived from the model: (1) conflict detection and decoupling are dissociable sources of Type 2 processing and (2) conflict detection sometimes fails. We argue that considering the potential stages of reasoning allows us to distinguish early (conflict detection) and late (decoupling) sources of analytic thought. Errors may occur at both stages and, as a consequence, bias arises from both conflict monitoring and decoupling failures. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Modeling and performance improvement of the constant power regulator systems in variable displacement axial piston pump.

    PubMed

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

  13. A genetically engineered human Kunitz protease inhibitor with increased kallikrein inhibition in an ovine model of cardiopulmonary bypass.

    PubMed

    Ohri, S K; Parratt, R; White, T; Becket, J; Brannan, J J; Hunt, B J; Taylor, K M

    2001-05-01

    A recombinant human serine protease inhibitor known as Kunitz protease inhibitor (KPI) wild type has functional similarities to the bovine Kunitz inhibitor, aprotinin, and had shown a potential to reduce bleeding in an ovine model of cardiopulmonary bypass (CPB). The aim of this study was to assess KPI-185, a modification of KPI-wild type that differs from KPI-wild type in two amino acid residues and which enhances anti-kallikrein activity in a further double-blind, randomized study in an ovine model of CPB, and to compare with our previous study of KPI-wild type and aprotinin in the same ovine model. Post-operative drain losses and subjective assessment of wound 'dryness' showed no significant differences between KPI-185 and KPI-wild type, despite the significant enhancement of kallikrein inhibition using KPI-185 seen in serial kallikrein inhibition assays. These preliminary findings support the hypothesis that kallikrein inhibition is not the major mechanism by which Kunitz inhibitors such as aprotinin reduce perioperative bleeding.

  14. Tobacco Town: Computational Modeling of Policy Options to Reduce Tobacco Retailer Density.

    PubMed

    Luke, Douglas A; Hammond, Ross A; Combs, Todd; Sorg, Amy; Kasman, Matt; Mack-Crane, Austen; Ribisl, Kurt M; Henriksen, Lisa

    2017-05-01

    To identify the behavioral mechanisms and effects of tobacco control policies designed to reduce tobacco retailer density. We developed the Tobacco Town agent-based simulation model to examine 4 types of retailer reduction policies: (1) random retailer reduction, (2) restriction by type of retailer, (3) limiting proximity of retailers to schools, and (4) limiting proximity of retailers to each other. The model examined the effects of these policies alone and in combination across 4 different types of towns, defined by 2 levels of population density (urban vs suburban) and 2 levels of income (higher vs lower). Model results indicated that reduction of retailer density has the potential to decrease accessibility of tobacco products by driving up search and purchase costs. Policy effects varied by town type: proximity policies worked better in dense, urban towns whereas retailer type and random retailer reduction worked better in less-dense, suburban settings. Comprehensive retailer density reduction policies have excellent potential to reduce the public health burden of tobacco use in communities.

  15. Recommendations for choosing an analysis method that controls Type I error for unbalanced cluster sample designs with Gaussian outcomes.

    PubMed

    Johnson, Jacqueline L; Kreidler, Sarah M; Catellier, Diane J; Murray, David M; Muller, Keith E; Glueck, Deborah H

    2015-11-30

    We used theoretical and simulation-based approaches to study Type I error rates for one-stage and two-stage analytic methods for cluster-randomized designs. The one-stage approach uses the observed data as outcomes and accounts for within-cluster correlation using a general linear mixed model. The two-stage model uses the cluster specific means as the outcomes in a general linear univariate model. We demonstrate analytically that both one-stage and two-stage models achieve exact Type I error rates when cluster sizes are equal. With unbalanced data, an exact size α test does not exist, and Type I error inflation may occur. Via simulation, we compare the Type I error rates for four one-stage and six two-stage hypothesis testing approaches for unbalanced data. With unbalanced data, the two-stage model, weighted by the inverse of the estimated theoretical variance of the cluster means, and with variance constrained to be positive, provided the best Type I error control for studies having at least six clusters per arm. The one-stage model with Kenward-Roger degrees of freedom and unconstrained variance performed well for studies having at least 14 clusters per arm. The popular analytic method of using a one-stage model with denominator degrees of freedom appropriate for balanced data performed poorly for small sample sizes and low intracluster correlation. Because small sample sizes and low intracluster correlation are common features of cluster-randomized trials, the Kenward-Roger method is the preferred one-stage approach. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Investigating strength and frequency effects in recognition memory using type-2 signal detection theory.

    PubMed

    Higham, Philip A; Perfect, Timothy J; Bruno, Davide

    2009-01-01

    Criterion- versus distribution-shift accounts of frequency and strength effects in recognition memory were investigated with Type-2 signal detection receiver operating characteristic (ROC) analysis, which provides a measure of metacognitive monitoring. Experiment 1 demonstrated a frequency-based mirror effect, with a higher hit rate and lower false alarm rate, for low frequency words compared with high frequency words. In Experiment 2, the authors manipulated item strength with repetition, which showed an increased hit rate but no effect on the false alarm rate. Whereas Type-1 indices were ambiguous as to whether these effects were based on a criterion- or distribution-shift model, the two models predict opposite effects on Type-2 distractor monitoring under some assumptions. Hence, Type-2 ROC analysis discriminated between potential models of recognition that could not be discriminated using Type-1 indices alone. In Experiment 3, the authors manipulated Type-1 response bias by varying the number of old versus new response categories to confirm the assumptions made in Experiments 1 and 2. The authors conclude that Type-2 analyses are a useful tool for investigating recognition memory when used in conjunction with more traditional Type-1 analyses.

  17. UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.

    NASA Astrophysics Data System (ADS)

    Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas

    2018-01-01

    The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.

  18. Predicting NonInertial Effects with Algebraic Stress Models which Account for Dissipation Rate Anisotropies

    NASA Technical Reports Server (NTRS)

    Jongen, T.; Machiels, L.; Gatski, T. B.

    1997-01-01

    Three types of turbulence models which account for rotational effects in noninertial frames of reference are evaluated for the case of incompressible, fully developed rotating turbulent channel flow. The different types of models are a Coriolis-modified eddy-viscosity model, a realizable algebraic stress model, and an algebraic stress model which accounts for dissipation rate anisotropies. A direct numerical simulation of a rotating channel flow is used for the turbulent model validation. This simulation differs from previous studies in that significantly higher rotation numbers are investigated. Flows at these higher rotation numbers are characterized by a relaminarization on the cyclonic or suction side of the channel, and a linear velocity profile on the anticyclonic or pressure side of the channel. The predictive performance of the three types of models are examined in detail, and formulation deficiencies are identified which cause poor predictive performance for some of the models. Criteria are identified which allow for accurate prediction of such flows by algebraic stress models and their corresponding Reynolds stress formulations.

  19. Robust Linear Models for Cis-eQTL Analysis.

    PubMed

    Rantalainen, Mattias; Lindgren, Cecilia M; Holmes, Christopher C

    2015-01-01

    Expression Quantitative Trait Loci (eQTL) analysis enables characterisation of functional genetic variation influencing expression levels of individual genes. In outbread populations, including humans, eQTLs are commonly analysed using the conventional linear model, adjusting for relevant covariates, assuming an allelic dosage model and a Gaussian error term. However, gene expression data generally have noise that induces heavy-tailed errors relative to the Gaussian distribution and often include atypical observations, or outliers. Such departures from modelling assumptions can lead to an increased rate of type II errors (false negatives), and to some extent also type I errors (false positives). Careful model checking can reduce the risk of type-I errors but often not type II errors, since it is generally too time-consuming to carefully check all models with a non-significant effect in large-scale and genome-wide studies. Here we propose the application of a robust linear model for eQTL analysis to reduce adverse effects of deviations from the assumption of Gaussian residuals. We present results from a simulation study as well as results from the analysis of real eQTL data sets. Our findings suggest that in many situations robust models have the potential to provide more reliable eQTL results compared to conventional linear models, particularly in respect to reducing type II errors due to non-Gaussian noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are often noisy and frequently contain atypical observations. Robust statistical models have the potential to provide more reliable results and increased statistical power under non-Gaussian conditions. The results presented here suggest that robust models should be considered routinely alongside other commonly used methodologies for eQTL analysis.

  20. Modeling terminal ballistics using blending-type spline surfaces

    NASA Astrophysics Data System (ADS)

    Pedersen, Aleksander; Bratlie, Jostein; Dalmo, Rune

    2014-12-01

    We explore using GERBS, a blending-type spline construction, to represent deform able thin-plates and model terminal ballistics. Strategies to construct geometry for different scenarios of terminal ballistics are proposed.

  1. Polarisation Spectral Synthesis For Type Ia Supernova Explosion Models

    NASA Astrophysics Data System (ADS)

    Bulla, Mattia

    2017-02-01

    Despite their relevance across a broad range of astrophysical research topics, Type Ia supernova explosions are still poorly understood and answers to the questions of when, why and how these events are triggered remain unclear. In this respect, polarisation offers a unique opportunity to discriminate between the variety of possible scenarios. The observational evidence that Type Ia supernovae are associated with rather low polarisation signals (smaller than a few per cent) places strong constraints for models and calls for modest asphericities in the progenitor system and/or explosion mechanism.The goal of this thesis is to assess the validity of contemporary Type Ia supernova explosion models by testing whether their predicted polarisation signatures can account for the small signals usually observed. To this end, we have implemented and tested an innovative Monte Carlo scheme in the radiative transfer code artis. Compared to previous Monte Carlo approaches, this technique produces synthetic observables (light curves, flux and polarisation spectra) with a substantial reduction in the Monte Carlo noise and therefore in the required computing time. This improvement is particularly crucial for our study as we aim to extract very weak polarisation signals, comparable to those detected in Type Ia supernovae. We have also demonstrated the applicability of this method to other classes of supernovae via a preliminary study of the first spectropolarimetry observations of superluminous supernovae.Using this scheme, we have calculated synthetic spectropolarimetry for three multi-dimensional explosion models recently proposed as promising candidates to explain Type Ia supernovae. Our findings highlight the power of spectropolarimetry in testing and discriminating between different scenarios. While all the three models predict light curves and flux spectra that are similar to each others and reproduce those observed in Type Ia supernovae comparably well, polarisation does provide a clear distinction. In particular, we find that one model is too strongly asymmetric and produces polarisation levels that are too high and clearly inconsistent with those detected for the bulk of Type Ia supernovae. Polarisation signals - and their time evolution - extracted for the remaining two models are instead in good agreement with the currently available spectropolarimetry data. Providing a powerful way to connect hydrodynamic explosion models to observed data, the study presented in this thesis is an important step towards a better understanding of Type Ia supernovae from a synthesis of theory and observations.

  2. Modulation of subthalamic T-type Ca2+ channels remedies locomotor deficits in a rat model of Parkinson disease

    PubMed Central

    Tai, Chun-Hwei; Yang, Ya-Chin; Pan, Ming-Kai; Huang, Chen-Syuan; Kuo, Chung-Chin

    2011-01-01

    An increase in neuronal burst activities in the subthalamic nucleus (STN) is a well-documented electrophysiological feature of Parkinson disease (PD). However, the causal relationship between subthalamic bursts and PD symptoms and the ionic mechanisms underlying the bursts remain to be established. Here, we have shown that T-type Ca2+ channels are necessary for subthalamic burst firing and that pharmacological blockade of T-type Ca2+ channels reduces motor deficits in a rat model of PD. Ni2+, mibefradil, NNC 55-0396, and efonidipine, which inhibited T-type Ca2+ currents in acutely dissociated STN neurons, but not Cd2+ and nifedipine, which preferentially inhibited L-type or the other non–T-type Ca2+ currents, effectively diminished burst activity in STN slices. Topical administration of inhibitors of T-type Ca2+ channels decreased in vivo STN burst activity and dramatically reduced the locomotor deficits in a rat model of PD. Cd2+ and nifedipine showed no such electrophysiological and behavioral effects. While low-frequency deep brain stimulation (DBS) has been considered ineffective in PD, we found that lengthening the duration of the low-frequency depolarizing pulse effectively improved behavioral measures of locomotion in the rat model of PD, presumably by decreasing the availability of T-type Ca2+ channels. We therefore conclude that modulation of subthalamic T-type Ca2+ currents and consequent burst discharges may provide new strategies for the treatment of PD. PMID:21737877

  3. INFLUENCE OF TYPE II DIABETES, OBESITY, AND EXPOSURE TO 2, 3, 7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD) EXPOSURE ON THE EXPRESSION OF HEPATIC CYP1A2 IN A MURIN MODEL OF TYPE II DIABETES

    EPA Science Inventory

    Influence of type II diabetes, obesity and exposure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure on the expression of hepatic CYPIA2 in a murine model of type II diabetes. SJ Godin', VM Richardson2, JJ Diliberto2, LS Birnbaum', MJ DeVito2; 'Curriculum In Toxicology, UNC-CH...

  4. Extract of Ginkgo Biloba Ameliorates Streptozotocin-Induced Type 1 Diabetes Mellitus and High-Fat Diet-Induced Type 2 Diabetes Mellitus in Mice.

    PubMed

    Rhee, Ki-Jong; Lee, Chang Gun; Kim, Sung Woo; Gim, Dong-Hyeon; Kim, Hyun-Cheol; Jung, Bae Dong

    2015-01-01

    Diabetes mellitus (DM) is caused by either destruction of pancreatic β-cells (type 1 DM) or unresponsiveness to insulin (type 2 DM). Conventional therapies for diabetes mellitus have been developed but still needs improvement. Many diabetic patients have complemented conventional therapy with alternative methods including oral supplementation of natural products. In this study, we assessed whether Ginkgo biloba extract (EGb) 761 could provide beneficial effects in the streptozotocin-induced type 1 DM and high-fat diet-induced type 2 DM murine model system. For the type 1 DM model, streptozotocin-induced mice were orally administered EGb 761 for 10 days prior to streptozotocin injection and then again administered EGb 761 for an additional 10 days. Streptozotocin-treated mice administered EGb 761 exhibited lower blood triglyceride levels, lower blood glucose levels and higher blood insulin levels compared to streptozotocin-treated mice. Furthermore, liver LPL and liver PPAR-α were increased whereas IL-1β and TNF-α were decreased in streptozotocin-injected mice treated with EGb 761 compared to mice injected with streptozotocin alone. For the type 2 DM model, mice were given high-fat diet for 60 days and then orally administered EGb 761 every other day for 80 days. We found that mice given a high-fat diet and EGb 761 showed decreased blood triglyceride levels, increased liver LPL, increased liver PPAR-α and decreased body weight compared to mice given high-fat diet alone. These results suggest that EGb 761 can exert protective effects in both type 1 and type 2 DM murine models.

  5. Theoretical Analysis of Fas Ligand-Induced Apoptosis with an Ordinary Differential Equation Model.

    PubMed

    Shi, Zhimin; Li, Yan; Liu, Zhihai; Mi, Jun; Wang, Renxiao

    2012-12-01

    Upon the treatment of Fas ligand, different types of cells exhibit different apoptotic mechanisms, which are determined by a complex network of biological pathways. In order to derive a quantitative interpretation of the cell sensitivity and apoptosis pathways, we have developed an ordinary differential equation model. Our model is intended to include all of the known major components in apoptosis pathways mediated by Fas receptor. It is composed of 29 equations using a total of 49 rate constants and 13 protein concentrations. All parameters used in our model were derived through nonlinear fitting to experimentally measured concentrations of four selected proteins in Jurkat T-cells, including caspase-3, caspase-8, caspase-9, and Bid. Our model is able to correctly interpret the role of kinetic parameters and protein concentrations in cell sensitivity to FasL. It reveals the possible reasons for the transition between type-I and type-II pathways and also provides some interesting predictions, such as the more decisive role of Fas over Bax in apoptosis pathway and a possible feedback mechanism between type-I and type-II pathways. But our model failed in predicting FasL-induced apoptotic mechanism of NCI-60 cells from their gene-expression levels. Limitations in our model are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evapotranspiration and canopy resistance at an undeveloped prairie in a humid subtropical climate

    USGS Publications Warehouse

    Bidlake, W.R.

    2002-01-01

    Reliable estimates of evapotranspiration from areas of wildland vegetation are needed for many types of water-resource investigations. However, little is known about surface fluxes from many areally important vegetation types, and relatively few comparisons have been made to examine how well evapotranspiration models can predict evapotranspiration for soil-, climate-, or vegetation-types that differ from those under which the models have been calibrated. In this investigation at a prairie site in west-central Florida, latent heat flux (??E) computed from the energy balance and alternatively by eddy covariance during a 15-month period differed by 4 percent and 7 percent on hourly and daily time scales, respectively. Annual evapotranspiration computed from the energy balance and by eddy covariance were 978 and 944 mm, respectively. An hourly Penman-Monteith (PM) evapotranspiration model with stomatal control predicated on water-vapor-pressure deficit at canopy level, incoming solar radiation intensity, and soil water deficit was developed and calibrated using surface fluxes from eddy covariance. Model-predicted ??E agreed closely with ??E computed from the energy balance except when moisture from dew or precipitation covered vegetation surfaces. Finally, an hourly PM model developed for an Amazonian pasture predicted ??E for the Florida prairie with unexpected reliability. Additional comparisons of PM-type models that have been developed for differing types of short vegetation could aid in assessing interchangeability of such models.

  7. Double Higgs production at LHC, see-saw type-II and Georgi-Machacek model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godunov, S. I., E-mail: sgodunov@itep.ru; Vysotsky, M. I., E-mail: vysotsky@itep.ru; Zhemchugov, E. V., E-mail: zhemchugov@itep.ru

    2015-03-15

    The double Higgs production in the models with isospin-triplet scalars is studied. It is shown that in the see-saw type-II model, the mode with an intermediate heavy scalar, pp → H + X → 2h + X, may have the cross section that is comparable with that in the Standard Model. In the Georgi-Machacek model, this cross section could be much larger than in the Standard Model because the vacuum expectation value of the triplet can be large.

  8. Modeling of luminance distribution in CAVE-type virtual reality systems

    NASA Astrophysics Data System (ADS)

    Meironke, Michał; Mazikowski, Adam

    2017-08-01

    At present, one of the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems are usually consisted of four, five or six projection screens and in case of six screens arranged in form of a cube. Providing the user with a high level of immersion feeling in such systems is largely dependent of optical properties of the system. The modeling of physical phenomena plays nowadays a huge role in the most fields of science and technology. It allows to simulate work of device without a need to make any changes in the physical constructions. In this paper distribution of luminance in CAVE-type virtual reality systems were modelled. Calculations were performed for the model of 6-walled CAVE-type installation, based on Immersive 3D Visualization Laboratory, situated at the Faculty of Electronics, Telecommunications and Informatics at the Gdańsk University of Technology. Tests have been carried out for two different scattering distribution of the screen material in order to check how these characteristicinfluence on the luminance distribution of the whole CAVE. The basis assumption and simplification of modeled CAVE-type installation and results were presented. The brief discussion about the results and usefulness of developed model were also carried out.

  9. Cellular automata and integrodifferential equation models for cell renewal in mosaic tissues

    PubMed Central

    Bloomfield, J. M.; Sherratt, J. A.; Painter, K. J.; Landini, G.

    2010-01-01

    Mosaic tissues are composed of two or more genetically distinct cell types. They occur naturally, and are also a useful experimental method for exploring tissue growth and maintenance. By marking the different cell types, one can study the patterns formed by proliferation, renewal and migration. Here, we present mathematical modelling suggesting that small changes in the type of interaction that cells have with their local cellular environment can lead to very different outcomes for the composition of mosaics. In cell renewal, proliferation of each cell type may depend linearly or nonlinearly on the local proportion of cells of that type, and these two possibilities produce very different patterns. We study two variations of a cellular automaton model based on simple rules for renewal. We then propose an integrodifferential equation model, and again consider two different forms of cellular interaction. The results of the continuous and cellular automata models are qualitatively the same, and we observe that changes in local environment interaction affect the dynamics for both. Furthermore, we demonstrate that the models reproduce some of the patterns seen in actual mosaic tissues. In particular, our results suggest that the differing patterns seen in organ parenchymas may be driven purely by the process of cell replacement under different interaction scenarios. PMID:20375040

  10. Magnetic, Chemical and Mössbauer Tracking of the Solid Solution of Fe and Exsolution of Magnetite in Plagioclase of the 2.05 Ga Bushveld Complex, South Africa

    NASA Astrophysics Data System (ADS)

    McEnroe, S. A.; Tegner, C.; Robinson, P.; Dyar, M. D.; Church, N. S.

    2016-12-01

    Mapping magnetic fields is a primary tool to explore Earth and other planets. Understanding the nature of oxide exsolutions (or lack of) in silicate minerals gives constraints to interpret the magnetic signatures of planetary crusts when combined with chemical mapping techniques. Exsolution of magnetite (mgt) from silicates provides a stable recorder of the field at the time of exsolution. We explore relationships between plagioclase chemistry and mgt exsolution by EMP, XRF, Mössbauer, and magnetic measurements. These are compared to chemical and magnetic properties of the bulk rock samples. We examine links between chemical evolution and magnetic signatures. 28 gabbroic samples, with similar total FeO (0.2-0.6 wt%) in plagioclase contain Fe in very different forms: as Fe in solid solution, or exsolved, as micron to submicroscopic needles of mgt. Minor chemical substitution of Fe in plagioclase can be represented by three logical but structurally implausible end members: Fe2+[Fe2+Si3]08 with maximal Fe2+; Fe3+[Fe3+3 Si]08 with maximal Fe3+; and an intermediate component Fe2+[Fe3+2Si2]08 equivalent to 1 mgt (4 Ox) + 2 quartz (4 Ox). Mössbauer measurements of Fe3+/FeT on 28 plagioclase separates indicate that the 1st and 3rd end members describe 20 compositions, so that exsolution of mgt and volumetrically equivalent quartz, though depleting total Fe, would increase the proportion of Fe2+. Five sample compositions are colinear with the 3rd, and only 3 samples appear to contain a significant proportion of the 2nd. Volume of exsolved magnetite, 0 to 0.09%, was determined from Ms values, and its magnetic state by Preisach and FORC measurements. Plagioclase (+rock) results are in three groups, where An indicates similar magma evolution: A) An74-58, FeOwt% 0.21-.39; B) An69-58, FeO 0.35-.63; C) An66-57; FeO 0.23-.42. A) with low Fe is dominantly paramagnetic with Fe in solid solution. B) with highest Fe lacks primary magnetite, but has abundant exsolved mgt. Paradoxically Group C with compositions like A, has both primary precipitate mgt and up to 0.1% exsolved mgt. Varied NRM intensities appear to reflect contributions from primary mgt. Presence of exsolved mgt must be controlled by varied cooling environments and a mgt + quartz saturation surface in the volume An-Ab-Fe2+[Fe2+Si3]08-Fe2+[Fe3+2Si2]08.

  11. On the relation between Vicsek and Kuramoto models of spontaneous synchronization

    NASA Astrophysics Data System (ADS)

    Chepizhko, A. A.; Kulinskii, V. L.

    2010-12-01

    The Vicsek model for self-propelling particles in 2D is investigated with respect to the addition of the stochastic perturbation of dynamic equations. We show that this model represents in essence the same type of bifurcations under a different type of noise as the celebrated Kuramoto model of spontaneous synchronization. These models demonstrate similar behavior at least within the mean-field approach. To prove this we consider two types of noise for the Vicsek model which are commonly considered in the literature: the intrinsic and the extrinsic ones (according to the terminology of Pimentel et al. [J.A. Pimentel, M. Aldana, C. Huepe, H. Larralde, Intrinsic and extrinsic noise effects on phase transitions of network models with applications to swarming systems, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 77 (6) (2008) doi:10.1103/PhysRevE.77.061138. URL: http://dx.doi.org/10.1103/PhysRevE.77.061138]). The qualitative correspondence with the bifurcation of stationary states in the Kuramoto model is stated. A new type of stochastic perturbation-the “mixed” noise is proposed. It is constructed as the weighted superposition of the intrinsic and the extrinsic noises. The corresponding phase diagram “noise amplitude vs. interaction strength” is obtained. The possibility of the tricritical behavior for the Vicsek model is predicted.

  12. A Muscle’s Force Depends on the Recruitment Patterns of Its Fibers

    PubMed Central

    Wakeling, James M.; Lee, Sabrina S. M.; Arnold, Allison S.; de Boef Miara, Maria; Biewener, Andrew A.

    2012-01-01

    Biomechanical models of whole muscles commonly used in simulations of musculoskeletal function and movement typically assume that the muscle generates force as a scaled-up muscle fiber. However, muscles are comprised of motor units that have different intrinsic properties and that can be activated at different times. This study tested whether a muscle model comprised of motor units that could be independently activated resulted in more accurate predictions of force than traditional Hill-type models. Forces predicted by the models were evaluated by direct comparison with the muscle forces measured in situ from the gastrocnemii in goats. The muscle was stimulated tetanically at a range of frequencies, muscle fiber strains were measured using sonomicrometry, and the activation patterns of the different types of motor unit were calculated from electromyographic recordings. Activation patterns were input into five different muscle models. Four models were traditional Hill-type models with different intrinsic speeds and fiber-type properties. The fifth model incorporated differential groups of fast and slow motor units. For all goats, muscles and stimulation frequencies the differential model resulted in the best predictions of muscle force. The in situ muscle output was shown to depend on the recruitment of different motor units within the muscle. PMID:22350666

  13. Codimension-Two Bifurcation, Chaos and Control in a Discrete-Time Information Diffusion Model

    NASA Astrophysics Data System (ADS)

    Ren, Jingli; Yu, Liping

    2016-12-01

    In this paper, we present a discrete model to illustrate how two pieces of information interact with online social networks and investigate the dynamics of discrete-time information diffusion model in three types: reverse type, intervention type and mutualistic type. It is found that the model has orbits with period 2, 4, 6, 8, 12, 16, 20, 30, quasiperiodic orbit, and undergoes heteroclinic bifurcation near 1:2 point, a homoclinic structure near 1:3 resonance point and an invariant cycle bifurcated by period 4 orbit near 1:4 resonance point. Moreover, in order to regulate information diffusion process and information security, we give two control strategies, the hybrid control method and the feedback controller of polynomial functions, to control chaos, flip bifurcation, 1:2, 1:3 and 1:4 resonances, respectively, in the two-dimensional discrete system.

  14. Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study.

    PubMed

    Talmud, Philippa J; Hingorani, Aroon D; Cooper, Jackie A; Marmot, Michael G; Brunner, Eric J; Kumari, Meena; Kivimäki, Mika; Humphries, Steve E

    2010-01-14

    To assess the performance of a panel of common single nucleotide polymorphisms (genotypes) associated with type 2 diabetes in distinguishing incident cases of future type 2 diabetes (discrimination), and to examine the effect of adding genetic information to previously validated non-genetic (phenotype based) models developed to estimate the absolute risk of type 2 diabetes. Workplace based prospective cohort study with three 5 yearly medical screenings. 5535 initially healthy people (mean age 49 years; 33% women), of whom 302 developed new onset type 2 diabetes over 10 years. Non-genetic variables included in two established risk models-the Cambridge type 2 diabetes risk score (age, sex, drug treatment, family history of type 2 diabetes, body mass index, smoking status) and the Framingham offspring study type 2 diabetes risk score (age, sex, parental history of type 2 diabetes, body mass index, high density lipoprotein cholesterol, triglycerides, fasting glucose)-and 20 single nucleotide polymorphisms associated with susceptibility to type 2 diabetes. Cases of incident type 2 diabetes were defined on the basis of a standard oral glucose tolerance test, self report of a doctor's diagnosis, or the use of anti-diabetic drugs. A genetic score based on the number of risk alleles carried (range 0-40; area under receiver operating characteristics curve 0.54, 95% confidence interval 0.50 to 0.58) and a genetic risk function in which carriage of risk alleles was weighted according to the summary odds ratios of their effect from meta-analyses of genetic studies (area under receiver operating characteristics curve 0.55, 0.51 to 0.59) did not effectively discriminate cases of diabetes. The Cambridge risk score (area under curve 0.72, 0.69 to 0.76) and the Framingham offspring risk score (area under curve 0.78, 0.75 to 0.82) led to better discrimination of cases than did genotype based tests. Adding genetic information to phenotype based risk models did not improve discrimination and provided only a small improvement in model calibration and a modest net reclassification improvement of about 5% when added to the Cambridge risk score but not when added to the Framingham offspring risk score. The phenotype based risk models provided greater discrimination for type 2 diabetes than did models based on 20 common independently inherited diabetes risk alleles. The addition of genotypes to phenotype based risk models produced only minimal improvement in accuracy of risk estimation assessed by recalibration and, at best, a minor net reclassification improvement. The major translational application of the currently known common, small effect genetic variants influencing susceptibility to type 2 diabetes is likely to come from the insight they provide on causes of disease and potential therapeutic targets.

  15. Nilpotent singularities and dynamics in an SIR type of compartmental model with hospital resources

    NASA Astrophysics Data System (ADS)

    Shan, Chunhua; Yi, Yingfei; Zhu, Huaiping

    2016-03-01

    An SIR type of compartmental model with a standard incidence rate and a nonlinear recovery rate was formulated to study the impact of available resources of public health system especially the number of hospital beds. Cusp, focus and elliptic type of nilpotent singularities of codimension 3 are discovered and analyzed in this three dimensional model. Complex dynamics of disease transmission including multi-steady states and multi-periodicity are revealed by bifurcation analysis. Large-amplitude oscillations found in our model provide a more reasonable explanation for disease recurrence. With clinical data, our studies have practical implications for the prevention and control of infectious diseases.

  16. Reevaluation of epidemiological data demonstrates that it is consistent with cross-immunity among human papillomavirus types.

    PubMed

    Durham, David P; Poolman, Eric M; Ibuka, Yoko; Townsend, Jeffrey P; Galvani, Alison P

    2012-10-01

    The degree of cross-immunity between human papillomavirus (HPV) types is fundamental both to the epidemiological dynamics of HPV and to the impact of HPV vaccination. Epidemiological data on HPV infections has been repeatedly interpreted as inconsistent with cross-immunity. We reevaluate the epidemiological data using a model to determine the odds ratios of multiple to single infections expected in the presence or absence of cross-immunity. We simulate a virtual longitudinal survey to determine the effect cross-immunity has on the prevalence of multiple infections. We calibrate our model to epidemiological data and estimate the extent of type replacement following vaccination against specific HPV types. We find that cross-immunity can produce odds ratios of infection comparable with epidemiological observations. We show that the sample sizes underlying existing surveys have been insufficient to identify even intense cross-immunity. We also find that the removal of HPV type 16, type 18, and types 6 and 11 would increase the prevalence of nontargeted types by 50%, 29%, and 183%, respectively. Cross-immunity between HPV types is consistent with epidemiological data, contrary to previous interpretations. Cross-immunity may cause significant type replacement following vaccination, and therefore should be considered in future vaccine studies and epidemiological models.

  17. Rodent models of diabetic nephropathy: their utility and limitations

    PubMed Central

    Kitada, Munehiro; Ogura, Yoshio; Koya, Daisuke

    2016-01-01

    Diabetic nephropathy is the most common cause of end-stage renal disease. Therefore, novel therapies for the suppression of diabetic nephropathy must be developed. Rodent models are useful for elucidating the pathogenesis of diseases and testing novel therapies, and many type 1 and type 2 diabetic rodent models have been established for the study of diabetes and diabetic complications. Streptozotocin (STZ)-induced diabetic animals are widely used as a model of type 1 diabetes. Akita diabetic mice that have an Ins2+/C96Y mutation and OVE26 mice that overexpress calmodulin in pancreatic β-cells serve as a genetic model of type 1 diabetes. In addition, db/db mice, KK-Ay mice, Zucker diabetic fatty rats, Wistar fatty rats, Otsuka Long-Evans Tokushima Fatty rats and Goto-Kakizaki rats serve as rodent models of type 2 diabetes. An animal model of diabetic nephropathy should exhibit progressive albuminuria and a decrease in renal function, as well as the characteristic histological changes in the glomeruli and the tubulointerstitial lesions that are observed in cases of human diabetic nephropathy. A rodent model that strongly exhibits all these features of human diabetic nephropathy has not yet been developed. However, the currently available rodent models of diabetes can be useful in the study of diabetic nephropathy by increasing our understanding of the features of each diabetic rodent model. Furthermore, the genetic background and strain of each mouse model result in differences in susceptibility to diabetic nephropathy with albuminuria and the development of glomerular and tubulointerstitial lesions. Therefore, the validation of an animal model reproducing human diabetic nephropathy will significantly facilitate our understanding of the underlying genetic mechanisms that contribute to the development of diabetic nephropathy. In this review, we focus on rodent models of diabetes and discuss the utility and limitations of these models for the study of diabetic nephropathy. PMID:27881924

  18. Multiple Scenarios of Transition to Chaos in the Alternative Splicing Model

    NASA Astrophysics Data System (ADS)

    Kogai, Vladislav V.; Likhoshvai, Vitaly A.; Fadeev, Stanislav I.; Khlebodarova, Tamara M.

    We have investigated the scenarios of transition to chaos in the mathematical model of a genetic system constituted by a single transcription factor-encoding gene, the expression of which is self-regulated by a feedback loop that involves protein isoforms. Alternative splicing results in the synthesis of protein isoforms providing opposite regulatory outcomes — activation or repression. The model is represented by a differential equation with two delayed arguments. The possibility of transition to chaos dynamics via all classical scenarios: a cascade of period-doubling bifurcations, quasiperiodicity and type-I, type-II and type-III intermittencies, has been numerically demonstrated. The parametric features of each type of transition to chaos have been described.

  19. Bianchi Type VI1 Viscous Fluid Cosmological Model in Wesson´s Theory of Gravitation

    NASA Astrophysics Data System (ADS)

    Khadekar, G. S.; Avachar, G. R.

    2007-03-01

    Field equations of a scale invariant theory of gravitation proposed by Wesson [1, 2] are obtained in the presence of viscous fluid with the aid of Bianchi type VIh space-time with the time dependent gauge function (Dirac gauge). It is found that Bianchi type VIh (h = 1) space-time with viscous fluid is feasible in this theory, whereas Bianchi type VIh (h = -1, 0) space-times are not feasible in this theory, even in the presence of viscosity. For the feasible case, by assuming a relation connecting viscosity and metric coefficient, we have obtained a nonsingular-radiating model. We have discussed some physical and kinematical properties of the models.

  20. A Linear Programming Model to Optimize Various Objective Functions of a Foundation Type State Support Program.

    ERIC Educational Resources Information Center

    Matzke, Orville R.

    The purpose of this study was to formulate a linear programming model to simulate a foundation type support program and to apply this model to a state support program for the public elementary and secondary school districts in the State of Iowa. The model was successful in producing optimal solutions to five objective functions proposed for…

  1. Hierarchical Bayesian Logistic Regression to forecast metabolic control in type 2 DM patients.

    PubMed

    Dagliati, Arianna; Malovini, Alberto; Decata, Pasquale; Cogni, Giulia; Teliti, Marsida; Sacchi, Lucia; Cerra, Carlo; Chiovato, Luca; Bellazzi, Riccardo

    2016-01-01

    In this work we present our efforts in building a model able to forecast patients' changes in clinical conditions when repeated measurements are available. In this case the available risk calculators are typically not applicable. We propose a Hierarchical Bayesian Logistic Regression model, which allows taking into account individual and population variability in model parameters estimate. The model is used to predict metabolic control and its variation in type 2 diabetes mellitus. In particular we have analyzed a population of more than 1000 Italian type 2 diabetic patients, collected within the European project Mosaic. The results obtained in terms of Matthews Correlation Coefficient are significantly better than the ones gathered with standard logistic regression model, based on data pooling.

  2. Comparison of the WSA-ENLIL model with three CME cone types

    NASA Astrophysics Data System (ADS)

    Jang, Soojeong; Moon, Y.; Na, H.

    2013-07-01

    We have made a comparison of the CME-associated shock propagation based on the WSA-ENLIL model with three cone types using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters as well as their associated interplanetary (IP) shocks. For this study we consider three different cone types (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine 3-D CME parameters (radial velocity, angular width and source location), which are the input values of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the asymmetric cone model is 10.6 hours, which is about 1 hour smaller than those of the other models. Their ensemble average of MAE is 9.5 hours. However, this value is still larger than that (8.7 hours) of the empirical model of Kim et al. (2007). We will compare their IP shock velocities and densities with those from ACE in-situ measurements and discuss them in terms of the prediction of geomagnetic storms.Abstract (2,250 Maximum Characters): We have made a comparison of the CME-associated shock propagation based on the WSA-ENLIL model with three cone types using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters as well as their associated interplanetary (IP) shocks. For this study we consider three different cone types (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine 3-D CME parameters (radial velocity, angular width and source location), which are the input values of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the asymmetric cone model is 10.6 hours, which is about 1 hour smaller than those of the other models. Their ensemble average of MAE is 9.5 hours. However, this value is still larger than that (8.7 hours) of the empirical model of Kim et al. (2007). We will compare their IP shock velocities and densities with those from ACE in-situ measurements and discuss them in terms of the prediction of geomagnetic storms.

  3. Effective-Medium Models for Marine Gas Hydrates, Mallik Revisited

    NASA Astrophysics Data System (ADS)

    Terry, D. A.; Knapp, C. C.; Knapp, J. H.

    2011-12-01

    Hertz-Mindlin type effective-medium dry-rock elastic models have been commonly used for more than three decades in rock physics analysis, and recently have been applied to assessment of marine gas hydrate resources. Comparisons of several effective-medium models with derivative well-log data from the Mackenzie River Valley, Northwest Territories, Canada (i.e. Mallik 2L-38 and 5L-38) were made several years ago as part of a marine gas hydrate joint industry project in the Gulf of Mexico. The matrix/grain supporting model (one of the five models compared) was clearly a better representation of the Mallik data than the other four models (2 cemented sand models; a pore-filling model; and an inclusion model). Even though the matrix/grain supporting model was clearly better, reservations were noted that the compressional velocity of the model was higher than the compressional velocity measured via the sonic logs, and that the shear velocities showed an even greater discrepancy. Over more than thirty years, variations of Hertz-Mindlin type effective medium models have evolved for unconsolidated sediments and here, we briefly review their development. In the past few years, the perfectly smooth grain version of the Hertz-Mindlin type effective-medium model has been favored over the infinitely rough grain version compared in the Gulf of Mexico study. We revisit the data from the Mallik wells to review assertions that effective-medium models with perfectly smooth grains are a better predictor than models with infinitely rough grains. We briefly review three Hertz-Mindlin type effective-medium models, and standardize nomenclature and notation. To calibrate the extended effective-medium model in gas hydrates, we use a well accepted framework for unconsolidated sediments through Hashin-Shtrikman bounds. We implement the previously discussed effective-medium models for saturated sediments with gas hydrates and compute theoretical curves of seismic velocities versus gas hydrate saturation to compare with well log data available from the Canadian gas hydrates research site. By directly comparing the infinitely rough and perfectly smooth grain versions of the Hertz-Mindlin type effective-medium model, we provide additional insight to the discrepancies noted in the Gulf of Mexico study.

  4. Modeling the Distribution and Type of High-Latitude Natural Wetlands for Methane Studies

    NASA Astrophysics Data System (ADS)

    Romanski, J.; Matthews, E.

