Science.gov

Sample records for preischaemic erythropoietin administration

  1. Alternative route for erythropoietin ocular administration.

    PubMed

    Resende, Ana Paula; São-Braz, Berta; Delgado, Esmeralda

    2013-08-01

    This study aimed to find an alternative route for erythropoietin (EPO) ocular administration because of its neuroprotective and neuroregenerative known properties. Ocular penetration of EPO after subconjunctival injection was assessed, and potential side-effects on the haematocrit for a 28-day period were also evaluated. Wistar Hannover female albino rats (n = 42) divided into seven groups of six were used. One group (n = 6) served as control. Six groups (n = 36) received 1,000 UI of EPO through the subconjunctival route in one of the eyes. According to the group, animals were humanely killed at 12 h (n = 6), 24 h (n = 6), 36 h (n = 6), 48 h (n = 6), and 60 h (n = 6), after EPO administration, in a total of 30 animals. Enucleation of both eyes was performed, and EPO protein distribution in the rat's retina was analyzed by immunohistochemistry. Another group of animals (n = 6) was used to collect blood samples and perform haematocrit analysis at 0, 7, 14, 21, and 28 days after unilateral EPO subconjunctival administration. The evaluation of EPO expression in the animals' retinas after subconjunctival administration yielded a strong immunostaining signal. Among the retina's layers, EPO expression was more evident in the RGC layer 24 h after the administration, and was still present on that layer till the end of the study (60 h). When administered subconjunctivally EPO reached several neuronal cells, in all retinal layers. The subconjunctival EPO administration did not cause significant changes in the haematocrit values over a 28-day period. In this study, it was demonstrated that EPO reached the retinal ganglion cell layers when administered subconjunctivally. EPO reached the retina 24 h after the subconjunctival administration, and was still present 60 h after the administration. Furthermore, it was also proved that EPO subconjunctival administration did not cause any haematopoietic significant side-effects. The subconjunctival route was shown to be a promising

  2. Efficiency of recombinant erythropoietin administration in hemoglobinopathy H.

    PubMed

    Hasanova, M; Asadov, Ch; Alimirzoyeva, Z; Mammadova, T; Shirinova, A

    2014-01-01

    Alpha-thalassemia is widely spread in human population and one of the most common types of α-thalassemia is hemoglobinopathy H which develops with mild microcytic hypochromic anemia, hepatosplenomegaly and jaundice. The basic method of anemia correction is blood transfusion. However this method has crucial deficiencies. As it is known recombinant erythropoetin (rEPO) contributes to erythroid proliferation and could be used for anemia treatment. The aim of the study was to qualify efficiency of administration rEPO in complex therapy of hemaglobinopathy H. Study involved irregularly transfused 14 patients with hemoglobinopathy H (2 males and 12 females). Control group included 30 healthy persons. Recombinant erythropoietin (Eprex) administrated hypodermically 10,000 units 3 times a week during 6 months. Average hemoglobin level before treatment was 62 g/l. Responses to the rEPO treatment varied from 9 to 70 g/l, 9 (64%) of patients had a good response, showed an increase in hemoglobin level more than 20 g/l. In 4 patients (29%) had a moderate response (10-20 g/l), but only in 1 (7%) patient occurred poor response. Changing the parameters of erithrocyte indices, hemoglobin fractions, serum iron and serum ferritin level are not statistically significant. It can be concluded that the use of rEPO in complex therapy of hemaglobinopathy H, leads to increased levels of hemoglobin and consequently reducing the need for blood transfusions.

  3. Erythropoietin

    PubMed Central

    Bunn, H. Franklin

    2013-01-01

    During the past century, few proteins have matched erythropoietin (Epo) in capturing the imagination of physiologists, molecular biologists, and, more recently, physicians and patients. Its appeal rests on its commanding role as the premier erythroid cytokine, the elegant mechanism underlying the regulation of its gene, and its remarkable impact as a therapeutic agent, arguably the most successful drug spawned by the revolution in recombinant DNA technology. This concise review will begin with a synopsis of the colorful history of this protein, culminating in its purification and molecular cloning. It then covers in more detail the contemporary understanding of Epo’s physiology as well as its structure and interaction with its receptor. A major part of this article focuses on the regulation of the Epo gene and the discovery of HIF, a transcription factor that plays a cardinal role in molecular adaptation to hypoxia. In the concluding section, a synopsis of Epo’s role in disorders of red blood cell production will be followed by an assessment of the remarkable impact of Epo therapy in the treatment of anemias, as well as concerns that provide a strong impetus for the development of even safer and more effective treatment. PMID:23457296

  4. Anti-erythropoietin and anti-thrombopoietin antibodies induced after administration of recombinant human erythropoietin.