    2017-12-01

    High latitude (>50N) natural wetlands emit a substantial amount of methane to the atmosphere, and are located in a region of amplified warming. Northern hemisphere high latitudes are characterized by cold climates, extensive permafrost, poor drainage, short growing seasons, and slow decay rates. Under these conditions, organic carbon accumulates in the soil, sequestering CO2 from the atmosphere. Methanogens produce methane from this carbon reservoir, converting stored carbon into a powerful greenhouse gas. Methane emission from wetland ecosystems depends on vegetation type, climate characteristics (e.g, precipitation amount and seasonality, temperature, snow cover, etc.), and geophysical variables (e.g., permafrost, soil type, and landscape slope). To understand how wetland methane dynamics in this critical region will respond to climate change, we have to first understand how wetlands themselves will change and therefore, what the primary controllers of wetland distribution and type are. Understanding these relationships permits data-anchored, physically-based modeling of wetland distribution and type in other climate scenarios, such as paleoclimates or future climates, a necessary first step toward modeling wetland methane emissions in these scenarios. We investigate techniques and datasets for predicting the distribution and type of high latitude (>50N) natural wetlands from a suite of geophysical and climate predictors. Hierarchical clustering is used to derive an empirical methane-centric wetland model. The model is applied in a multistep process - first to predict the distribution of wetlands from relevant geophysical parameters, and then, given the predicted wetland distribution, to classify the wetlands into methane-relevant types using an expanded suite of climate and biogeophysical variables. As the optimum set of predictor variables is not known a priori, the model is applied iteratively, and each simulation is evaluated with respect to observed high-latitude wetlands.

  5. Modeling mesoscale eddies

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Dubovikov, M. S.

    Mesoscale eddies are not resolved in coarse resolution ocean models and must be modeled. They affect both mean momentum and scalars. At present, no generally accepted model exists for the former; in the latter case, mesoscales are modeled with a bolus velocity u∗ to represent a sink of mean potential energy. However, comparison of u∗(model) vs. u∗ (eddy resolving code, [J. Phys. Ocean. 29 (1999) 2442]) has shown that u∗(model) is incomplete and that additional terms, "unrelated to thickness source or sinks", are required. Thus far, no form of the additional terms has been suggested. To describe mesoscale eddies, we employ the Navier-Stokes and scalar equations and a turbulence model to treat the non-linear interactions. We then show that the problem reduces to an eigenvalue problem for the mesoscale Bernoulli potential. The solution, which we derive in analytic form, is used to construct the momentum and thickness fluxes. In the latter case, the bolus velocity u∗ is found to contain two types of terms: the first type entails the gradient of the mean potential vorticity and represents a positive contribution to the production of mesoscale potential energy; the second type of terms, which is new, entails the velocity of the mean flow and represents a negative contribution to the production of mesoscale potential energy, or equivalently, a backscatter process whereby a fraction of the mesoscale potential energy is returned to the original reservoir of mean potential energy. This type of terms satisfies the physical description of the additional terms given by [J. Phys. Ocean. 29 (1999) 2442]. The mesoscale flux that enters the momentum equations is also contributed by two types of terms of the same physical nature as those entering the thickness flux. The potential vorticity flux is also shown to contain two types of terms: the first is of the gradient-type while the other terms entail the velocity of the mean flow. An expression is derived for the mesoscale diffusivity κM and for the mesoscale kinetic energy K in terms of the large-scale fields. The predicted κM( z) agrees with that of heuristic models. The complete mesoscale model in isopycnal coordinates is presented in Appendix D and can be used in coarse resolution ocean global circulation models.

  6. Undergraduate Research: Mathematical Modeling of Mortgages

    ERIC Educational Resources Information Center

    Choi, Youngna; Spero, Steven

    2010-01-01

    In this article, we study financing in the real estate market and show how various types of mortgages can be modeled and analyzed. With only an introductory level of interest theory, finance, and calculus, we model and analyze three types of popular mortgages with real life examples that explain the background and inevitable outcome of the current…

  7. Taxometric Analysis as a General Strategy for Distinguishing Categorical from Dimensional Latent Structure

    ERIC Educational Resources Information Center

    McGrath, Robert E.; Walters, Glenn D.

    2012-01-01

    Statistical analyses investigating latent structure can be divided into those that estimate structural model parameters and those that detect the structural model type. The most basic distinction among structure types is between categorical (discrete) and dimensional (continuous) models. It is a common, and potentially misleading, practice to…

  8. Two reduced form air quality modeling techniques for rapidly calculating pollutant mitigation potential across many sources, locations and precursor emission types

    EPA Science Inventory

    Due to the computational cost of running regional-scale numerical air quality models, reduced form models (RFM) have been proposed as computationally efficient simulation tools for characterizing the pollutant response to many different types of emission reductions. The U.S. Envi...

  9. When do latent class models overstate accuracy for diagnostic and other classifiers in the absence of a gold standard?

    PubMed

    Spencer, Bruce D

    2012-06-01

    Latent class models are increasingly used to assess the accuracy of medical diagnostic tests and other classifications when no gold standard is available and the true state is unknown. When the latent class is treated as the true class, the latent class models provide measures of components of accuracy including specificity and sensitivity and their complements, type I and type II error rates. The error rates according to the latent class model differ from the true error rates, however, and empirical comparisons with a gold standard suggest the true error rates often are larger. We investigate conditions under which the true type I and type II error rates are larger than those provided by the latent class models. Results from Uebersax (1988, Psychological Bulletin 104, 405-416) are extended to accommodate random effects and covariates affecting the responses. The results are important for interpreting the results of latent class analyses. An error decomposition is presented that incorporates an error component from invalidity of the latent class model. © 2011, The International Biometric Society.

  10. Birth order in small multihospital systems.

    PubMed

    Luke, R D; Ozcan, Y A; Begun, J W

    1990-06-01

    The strategic behaviors of small multihospital systems have received little attention in the literature despite the fact that small systems are the predominant scale among multihospital systems. This study examines one important aspect of small-system strategic behaviors: the birth-order or evolutionary patterns of hospital acquisition. The evolutionary patterns of acquisition are compared across three strategic model types studied elsewhere: local market, investment, and historical. Using data obtained from a variety of sources, local market model systems are found, in the sequence of acquisition, to be significantly different from the other two model types in terms of relative distances of acquisitions from the initiating or parent hospital, the sizes of acquisition hospitals, the complexity of those hospitals, and the likelihood that the acquisitions are located in rural areas. Differences between parents and acquisitions are also significant, as hypothesized, for the market model system types, although they are not generally significant for the other two model types. The findings suggest that the market model represents an important strategic form that may have important implications for the restructuring of hospital markets.

  11. Mapping forest functional type in a forest-shrubland ecotone using SPOT imagery and predictive habitat distribution modelling

    USGS Publications Warehouse

    Assal, Timothy J.; Anderson, Patrick J.; Sibold, Jason

    2015-01-01

    The availability of land cover data at local scales is an important component in forest management and monitoring efforts. Regional land cover data seldom provide detailed information needed to support local management needs. Here we present a transferable framework to model forest cover by major plant functional type using aerial photos, multi-date Système Pour l’Observation de la Terre (SPOT) imagery, and topographic variables. We developed probability of occurrence models for deciduous broad-leaved forest and needle-leaved evergreen forest using logistic regression in the southern portion of the Wyoming Basin Ecoregion. The model outputs were combined into a synthesis map depicting deciduous and coniferous forest cover type. We evaluated the models and synthesis map using a field-validated, independent data source. Results showed strong relationships between forest cover and model variables, and the synthesis map was accurate with an overall correct classification rate of 0.87 and Cohen’s kappa value of 0.81. The results suggest our method adequately captures the functional type, size, and distribution pattern of forest cover in a spatially heterogeneous landscape.

  12. Estimating and modeling the cure fraction in population-based cancer survival analysis.

    PubMed

    Lambert, Paul C; Thompson, John R; Weston, Claire L; Dickman, Paul W

    2007-07-01

    In population-based cancer studies, cure is said to occur when the mortality (hazard) rate in the diseased group of individuals returns to the same level as that expected in the general population. The cure fraction (the proportion of patients cured of disease) is of interest to patients and is a useful measure to monitor trends in survival of curable disease. There are 2 main types of cure fraction model, the mixture cure fraction model and the non-mixture cure fraction model, with most previous work concentrating on the mixture cure fraction model. In this paper, we extend the parametric non-mixture cure fraction model to incorporate background mortality, thus providing estimates of the cure fraction in population-based cancer studies. We compare the estimates of relative survival and the cure fraction between the 2 types of model and also investigate the importance of modeling the ancillary parameters in the selected parametric distribution for both types of model.

  13. Use of Prolonged Travel to Improve Pediatric Risk-Adjustment Models

    PubMed Central

    Lorch, Scott A; Silber, Jeffrey H; Even-Shoshan, Orit; Millman, Andrea

    2009-01-01

    Objective To determine whether travel variables could explain previously reported differences in lengths of stay (LOS), readmission, or death at children's hospitals versus other hospital types. Data Source Hospital discharge data from Pennsylvania between 1996 and 1998. Study Design A population cohort of children aged 1–17 years with one of 19 common pediatric conditions was created (N=51,855). Regression models were constructed to determine difference for LOS, readmission, or death between children's hospitals and other types of hospitals after including five types of additional illness severity variables to a traditional risk-adjustment model. Principal Findings With the traditional risk-adjustment model, children traveling longer to children's or rural hospitals had longer adjusted LOS and higher readmission rates. Inclusion of either a geocoded travel time variable or a nongeocoded travel distance variable provided the largest reduction in adjusted LOS, adjusted readmission rates, and adjusted mortality rates for children's hospitals and rural hospitals compared with other types of hospitals. Conclusions Adding a travel variable to traditional severity adjustment models may improve the assessment of an individual hospital's pediatric care by reducing systematic differences between different types of hospitals. PMID:19207591

  14. LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA

    PubMed Central

    Salter-Townshend, Michael; McCormick, Tyler H.

    2018-01-01

    Social relationships consist of interactions along multiple dimensions. In social networks, this means that individuals form multiple types of relationships with the same person (e.g., an individual will not trust all of his/her acquaintances). Statistical models for these data require understanding two related types of dependence structure: (i) structure within each relationship type, or network view, and (ii) the association between views. In this paper, we propose a statistical framework that parsimoniously represents dependence between relationship types while also maintaining enough flexibility to allow individuals to serve different roles in different relationship types. Our approach builds on work on latent space models for networks [see, e.g., J. Amer. Statist. Assoc. 97 (2002) 1090–1098]. These models represent the propensity for two individuals to form edges as conditionally independent given the distance between the individuals in an unobserved social space. Our work departs from previous work in this area by representing dependence structure between network views through a multivariate Bernoulli likelihood, providing a representation of between-view association. This approach infers correlations between views not explained by the latent space model. Using our method, we explore 6 multiview network structures across 75 villages in rural southern Karnataka, India [Banerjee et al. (2013)]. PMID:29721127

  15. LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA.

    PubMed

    Salter-Townshend, Michael; McCormick, Tyler H

    2017-09-01

    Social relationships consist of interactions along multiple dimensions. In social networks, this means that individuals form multiple types of relationships with the same person (e.g., an individual will not trust all of his/her acquaintances). Statistical models for these data require understanding two related types of dependence structure: (i) structure within each relationship type, or network view, and (ii) the association between views. In this paper, we propose a statistical framework that parsimoniously represents dependence between relationship types while also maintaining enough flexibility to allow individuals to serve different roles in different relationship types. Our approach builds on work on latent space models for networks [see, e.g., J. Amer. Statist. Assoc. 97 (2002) 1090-1098]. These models represent the propensity for two individuals to form edges as conditionally independent given the distance between the individuals in an unobserved social space. Our work departs from previous work in this area by representing dependence structure between network views through a multivariate Bernoulli likelihood, providing a representation of between-view association. This approach infers correlations between views not explained by the latent space model. Using our method, we explore 6 multiview network structures across 75 villages in rural southern Karnataka, India [Banerjee et al. (2013)].

  16. Bianchi Type-II String Cosmological Model with Magnetic Field in f ( R, T) Gravity

    NASA Astrophysics Data System (ADS)

    Sharma, N. K.; Singh, J. K.

    2014-09-01

    The spatially homogeneous and totally anisotropic Bianchi type-II cosmological solutions of massive strings have been investigated in the presence of the magnetic field in the framework of f( R, T) gravity proposed by Harko et al. (Phys Rev D 84:024020, 2011). With the help of special law of variation for Hubble's parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) cosmological model is obtained in this theory. We consider f( R, T) model and investigate the modification R+ f( T) in Bianchi type-II cosmology with an appropriate choice of a function f( T)= μ T. We use the power law relation between average Hubble parameter H and average scale factor R to find the solution. The assumption of constant deceleration parameter leads to two models of universe, i.e. power law model and exponential model. Some physical and kinematical properties of the model are also discussed.

  17. Developing a predictive tropospheric ozone model for Tabriz

    NASA Astrophysics Data System (ADS)

    Khatibi, Rahman; Naghipour, Leila; Ghorbani, Mohammad A.; Smith, Michael S.; Karimi, Vahid; Farhoudi, Reza; Delafrouz, Hadi; Arvanaghi, Hadi

    2013-04-01

    Predictive ozone models are becoming indispensable tools by providing a capability for pollution alerts to serve people who are vulnerable to the risks. We have developed a tropospheric ozone prediction capability for Tabriz, Iran, by using the following five modeling strategies: three regression-type methods: Multiple Linear Regression (MLR), Artificial Neural Networks (ANNs), and Gene Expression Programming (GEP); and two auto-regression-type models: Nonlinear Local Prediction (NLP) to implement chaos theory and Auto-Regressive Integrated Moving Average (ARIMA) models. The regression-type modeling strategies explain the data in terms of: temperature, solar radiation, dew point temperature, and wind speed, by regressing present ozone values to their past values. The ozone time series are available at various time intervals, including hourly intervals, from August 2010 to March 2011. The results for MLR, ANN and GEP models are not overly good but those produced by NLP and ARIMA are promising for the establishing a forecasting capability.

  18. Comparison of modeling methods to predict the spatial distribution of deep-sea coral and sponge in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Rooper, Christopher N.; Zimmermann, Mark; Prescott, Megan M.

    2017-08-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska's marine waters, and are associated with many different species of fishes and invertebrates. These ecosystems are vulnerable to the effects of commercial fishing activities and climate change. We compared four commonly used species distribution models (general linear models, generalized additive models, boosted regression trees and random forest models) and an ensemble model to predict the presence or absence and abundance of six groups of benthic invertebrate taxa in the Gulf of Alaska. All four model types performed adequately on training data for predicting presence and absence, with regression forest models having the best overall performance measured by the area under the receiver-operating-curve (AUC). The models also performed well on the test data for presence and absence with average AUCs ranging from 0.66 to 0.82. For the test data, ensemble models performed the best. For abundance data, there was an obvious demarcation in performance between the two regression-based methods (general linear models and generalized additive models), and the tree-based models. The boosted regression tree and random forest models out-performed the other models by a wide margin on both the training and testing data. However, there was a significant drop-off in performance for all models of invertebrate abundance ( 50%) when moving from the training data to the testing data. Ensemble model performance was between the tree-based and regression-based methods. The maps of predictions from the models for both presence and abundance agreed very well across model types, with an increase in variability in predictions for the abundance data. We conclude that where data conforms well to the modeled distribution (such as the presence-absence data and binomial distribution in this study), the four types of models will provide similar results, although the regression-type models may be more consistent with biological theory. For data with highly zero-inflated distributions and non-normal distributions such as the abundance data from this study, the tree-based methods performed better. Ensemble models that averaged predictions across the four model types, performed better than the GLM or GAM models but slightly poorer than the tree-based methods, suggesting ensemble models might be more robust to overfitting than tree methods, while mitigating some of the disadvantages in predictive performance of regression methods.

  19. Peri-Implant Strain in an In Vitro Model.

    PubMed

    Hussaini, Souheil; Vaidyanathan, Tritala K; Wadkar, Abhinav P; Quran, Firas A Al; Ehrenberg, David; Weiner, Saul

    2015-10-01

    An in vitro experimental model was designed and tested to determine the influence that peri-implant strain may have on the overall crestal bone. Strain gages were attached to polymethylmethacrylate (PMMA) models containing a screw-type root form implant at sites 1 mm from the resin-implant interface. Three different types of crown superstructures (cemented, 1-screw [UCLA] and 2-screw abutment types) were tested. Loading (1 Hz, 200 N load) was performed using a MTS Mechanical Test System. The strain gage data were stored and organized in a computer for statistical treatment. Strains for all abutment types did not exceed the physiological range for modeling and remodeling of cancellous bone, 200-2500 με (microstrain). For approximately one-quarter of the trials, the strain values were less than 200 με the zone for bone atrophy. The mean microstrain obtained was 517.7 με. In conclusion, the peri-implant strain in this in vitro model did not exceed the physiologic range of bone remodeling under axial occlusal loading.

  20. An occurrence model for the national assessment of volcanogenic beryllium deposits

    USGS Publications Warehouse

    Foley, Nora K.; Seal, Robert R.; Piatak, Nadine M.; Hetland, Brianna

    2010-01-01

    The general occurrence model summarized here is intended to provide a descriptive basis for the identification and assessment of undiscovered beryllium deposits of a type and style similar to those found at Spor Mountain, Juab County, Utah. The assessment model is restricted in its application in order to provide a coherent basis for assessing the probability of the occurrence of similar economic deposits using the current U.S. Geological Survey methodology. The model is intended to be used to identify tracts of land where volcanogenic epithermal replacement-type beryllium deposits hosted by metaluminous to peraluminous rhyolite are most likely to occur. Only a limited number of deposits or districts of this type are known, and only the ores of the Spor Mountain district have been studied in detail. The model highlights those distinctive aspects and features of volcanogenic epithermal beryllium deposits that pertain to the development of assessment criteria and puts forward a baseline analysis of the geoenvironmental consequences of mining deposits of this type.

  1. Combined DFT and BS study on the exchange coupling of dinuclear sandwich-type POM: comparison of different functionals and reliability of structure modeling.

    PubMed

    Yin, Bing; Xue, GangLin; Li, JianLi; Bai, Lu; Huang, YuanHe; Wen, ZhenYi; Jiang, ZhenYi

    2012-05-01

    The exchange coupling of a group of three dinuclear sandwich-type polyoxomolybdates [MM'(AsMo7O27)2](12-) with MM' = CrCr, FeFe, FeCr are theoretically predicted from combined DFT and broken-symmetry (BS) approach. Eight different XC functionals are utilized to calculate the exchange-coupling constant J from both the full crystalline structures and model structures of smaller size. The comparison between theoretical values and accurate experimental results supports the applicability of DFT-BS method in this new type of sandwich-type dinuclear polyoxomolybdates. However, a careful choice of functionals is necessary to achieve the desired accuracy. The encouraging results obtained from calculations on model structures highlight the great potential of application of structure modeling in theoretical study of POM. Structural modeling may not only reduce the computational cost of large POM species but also be able to take into account the external field effect arising from solvent molecules in solution or counterions in crystal.

  2. Coupled Waves on a Periodically Supported Timoshenko Beam

    NASA Astrophysics Data System (ADS)

    HECKL, MARIA A.

    2002-05-01

    A mathematical model is presented for the propagation of structural waves on an infinitely long, periodically supported Timoshenko beam. The wave types that can exist on the beam are bending waves with displacements in the horizontal and vertical directions, compressional waves and torsional waves. These waves are affected by the periodic supports in two ways: their dispersion relation spectra show passing and stopping bands, and coupling of the different wave types tends to occur. The model in this paper could represent a railway track where the beam represents the rail and an appropriately chosen support type represents the pad/sleeper/ballast system of a railway track. Hamilton's principle is used to calculate the Green function matrix of the free Timoshenko beam without supports. The supports are incorporated into the model by combining the Green function matrix with the superposition principle. Bloch's theorem is applied to describe the periodicity of the supports. This leads to polynomials with several solutions for the Bloch wave number. These solutions are obtained numerically for different combinations of wave types. Two support types are examined in detail: mass supports and spring supports. More complex support types, such as mass/spring systems, can be incorporated easily into the model.

  3. Modeling diffusion and reaction in soils: 9. The Buckingham-Burdine-Campbell equation for gas diffusivity in undisturbed soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moldrup, P.; Olesen, T.; Yamaguchi, T.

    1999-08-01

    Accurate description of gas diffusivity (ratio of gas diffusion coefficients in soil and free air, D{sub s}/D{sub 0}) in undisturbed soils is a prerequisite for predicting in situ transport and fate of volatile organic chemicals and greenhouse gases. Reference point gas diffusivities (R{sub p}) in completely dry soil were estimated for 20 undisturbed soils by assuming a power function relation between gas diffusivity and air-filled porosity ({epsilon}). Among the classical gas diffusivity models, the Buckingham (1904) expression, equal to the soil total porosity squared, best described R{sub p}. Inasmuch, as their previous works implied a soil-type dependency of D{sub s}/D{submore » 0}({epsilon}) in undisturbed soils, the Buckingham R{sub p} expression was inserted in two soil-type-dependent D{sub s}/D{sub 0}({epsilon}) models. One D{sub s}/D{sub 0}({epsilon}) model is a function of pore-size distribution (the Campbell water retention parameter used in a modified Burdine capillary tube model), and the other is a calibrated, empirical function of soil texture (silt + sand fraction). Both the Buckingham-Burdine-Campbell (BBC) and the Buckingham/soil texture-based D{sub s}/D{sub 0}({epsilon}) models described well the observed soil type effects on gas diffusivity and gave improved predictions compared with soil type independent models when tested against an independent data set for six undisturbed surface soils. This study emphasizes that simple but soil-type-dependent power function D{sub s}/D{sub 0}({epsilon}) models can adequately describe and predict gas diffusivity in undisturbed soil. The authors recommend the new BBC model as basis for modeling gas transport and reactions in undisturbed soil systems.« less

  4. Determination of the optimal area of waste incineration in a rotary kiln using a simulation model.

    PubMed

    Bujak, J

    2015-08-01

    The article presents a mathematical model to determine the flux of incinerated waste in terms of its calorific values. The model is applicable in waste incineration systems equipped with rotary kilns. It is based on the known and proven energy flux balances and equations that describe the specific losses of energy flux while considering the specificity of waste incineration systems. The model is universal as it can be used both for the analysis and testing of systems burning different types of waste (municipal, medical, animal, etc.) and for allowing the use of any kind of additional fuel. Types of waste incinerated and additional fuel are identified by a determination of their elemental composition. The computational model has been verified in three existing industrial-scale plants. Each system incinerated a different type of waste. Each waste type was selected in terms of a different calorific value. This allowed the full verification of the model. Therefore the model can be used to optimize the operation of waste incineration system both at the design stage and during its lifetime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Efficacy of tray adhesives for the adhesion of elastomer rubber impression materials to impression modeling plastics for border molding.

    PubMed

    Nishigawa, G; Sato, T; Suenaga, K; Minagi, S

    1998-02-01

    Tray adhesive, which is used for the adhesion of elastomer rubber impression materials to a custom resin tray, lowers the retention of the impression materials to the impression modeling plastics, as some ingredients of tray adhesive make the impression modeling plastic soft and tacky. The efficacy of tray adhesive, which is used for the adhesion of elastomer rubber impression materials to a custom resin tray, on the adhesion between elastomer rubber impression material and impression modeling plastic was investigated. Four silicone rubber impression materials (two addition reaction types and two condensation reaction types), two polysulfide rubber impression materials, and one impression modeling plastic were used in this study. Tensile strength between elastomer rubber impression material and impression modeling plastic with or without the application of tray adhesive was evaluated. Although tray adhesives for both addition reaction type and both condensation reaction type of silicone impression materials and one tray adhesive for polysulfide rubber impression material increased the tensile strength between the impression material and impression modeling plastic, one tray adhesive for polysulfide rubber impression material decreased the tensile strength when sufficient drying time was not applied.

  6. Reimplementation of the Biome-BGC model to simulate successional change.

    PubMed

    Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E; Thornton, Peter E

    2005-04-01

    Biogeochemical process models are increasingly employed to simulate current and future forest dynamics, but most simulate only a single canopy type. This limitation means that mixed stands, canopy succession and understory dynamics cannot be modeled, severe handicaps in many forests. The goals of this study were to develop a version of Biome-BGC that supported multiple, interacting vegetation types, and to assess its performance and limitations by comparing modeled results to published data from a 150-year boreal black spruce (Picea mariana (Mill.) BSP) chronosequence in northern Manitoba, Canada. Model data structures and logic were modified to support an arbitrary number of interacting vegetation types; an explicit height calculation was necessary to prioritize radiation and precipitation interception. Two vegetation types, evergreen needle-leaf and deciduous broadleaf, were modeled based on site-specific meteorological and physiological data. The new version of Biome-BGC reliably simulated observed changes in leaf area, net primary production and carbon stocks, and should be useful for modeling the dynamics of mixed-species stands and ecological succession. We discuss the strengths and limitations of Biome-BGC for this application, and note areas in which further work is necessary for reliable simulation of boreal biogeochemical cycling at a landscape scale.

  7. Nonlinear dynamic analysis of traveling wave-type ultrasonic motors.

    PubMed

    Nakagawa, Yosuke; Saito, Akira; Maeno, Takashi

    2008-03-01

    In this paper, nonlinear dynamic response of a traveling wave-type ultrasonic motor was investigated. In particular, understanding the transient dynamics of a bar-type ultrasonic motor, such as starting up and stopping, is of primary interest. First, the transient response of the bar-type ultrasonic motor at starting up and stopping was measured using a laser Doppler velocimeter, and its driving characteristics are discussed in detail. The motor is shown to possess amplitude-dependent nonlinearity that greatly influences the transient dynamics of the motor. Second, a dynamical model of the motor was constructed as a second-order nonlinear oscillator, which represents the dynamics of the piezoelectric ceramic, stator, and rotor. The model features nonlinearities caused by the frictional interface between the stator and the rotor, and cubic nonlinearity in the dynamics of the stator. Coulomb's friction model was employed for the interface model, and a stick-slip phenomenon is considered. Lastly, it was shown that the model is capable of representing the transient dynamics of the motor accurately. The critical parameters in the model were identified from measured results, and numerical simulations were conducted using the model with the identified parameters. Good agreement between the results of measurements and numerical simulations is observed.

  8. Analysis of classical Fourier, SPL and DPL heat transfer model in biological tissues in presence of metabolic and external heat source

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Singh, Surjan; Rai, K. N.

    2016-06-01

    In this paper, the temperature distribution in a finite biological tissue in presence of metabolic and external heat source when the surface subjected to different type of boundary conditions is studied. Classical Fourier, single-phase-lag (SPL) and dual-phase-lag (DPL) models were developed for bio-heat transfer in biological tissues. The analytical solution obtained for all the three models using Laplace transform technique and results are compared. The effect of the variability of different parameters such as relaxation time, metabolic heat source, spatial heat source, different type boundary conditions on temperature distribution in different type of the tissues like muscle, tumor, fat, dermis and subcutaneous based on three models are analyzed and discussed in detail. The result obtained in three models is compared with experimental observation of Stolwijk and Hardy (Pflug Arch 291:129-162, 1966). It has been observe that the DPL bio-heat transfer model provides better result in comparison of other two models. The value of metabolic and spatial heat source in boundary condition of first, second and third kind for different type of thermal therapies are evaluated.

  9. Examination of the mGluR-mTOR Pathway for the Identification of Potential Therapeutic Targets to Treat Fragile X

    DTIC Science & Technology

    2014-10-01

    of cAMP and ras signaling pathways improves distinct behavioral deficits in a zebrafish model of neurofibromatosis type 1. Cell Rep. 2014 Sep 11;8(5...that are already present in childhood as was first demonstrated in animal models of Fragile X and Neurofibromatosis type 1 in 2005 (Li et al., 2005...learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol 15:1961-1967. Liu ZH, Chuang DM, Smith CB (2011) Lithium

  10. Mechanism underlying the diverse collective behavior in the swarm oscillator model

    NASA Astrophysics Data System (ADS)

    Iwasa, Masatomo; Tanaka, Dan

    2017-09-01

    The swarm oscillator model describes the long-time behavior of interacting chemotactic particles, and it shows numerous types of macroscopic patterns. However, the reason why so many kinds of patterns emerge is not clear. In this study, we elucidate the mechanism underlying the diversity of the pattens by analyzing the model for two particles. Focusing on the behavior when the two particles are spatially close, we find that the dynamics is classified into eight types, which explain most of the observed 13 types of patterns.

  11. The Effect of Adding Comorbidities to Current Centers for Disease Control and Prevention Central-Line-Associated Bloodstream Infection Risk-Adjustment Methodology.

    PubMed

    Jackson, Sarah S; Leekha, Surbhi; Magder, Laurence S; Pineles, Lisa; Anderson, Deverick J; Trick, William E; Woeltje, Keith F; Kaye, Keith S; Stafford, Kristen; Thom, Kerri; Lowe, Timothy J; Harris, Anthony D

    2017-09-01

    BACKGROUND Risk adjustment is needed to fairly compare central-line-associated bloodstream infection (CLABSI) rates between hospitals. Until 2017, the Centers for Disease Control and Prevention (CDC) methodology adjusted CLABSI rates only by type of intensive care unit (ICU). The 2017 CDC models also adjust for hospital size and medical school affiliation. We hypothesized that risk adjustment would be improved by including patient demographics and comorbidities from electronically available hospital discharge codes. METHODS Using a cohort design across 22 hospitals, we analyzed data from ICU patients admitted between January 2012 and December 2013. Demographics and International Classification of Diseases, Ninth Edition, Clinical Modification (ICD-9-CM) discharge codes were obtained for each patient, and CLABSIs were identified by trained infection preventionists. Models adjusting only for ICU type and for ICU type plus patient case mix were built and compared using discrimination and standardized infection ratio (SIR). Hospitals were ranked by SIR for each model to examine and compare the changes in rank. RESULTS Overall, 85,849 ICU patients were analyzed and 162 (0.2%) developed CLABSI. The significant variables added to the ICU model were coagulopathy, paralysis, renal failure, malnutrition, and age. The C statistics were 0.55 (95% CI, 0.51-0.59) for the ICU-type model and 0.64 (95% CI, 0.60-0.69) for the ICU-type plus patient case-mix model. When the hospitals were ranked by adjusted SIRs, 10 hospitals (45%) changed rank when comorbidity was added to the ICU-type model. CONCLUSIONS Our risk-adjustment model for CLABSI using electronically available comorbidities demonstrated better discrimination than did the CDC model. The CDC should strongly consider comorbidity-based risk adjustment to more accurately compare CLABSI rates across hospitals. Infect Control Hosp Epidemiol 2017;38:1019-1024.

  12. Finding mouse models of human lymphomas and leukemia's using the Jackson laboratory mouse tumor biology database.

    PubMed

    Begley, Dale A; Sundberg, John P; Krupke, Debra M; Neuhauser, Steven B; Bult, Carol J; Eppig, Janan T; Morse, Herbert C; Ward, Jerrold M

    2015-12-01

    Many mouse models have been created to study hematopoietic cancer types. There are over thirty hematopoietic tumor types and subtypes, both human and mouse, with various origins, characteristics and clinical prognoses. Determining the specific type of hematopoietic lesion produced in a mouse model and identifying mouse models that correspond to the human subtypes of these lesions has been a continuing challenge for the scientific community. The Mouse Tumor Biology Database (MTB; http://tumor.informatics.jax.org) is designed to facilitate use of mouse models of human cancer by providing detailed histopathologic and molecular information on lymphoma subtypes, including expertly annotated, on line, whole slide scans, and providing a repository for storing information on and querying these data for specific lymphoma models. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Statistical Modelling of the Soil Dielectric Constant

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Marczewski, Wojciech; Bogdan Usowicz, Jerzy; Lipiec, Jerzy

    2010-05-01

    The dielectric constant of soil is the physical property being very sensitive on water content. It funds several electrical measurement techniques for determining the water content by means of direct (TDR, FDR, and others related to effects of electrical conductance and/or capacitance) and indirect RS (Remote Sensing) methods. The work is devoted to a particular statistical manner of modelling the dielectric constant as the property accounting a wide range of specific soil composition, porosity, and mass density, within the unsaturated water content. Usually, similar models are determined for few particular soil types, and changing the soil type one needs switching the model on another type or to adjust it by parametrization of soil compounds. Therefore, it is difficult comparing and referring results between models. The presented model was developed for a generic representation of soil being a hypothetical mixture of spheres, each representing a soil fraction, in its proper phase state. The model generates a serial-parallel mesh of conductive and capacitive paths, which is analysed for a total conductive or capacitive property. The model was firstly developed to determine the thermal conductivity property, and now it is extended on the dielectric constant by analysing the capacitive mesh. The analysis is provided by statistical means obeying physical laws related to the serial-parallel branching of the representative electrical mesh. Physical relevance of the analysis is established electrically, but the definition of the electrical mesh is controlled statistically by parametrization of compound fractions, by determining the number of representative spheres per unitary volume per fraction, and by determining the number of fractions. That way the model is capable covering properties of nearly all possible soil types, all phase states within recognition of the Lorenz and Knudsen conditions. In effect the model allows on generating a hypothetical representative of the soil type, and that way it enables clear comparing to results from other soil type dependent models. The paper is focused on proper representing possible range of porosity in commonly existing soils. This work is done with aim of implementing the statistical-physical model of the dielectric constant to a use in the model CMEM (Community Microwave Emission Model), applicable to SMOS (Soil Moisture and Ocean Salinity ESA Mission) data. The input data to the model clearly accepts definition of soil fractions in common physical measures, and in opposition to other empirical models, does not need calibrating. It is not dependent on recognition of the soil by type, but instead it offers the control of accuracy by proper determination of the soil compound fractions. SMOS employs CMEM being funded only by the sand-clay-silt composition. Common use of the soil data, is split on tens or even hundreds soil types depending on the region. We hope that only by determining three element compounds of sand-clay-silt, in few fractions may help resolving the question of relevance of soil data to the input of CMEM, for SMOS. Now, traditionally employed soil types are converted on sand-clay-silt compounds, but hardly cover effects of other specific properties like the porosity. It should bring advantageous effects in validating SMOS observation data, and is taken for the aim in the Cal/Val project 3275, in the campaigns for SVRT (SMOS Validation and Retrieval Team). Acknowledgements. This work was funded in part by the PECS - Programme for European Cooperating States, No. 98084 "SWEX/R - Soil Water and Energy Exchange/Research".

  14. Assessment of an extended version of the Jenkinson-Collison classification on CMIP5 models over Europe

    NASA Astrophysics Data System (ADS)

    Otero, Noelia; Sillmann, Jana; Butler, Tim

    2018-03-01

    A gridded, geographically extended weather type classification has been developed based on the Jenkinson-Collison (JC) classification system and used to evaluate the representation of weather types over Europe in a suite of climate model simulations. To this aim, a set of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) is compared with the circulation from two reanalysis products. Furthermore, we examine seasonal changes between simulated frequencies of weather types at present and future climate conditions. The models are in reasonably good agreement with the reanalyses, but some discrepancies occur in cyclonic days being overestimated over North, and underestimated over South Europe, while anticyclonic situations were overestimated over South, and underestimated over North Europe. Low flow conditions were generally underestimated, especially in summer over South Europe, and Westerly conditions were generally overestimated. The projected frequencies of weather types in the late twenty-first century suggest an increase of Anticyclonic days over South Europe in all seasons except summer, while Westerly days increase over North and Central Europe, particularly in winter. We find significant changes in the frequency of Low flow conditions and the Easterly type that become more frequent during the warmer seasons over Southeast and Southwest Europe, respectively. Our results indicate that in winter the Westerly type has significant impacts on positive anomalies of maximum and minimum temperature over most of Europe. Except in winter, the warmer temperatures are linked to Easterlies, Anticyclonic and Low Flow conditions, especially over the Mediterranean area. Furthermore, we show that changes in the frequency of weather types represent a minor contribution of the total change of European temperatures, which would be mainly driven by changes in the temperature anomalies associated with the weather types themselves.

  15. A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    PubMed Central

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467

  16. A theoretical model to predict both horizontal displacement and vertical displacement for electromagnetic induction-based deep displacement sensors.

    PubMed

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.

  17. Nucleosynthesis Predictions for Intermediate-Mass AGB Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Karakas, Amanda I.; vanRaai, Mark A.; Lugaro, Maria; Sterling, Nicholas C.; Dinerstein, Harriet L.

    2008-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of approx. 3-8 Stellar Mass. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a C-13 pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] less than or approx. 0.6, consistent with Galactic Type I PNe where the observed enhancements are typically less than or approx. 0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the greater than or approx. 0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M grester than or approx.5 Stellar Mass) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 Stellar Mass), if these stars are to evolve into Type I PNe.

  18. Nucleosynthesis Predictions for Intermediate-Mass Asymptotic Giant Branch Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Karakas, Amanda I.; van Raai, Mark A.; Lugaro, Maria; Sterling, N. C.; Dinerstein, Harriet L.

    2009-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of ~3-8 M sun. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a 13C pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] lsim0.6, consistent with Galactic Type I PNe where the observed enhancements are typically lsim0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the gsim0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M gsim 5 M sun) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 M sun), if these stars are to evolve into Type I PNe. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  19. The ortho:para-H_2 ratio in C- and J-type shocks

    NASA Astrophysics Data System (ADS)

    Wilgenbus, D.; Cabrit, S.; Pineau des Forêts, G.; Flower, D. R.

    2000-04-01

    We have computed extensive grids of models of both C- and J-type planar shock waves, propagating in dark, cold molecular clouds, in order to study systematically the behaviour of the ortho:para-H_2 ratio. Careful attention was paid to both macroscopic (dynamical) and microscopic (chemical reactions and collisional population transfer in H_2) aspects. We relate the predictions of the models to observational determinations of the ortho:para-H_2 ratio using both pure rotational lines and rovibrational lines. As an illustration, we consider ISO and ground-based H_2 observations of HH 54. Neither planar C-type nor planar J-type shocks appear able to account fully for these observations. Given the additional constraints provided by the observed ortho:para H_2 ratios, a C-type bowshock, or a C-type precursor followed by a J-type shock, remain as plausible models. Tables~2a-f and 4a-f are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  20. Changes in Landscape-level Carbon Balance of an Arctic Coastal Plain Tundra Ecosystem Between 1970-2100, in Response to Projected Climate Change

    NASA Astrophysics Data System (ADS)

    Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Genet, H.; Sloan, V. L.; Iversen, C. M.; Norby, R. J.; Zhang, Y.; Yuan, F.

    2014-12-01

    Northern permafrost regions are estimated to cover 16% of the global soil area and account for approximately 50% of the global belowground organic carbon pool. However, there are considerable uncertainties regarding the fate of this soil carbon pool with projected climate warming over the next century. In northern Alaska, nearly 65% of the terrestrial surface is composed of polygonal tundra, where geomorphic land cover types such as high-, flat-, and low-center polygons influence local surface hydrology, plant community composition, nutrient and biogeochemical cycling, over small spatial scales. Due to the lack of representation of these fine-scale geomorphic types and ecosystem processes, in large-scale terrestrial ecosystem models, future uncertainties are large for this tundra region. In this study, we use a new version of the terrestrial ecosystem model (TEM), that couples a dynamic vegetation model (in which plant functional types compete for water, nitrogen, and light) with a dynamic soil organic model (in which temperature, moisture, and associated organic/inorganic carbon and nitrogen pools/fluxes vary together in vertically resolved layers) to simulate ecosystem carbon balance. We parameterized and calibrated this model using data specific to the local climate, vegetation, and soil associated with tundra geomorphic types. We extrapolate model results at a 1km2 resolution across the ~1800 km2 Barrow Peninsula using a tundra geomorphology map, describing ten dominant geomorphic tundra types (Lara et al. submitted), to estimate the likely change in landscape-level carbon balance between 1970 and 2100 in response to projected climate change. Preliminary model runs for this region indicated temporal variability in carbon and active layer dynamics, specific to tundra geomorphic type over time. Overall, results suggest that it is important to consider small-scale discrete polygonal tundra geomorphic types that control local structure and function in regional estimates of carbon balance in northern Alaska.