    PubMed

    Shin, Sug Kyun; Pack, Seung Pil; Oh, Jin-Gyo; Kang, Nam Kyu; Chang, Myung Hee; Chung, Yoon Hee; Kim, Sung-Jo; Lee, Jong Wook; Heo, Tae-Hwe

    2011-12-01

    Recombinant human erythropoietin (rhEPO) has been successfully used for correcting renal anemia. However, recent studies have raised some concerns about the safety of rhEPO treatment due to its immunogenic side effect - pure red cell aplasia (PRCA). We now report a case of development of anti-EPO neutralizing antibodies (Abs) implicated in thrombocytopenia as well as erythrocytopenia. A 35-year-old man had a history of administering rhEPO (epoetin alfa, epoetin beta and darbepoetin alfa) for 2years to treat renal anemia. The hematological parameters were collected. Anti-EPO, anti-platelet, and anti-thrombopoietin (TPO) Ab assays were performed to test the presence of autoreactive Abs. After performing antibody assays due to severe resistance to rhEPO treatment, a high titer of anti-EPO neutralizing Abs was detected. However, unexpectedly, this patient also showed thrombocytopenia rather than PRCA. We investigated the cause of the marked thrombocytopenia and found anti-TPO Abs in patient serum. To our best knowledge, this is the first report of the development of anti-TPO Abs during rhEPO treatment for anemia.

  5. Preoperative erythropoietin administration in patients with prostate cancer undergoing radical prostatectomy without transfusion.

    PubMed

    Lee, Byung Woo; Park, Min Gu; Cho, Dae Yeon; Park, Seok San; Yeo, Jeong Kyun

    2014-02-01

    In this study, we administered erythropoietin preoperatively to patients who underwent open radical prostatectomy without transfusion to increase their hemoglobin levels and investigated the efficacy of this procedure. We evaluated 62 patients who underwent open radical prostatectomy performed by the same surgeon between June 2005 and January 2011. The 22 patients who refused transfusion were assigned to group 1; the patients who accepted transfusion were assigned to group 2. Before surgery, we administered erythropoietin beta to group 1 patients whose hemoglobin levels were <12 g/dL and retrospectively compared the clinical data of the two groups. We used the t-test and the chi-square test for statistical analysis. Mean preoperative hemoglobin levels in group 1 after erythropoietin administration (14.5 g/dL) were significantly higher than those in group 2 (13.59 g/dL, p=0.003). Moreover, the difference in the mean hemoglobin levels before and after surgery for group 1 patients (3.55 g/dL) significantly exceeded that for group 2 patients (2.08 g/dL, p=0.000). Additional analysis revealed no statistically significant differences in perioperative complications between the groups. Preoperative erythropoietin administration increased the safety margin of hemoglobin levels, and this strategy worked sufficiently well in our experience.

  6. EFFECT OF ERYTHROPOIETIN ADMINISTRATION AND TRANSFUSION THRESHOLD ON NEUROLOGICAL RECOVERY AFTER TRAUMATIC BRAIN INJURY

    PubMed Central

    Robertson, Claudia S.; Hannay, H. Julia; Yamal, Jose-Miguel; Gopinath, Shankar; Goodman, J. Clay; Tilley, Barbara C.

    2014-01-01

    . 8/99 [8.1%], p=0.009). Conclusions and Relevance In patients with closed head injury, neither the administration of erythropoietin nor maintaining hemoglobin concentration > 10 g/dl resulted in improved neurological outcome at 6 months and the 10 g/dl threshold was associated with a higher incidence of adverse events.. These findings do not support either approach in this setting. PMID:25058216

  7. Effects of Erythropoietin Administration on Adrenal Glands of Landrace/Large White Pigs after Ventricular Fibrillation.

    PubMed

    Faa, Armando; Faa, Gavino; Papalois, Apostolos; Obinu, Eleonora; Locci, Giorgia; Pais, Maria Elena; Lelovas, Pavlos; Barouxis, Dimitrios; Pantazopoulos, Charalampos; Vasileiou, Panagiotis V; Iacovidou, Nicoletta; Xanthos, Theodoros

    2016-01-01

    Aim. To evaluate the effects of erythropoietin administration on the adrenal glands in a swine model of ventricular fibrillation and resuscitation. Methods. Ventricular fibrillation was induced via pacing wire forwarded into the right ventricle in 20 female Landrace/Large White pigs, allocated into 2 groups: experimental group treated with bolus dose of erythropoietin (EPO) and control group which received normal saline. Cardiopulmonary resuscitation (CPR) was performed immediately after drug administration as per the 2010 European Resuscitation Council (ERC) guidelines for Advanced Life Support (ALS) until return of spontaneous circulation (ROSC) or death. Animals who achieved ROSC were monitored, mechanically ventilated, extubated, observed, and euthanized. At necroscopy, adrenal glands samples were formalin-fixed, paraffin-embedded, and routinely processed. Sections were stained with hematoxylin-eosin. Results. Oedema and apoptosis were the most frequent histological changes and were detected in all animals in the adrenal cortex and in the medulla. Mild and focal endothelial lesions were also detected. A marked interindividual variability in the degree of the intensity of apoptosis and oedema at cortical and medullary level was observed within groups. Comparing the two groups, higher levels of pathological changes were detected in the control group. No significant difference between the two groups was observed regarding the endothelial changes. Conclusions. In animals exposed to ventricular fibrillation, EPO treatment has protective effects on the adrenal gland.

  8. The role of excessive versus acute administration of erythropoietin in attenuating hepatic ischemia-reperfusion injury.

    PubMed

    Pappo, Orit; Ben-Ari, Ziv; Shevtsov, Evgeni; Avlas, Orna; Gassmann, Max; Ravid, Amiram; Cheporko, Yelena; Hochhauser, Edith

    2010-12-01

    Ischemia-reperfusion injury (I/R) is the main cause of primary graft nonfunction. Our aim was to evaluate the effect of excessive versus acute administration of erythropoietin (EPO) in attenuating the hepatic injury induced by I/R in mice. The effect of segmental (70%) hepatic ischemia was evaluated in a transgenic mouse line with constitutive overexpression of human EPO cDNA and in wild-type (WT) mice. Mice were randomly allocated to 5 main experimental groups: (i) WT-sham, (ii) WT ischemia, (iii) WT ischemia + recombinant human erythropoietin (rhEPO), (iv) transgenic-sham, and (v) transgenic ischemia. The EPO-pretreated mice showed a significant reduction in liver enzyme levels and intrahepatic caspase-3 activity and fewer apoptotic hepatocytes (p < 0.05 for all) compared with the WT untreated I/R group. EPO decreased c-Jun N-terminal kinase (JNK) phosphorylation and nuclear factor-κB (NF-κB) expression during I/R. In transgenic I/R livers, baseline histology showed diffused hepatic injury, and no significant beneficial effect was noted between the WT untreated and the transgenic I/R mice. In conclusion, acute pretreatment with EPO in WT mice attenuated in vivo I/R liver injury. However, in excessive EPO overexpression, the initial liver injury abolished the beneficial effect of EPO. These findings have important implications for the potential use of acute EPO in I/R injury during liver transplantation.

  9. Preclinical evaluation of erythropoietin administration in a model of radiation-induced kidney dysfunction

    SciTech Connect

    Andratschke, Nicolaus; Schnaitera, Andrea; Weber, Wolfgang A.; Caia, Lu; Schill, Sabine; Wiedenmann, Nicole; Schwaiger, Markus; Molls, Michael; Nieder, Carsten . E-mail: cnied@hotmail.com

    2006-04-01

    Purpose: To test whether the clinically available growth factor erythropoietin (EPO) influences radiation-induced normal-tissue damage in a model of kidney dysfunction. Methods: Animal experiments were conducted to test the role of EPO administration in a C3H mouse model of unilateral kidney irradiation with 6, 8, and 10 Gy and to assess the effects of 2 different dose levels of EPO. The kidney function was assessed before radiotherapy, as well as 19, 25, 31, and 37 weeks thereafter by means of {sup 99m}Tc-dimercaptosuccinat scans (static scintigraphy). Results: Concomitant EPO administration significantly increased the degree of radiation-induced kidney dysfunction. A dose of 2,000 IU/kg body weight per injection tended to cause more damage than the lower dose of 500 IU/kg. Conclusion: Administration of growth factors concomitant to radiotherapy might modify the development of kidney dysfunction. Although insulin-like growth factor-1 has previously been shown to protect the kidney, such an effect could not be demonstrated for EPO. The latter agent even increased the development of nephropathy.