  1. Conformally flat tilted Bianchi Type-V cosmological models in general relativity

    NASA Astrophysics Data System (ADS)

    Bali, Raj; Meena, B. L.

    2004-05-01

    We have investigated two conformally flat tilted Bianchi Type-V cosmological models in general relativity. To get a determinate solution, we have assumed a supplementary condition A = B^n between metric potentials where n is a constant. The behaviour of the model for n=2 is discussed in detail. Various physical and geometrical aspects of the models are also discussed.

  2. Dynamic Fracture of Concrete. Part 1

    DTIC Science & Technology

    1990-02-14

    unnotched) by Mindess and the Charpy type impact tests by Shah. In both cases, dynamic finite element modeling with the adjusted constitutive equavm for the...Mindess and the Charpy type impact tests by Shah. In both cases, dynamic finite element modeling with the adjusted constitutive equations for the...Modeling Shah’s Charpy Impact Tests ................ 190 Figure 7.20 Specimen Configuration and Finite Element Model for Concrete and Mortar Beam Impact

  3. A fuzzy chance-constrained programming model with type 1 and type 2 fuzzy sets for solid waste management under uncertainty

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolin; Ma, Chi; Wan, Zhifang; Wang, Kewei

    2017-06-01

    Effective management of municipal solid waste (MSW) is critical for urban planning and development. This study aims to develop an integrated type 1 and type 2 fuzzy sets chance-constrained programming (ITFCCP) model for tackling regional MSW management problem under a fuzzy environment, where waste generation amounts are supposed to be type 2 fuzzy variables and treated capacities of facilities are assumed to be type 1 fuzzy variables. The evaluation and expression of uncertainty overcome the drawbacks in describing fuzzy possibility distributions as oversimplified forms. The fuzzy constraints are converted to their crisp equivalents through chance-constrained programming under the same or different confidence levels. Regional waste management of the City of Dalian, China, was used as a case study for demonstration. The solutions under various confidence levels reflect the trade-off between system economy and reliability. It is concluded that the ITFCCP model is capable of helping decision makers to generate reasonable waste-allocation alternatives under uncertainties.

  4. Experimental Diabetes Mellitus in Different Animal Models

    PubMed Central

    Al-awar, Amin; Veszelka, Médea; Szűcs, Gergő; Attieh, Zouhair; Murlasits, Zsolt; Török, Szilvia; Pósa, Anikó; Varga, Csaba

    2016-01-01

    Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. PMID:27595114

  5. Dark Energy Survey Group

    Science.gov Websites

    -Chuan Pan, Companions in Type Ia SNe Remnants 2015-03 Daniel Kasen, Type Ia SNe Models 2014-06 Marisa March, DES Supernovae 2014-06 David Chamulak, Supernova Explosion Models 2011-04 Gene Byrd 2010-04 Liz

  6. Information matrix estimation procedures for cognitive diagnostic models.

    PubMed

    Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei

    2018-03-06

    Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.

  7. Probing dark energy in the scope of a Bianchi type I spacetime

    NASA Astrophysics Data System (ADS)

    Amirhashchi, Hassan

    2018-03-01

    It is well known that the flat Friedmann-Robertson-Walker metric is a special case of Bianchi type I spacetime. In this paper, we use 38 Hubble parameter, H (z ), measurements at intermediate redshifts 0.07 ≤z ≤2.36 and its joint combination with the latest "joint light curves" (JLA) sample, comprising 740 type Ia supernovae in the redshift range of z ɛ [0.01 ,1.30 ] to constrain the parameters of the Bianchi type I dark energy model. We also use the same datasets to constrain flat a Λ CDM model. In both cases, we specifically address the expansion rate H0 as well as the transition redshift zt determinations out of these measurements. In both models, we found that using joint combination of datasets gives rise to lower values for model parameters. Also to compare the considered cosmologies, we have made Akaike information criterion and Bayes factor (Ψ ) tests.

  8. A Morphological Analysis of Gamma-Ray Burst Early-optical Afterglows

    NASA Astrophysics Data System (ADS)

    Gao, He; Wang, Xiang-Gao; Mészáros, Peter; Zhang, Bing

    2015-09-01

    Within the framework of the external shock model of gamma-ray burst (GRB) afterglows, we perform a morphological analysis of the early-optical light curves to directly constrain model parameters. We define four morphological types, i.e., the reverse shock-dominated cases with/without the emergence of the forward shock peak (Type I/Type II), and the forward shock-dominated cases without/with νm crossing the band (Type III/IV). We systematically investigate all of the Swift GRBs that have optical detection earlier than 500 s and find 3/63 Type I bursts (4.8%), 12/63 Type II bursts (19.0%), 30/63 Type III bursts (47.6%), 8/63 Type IV bursts (12.7%), and 10/63 Type III/IV bursts (15.9%). We perform Monte Carlo simulations to constrain model parameters in order to reproduce the observations. We find that the favored value of the magnetic equipartition parameter in the forward shock ({ɛ }B{{f}}) ranges from 10-6 to 10-2, and the reverse-to-forward ratio of ɛB ({{R}}B) is about 100. The preferred electron equipartition parameter {ɛ }{{e}}{{r},{{f}}} value is 0.01, which is smaller than the commonly assumed value, e.g., 0.1. This could mitigate the so-called “efficiency problem” for the internal shock model, if ɛe during the prompt emission phase (in the internal shocks) is large (say, ˜0.1). The preferred {{R}}B value is in agreement with the results in previous works that indicate a moderately magnetized baryonic jet for GRBs.

  9. Myofiber metabolic type determination by mass spectrometry imaging.

    PubMed

    Centeno, Delphine; Vénien, Annie; Pujos-Guillot, Estelle; Astruc, Thierry; Chambon, Christophe; Théron, Laëtitia

    2017-08-01

    Matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging is a powerful tool that opens new research opportunities in the field of biology. In this work, predictive model was developed to discriminate metabolic myofiber types using the MALDI spectral data. Rat skeletal muscles are constituted of type I and type IIA fiber, which have an oxidative metabolism for glycogen degradation, and type IIX and type IIB fiber which have a glycolytic metabolism, present in different proportions according to the muscle function and physiological state. So far, myofiber type is determined by histological methods that are time consuming. Thanks to the predictive model, we were able to predict not only the metabolic fiber type but also their location, on the same muscle section that was used for MALDI imaging. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Optogenetic Stimulation Shifts the Excitability of Cerebral Cortex from Type I to Type II: Oscillation Onset and Wave Propagation.

    PubMed

    Heitmann, Stewart; Rule, Michael; Truccolo, Wilson; Ermentrout, Bard

    2017-01-01

    Constant optogenetic stimulation targeting both pyramidal cells and inhibitory interneurons has recently been shown to elicit propagating waves of gamma-band (40-80 Hz) oscillations in the local field potential of non-human primate motor cortex. The oscillations emerge with non-zero frequency and small amplitude-the hallmark of a type II excitable medium-yet they also propagate far beyond the stimulation site in the manner of a type I excitable medium. How can neural tissue exhibit both type I and type II excitability? We investigated the apparent contradiction by modeling the cortex as a Wilson-Cowan neural field in which optogenetic stimulation was represented by an external current source. In the absence of any external current, the model operated as a type I excitable medium that supported propagating waves of gamma oscillations similar to those observed in vivo. Applying an external current to the population of inhibitory neurons transformed the model into a type II excitable medium. The findings suggest that cortical tissue normally operates as a type I excitable medium but it is locally transformed into a type II medium by optogenetic stimulation which predominantly targets inhibitory neurons. The proposed mechanism accounts for the graded emergence of gamma oscillations at the stimulation site while retaining propagating waves of gamma oscillations in the non-stimulated tissue. It also predicts that gamma waves can be emitted on every second cycle of a 100 Hz oscillation. That prediction was subsequently confirmed by re-analysis of the neurophysiological data. The model thus offers a theoretical account of how optogenetic stimulation alters the excitability of cortical neural fields.

  11. Closed loop control of a cylindrical tube type Ionic Polymer Metal Composite (IPMC)

    NASA Astrophysics Data System (ADS)

    Mead, Benjamin T.

    The goal of this research is to provide a framework for the integration of tube type, cylindrical Ionic Polymer Metal-Composite (IPMC) into conventional devices. IPMCs are one of the most widely used types of electro-active polymer actuator, due to their low electric driving potential and large deformation range. For this research a tube type IPMC was investigated. This IPMC has a circular cross section with four separate electrodes on its surface and a hole through the middle. The four electrodes allow for biaxial bending and accurate control of the tip location. One of the main advantages of using this type of IPMC is the ability to embed a specific tool and accurately control the tool tip location using the large deflection range of the IPMC. This ability has widespread applications including in the biomedical field for use in active catheter procedures. First, this relatively new type of IPMC is investigated and characterized. The processes and materials used are described and the functional design is explored. Before the modeling process beings the basic functions of the IPMC are investigated. To this end force and displacement experiments are performed to describe the activation of the tube type IPMC. This data will be used later to verify and calibrate the mathematical simulations. Second, a three dimensional multi-physics finite element model is developed using COMSOL 4.3a. This model will automatically couple three physics packages and provide a description of the fluid interactions within the tube type IPMC. This model is then compared against the experimental displacement results to calibrate the simulation. Using this simulation design parameters are declared including, overall diameter, and tool hole size. The performance of the IPMC is then simulated while varying these parameters. Third, an electro-mechanical model of the IPMC is developed. This macroscopic model is used to relate the input voltage to an associated tip deflection. Several model types used for this purpose are tested and discussed. After determining a suitable type a mathematical electro-mechanical model is developed. Using this model several closed loop control systems are proposed. Once a final decision is reached the closed loop control system is implemented in the experimental setup. Several tests are designed to test the effectiveness of the closed loop system and mathematical models. Finally several improvements are made to enhance the users experience using IPMCs as well as incorporating them into conventional devices. To provide a better user interface the experimental control system is extended to allow the user to input controls via a standard computer mouse. This will allow a shorter operator training time and hopefully a wider array of real world uses for IPMCs. Attempts are also made to establish permanent connections to the IPMC. A tube type IPMC is meant to be used as part of a total system. To this end soldered connections to the IPMC are made. One of the main expected applications of tube type IPMCs are as active catheters. In this application the IPMC would be placed in-line with the plastic catheter line. As a proof of concept the IPMC is installed onto the tip of a conventional catheter line.

  12. 40 CFR 86.1865-12 - How to comply with the fleet average CO2 standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Calculating the fleet average carbon-related exhaust emissions. (1) Manufacturers must compute separate production-weighted fleet average carbon-related exhaust emissions at the end of the model year for passenger... for sale, and certifying model types to standards as defined in § 86.1818-12. The model type carbon...

  13. Choosing a Model and Types of Models: How To Find What Works for Your School. Research Brief.

    ERIC Educational Resources Information Center

    Schwartzbeck, Terri Duggan

    It is critical for schools and districts engaged in a comprehensive school-reform process to develop a schoolwide or districtwide strategy, one that affects teaching and learning, governance, and professional development. Researchers studying school-reform processes have noted that different types of models suit different schools differently.…

  14. Generalized Path Analysis and Generalized Simultaneous Equations Model for Recursive Systems with Responses of Mixed Types

    ERIC Educational Resources Information Center

    Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang

    2006-01-01

    This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…

  15. Detection of botulinum toxin types A, B, E, and F activity using the quail embryo

    USDA-ARS?s Scientific Manuscript database

    We recently demonstrated an effective new model for the detection of botulinum toxin type A using quail embryos in place of the mouse model. These experiments demonstrated that the Japanese quail embryo at 15 days of incubation was an effective vertebrate animal model to detect the activity of botu...

  16. Stochastic Multiscale Modeling of Polycrystalline Materials

    DTIC Science & Technology

    2013-01-01

    The single-grid strategy is adopted. The crystal visco-plastic constitutive model proposed in [7] along with a Voce type hardening model described...in [97] is used with γ̇0 = 1s−1 and m = 0.1. The parameters in the Voce type hardening law are selected according to [97]: κ0 = 47.0MPa, κ1 = 86.0MPa

  17. A white-box model of S-shaped and double S-shaped single-species population growth

    PubMed Central

    Kalmykov, Lev V.

    2015-01-01

    Complex systems may be mechanistically modelled by white-box modeling with using logical deterministic individual-based cellular automata. Mathematical models of complex systems are of three types: black-box (phenomenological), white-box (mechanistic, based on the first principles) and grey-box (mixtures of phenomenological and mechanistic models). Most basic ecological models are of black-box type, including Malthusian, Verhulst, Lotka–Volterra models. In black-box models, the individual-based (mechanistic) mechanisms of population dynamics remain hidden. Here we mechanistically model the S-shaped and double S-shaped population growth of vegetatively propagated rhizomatous lawn grasses. Using purely logical deterministic individual-based cellular automata we create a white-box model. From a general physical standpoint, the vegetative propagation of plants is an analogue of excitation propagation in excitable media. Using the Monte Carlo method, we investigate a role of different initial positioning of an individual in the habitat. We have investigated mechanisms of the single-species population growth limited by habitat size, intraspecific competition, regeneration time and fecundity of individuals in two types of boundary conditions and at two types of fecundity. Besides that, we have compared the S-shaped and J-shaped population growth. We consider this white-box modeling approach as a method of artificial intelligence which works as automatic hyper-logical inference from the first principles of the studied subject. This approach is perspective for direct mechanistic insights into nature of any complex systems. PMID:26038717

  18. A manufacturing quality assessment model based-on two stages interval type-2 fuzzy logic

    NASA Astrophysics Data System (ADS)

    Purnomo, Muhammad Ridwan Andi; Helmi Shintya Dewi, Intan

    2016-01-01

    This paper presents the development of an assessment models for manufacturing quality using Interval Type-2 Fuzzy Logic (IT2-FL). The proposed model is developed based on one of building block in sustainable supply chain management (SSCM), which is benefit of SCM, and focuses more on quality. The proposed model can be used to predict the quality level of production chain in a company. The quality of production will affect to the quality of product. Practically, quality of production is unique for every type of production system. Hence, experts opinion will play major role in developing the assessment model. The model will become more complicated when the data contains ambiguity and uncertainty. In this study, IT2-FL is used to model the ambiguity and uncertainty. A case study taken from a company in Yogyakarta shows that the proposed manufacturing quality assessment model can work well in determining the quality level of production.

  19. An Integrative Approach to Computational Modelling of the Gene Regulatory Network Controlling Clostridium botulinum Type A1 Toxin Production.

    PubMed

    Ihekwaba, Adaoha E C; Mura, Ivan; Walshaw, John; Peck, Michael W; Barker, Gary C

    2016-11-01

    Clostridium botulinum produces botulinum neurotoxins (BoNTs), highly potent substances responsible for botulism. Currently, mathematical models of C. botulinum growth and toxigenesis are largely aimed at risk assessment and do not include explicit genetic information beyond group level but integrate many component processes, such as signalling, membrane permeability and metabolic activity. In this paper we present a scheme for modelling neurotoxin production in C. botulinum Group I type A1, based on the integration of diverse information coming from experimental results available in the literature. Experiments show that production of BoNTs depends on the growth-phase and is under the control of positive and negative regulatory elements at the intracellular level. Toxins are released as large protein complexes and are associated with non-toxic components. Here, we systematically review and integrate those regulatory elements previously described in the literature for C. botulinum Group I type A1 into a population dynamics model, to build the very first computational model of toxin production at the molecular level. We conduct a validation of our model against several items of published experimental data for different wild type and mutant strains of C. botulinum Group I type A1. The result of this process underscores the potential of mathematical modelling at the cellular level, as a means of creating opportunities in developing new strategies that could be used to prevent botulism; and potentially contribute to improved methods for the production of toxin that is used for therapeutics.

  20. LRS Bianchi type-I cosmological model with constant deceleration parameter in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Bishi, Binaya K.; Pacif, S. K. J.; Sahoo, P. K.; Singh, G. P.

    A spatially homogeneous anisotropic LRS Bianchi type-I cosmological model is studied in f(R,T) gravity with a special form of Hubble's parameter, which leads to constant deceleration parameter. The parameters involved in the considered form of Hubble parameter can be tuned to match, our models with the ΛCDM model. With the present observed value of the deceleration parameter, we have discussed physical and kinematical properties of a specific model. Moreover, we have discussed the cosmological distances for our model.

  1. Epidemiology of Mild Traumatic Brain Injury with Intracranial Hemorrhage: Focusing Predictive Models for Neurosurgical Intervention.

    PubMed

    Orlando, Alessandro; Levy, A Stewart; Carrick, Matthew M; Tanner, Allen; Mains, Charles W; Bar-Or, David

    2017-11-01

    To outline differences in neurosurgical intervention (NI) rates between intracranial hemorrhage (ICH) types in mild traumatic brain injuries and help identify which ICH types are most likely to benefit from creation of predictive models for NI. A multicenter retrospective study of adult patients spanning 3 years at 4 U.S. trauma centers was performed. Patients were included if they presented with mild traumatic brain injury (Glasgow Coma Scale score 13-15) with head CT scan positive for ICH. Patients were excluded for skull fractures, "unspecified hemorrhage," or coagulopathy. Primary outcome was NI. Stepwise multivariable logistic regression models were built to analyze the independent association between ICH variables and outcome measures. The study comprised 1876 patients. NI rate was 6.7%. There was a significant difference in rate of NI by ICH type. Subdural hematomas had the highest rate of NI (15.5%) and accounted for 78% of all NIs. Isolated subarachnoid hemorrhages had the lowest, nonzero, NI rate (0.19%). Logistic regression models identified ICH type as the most influential independent variable when examining NI. A model predicting NI for isolated subarachnoid hemorrhages would require 26,928 patients, but a model predicting NI for isolated subdural hematomas would require only 328 patients. This study highlighted disparate NI rates among ICH types in patients with mild traumatic brain injury and identified mild, isolated subdural hematomas as most appropriate for construction of predictive NI models. Increased health care efficiency will be driven by accurate understanding of risk, which can come only from accurate predictive models. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Separation of variables in anisotropic models: anisotropic Rabi and elliptic Gaudin model in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Skrypnyk, T.

    2017-08-01

    We study the problem of separation of variables for classical integrable Hamiltonian systems governed by non-skew-symmetric non-dynamical so(3)\\otimes so(3) -valued elliptic r-matrices with spectral parameters. We consider several examples of such models, and perform separation of variables for classical anisotropic one- and two-spin Gaudin-type models in an external magnetic field, and for Jaynes-Cummings-Dicke-type models without the rotating wave approximation.

  3. Quebec's Child Care Services: What Are the Mechanisms Influencing Children's Behaviors across Quantity, Type, and Quality of Care Experienced?

    ERIC Educational Resources Information Center

    Lemay, Lise; Bigras, Nathalie; Bouchard, Caroline

    2015-01-01

    The objective of this study was to examine how quantity, type, and quality of care interact in predicting externalizing and internalizing behaviors of 36-month-old children attending Quebec's educational child care from their first years of life. To do so, the authors examined two hypothesized models: (1) a mediation model where quantity, type,…

  4. Effects of Model-Based and Memory-Based Processing on Speed and Accuracy of Grammar String Generation

    ERIC Educational Resources Information Center

    Domangue, Thomas J.; Mathews, Robert C.; Sun, Ron; Roussel, Lewis G.; Guidry, Claire E.

    2004-01-01

    Learners are able to use 2 different types of knowledge to perform a skill. One type is a conscious mental model, and the other is based on memories of instances. The authors conducted 3 experiments that manipulated training conditions designed to affect the availability of 1 or both types of knowledge about an artificial grammar. Participants…

  5. Animal models to study the pathogenesis of human and animal Clostridium perfringens infections.

    PubMed

    Uzal, Francisco A; McClane, Bruce A; Cheung, Jackie K; Theoret, James; Garcia, Jorge P; Moore, Robert J; Rood, Julian I

    2015-08-31

    The most common animal models used to study Clostridium perfringens infections in humans and animals are reviewed here. The classical C. perfringens-mediated histotoxic disease of humans is clostridial myonecrosis or gas gangrene and the use of a mouse myonecrosis model coupled with genetic studies has contributed greatly to our understanding of disease pathogenesis. Similarly, the use of a chicken model has enhanced our understanding of type A-mediated necrotic enteritis in poultry and has led to the identification of NetB as the primary toxin involved in disease. C. perfringens type A food poisoning is a highly prevalent bacterial illness in the USA and elsewhere. Rabbits and mice are the species most commonly used to study the action of enterotoxin, the causative toxin. Other animal models used to study the effect of this toxin are rats, non-human primates, sheep and cattle. In rabbits and mice, CPE produces severe necrosis of the small intestinal epithelium along with fluid accumulation. C. perfringens type D infection has been studied by inoculating epsilon toxin (ETX) intravenously into mice, rats, sheep, goats and cattle, and by intraduodenal inoculation of whole cultures of this microorganism in mice, sheep, goats and cattle. Molecular Koch's postulates have been fulfilled for enterotoxigenic C. perfringens type A in rabbits and mice, for C. perfringens type A necrotic enteritis and gas gangrene in chickens and mice, respectively, for C. perfringens type C in mice, rabbits and goats, and for C. perfringens type D in mice, sheep and goats. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Animal models to study the pathogenesis of human and animal Clostridium perfringens infections

    PubMed Central

    Uzal, Francisco A.; McClane, Bruce A.; Cheung, Jackie K.; Theoret, James; Garcia, Jorge P.; Moore, Robert J.; Rood, Julian I.

    2016-01-01

    The most common animal models used to study Clostridium perfringens infections in humans and animals are reviewed here. The classical C. perfringens-mediated histotoxic disease of humans is clostridial myonecrosis or gas gangrene and the use of a mouse myonecrosis model coupled with genetic studies has contributed greatly to our understanding of disease pathogenesis. Similarly, the use of a chicken model has enhanced our understanding of type A-mediated necrotic enteritis in poultry and has led to the identification of NetB as the primary toxin involved in disease. C. perfringens type A food poisoning is a highly prevalent bacterial illness in the USA and elsewhere. Rabbits and mice are the species most commonly used to study the action of enterotoxin, the causative toxin. Other animal models used to study the effect of this toxin are rats, non-human primates, sheep and cattle. In rabbits and mice, CPE produces severe necrosis of the small intestinal epithelium along with fluid accumulation. C. perfringens type D infection has been studied by inoculating epsilon toxin (ETX) intravenously into mice, rats, sheep, goats and cattle, and by intraduodenal inoculation of whole cultures of this microorganism in mice, sheep, goats and cattle. Molecular Koch's postulates have been fulfilled for enterotoxigenic C. perfringens type A in rabbits and mice, for C. perfringens type A necrotic enteritis and gas gangrene in chickens and mice, respectively, for C. perfringens type C in mice, rabbits and goats, and for C. perfringens type D in mice, sheep and goats. PMID:25770894

  7. [Discrimination of types of polyacrylamide based on near infrared spectroscopy coupled with least square support vector machine].

    PubMed

    Zhang, Hong-Guang; Yang, Qin-Min; Lu, Jian-Gang

    2014-04-01

    In this paper, a novel discriminant methodology based on near infrared spectroscopic analysis technique and least square support vector machine was proposed for rapid and nondestructive discrimination of different types of Polyacrylamide. The diffuse reflectance spectra of samples of Non-ionic Polyacrylamide, Anionic Polyacrylamide and Cationic Polyacrylamide were measured. Then principal component analysis method was applied to reduce the dimension of the spectral data and extract of the principal compnents. The first three principal components were used for cluster analysis of the three different types of Polyacrylamide. Then those principal components were also used as inputs of least square support vector machine model. The optimization of the parameters and the number of principal components used as inputs of least square support vector machine model was performed through cross validation based on grid search. 60 samples of each type of Polyacrylamide were collected. Thus a total of 180 samples were obtained. 135 samples, 45 samples for each type of Polyacrylamide, were randomly split into a training set to build calibration model and the rest 45 samples were used as test set to evaluate the performance of the developed model. In addition, 5 Cationic Polyacrylamide samples and 5 Anionic Polyacrylamide samples adulterated with different proportion of Non-ionic Polyacrylamide were also prepared to show the feasibilty of the proposed method to discriminate the adulterated Polyacrylamide samples. The prediction error threshold for each type of Polyacrylamide was determined by F statistical significance test method based on the prediction error of the training set of corresponding type of Polyacrylamide in cross validation. The discrimination accuracy of the built model was 100% for prediction of the test set. The prediction of the model for the 10 mixing samples was also presented, and all mixing samples were accurately discriminated as adulterated samples. The overall results demonstrate that the discrimination method proposed in the present paper can rapidly and nondestructively discriminate the different types of Polyacrylamide and the adulterated Polyacrylamide samples, and offered a new approach to discriminate the types of Polyacrylamide.

  8. Predictive Computational Modeling of Chromatin Folding

    NASA Astrophysics Data System (ADS)

    di Pierro, Miichele; Zhang, Bin; Wolynes, Peter J.; Onuchic, Jose N.

    In vivo, the human genome folds into well-determined and conserved three-dimensional structures. The mechanism driving the folding process remains unknown. We report a theoretical model (MiChroM) for chromatin derived by using the maximum entropy principle. The proposed model allows Molecular Dynamics simulations of the genome using as input the classification of loci into chromatin types and the presence of binding sites of loop forming protein CTCF. The model was trained to reproduce the Hi-C map of chromosome 10 of human lymphoblastoid cells. With no additional tuning the model was able to predict accurately the Hi-C maps of chromosomes 1-22 for the same cell line. Simulations show unknotted chromosomes, phase separation of chromatin types and a preference of chromatin of type A to sit at the periphery of the chromosomes.

  9. Mid-infrared interferometry of Seyfert galaxies: Challenging the Standard Model

    NASA Astrophysics Data System (ADS)

    López-Gonzaga, N.; Jaffe, W.

    2016-06-01

    Aims: We aim to find torus models that explain the observed high-resolution mid-infrared (MIR) measurements of active galactic nuclei (AGN). Our goal is to determine the general properties of the circumnuclear dusty environments. Methods: We used the MIR interferometric data of a sample of AGNs provided by the instrument MIDI/VLTI and followed a statistical approach to compare the observed distribution of the interferometric measurements with the distributions computed from clumpy torus models. We mainly tested whether the diversity of Seyfert galaxies can be described using the Standard Model idea, where differences are solely due to a line-of-sight (LOS) effect. In addition to the LOS effects, we performed different realizations of the same model to include possible variations that are caused by the stochastic nature of the dusty models. Results: We find that our entire sample of AGNs, which contains both Seyfert types, cannot be explained merely by an inclination effect and by including random variations of the clouds. Instead, we find that each subset of Seyfert type can be explained by different models, where the filling factor at the inner radius seems to be the largest difference. For the type 1 objects we find that about two thirds of our objects could also be described using a dusty torus similar to the type 2 objects. For the remaining third, it was not possible to find a good description using models with high filling factors, while we found good fits with models with low filling factors. Conclusions: Within our model assumptions, we did not find one single set of model parameters that could simultaneously explain the MIR data of all 21 AGN with LOS effects and random variations alone. We conclude that at least two distinct cloud configurations are required to model the differences in Seyfert galaxies, with volume-filling factors differing by a factor of about 5-10. A continuous transition between the two types cannot be excluded.

  10. Optimal foraging on the roof of the world: Himalayan langurs and the classical prey model

    PubMed Central

    Sayers, Ken; Norconk, Marilyn A.; Conklin-Brittain, Nancy L.

    2009-01-01

    Optimal foraging theory has only been sporadically applied to nonhuman primates. The classical prey model, modified for patch choice, predicts a sliding “profitability threshold” for dropping patch types from the diet, preference for profitable foods, dietary niche breadth reduction as encounter rates increase, and that exploitation of a patch type is unrelated to its own abundance. We present results from a one-year study testing these predictions with Himalayan langurs (Semnopithecus entellus) at Langtang National Park, Nepal. Behavioral data included continuous recording of feeding bouts and between-patch travel times. Encounter rates were estimated for 55 food types, which were analyzed for crude protein, lipid, free simple sugar, and fibers. Patch types were entered into the prey model algorithm for eight seasonal time periods and differing age-sex classes and nutritional currencies. Although the model consistently underestimated diet breadth, the majority of non-predicted patch types represented rare foods. Profitability was positively related to annual/seasonal dietary contribution by organic matter estimates, while time estimates provided weaker relationships. Patch types utilized did not decrease with increasing encounter rates involving profitable foods, although low-ranking foods available year-round were taken predominantly when high-ranking foods were scarce. High-ranking foods were taken in close relation to encounter rates, while low-ranking foods were not. The utilization of an energetic currency generally resulted in closest conformation to model predictions, and it performed best when assumptions were most closely approximated. These results suggest that even simple models from foraging theory can provide a useful framework for the study of primate feeding behavior. PMID:19844998

  11. Direct numerical simulation of flow around a surface-mounted finite square cylinder at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Cheng, Liang; An, Hongwei; Zhao, Ming

    2017-04-01

    With the aid of direct numerical simulation, this paper presents a detailed investigation on the flow around a finite square cylinder at a fixed aspect ratio (AR) of 4 and six Reynolds numbers (Re = 50, 100, 150, 250, 500, and 1000). It is found that the mean streamwise vortex structure is also affected by Re, apart from the AR value. Three types of mean streamwise vortices have been identified and analyzed in detail, namely, "Quadrupole Type" at Re = 50 and Re = 100, "Six-Vortices Type" at Re = 150 and Re = 250, and "Dipole Type" at Re = 500 and Re = 1000. It is the first time that the "Six-Vortices Type" mean streamwise vortices are reported, which is considered as a transitional structure between the other two types. Besides, three kinds of spanwise vortex-shedding models have been observed in this study, namely, "Hairpin Vortex Model" at Re = 150, "C and Reverse-C and Hairpin Vortex Model (Symmetric Shedding)" at Re = 250, and "C and Reverse-C and Hairpin Vortex Model (Symmetric/Antisymmetric Shedding)" at Re = 500 and Re = 1000. The newly proposed "C and Reverse-C and Hairpin Vortex Model" shares some similarities with "Wang's Model" [H. F. Wang and Y. Zhou, "The finite-length square cylinder near wake," J. Fluid Mech. 638, 453-490 (2009)] but differs in aspects such as the absence of the connection line near the free-end and the "C-Shape" vortex structure in the early stage of the formation of the spanwise vortex.

  12. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    PubMed Central

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389

  13. Tobacco Town: Computational Modeling of Policy Options to Reduce Tobacco Retailer Density

    PubMed Central

    Luke, Douglas A.; Hammond, Ross A.; Combs, Todd; Sorg, Amy; Kasman, Matt; Mack-Crane, Austen; Ribisl, Kurt M.; Henriksen, Lisa

    2017-01-01

    Objectives To identify the behavioral mechanisms and effects of tobacco control policies designed to reduce tobacco retailer density. Methods We developed the Tobacco Town agent-based simulation model to examine 4 types of retailer reduction policies: (1) random retailer reduction, (2) restriction by type of retailer, (3) limiting proximity of retailers to schools, and (4) limiting proximity of retailers to each other. The model examined the effects of these policies alone and in combination across 4 different types of towns, defined by 2 levels of population density (urban vs suburban) and 2 levels of income (higher vs lower). Results Model results indicated that reduction of retailer density has the potential to decrease accessibility of tobacco products by driving up search and purchase costs. Policy effects varied by town type: proximity policies worked better in dense, urban towns whereas retailer type and random retailer reduction worked better in less-dense, suburban settings. Conclusions Comprehensive retailer density reduction policies have excellent potential to reduce the public health burden of tobacco use in communities. PMID:28398792

  14. A data types profile suitable for use with ISO EN 13606.

    PubMed

    Sun, Shanghua; Austin, Tony; Kalra, Dipak

    2012-12-01

    ISO EN 13606 is a five part International Standard specifying how Electronic Healthcare Record (EHR) information should be communicated between different EHR systems and repositories. Part 1 of the standard defines an information model for representing the EHR information itself, including the representation of types of data value. A later International Standard, ISO 21090:2010, defines a comprehensive set of models for data types needed by all health IT systems. This latter standard is vast, and duplicates some of the functions already handled by ISO EN 13606 part 1. A profile (sub-set) of ISO 21090 would therefore be expected to provide EHR system vendors with a more specially tailored set of data types to implement and avoid the risk of providing more than one modelling option for representing the information properties. This paper describes the process and design decisions made for developing a data types profile for EHR interoperability.

  15. SN 1991T - Gamma-Ray Observatory's first supernova?

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Shankar, Anurag; Van Riper, Kenneth A.

    1991-01-01

    Consideration is given to the explosion of the Type Ia supernova SN 1991T in the nearby galaxy NGC 4527 detected in gamma-ray lines by the recently launched GRO. The dominant gamma-line and continuum features of the new 'delayed detonation' model FDEFA1 are calculated and compared to those for standard deflagration models W7 and cdtg7. It is shown that there are many useful hard photon discriminants of the Type Ia explosion mechanism that can, in principle, be detected by the OSSE and COMPTEL instruments on the GRO. Either SN 1991T, if bright enough, or one of the several Type Ia supernovae expected to be within the GRO's range during its active life, may make it possible to settle the detonation/deflagration debate, verify the generic thermonuclear white dwarf model of Type Ia explosions, and calibrate the Type Ia B(max)/847 keV line flux ratio.

  16. Descriptive models of major uranium deposits in China - Some results of the Workshop on Uranium Resource Assessment sponsored by the International Atomic Energy Agency, Vienna, Austria, in cooperation with China National Nuclear Corporation, Beijing, and the U.S. Geological Survey, Denver, Colorado, and Reston, Virginia

    USGS Publications Warehouse

    Finch, W.I.; Feng, S.; Zuyi, C.; McCammon, R.B.

    1993-01-01

    Four major types of uranium deposits occur in China: granite, volcanic, sandstone, and carbonaceous-siliceous-pelitic rock. These types are major sources of uranium in many parts of the world and account for about 95 percent of Chinese production. Descriptive models for each of these types record the diagnostic regional and local geologic features of the deposits that are important to genetic studies, exploration, and resource assessment. A fifth type of uranium deposit, metasomatite, is also modeled because of its high potential for production. These five types of uranium deposits occur irregularly in five tectonic provinces distributed from the northwest through central to southern China. ?? 1993 Oxford University Press.

  17. Dimensional scaling of perovskite ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Keech, Ryan R.

    Dimensional size reduction has been the cornerstone of the exponential improvement in silicon based logic devices for decades. However, fundamental limits in the device physics were reached ˜2003, halting further reductions in clock speed without significant penalties in power consumption. This has motivated the research into next generation transistors and switching devices to reinstate the scaling laws for clock speed. This dissertation aims to support the scaling of devices that are based on ferroelectricity and piezoelectricity and to provide a roadmap for the corresponding materials performance. First, a scalable growth process to obtain highly {001}-oriented lead magnesium niobate - lead titanate (PMN-PT) thin films was developed, motivated by the high piezoelectric responses observed in bulk single crystals. It was found that deposition of a 2-3 nm thick PbO buffer layer on {111} Pt thin film bottom electrodes, prior to chemical solution deposition of PMN-PT reduces the driving force for Pb diffusion from the PMN-PT to the bottom electrode, and facilitates nucleation of {001}-oriented perovskite grains. Energy dispersive spectroscopy demonstrated that up to 10% of the Pb from a PMN-PT precursor solution may diffuse into the bottom electrode. PMN-PT grains with a mixed {101}/{111} orientation in a matrix of Pb-deficient pyrochlore phase were then promoted near the interface. When this is prevented, phase pure films with {001} orientation with Lotgering factors of 0.98-1.0, can be achieved. The resulting films of only 300 nm in thickness exhibit longitudinal effective d33,f coefficients of ˜90 pm/V and strain values of ˜1% prior to breakdown. 300 nm thick epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) blanket thin films were studied for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO3, while polycrystalline films with {001}-Lotgering factors >0.96 were grown on Pt/TiO2/SiO2/Si substrates via chemical solution deposition. It was found that both film types exhibited similar, thickness-independent high-field epsilonr of ˜300 with highly crystalline electrode/dielectric interfaces. The dielectric data suggest that irreversible domain wall motion is the major contributor to the overall dielectric response and its thickness dependence. In epitaxial films the irreversible Rayleigh coefficients reduced 85% upon decreasing thickness from 350 to 100 nm. Tmax was the only measured small signal quantity which was more thickness dependent in polycrystalline than epitaxial films. This was attributed to the relaxor nature present in the films, potentially stabilized by defect concentrations, and/or chemical inhomogeneity. The effective interfacial layers are found to contribute to the measured thickness dependence in d33,f measured by X-ray diffraction. Finally, high field piezoelectric characterization revealed a field-induced rhombohedral to tetragonal phase transition in epitaxial films. While the mechanisms causing thickness dependence are mostly understood, the functional properties of blanket PMN-PT films remain about an order of magnitude lower than what is achieved in constraint-free bulk single crystals. These property reductions are attributed to substrate clamping, and the process of declamping via lateral subdivision was studied in 300-350 nm thick, {001} oriented 70PMN-30PT films on Si substrates. In the clamped state, the films exhibit relative permittivity near 1500 and loss tangents of approximately 0.01. The films showed slim hysteresis loops with remanent polarizations of about 8 muC/cm2 and breakdown fields over 1500 kV/cm. Using optical and electron beam lithography combined with reactive ion etching, the PMN-PT films were systematically patterned down to lateral feature sizes of 200 nm in spatial scale with nearly vertical sidewalls. Upon lateral scaling, which produced partially declamped films, there was an increase in both small and large signal dielectric properties, including a doubling of the relative permittivity in structures with width-to-thickness aspect ratios of 0.7. In addition, declamping resulted in a counterclockwise rotation of the hysteresis loops, increasing the remanent polarization to 13.5 muC/cm2. Rayleigh analysis, Preisach modeling, and the relative permittivity as a function of temperature also indicated changes in the domain wall motion and intrinsic response of the laterally scaled PMN-PT. The longitudinal piezoelectric coefficient, d33,f, was interrogated as a function of position across the patterned structures by finite element modeling, piezoresponse force microscopy, and nanoprobe synchrotron X-ray diffraction. It was found that d33,f increased from the clamped value of 40-50 pm/V to ˜160 pm/V at the free sidewall under 200 kV/cm excitation. The sidewalls partially declamped the piezoelectric response 500-600 nm into the patterned structure, raising the piezoelectric response at the center of features with lateral dimensions less than 1 mum (3:1 width to thickness aspect ratio). The normalized data from all three characterization techniques are in excellent agreement, with quantitative differences providing insight to the field dependence of the piezoelectric coefficient and its declamping behavior.

  18. High scale impact in alignment and decoupling in two-Higgs-doublet models

    NASA Astrophysics Data System (ADS)

    Basler, Philipp; Ferreira, Pedro M.; Mühlleitner, Margarete; Santos, Rui

    2018-05-01

    The two-Higgs-doublet model (2HDM) provides an excellent benchmark to study physics beyond the Standard Model (SM). In this work, we discuss how the behavior of the model at high-energy scales causes it to have a scalar with properties very similar to those of the SM—which means the 2HDM can be seen to naturally favor a decoupling or alignment limit. For a type II 2HDM, we show that requiring the model to be theoretically valid up to a scale of 1 TeV, by studying the renormalization group equations (RGE) of the parameters of the model, causes a significant reduction in the allowed magnitude of the quartic couplings. This, combined with B -physics bounds, forces the model to be naturally decoupled. As a consequence, any nondecoupling limits in type II, like the wrong-sign scenario, are excluded. On the contrary, even with the very constraining limits for the Higgs couplings from the LHC, the type I model can deviate substantially from alignment. An RGE analysis similar to that made for type II shows, however, that requiring a single scalar to be heavier than about 500 GeV would be sufficient for the model to be decoupled. Finally, we show that the 2HDM is stable up to the Planck scale independently of which of the C P -even scalars is the discovered 125 GeV Higgs boson.