  10. Late-onset blueberry muffin lesions following recombinant erythropoietin administration in a premature infant.

    PubMed

    Pandey, Vishal; Dummula, Krishna; Fraga, Garth; Parimi, Prabhu

    2012-10-01

    Recombinant erythropoietin is being used in premature population for anemia of prematurity. It is considered very safe in this population, although risks are still being evaluated. We report the first case of dermal erythropoiesis as a side effect of recombinant erythropoietin in an extremely prematurely born infant presenting with late-onset blueberry muffin lesions.

  11. Erythropoietin administration increases splenic erythroferrone protein content and liver TMPRSS6 protein content in rats.

    PubMed

    Gurieva, Iuliia; Frýdlová, Jana; Rychtarčíková, Zuzana; Vokurka, Martin; Truksa, Jaroslav; Krijt, Jan

    2017-02-28

    Erythroferrone (ERFE) and TMPRSS6 are important proteins in the regulation of iron metabolism. The objective of the study was to examine splenic ERFE and liver TMPRSS6 synthesis in rats treated with a combination of iron and erythropoietin (EPO). EPO was administered to female Wistar rats at 600U/day for four days, iron-pretreated rats received 150mg of iron before EPO treatment. Content of ERFE and TMPRSS6 proteins was determined by commercial antibodies. Iron pretreatment prevented the EPO-induced decrease in hepcidin expression. Content of phosphorylated SMAD 1,5,8 proteins was decreased in the liver by both EPO and iron plus EPO treatment. Fam132b expression in the spleen was increased both by EPO and iron plus EPO treatments; these treatments also significantly induced splenic Fam132a expression. ERFE protein content in the spleen was increased both by EPO and iron plus EPO to a similar extent. EPO administration increased TMPRSS6 content in the plasma membrane-enriched fraction of liver homogenate; in iron-pretreated rats, this increase was abolished. The results confirm that iron pretreatment prevents the EPO-induced decrease in liver Hamp expression. This effect probably occurs despite high circulating ERFE levels, since EPO-induced ERFE protein synthesis is not influenced by iron pretreatment.

  12. Erythropoietin administration partially prevents adipose tissue loss in experimental cancer cachexia models

    PubMed Central

    Penna, Fabio; Busquets, Silvia; Toledo, Miriam; Pin, Fabrizio; Massa, David; López-Soriano, Francisco J.; Costelli, Paola; Argilés, Josep M.

    2013-01-01

    Cancer-associated cachexia is characterized, among other symptoms, by a dramatic loss of both muscle and fat. In addition, the cachectic syndrome is often associated with anemia. The object of the present investigation was to assess the effects of erythropoietin (EPO) treatment on experimental cancer cachexia models. The results clearly show that, in addition to the improvement of the hematocrit, EPO treatment promoted a partial preservation of adipose tissue while exerting negligible effects on muscle loss. Administration of EPO to tumor-bearing animals resulted in a significant increase of lipoprotein lipase (LPL) activity in adipose tissue, suggesting that the treatment favored triacylglycerol (TAG) accumulation in the adipose tissue. In vitro experiments using both adipose tissue slices and 3T3-L1 adipocytes suggests that EPO is able to increase the lipogenic rate through the activation of its specific receptor (EPOR). This metabolic pathway, in addition to TAG uptake by LPL, may contribute to the beneficial effects of EPO on fat preservation in cancer cachexia. PMID:23966665

  13. Single high-dose erythropoietin administration immediately after reperfusion in patients with ST-segment elevation myocardial infarction: results of the erythropoietin in myocardial infarction trial.

    PubMed

    Prunier, Fabrice; Bière, Loïc; Gilard, Martine; Boschat, Jacques; Mouquet, Frédéric; Bauchart, Jean-Jacques; Charbonnier, Bernard; Genée, Olivier; Guérin, Patrice; Warin-Fresse, Karine; Durand, Eric; Lafont, Antoine; Christiaens, Luc; Abi-Khalil, Wissam; Delépine, Stéphane; Benard, Thomas; Furber, Alain

    2012-02-01

    Preclinical studies and pilot clinical trials have shown that high-dose erythropoietin (EPO) reduces infarct size in acute myocardial infarction. We investigated whether a single high-dose of EPO administered immediately after reperfusion in patients with ST-segment elevation myocardial infarction (STEMI) would limit infarct size. A total of 110 patients undergoing successful primary coronary intervention for a first STEMI was randomized to receive standard care either alone (n = 57) or combined with intravenous administration of 1,000 U/kg of epoetin β immediately after reperfusion (n = 53). The primary end point was infarct size assessed by gadolinium-enhanced cardiac magnetic resonance after 3 months. Secondary end points included left ventricular (LV) volume and function at 5-day and 3-month follow-up, incidence of microvascular obstruction (MVO), and safety. Erythropoietin significantly decreased the incidence of MVO (43.4% vs 65.3% in the control group, P = .03) and reduced LV volume, mass, and function impairment at 5-day follow-up (all P < .05). After 3 months, median infarct size (interquartile range) was 17.5 g (7.6-26.1 g) in the EPO group and 16.0 g (9.4-28.2 g) in the control group (P = .64); LV mass, volume, and function were not significantly different between the 2 groups. The same number of major adverse cardiac events occurred in both groups. Single high-dose EPO administered immediately after successful reperfusion in patients with STEMI did not reduce infarct size at 3-month follow-up. However, this regimen decreased the incidence of MVO and was associated with transient favorable effects on LV volume and function. Copyright © 2012 Mosby, Inc. All rights reserved.

  14. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous administration in rats.

    PubMed

    Woo, Sukyung; Krzyzanski, Wojciech; Jusko, William J

    2006-12-01

    The pharmacokinetics (PK) and pharmacodynamics (PD) of recombinant human erythropoietin (rHuEPO) were studied in rats after single i.v. and s.c. administration at three dose levels (450, 1350, and 4050 IU/kg). The plasma concentrations of rHuEPO and its erythropoietic effects including reticulocyte (RET), red blood cell (RBC), and hemoglobin (Hb) levels were determined. A two-compartment model with dual input rate and nonlinear disposition was used to characterize the PK of rHuEPO. The catenary indirect response model with several compartments reflecting the bone marrow and circulating erythropoietic cells was applied. The s.c. doses exhibited slow absorption (T(max) = 12 h) and incomplete bioavailability (F = 0.59). In placebo groups, RBC and Hb values gradually increased over time with growth of the rats, and the changes in the baselines monitored from 8 to 32 weeks of age were described by a nonlinear growth function. All doses resulted in dose-dependent increases in RET counts followed by an immediate decline below the baseline at around 6 days and returned to the predose level in 21-24 days after dosing. A subsequent steady increase of RBC and Hb levels followed and reached peaks at 6 days. A tolerance phenomenon observed at all dose levels was modeled by a negative feedback inhibition with the relative change in Hb level. The PK/PD model well described the erythropoietic effects of rHuEPO as well as tolerance, thereby yielding important PD parameters (S(max) = 1.87 and SC(50) = 65.37 mIU/ml) and mean lifespans of major erythropoietic cell populations in rats.

  15. Long-term L-carnitine administration reduces erythropoietin resistance in chronic hemodialysis patients with thalassemia minor.

    PubMed

    Di Iorio, Biagio R; Guastaferro, Pasquale; Cillo, Nicola; Cucciniello, Emanuele; Bellizzi, Vincenzo

    2007-01-01

    Both thalassemia and carnitine deficiency represent independent causes of erythropoietin resistance, and thus anemia, in uremic patients. We evaluated the unknown long-term effects of L-carnitine administration in β-thalassemic on chronic hemodialysis. We studied twelve subjects (M = 8; F = 4) affected by β-thalassemia minor (β-thal; HbA2 level = 6.6 ± 0.6%) and forty non-thalassemic subjects (M = 24; F = 16) as controls (C), on chronic hemodialysis treatment. Patients and controls were at target hemoglobin levels (11-12g/dl) prior to the study and underwent to i.v. L-carnitine administration for a one year period-time. Groups were comparable for age, gender, serum levels of hemoglobin (Hb), iron, ferritine, PTH and aluminum, transferrin saturation, and dialysis modalities. During the study both groups showed significant Hb increase and erythropoietin (EPO) decrease; as a difference, such changes emerged at the 3rd month in C but at the 8th month in β-thal. At start, during the dialysis session the erythrocyte MCV reduced in C but not in β-thal (65.3 ± 3.2 to 65.5 ± 3.2 fl; NS); along carnitine administration period, however, MCV during dialysis decreased also in β-thal, starting since the 9th month of treatment. This study provides evidence of the lowering of EPO resistance in β-thalassemia patients on hemodialysis due to long-term carnitine administration. Thus, prolonged carnitine supplementation should be suggested to patients on dialysis affected by β-thalassemia with poorly responsive anemia, or requiring large doses of erythropoietin.