  19. Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Yin, Kunlong; Cao, Ying; Ahmed, Bayes; Li, Yuanyao; Catani, Filippo; Pourghasemi, Hamid Reza

    2018-03-01

    Landslide is a common natural hazard and responsible for extensive damage and losses in mountainous areas. In this study, Longju in the Three Gorges Reservoir area in China was taken as a case study for landslide susceptibility assessment in order to develop effective risk prevention and mitigation strategies. To begin, 202 landslides were identified, including 95 colluvial landslides and 107 rockfalls. Twelve landslide causal factor maps were prepared initially, and the relationship between these factors and each landslide type was analyzed using the information value model. Later, the unimportant factors were selected and eliminated using the information gain ratio technique. The landslide locations were randomly divided into two groups: 70% for training and 30% for verifying. Two machine learning models: the support vector machine (SVM) and artificial neural network (ANN), and a multivariate statistical model: the logistic regression (LR), were applied for landslide susceptibility modeling (LSM) for each type. The LSM index maps, obtained from combining the assessment results of the two landslide types, were classified into five levels. The performance of the LSMs was evaluated using the receiver operating characteristics curve and Friedman test. Results show that the elimination of noise-generating factors and the separated modeling of each landslide type have significantly increased the prediction accuracy. The machine learning models outperformed the multivariate statistical model and SVM model was found ideal for the case study area.

  20. Alcohol and liver cirrhosis mortality in the United States: comparison of methods for the analyses of time-series panel data models.

    PubMed

    Ye, Yu; Kerr, William C

    2011-01-01

    To explore various model specifications in estimating relationships between liver cirrhosis mortality rates and per capita alcohol consumption in aggregate-level cross-section time-series data. Using a series of liver cirrhosis mortality rates from 1950 to 2002 for 47 U.S. states, the effects of alcohol consumption were estimated from pooled autoregressive integrated moving average (ARIMA) models and 4 types of panel data models: generalized estimating equation, generalized least square, fixed effect, and multilevel models. Various specifications of error term structure under each type of model were also examined. Different approaches controlling for time trends and for using concurrent or accumulated consumption as predictors were also evaluated. When cirrhosis mortality was predicted by total alcohol, highly consistent estimates were found between ARIMA and panel data analyses, with an average overall effect of 0.07 to 0.09. Less consistent estimates were derived using spirits, beer, and wine consumption as predictors. When multiple geographic time series are combined as panel data, none of existent models could accommodate all sources of heterogeneity such that any type of panel model must employ some form of generalization. Different types of panel data models should thus be estimated to examine the robustness of findings. We also suggest cautious interpretation when beverage-specific volumes are used as predictors. Copyright © 2010 by the Research Society on Alcoholism.

  1. Development of a screening tool using electronic health records for undiagnosed Type 2 diabetes mellitus and impaired fasting glucose detection in the Slovenian population.

    PubMed

    Štiglic, G; Kocbek, P; Cilar, L; Fijačko, N; Stožer, A; Zaletel, J; Sheikh, A; Povalej Bržan, P

    2018-05-01

    To develop and validate a simplified screening test for undiagnosed Type 2 diabetes mellitus and impaired fasting glucose for the Slovenian population (SloRisk) to be used in the general population. Data on 11 391 people were collected from the electronic health records of comprehensive medical examinations in five Slovenian healthcare centres. Fasting plasma glucose as well as information related to the Finnish Diabetes Risk Score questionnaire, FINDRISC, were collected for 2073 people to build predictive models. Bootstrapping-based evaluation was used to estimate the area under the receiver-operating characteristic curve performance metric of two proposed logistic regression models as well as the Finnish Diabetes Risk Score model both at recommended and at alternative cut-off values. The final model contained five questions for undiagnosed Type 2 diabetes prediction and achieved an area under the receiver-operating characteristic curve of 0.851 (95% CI 0.850-0.853). The impaired fasting glucose prediction model included six questions and achieved an area under the receiver-operating characteristic curve of 0.840 (95% CI 0.839-0.840). There were four questions that were included in both models (age, sex, waist circumference and blood sugar history), with physical activity selected only for undiagnosed Type 2 diabetes and questions on family history and hypertension drug use selected only for the impaired fasting glucose prediction model. This study proposes two simplified models based on FINDRISC questions for screening of undiagnosed Type 2 diabetes and impaired fasting glucose in the Slovenian population. A significant improvement in performance was achieved compared with the original FINDRISC questionnaire. Both models include waist circumference instead of BMI. © 2018 Diabetes UK.

  2. Comparison of interplanetary CME arrival times and solar wind parameters based on the WSA-ENLIL model with three cone types and observations

    NASA Astrophysics Data System (ADS)

    Jang, Soojeong; Moon, Y.-J.; Lee, Jae-Ok; Na, Hyeonock

    2014-09-01

    We have made a comparison between coronal mass ejection (CME)-associated shock propagations based on the Wang-Sheeley-Arge (WSA)-ENLIL model using three cone types and in situ observations. For this we use 28 full-halo CMEs, whose cone parameters are determined and their corresponding interplanetary shocks were observed at the Earth, from 2001 to 2002. We consider three different cone types (an asymmetric cone model, an ice cream cone model, and an elliptical cone model) to determine 3-D CME cone parameters (radial velocity, angular width, and source location), which are the input values of the WSA-ENLIL model. The mean absolute error of the CME-associated shock travel times for the WSA-ENLIL model using the ice-cream cone model is 9.9 h, which is about 1 h smaller than those of the other models. We compare the peak values and profiles of solar wind parameters (speed and density) with in situ observations. We find that the root-mean-square errors of solar wind peak speed and density for the ice cream and asymmetric cone model are about 190 km/s and 24/cm3, respectively. We estimate the cross correlations between the models and observations within the time lag of ± 2 days from the shock travel time. The correlation coefficients between the solar wind speeds from the WSA-ENLIL model using three cone types and in situ observations are approximately 0.7, which is larger than those of solar wind density (cc ˜0.6). Our preliminary investigations show that the ice cream cone model seems to be better than the other cone models in terms of the input parameters of the WSA-ENLIL model.

  3. Review of GEM Radiation Belt Dropout and Buildup Challenges

    NASA Astrophysics Data System (ADS)

    Tu, Weichao; Li, Wen; Morley, Steve; Albert, Jay

    2017-04-01

    In Summer 2015 the US NSF GEM (Geospace Environment Modeling) focus group named "Quantitative Assessment of Radiation Belt Modeling" started the "RB dropout" and "RB buildup" challenges, focused on quantitative modeling of the radiation belt buildups and dropouts. This is a community effort which includes selecting challenge events, gathering model inputs that are required to model the radiation belt dynamics during these events (e.g., various magnetospheric waves, plasmapause and density models, electron phase space density data), simulating the challenge events using different types of radiation belt models, and validating the model results by comparison to in situ observations of radiation belt electrons (from Van Allen Probes, THEMIS, GOES, LANL/GEO, etc). The goal is to quantitatively assess the relative importance of various acceleration, transport, and loss processes in the observed radiation belt dropouts and buildups. Since 2015, the community has selected four "challenge" events under four different categories: "storm-time enhancements", "non-storm enhancements", "storm-time dropouts", and "non-storm dropouts". Model inputs and data for each selected event have been coordinated and shared within the community to establish a common basis for simulations and testing. Modelers within and outside US with different types of radiation belt models (diffusion-type, diffusion-convection-type, test particle codes, etc.) have participated in our challenge and shared their simulation results and comparison with spacecraft measurements. Significant progress has been made in quantitative modeling of the radiation belt buildups and dropouts as well as accessing the modeling with new measures of model performance. In this presentation, I will review the activities from our "RB dropout" and "RB buildup" challenges and the progresses achieved in understanding radiation belt physics and improving model validation and verification.

  4. High energy seesaw models, GUTs and Leptogenesis

    NASA Astrophysics Data System (ADS)

    Di Bari, Pasquale

    2017-09-01

    I review high energy (type I) seesaw models and in particular how they can be nicely embedded within grand-unified models and reproduce the observed matter-antimatter asymmetry with leptogenesis. I also discuss how high energy (type I) seesaw models can provide a candidate for very heavy cold dark matter, within the TeV-EeV range, whose decays might explain part of the IceCube high energy neutrino events in addition to an astrophysical component.

  5. High Performance Computing Application: Solar Dynamo Model Project II, Corona and Heliosphere Component Initialization, Integration and Validation

    DTIC Science & Technology

    2015-06-24

    physically . While not distinct from IH models, they require inner boundary magnetic field and plasma property values, the latter not currently measured...initialization for the computational grid. Model integration continues until a physically consistent steady-state is attained. Because of the more... physical basis and greater likelihood of realistic solutions, only MHD-type coronal models were considered in the review. There are two major types of

  6. Bits or Shots in Combat? The Generalized Deitchman Model of Guerrilla Warfare

    DTIC Science & Technology

    2013-08-13

    fire; absence of intelligence leads to unaimed fire, dependent on targets’ density. We propose a new Lanchester -type model that mixes aimed and unaimed...military hardware. The idea of modeling the trade-off between firepower and intelligence in a Lanchester setting was first suggested by Schreiber [4...of intelligence leads to unaimed fire, dependent on targets? density. We propose a new Lanchester -type model that mixes aimed and unaimed fire, the

  7. A Management Information System Model for Program Management. Ph.D. Thesis - Oklahoma State Univ.; [Computerized Systems Analysis

    NASA Technical Reports Server (NTRS)

    Shipman, D. L.

    1972-01-01

    The development of a model to simulate the information system of a program management type of organization is reported. The model statistically determines the following parameters: type of messages, destinations, delivery durations, type processing, processing durations, communication channels, outgoing messages, and priorites. The total management information system of the program management organization is considered, including formal and informal information flows and both facilities and equipment. The model is written in General Purpose System Simulation 2 computer programming language for use on the Univac 1108, Executive 8 computer. The model is simulated on a daily basis and collects queue and resource utilization statistics for each decision point. The statistics are then used by management to evaluate proposed resource allocations, to evaluate proposed changes to the system, and to identify potential problem areas. The model employs both empirical and theoretical distributions which are adjusted to simulate the information flow being studied.

  8. User Guide for VISION 3.4.7 (Verifiable Fuel Cycle Simulation) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern

    2011-07-01

    The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters and options; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating 'what if' scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level. The model is not intended as amore » tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., 'reactor types' not individual reactors and 'separation types' not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation or disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. VISION is comprised of several Microsoft Excel input files, a Powersim Studio core, and several Microsoft Excel output files. All must be co-located in the same folder on a PC to function. You must use Powersim Studio 8 or better. We have tested VISION with the Studio 8 Expert, Executive, and Education versions. The Expert and Education versions work with the number of reactor types of 3 or less. For more reactor types, the Executive version is currently required. The input files are Excel2003 format (xls). The output files are macro-enabled Excel2007 format (xlsm). VISION 3.4 was designed with more flexibility than previous versions, which were structured for only three reactor types - LWRs that can use only uranium oxide (UOX) fuel, LWRs that can use multiple fuel types (LWR MF), and fast reactors. One could not have, for example, two types of fast reactors concurrently. The new version allows 10 reactor types and any user-defined uranium-plutonium fuel is allowed. (Thorium-based fuels can be input but several features of the model would not work.) The user identifies (by year) the primary fuel to be used for each reactor type. The user can identify for each primary fuel a contingent fuel to use if the primary fuel is not available, e.g., a reactor designated as using mixed oxide fuel (MOX) would have UOX as the contingent fuel. Another example is that a fast reactor using recycled transuranic (TRU) material can be designated as either having or not having appropriately enriched uranium oxide as a contingent fuel. Because of the need to study evolution in recycling and separation strategies, the user can now select the recycling strategy and separation technology, by year.« less

  9. Variable displacement alpha-type Stirling engine

    NASA Astrophysics Data System (ADS)

    Homutescu, V. M.; Bălănescu, D. T.; Panaite, C. E.; Atanasiu, M. V.

    2016-08-01

    The basic design and construction of an alpha-type Stirling engine with on load variable displacement is presented. The variable displacement is obtained through a planar quadrilateral linkage with one on load movable ground link. The physico-mathematical model used for analyzing the variable displacement alpha-type Stirling engine behavior is an isothermal model that takes into account the real movement of the pistons. Performances and power adjustment capabilities of such alpha-type Stirling engine are calculated and analyzed. An exemplification through the use of the numerical simulation was performed in this regard.

  10. Do financial factors such as author page charges and industry funding impact on the nature of published research in infectious diseases?

    PubMed

    Liyanage, Surabhi S; Raina Macintyre, C

    2006-09-01

    The question of who pays for research to be conducted and published is an important one as it may result in publication bias. The traditional model of medical publishing has relied on subscriptions for funding. There has been increasing interest in making the results of scientific research freely available. One proposed mechanism is an author-pays system, which shifts cost from subscribers to authors. We investigated the impact of author page charges on the nature and type of published research, and the association of industry funding with types of published research. Four infectious diseases journals with comparable scope were studied-two with page charges and two without. Variables included type of research study, area of research, author demographics, study setting and industry funding. The differences between a subscription model vs. a mixed model (author page charges and subscription charges) were studied. We also investigated changes within the same journal once it had moved from a subscription model to a mixed model. Authors from developing countries were significantly less likely to be published in the mixed-model journals (OR 0.25, 95% CI 0.15-0.41, P < 0.001). Clinical trials published in any type of journal were significantly more likely to be industry funded than any other type of research (OR 12.7, 95% CI 7.0-22.9, P < 0.001). Industry-funded research was significantly less likely to be about diseases affecting predominantly the developing world (OR 0.47, 95% CI 0.25-0.89, P < 0.05). There is clearly a relationship between industry funding and certain types of published research. The model of funding of journal publishing can also affect the nature of published research. Shifting publishing costs to authors favours well-funded organizations, industry sponsored research and wealthy countries. Such potential for publication bias must be considered when planning for open access models.

  11. Random parameter models of interstate crash frequencies by severity, number of vehicles involved, collision and location type.

    PubMed

    Venkataraman, Narayan; Ulfarsson, Gudmundur F; Shankar, Venky N

    2013-10-01

    A nine-year (1999-2007) continuous panel of crash histories on interstates in Washington State, USA, was used to estimate random parameter negative binomial (RPNB) models for various aggregations of crashes. A total of 21 different models were assessed in terms of four ways to aggregate crashes, by: (a) severity, (b) number of vehicles involved, (c) crash type, and by (d) location characteristics. The models within these aggregations include specifications for all severities (property damage only, possible injury, evident injury, disabling injury, and fatality), number of vehicles involved (one-vehicle to five-or-more-vehicle), crash type (sideswipe, same direction, overturn, head-on, fixed object, rear-end, and other), and location types (urban interchange, rural interchange, urban non-interchange, rural non-interchange). A total of 1153 directional road segments comprising of the seven Washington State interstates were analyzed, yielding statistical models of crash frequency based on 10,377 observations. These results suggest that in general there was a significant improvement in log-likelihood when using RPNB compared to a fixed parameter negative binomial baseline model. Heterogeneity effects are most noticeable for lighting type, road curvature, and traffic volume (ADT). Median lighting or right-side lighting are linked to increased crash frequencies in many models for more than half of the road segments compared to both-sides lighting. Both-sides lighting thereby appears to generally lead to a safety improvement. Traffic volume has a random parameter but the effect is always toward increasing crash frequencies as expected. However that the effect is random shows that the effect of traffic volume on crash frequency is complex and varies by road segment. The number of lanes has a random parameter effect only in the interchange type models. The results show that road segment-specific insights into crash frequency occurrence can lead to improved design policy and project prioritization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. System dynamic modeling: an alternative method for budgeting.

    PubMed

    Srijariya, Witsanuchai; Riewpaiboon, Arthorn; Chaikledkaew, Usa

    2008-03-01

    To construct, validate, and simulate a system dynamic financial model and compare it against the conventional method. The study was a cross-sectional analysis of secondary data retrieved from the National Health Security Office (NHSO) in the fiscal year 2004. The sample consisted of all emergency patients who received emergency services outside their registered hospital-catchments area. The dependent variable used was the amount of reimbursed money. Two types of model were constructed, namely, the system dynamic model using the STELLA software and the multiple linear regression model. The outputs of both methods were compared. The study covered 284,716 patients from various levels of providers. The system dynamic model had the capability of producing various types of outputs, for example, financial and graphical analyses. For the regression analysis, statistically significant predictors were composed of service types (outpatient or inpatient), operating procedures, length of stay, illness types (accident or not), hospital characteristics, age, and hospital location (adjusted R(2) = 0.74). The total budget arrived at from using the system dynamic model and regression model was US$12,159,614.38 and US$7,301,217.18, respectively, whereas the actual NHSO reimbursement cost was US$12,840,805.69. The study illustrated that the system dynamic model is a useful financial management tool, although it is not easy to construct. The model is not only more accurate in prediction but is also more capable of analyzing large and complex real-world situations than the conventional method.

  13. Soundscapes

    DTIC Science & Technology

    2014-09-30

    Soundscapes ...global oceanographic models to provide hindcasts, nowcasts, and forecasts of the time-evolving soundscape . In terms of the types of sound sources, we...other types of sources. APPROACH The research has two principle thrusts: 1) the modeling of the soundscape , and 2) verification using datasets that

  14. Virasoro constraints for D 2n + 1 -, E 6 -, E 7 -, E 8 -type minimal models coupled to 2D gravity

    NASA Astrophysics Data System (ADS)

    Yen, Tim

    1990-12-01

    We find Virasoro constraints for D 2 n + 1 -, E 6 -, E 7 -, E 8 -type models analogous to the recently discovered Virasoro constraints for A n-type models by Fukuma et al., and Dijkgraaf et al. We verify that the proposed Virasoro constraints give operator scaling dimensions identical to those found by Kostov. We check that these Virasoro constraints and, more generally, W-algebra constraints can be used to express correlation functions with non-primary operator in terms of correlation functions of primary operators only.

  15. Surface morphology of a modified ballistic deposition model.

    PubMed

    Banerjee, Kasturi; Shamanna, J; Ray, Subhankar

    2014-08-01

    The surface and bulk properties of a modified ballistic deposition model are investigated. The deposition rule interpolates between nearest- and next-nearest-neighbor ballistic deposition and the random deposition models. The stickiness of the depositing particle is controlled by a parameter and the type of interparticle force. Two such forces are considered: Coulomb and van der Waals type. The interface width shows three distinct growth regions before eventual saturation. The rate of growth depends more strongly on the stickiness parameter than on the type of interparticle force. However, the porosity of the deposits is strongly influenced by the interparticle force.

  16. Horses for courses: analytical tools to explore planetary boundaries

    NASA Astrophysics Data System (ADS)

    van Vuuren, Detlef P.; Lucas, Paul L.; Häyhä, Tiina; Cornell, Sarah E.; Stafford-Smith, Mark

    2016-03-01

    There is a need for more integrated research on sustainable development and global environmental change. In this paper, we focus on the planetary boundaries framework to provide a systematic categorization of key research questions in relation to avoiding severe global environmental degradation. The four categories of key questions are those that relate to (1) the underlying processes and selection of key indicators for planetary boundaries, (2) understanding the impacts of environmental pressure and connections between different types of impacts, (3) better understanding of different response strategies to avoid further degradation, and (4) the available instruments to implement such strategies. Clearly, different categories of scientific disciplines and associated model types exist that can accommodate answering these questions. We identify the strength and weaknesses of different research areas in relation to the question categories, focusing specifically on different types of models. We discuss that more interdisciplinary research is need to increase our understanding by better linking human drivers and social and biophysical impacts. This requires better collaboration between relevant disciplines (associated with the model types), either by exchanging information or by fully linking or integrating them. As fully integrated models can become too complex, the appropriate type of model (the racehorse) should be applied for answering the target research question (the race course).

  17. Influences on physicians' adoption of electronic detailing (e-detailing).

    PubMed

    Alkhateeb, Fadi M; Doucette, William R

    2009-01-01

    E-detailing means using digital technology: internet, video conferencing and interactive voice response. There are two types of e-detailing: interactive (virtual) and video. Currently, little is known about what factors influence physicians' adoption of e-detailing. The objectives of this study were to test a model of physicians' adoption of e-detailing and to describe physicians using e-detailing. A mail survey was sent to a random sample of 2000 physicians practicing in Iowa. Binomial logistic regression was used to test the model of influences on physician adoption of e-detailing. On the basis of Rogers' model of adoption, the independent variables included relative advantage, compatibility, complexity, peer influence, attitudes, years in practice, presence of restrictive access to traditional detailing, type of specialty, academic affiliation, type of practice setting and control variables. A total of 671 responses were received giving a response rate of 34.7%. A total of 141 physicians (21.0%) reported using of e-detailing. The overall adoption model for using either type of e-detailing was found to be significant. Relative advantage, peer influence, attitudes, type of specialty, presence of restrictive access and years of practice had significant influences on physician adoption of e-detailing. The model of adoption of innovation is useful to explain physicians' adoption of e-detailing.

  18. The use of typed lambda calculus for comprehension and construction of simulation models in the domain of ecology

    NASA Technical Reports Server (NTRS)

    Uschold, Michael

    1992-01-01

    We are concerned with two important issues in simulation modelling: model comprehension and model construction. Model comprehension is limited because many important choices taken during the modelling process are not documented. This makes it difficult for models to be modified or used by others. A key factor hindering model construction is the vast modelling search space which must be navigated. This is exacerbated by the fact that many modellers are unfamiliar with the terms and concepts catered to by current tools. The root of both problems is the lack of facilities for representing or reasoning about domain concepts in current simulation technology. The basis for our achievements in both of these areas is the development of a language with two distinct levels; one for representing domain information, and the other for representing the simulation model. Of equal importance, is the fact that we make formal connections between these two levels. The domain we are concerned with is ecological modelling. This language, called Elklogic, is based on the typed lambda calculus. Important features include a rich type structure, the use of various higher order functions, and semantics. This enables complex expressions to be constructed from relatively few primitives. The meaning of each expression can be determined in terms of the domain, the simulation model, or the relationship between the two. We describe a novel representation for sets and substructure, and a variety of other general concepts that are especially useful in the ecological domain. We use the type structure in a novel way: for controlling the modelling search space, rather than a proof search space. We facilitate model comprehension by representing modelling decisions that are embodied in the simulation model. We represent the simulation model separately from, but in terms of a domain mode. The explicit links between the two models constitute the modelling decisions. The semantics of Elklogic enables English text to be generated to explain the simulation model in domain terms.

  19. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age

    PubMed Central

    Strath, Scott J; Kate, Rohit J; Keenan, Kevin G; Welch, Whitney A; Swartz, Ann M

    2016-01-01

    To develop and test time series single site and multi-site placement models, we used wrist, hip and ankle processed accelerometer data to estimate energy cost and type of physical activity in adults. Ninety-nine subjects in three age groups (18–39, 40–64, 65 + years) performed 11 activities while wearing three triaxial accelereometers: one each on the non-dominant wrist, hip, and ankle. During each activity net oxygen cost (METs) was assessed. The time series of accelerometer signals were represented in terms of uniformly discretized values called bins. Support Vector Machine was used for activity classification with bins and every pair of bins used as features. Bagged decision tree regression was used for net metabolic cost prediction. To evaluate model performance we employed the jackknife leave-one-out cross validation method. Single accelerometer and multi-accelerometer site model estimates across and within age group revealed similar accuracy, with a bias range of −0.03 to 0.01 METs, bias percent of −0.8 to 0.3%, and a rMSE range of 0.81–1.04 METs. Multi-site accelerometer location models improved activity type classification over single site location models from a low of 69.3% to a maximum of 92.8% accuracy. For each accelerometer site location model, or combined site location model, percent accuracy classification decreased as a function of age group, or when young age groups models were generalized to older age groups. Specific age group models on average performed better than when all age groups were combined. A time series computation show promising results for predicting energy cost and activity type. Differences in prediction across age group, a lack of generalizability across age groups, and that age group specific models perform better than when all ages are combined needs to be considered as analytic calibration procedures to detect energy cost and type are further developed. PMID:26449155

  20. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    PubMed

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species-specific models is only warranted when gains in accuracy of stand-based predictions are relatively high (e.g. high-value monocultures). © 2015 John Wiley & Sons Ltd.

  1. An equivalent-time-lines model for municipal solid waste based on its compression characteristics.

    PubMed

    Gao, Wu; Bian, Xuecheng; Xu, Wenjie; Chen, Yunmin

    2017-10-01

    Municipal solid waste (MSW) demonstrates a noticeable time-dependent stress-strain behavior, which contributes greatly to the settlement of landfills and therefore influences both the storage capacity of landfills and the integrity of internal structures. The long-term compression tests for MSW under different biodegradation conditions were analyzed. It showed that the primary compression can affect the secondary compression due to the biodegradation and mechanical creep. Based on the time-lines model for clays and the compression characteristics of MSW, relationships between MSW's viscous strain rate and equivalent time were established, and then the viscous strain functions of MSW under different biodegradation conditions were deduced, and an equivalent-time-lines model for MSW settlement for two biodegradation conditions was developed, including the Type I model for the enhanced biodegradation condition and the Type II model for the normal biodegradation condition. The simulated compression results of laboratory and field compression tests under different biodegradation conditions were consistent with the measured data, which showed the reliability of both types of the equivalent-time-lines model for MSW. In addition, investigations of the long-term settlement of landfills from the literature indicated that the Type I model is suitable for predicting settlement in MSW landfills with a distinct biodegradation progress of MSW, a high content of organics in MSW, a short fill age or under an enhanced biodegradation environment; while the Type II model is good at predicting settlement in MSW landfills with a distinct progress of mechanical creep compression, a low content of organics in MSW, a long fill age or under a normal biodegradation condition. Furthermore, relationships between model parameters and the fill age of landfills were summarized. Finally, the similarities and differences between the equivalent-time-lines model for MSW and the stress-biodegradation model for MSW were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 40 CFR 600.207-93 - Calculation of fuel economy values for a model type.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of fuel economy values for a model type. 600.207-93 Section 600.207-93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model...

  3. 40 CFR 600.207-86 - Calculation of fuel economy values for a model type.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of fuel economy values for a model type. 600.207-86 Section 600.207-86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model...

  4. An analytical approach to thermal modeling of Bridgman type crystal growth: One dimensional analysis. Computer program users manual

    NASA Technical Reports Server (NTRS)

    Cothran, E. K.

    1982-01-01

    The computer program written in support of one dimensional analytical approach to thermal modeling of Bridgman type crystal growth is presented. The program listing and flow charts are included, along with the complete thermal model. Sample problems include detailed comments on input and output to aid the first time user.

  5. Models that predict standing crop of stream fish from habitat variables: 1950-85.

    Treesearch

    K.D. Fausch; C.L. Hawkes; M.G. Parsons

    1988-01-01

    We reviewed mathematical models that predict standing crop of stream fish (number or biomass per unit area or length of stream) from measurable habitat variables and classified them by the types of independent habitat variables found significant, by mathematical structure, and by model quality. Habitat variables were of three types and were measured on different scales...

  6. Aircraft Jet Engine Exhaust Blast Effects on Par-56 Runway Threshold Lamp Fixtures

    DTIC Science & Technology

    1989-06-01

    Engine Type(s): SPEY 511-14 British Aerospace, BAe-125-700/ -700 Engine Type(s): Garret TFE731 -3 British Aerospace, Concorde Engine Type(s): Not Given... TFE731 -3B Falcon Jet, Falcon 50 Engine Type(s): Garrett TFE-731-3C (See data for Citation) Gates Learjet, Models 23/24, 35/36, 35A/36A, 55/55B Engine Type

  7. Assessment of type II diabetes mellitus using irregularly sampled measurements with missing data.

    PubMed

    Barazandegan, Melissa; Ekram, Fatemeh; Kwok, Ezra; Gopaluni, Bhushan; Tulsyan, Aditya

    2015-04-01

    Diabetes mellitus is one of the leading diseases in the developed world. In order to better regulate blood glucose in a diabetic patient, improved modelling of insulin-glucose dynamics is a key factor in the treatment of diabetes mellitus. In the current work, the insulin-glucose dynamics in type II diabetes mellitus can be modelled by using a stochastic nonlinear state-space model. Estimating the parameters of such a model is difficult as only a few blood glucose and insulin measurements per day are available in a non-clinical setting. Therefore, developing a predictive model of the blood glucose of a person with type II diabetes mellitus is important when the glucose and insulin concentrations are only available at irregular intervals. To overcome these difficulties, we resort to online sequential Monte Carlo (SMC) estimation of states and parameters of the state-space model for type II diabetic patients under various levels of randomly missing clinical data. Our results show that this method is efficient in monitoring and estimating the dynamics of the peripheral glucose, insulin and incretins concentration when 10, 25 and 50% of the simulated clinical data were randomly removed.

  8. Spiking neural network model for memorizing sequences with forward and backward recall.

    PubMed

    Borisyuk, Roman; Chik, David; Kazanovich, Yakov; da Silva Gomes, João

    2013-06-01

    We present an oscillatory network of conductance based spiking neurons of Hodgkin-Huxley type as a model of memory storage and retrieval of sequences of events (or objects). The model is inspired by psychological and neurobiological evidence on sequential memories. The building block of the model is an oscillatory module which contains excitatory and inhibitory neurons with all-to-all connections. The connection architecture comprises two layers. A lower layer represents consecutive events during their storage and recall. This layer is composed of oscillatory modules. Plastic excitatory connections between the modules are implemented using an STDP type learning rule for sequential storage. Excitatory neurons in the upper layer project star-like modifiable connections toward the excitatory lower layer neurons. These neurons in the upper layer are used to tag sequences of events represented in the lower layer. Computer simulations demonstrate good performance of the model including difficult cases when different sequences contain overlapping events. We show that the model with STDP type or anti-STDP type learning rules can be applied for the simulation of forward and backward replay of neural spikes respectively. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Individualized pharmacokinetic risk assessment for development of diabetes in high risk population.

    PubMed

    Gupta, N; Al-Huniti, N H; Veng-Pedersen, P

    2007-10-01

    The objective of this study is to propose a non-parametric pharmacokinetic prediction model that addresses the individualized risk of developing type-2 diabetes in subjects with family history of type-2 diabetes. All selected 191 healthy subjects had both parents as type-2 diabetic. Glucose was administered intravenously (0.5 g/kg body weight) and 13 blood samples taken at specified times were analyzed for plasma insulin and glucose concentrations. All subjects were followed for an average of 13-14 years for diabetic or normal (non-diabetic) outcome. The new logistic regression model predicts the development of diabetes based on body mass index and only one blood sample at 90 min analyzed for insulin concentration. Our model correctly identified 4.5 times more subjects (54% versus 11.6%) predicted to develop diabetes and more than twice the subjects (99% versus 46.4%) predicted not to develop diabetes compared to current non-pharmacokinetic probability estimates for development of type-2 diabetes. Our model can be useful for individualized prediction of development of type-2 diabetes in subjects with family history of type-2 diabetes. This improved prediction may be an important mediating factor for better perception of risk and may result in an improved intervention.

  10. Sasang constitutional types for the risk prediction of metabolic syndrome: a 14-year longitudinal prospective cohort study.

    PubMed

    Lee, Sunghee; Lee, Seung Ku; Kim, Jong Yeol; Cho, Namhan; Shin, Chol

    2017-09-02

    To examine whether the use of Sasang constitutional (SC) types, such as Tae-yang (TY), Tae-eum (TE), So-yang (SY), and So-eum (SE) types, increases the accuracy of risk prediction for metabolic syndrome. From 2001 to 2014, 3529 individuals aged 40 to 69 years participated in a longitudinal prospective cohort. The Cox proportional hazard model was utilized to predict the risk of developing metabolic syndrome. During the 14 year follow-up, 1591 incident events of metabolic syndrome were observed. Individuals with TE type had higher body mass indexes and waist circumferences than individuals with SY and SE types. The risk of developing metabolic syndrome was the highest among individuals with the TE type, followed by the SY type and the SE type. When the prediction risk models for incident metabolic syndrome were compared, the area under the curve for the model using SC types was significantly increased to 0.8173. Significant predictors for incident metabolic syndrome were different according to the SC types. For individuals with the TE type, the significant predictors were age, sex, body mass index (BMI), education, smoking, drinking, fasting glucose level, high-density lipoprotein (HDL) cholesterol level, systolic and diastolic blood pressure, and triglyceride level. For Individuals with the SE type, the predictors were sex, smoking, fasting glucose, HDL cholesterol level, systolic and diastolic blood pressure, and triglyceride level, while the predictors in individuals with the SY type were age, sex, BMI, smoking, drinking, total cholesterol level, fasting glucose level, HDL cholesterol level, systolic and diastolic blood pressure, and triglyceride level. In this prospective cohort study among 3529 individuals, we observed that utilizing the SC types significantly increased the accuracy of the risk prediction for the development of metabolic syndrome.

  11. Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water rock interaction and hydrologic mixing

    NASA Astrophysics Data System (ADS)

    Chae, Gi-Tak; Yun, Seong-Taek; Kim, Kangjoo; Mayer, Bernhard

    2006-04-01

    The Pocheon spa-land area, South Korea occurs in a topographically steep, fault-bounded basin and is characterized by a hydraulic upwelling flow zone of thermal water (up to 44 °C) in its central part. Hydrogeochemical and environmental isotope data for groundwater in the study area suggested the occurrence of two distinct water types, a Ca-HCO 3 type and a Na-HCO 3 type. The former water type is characterized by relatively high concentrations of Ca, SO 4 and NO 3, which show significant temporal variation indicating a strong influence by surface processes. In contrast, the Na-HCO 3 type waters have high and temporally constant temperature, pH, TDS, Na, Cl, HCO 3 and F, indicating the attainment of a chemical steady state with respect to the host rocks (granite and gneiss). Oxygen, hydrogen and tritium isotope data also indicate the differences in hydrologic conditions between the two groups: the relatively lower δ 18O, δD and tritium values for Na-HCO 3 type waters suggest that they recharged at higher elevations and have comparatively long mean residence times. Considering the geologic and hydrogeologic conditions of the study area, Na-HCO 3 type waters possibly have evolved from Ca-HCO 3 type waters. Mass balance modeling revealed that the chemistry of Na-HCO 3 type water was regulated by dissolution of silicates and carbonates and concurrent ion exchange. Particularly, low Ca concentrations in Na-HCO 3 water was mainly caused by cation exchange. Multivariate mixing and mass balance modeling (M3 modeling) was performed to evaluate the hydrologic mixing and mass transfer between discrete water masses occurring in the shallow peripheral part of the central spa-land area, where hydraulic upwelling occurs. Based on Q-mode factor analysis and mixing modeling using PHREEQC, an ideal mixing among three major water masses (surface water, shallow groundwater of Ca-HCO 3 type, deep groundwater of Na-HCO 3 type) was proposed. M3 modeling suggests that all the groundwaters in the spa area can be described as mixtures of these end-members. After mixing, the net mole transfer by geochemical reaction was less than that without mixing. Therefore, it is likely that in the hydraulic mixing zone geochemical reactions are of minor importance and, therefore, that mixing regulates the groundwater geochemistry.

  12. Ion-acoustic and electron-acoustic type nonlinear waves in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Volosevich, A.-V.; Meister, C.-V.

    2003-04-01

    In the present work, two three-dimensional nonlinear theoretical models of electrostatic solitary waves are investigated within the frame of magnetohydrodynamics. Both times, a multi-component plasma is considered, which consists of hot electrons with a rather flexible distribution function, hot ions with Boltzmann-type distribution, and (negatively as well as positively charged) dust. Additionally, cold ion beams are taken into account in the model to study ion-acoustic structures (IAS), and cold electron beams are included into the model to investigate electron-acoustic structures (EAS). The numerical results of the considered theoretical models allow to make the following conclusions: 1) Electrostatic structures with negative potential (of rarefaction type) are formed both in the IAS model and in the EAS model, but structures with negative potential (of compressional type) are formed in the IAS model only. 2) The intervals of various plasma parameters (velocities of ion and electron beams, temperatures, densities of the plasma components, ions' masses), for which the existence of IAS and EAS solitary waves and structures is possible, are calculated. 3) Further, the parameters of the electrostatic structures (wave amplitudes, scales along and perpendicular to the magnetic field, velocities) are estimated. 4) The application of the present numerical simulation for multi-component plasmas to various astrophysical systems under different physical conditions is discussed.

  13. Clustering, cosmology and a new era of black hole demographics- II. The conditional luminosity functions of Type 2 and Type 1 active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ballantyne, D. R.

    2017-01-01

    The orientation-based unification model of active galactic nuclei (AGNs) posits that the principle difference between obscured (Type 2) and unobscured (Type 1) AGNs is the line of sight into the central engine. If this model is correct then there should be no difference in many of the properties of AGN host galaxies (e.g. the mass of the surrounding dark matter haloes). However, recent clustering analyses of Type 1 and Type 2 AGNs have provided some evidence for a difference in the halo mass, in conflict with the orientation-based unified model. In this work, a method to compute the conditional luminosity function (CLF) of Type 2 and Type 1 AGNs is presented. The CLF allows many fundamental halo properties to be computed as a function of AGN luminosity, which we apply to the question of the host halo masses of Type 1 and 2 AGNs. By making use of the total AGN CLF, the Type 1 X-ray luminosity function, and the luminosity-dependent Type 2 AGN fraction, the CLFs of Type 1 and 2 AGNs are calculated at z ≈ 0 and 0.9. At both z, there is no statistically significant difference in the mean halo mass of Type 2 and 1 AGNs at any luminosity. There is marginal evidence that Type 1 AGNs may have larger halo masses than Type 2s, which would be consistent with an evolutionary picture where quasars are initially obscured and then subsequently reveal themselves as Type 1s. As the Type 1 lifetime is longer, the host halo will increase somewhat in mass during the Type 1 phase. The CLF technique will be a powerful way to study the properties of many AGNs subsets (e.g. radio-loud, Compton-thick) as future wide-area X-ray and optical surveys substantially increase our ability to place AGNs in their cosmological context.

  14. Adolescents' working models and styles for relationships with parents, friends, and romantic partners.

    PubMed

    Furman, Wyndol; Simon, Valerie A; Shaffer, Laura; Bouchey, Heather A

    2002-01-01

    This study examined the links among adolescents' representations of their relationships with parents, friends, and romantic partners. Sixty-eight adolescents were interviewed three times to assess their working models for each of these types of relationships. Working models of friendships were related to working models of relationships with parents and romantic partners. Working models of relationships with parents and romantic partners were inconsistently related. A similar pattern of results was obtained for self-report measures of relational styles for the three types of relationships. Perceived experiences were also related. Specifically, support in relationships with parents tended to be related to support in romantic relationships and friendships, but the latter two were unrelated. On the other hand, self and other controlling behaviors in friendships were related to corresponding behaviors in romantic relationships. Negative interactions in the three types of relationships also tended to be related. Taken together, the findings indicate that the representations of the three types of relationships are distinct, yet related. Discussion focuses on the nature of the links among the three.