  16. Delayed administration of darbepoetin or erythropoietin protects against ischemic acute renal injury and failure.

    PubMed

    Johnson, D W; Pat, B; Vesey, D A; Guan, Z; Endre, Z; Gobe, G C

    2006-05-01

    Administration of human recombinant erythropoietin (EPO) at time of acute ischemic renal injury (IRI) inhibits apoptosis, enhances tubular epithelial regeneration, and promotes renal functional recovery. The present study aimed to determine whether darbepoetin-alfa (DPO) exhibits comparable renoprotection to that afforded by EPO, whether pro or antiapoptotic Bcl-2 proteins are involved, and whether delayed administration of EPO or DPO 6 h following IRI ameliorates renal dysfunction. The model of IRI involved bilateral renal artery occlusion for 45 min in rats (N = 4 per group), followed by reperfusion for 1-7 days. Controls were sham-operated. Rats were treated at time of ischemia or sham operation (T0), or post-treated (6 h after the onset of reperfusion, T6) with EPO (5000 IU/kg), DPO (25 mug/kg), or appropriate vehicle by intraperitoneal injection. Renal function, structure, and immunohistochemistry for Bcl-2, Bcl-XL, and Bax were analyzed. DPO or EPO at T0 significantly abrogated renal dysfunction in IRI animals (serum creatinine for IRI 0.17 +/- 0.05 mmol/l vs DPO-IRI 0.08 +/- 0.03 mmol/l vs EPO-IRI 0.04 +/- 0.01 mmol/l, P = 0.01). Delayed administration of DPO or EPO (T6) also significantly abrogated subsequent renal dysfunction (serum creatinine for IRI 0.17 +/- 0.05 mmol/l vs DPO-IRI 0.06 +/- 0.01 mmol/l vs EPO-IRI 0.03 +/- 0.03 mmol/l, P = 0.01). There was also significantly decreased tissue injury (apoptosis, P < 0.05), decreased proapoptotic Bax, and increased regenerative capacity, especially in the outer stripe of the outer medulla, with DPO or EPO at T0 or T6. These results reaffirm the potential clinical application of DPO and EPO as novel renoprotective agents for patients at risk of ischemic acute renal failure or after having sustained an ischemic renal insult.

  17. Effect of pre-ischaemic conditioning on hypoxic depolarization of dopamine efflux in the rat caudate brain slice measured in real-time with fast cyclic voltammetry.

    PubMed

    Davidson, Colin; Coomber, Ben; Gibson, Claire L; Young, Andrew M J

    2011-10-01

    Fast cyclic voltammetry can be used to measure dopamine release after oxygen and glucose deprivation (OGD) induced anoxic depolarization in vitro. Here we measure dopamine efflux with 1s time resolution, which is appropriate to measure OGD-evoked dopamine efflux accurately. In the present study, we examined whether OGD-evoked dopamine efflux could be used to show pre-ischaemic conditioning in the rat caudate brain slice. Caudate slices were exposed to 0, 2, or 10 min OGD pre-ischaemic conditioning, then 60 min later exposed to a second OGD event of 15 min duration. We measured the OGD-evoked dopamine efflux using fast cyclic voltammetry and in some experiments caudate dopamine and DOPAC tissue levels were measured using HPLC and 20 μm cryostat sections were Nissl stained to indicate neuronal loss. We found that 10 but not 2 min OGD pre-ischaemic conditioning resulted in a longer time to onset of OGD-evoked dopamine efflux on the main OGD event (475 ± 31 and 287 ± 30 s for 10 Vs 0 min pre-ischaemic conditioning respectively). Further, 10 min OGD pre-ischaemic conditioning resulted in less dopamine efflux on the second OGD event (4.23 ± 1.12 and 8.14 ± 0.82 μM for 10 Vs 0 min pre-ischaemic conditioning respectively), despite these slices having similar tissue dopamine content and DOPAC/DA ratio, and the rate of dopamine release was slower in the main OGD event (21 ± 5 and 74 ± 8 nM/s for 10 Vs 0 min pre-ischaemic conditioning respectively). These data suggest that 10 min OGD pre-ischaemic conditioning can evoke tolerance to a second OGD event and that voltammetric recording of OGD-evoked dopamine efflux is a useful model of pre-ischaemic conditioning in neuronal tissue.