  15. Large field inflation from axion mixing

    NASA Astrophysics Data System (ADS)

    Shiu, Gary; Staessens, Wieland; Ye, Fang

    2015-06-01

    We study the general multi-axion systems, focusing on the possibility of large field inflation driven by axions. We find that through axion mixing from a non-diagonal metric on the moduli space and/or from Stückelberg coupling to a U(1) gauge field, an effectively super-Planckian decay constant can be generated without the need of "alignment" in the axion decay constants. We also investigate the consistency conditions related to the gauge symmetries in the multi-axion systems, such as vanishing gauge anomalies and the potential presence of generalized Chern-Simons terms. Our scenario applies generally to field theory models whose axion periodicities are intrinsically sub-Planckian, but it is most naturally realized in string theory. The types of axion mixings invoked in our scenario appear quite commonly in D-brane models, and we present its implementation in type II superstring theory. Explicit stringy models exhibiting all the characteristics of our ideas are constructed within the frameworks of Type IIA intersecting D6-brane models on and Type IIB intersecting D7-brane models on Swiss-Cheese Calabi-Yau orientifolds.

  16. Functional model of biological neural networks.

    PubMed

    Lo, James Ting-Ho

    2010-12-01

    A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.

  17. Evaluation of the inhibitory effect of dihydropyridines on N-type calcium channel by virtual three-dimensional pharmacophore modeling.

    PubMed

    Ogihara, Takuo; Kano, Takashi; Kakinuma, Chihaya

    2009-01-01

    Currently, a new type of calcium channel blockers, which can inhibit not only L-type calcium channels abundantly expressed in vascular smooth muscles, but also N-type calcium channels that abound in the sympathetic nerve endings, have been developed. In this study, analysis on a like-for-like basis of the L- and N-type calcium channel-inhibitory activity of typical dihydropyridine-type calcium-channel blockers (DHPs) was performed. Moreover, to understand the differences of N-type calcium channel inhibition among DHPs, the binding of DHPs to the channel was investigated by means of hypothetical three-dimensional pharmacophore modeling using multiple calculated low-energy conformers of the DHPs. All of the tested compounds, i.e. cilnidipine (CAS 132203-70-4), efonidipine (CAS 111011-76-8), amlodipine (CAS 111470-99-6), benidipine (CAS 85387-35-5), azelnidipine (CAS 123524-52-7) and nifedipine (CAS 21829-25-4), potently inhibited the L-type calcium channel, whereas only cilnidipine inhibited the N-type calcium channel (IC50 value: 51.2 nM). A virtual three-dimensional structure of the N-type calcium channel was generated by using the structure of the peptide omega-conotoxin GVIA, a standard inhibitor of the channel, and cilnidipine was found to fit well into this pharmacophore model. Lipophilic potential maps of omega-conotoxin GVIA and cilnidipine supported this finding. Conformational overlay of cilnidipine and the other DHPs indicated that amlodipine and nifedipine were not compatible with the pharmacophore model because they did not contain an aromatic ring that was functionally equivalent to Tyr13 of omega-conotoxin GVIA. Azelnidipine, benidipine, and efonidipine, which have this type of aromatic ring, were not positively identified due to intrusions into the excluded volume. Estimation of virtual three-dimensional structures of proteins, such as ion channels, by using standard substrates and/or inhibitors may be a useful method to explore the mechanisms of pharmacological and toxicological effects of substrates and/or inhibitors, and to discover new drugs.

  18. CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms

    PubMed Central

    Meyer, Sara C.; Keller, Matthew D.; Chiu, Sophia; Koppikar, Priya; Guryanova, Olga A.; Rapaport, Franck; Xu, Ke; Manova, Katia; Pankov, Dmitry; O’Reilly, Richard J.; Kleppe, Maria; McKenney, Anna Sophia; Shih, Alan H.; Shank, Kaitlyn; Ahn, Jihae; Papalexi, Eftymia; Spitzer, Barbara; Socci, Nick; Viale, Agnes; Mandon, Emeline; Ebel, Nicolas; Andraos, Rita; Rubert, Joëlle; Dammassa, Ernesta; Romanet, Vincent; Dölemeyer, Arno; Zender, Michael; Heinlein, Melanie; Rampal, Rajit; Weinberg, Rona Singer; Hoffman, Ron; Sellers, William R.; Hofmann, Francesco; Murakami, Masato; Baffert, Fabienne; Gaul, Christoph; Radimerski, Thomas; Levine, Ross L.

    2015-01-01

    Summary Although clinically tested JAK inhibitors reduce splenomegaly and systemic symptoms, molecular responses are not observed in most myeloproliferative neoplasms (MPN) patients. We previously demonstrated that MPN cells become persistent to type I JAK inhibitors that bind the active conformation of JAK2. We investigated if CHZ868, a type II JAK inhibitor, would demonstrate activity in JAK inhibitor persistent cells, murine MPN models, and MPN patient samples. JAK2- and MPL-mutant cell lines were sensitive to CHZ868, including type I JAK inhibitor persistent cells. CHZ868 showed significant activity in murine MPN models and induced reductions in mutant allele burden not observed with type I JAK inhibitors. These data demonstrate that type II JAK inhibition is a viable therapeutic approach for MPN patients. PMID:26175413

  19. Constraint Based Modeling Going Multicellular.

    PubMed

    Martins Conde, Patricia do Rosario; Sauter, Thomas; Pfau, Thomas

    2016-01-01

    Constraint based modeling has seen applications in many microorganisms. For example, there are now established methods to determine potential genetic modifications and external interventions to increase the efficiency of microbial strains in chemical production pipelines. In addition, multiple models of multicellular organisms have been created including plants and humans. While initially the focus here was on modeling individual cell types of the multicellular organism, this focus recently started to switch. Models of microbial communities, as well as multi-tissue models of higher organisms have been constructed. These models thereby can include different parts of a plant, like root, stem, or different tissue types in the same organ. Such models can elucidate details of the interplay between symbiotic organisms, as well as the concerted efforts of multiple tissues and can be applied to analyse the effects of drugs or mutations on a more systemic level. In this review we give an overview of the recent development of multi-tissue models using constraint based techniques and the methods employed when investigating these models. We further highlight advances in combining constraint based models with dynamic and regulatory information and give an overview of these types of hybrid or multi-level approaches.

  20. Alternative solution model for the ternary carbonate system CaCO3 - MgCO3 - FeCO3 - II. Calibration of a combined ordering model and mixing model

    USGS Publications Warehouse

    McSwiggen, P.L.

    1993-01-01

    Earlier attempts at solution models for the ternary carbonate system have been unable to adequately accommodate the cation ordering which occurs in some of the carbonate phases. The carbonate solution model of this study combines a Margules type of interaction model with a Bragg-Williams type of ordering model. The ordering model determines the equilibrium state of order for a crystal, from which the cation distribution within the lattice can be obtained. The interaction model addresses the effect that mixing different cation species within a given cation layer has on the total free energy of the system. An ordering model was derived, based on the Bragg-Williams approach; it is applicable to ternary systems involving three cations substituting on two sites, and contains three ordering energy parameters (WCaMg, WCaFe, and WCaMgFe). The solution model of this study involves six Margules-type interaction parameters (W12, W21, W13, W31, W23, and W32). Values for the two sets of energy parameters were calculated from experimental data and from compositional relationships in natural assemblages. ?? 1993 Springer-Verlag.

  1. Monte Carlo Study Elucidates the Type 1/Type 2 Choice in Apoptotic Death Signaling in Healthy and Cancer Cells

    PubMed Central

    Raychaudhuri, Subhadip; Raychaudhuri, Somkanya C

    2013-01-01

    Apoptotic cell death is coordinated through two distinct (type 1 and type 2) intracellular signaling pathways. How the type 1/type 2 choice is made remains a central problem in the biology of apoptosis and has implications for apoptosis related diseases and therapy. We study the problem of type 1/type 2 choice in silico utilizing a kinetic Monte Carlo model of cell death signaling. Our results show that the type 1/type 2 choice is linked to deterministic versus stochastic cell death activation, elucidating a unique regulatory control of the apoptotic pathways. Consistent with previous findings, our results indicate that caspase 8 activation level is a key regulator of the choice between deterministic type 1 and stochastic type 2 pathways, irrespective of cell types. Expression levels of signaling molecules downstream also regulate the type 1/type 2 choice. A simplified model of DISC clustering elucidates the mechanism of increased active caspase 8 generation and type 1 activation in cancer cells having increased sensitivity to death receptor activation. We demonstrate that rapid deterministic activation of the type 1 pathway can selectively target such cancer cells, especially if XIAP is also inhibited; while inherent cell-to-cell variability would allow normal cells stay protected. PMID:24709706

  2. Lyman alpha initiated winds in late-type stars

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.; Linsky, J. L.; Vanderhucht, K. A.

    1979-01-01

    The IUE survey of late-type stars revealed a sharp division in the HR diagram between stars with solar type spectra (chromosphere and transition region lines) and those with non-solar type spectra (only chromosphere lines). Models of both hot coronae and cool wind flows were calculated using stellar model chromospheres as starting points for stellar wind calculations in order to investigate the possibility of having a supersonic transition locus in the HR diagram dividing hot coronae from cool winds. From these models, it is concluded that the Lyman alpha flux may play an important role in determining the location of a stellar wind critical point. The interaction of Lyman alpha radiation pressure with Alfven waves in producing strong, low temperature stellar winds in the star Arcturus is examined.

  3. Model of the Phase Transition Mimicking the Pasta Phase in Cold and Dense Quark-Hadron Matter

    NASA Astrophysics Data System (ADS)

    Ayriyan, Alexander; Grigorian, Hovik

    2018-02-01

    A simple mixed phase model mimicking so-called "pasta" phases in the quarkhadron phase transition is developed and applied to static neutron stars for the case of DD2 type hadronic and NJL type quark matter models. The influence of the mixed phase on the mass-radius relation of the compact stars is investigated. Model parameters are chosen such that the results are in agreement with the mass-radius constraints.

  4. Stochastic Lanchester-type Combat Models I.

    DTIC Science & Technology

    1979-10-01

    necessarily hold when the attrition rates become non- linear in b and/or r. 13 iL 4. OTHER COMBAT MODELS In this section we briefly describe how other...AD-A092 898 FLORIDA STATE UNIV TALLAHASSEE DEPT OF STATISTICS F/6 12/2 STOCHASTIC LANCHESTER-TYPE COMBAT MODELS I.(U) OCT 79 L BILLARD N62271-79-M...COMBAT MODELS I by L. BILLARD October 1979 Approved for public release; distribution unlimited. Prepared for: Naval Postgraduate School Monterey, CA 93940

  5. Information model for digital exchange of soil-related data - potential modifications on ISO 28258

    NASA Astrophysics Data System (ADS)

    Schulz, Sina; Eberhardt, Einar; Reznik, Tomas

    2017-04-01

    ABSTRACT The International Standard ISO 28258 "Digital exchange of soil-related data" provides an information model that describes the organization of soil data to facilitate data transfer between data producers, holders and users. The data model contains a fixed set of "core" soil feature types, data types and properties, whereas its customization is on the data provider level, e.g. by adding user-specific properties. Rules for encoding these information are given by a customized XML-based format (called "SoilML"). Some technical shortcomings are currently under consideration in the ISO working group. Directly after publication of ISO 28258 in 2013, also several conceptual and implementation issues concerning the information model had been identified, such as renaming of feature types, modification of data types, and enhancement of definitions or addition of super-classes are part of the current revision process. Conceptual changes for the current ISO data model that are compatible with the Australian/New Zealand soil data model ANZSoilML and the EU INSPIRE Data Specifications Soil are also discussed. The concept of a model with a limited set of properties that can be extended by the data provider should remain unaffected. This presentation aims to introduce and comment on the current ISO soil information model and the proposed modifications. Moreover, we want to discuss these adjustments with respect to enhanced applicability of this International Standard.

  6. 46 CFR 160.055-2 - Type and model.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Preservers, Unicellular Plastic Foam, Adult and Child, for...) Model 66, child (for persons weighing less than 90 pounds); or (b) Standard, bib type, cloth covered; (1...

  7. Design for Warehouse with Product Flow Type Allocation using Linear Programming: A Case Study in a Textile Industry

    NASA Astrophysics Data System (ADS)

    Khannan, M. S. A.; Nafisah, L.; Palupi, D. L.

    2018-03-01

    Sari Warna Co. Ltd, a company engaged in the textile industry, is experiencing problems in the allocation and placement of goods in the warehouse. During this time the company has not implemented the product flow type allocation and product placement to the respective products resulting in a high total material handling cost. Therefore, this study aimed to determine the allocation and placement of goods in the warehouse corresponding to product flow type with minimal total material handling cost. This research is a quantitative research based on the theory of storage and warehouse that uses a mathematical model of optimization problem solving using mathematical optimization model approach belongs to Heragu (2005), aided by software LINGO 11.0 in the calculation of the optimization model. Results obtained from this study is the proportion of the distribution for each functional area is the area of cross-docking at 0.0734, the reserve area at 0.1894, and the forward area at 0.7372. The allocation of product flow type 1 is 5 products, the product flow type 2 is 9 products, the product flow type 3 is 2 products, and the product flow type 4 is 6 products. The optimal total material handling cost by using this mathematical model equal to Rp43.079.510 while it is equal to Rp 49.869.728 by using the company’s existing method. It saves Rp6.790.218 for the total material handling cost. Thus, all of the products can be allocated in accordance with the product flow type with minimal total material handling cost.

  8. A unified approach for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties

    NASA Astrophysics Data System (ADS)

    Lü, Hui; Shangguan, Wen-Bin; Yu, Dejie

    2017-09-01

    Automotive brake systems are always subjected to various types of uncertainties and two types of random-fuzzy uncertainties may exist in the brakes. In this paper, a unified approach is proposed for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties. In the proposed approach, two uncertainty analysis models with mixed variables are introduced to model the random-fuzzy uncertainties. The first one is the random and fuzzy model, in which random variables and fuzzy variables exist simultaneously and independently. The second one is the fuzzy random model, in which uncertain parameters are all treated as random variables while their distribution parameters are expressed as fuzzy numbers. Firstly, the fuzziness is discretized by using α-cut technique and the two uncertainty analysis models are simplified into random-interval models. Afterwards, by temporarily neglecting interval uncertainties, the random-interval models are degraded into random models, in which the expectations, variances, reliability indexes and reliability probabilities of system stability functions are calculated. And then, by reconsidering the interval uncertainties, the bounds of the expectations, variances, reliability indexes and reliability probabilities are computed based on Taylor series expansion. Finally, by recomposing the analysis results at each α-cut level, the fuzzy reliability indexes and probabilities can be obtained, by which the brake squeal instability can be evaluated. The proposed approach gives a general framework to deal with both types of random-fuzzy uncertainties that may exist in the brakes and its effectiveness is demonstrated by numerical examples. It will be a valuable supplement to the systematic study of brake squeal considering uncertainty.

  9. Development and validation of a predictive risk model for all-cause mortality in type 2 diabetes.

    PubMed

    Robinson, Tom E; Elley, C Raina; Kenealy, Tim; Drury, Paul L

    2015-06-01

    Type 2 diabetes is common and is associated with an approximate 80% increase in the rate of mortality. Management decisions may be assisted by an estimate of the patient's absolute risk of adverse outcomes, including death. This study aimed to derive a predictive risk model for all-cause mortality in type 2 diabetes. We used primary care data from a large national multi-ethnic cohort of patients with type 2 diabetes in New Zealand and linked mortality records to develop a predictive risk model for 5-year risk of mortality. We then validated this model using information from a separate cohort of patients with type 2 diabetes. 26,864 people were included in the development cohort with a median follow up time of 9.1 years. We developed three models initially using demographic information and then progressively more clinical detail. The final model, which also included markers of renal disease, proved to give best prediction of all-cause mortality with a C-statistic of 0.80 in the development cohort and 0.79 in the validation cohort (7610 people) and was well calibrated. Ethnicity was a major factor with hazard ratios of 1.37 for indigenous Maori, 0.41 for East Asian and 0.55 for Indo Asian compared with European (P<0.001). We have developed a model using information usually available in primary care that provides good assessment of patient's risk of death. Results are similar to models previously published from smaller cohorts in other countries and apply to a wider range of patient ethnic groups. Copyright © 2015. Published by Elsevier Ireland Ltd.

  10. Spatial clustering and halo occupation distribution modelling of local AGN via cross-correlation measurements with 2MASS galaxies

    NASA Astrophysics Data System (ADS)

    Krumpe, Mirko; Miyaji, Takamitsu; Coil, Alison L.; Aceves, Hector

    2018-02-01

    We present the clustering properties and halo occupation distribution (HOD) modelling of very low redshift, hard X-ray-detected active galactic nuclei (AGN) using cross-correlation function measurements with Two-Micron All Sky Survey galaxies. Spanning a redshift range of 0.007 < z < 0.037, with a median z = 0.024, we present a precise AGN clustering study of the most local AGN in the Universe. The AGN sample is drawn from the SWIFT/BAT 70-month and INTEGRAL/IBIS eight year all-sky X-ray surveys and contains both type I and type II AGN. We find a large-scale bias for the full AGN sample of b=1.04^{+0.10}_{-0.11}, which corresponds to a typical host dark matter halo mass of M_h^typ=12.84^{+0.22}_{-0.30} h^{-1} M_{⊙}. When split into low and high X-ray luminosity and type I and type II AGN subsamples, we detect no statistically significant differences in the large-scale bias parameters. However, there are differences in the small-scale clustering, which are reflected in the full HOD model results. We find that low and high X-ray luminosity AGN, as well as type I and type II AGN, occupy dark matter haloes differently, with 3.4σ and 4.0σ differences in their mean halo masses, respectively, when split by luminosity and type. The latter finding contradicts a simple orientation-based AGN unification model. As a by-product of our cross-correlation approach, we also present the first HOD model of 2MASS galaxies.

  11. Validation of a model of family caregiver communication types and related caregiver outcomes.

    PubMed

    Wittenberg, Elaine; Kravits, Kate; Goldsmith, Joy; Ferrell, Betty; Fujinami, Rebecca

    2017-02-01

    Caring for the family is included as one of the eight domains of quality palliative care, calling attention to the importance of the family system and family communications about cancer during care and treatment of the disease. Previously, a model of family caregiver communication defined four caregiver communication types-Manager, Carrier, Partner, Lone-each with a unique communication pattern. The purpose of the present study was to extend the model of family caregiver communication in cancer care to further understand the impact of family communication burden on caregiving outcomes. This mixed-method study employed fieldnotes from a family caregiver intervention focused on quality of life and self-reported caregiver communication items to identify a specific family caregiver type. Caregiver types were then analyzed using outcome measures on psychological distress, skills preparedness, family inventory of needs, and quality-of-life domains. Corroboration between fieldnotes and self-reported communication for caregivers (n = 21, 16 women, mean age of 53 years) revealed a definitive classification of the four caregiver types (Manager = 6, Carrier = 5, Partner = 6, Lone = 4). Mean scores on self-reported communication items documented different communication patterns congruent with the theoretical framework of the model. Variation in caregiver outcomes measures confirmed the model of family caregiver communication types. Partner and Lone caregivers reported the lowest psychological distress, with Carrier caregivers feeling least prepared and Manager caregivers reporting the lowest physical quality of life. This study illustrates the impact of family communication on caregiving and increases our knowledge and understanding about the role of communication in caregiver burden. The research provides the first evidence-based validation for a family caregiver communication typology and its relationship to caregiver outcomes. Future research is needed to develop and test interventions that target specific caregiver types.

  12. Physical activity into the meal glucose-insulin model of type 1 diabetes: in silico studies.

    PubMed

    Man, Chiara Dalla; Breton, Marc D; Cobelli, Claudio

    2009-01-01

    A simulation model of a glucose-insulin system accounting for physical activity is needed to reliably simulate normal life conditions, thus accelerating the development of an artificial pancreas. In fact, exercise causes a transient increase of insulin action and may lead to hypoglycemia. However, physical activity is difficult to model. In the past, it was described indirectly as a rise in insulin. Recently, a new parsimonious model of exercise effect on glucose homeostasis has been proposed that links the change in insulin action and glucose effectiveness to heart rate (HR). The aim of this study was to plug this exercise model into our recently proposed large-scale simulation model of glucose metabolism in type 1 diabetes to better describe normal life conditions. The exercise model describes changes in glucose-insulin dynamics in two phases: a rapid on-and-off change in insulin-independent glucose clearance and a rapid-on/slow-off change in insulin sensitivity. Three candidate models of glucose effectiveness and insulin sensitivity as a function of HR have been considered, both during exercise and recovery after exercise. By incorporating these three models into the type 1 diabetes model, we simulated different levels (from mild to moderate) and duration of exercise (15 and 30 minutes), both in steady-state (e.g., during euglycemic-hyperinsulinemic clamp) and in nonsteady state (e.g., after a meal) conditions. One candidate exercise model was selected as the most reliable. A type 1 diabetes model also describing physical activity is proposed. The model represents a step forward to accurately describe glucose homeostasis in normal life conditions; however, further studies are needed to validate it against data. © Diabetes Technology Society

  13. Standard analgesics reverse burrowing deficits in a rat CCI model of neuropathic pain, but not in models of type 1 and type 2 diabetes-induced neuropathic pain.

    PubMed

    Rutten, Kris; Gould, Stacey A; Bryden, Luke; Doods, Henri; Christoph, Thomas; Pekcec, Anton

    2018-09-17

    Burrowing is a rodent behavior validated as a robust and reproducible outcome measure to infer the global effect of pain in several inflammatory pain models. However, less is known about the effect of analgesics on burrowing in neuropathic pain models and no studies have determined burrowing performance in models of diabetes-associated neuropathic pain. To compare the sensitivity of the burrowing assay in different neuropathic pain models: mononeuropathic pain and diabetic polyneuropathy. Burrowing performance was determined by the amount of substrate left in a hollow tube by rats with chronic constriction injury (CCI). In addition, burrowing performance, locomotion and pain development was assessed in the Zucker diabetic fatty (ZDF) rat model, resembling type-2 diabetes. Efficacy of clinically-active reference drugs (opioids, gabapentin and/or pregabalin) were investigated in these models. Burrowing behavior was additionally assessed in a second model, induced by streptozotocin (STZ) treatment, resembling type-1 diabetes. In the CCI model, moderate but consistent burrowing deficits were observed that persisted over a period of ≥20 days. Systemic administration of morphine, pregabalin and gabapentin reversed this deficit. In contrast, none of the reference drugs improved marked burrowing deficits detected in ZDF rats, and pregabalin did not reverse severe burrowing deficits observed in STZ rats. Burrowing performance cannot necessarily be used as pain-related readout across pain models and largely depends on the model used, at least in models of neuropathy. Specifically, analgesic drug effects might be masked by general diabetes-associated alteration of the animals' well-being, resulting in false negative outcomes. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. An Integrative Approach to Computational Modelling of the Gene Regulatory Network Controlling Clostridium botulinum Type A1 Toxin Production

    PubMed Central

    Walshaw, John; Peck, Michael W.; Barker, Gary C.

    2016-01-01

    Clostridium botulinum produces botulinum neurotoxins (BoNTs), highly potent substances responsible for botulism. Currently, mathematical models of C. botulinum growth and toxigenesis are largely aimed at risk assessment and do not include explicit genetic information beyond group level but integrate many component processes, such as signalling, membrane permeability and metabolic activity. In this paper we present a scheme for modelling neurotoxin production in C. botulinum Group I type A1, based on the integration of diverse information coming from experimental results available in the literature. Experiments show that production of BoNTs depends on the growth-phase and is under the control of positive and negative regulatory elements at the intracellular level. Toxins are released as large protein complexes and are associated with non-toxic components. Here, we systematically review and integrate those regulatory elements previously described in the literature for C. botulinum Group I type A1 into a population dynamics model, to build the very first computational model of toxin production at the molecular level. We conduct a validation of our model against several items of published experimental data for different wild type and mutant strains of C. botulinum Group I type A1. The result of this process underscores the potential of mathematical modelling at the cellular level, as a means of creating opportunities in developing new strategies that could be used to prevent botulism; and potentially contribute to improved methods for the production of toxin that is used for therapeutics. PMID:27855161

  15. Morningness-eveningness, sex, and the Alternative Five Factor Model of personality.

    PubMed

    Muro, Anna; Gomà-i-Freixanet, Montserrat; Adan, Ana

    2009-08-01

    Recent research on personality and circadian typology indicates that evening-type subjects are more extraverted, impulsive, and novelty-seeking, while morning ones tend to be more introverted, conscientious, agreeable, and emotionally stable. The purpose of this study was to examine the differences between circadian typologies on the Zuckerman's Alternative Five Factor Model of personality (AFFM), which has a strong biological basis, controlling for sex and age. A sample of 533 university students (168 men) participated in the study. Results showed that morning-type subjects had significant higher scores than evening-type and neither-type subjects in Activity, and in its subscales General Activity and Work Activity. A significant interaction between circadian typology and sex was found for Neuroticism-Anxiety: morning-type men showed higher scores than evening-type and neither-type, who had the lowest scores. Women presented the opposite pattern: neither-type obtained the highest scores, while morning-type showed the lowest. This is the first time the AFFM has been used in the context of circadian rhythms research. The results suggest that activity is the only trait related to extraversion associated with morningness, while Neuroticism-Anxiety was modulated by sex. These results might help highlight previous results on the association between morningness-eveningness and other models of personality assessment, and they offer new data that calls for further research.

  16. Predictive data modeling of human type II diabetes related statistics

    NASA Astrophysics Data System (ADS)

    Jaenisch, Kristina L.; Jaenisch, Holger M.; Handley, James W.; Albritton, Nathaniel G.

    2009-04-01

    During the course of routine Type II treatment of one of the authors, it was decided to derive predictive analytical Data Models of the daily sampled vital statistics: namely weight, blood pressure, and blood sugar, to determine if the covariance among the observed variables could yield a descriptive equation based model, or better still, a predictive analytical model that could forecast the expected future trend of the variables and possibly eliminate the number of finger stickings required to montior blood sugar levels. The personal history and analysis with resulting models are presented.

  17. The characterization of a full-thickness excision open foot wound model in n5-streptozotocin (STZ)-induced type 2 diabetic rats that mimics diabetic foot ulcer in terms of reduced blood circulation, higher C-reactive protein, elevated inflammation, and reduced cell proliferation.

    PubMed

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Fung, Kwok-Pui; Lam, Francis Fu-Yuen; Ng, Ethel Sau-Kuen; Lau, Kit-Man; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-08-05

    Delayed foot wound healing is a major complication attributed to hyperglycemia in type 2 diabetes mellitus (DM) patients, and these wounds may develop into foot ulcers. There are at least two types of DM wound models used in rodents to study delayed wound healing. However, clinically relevant animal models are not common. Most models use type 1 DM rodents or wounds created on the back rather than on the foot. An open full-thickness excision wound on the footpad of type 2 DM rats is more clinically relevant, but such a model has not yet been characterized systematically. The objective of this study was to investigate and characterize how DM affected a full-thickness excision open foot wound in n5-streptozotocin (n5-STZ)-induced type 2 DM rats. We hypothesized that elevated inflammation, reduced blood circulation, and cell proliferation due to hyperglycemia could delay the wound healing of DM rats. The wounds of DM rats were compared with those of non-DM rats (Ctrl) at Days 1 and 8 post wounding. The wound healing process of the DM rats was significantly delayed compared with that of the Ctrl rats. The DM rats also had higher C-reactive protein (CRP) and lower blood circulation and proliferating cell nuclear antigen (PCNA) in DM wounds. This confirmed that elevated inflammation and reduced blood flow and cell proliferation delayed foot wound healing in the n5-STZ rats. Hence, this open foot wound animal model provides a good approach to study the process of delayed wound healing.

  18. Two-vehicle injury severity models based on integration of pavement management and traffic engineering factors.

    PubMed

    Jiang, Ximiao; Huang, Baoshan; Yan, Xuedong; Zaretzki, Russell L; Richards, Stephen

    2013-01-01

    The severity of traffic-related injuries has been studied by many researchers in recent decades. However, the evaluation of many factors is still in dispute and, until this point, few studies have taken into account pavement management factors as points of interest. The objective of this article is to evaluate the combined influences of pavement management factors and traditional traffic engineering factors on the injury severity of 2-vehicle crashes. This study examines 2-vehicle rear-end, sideswipe, and angle collisions that occurred on Tennessee state routes from 2004 to 2008. Both the traditional ordered probit (OP) model and Bayesian ordered probit (BOP) model with weak informative prior were fitted for each collision type. The performances of these models were evaluated based on the parameter estimates and deviances. The results indicated that pavement management factors played identical roles in all 3 collision types. Pavement serviceability produces significant positive effects on the severity of injuries. The pavement distress index (PDI), rutting depth (RD), and rutting depth difference between right and left wheels (RD_df) were not significant in any of these 3 collision types. The effects of traffic engineering factors varied across collision types, except that a few were consistently significant in all 3 collision types, such as annual average daily traffic (AADT), rural-urban location, speed limit, peaking hour, and light condition. The findings of this study indicated that improved pavement quality does not necessarily lessen the severity of injuries when a 2-vehicle crash occurs. The effects of traffic engineering factors are not universal but vary by the type of crash. The study also found that the BOP model with a weak informative prior can be used as an alternative but was not superior to the traditional OP model in terms of overall performance.

  19. The characterization of a full-thickness excision open foot wound model in n5-streptozotocin (STZ)-induced type 2 diabetic rats that mimics diabetic foot ulcer in terms of reduced blood circulation, higher C-reactive protein, elevated inflammation, and reduced cell proliferation

    PubMed Central

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Fung, Kwok-Pui; Lam, Francis Fu-Yuen; Ng, Ethel Sau-Kuen; Lau, Kit-Man; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-01-01

    Delayed foot wound healing is a major complication attributed to hyperglycemia in type 2 diabetes mellitus (DM) patients, and these wounds may develop into foot ulcers. There are at least two types of DM wound models used in rodents to study delayed wound healing. However, clinically relevant animal models are not common. Most models use type 1 DM rodents or wounds created on the back rather than on the foot. An open full-thickness excision wound on the footpad of type 2 DM rats is more clinically relevant, but such a model has not yet been characterized systematically. The objective of this study was to investigate and characterize how DM affected a full-thickness excision open foot wound in n5-streptozotocin (n5-STZ)-induced type 2 DM rats. We hypothesized that elevated inflammation, reduced blood circulation, and cell proliferation due to hyperglycemia could delay the wound healing of DM rats. The wounds of DM rats were compared with those of non-DM rats (Ctrl) at Days 1 and 8 post wounding. The wound healing process of the DM rats was significantly delayed compared with that of the Ctrl rats. The DM rats also had higher C-reactive protein (CRP) and lower blood circulation and proliferating cell nuclear antigen (PCNA) in DM wounds. This confirmed that elevated inflammation and reduced blood flow and cell proliferation delayed foot wound healing in the n5-STZ rats. Hence, this open foot wound animal model provides a good approach to study the process of delayed wound healing. PMID:28413186

  20. A model of type 2 diabetes in the guinea pig using sequential diet-induced glucose intolerance and streptozotocin treatment

    PubMed Central

    Ackart, David F.; Richardson, Michael A.; DiLisio, James E.; Pulford, Bruce; Basaraba, Randall J.

    2017-01-01

    ABSTRACT Type 2 diabetes is a leading cause of morbidity and mortality among noncommunicable diseases, and additional animal models that more closely replicate the pathogenesis of human type 2 diabetes are needed. The goal of this study was to develop a model of type 2 diabetes in guinea pigs, in which diet-induced glucose intolerance precedes β-cell cytotoxicity, two processes that are crucial to the development of human type 2 diabetes. Guinea pigs developed impaired glucose tolerance after 8 weeks of feeding on a high-fat, high-carbohydrate diet, as determined by oral glucose challenge. Diet-induced glucose intolerance was accompanied by β-cell hyperplasia, compensatory hyperinsulinemia, and dyslipidemia with hepatocellular steatosis. Streptozotocin (STZ) treatment alone was ineffective at inducing diabetic hyperglycemia in guinea pigs, which failed to develop sustained glucose intolerance or fasting hyperglycemia and returned to euglycemia within 21 days after treatment. However, when high-fat, high-carbohydrate diet-fed guinea pigs were treated with STZ, glucose intolerance and fasting hyperglycemia persisted beyond 21 days post-STZ treatment. Guinea pigs with diet-induced glucose intolerance subsequently treated with STZ demonstrated an insulin-secretory capacity consistent with insulin-independent diabetes. This insulin-independent state was confirmed by response to oral antihyperglycemic drugs, metformin and glipizide, which resolved glucose intolerance and extended survival compared with guinea pigs with uncontrolled diabetes. In this study, we have developed a model of sequential glucose intolerance and β-cell loss, through high-fat, high-carbohydrate diet and extensive optimization of STZ treatment in the guinea pig, which closely resembles human type 2 diabetes. This model will prove useful in the study of insulin-independent diabetes pathogenesis with or without comorbidities, where the guinea pig serves as a relevant model species. PMID:28093504

  1. Stability analysis of type 2 diabetes mellitus prognosis model with obesity as a trigger factor and metabolic syndrome as a risk factor

    NASA Astrophysics Data System (ADS)

    Jaya, A. I.; Lestari, A. D.; Ratianingsih, R.; Puspitasari, J. W.

    2018-03-01

    Obesity is found in 90% of the world's patients with a type 2 diabetes mellitus (DM) diagnosis. If it is not being treatment, the disease advances to a metabolic syndrome related to some atherosclerotic cardiovascular diseases. In this study, a mathematical model was constructed that represent the prognosis of type 2 DM. The prognosis is started from the transition of vulnerable people to overweight and obese. The advanced prognosis makes the type 2 DM sufferer become a metabolic syndrome. The model has no disease-free critical point, while the implicit endemic critical point is guaranteed for some requirements. The analysis of the critical point stability, by Jacobian matrix and Routh Hurwitz criteria, requires a parameter interval that identified from the characteristic polynomial. The requirements show that we have to pay attention to the transition rate of overweight to obese, more over the transition rate of obese to type 2 DM. The simulations show that the unstable condition of type 2 DM is easier to achieve because of the tightness of the parameter stability interval.

  2. Self-organizing map models of language acquisition

    PubMed Central

    Li, Ping; Zhao, Xiaowei

    2013-01-01

    Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic parallel distributed processing architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper, we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development. We suggest future directions in which these models can be extended, to better connect with behavioral and neural data, and to make clear predictions in testing relevant psycholinguistic theories. PMID:24312061

  3. Typing for Conflict Detection in Access Control Policies

    NASA Astrophysics Data System (ADS)

    Adi, Kamel; Bouzida, Yacine; Hattak, Ikhlass; Logrippo, Luigi; Mankovskii, Serge

    In this paper we present an access control model that considers both abstract and concrete access control policies specifications. Permissions and prohibitions are expressed within this model with contextual conditions. This situation may lead to conflicts. We propose a type system that is applied to the different rules in order to check for inconsistencies. If a resource is well typed, it is guaranteed that access rules to the resource contain no conflicts.

  4. Analysis of shell type structures subjected to time dependent mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Carlson, R. L.; Riff, R.

    1985-01-01

    A general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads is considered. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and ratchetting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model.

  5. A Quantitative Model of Expert Transcription Typing

    DTIC Science & Technology

    1993-03-08

    side of pure psychology, several researchers have argued that transcription typing is a particularly good activity for the study of human skilled...phenomenon with a quantitative METT prediction. The first, quick and dirty analysis gives a good prediction of the copy span, in fact, it is even...typing, it should be demonstrated that the mechanism of the model does not get in the way of good predictions. If situations occur where the entire

  6. Testing and selection of cosmological models with (1+z){sup 6} corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szydlowski, Marek; Marc Kac Complex Systems Research Centre, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow; Godlowski, Wlodzimierz

    2008-02-15

    In the paper we check whether the contribution of (-)(1+z){sup 6} type in the Friedmann equation can be tested. We consider some astronomical tests to constrain the density parameters in such models. We describe different interpretations of such an additional term: geometric effects of loop quantum cosmology, effects of braneworld cosmological models, nonstandard cosmological models in metric-affine gravity, and models with spinning fluid. Kinematical (or geometrical) tests based on null geodesics are insufficient to separate individual matter components when they behave like perfect fluid and scale in the same way. Still, it is possible to measure their overall effect. Wemore » use recent measurements of the coordinate distances from the Fanaroff-Riley type IIb radio galaxy data, supernovae type Ia data, baryon oscillation peak and cosmic microwave background radiation observations to obtain stronger bounds for the contribution of the type considered. We demonstrate that, while {rho}{sup 2} corrections are very small, they can be tested by astronomical observations--at least in principle. Bayesian criteria of model selection (the Bayesian factor, AIC, and BIC) are used to check if additional parameters are detectable in the present epoch. As it turns out, the {lambda}CDM model is favored over the bouncing model driven by loop quantum effects. Or, in other words, the bounds obtained from cosmography are very weak, and from the point of view of the present data this model is indistinguishable from the {lambda}CDM one.« less

  7. Influence of crop type specification and spatial resolution on empirical modeling of field-scale Maize and Soybean carbon fluxes in the US Great Plains

    NASA Astrophysics Data System (ADS)

    McCombs, A. G.; Hiscox, A.; Wang, C.; Desai, A. R.

    2016-12-01

    A challenge in satellite land surface remote-sensing models of ecosystem carbon dynamics in agricultural systems is the lack of differentiation by crop type and management. This generalization can lead to large discrepancies between model predictions and eddy covariance flux tower observations of net ecosystem exchange of CO2 (NEE). Literature confirms that NEE varies remarkably among different crop types making the generalization of agriculture in remote sensing based models inaccurate. Here, we address this inaccuracy by identifying and mapping net ecosystem exchange (NEE) in agricultural fields by comparing bulk modeling and modeling by crop type, and using this information to develop empirical models for future use. We focus on mapping NEE in maize and soybean fields in the US Great Plains at higher spatial resolution using the fusion of MODIS and LandSAT surface reflectance. MODIS observed reflectance was downscaled using the ESTARFM downscaling methodology to match spatial scales to those found in LandSAT and that are more appropriate for carbon dynamics in agriculture fields. A multiple regression model was developed from surface reflectance of the downscaled MODIS and LandSAT remote sensing values calibrated against five FLUXNET/AMERIFLUX flux towers located on soybean and/or maize agricultural fields in the US Great Plains with multi-year NEE observations. Our new methodology improves upon bulk approximates to map and model carbon dynamics in maize and soybean fields, which have significantly different photosynthetic capacities.

  8. The Impact of Secondary School Students' Preconceptions on the Evolution of their Mental Models of the Greenhouse effect and Global Warming

    NASA Astrophysics Data System (ADS)

    Reinfried, Sibylle; Tempelmann, Sebastian

    2014-01-01

    This paper provides a video-based learning process study that investigates the kinds of mental models of the atmospheric greenhouse effect 13-year-old learners have and how these mental models change with a learning environment, which is optimised in regard to instructional psychology. The objective of this explorative study was to observe and analyse the learners' learning pathways according to their previous knowledge in detail and to understand the mental model formation processes associated with them more precisely. For the analysis of the learning pathways, drawings, texts, video and interview transcripts from 12 students were studied using qualitative methods. The learning pathways pursued by the learners significantly depend on their domain-specific previous knowledge. The learners' preconceptions could be typified based on specific characteristics, whereby three preconception types could be formed. The 'isolated pieces of knowledge' type of learners, who have very little or no previous knowledge about the greenhouse effect, build new mental models that are close to the target model. 'Reduced heat output' type of learners, who have previous knowledge that indicates compliances with central ideas of the normative model, reconstruct their knowledge by reorganising and interpreting their existing knowledge structures. 'Increasing heat input' type of learners, whose previous knowledge consists of subjective worldly knowledge, which has a greater personal explanatory value than the information from the learning environment, have more difficulties changing their mental models. They have to fundamentally reconstruct their mental models.

  9. Development and validation of a cost-utility model for Type 1 diabetes mellitus.

    PubMed

    Wolowacz, S; Pearson, I; Shannon, P; Chubb, B; Gundgaard, J; Davies, M; Briggs, A

    2015-08-01

    To develop a health economic model to evaluate the cost-effectiveness of new interventions for Type 1 diabetes mellitus by their effects on long-term complications (measured through mean HbA1c ) while capturing the impact of treatment on hypoglycaemic events. Through a systematic review, we identified complications associated with Type 1 diabetes mellitus and data describing the long-term incidence of these complications. An individual patient simulation model was developed and included the following complications: cardiovascular disease, peripheral neuropathy, microalbuminuria, end-stage renal disease, proliferative retinopathy, ketoacidosis, cataract, hypoglycemia and adverse birth outcomes. Risk equations were developed from published cumulative incidence data and hazard ratios for the effect of HbA1c , age and duration of diabetes. We validated the model by comparing model predictions with observed outcomes from studies used to build the model (internal validation) and from other published data (external validation). We performed illustrative analyses for typical patient cohorts and a hypothetical intervention. Model predictions were within 2% of expected values in the internal validation and within 8% of observed values in the external validation (percentages represent absolute differences in the cumulative incidence). The model utilized high-quality, recent data specific to people with Type 1 diabetes mellitus. In the model validation, results deviated less than 8% from expected values. © 2014 Research Triangle Institute d/b/a RTI Health Solutions. Diabetic Medicine © 2014 Diabetes UK.

  10. Grid Integrated Type 3 Wind Systems - Modeling, and Line Protection Performance Analysis using the RTDS

    NASA Astrophysics Data System (ADS)

    Jain, Rishabh

    In this thesis, the line protection elements and their supervisory elements are analyzed in context of Type 3 (Doubly Fed Induction Generator based) grid integrated wind turbine systems. The underlying converter and controller design algorithms and topologies are discussed. A detailed controller for the Type 3 wind turbine system is designed and integrated to the grid using the RTDS. An alternative to the conventional PLL for tracking of rotor frequency is designed and implemented. A comparative analysis of the performance of an averaged model and the corresponding switching model is presented. After completing the WT model design, the averaged model is used to model an aggregate 10-generator equivalent model tied to a 230kV grid via a 22kV collector. This model is a great asset to understand dynamics, and the unfaulted and faulted behavior of aggregated and single-turbine Type 3 WT systems. The model is then utilized to analyze the response of conventional protection schemes (Line current Differential and Mho Distance elements) and their respective supervisory elements of modern commercial protection relays in real time by hardware-in-the-loop simulation using the RTDS. Differences in the behavior of these elements compared to conventional power systems is noted. Fault are analyzed from the relay's perspective and the reasons for the observed behavior are presented. Challenges associated with sequence components and relay sensitivity are discussed and alternate practices to circumvent these issues are recommended.

  11. Molecular Modeling of Lipid Structure and Function.

    DTIC Science & Technology

    1987-03-01

    studied anhydrobiotic protectants are the disaccharides (particularly trehalose ) which are thought to protect the bilayer by substituting for the...interaction of trehalose with the bilayer. The models for the two sugars are very similar, each utilizing three hydrogen bonds to link adjacent type A...choline residue from a type A DMPC. Sucrose readily conforms to the model as initially developed for trehalose , consistent with the observation of

  12. The Effect of Team Training Strategies on Team Mental Model Formation and Team Performance under Routine and Non-Routine Environmental Conditions

    ERIC Educational Resources Information Center

    Hamilton, Katherine L.

    2009-01-01

    The current study examined how the type of training a team receives (team coordination training vs. cross-training) influences the type of team mental model structures that form and how those mental models in turn impact team performance under different environmental condition (routine vs. non-routine). Three-hundred and fifty-two undergraduate…

  13. A Comprehensive review of group level model performance in the presence of heteroscedasticity: Can a single model control Type I errors in the presence of outliers?

    PubMed Central

    Mumford, Jeanette A.

    2017-01-01

    Even after thorough preprocessing and a careful time series analysis of functional magnetic resonance imaging (fMRI) data, artifact and other issues can lead to violations of the assumption that the variance is constant across subjects in the group level model. This is especially concerning when modeling a continuous covariate at the group level, as the slope is easily biased by outliers. Various models have been proposed to deal with outliers including models that use the first level variance or that use the group level residual magnitude to differentially weight subjects. The most typically used robust regression, implementing a robust estimator of the regression slope, has been previously studied in the context of fMRI studies and was found to perform well in some scenarios, but a loss of Type I error control can occur for some outlier settings. A second type of robust regression using a heteroscedastic autocorrelation consistent (HAC) estimator, which produces robust slope and variance estimates has been shown to perform well, with better Type I error control, but with large sample sizes (500–1000 subjects). The Type I error control with smaller sample sizes has not been studied in this model and has not been compared to other modeling approaches that handle outliers such as FSL’s Flame 1 and FSL’s outlier de-weighting. Focusing on group level inference with a continuous covariate over a range of sample sizes and degree of heteroscedasticity, which can be driven either by the within- or between-subject variability, both styles of robust regression are compared to ordinary least squares (OLS), FSL’s Flame 1, Flame 1 with outlier de-weighting algorithm and Kendall’s Tau. Additionally, subject omission using the Cook’s Distance measure with OLS and nonparametric inference with the OLS statistic are studied. Pros and cons of these models as well as general strategies for detecting outliers in data and taking precaution to avoid inflated Type I error rates are discussed. PMID:28030782

  14. Quantifying the Uncertainties and Multi-parameter Trade-offs in Joint Inversion of Receiver Functions and Surface Wave Velocity and Ellipticity

    NASA Astrophysics Data System (ADS)

    Gao, C.; Lekic, V.

    2016-12-01

    When constraining the structure of the Earth's continental lithosphere, multiple seismic observables are often combined due to their complementary sensitivities.The transdimensional Bayesian (TB) approach in seismic inversion allows model parameter uncertainties and trade-offs to be quantified with few assumptions. TB sampling yields an adaptive parameterization that enables simultaneous inversion for different model parameters (Vp, Vs, density, radial anisotropy), without the need for strong prior information or regularization. We use a reversible jump Markov chain Monte Carlo (rjMcMC) algorithm to incorporate different seismic observables - surface wave dispersion (SWD), Rayleigh wave ellipticity (ZH ratio), and receiver functions - into the inversion for the profiles of shear velocity (Vs), compressional velocity (Vp), density (ρ), and radial anisotropy (ξ) beneath a seismic station. By analyzing all three data types individually and together, we show that TB sampling can eliminate the need for a fixed parameterization based on prior information, and reduce trade-offs in model estimates. We then explore the effect of different types of misfit functions for receiver function inversion, which is a highly non-unique problem. We compare the synthetic inversion results using the L2 norm, cross-correlation type and integral type misfit function by their convergence rates and retrieved seismic structures. In inversions in which only one type of model parameter (Vs for the case of SWD) is inverted, assumed scaling relationships are often applied to account for sensitivity to other model parameters (e.g. Vp, ρ, ξ). Here we show that under a TB framework, we can eliminate scaling assumptions, while simultaneously constraining multiple model parameters to varying degrees. Furthermore, we compare the performance of TB inversion when different types of model parameters either share the same or use independent parameterizations. We show that different parameterizations can lead to differences in retrieved model parameters, consistent with limited data constraints. We then quantitatively examine the model parameter trade-offs and find that trade-offs between Vp and radial anisotropy might limit our ability to constrain shallow-layer radial anisotropy using current seismic observables.

  15. Recursive formulae and performance comparisons for first mode dynamics of periodic structures

    NASA Astrophysics Data System (ADS)

    Hobeck, Jared D.; Inman, Daniel J.

    2017-05-01

    Periodic structures are growing in popularity especially in the energy harvesting and metastructures communities. Common types of these unique structures are referred to in the literature as zigzag, orthogonal spiral, fan-folded, and longitudinal zigzag structures. Many of these studies on periodic structures have two competing goals in common: (a) minimizing natural frequency, and (b) minimizing mass or volume. These goals suggest that no single design is best for all applications; therefore, there is a need for design optimization and comparison tools which first require efficient easy-to-implement models. All available structural dynamics models for these types of structures do provide exact analytical solutions; however, they are complex requiring tedious implementation and providing more information than necessary for practical applications making them computationally inefficient. This paper presents experimentally validated recursive models that are able to very accurately and efficiently predict the dynamics of the four most common types of periodic structures. The proposed modeling technique employs a combination of static deflection formulae and Rayleigh’s Quotient to estimate the first mode shape and natural frequency of periodic structures having any number of beams. Also included in this paper are the results of an extensive experimental validation study which show excellent agreement between model prediction and measurement. Lastly, the proposed models are used to evaluate the performance of each type of structure. Results of this performance evaluation reveal key advantages and disadvantages associated with each type of structure.

  16. Establishing a model to assess the effects of school support and self-care behaviors on life satisfaction in adolescents with type 1 diabetes in Taiwan.

    PubMed

    Tang, Shan-Mei; Chen, Shu-Wen; Wang, Ruey-Hsia

    2013-12-01

    Life satisfaction is associated with positive development in adolescents. Understanding a path model of life satisfaction can help healthcare providers design interventions to improve positive development in adolescents with type 1 diabetes. The aim of this study was to construct a model that assesses the effects of school support and self-care behaviors on life satisfaction in adolescents with type 1 diabetes in Taiwan. This study used a cross-sectional design. One hundred and thirty-nine adolescents aged 10-18 years and diagnosed with type 1 diabetes were recruited. Participants completed questionnaires that assessed perceived school support, self-care behaviors, and life satisfaction. The hypothesized model was tested using structural equation modeling. School support significantly and directly affected self-care behaviors (β = .46, p = .022) and life satisfaction (β = .39, p = .034), self-care behaviors directly affected life satisfaction (β = .56, p = .048), and school support indirectly affected life satisfaction (β = .26, p = .015) through the mediation of self-care behaviors. The fix indices were as follows: χ2 = 8.141, df = 11, p = .701, goodness of fit index = .984, normed fit index = .949, and root mean square residual = .001. The model explained 66.1% of total life satisfaction variance. School support and self-care behaviors positively influence the life satisfaction of adolescents with type 1 diabetes. Improvements in school support and self-care behaviors are necessary to improve life satisfaction in this vulnerable group.

  17. Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields

    NASA Astrophysics Data System (ADS)

    Fiorenza, Domenico; Sati, Hisham; Schreiber, Urs

    2015-12-01

    We formalize higher-dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type σ-model branes (open brane ending on background brane) are encoded precisely in (super-)L∞-extension theory and how the resulting "extended (super-)space-times" formalize spacetimes containing σ-model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super-p-brane spectrum of superstring/M-theory is realized this way, including the pure σ-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional (11D) spacetime with an M2-brane condensate turns out to be the "M-theory super-Lie algebra". We also observe that in this formulation there is a simple formal proof of the fact that type IIA spacetime with a D0-brane condensate is the 11D sugra/M-theory spacetime, and of (prequantum) S-duality for type IIB string theory. Finally we give the non-perturbative description of all this by higher WZW-type σ-models on higher super-orbispaces with higher WZW terms in stacky differential cohomology.

  18. Use of cccupancy models to evaluate expert knowledge-based species-habitat relationships

    USGS Publications Warehouse

    Iglecia, Monica N.; Collazo, Jaime A.; McKerrow, Alexa

    2012-01-01

    Expert knowledge-based species-habitat relationships are used extensively to guide conservation planning, particularly when data are scarce. Purported relationships describe the initial state of knowledge, but are rarely tested. We assessed support in the data for suitability rankings of vegetation types based on expert knowledge for three terrestrial avian species in the South Atlantic Coastal Plain of the United States. Experts used published studies, natural history, survey data, and field experience to rank vegetation types as optimal, suitable, and marginal. We used single-season occupancy models, coupled with land cover and Breeding Bird Survey data, to examine the hypothesis that patterns of occupancy conformed to species-habitat suitability rankings purported by experts. Purported habitat suitability was validated for two of three species. As predicted for the Eastern Wood-Pewee (Contopus virens) and Brown-headed Nuthatch (Sitta pusilla), occupancy was strongly influenced by vegetation types classified as “optimal habitat” by the species suitability rankings for nuthatches and wood-pewees. Contrary to predictions, Red-headed Woodpecker (Melanerpes erythrocephalus) models that included vegetation types as covariates received similar support by the data as models without vegetation types. For all three species, occupancy was also related to sampling latitude. Our results suggest that covariates representing other habitat requirements might be necessary to model occurrence of generalist species like the woodpecker. The modeling approach described herein provides a means to test expert knowledge-based species-habitat relationships, and hence, help guide conservation planning.

  19. Development and application of rail defect fracture models to assess remedial actions

    DOT National Transportation Integrated Search

    1993-08-01

    The fracture mechanics models were refined for two types of rail defects - the bolt hole crack and the vertical split head. Beam-type finite element analysis was conducted to determine the effects of joint bar looseness, rail height mismatch and trai...

  20. The regulatory system for diabetes mellitus: Modeling rates of glucose infusions and insulin injections

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Tang, Sanyi; Cheke, Robert A.

    2016-08-01

    Novel mathematical models with open and closed-loop control for type 1 or type 2 diabetes mellitus were developed to improve understanding of the glucose-insulin regulatory system. A hybrid impulsive glucose-insulin model with different frequencies of glucose infusions and insulin injections was analyzed, and the existence and uniqueness of the positive periodic solution for type 1 diabetes, which is globally asymptotically stable, was studied analytically. Moreover, permanence of the system for type 2 diabetes was demonstrated which showed that the glucose concentration level is uniformly bounded above and below. To investigate how to prevent hyperinsulinemia and hyperglycemia being caused by this system, we developed a model involving periodic intakes of glucose with insulin injections applied only when the blood glucose level reached a given critical glucose threshold. In addition, our numerical analysis revealed that the period, the frequency and the dose of glucose infusions and insulin injections are crucial for insulin therapies, and the results provide clinical strategies for insulin-administration practices.

  1. Modeling of the Thermoelectric Properties of p-Type IrSb(sub 3)

    NASA Technical Reports Server (NTRS)

    Fleurial, J.

    1994-01-01

    IrSb(sub 3) is a compound of the skutterudite family of materials now being investigated at JPL. A combination of experimental and theoretical approaches has been recently applied at JPL to evaluate the potential of several thermoelectric materials such as n-type and p-type Si(sub 80) Ge(sub 20) alloys, n-type and p-type Bi(sub 2) Te(sub 3)-based alloys and p-type Ru(sub 2) Ge(sub 3) compound. The use of a comprehensive model for the thermal and electrical transport properties of a given material over its full temperature range of usefulness is a powerful tool for guiding experimental optimization of the composition, temperature and doping level as well as for predicting the maximum ZT value likely to be achieved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buitrago, C. Francisco; Bolintineanu, Dan; Seitz, Michelle E.

    Designing acid- and ion-containing polymers for optimal proton, ion, or water transport would benefit profoundly from predictive models or theories that relate polymer structures with ionomer morphologies. Recently, atomistic molecular dynamics (MD) simulations were performed to study the morphologies of precise poly(ethylene-co-acrylic acid) copolymer and ionomer melts. Here, we present the first direct comparisons between scattering profiles, I(q), calculated from these atomistic MD simulations and experimental X-ray data for 11 materials. This set of precise polymers has spacers of exactly 9, 15, or 21 carbons between acid groups and has been partially neutralized with Li, Na, Cs, or Zn. Inmore » these polymers, the simulations at 120 °C reveal ionic aggregates with a range of morphologies, from compact, isolated aggregates (type 1) to branched, stringy aggregates (type 2) to branched, stringy aggregates that percolate through the simulation box (type 3). Excellent agreement is found between the simulated and experimental scattering peak positions across all polymer types and aggregate morphologies. The shape of the amorphous halo in the simulated I(q) profile is in excellent agreement with experimental I(q). We found that the modified hard-sphere scattering model fits both the simulation and experimental I(q) data for type 1 aggregate morphologies, and the aggregate sizes and separations are in agreement. Given the stringy structure in types 2 and 3, we develop a scattering model based on cylindrical aggregates. Both the spherical and cylindrical scattering models fit I(q) data from the polymers with type 2 and 3 aggregates equally well, and the extracted aggregate radii and inter- and intra-aggregate spacings are in agreement between simulation and experiment. Furthermore, these dimensions are consistent with real-space analyses of the atomistic MD simulations. By combining simulations and experiments, the ionomer scattering peak can be associated with the average distance between branches of type 2 or 3 aggregates. Furthermore, this direct comparison of X-ray scattering data to the atomistic MD simulations is a substantive step toward providing a comprehensive, predictive model for ionomer morphology, gives substantial support for this atomistic MD model, and provides new credibility to the presence of stringy, branched, and percolated ionic aggregates in precise ionomer melts.« less

  3. Effect of dental arch convexity and type of archwire on frictional forces.

    PubMed

    Fourie, Zacharias; Ozcan, Mutlu; Sandham, Andrew

    2009-07-01

    Friction measurements in orthodontics are often derived from models by using brackets placed on flat models with various straight wires. Dental arches are convex in some areas. The objectives of this study were to compare the frictional forces generated in conventional flat and convex dental arch setups, and to evaluate the effect of different archwires on friction in both dental arch models. Two stainless steel models were designed and manufactured simulating flat and convex maxillary right buccal dental arches. Five stainless steel brackets from the maxillary incisor to the second premolar (slot size, 0.22 in, Victory, 3M Unitek, Monrovia, Calif) and a first molar tube were aligned and clamped on the metal model at equal distances of 6 mm. Four kinds of orthodontic wires were tested: (1) A. J. Wilcock Australian wire (0.016 in, G&H Wire, Hannover, Germany); and (2) 0.016 x 0.022 in, (3) 0.018 x 0.022 in, and (4) 0.019 x 0.025 in (3M Unitek GmbH, Seefeld, Germany). Gray elastomeric modules (Power O 110, Ormco, Glendora, Calif) were used for ligation. Friction tests were performed in the wet state with artificial saliva lubrication and by pulling 5 mm of the whole length of the archwire. Six measurements were made from each bracket-wire combination, and each test was performed with new combinations of materials for both arch setups (n = 48, 6 per group) in a universal testing machine (crosshead speed: 20 mm/min). Significant effects of arch model (P = 0.0000) and wire types (P = 0.0000) were found. The interaction term between the tested factors was not significant (P = 0.1581) (2-way ANOVA and Tukey test). Convex models resulted in significantly higher frictional forces (1015-1653 g) than flat models (680-1270 g) (P <0.05). In the flat model, significantly lower frictional forces were obtained with wire types 1 (679 g) and 3 (1010 g) than with types 2 (1146 g) and 4 (1270 g) (P <0.05). In the convex model, the lowest friction was obtained with wire types 1 (1015 g) and 3 (1142 g) (P >0.05). Type 1 wire tended to create the least overall friction in both flat and convex dental arch simulation models.

  4. Comparsion analysis of data mining models applied to clinical research in traditional Chinese medicine.

    PubMed

    Zhao, Yufeng; Xie, Qi; He, Liyun; Liu, Baoyan; Li, Kun; Zhang, Xiang; Bai, Wenjing; Luo, Lin; Jing, Xianghong; Huo, Ruili

    2014-10-01

    To help researchers selecting appropriate data mining models to provide better evidence for the clinical practice of Traditional Chinese Medicine (TCM) diagnosis and therapy. Clinical issues based on data mining models were comprehensively summarized from four significant elements of the clinical studies: symptoms, symptom patterns, herbs, and efficacy. Existing problems were further generalized to determine the relevant factors of the performance of data mining models, e.g. data type, samples, parameters, variable labels. Combining these relevant factors, the TCM clinical data features were compared with regards to statistical characters and informatics properties. Data models were compared simultaneously from the view of applied conditions and suitable scopes. The main application problems were the inconsistent data type and the small samples for the used data mining models, which caused the inappropriate results, even the mistake results. These features, i.e. advantages, disadvantages, satisfied data types, tasks of data mining, and the TCM issues, were summarized and compared. By aiming at the special features of different data mining models, the clinical doctors could select the suitable data mining models to resolve the TCM problem.

  5. From bedside to bench and back again: research issues in animal models of human disease.

    PubMed

    Tkacs, Nancy C; Thompson, Hilaire J

    2006-07-01

    To improve outcomes for patients with many serious clinical problems, multifactorial research approaches by nurse scientists, including the use of animal models, are necessary. Animal models serve as analogies for clinical problems seen in humans and must meet certain criteria, including validity and reliability, to be useful in moving research efforts forward. This article describes research considerations in the development of rodent models. As the standard of diabetes care evolves to emphasize intensive insulin therapy, rates of severe hypoglycemia are increasing among patients with type 1 and type 2 diabetes mellitus. A consequence of this change in clinical practice is an increase in rates of two hypoglycemia-related diabetes complications: hypoglycemia-associated autonomic failure (HAAF) and resulting hypoglycemia unawareness. Work on an animal model of HAAF is in an early developmental stage, with several labs reporting different approaches to model this complication of type 1 diabetes mellitus. This emerging model serves as an example illustrating how evaluation of validity and reliability is critically important at each stage of developing and testing animal models to support inquiry into human disease.

  6. Flow visualization around a rotating body in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Hiraki, K.; Zaitsu, D.; Yanaga, Y.; Kleine, H.

    2017-02-01

    The rotational behavior of capsule-shaped models is investigated in the transonic wind tunnel of JAXA. A special support is developed to allow the model to rotate around the pitch, yaw and roll axes. This 3-DOF free rotational mounting apparatus achieves the least frictional torque from the support and the instruments. Two types of capsule models are prepared, one is drag type (SPH model) and the other is lift type (HTV-R model). The developed mounting apparatus is used in the wind tunnel tests with these capsule models. In a flow of Mach 0.9, the SPH model exhibits oscillations in pitch and yaw, and it rolls half a turn during the test. Similarly, the HTV-R model exhibits pitch and yaw oscillations in a flow of Mach 0.5. Moreover, it rolls multiple times during the test. In order to investigate the flow field around the capsule, the combined technique of color schlieren and surface tufts is applied. This visualization clearly shows the flow reattachment on the back surface of a capsule, which is suspected to induce the rapid rolling motion.

  7. An enhanced beam model for constrained layer damping and a parameter study of damping contribution

    NASA Astrophysics Data System (ADS)

    Xie, Zhengchao; Shepard, W. Steve, Jr.

    2009-01-01

    An enhanced analytical model is presented based on an extension of previous models for constrained layer damping (CLD) in beam-like structures. Most existing CLD models are based on the assumption that shear deformation in the core layer is the only source of damping in the structure. However, previous research has shown that other types of deformation in the core layer, such as deformations from longitudinal extension and transverse compression, can also be important. In the enhanced analytical model developed here, shear, extension, and compression deformations are all included. This model can be used to predict the natural frequencies and modal loss factors. The numerical study shows that compared to other models, this enhanced model is accurate in predicting the dynamic characteristics. As a result, the model can be accepted as a general computation model. With all three types of damping included and the formulation used here, it is possible to study the impact of the structure's geometry and boundary conditions on the relative contribution of each type of damping. To that end, the relative contributions in the frequency domain for a few sample cases are presented.

  8. Building dynamical models from data and prior knowledge: the case of the first period-doubling bifurcation.

    PubMed

    Aguirre, Luis Antonio; Furtado, Edgar Campos

    2007-10-01

    This paper reviews some aspects of nonlinear model building from data with (gray box) and without (black box) prior knowledge. The model class is very important because it determines two aspects of the final model, namely (i) the type of nonlinearity that can be accurately approximated and (ii) the type of prior knowledge that can be taken into account. Such features are usually in conflict when it comes to choosing the model class. The problem of model structure selection is also reviewed. It is argued that such a problem is philosophically different depending on the model class and it is suggested that the choice of model class should be performed based on the type of a priori available. A procedure is proposed to build polynomial models from data on a Poincaré section and prior knowledge about the first period-doubling bifurcation, for which the normal form is also polynomial. The final models approximate dynamical data in a least-squares sense and, by design, present the first period-doubling bifurcation at a specified value of parameters. The procedure is illustrated by means of simulated examples.

  9. A Dynamic Bayesian Network model for long-term simulation of clinical complications in type 1 diabetes.

    PubMed

    Marini, Simone; Trifoglio, Emanuele; Barbarini, Nicola; Sambo, Francesco; Di Camillo, Barbara; Malovini, Alberto; Manfrini, Marco; Cobelli, Claudio; Bellazzi, Riccardo

    2015-10-01

    The increasing prevalence of diabetes and its related complications is raising the need for effective methods to predict patient evolution and for stratifying cohorts in terms of risk of developing diabetes-related complications. In this paper, we present a novel approach to the simulation of a type 1 diabetes population, based on Dynamic Bayesian Networks, which combines literature knowledge with data mining of a rich longitudinal cohort of type 1 diabetes patients, the DCCT/EDIC study. In particular, in our approach we simulate the patient health state and complications through discretized variables. Two types of models are presented, one entirely learned from the data and the other partially driven by literature derived knowledge. The whole cohort is simulated for fifteen years, and the simulation error (i.e. for each variable, the percentage of patients predicted in the wrong state) is calculated every year on independent test data. For each variable, the population predicted in the wrong state is below 10% on both models over time. Furthermore, the distributions of real vs. simulated patients greatly overlap. Thus, the proposed models are viable tools to support decision making in type 1 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Recapitulation of Ayurveda constitution types by machine learning of phenotypic traits.

    PubMed

    Tiwari, Pradeep; Kutum, Rintu; Sethi, Tavpritesh; Shrivastava, Ankita; Girase, Bhushan; Aggarwal, Shilpi; Patil, Rutuja; Agarwal, Dhiraj; Gautam, Pramod; Agrawal, Anurag; Dash, Debasis; Ghosh, Saurabh; Juvekar, Sanjay; Mukerji, Mitali; Prasher, Bhavana

    2017-01-01

    In Ayurveda system of medicine individuals are classified into seven constitution types, "Prakriti", for assessing disease susceptibility and drug responsiveness. Prakriti evaluation involves clinical examination including questions about physiological and behavioural traits. A need was felt to develop models for accurately predicting Prakriti classes that have been shown to exhibit molecular differences. The present study was carried out on data of phenotypic attributes in 147 healthy individuals of three extreme Prakriti types, from a genetically homogeneous population of Western India. Unsupervised and supervised machine learning approaches were used to infer inherent structure of the data, and for feature selection and building classification models for Prakriti respectively. These models were validated in a North Indian population. Unsupervised clustering led to emergence of three natural clusters corresponding to three extreme Prakriti classes. The supervised modelling approaches could classify individuals, with distinct Prakriti types, in the training and validation sets. This study is the first to demonstrate that Prakriti types are distinct verifiable clusters within a multidimensional space of multiple interrelated phenotypic traits. It also provides a computational framework for predicting Prakriti classes from phenotypic attributes. This approach may be useful in precision medicine for stratification of endophenotypes in healthy and diseased populations.

  11. Assessment of Aerosol Distributions from GEOS-5 Using the CALIPSO Feature Mask

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth

    2010-01-01

    A-train sensors such as MODIS, MISR, and CALIPSO are used to determine aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important for climate assessment, air quality applications, and for comparisons and analysis with aerosol transport models. The Aerosols-Clouds-Ecosystems (ACE) satellite mission proposed in the NRC Decadal Survey describes a next generation aerosol and cloud suite similar to the current A-train, including a lidar. The future ACE lidar must be able to determine aerosol type effectively in conjunction with modeling activities to achieve ACE objectives. Here we examine the current capabilities of CALIPSO and the NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-5), to place future ACE needs in context. The CALIPSO level 2 feature mask includes vertical profiles of aerosol layers classified by type. GEOS-5 provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures and extinction profiles along the CALIPSO orbit track. In previous work, initial comparisons between GEOS-5 derived aerosol mixtures and CALIPSO derived aerosol types were presented for July 2007. In general, the results showed that model and lidar derived aerosol types did not agree well in the boundary layer. Agreement was poor over Europe, where CALIPSO indicated the presence of dust and pollution mixtures yet GEOS-5 was dominated by pollution with little dust. Over the ocean in the tropics, the model appeared to contain less sea salt than detected by CALIPSO, yet at high latitudes the situation was reserved. Agreement between CALIPSO and GEOS-5, aerosol types improved above the boundary layer, primarily in dust and smoke dominated regions. At higher altitudes (> 5 km), the model contained aerosol layers not detected by CALIPSO. Here we present new results for a full year study using the new Version 3 CALIPSO data and most recent GEOS-5 model results.

  12. Effectiveness of a PLISSIT model intervention in patients with type 2 diabetes mellitus in primary care: design of a cluster-randomised controlled trial.

    PubMed

    Rutte, Anne; van Oppen, Patricia; Nijpels, Giel; Snoek, Frank J; Enzlin, Paul; Leusink, Peter; Elders, Petra J M

    2015-06-02

    Sexual dysfunction is prevalent in patients with type 2 diabetes mellitus, but remains one of the most frequently neglected complications in diabetes care. Both patients and care providers appear to have difficulty with discussing sexual problems in diabetes care. A sexual counselling model for care providers, such as the PLISSIT model, might be a useful tool to improve the discussion of sexual issues in patients with type 2 diabetes mellitus. PLISSIT stands for Permission, Limited Information, Specific Suggestions, and Intensive Therapy. Even though the use of the PLISSIT model has often been recommended in diabetes care, no evidence with regards to its effectiveness in patients with type 2 diabetes mellitus exists. This study describes the design of a cluster-randomised controlled trial evaluating the effectiveness of a PLISSIT-model intervention in men and women with type 2 diabetes mellitus in primary care. Patients with type 2 diabetes mellitus, aged 40-75 years, who indicate to be dissatisfied about their sexual functioning and that they would like to talk about their sexual problem(s) with their general practitioner are recruited. All participants receive an information leaflet from the practice nurse. In the intervention group, each participant will also receive sexual counselling based on the PLISSIT model from their general practitioner. In the control group, usual care will be provided to those participants requesting an appointment with their general practitioner when the information leaflet was not deemed sufficient. Primary outcomes include sexual functioning, satisfaction about sexual function, and quality of life. Secondary outcomes are depressive symptoms, sexual distress, emotional well-being, and treatment satisfaction. Outcomes will be measured by means of self-report questionnaires at baseline, and after 3 and 12 months post-baseline. Treatment satisfaction will be assessed in telephone interviews. This paper describes the design of a cluster-randomised controlled trial that will investigate the effectiveness of a PLISSIT-model intervention in patients with type 2 diabetes mellitus in primary care. Our study will add important and currently missing insight into the effectiveness of PLISSIT on important patient-reported outcomes of men and women with type 2 diabetes mellitus. Dutch Trial Registry NTR4807 .

  13. Classifying Vessels Operating in the South China Sea by Origin with the Automatic Identification System

    DTIC Science & Technology

    2018-03-01

    operating vessel’s origin, by country and geographical region. Two types of models are built. The first model captures the naturally dependent nature of AIS... dependency between AIS signals in order to characterize maritime patterns of behavior by country and region. With relative accuracy, both types of...of models are built. The first model captures the naturally dependent nature of AIS signals and serves as a proof of concept for how well a global

  14. Optimization of the Magnetic Field Homogeneity Area for Solenoid Type Magnets

    NASA Astrophysics Data System (ADS)

    Perepelkin, Eugene; Polyakova, Rima; Tarelkin, Aleksandr; Kovalenko, Alexander; Sysoev, Pavel; Sadovnikova, Marianne; Yudin, Ivan

    2018-02-01

    Homogeneous magnetic fields are important requisites in modern physics research. In this paper we discuss the problem of magnetic field homogeneity area maximization for solenoid magnets. We discuss A-model and B-model, which are basic types of solenoid magnets used to provide a homogeneous field, and methods for their optimization. We propose C-model which can be used for the NICA project. We have also carried out a cross-check of the C-model with the parameters stated for the CLEO II detector.

  15. A Logical Basis In The Layered Computer Vision Systems Model

    NASA Astrophysics Data System (ADS)

    Tejwani, Y. J.

    1986-03-01

    In this paper a four layer computer vision system model is described. The model uses a finite memory scratch pad. In this model planar objects are defined as predicates. Predicates are relations on a k-tuple. The k-tuple consists of primitive points and relationship between primitive points. The relationship between points can be of the direct type or the indirect type. Entities are goals which are satisfied by a set of clauses. The grammar used to construct these clauses is examined.

  16. Development of a Spot-Application Tool for Rapid, High-Resolution Simulation of Wave-Driven Nearshore Hydrodynamics

    DTIC Science & Technology

    2013-09-30

    flow models, such as Delft3D, with our developed Boussinesq -type model. The vision of this project is to develop an operational tool for the...situ measurements or large-scale wave models. This information will be used to drive the offshore wave boundary condition. • Execute the Boussinesq ...model to match with the Boussinesq -type theory would be one which can simulate sheared and stratified currents due to large-scale (non-wave) forcings

  17. Solution of non-continuum flows using BGK-type model with enforced relaxation of moments

    NASA Astrophysics Data System (ADS)

    Alekseenko, Alexander; Gimelshein, Sergey; Nguyen, Truong; Vedula, Prakash

    2016-11-01

    A BGK-type model with velocity dependent collision frequency and enforced relaxation rates for selected moments is applied to simulation of one- and two-dimensional super sonic flows. Relaxation rates of the moments are estimated by evaluating the full Boltzmann collision integral several times during the simulation. The solutions show improvements in velocity and temperature profiles as compared to the classical ES-BGK model. However, enforcement of relaxation rates for high order moments increases stiffness of the model.

  18. On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models

    USGS Publications Warehouse

    Alley, William M.

    1984-01-01

    Several two- to six-parameter regional water balance models are examined by using 50-year records of monthly streamflow at 10 sites in New Jersey. These models include variants of the Thornthwaite-Mather model, the Palmer model, and the more recent Thomas abcd model. Prediction errors are relatively similar among the models. However, simulated values of state variables such as soil moisture storage differ substantially among the models, and fitted parameter values for different models sometimes indicated an entirely different type of basin response to precipitation. Some problems in parameter identification are noted, including difficulties in identifying an appropriate time lag factor for the Thornthwaite-Mather-type model for basins with little groundwater storage, very high correlations between upper and lower storages in the Palmer-type model, and large sensitivity of parameter a of the abcd model to bias in estimates of precipitation and potential evapotranspiration. Modifications to the threshold concept of the Thornthwaite-Mather model were statistically valid for the six stations in northern New Jersey. The abcd model resulted in a simulated seasonal cycle of groundwater levels similar to fluctuations observed in nearby wells but with greater persistence. These results suggest that extreme caution should be used in attaching physical significance to model parameters and in using the state variables of the models in indices of drought and basin productivity.

  19. Epidemiologic Approaches to Evaluating the Potential for Human Papillomavirus Type Replacement Postvaccination

    PubMed Central

    Tota, Joseph E.; Ramanakumar, Agnihotram V.; Jiang, Mengzhu; Dillner, Joakim; Walter, Stephen D.; Kaufman, Jay S.; Coutlée, François; Villa, Luisa L.; Franco, Eduardo L.

    2013-01-01

    Currently, 2 vaccines exist that prevent infection by the genotypes of human papillomavirus (HPV) responsible for approximately 70% of cervical cancer cases worldwide. Although vaccination is expected to reduce the prevalence of these HPV types, there is concern about the effect this could have on the distribution of other oncogenic types. According to basic ecological principles, if competition exists between ≥2 different HPV types for niche occupation during natural infection, elimination of 1 type may lead to an increase in other type(s). Here, we discuss this issue of “type replacement” and present different epidemiologic approaches for evaluation of HPV type competition. Briefly, these approaches involve: 1) calculation of the expected frequency of coinfection under independence between HPV types for comparison with observed frequency; 2) construction of hierarchical logistic regression models for each vaccine-targeted type; and 3) construction of Kaplan-Meier curves and Cox models to evaluate sequential acquisition and clearance of HPV types according to baseline HPV status. We also discuss a related issue concerning diagnostic artifacts arising when multiple HPV types are present in specific samples (due to the inability of broad-spectrum assays to detect certain types present in lower concentrations). This may result in an apparent increase in previously undetected types postvaccination. PMID:23660798

  20. Filter Strategies for Mars Science Laboratory Orbit Determination

    NASA Technical Reports Server (NTRS)

    Thompson, Paul F.; Gustafson, Eric D.; Kruizinga, Gerhard L.; Martin-Mur, Tomas J.

    2013-01-01

    The Mars Science Laboratory (MSL) spacecraft had ambitious navigation delivery and knowledge accuracy requirements for landing inside Gale Crater. Confidence in the orbit determination (OD) solutions was increased by investigating numerous filter strategies for solving the orbit determination problem. We will discuss the strategy for the different types of variations: for example, data types, data weights, solar pressure model covariance, and estimating versus considering model parameters. This process generated a set of plausible OD solutions that were compared to the baseline OD strategy. Even implausible or unrealistic results were helpful in isolating sensitivities in the OD solutions to certain model parameterizations or data types.

  1. The microscopic structure of an exactly solvable model binary solution that exhibits two closed loops in the phase diagram.

    PubMed

    Lungu, Radu P; Huckaby, Dale A

    2008-07-21

    An exactly solvable lattice model describing a binary solution is considered where rodlike molecules of types AA and BB cover the links of a honeycomb lattice, the neighboring molecular ends having three-body and orientation-dependent bonding interactions. At phase coexistence of AA-rich and BB-rich phases, the average fraction of each type of triangle of neighboring molecular ends is calculated exactly. The fractions of the different types of triangles are then used to deduce the local microscopic structure of the coexisting phases for a case of the model that contains two closed loops in the phase diagram.

  2. Evaluation of optimal control type models for the human gunner in an Anti-Aircraft Artillery (AAA) system

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Kessler, K. M.

    1975-01-01

    The selection of the structure of optimal control type models for the human gunner in an anti aircraft artillery system is considered. Several structures within the LQG framework may be formulated. Two basic types are considered: (1) kth derivative controllers; and (2) proportional integral derivative (P-I-D) controllers. It is shown that a suitable criterion for model structure determination can be based on the ensemble statistics of the tracking error. In the case when the ensemble tracking steady state error is zero, it is suggested that a P-I-D controller formulation be used in preference to the kth derivative controller.

  3. Appropriate evidence sources for populating decision analytic models within health technology assessment (HTA): a systematic review of HTA manuals and health economic guidelines.

    PubMed

    Zechmeister-Koss, Ingrid; Schnell-Inderst, Petra; Zauner, Günther

    2014-04-01

    An increasing number of evidence sources are relevant for populating decision analytic models. What is needed is detailed methodological advice on which type of data is to be used for what type of model parameter. We aim to identify standards in health technology assessment manuals and economic (modeling) guidelines on appropriate evidence sources and on the role different types of data play within a model. Documents were identified via a call among members of the International Network of Agencies for Health Technology Assessment and by hand search. We included documents from Europe, the United States, Canada, Australia, and New Zealand as well as transnational guidelines written in English or German. We systematically summarized in a narrative manner information on appropriate evidence sources for model parameters, their advantages and limitations, data identification methods, and data quality issues. A large variety of evidence sources for populating models are mentioned in the 28 documents included. They comprise research- and non-research-based sources. Valid and less appropriate sources are identified for informing different types of model parameters, such as clinical effect size, natural history of disease, resource use, unit costs, and health state utility values. Guidelines do not provide structured and detailed advice on this issue. The article does not include information from guidelines in languages other than English or German, and the information is not tailored to specific modeling techniques. The usability of guidelines and manuals for modeling could be improved by addressing the issue of evidence sources in a more structured and comprehensive format.