  18. Administration of recombinant erythropoietin alone does not improve the phenotype in iron refractory iron deficiency anemia patients.

    PubMed

    Lehmberg, Kai; Grosse, Regine; Muckenthaler, Martina U; Altamura, Sandro; Nielsen, Peter; Schmid, Hansjörg; Graubner, Ulrike; Oyen, Florian; Zeller, Wolfgang; Schneppenheim, Reinhard; Janka, Gritta E

    2013-03-01

    Mutations in transmembrane protease, serine 6 (TMPRSS6) cause iron refractory iron deficiency anemia (IRIDA). Parenteral iron administration may slightly improve hemoglobin level but is troublesome for patients. Optimal treatment has yet to be determined. We identified five patients from four independent families displaying the IRIDA picture with truncating biallelic mutations in TMPRSS6, one of which is novel. Liver iron determined by superconducting quantum interference device biosusceptometry ranged from 390 to 720 µg Fe/g wet weight (normal range 100-500; n = 3). Intestinal iron absorption (12 and 32 %, normal range 10-50; n = 2) and 59Fe erythrocyte incorporation after ingestion of 59Fe (57 and 38 %, normal range 70-90; n = 2) were inadequately low for iron-deficient anemic individuals. Baseline serum erythropoietin was elevated or borderline high in four patients. Administration of recombinant human erythropoietin (rhEPO) at up to 273 and 188 U/kg body weight/week alone did not improve anemia or result in a decrease of urinary hepcidin in two individuals. In conclusion, the ability of exogenous rhEPO to increase hemoglobin level appears to be impaired in IRIDA.

  19. Can local Erythropoietin administration enhance bone regeneration in osteonecrosis of femoral head?

    PubMed

    Bakhshi, Hooman; Rasouli, Mohammad R; Parvizi, Javad

    2012-08-01

    Osteonecrosis of femoral head (ONFH) is a challenging disease. Regardless of underlying causes, the ultimate result in all cases is disruption of femoral head blood supply. Once the disease starts, it is progressive in 80% of cases. Since the majority of the affected individuals are young, every effort should be focused on preserving the patients own femoral head. These years, the role of angiogenic growth factors has been investigated with promising results in animal models of ONFH. Erythropoietin (EPO) is a well known hormone that has been used in treatment of chronic anemia for many years with few side effects. Considering the angiogenic properties of EPO, we hypothesize that local delivery of recombinant human EPO during core decompression will enhance bone regeneration in ONFH. In this way we also can avoid systemic side effects of EPO.

  20. Accidental ten times overdose administration of recombinant human erythropoietin (rh-EPO) up to 318,000 units a day in acute myocardial infarction: report of two cases.

    PubMed

    Shin, Dae-Hee; Kwon, Young-Il; Choi, Sung-Il; Park, Ui-Soon; Lee, Je; Shin, Jin-Ho; Lee, Jae-Ung; Kim, Soon-Gil; Kim, Jeong-Hyun; Lim, Heon-Kil; Lee, Bang-Hun; Kim, Kyung-Soo

    2006-02-01

    The cytokine erythropoietin protects the heart from ischaemic injury, in part by preventing apoptosis. But appropriate dose of erythropoietin for the protection of injured heart has not been studied. While we were researching the cardiac protective effects of erythropoietin in acute myocardial infarction, we experienced two cases of accidental nearly ten times overdose administration of erythropoietin up to 318,000 units instead of 33,000 units on the second day of three scheduled days of treatment. So a total of 384,000 units of erythropoietin were administered during three days. In case 1, the ALT level soared up to 386 U/l on the second day of administration and decreased slowly. It was back to normal state 3 months later. The AST level increased slowly up to 391 U/l and normalized 3 months later. Haemoglobin level was elevated up to 15.7 g/dl (14.7 g/dl at admission) and, 3 months later, normalized to 14.8 g/dl. In case 2, the ALT level was elevated up to 98 U/l on the second day of administration and decreased slowly. Three months later, the ALT level was normalized. The AST level also increased slowly up to 71 U/l and normalized 3 months later. Haemoglobin level was elevated up to 15.6 g/dl (13.8 g/dl at admission) and, 3 months later, normalized to 13.6 g/dl. In these two cases reported, these patients, even after massive overdose, tolerated it relatively well and the only side-effects we found were elevated liver enzyme and haemoglobin levels.