  4. Legume Diversity Patterns in West Central Africa: Influence of Species Biology on Distribution Models

    PubMed Central

    de la Estrella, Manuel; Mateo, Rubén G.; Wieringa, Jan J.; Mackinder, Barbara; Muñoz, Jesús

    2012-01-01

    Objectives Species Distribution Models (SDMs) are used to produce predictions of potential Leguminosae diversity in West Central Africa. Those predictions are evaluated subsequently using expert opinion. The established methodology of combining all SDMs is refined to assess species diversity within five defined vegetation types. Potential species diversity is thus predicted for each vegetation type respectively. The primary aim of the new methodology is to define, in more detail, areas of species richness for conservation planning. Methodology Using Maxent, SDMs based on a suite of 14 environmental predictors were generated for 185 West Central African Leguminosae species, each categorised according to one of five vegetation types: Afromontane, coastal, non-flooded forest, open formations, or riverine forest. The relative contribution of each environmental variable was compared between different vegetation types using a nonparametric Kruskal-Wallis analysis followed by a post-hoc Kruskal-Wallis Paired Comparison contrast. Legume species diversity patterns were explored initially using the typical method of stacking all SDMs. Subsequently, five different ensemble models were generated by partitioning SDMs according to vegetation category. Ecological modelers worked with legume specialists to improve data integrity and integrate expert opinion in the interpretation of individual species models and potential species richness predictions for different vegetation types. Results/Conclusions Of the 14 environmental predictors used, five showed no difference in their relative contribution to the different vegetation models. Of the nine discriminating variables, the majority were related to temperature variation. The set of variables that played a major role in the Afromontane species diversity model differed significantly from the sets of variables of greatest relative important in other vegetation categories. The traditional approach of stacking all SDMs indicated overall centers of diversity in the region but the maps indicating potential species richness by vegetation type offered more detailed information on which conservation efforts can be focused. PMID:22911808

  5. Phase resetting in a model of cardiac Purkinje fiber.

    PubMed Central

    Guevara, M R; Shrier, A

    1987-01-01

    The phase-resetting response of a model of spontaneously active cardiac Purkinje fiber is investigated. The effect on the interbeat interval of injecting a 20-ms duration depolarizing current pulse is studied as a function of the phase in the cycle at which the pulse is delivered. At low current amplitudes, a triphasic response is recorded as the pulse is advanced through the cycle. At intermediate current amplitudes, the response becomes quinquephasic, due to the presence of supernormal excitability. At high current amplitudes, a triphasic response is seen once more. At low stimulus amplitudes, type 1 phase resetting occurs; at medium amplitudes, a type could not be ascribed to the phase resetting because of the presence of effectively all-or-none depolarization; at high amplitudes, type 0 phase resetting occurs. The modeling results closely correspond with published experimental data; in particular type 1 and type 0 phase resetting are seen. Implications for the induction of ventricular arrhythmias are considered. PMID:3663827

  6. Equilibrium control of nonlinear verticum-type systems, applied to integrated pest control.

    PubMed

    Molnár, S; Gámez, M; López, I; Cabello, T

    2013-08-01

    Linear verticum-type control and observation systems have been introduced for modelling certain industrial systems, consisting of subsystems, vertically connected by certain state variables. Recently the concept of verticum-type observation systems and the corresponding observability condition have been extended by the authors to the nonlinear case. In the present paper the general concept of a nonlinear verticum-type control system is introduced, and a sufficient condition for local controllability to equilibrium is obtained. In addition to a usual linearization, the basic idea is a decomposition of the control of the whole system into the control of the subsystems. Starting from the integrated pest control model of Rafikov and Limeira (2012) and Rafikov et al. (2012), a nonlinear verticum-type model has been set up an equilibrium control is obtained. Furthermore, a corresponding bioeconomical problem is solved minimizing the total cost of integrated pest control (combining chemical control with a biological one). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Interstellar matter in early-type galaxies. II - The relationship between gaseous components and galaxy types

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; Hogg, David E.; Roberts, Morton S.

    1992-01-01

    Interstellar components of early-type galaxies are established by galactic type and luminosity in order to search for relationships between the different interstellar components and to test the predictions of theoretical models. Some of the data include observations of neutral hydrogen, carbon monoxide, and radio continuum emission. An alternative distance model which yields LX varies as LB sup 2.45, a relation which is in conflict with simple cooling flow models, is discussed. The dispersion of the X-ray luminosity about this regression line is unlikely to result from stripping. The striking lack of clear correlations between hot and cold interstellar components, taken together with their morphologies, suggests that the cold gas is a disk phenomenon while the hot gas is a bulge phenomenon, with little interaction between the two. The progression of galaxy type from E to Sa is not only a sequence of decreasing stellar bulge-to-disk ratio, but also of hot-to-cold-gas ratio.

  8. Association of protein tyrosine phosphatase, non-receptor type 22 +1858C→T polymorphism and susceptibility to vitiligo: Systematic review and meta-analysis.

    PubMed

    Agarwal, Silky; Changotra, Harish

    2017-01-01

    Protein tyrosine phosphatase, non-receptor type 22 gene, which translates to lymphoid tyrosine phosphatase, is considered to be a susceptibility gene marker associated with several autoimmune diseases. Several studies have demonstrated the association of protein tyrosine phosphatase, non-receptor type 22 +1858C→T polymorphism with vitiligo. However, these studies showed conflicting results. Meta-analysis of the same was conducted earlier that included fewer number of publications in their study. We performed a meta-analysis of a total of seven studies consisting of 2094 cases and 3613 controls to evaluate the possible association of protein tyrosine phosphatase, non-receptor type 22 +1858C>T polymorphism with vitiligo susceptibility. We conducted a literature search in PubMed, Google Scholar and Dogpile for all published paper on protein tyrosine phosphatase, non-receptor type 22 +1858C→T polymorphism and vitiligo risk till June 2016. Data analysis was performed by RevMan 5.3 and comprehensive meta-analysis v3.0 software. Meta-analysis showed an overall significant association of protein tyrosine phosphatase, non- receptor type 22 +1858C→T polymorphism with vitiligo in all models (allelic model [T vs. C]: odds ratio = 1.50, 95% confidence interval [1.32-1.71], P< 0.001; dominant model [TT + CT vs. CC]: odds ratio = 1.61, 95% confidence interval [1.16-2.24], P = 0.004; recessive model [TT vs. CT + CC]: odds ratio = 4.82, 95% confidence interval [1.11-20.92], P = 0.04; homozygous model [TT vs. CC]: odds ratio = 5.34, 95% confidence interval [1.23-23.24], P = 0.03; co-dominant model [CT vs. CC]: odds ratio = 1.52, 95% confidence interval [1.09-2.13], P = 0.01). No publication bias was detected in the funnel plot study. Limited ethnic-based studies, unable to satisfy data by gender or vitiligo-type are some limitations of the present meta-analysis. Stratifying data by ethnicity showed an association of protein tyrosine phosphatase, non-receptor type 22 +1858C→T with vitiligo in European population (odds ratio = 1.53, 95% confidence interval [1.34-1.75], P< 0.001) but not in Asian population (odds ratio = 0.59, 95% confidence interval [0.26-1.32], P = 0.2). In conclusion, protein tyrosine phosphatase, non-receptor type 22 +1858 T allele predisposes European individuals to vitiligo.

  9. Comparison of software tools for kinetic evaluation of chemical degradation data.

    PubMed

    Ranke, Johannes; Wöltjen, Janina; Meinecke, Stefan

    2018-01-01

    For evaluating the fate of xenobiotics in the environment, a variety of degradation or environmental metabolism experiments are routinely conducted. The data generated in such experiments are evaluated by optimizing the parameters of kinetic models in a way that the model simulation fits the data. No comparison of the main software tools currently in use has been published to date. This article shows a comparison of numerical results as well as an overall, somewhat subjective comparison based on a scoring system using a set of criteria. The scoring was separately performed for two types of uses. Uses of type I are routine evaluations involving standard kinetic models and up to three metabolites in a single compartment. Evaluations involving non-standard model components, more than three metabolites or more than a single compartment belong to use type II. For use type I, usability is most important, while the flexibility of the model definition is most important for use type II. Test datasets were assembled that can be used to compare the numerical results for different software tools. These datasets can also be used to ensure that no unintended or erroneous behaviour is introduced in newer versions. In the comparison of numerical results, good agreement between the parameter estimates was observed for datasets with up to three metabolites. For the now unmaintained reference software DegKinManager/ModelMaker, and for OpenModel which is still under development, user options were identified that should be taken care of in order to obtain results that are as reliable as possible. Based on the scoring system mentioned above, the software tools gmkin, KinGUII and CAKE received the best scores for use type I. Out of the 15 software packages compared with respect to use type II, again gmkin and KinGUII were the first two, followed by the script based tool mkin, which is the technical basis for gmkin, and by OpenModel. Based on the evaluation using the system of criteria mentioned above and the comparison of numerical results for the suite of test datasets, the software tools gmkin, KinGUII and CAKE are recommended for use type I, and gmkin and KinGUII for use type II. For users that prefer to work with scripts instead of graphical user interfaces, mkin is recommended. For future software evaluations, it is recommended to include a measure for the total time that a typical user needs for a kinetic evaluation into the scoring scheme. It is the hope of the authors that the publication of test data, source code and overall rankings foster the evolution of useful and reliable software in the field.

  10. Metamodeling Techniques to Aid in the Aggregation Process of Large Hierarchical Simulation Models

    DTIC Science & Technology

    2008-08-01

    Level Outputs Campaign Level Model Campaign Level Outputs Aggregation Metamodeling Complexity (Spatial, Temporal, etc.) Others? Apply VRT (type......reduction, are called variance reduction techniques ( VRT ) [Law, 2006]. The implementation of some type of VRT can prove to be a very valuable tool

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Möller, Christian, E-mail: cmoeller@cismst.de; TU Ilmenau, Institut für Physik, Weimarer Str. 32, 98693 Ilmenau; Bartel, Til

    Iron-boron (FeB) pairing is observed in the n-type region of a boron and phosphorus co-doped silicon sample which is unexpected from the FeB pair model of Kimerling and Benton. To explain the experimental data, the existing FeB pair model is extended by taking into account the electronic capture and emission rates at the interstitial iron (Fe{sub i}) trap level as a function of the charge carrier densities. According to this model, the charge state of the Fe{sub i} may be charged in n-type making FeB association possible. Further, FeB pair formation during illumination in p-type silicon is investigated. This permitsmore » the determination of the charge carrier density dependent FeB dissociation rate and in consequence allows to determine the acceptor concentration in the co-doped n-type silicon by lifetime measurement.« less

  12. Therapeutic Effects of PPARα Agonists on Diabetic Retinopathy in Type 1 Diabetes Models

    PubMed Central

    Chen, Ying; Hu, Yang; Lin, Mingkai; Jenkins, Alicia J.; Keech, Anthony C.; Mott, Robert; Lyons, Timothy J.; Ma, Jian-xing

    2013-01-01

    Retinal vascular leakage, inflammation, and neovascularization (NV) are features of diabetic retinopathy (DR). Fenofibrate, a peroxisome proliferator–activated receptor α (PPARα) agonist, has shown robust protective effects against DR in type 2 diabetic patients, but its effects on DR in type 1 diabetes have not been reported. This study evaluated the efficacy of fenofibrate on DR in type 1 diabetes models and determined if the effect is PPARα dependent. Oral administration of fenofibrate significantly ameliorated retinal vascular leakage and leukostasis in streptozotocin-induced diabetic rats and in Akita mice. Favorable effects on DR were also achieved by intravitreal injection of fenofibrate or another specific PPARα agonist. Fenofibrate also ameliorated retinal NV in the oxygen-induced retinopathy (OIR) model and inhibited tube formation and migration in cultured endothelial cells. Fenofibrate also attenuated overexpression of intercellular adhesion molecule-1, monocyte chemoattractant protein-1, and vascular endothelial growth factor (VEGF) and blocked activation of hypoxia-inducible factor-1 and nuclear factor-κB in the retinas of OIR and diabetic models. Fenofibrate’s beneficial effects were blocked by a specific PPARα antagonist. Furthermore, Pparα knockout abolished the fenofibrate-induced downregulation of VEGF and reduction of retinal vascular leakage in DR models. These results demonstrate therapeutic effects of fenofibrate on DR in type 1 diabetes and support the existence of the drug target in ocular tissues and via a PPARα-dependent mechanism. PMID:23043158

  13. Influence of disturbance on temperate forest productivity

    USGS Publications Warehouse

    Peters, Emily B.; Wythers, Kirk R.; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Climate, tree species traits, and soil fertility are key controls on forest productivity. However, in most forest ecosystems, natural and human disturbances, such as wind throw, fire, and harvest, can also exert important and lasting direct and indirect influence over productivity. We used an ecosystem model, PnET-CN, to examine how disturbance type, intensity, and frequency influence net primary production (NPP) across a range of forest types from Minnesota and Wisconsin, USA. We assessed the importance of past disturbances on NPP, net N mineralization, foliar N, and leaf area index at 107 forest stands of differing types (aspen, jack pine, northern hardwood, black spruce) and disturbance history (fire, harvest) by comparing model simulations with observations. The model reasonably predicted differences among forest types in productivity, foliar N, leaf area index, and net N mineralization. Model simulations that included past disturbances minimally improved predictions compared to simulations without disturbance, suggesting the legacy of past disturbances played a minor role in influencing current forest productivity rates. Modeled NPP was more sensitive to the intensity of soil removal during a disturbance than the fraction of stand mortality or wood removal. Increasing crown fire frequency resulted in lower NPP, particularly for conifer forest types with longer leaf life spans and longer recovery times. These findings suggest that, over long time periods, moderate frequency disturbances are a relatively less important control on productivity than climate, soil, and species traits.

  14. The neuropathology observed in wild-type mice inoculated with human poliovirus mirrors human paralytic poliomyelitis.

    PubMed

    Ford, Dayton J; Ropka, Stacie L; Collins, George H; Jubelt, Burk

    2002-09-01

    Human paralytic poliomyelitis results from the destruction of spinal cord anterior horn motor neurons by human poliovirus (PV). CNS disease pathology similar to human poliomyelitis has been observed in experimentally infected chimpanzees, monkeys and wild-type mice. In this study we present a detailed examination of the clinical and histopathological features in the wild-type mouse after intracranial (i.c.) and novel intramuscular (i.m.) injection of poliovirus. Either route of poliovirus administration results in a clinical disease characterized predominately by flaccid paralysis. The observed histopathological features are compared with the histopathology reported for human paralytic poliomyelitis, experimentally infected chimpanzees, monkeys and transgenic mice expressing the human poliovirus receptor (hPVR). The observation of flaccid paralysis and anterior horn motor neuron destruction mirrors what is observed in human paralytic poliomyelitis. Our results suggest that the neuropathology observed in the wild-type mouse model is similar to what has been observed in both the human disease and in other experimental animal models, with the possible exception of the transgenic mouse model. The observed neuropathology of the wild-type mouse model more closely reflects what has been observed in human poliomyelitis, as well as in experimentally infected chimpanzees and monkeys, than does the hPVR transgenic mouse model. The previously reported poliovirus-induced white matter demyelinating disease was not observed.

  15. Neuropathogenesis of Zika Virus in a Highly Susceptible Immunocompetent Mouse Model after Antibody Blockade of Type I Interferon

    PubMed Central

    Smith, Darci R.; Hollidge, Bradley; Daye, Sharon; Zeng, Xiankun; Blancett, Candace; Kuszpit, Kyle; Bocan, Thomas; Koehler, Jeff W.; Coyne, Susan; Minogue, Tim; Kenny, Tara; Chi, Xiaoli; Yim, Soojin; Miller, Lynn; Schmaljohn, Connie; Bavari, Sina; Golden, Joseph W.

    2017-01-01

    Animal models are needed to better understand the pathogenic mechanisms of Zika virus (ZIKV) and to evaluate candidate medical countermeasures. Adult mice infected with ZIKV develop a transient viremia, but do not demonstrate signs of morbidity or mortality. Mice deficient in type I or a combination of type I and type II interferon (IFN) responses are highly susceptible to ZIKV infection; however, the absence of a competent immune system limits their usefulness for studying medical countermeasures. Here we employ a murine model for ZIKV using wild-type C57BL/6 mice treated with an antibody to disrupt type I IFN signaling to study ZIKV pathogenesis. We observed 40% mortality in antibody treated mice exposed to ZIKV subcutaneously whereas mice exposed by intraperitoneal inoculation were highly susceptible incurring 100% mortality. Mice infected by both exposure routes experienced weight loss, high viremia, and severe neuropathologic changes. The most significant histopathological findings occurred in the central nervous system where lesions represent an acute to subacute encephalitis/encephalomyelitis that is characterized by neuronal death, astrogliosis, microgliosis, scattered necrotic cellular debris, and inflammatory cell infiltrates. This model of ZIKV pathogenesis will be valuable for evaluating medical countermeasures and the pathogenic mechanisms of ZIKV because it allows immune responses to be elicited in immunologically competent mice with IFN I blockade only induced at the time of infection. PMID:28068342

  16. Long-term Hyperglycemia Naturally Induces Dental Caries but Not Periodontal Disease in Type 1 and Type 2 Diabetic Rodents.

    PubMed

    Nakahara, Yutaka; Ozaki, Kiyokazu; Matsuura, Tetsuro

    2017-11-01

    Periodontal disease (PD) in patients with diabetes is described as the sixth complication of diabetes. We have previously shown that diabetes increases dental caries, and carious inflammation might have a strong effect on the adjacent periodontal tissue in diabetic rodent models. However, the possibility that hyperglycemia may induce PD in diabetic animals could not be completely eliminated. The goal of this study was to confirm the presence of PD in diabetic animal models by preventing carious inflammation with fluoride administration. F344 rats injected with alloxan (type 1 diabetic model) and db/db mice (type 2 diabetic model) were given either tap water alone or tap water containing fluoride. A cariostatic effect of fluoride was evident in the diabetic animals. Meanwhile, fluoride treatment drastically attenuated periodontal inflammation in addition to preventing dental caries. Furthermore, with fluoride treatment, periodontitis was notably nonexistent in the periodontal tissue surrounding the normal molars, whereas the caries-forming process was clearly observed in the teeth that were enveloped with persistent periodontitis, suggesting that enhanced periodontal inflammation might have been derived from the dental caries in the diabetic rodents rather than from the PD. In conclusion, long-term hyperglycemia naturally induces dental caries but not PD in type 1 and type 2 diabetic rodents. © 2017 by the American Diabetes Association.

  17. Predictive occurrence models for coastal wetland plant communities: Delineating hydrologic response surfaces with multinomial logistic regression

    NASA Astrophysics Data System (ADS)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-02-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007-Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  18. Kulish-Sklyanin-type models: Integrability and reductions

    NASA Astrophysics Data System (ADS)

    Gerdjikov, V. S.

    2017-08-01

    We start with a Riemann-Hilbert problem ( RHP) related to BD.I- type symmetric spaces SO(2 r + 1)/ S( O(2 r - 2 s+1) ⊗ O(2 s)), s ≥ 1. We consider two RHPs: the first is formulated on the real axis R in the complex-λ plane; the second, on R ⊗ iR. The first RHP for s = 1 allows solving the Kulish-Sklyanin (KS) model; the second RHP is related to a new type of KS model. We consider an important example of nontrivial deep reductions of the KS model and show its effect on the scattering matrix. In particular, we obtain new two-component nonlinear Schrödinger equations. Finally, using the Wronski relations, we show that the inverse scattering method for KS models can be understood as generalized Fourier transforms. We thus find a way to characterize all the fundamental properties of KS models including the hierarchy of equations and the hierarchy of their Hamiltonian structures.

  19. Symmetric functions and wavefunctions of XXZ-type six-vertex models and elliptic Felderhof models by Izergin-Korepin analysis

    NASA Astrophysics Data System (ADS)

    Motegi, Kohei

    2018-05-01

    We present a method to analyze the wavefunctions of six-vertex models by extending the Izergin-Korepin analysis originally developed for domain wall boundary partition functions. First, we apply the method to the case of the basic wavefunctions of the XXZ-type six-vertex model. By giving the Izergin-Korepin characterization of the wavefunctions, we show that these wavefunctions can be expressed as multiparameter deformations of the quantum group deformed Grothendieck polynomials. As a second example, we show that the Izergin-Korepin analysis is effective for analysis of the wavefunctions for a triangular boundary and present the explicit forms of the symmetric functions representing these wavefunctions. As a third example, we apply the method to the elliptic Felderhof model which is a face-type version and an elliptic extension of the trigonometric Felderhof model. We show that the wavefunctions can be expressed as one-parameter deformations of an elliptic analog of the Vandermonde determinant and elliptic symmetric functions.

  20. Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah

    2014-01-01

    Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.

  1. On the scaling problem and micro-macro derivation of crowd models. Comment on "Human behaviours in evacuation crowd dynamics: From modelling to "big data" toward crisis management" by Nicola Bellomo et al.

    NASA Astrophysics Data System (ADS)

    Chouhad, Nadia

    2016-09-01

    A personal comment on a scientific paper is unavoidably related to the personal education and bias. This statement allows me to apologize about the fact that my comment mainly focuses on a somewhat narrow field, namely to analytic topics related to modeling behavioral crowds. The remarks in the following aim also to induce further research suggestions from the authors of paper [3]. In more detail I bring to the attention of the authors of [3] and I look forward to their reply in view of future activity in this field: The micro-macro derivation of hydrodynamic type models should lead to hyperbolic type models, where the propagation speed of perturbation is finite, see [4]. However, it would be interesting understanding how far parabolic type models [6], and their possible modifications, can be accepted as an approximation of physical reality [8].

  2. Asymptotic dynamics of the exceptional Bianchi cosmologies

    NASA Astrophysics Data System (ADS)

    Hewitt, C. G.; Horwood, J. T.; Wainwright, J.

    2003-05-01

    In this paper we give, for the first time, a qualitative description of the asymptotic dynamics of a class of non-tilted spatially homogeneous (SH) cosmologies, the so-called exceptional Bianchi cosmologies, which are of Bianchi type VI$_{-1/9}$. This class is of interest for two reasons. Firstly, it is generic within the class of non-tilted SH cosmologies, being of the same generality as the models of Bianchi types VIII and IX. Secondly, it is the SH limit of a generic class of spatially inhomogeneous $G_{2}$ cosmologies. Using the orthonormal frame formalism and Hubble-normalized variables, we show that the exceptional Bianchi cosmologies differ from the non-exceptional Bianchi cosmologies of type VI$_{h}$ in two significant ways. Firstly, the models exhibit an oscillatory approach to the initial singularity and hence are not asymptotically self-similar. Secondly, at late times, although the models are asymptotically self-similar, the future attractor for the vacuum-dominated models is the so-called Robinson-Trautman SH model instead of the vacuum SH plane wave models.

  3. Multifaceted Modelling of Complex Business Enterprises

    PubMed Central

    2015-01-01

    We formalise and present a new generic multifaceted complex system approach for modelling complex business enterprises. Our method has a strong focus on integrating the various data types available in an enterprise which represent the diverse perspectives of various stakeholders. We explain the challenges faced and define a novel approach to converting diverse data types into usable Bayesian probability forms. The data types that can be integrated include historic data, survey data, and management planning data, expert knowledge and incomplete data. The structural complexities of the complex system modelling process, based on various decision contexts, are also explained along with a solution. This new application of complex system models as a management tool for decision making is demonstrated using a railway transport case study. The case study demonstrates how the new approach can be utilised to develop a customised decision support model for a specific enterprise. Various decision scenarios are also provided to illustrate the versatility of the decision model at different phases of enterprise operations such as planning and control. PMID:26247591

  4. Multifaceted Modelling of Complex Business Enterprises.

    PubMed

    Chakraborty, Subrata; Mengersen, Kerrie; Fidge, Colin; Ma, Lin; Lassen, David

    2015-01-01

    We formalise and present a new generic multifaceted complex system approach for modelling complex business enterprises. Our method has a strong focus on integrating the various data types available in an enterprise which represent the diverse perspectives of various stakeholders. We explain the challenges faced and define a novel approach to converting diverse data types into usable Bayesian probability forms. The data types that can be integrated include historic data, survey data, and management planning data, expert knowledge and incomplete data. The structural complexities of the complex system modelling process, based on various decision contexts, are also explained along with a solution. This new application of complex system models as a management tool for decision making is demonstrated using a railway transport case study. The case study demonstrates how the new approach can be utilised to develop a customised decision support model for a specific enterprise. Various decision scenarios are also provided to illustrate the versatility of the decision model at different phases of enterprise operations such as planning and control.

  5. Characterization and Modeling of Thoraco-Abdominal Response to Blast Waves. Volume 4. Biomechanical Model of Thorax Response to Blast Loading

    DTIC Science & Technology

    1985-05-01

    non- zero Dirichlet boundary conditions and/or general mixed type boundary conditions. Note that Neumann type boundary condi- tion enters the problem by...Background ................................. ................... I 1.3 General Description ..... ............ ........... . ....... ...... 2 2. ANATOMICAL...human and varions loading conditions for the definition of a generalized safety guideline of blast exposure. To model the response of a sheep torso

  6. Kinetic analysis of polyoxometalate (POM) oxidation of non-phenolic lignin model compound

    Treesearch

    Tomoya Yokoyama; Hou-min Chang; Ira A. Weinstock; Richard S. Reiner; John F. Kadla

    2003-01-01

    Kinetic and reaction mechanism of non-phenolic lignin model compounds under anaerobic polyoxometalate (POM), Na5(+1.9)[SiV1(-0.1)MoW10(+0.1) 40], bleaching conditions were examined. Analyses using a syringyl type model, 1-(3,4,5-trimethoxyphenyl)ethanol (1), a guaiacyl type, 1-(3,4- imethoxyphenyl)ethanol (2), and 1- (4-ethoxy-3,5-dimethoxyphenyl)ethanol (3) suggest...

  7. Application of an Integrated HPC Reliability Prediction Framework to HMMWV Suspension System

    DTIC Science & Technology

    2010-09-13

    model number M966 (TOW Missle Carrier, Basic Armor without weapons), since they were available. Tires used for all simulations were the bias-type...vehicle fleet, including consideration of all kinds of uncertainty, especially including model uncertainty. The end result will be a tool to use...building an adequate vehicle reliability prediction framework for military vehicles is the accurate modeling of the integration of various types of

  8. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nearest 0.1 mpg; or (iii) For natural gas-fueled model types, the fuel economy value calculated for that... as determined in § 600.208-12(b)(5)(i). (vi) For natural gas dual fuel model types, for model years... natural gas as determined in § 600.208-12(b)(5)(ii) divided by 0.15 provided the requirements of paragraph...

  9. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nearest 0.1 mpg; or (iii) For natural gas-fueled model types, the fuel economy value calculated for that... as determined in § 600.208-12(b)(5)(i). (vi) For natural gas dual fuel model types, for model years... natural gas as determined in § 600.208-12(b)(5)(ii) divided by 0.15 provided the requirements of paragraph...

  10. Phenomenological aspects of possible vacua of a neutrino flavor model

    NASA Astrophysics Data System (ADS)

    Morozumi, Takuya; Okane, Hideaki; Sakamoto, Hiroki; Shimizu, Yusuke; Takagi, Kenta; Umeeda, Hiroyuki

    2018-01-01

    We discuss a supersymmetric model with discrete flavor symmetry {A}4× {Z}3. The additional scalar fields which contribute masses of leptons in the Yukawa terms are introduced in this model. We analyze their scalar potential and find that they have various vacuum structures. We show the relations among 24 different vacua and classify them into two types. We derive expressions of the lepton mixing angles, Dirac CP violating phase and Majorana phases for the two types. The model parameters which are allowed by the experimental data of the lepton mixing angles are different for each type. We also study the constraints on the model parameters which are related to Majorana phases. The different allowed regions of the model parameters for the two types are shown numerically for a given region of two combinations of the CP violating phases. Supported by JSPS KAKENHI Grant Number JP17K05418 (T.M.). This work is also supported in part by Grants-in-Aid for Scientific Research [No. 16J05332 (Y.S.), Nos. 24540272, 26247038, 15H01037, 16H00871, and 16H02189 (H.U.)] from the Ministry of Education, Culture, Sports, Science and Technology in Japan. H.O. is also supported by Hiroshima Univ. Alumni Association

  11. A Synoptic Weather Typing Approach to Assess Climate Change Impacts on Meteorological and Hydrological Risks at Local Scale in South-Central Canada

    NASA Astrophysics Data System (ADS)

    Cheng, Chad Shouquan; Li, Qian; Li, Guilong

    2010-05-01

    The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been applied in Environment Canada to analyze climatic change impacts on various meteorological/hydrological risks, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the hazardous events, (2) statistical downscaling to provide station-scale future climate information, and (3) estimates of changes in frequency and magnitude of future hazardous meteorological/hydrological events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and various linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into the entire modeling exercise. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. This paper will briefly summarize these research projects, focusing on the modeling exercise and results.

  12. S-World: A high resolution global soil database for simulation modelling (Invited)

    NASA Astrophysics Data System (ADS)

    Stoorvogel, J. J.

    2013-12-01

    There is an increasing call for high resolution soil information at the global level. A good example for such a call is the Global Gridded Crop Model Intercomparison carried out within AgMIP. While local studies can make use of surveying techniques to collect additional techniques this is practically impossible at the global level. It is therefore important to rely on legacy data like the Harmonized World Soil Database. Several efforts do exist that aim at the development of global gridded soil property databases. These estimates of the variation of soil properties can be used to assess e.g., global soil carbon stocks. However, they do not allow for simulation runs with e.g., crop growth simulation models as these models require a description of the entire pedon rather than a few soil properties. This study provides the required quantitative description of pedons at a 1 km resolution for simulation modelling. It uses the Harmonized World Soil Database (HWSD) for the spatial distribution of soil types, the ISRIC-WISE soil profile database to derive information on soil properties per soil type, and a range of co-variables on topography, climate, and land cover to further disaggregate the available data. The methodology aims to take stock of these available data. The soil database is developed in five main steps. Step 1: All 148 soil types are ordered on the basis of their expected topographic position using e.g., drainage, salinization, and pedogenesis. Using the topographic ordering and combining the HWSD with a digital elevation model allows for the spatial disaggregation of the composite soil units. This results in a new soil map with homogeneous soil units. Step 2: The ranges of major soil properties for the topsoil and subsoil of each of the 148 soil types are derived from the ISRIC-WISE soil profile database. Step 3: A model of soil formation is developed that focuses on the basic conceptual question where we are within the range of a particular soil property at a particular location given a specific soil type. The soil properties are predicted for each grid cell based on the soil type, the corresponding ranges of soil properties, and the co-variables. Step 4: Standard depth profiles are developed for each of the soil types using the diagnostic criteria of the soil types and soil profile information from the ISRIC-WISE database. The standard soil profiles are combined with the the predicted values for the topsoil and subsoil yielding unique soil profiles at each location. Step 5: In a final step, additional soil properties are added to the database using averages for the soil types and pedo-transfer functions. The methodology, denominated S-World (Soils of the World), results in readily available global maps with quantitative pedon data for modelling purposes. It forms the basis for the Global Gridded Crop Model Intercomparison carried out within AgMIP.

  13. Investigating the properties of low-mass AGN and their connection to unification models

    NASA Astrophysics Data System (ADS)

    Hood, Carol Elizabeth

    The most basic model of active galactic nuclei (AGN) suggest the observational differences between Type 1 and Type 2 objects are solely due to the orientation angle of the object. Although there are still some unanswered questions about the structures surrounding the central engines of the AGN, such as if the obscuring region is due to a dusty torus or an outflowing wind, observations (e.g. the detections of broad lines in the polarized light of some Type 2 objects) have proved consistent with predictions and continue to strengthen the case for unification. However, many are still searching for "true" Type 2 objects. These objects optically look like other Type 2 objects, but instead of having their broad line region blocked from the line-of-sight by the obscuring region, they are believed to lack the broad line region altogether. Others have predicted that at low luminosity or low accretion rate, the broad line region will disappear, leaving all objects to optically look like Type 2 objects, despite their level of intrinsic absorption. Low-mass (< 10^6 solar masses) AGN provide interesting environments in which these unification models can be studied. We present an in-depth multi-wavelength study of one of the prototypical low-mass AGN, POX 52, investigating the properties of the central engine along with that of the host galaxy. In addition, we examine the X-ray properties of a sample of Type 2 objects observed with XMM-Newton and the IR properties of a sample of both Type 1 and 2 objects observed with the Spitzer Infrared Spectrograph, in order to study the absorption properties of these objects and test the validity of unification models in the low-mass regime. We find little to no evidence of any "true" Type 2 objects in any of our samples, and show that in all tests preformed, low-mass AGN appear to simply be scaled-down versions of their more massive counterparts, keeping current unification models intact down to the lowest black hole masses probed to date.

  14. On low-frequency errors of uniformly modulated filtered white-noise models for ground motions

    USGS Publications Warehouse

    Safak, Erdal; Boore, David M.

    1988-01-01

    Low-frequency errors of a commonly used non-stationary stochastic model (uniformly modulated filtered white-noise model) for earthquake ground motions are investigated. It is shown both analytically and by numerical simulation that uniformly modulated filter white-noise-type models systematically overestimate the spectral response for periods longer than the effective duration of the earthquake, because of the built-in low-frequency errors in the model. The errors, which are significant for low-magnitude short-duration earthquakes, can be eliminated by using the filtered shot-noise-type models (i. e. white noise, modulated by the envelope first, and then filtered).

  15. Experimental Verification of Same Simple Equilibrium Models of Masonry Shear Walls

    NASA Astrophysics Data System (ADS)

    Radosław, Jasiński

    2017-10-01

    This paper contains theoretical fundamentals of strut and tie models, used in unreinforced horizontal shear walls. Depending on support conditions and wall loading, we can distinguish models with discrete bars when point load is applied to the wall (type I model) or with continuous bars (type II model) when load is uniformly distributed at the wall boundary. The main part of this paper compares calculated results with the own tests on horizontal shear walls made of solid brick, silicate elements and autoclaved aerated concrete. The tests were performed in Poland. The model required some modifications due to specific load and static diagram.

  16. Modification of the Integrated Sasang Constitutional Diagnostic Model

    PubMed Central

    Nam, Jiho

    2017-01-01

    In 2012, the Korea Institute of Oriental Medicine proposed an objective and comprehensive physical diagnostic model to address quantification problems in the existing Sasang constitutional diagnostic method. However, certain issues have been raised regarding a revision of the proposed diagnostic model. In this paper, we propose various methodological approaches to address the problems of the previous diagnostic model. Firstly, more useful variables are selected in each component. Secondly, the least absolute shrinkage and selection operator is used to reduce multicollinearity without the modification of explanatory variables. Thirdly, proportions of SC types and age are considered to construct individual diagnostic models and classify the training set and the test set for reflecting the characteristics of the entire dataset. Finally, an integrated model is constructed with explanatory variables of individual diagnosis models. The proposed integrated diagnostic model significantly improves the sensitivities for both the male SY type (36.4% → 62.0%) and the female SE type (43.7% → 64.5%), which were areas of limitation of the previous integrated diagnostic model. The ideas of these new algorithms are expected to contribute not only to the scientific development of Sasang constitutional medicine in Korea but also to that of other diagnostic methods for traditional medicine. PMID:29317897

  17. Animal models: an important tool in mycology.

    PubMed

    Capilla, Javier; Clemons, Karl V; Stevens, David A

    2007-12-01

    Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.

  18. 78 FR 36089 - Airworthiness Directives; Hawker Beechcraft Corporation (Type Certificate Previously Held by...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Corporation (Type Certificate Previously Held by Raytheon Aircraft Company) Model BAe.125 Series 800A... to Hawker Beechcraft Corporation (Type Certificate Previously Held by Raytheon Aircraft Company... Airworthiness Directives; Hawker Beechcraft Corporation (Type Certificate Previously Held by Raytheon Aircraft...

  19. Cosmological backreaction within the Szekeres model and emergence of spatial curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolejko, Krzysztof, E-mail: krzysztof.bolejko@sydney.edu.au

    This paper discusses the phenomenon of backreaction within the Szekeres model. Cosmological backreaction describes how the mean global evolution of the Universe deviates from the Friedmannian evolution. The analysis is based on models of a single cosmological environment and the global ensemble of the Szekeres models (of the Swiss-Cheese-type and Styrofoam-type). The obtained results show that non-linear growth of cosmic structures is associated with the growth of the spatial curvature Ω{sub R} (in the FLRW limit Ω{sub R} → Ω {sub k} ). If averaged over global scales the result depends on the assumed global model of the Universe. Withinmore » the Swiss-Cheese model, which does have a fixed background, the volume average follows the evolution of the background, and the global spatial curvature averages out to zero (the background model is the ΛCDM model, which is spatially flat). In the Styrofoam-type model, which does not have a fixed background, the mean evolution deviates from the spatially flat ΛCDM model, and the mean spatial curvature evolves from Ω{sub R} =0 at the CMB to Ω{sub R} ∼ 0.1 at 0 z =. If the Styrofoam-type model correctly captures evolutionary features of the real Universe then one should expect that in our Universe, the spatial curvature should build up (local growth of cosmic structures) and its mean global average should deviate from zero (backreaction). As a result, this paper predicts that the low-redshift Universe should not be spatially flat (i.e. Ω {sub k} ≠ 0, even if in the early Universe Ω {sub k} = 0) and therefore when analysing low- z cosmological data one should keep Ω {sub k} as a free parameter and independent from the CMB constraints.« less

  20. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors

    NASA Astrophysics Data System (ADS)

    Allen, John M.; Elbasiouny, Sherif M.

    2018-06-01

    Objective. Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. Approach. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Main results. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Significance. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.

  1. Cosmological backreaction within the Szekeres model and emergence of spatial curvature

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof

    2017-06-01

    This paper discusses the phenomenon of backreaction within the Szekeres model. Cosmological backreaction describes how the mean global evolution of the Universe deviates from the Friedmannian evolution. The analysis is based on models of a single cosmological environment and the global ensemble of the Szekeres models (of the Swiss-Cheese-type and Styrofoam-type). The obtained results show that non-linear growth of cosmic structures is associated with the growth of the spatial curvature ΩScript R (in the FLRW limit ΩScript R → Ωk). If averaged over global scales the result depends on the assumed global model of the Universe. Within the Swiss-Cheese model, which does have a fixed background, the volume average follows the evolution of the background, and the global spatial curvature averages out to zero (the background model is the ΛCDM model, which is spatially flat). In the Styrofoam-type model, which does not have a fixed background, the mean evolution deviates from the spatially flat ΛCDM model, and the mean spatial curvature evolves from ΩScript R =0 at the CMB to ΩScript R ~ 0.1 at 0z =. If the Styrofoam-type model correctly captures evolutionary features of the real Universe then one should expect that in our Universe, the spatial curvature should build up (local growth of cosmic structures) and its mean global average should deviate from zero (backreaction). As a result, this paper predicts that the low-redshift Universe should not be spatially flat (i.e. Ωk ≠ 0, even if in the early Universe Ωk = 0) and therefore when analysing low-z cosmological data one should keep Ωk as a free parameter and independent from the CMB constraints.

  2. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors.

    PubMed

    Allen, John M; Elbasiouny, Sherif M

    2018-06-01

    Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.

  3. The SU(r)2 string functions as q-diagrams

    NASA Astrophysics Data System (ADS)

    Genish, Arel; Gepner, Doron

    2016-06-01

    A generalized Roger Ramanujan (GRR) type expression for the characters of A-type parafermions has been a long standing puzzle dating back to conjectures made regarding some of the characters in the 90s. Not long ago we have put forward such GRR type identities describing any of the level two ADE-type generalized parafermions characters at any rank. These characters are the string functions of simply laced Lie algebras at level two, as such, they are also of mathematical interest. In our last joint paper we presented the complete derivation for the D-type generalized parafermions characters identities. Here we generalize our previous discussion and prove the GRR type expressions for the characters of A-type generalized parafermions. To prove the A-type GRR conjecture we study further the q-diagrams, introduced in our last joint paper, and examine the diagrammatic interpretations of known identities among them Slater identities for the characters of the first minimal model, which is the Ising model, and the Bailey lemma.

  4. Validation of Hill-Type Muscle Models in Relation to Neuromuscular Recruitment and Force–Velocity Properties: Predicting Patterns of In Vivo Muscle Force

    PubMed Central

    Biewener, Andrew A.; Wakeling, James M.; Lee, Sabrina S.; Arnold, Allison S.

    2014-01-01

    We review here the use and reliability of Hill-type muscle models to predict muscle performance under varying conditions, ranging from in situ production of isometric force to in vivo dynamics of muscle length change and force in response to activation. Muscle models are frequently used in musculoskeletal simulations of movement, particularly when applied to studies of human motor performance in which surgically implanted transducers have limited use. Musculoskeletal simulations of different animal species also are being developed to evaluate comparative and evolutionary aspects of locomotor performance. However, such models are rarely validated against direct measures of fascicle strain or recordings of muscle–tendon force. Historically, Hill-type models simplify properties of whole muscle by scaling salient properties of single fibers to whole muscles, typically accounting for a muscle’s architecture and series elasticity. Activation of the model’s single contractile element (assigned the properties of homogenous fibers) is also simplified and is often based on temporal features of myoelectric (EMG) activation recorded from the muscle. Comparison of standard one-element models with a novel two-element model and with in situ and in vivo measures of EMG, fascicle strain, and force recorded from the gastrocnemius muscles of goats shows that a two-element Hill-type model, which allows independent recruitment of slow and fast units, better predicts temporal patterns of in situ and in vivo force. Recruitment patterns of slow/fast units based on wavelet decomposition of EMG activity in frequency–time space are generally correlated with the intensity spectra of the EMG signals, the strain rates of the fascicles, and the muscle–tendon forces measured in vivo, with faster units linked to greater strain rates and to more rapid forces. Using direct measures of muscle performance to further test Hill-type models, whether traditional or more complex, remains critical for establishing their accuracy and essential for verifying their applicability to scientific and clinical studies of musculoskeletal function. PMID:24928073

  5. A Novel Modeling Method for Aircraft Engine Using Nonlinear Autoregressive Exogenous (NARX) Models Based on Wavelet Neural Networks

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Shu, Wenjun; Cao, Can

    2018-05-01

    A novel modeling method for aircraft engine using nonlinear autoregressive exogenous (NARX) models based on wavelet neural networks is proposed. The identification principle and process based on wavelet neural networks are studied, and the modeling scheme based on NARX is proposed. Then, the time series data sets from three types of aircraft engines are utilized to build the corresponding NARX models, and these NARX models are validated by the simulation. The results show that all the best NARX models can capture the original aircraft engine's dynamic characteristic well with the high accuracy. For every type of engine, the relative identification errors of its best NARX model and the component level model are no more than 3.5 % and most of them are within 1 %.

  6. Dynamic Fuzzy Model Development for a Drum-type Boiler-turbine Plant Through GK Clustering

    NASA Astrophysics Data System (ADS)

    Habbi, Ahcène; Zelmat, Mimoun

    2008-10-01

    This paper discusses a TS fuzzy model identification method for an industrial drum-type boiler plant using the GK fuzzy clustering approach. The fuzzy model is constructed from a set of input-output data that covers a wide operating range of the physical plant. The reference data is generated using a complex first-principle-based mathematical model that describes the key dynamical properties of the boiler-turbine dynamics. The proposed fuzzy model is derived by means of fuzzy clustering method with particular attention on structure flexibility and model interpretability issues. This may provide a basement of a new way to design model based control and diagnosis mechanisms for the complex nonlinear plant.

  7. Illuminating a Dark Lens : A Type Ia Supernova Magnified by the Frontier Fields Galaxy Cluster Abell 2744

    NASA Astrophysics Data System (ADS)

    Rodney, Steven A.; Patel, Brandon; Scolnic, Daniel; Foley, Ryan J.; Molino, Alberto; Brammer, Gabriel; Jauzac, Mathilde; Bradač, Maruša; Broadhurst, Tom; Coe, Dan; Diego, Jose M.; Graur, Or; Hjorth, Jens; Hoag, Austin; Jha, Saurabh W.; Johnson, Traci L.; Kelly, Patrick; Lam, Daniel; McCully, Curtis; Medezinski, Elinor; Meneghetti, Massimo; Merten, Julian; Richard, Johan; Riess, Adam; Sharon, Keren; Strolger, Louis-Gregory; Treu, Tommaso; Wang, Xin; Williams, Liliya L. R.; Zitrin, Adi

    2015-09-01

    SN HFF14Tom is a Type Ia SN discovered at z=1.3457+/- 0.0001 behind the galaxy cluster Abell 2744 (z = 0.308). In a cosmology-independent analysis, we find that HFF14Tom is 0.77 ± 0.15 mag brighter than unlensed Type Ia SNe at similar redshift, implying a lensing magnification of {μ }{obs}=2.03+/- 0.29. This observed magnification provides a rare opportunity for a direct empirical test of galaxy cluster lens models. Here we test 17 lens models, 13 of which were generated before the SN magnification was known, qualifying as pure “blind tests.” The models are collectively fairly accurate: 8 of the models deliver median magnifications that are consistent with the measured μ to within 1σ. However, there is a subtle systematic bias: the significant disagreements all involve models overpredicting the magnification. We evaluate possible causes for this mild bias, and find no single physical or methodological explanation to account for it. We do find that model accuracy can be improved to some extent with stringent quality cuts on multiply imaged systems, such as requiring that a large fraction have spectroscopic redshifts. In addition to testing model accuracies as we have done here, Type Ia SN magnifications could also be used as inputs for future lens models of Abell 2744 and other clusters, providing valuable constraints in regions where traditional strong- and weak-lensing information is unavailable.

  8. A modeling approach to soil type and precipitation seasonality interactions on bioenergy crop production

    USDA-ARS?s Scientific Manuscript database

    Precipitation limits primary production by affecting soil moisture, and soil type interacts with soil moisture to determine soil water availability to plants. We used ALMANAC, a process-based model, to simulate switchgrass (Panicum virgatum var. Alamo) biomass production in Central Texas under thre...

  9. Turbulence Control Through Selective Surface Heating Using Microwave Radiation

    DTIC Science & Technology

    2013-05-01

    models. This type of plasma actuators needs further development to follow aerodynamic requirements of wind -tunnel experiments. 5. Ring -type plasma...modes of MW-heated elements in the aerodynamic experiment. Design of a resistive vibrator array for the airfoil model to be tested in a wind tunnel...

  10. The Funding of Virtual Universities

    ERIC Educational Resources Information Center

    Poulin, Russell; Michelau, Demaree K.

    2009-01-01

    This article reviews categorization models and the outcomes of a virtual university funding survey. Although categorization of types of funding mechanisms is a necessary analytical tool, it often hides the many and varied political decisions that created them. In commenting on the implications of the type of funding model, political forces behind…

  11. PREDICTING LEVELS OF STRESS FROM BIOLOGICAL ASSESSMENT DATA: EMPIRICAL MODELS FROM THE EASTERN CORN BELT PLAINS, OHIO, USA

    EPA Science Inventory

    Interest is increasing in using biological community data to provide information on the specific types of anthropogenic influences impacting streams. We built empirical models that predict the level of six different types of stress with fish and benthic macroinvertebrate data as...

  12. 46 CFR 160.060-2 - Type and model.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam, Adult and Child § 160.060-2 Type and model. Each buoyant vest specified in this subpart is a: (a... designation for a nonstandard vest is to be assigned by the individual manufactured and must be different from...

  13. 46 CFR 160.060-2 - Type and model.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam, Adult and Child § 160.060-2 Type and model. Each buoyant vest specified in this subpart is a: (a... designation for a nonstandard vest is to be assigned by the individual manufactured and must be different from...

  14. 46 CFR 160.060-2 - Type and model.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam, Adult and Child § 160.060-2 Type and model. Each buoyant vest specified in this subpart is a: (a... designation for a nonstandard vest is to be assigned by the individual manufactured and must be different from...

  15. 46 CFR 160.060-2 - Type and model.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam, Adult and Child § 160.060-2 Type and model. Each buoyant vest specified in this subpart is a: (a... designation for a nonstandard vest is to be assigned by the individual manufactured and must be different from...

  16. Centrifuge modeling of cyclic lateral response of pile-cap systems and seat-type abutments in dry sands

    DOT National Transportation Integrated Search

    1998-10-02

    This report presents the results of slow, cyclic, lateral-loading centrifuge tests performed on models of pile-cap foundation systems and seat-type bridge abutements in dry Neveda sand of 75% relative density to study the lateral response of these sy...

  17. The distributed lambda (λ) model (DLM): a 3-D, finite-element muscle model based on Feldman's λ model; assessment of orofacial gestures.

    PubMed

    Nazari, Mohammad Ali; Perrier, Pascal; Payan, Yohan

    2013-12-01

    The authors aimed to design a distributed lambda model (DLM), which is well adapted to implement three-dimensional (3-D), finite-element descriptions of muscles. A muscle element model was designed. Its stress-strain relationships included the active force-length characteristics of the λ model along the muscle fibers, together with the passive properties of muscle tissues in the 3-D space. The muscle element was first assessed using simple geometrical representations of muscles in the form of rectangular bars. It was then included in a 3-D face model, and its impact on lip protrusion was compared with the impact of a Hill-type muscle model. The force-length characteristic associated with the muscle elements matched well with the invariant characteristics of the λ model. The impact of the passive properties was assessed. Isometric force variation and isotonic displacements were modeled. The comparison with a Hill-type model revealed strong similarities in terms of global stress and strain. The DLM accounted for the characteristics of the λ model. Biomechanically, no clear differences were found between the DLM and a Hill-type model. Accurate evaluations of the λ model, based on the comparison between data and simulations, are now possible with 3-D biomechanical descriptions of the speech articulators because of the DLM.

  18. Prediction of morbidity and mortality in patients with type 2 diabetes.

    PubMed

    Wells, Brian J; Roth, Rachel; Nowacki, Amy S; Arrigain, Susana; Yu, Changhong; Rosenkrans, Wayne A; Kattan, Michael W

    2013-01-01

    Introduction. The objective of this study was to create a tool that accurately predicts the risk of morbidity and mortality in patients with type 2 diabetes according to an oral hypoglycemic agent. Materials and Methods. The model was based on a cohort of 33,067 patients with type 2 diabetes who were prescribed a single oral hypoglycemic agent at the Cleveland Clinic between 1998 and 2006. Competing risk regression models were created for coronary heart disease (CHD), heart failure, and stroke, while a Cox regression model was created for mortality. Propensity scores were used to account for possible treatment bias. A prediction tool was created and internally validated using tenfold cross-validation. The results were compared to a Framingham model and a model based on the United Kingdom Prospective Diabetes Study (UKPDS) for CHD and stroke, respectively. Results and Discussion. Median follow-up for the mortality outcome was 769 days. The numbers of patients experiencing events were as follows: CHD (3062), heart failure (1408), stroke (1451), and mortality (3661). The prediction tools demonstrated the following concordance indices (c-statistics) for the specific outcomes: CHD (0.730), heart failure (0.753), stroke (0.688), and mortality (0.719). The prediction tool was superior to the Framingham model at predicting CHD and was at least as accurate as the UKPDS model at predicting stroke. Conclusions. We created an accurate tool for predicting the risk of stroke, coronary heart disease, heart failure, and death in patients with type 2 diabetes. The calculator is available online at http://rcalc.ccf.org under the heading "Type 2 Diabetes" and entitled, "Predicting 5-Year Morbidity and Mortality." This may be a valuable tool to aid the clinician's choice of an oral hypoglycemic, to better inform patients, and to motivate dialogue between physician and patient.

  19. Experiments in concept modeling for radiographic image reports.

    PubMed Central

    Bell, D S; Pattison-Gordon, E; Greenes, R A

    1994-01-01

    OBJECTIVE: Development of methods for building concept models to support structured data entry and image retrieval in chest radiography. DESIGN: An organizing model for chest-radiographic reporting was built by analyzing manually a set of natural-language chest-radiograph reports. During model building, clinician-informaticians judged alternative conceptual structures according to four criteria: content of clinically relevant detail, provision for semantic constraints, provision for canonical forms, and simplicity. The organizing model was applied in representing three sample reports in their entirety. To explore the potential for automatic model discovery, the representation of one sample report was compared with the noun phrases derived from the same report by the CLARIT natural-language processing system. RESULTS: The organizing model for chest-radiographic reporting consists of 62 concept types and 17 relations, arranged in an inheritance network. The broadest types in the model include finding, anatomic locus, procedure, attribute, and status. Diagnoses are modeled as a subtype of finding. Representing three sample reports in their entirety added 79 narrower concept types. Some CLARIT noun phrases suggested valid associations among subtypes of finding, status, and anatomic locus. CONCLUSIONS: A manual modeling process utilizing explicitly stated criteria for making modeling decisions produced an organizing model that showed consistency in early testing. A combination of top-down and bottom-up modeling was required. Natural-language processing may inform model building, but algorithms that would replace manual modeling were not discovered. Further progress in modeling will require methods for objective model evaluation and tools for formalizing the model-building process. PMID:7719807

  20. Numerical methods for assessing water quality in lakes and reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahamah, D.S.

    1984-01-01

    Water quality models are used as tools for predicting both short-term and long-term trends in water quality. They are generally classified into two groups based on the degree of empiricism. The two groups consists of the purely empirical types known as black-box models and the theoretical types called ecosystem models. This dissertation deals with both types of water quality models. The first part deals with empirical phosphorus models. The theory behind this class of models is discussed, leading to the development of an empirical phosphorus model using data from 79 western US lakes. A new approach to trophic state classificationmore » is introduced. The data used for the model was obtained from the Environmental Protection Agency National Eutrophication Study (EPA-NES) of western US lakes. The second portion of the dissertation discusses the development of an ecosystem model for culturally eutrophic Liberty Lake situated in eastern Washington State. The model is capable of simulating chlorophyll-a, phosphorus, and nitrogen levels in the lake on a weekly basis. For computing sediment release rates of phosphorus and nitrogen, equations based on laboratory bench-top studies using sediment samples from Liberty Lake are used. The model is used to simulate certain hypothetical nutrient control techniques such as phosphorus flushing, precipitation, and diversion.« less

  1. Nonlinear autoregressive neural networks with external inputs for forecasting of typhoon inundation level.

    PubMed

    Ouyang, Huei-Tau

    2017-08-01

    Accurate inundation level forecasting during typhoon invasion is crucial for organizing response actions such as the evacuation of people from areas that could potentially flood. This paper explores the ability of nonlinear autoregressive neural networks with exogenous inputs (NARX) to predict inundation levels induced by typhoons. Two types of NARX architecture were employed: series-parallel (NARX-S) and parallel (NARX-P). Based on cross-correlation analysis of rainfall and water-level data from historical typhoon records, 10 NARX models (five of each architecture type) were constructed. The forecasting ability of each model was assessed by considering coefficient of efficiency (CE), relative time shift error (RTS), and peak water-level error (PE). The results revealed that high CE performance could be achieved by employing more model input variables. Comparisons of the two types of model demonstrated that the NARX-S models outperformed the NARX-P models in terms of CE and RTS, whereas both performed exceptionally in terms of PE and without significant difference. The NARX-S and NARX-P models with the highest overall performance were identified and their predictions were compared with those of traditional ARX-based models. The NARX-S model outperformed the ARX-based models in all three indexes, whereas the NARX-P model exhibited comparable CE performance and superior RTS and PE performance.

  2. Modeling Photodetachment from HO2- Using the pd Case of the Generalized Mixed Character Molecular Orbital Model

    NASA Astrophysics Data System (ADS)

    Blackstone, Christopher C.; Sanov, Andrei

    2016-06-01

    Using the generalized model for photodetachment of electrons from mixed-character molecular orbitals, we gain insight into the nature of the HOMO of HO2- by treating it as a coherent superpostion of one p- and one d-type atomic orbital. Fitting the pd model function to the ab initio calculated HOMO of HO2- yields a fractional d-character, γp, of 0.979. The modeled curve of the anisotropy parameter, β, as a function of electron kinetic energy for a pd-type mixed character orbital is matched to the experimental data.

  3. Defect sink characteristics of specific grain boundary types in 304 stainless steels under high dose neutron environments

    DOE PAGES

    Field, Kevin G.; Yang, Ying; Busby, Jeremy T.; ...

    2015-03-09

    Radiation induced segregation (RIS) is a well-studied phenomena which occurs in many structurally relevant nuclear materials including austenitic stainless steels. RIS occurs due to solute atoms preferentially coupling to mobile point defect fluxes that migrate and interact with defect sinks. Here, a 304 stainless steel was neutron irradiated up to 47.1 dpa at 320 °C. Investigations into the RIS response at specific grain boundary types were utilized to determine the sink characteristics of different boundary types as a function of irradiation dose. A rate theory model built on the foundation of the modified inverse Kirkendall (MIK) model is proposed andmore » benchmarked to the experimental results. This model, termed the GiMIK model, includes alterations in the boundary conditions based on grain boundary structure and includes expressions for interstitial binding. This investigation, through experiment and modeling, found specific grain boundary structures exhibit unique defect sink characteristics depending on their local structure. Furthermore, such interactions were found to be consistent across all doses investigated and had larger global implications including precipitation of Ni-Si clusters near different grain boundary types.« less

  4. Neural network based glucose - insulin metabolism models for children with Type 1 diabetes.

    PubMed

    Mougiakakou, Stavroula G; Prountzou, Aikaterini; Iliopoulou, Dimitra; Nikita, Konstantina S; Vazeou, Andriani; Bartsocas, Christos S

    2006-01-01

    In this paper two models for the simulation of glucose-insulin metabolism of children with Type 1 diabetes are presented. The models are based on the combined use of Compartmental Models (CMs) and artificial Neural Networks (NNs). Data from children with Type 1 diabetes, stored in a database, have been used as input to the models. The data are taken from four children with Type 1 diabetes and contain information about glucose levels taken from continuous glucose monitoring system, insulin intake and food intake, along with corresponding time. The influences of taken insulin on plasma insulin concentration, as well as the effect of food intake on glucose input into the blood from the gut, are estimated from the CMs. The outputs of CMs, along with previous glucose measurements, are fed to a NN, which provides short-term prediction of glucose values. For comparative reasons two different NN architectures have been tested: a Feed-Forward NN (FFNN) trained with the back-propagation algorithm with adaptive learning rate and momentum, and a Recurrent NN (RNN), trained with the Real Time Recurrent Learning (RTRL) algorithm. The results indicate that the best prediction performance can be achieved by the use of RNN.

  5. A non-asymptotic model of dynamics of honeycomb lattice-type plates

    NASA Astrophysics Data System (ADS)

    Cielecka, Iwona; Jędrysiak, Jarosław

    2006-09-01

    Lightweight structures, consisted of special composite material systems like sandwich plates, are often used in aerospace or naval engineering. In composite sandwich plates, the intermediate core is usually made of cellular structures, e.g. honeycomb micro-frames, reinforcing static and dynamic properties of these plates. Here, a new non-asymptotic continuum model of honeycomb lattice-type plates is shown and applied to the analysis of dynamic problems. The general formulation of the model for periodic lattice-type plates of an arbitrary lay-out was presented by Cielecka and Jędrysiak [Journal of Theoretical and Applied Mechanics 40 (2002) 23-46]. This model, partly based on the tolerance averaging method developed for periodic composite solids by Woźniak and Wierzbicki [Averaging techniques in thermomechanics of composite solids, Wydawnictwo Politechniki Częstochowskiej, Częstochowa, 2000], takes into account the effect of the length microstructure size on the dynamic plate behaviour. The shown method leads to the model equations describing the above effect for honeycomb lattice-type plates. These equations have the form similar to equations for isotropic cases. The dynamic analysis of such plates exemplifies this effect, which is significant and cannot be neglected. The physical correctness of the obtained results is also discussed.

  6. Predicting the Types of Ion Channel-Targeted Conotoxins Based on AVC-SVM Model.

    PubMed

    Xianfang, Wang; Junmei, Wang; Xiaolei, Wang; Yue, Zhang

    2017-01-01

    The conotoxin proteins are disulfide-rich small peptides. Predicting the types of ion channel-targeted conotoxins has great value in the treatment of chronic diseases, epilepsy, and cardiovascular diseases. To solve the problem of information redundancy existing when using current methods, a new model is presented to predict the types of ion channel-targeted conotoxins based on AVC (Analysis of Variance and Correlation) and SVM (Support Vector Machine). First, the F value is used to measure the significance level of the feature for the result, and the attribute with smaller F value is filtered by rough selection. Secondly, redundancy degree is calculated by Pearson Correlation Coefficient. And the threshold is set to filter attributes with weak independence to get the result of the refinement. Finally, SVM is used to predict the types of ion channel-targeted conotoxins. The experimental results show the proposed AVC-SVM model reaches an overall accuracy of 91.98%, an average accuracy of 92.17%, and the total number of parameters of 68. The proposed model provides highly useful information for further experimental research. The prediction model will be accessed free of charge at our web server.

  7. Predicting the Types of Ion Channel-Targeted Conotoxins Based on AVC-SVM Model

    PubMed Central

    Xiaolei, Wang

    2017-01-01

    The conotoxin proteins are disulfide-rich small peptides. Predicting the types of ion channel-targeted conotoxins has great value in the treatment of chronic diseases, epilepsy, and cardiovascular diseases. To solve the problem of information redundancy existing when using current methods, a new model is presented to predict the types of ion channel-targeted conotoxins based on AVC (Analysis of Variance and Correlation) and SVM (Support Vector Machine). First, the F value is used to measure the significance level of the feature for the result, and the attribute with smaller F value is filtered by rough selection. Secondly, redundancy degree is calculated by Pearson Correlation Coefficient. And the threshold is set to filter attributes with weak independence to get the result of the refinement. Finally, SVM is used to predict the types of ion channel-targeted conotoxins. The experimental results show the proposed AVC-SVM model reaches an overall accuracy of 91.98%, an average accuracy of 92.17%, and the total number of parameters of 68. The proposed model provides highly useful information for further experimental research. The prediction model will be accessed free of charge at our web server. PMID:28497044

  8. Modeling Techniques Used to Analyze Safety of Payloads for Generic Missile Type Weapons Systems During an Indirect Lightning Strike

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, M P; Ong, M M; Crull, E W

    2009-07-21

    During lightning strikes buildings and other structures can act as imperfect Faraday Cages, enabling electromagnetic fields to be developed inside the facilities. Some equipment stored inside these facilities may unfortunately act as antenna systems. It is important to have techniques developed to analyze how much voltage, current, or energy dissipation may be developed over valuable components. In this discussion we will demonstrate the modeling techniques used to accurately analyze a generic missile type weapons system as it goes through different stages of assembly. As work is performed on weapons systems detonator cables can become exposed. These cables will form differentmore » monopole and loop type antenna systems that must be analyzed to determine the voltages developed over the detonator regions. Due to the low frequencies of lightning pulses, a lumped element circuit model can be developed to help analyze the different antenna configurations. We will show an example of how numerical modeling can be used to develop the lumped element circuit models used to calculate voltage, current, or energy dissipated over the detonator region of a generic missile type weapons system.« less

  9. Estimating material viscoelastic properties based on surface wave measurements: A comparison of techniques and modeling assumptions

    PubMed Central

    Royston, Thomas J.; Dai, Zoujun; Chaunsali, Rajesh; Liu, Yifei; Peng, Ying; Magin, Richard L.

    2011-01-01

    Previous studies of the first author and others have focused on low audible frequency (<1 kHz) shear and surface wave motion in and on a viscoelastic material comprised of or representative of soft biological tissue. A specific case considered has been surface (Rayleigh) wave motion caused by a circular disk located on the surface and oscillating normal to it. Different approaches to identifying the type and coefficients of a viscoelastic model of the material based on these measurements have been proposed. One approach has been to optimize coefficients in an assumed viscoelastic model type to match measurements of the frequency-dependent Rayleigh wave speed. Another approach has been to optimize coefficients in an assumed viscoelastic model type to match the complex-valued frequency response function (FRF) between the excitation location and points at known radial distances from it. In the present article, the relative merits of these approaches are explored theoretically, computationally, and experimentally. It is concluded that matching the complex-valued FRF may provide a better estimate of the viscoelastic model type and parameter values; though, as the studies herein show, there are inherent limitations to identifying viscoelastic properties based on surface wave measurements. PMID:22225067

  10. On a connection between supernova occurrence and tidal interaction in early type galaxies

    NASA Technical Reports Server (NTRS)

    Kochhar, R. K.

    1990-01-01

    There are three types of supernovae: two subtypes SNIa and Ib; and SNII. Late type galaxies produce all types of SN, whereas early types (E, SO, and non-Magellanic irregulars IO) have hosted only SNIa. The recently identified SNIb, like SNII, have massive stars as their progenitors. Reviving Oemler and Tinsley's (1979) suggestion that SNIa also come from short-lived stars, the author asserts that they need not occur in all early-type galaxies. SNIa occur only in those galaxies that have access to gas and can form stars in their main body. (SN in nuclear regions are a different matter altogether). In this model, SNIa are not associated with typical stellar population of E/SOs but with regions of localized star formation. Note that data on SNIa from spirals is already consistent with this model.

  11. A review of air exchange rate models for air pollution exposure assessments.

    PubMed

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  12. Assessing local population vulnerability to wind energy development with branching process models: an application to wind energy development

    USGS Publications Warehouse

    Erickson, Richard A.; Eager, Eric A.; Stanton, Jessica C.; Beston, Julie A.; Diffendorfer, James E.; Thogmartin, Wayne E.

    2015-01-01

    Quantifying the impact of anthropogenic development on local populations is important for conservation biology and wildlife management. However, these local populations are often subject to demographic stochasticity because of their small population size. Traditional modeling efforts such as population projection matrices do not consider this source of variation whereas individual-based models, which include demographic stochasticity, are computationally intense and lack analytical tractability. One compromise between approaches is branching process models because they accommodate demographic stochasticity and are easily calculated. These models are known within some sub-fields of probability and mathematical ecology but are not often applied in conservation biology and applied ecology. We applied branching process models to quantitatively compare and prioritize species locally vulnerable to the development of wind energy facilities. Specifically, we examined species vulnerability using branching process models for four representative species: A cave bat (a long-lived, low fecundity species), a tree bat (short-lived, moderate fecundity species), a grassland songbird (a short-lived, high fecundity species), and an eagle (a long-lived, slow maturation species). Wind turbine-induced mortality has been observed for all of these species types, raising conservation concerns. We simulated different mortality rates from wind farms while calculating local extinction probabilities. The longer-lived species types (e.g., cave bats and eagles) had much more pronounced transitions from low extinction risk to high extinction risk than short-lived species types (e.g., tree bats and grassland songbirds). High-offspring-producing species types had a much greater variability in baseline risk of extinction than the lower-offspring-producing species types. Long-lived species types may appear stable until a critical level of incidental mortality occurs. After this threshold, the risk of extirpation for a local population may rapidly increase with only minimal increases in wind mortality. Conservation biologists and wildlife managers may need to consider this mortality pattern when issuing take permits and developing monitoring protocols for wind facilities. We also describe how our branching process models may be generalized across a wider range of species for a larger assessment project and then describe how our methods may be applied to other stressors in addition to wind.

  13. Modelling mortality and discharge of hospitalized stroke patients using a phase-type recovery model.

    PubMed

    Jones, Bruce; McClean, Sally; Stanford, David

    2018-05-01

    We model the length of in-patient hospital stays due to stroke and the mode of discharge using a phase-type stroke recovery model. The model allows for three different types of stroke: haemorrhagic (the most severe, caused by ruptured blood vessels that cause brain bleeding), cerebral infarction (less severe, caused by blood clots) and transient ischemic attack or TIA (the least severe, a mini-stroke caused by a temporary blood clot). A four-phase recovery process is used, where the initial phase depends on the type of stroke, and transition from one phase to the next depends on the age of the patient. There are three differing modes of absorption for this phase-type model: from a typical recovery phase, a patient may die (mode 1), be transferred to a nursing home (mode 2) or be discharged to the individual's usual residence (mode 3). The first recovery phase is characterized by a very high rate of mortality and very low rates of discharge by the other two modes. The next two recovery phases have progressively lower mortality rates and higher mode 2 and 3 discharge rates. The fourth recovery phase is visited only by those who experience a very mild TIA, and they are discharged to home after a short stay. The novelty of our approach to phase representation is two-fold: first, it aligns the phases with labelled diagnosis states, representing stages of illness severity; second, the model allows us to obtain expressions for Key Performance Indicators that are of use to healthcare professionals. This allows us to use a backward estimation process where we leverage the fact that we know the phase of admission (the diagnosis), but not which phases are subsequently entered or when this happens; this strategy improves both computational efficiency and accuracy. The model has clear practical value as it yields length of stay distributions by age and type of stroke, which are useful in resource planning. Also, inclusion of the three modes of discharge permits analyses of outcomes.

  14. A calibrated agent-based computer model of stochastic cell dynamics in normal human colon crypts useful for in silico experiments.

    PubMed

    Bravo, Rafael; Axelrod, David E

    2013-11-18

    Normal colon crypts consist of stem cells, proliferating cells, and differentiated cells. Abnormal rates of proliferation and differentiation can initiate colon cancer. We have measured the variation in the number of each of these cell types in multiple crypts in normal human biopsy specimens. This has provided the opportunity to produce a calibrated computational model that simulates cell dynamics in normal human crypts, and by changing model parameter values, to simulate the initiation and treatment of colon cancer. An agent-based model of stochastic cell dynamics in human colon crypts was developed in the multi-platform open-source application NetLogo. It was assumed that each cell's probability of proliferation and probability of death is determined by its position in two gradients along the crypt axis, a divide gradient and in a die gradient. A cell's type is not intrinsic, but rather is determined by its position in the divide gradient. Cell types are dynamic, plastic, and inter-convertible. Parameter values were determined for the shape of each of the gradients, and for a cell's response to the gradients. This was done by parameter sweeps that indicated the values that reproduced the measured number and variation of each cell type, and produced quasi-stationary stochastic dynamics. The behavior of the model was verified by its ability to reproduce the experimentally observed monocolonal conversion by neutral drift, the formation of adenomas resulting from mutations either at the top or bottom of the crypt, and by the robust ability of crypts to recover from perturbation by cytotoxic agents. One use of the virtual crypt model was demonstrated by evaluating different cancer chemotherapy and radiation scheduling protocols. A virtual crypt has been developed that simulates the quasi-stationary stochastic cell dynamics of normal human colon crypts. It is unique in that it has been calibrated with measurements of human biopsy specimens, and it can simulate the variation of cell types in addition to the average number of each cell type. The utility of the model was demonstrated with in silico experiments that evaluated cancer therapy protocols. The model is available for others to conduct additional experiments.

  15. Depression is linked to hyperglycaemia via suboptimal diabetes self-management: A cross-sectional mediation analysis.

    PubMed

    Schmitt, Andreas; Reimer, André; Hermanns, Norbert; Kulzer, Bernhard; Ehrmann, Dominic; Krichbaum, Michael; Huber, Jorg; Haak, Thomas

    2017-03-01

    To analyse if the association between depressive symptoms and hyperglycaemia is mediated by diabetes self-management. 430 people with diabetes (57.7% type 1, 42.3% type 2) were cross-sectionally assessed using validated self-report scales for depressive symptoms (Center for Epidemiologic Studies Depression Scale (CES-D)) and diabetes self-management (Diabetes Self-Management Questionnaire (DSMQ)); HbA 1c was analysed simultaneously in a central laboratory. Structural equation modelling was used to test if the association between depressive symptoms and hyperglycaemia (HbA 1c ) was mediated by suboptimal self-management in people with type 1 and type 2 diabetes. The hypothesised model of depressive symptoms, diabetes self-management and hyperglycaemia fit the data well for both diabetes types (SRMR≤0.04, TLI≥0.99, CFI>0.99, RMSEA≤0.02 for both models). In both the type 1 and type 2 diabetes group, higher depressive symptoms were associated with lower self-management (P<0.001) and lower self-management was associated with higher HbA 1c (P<0.001). Results indicated that the association between depressive symptoms and hyperglycaemia was significantly mediated by suboptimal diabetes self-management in both type 1 and type 2 diabetes patients (P<0.001). Significant direct associations between depressive symptoms and hyperglycaemia, not mediated by self-management, could not be observed. This study provides good evidence supporting that depression is linked to hyperglycaemia via suboptimal diabetes self-management in both major diabetes types. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A unified inversion scheme to process multifrequency measurements of various dispersive electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Han, Y.; Misra, S.

    2018-04-01

    Multi-frequency measurement of a dispersive electromagnetic (EM) property, such as electrical conductivity, dielectric permittivity, or magnetic permeability, is commonly analyzed for purposes of material characterization. Such an analysis requires inversion of the multi-frequency measurement based on a specific relaxation model, such as Cole-Cole model or Pelton's model. We develop a unified inversion scheme that can be coupled to various type of relaxation models to independently process multi-frequency measurement of varied EM properties for purposes of improved EM-based geomaterial characterization. The proposed inversion scheme is firstly tested in few synthetic cases in which different relaxation models are coupled into the inversion scheme and then applied to multi-frequency complex conductivity, complex resistivity, complex permittivity, and complex impedance measurements. The method estimates up to seven relaxation-model parameters exhibiting convergence and accuracy for random initializations of the relaxation-model parameters within up to 3-orders of magnitude variation around the true parameter values. The proposed inversion method implements a bounded Levenberg algorithm with tuning initial values of damping parameter and its iterative adjustment factor, which are fixed in all the cases shown in this paper and irrespective of the type of measured EM property and the type of relaxation model. Notably, jump-out step and jump-back-in step are implemented as automated methods in the inversion scheme to prevent the inversion from getting trapped around local minima and to honor physical bounds of model parameters. The proposed inversion scheme can be easily used to process various types of EM measurements without major changes to the inversion scheme.

  17. Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles.

    PubMed

    Carlander, Ulrika; Li, Dingsheng; Jolliet, Olivier; Emond, Claude; Johanson, Gunnar

    2016-01-01

    To assess the potential toxicity of nanoparticles (NPs), information concerning their uptake and disposition (biokinetics) is essential. Experience with industrial chemicals and pharmaceutical drugs reveals that biokinetics can be described and predicted accurately by physiologically-based pharmacokinetic (PBPK) modeling. The nano PBPK models developed to date all concern a single type of NP. Our aim here was to extend a recent model for pegylated polyacrylamide NP in order to develop a more general PBPK model for nondegradable NPs injected intravenously into rats. The same model and physiological parameters were applied to pegylated polyacrylamide, uncoated polyacrylamide, gold, and titanium dioxide NPs, whereas NP-specific parameters were chosen on the basis of the best fit to the experimental time-courses of NP accumulation in various tissues. Our model describes the biokinetic behavior of all four types of NPs adequately, despite extensive differences in this behavior as well as in their physicochemical properties. In addition, this simulation demonstrated that the dose exerts a profound impact on the biokinetics, since saturation of the phagocytic cells at higher doses becomes a major limiting step. The fitted model parameters that were most dependent on NP type included the blood:tissue coefficients of permeability and the rate constant for phagocytic uptake. Since only four types of NPs with several differences in characteristics (dose, size, charge, shape, and surface properties) were used, the relationship between these characteristics and the NP-dependent model parameters could not be elucidated and more experimental data are required in this context. In this connection, intravenous biodistribution studies with associated PBPK analyses would provide the most insight.

  18. Are Regional Habitat Models Useful at a Local-Scale? A Case Study of Threatened and Common Insectivorous Bats in South-Eastern Australia

    PubMed Central

    McConville, Anna; Law, Bradley S.; Mahony, Michael J.

    2013-01-01

    Habitat modelling and predictive mapping are important tools for conservation planning, particularly for lesser known species such as many insectivorous bats. However, the scale at which modelling is undertaken can affect the predictive accuracy and restrict the use of the model at different scales. We assessed the validity of existing regional-scale habitat models at a local-scale and contrasted the habitat use of two morphologically similar species with differing conservation status (Mormopterus norfolkensis and Mormopterus species 2). We used negative binomial generalised linear models created from indices of activity and environmental variables collected from systematic acoustic surveys. We found that habitat type (based on vegetation community) best explained activity of both species, which were more active in floodplain areas, with most foraging activity recorded in the freshwater wetland habitat type. The threatened M. norfolkensis avoided urban areas, which contrasts with M. species 2 which occurred frequently in urban bushland. We found that the broad habitat types predicted from local-scale models were generally consistent with those from regional-scale models. However, threshold-dependent accuracy measures indicated a poor fit and we advise caution be applied when using the regional models at a fine scale, particularly when the consequences of false negatives or positives are severe. Additionally, our study illustrates that habitat type classifications can be important predictors and we suggest they are more practical for conservation than complex combinations of raw variables, as they are easily communicated to land managers. PMID:23977296

  19. Analyzing the impact of modeling choices and assumptions in compartmental epidemiological models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutaro, James J.; Pullum, Laura L.; Ramanathan, Arvind

    In this study, computational models have become increasingly used as part of modeling, predicting, and understanding how infectious diseases spread within large populations. These models can be broadly classified into differential equation-based models (EBM) and agent-based models (ABM). Both types of models are central in aiding public health officials design intervention strategies in case of large epidemic outbreaks. We examine these models in the context of illuminating their hidden assumptions and the impact these may have on the model outcomes. Very few ABM/EBMs are evaluated for their suitability to address a particular public health concern, and drawing relevant conclusions aboutmore » their suitability requires reliable and relevant information regarding the different modeling strategies and associated assumptions. Hence, there is a need to determine how the different modeling strategies, choices of various parameters, and the resolution of information for EBMs and ABMs affect outcomes, including predictions of disease spread. In this study, we present a quantitative analysis of how the selection of model types (i.e., EBM vs. ABM), the underlying assumptions that are enforced by model types to model the disease propagation process, and the choice of time advance (continuous vs. discrete) affect the overall outcomes of modeling disease spread. Our study reveals that the magnitude and velocity of the simulated epidemic depends critically on the selection of modeling principles, various assumptions of disease process, and the choice of time advance.« less

  20. Analyzing the impact of modeling choices and assumptions in compartmental epidemiological models

    DOE PAGES

    Nutaro, James J.; Pullum, Laura L.; Ramanathan, Arvind; ...

    2016-05-01

    In this study, computational models have become increasingly used as part of modeling, predicting, and understanding how infectious diseases spread within large populations. These models can be broadly classified into differential equation-based models (EBM) and agent-based models (ABM). Both types of models are central in aiding public health officials design intervention strategies in case of large epidemic outbreaks. We examine these models in the context of illuminating their hidden assumptions and the impact these may have on the model outcomes. Very few ABM/EBMs are evaluated for their suitability to address a particular public health concern, and drawing relevant conclusions aboutmore » their suitability requires reliable and relevant information regarding the different modeling strategies and associated assumptions. Hence, there is a need to determine how the different modeling strategies, choices of various parameters, and the resolution of information for EBMs and ABMs affect outcomes, including predictions of disease spread. In this study, we present a quantitative analysis of how the selection of model types (i.e., EBM vs. ABM), the underlying assumptions that are enforced by model types to model the disease propagation process, and the choice of time advance (continuous vs. discrete) affect the overall outcomes of modeling disease spread. Our study reveals that the magnitude and velocity of the simulated epidemic depends critically on the selection of modeling principles, various assumptions of disease process, and the choice of time advance.« less

Top