  1. Short-term intra-nasal erythropoietin administration with low sialic acid content is without toxicity or erythropoietic effects.

    PubMed

    Lagarto, Alicia; Bueno, Viviana; Sanchez, Jose A; Couret, Micaela; Valdes, Odalys; Barzaga, Pedro; Lopez, Raisell; Guerra, Isbel; Gabilondo, Tatiana; Vega, Yamile; Beausoleil, Irene

    2012-11-01

    The objective of this investigation was to assess the toxicological potential of nasal formulation of erythropoietin with low sialic acid content (Neuro EPO) after 28 days of intra-nasal dosing in rats besides to evaluate the immunogenicity and erythropoietic effect of the test substance. Healthy Wistar rats of both sexes were used for 28 days subacute toxicity and immunogenicity assays. Doses evaluated were 3450, 4830 and 6900 UI/kg/day. The toxicological endpoints examined included animal body weight, food consumption, hematological and biochemical patterns, antibodies determination, selected tissue weights and histopathological examination. Reversibility of toxic effects was evaluated at high dose 14 days after treatment period. Female B6D2F1 mice were used for evaluated erythropoietic effect of the nasal formulation. Hematological endpoints were examined every week during 28 days of intra-nasal dosing of 6900 UI/kg/day. Variations of hematological patterns were not observed after 28 days of intranasal dosing. A slight increase in glucose level of treated animals within the normal range was observed. This effect was not dose related and was reversible. Antibody formation was not observed in any of the test doses. Histopathological examination of organs and tissues did not reveal treatment induced changes. The administration of Neuro EPO in normocythaemic mice did not produce erythropoietic effect. These results suggest that Neuro EPO could be used as a neuroprotective agent, without significant systemic haematological side effects.

  2. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous dose administration in cynomolgus monkeys.

    PubMed

    Ramakrishnan, Rohini; Cheung, Wing K; Farrell, Francis; Joffee, Linda; Jusko, William J

    2003-07-01

    The pharmacokinetics (PK) and pharmacodynamics (PD) of recombinant human erythropoietin (rHuEpo) were investigated in monkeys. A two-compartment model with dual input and nonlinear disposition could adequately characterize the PK of rHuEpo upon three intravenous and six s.c. administrations. The kinetic model suggests rapid zero-order absorption of part of the s.c. dose (35%) followed by a slow first-order entry through the lymphatics. The s.c. treatments caused a delayed dose-dependent rise in reticulocyte numbers peaking between 100 and 200 h and returning to baseline by 300 to 400 h. This was followed by steady rises in red blood cell (RBC) and hemoglobin counts. A physiological catenary model based on a life span concept with rHuEpo stimulating the production of two cell populations (progenitor cells and erythroblasts) was applied. The model could adequately describe the reticulocyte responses upon the various s.c. treatments, giving estimates of maturation times for cells in the various stages of differentiation including the early progenitor cells (70.4 h), erythroblasts (15.0 h), and reticulocytes (141.6 h) that are close to the literature reported values. An Smax of 3.13 was estimated indicating a moderate maximum stimulation of erythropoiesis, whereas the SC50 was 842 IU/l. The model was used to effectively predict the increases in RBC and hemoglobin counts as well. In conclusion, the physiological PK/PD model developed could adequately describe the time course of rHuEpo effects, yielding realistic estimates of cell life span parameters.

  3. Erythropoietin Derived by Chemical Synthesis

    PubMed Central

    Shieh, Jae-Hung; Peguero, Elizabeth; Hendrickson, Ronald; Moore, Malcolm A. S.; Danishefsky, Samuel J.

    2014-01-01

    Erythropoietin is a signaling glycoprotein that controls the fundamental process of erythropoiesis, orchestrating the production and maintenance of red blood cells. As administrated clinically, erythropoietin has a polypeptide backbone with complex dishomogeneity in its carbohydrate domains. Here we describe the total synthesis of homogeneous erythropoietin with consensus carbohydrate domains incorporated at all of the native glycosylation sites. The oligosaccharide sectors were built by total synthesis and attached stereospecifically to peptidyl fragments of the wild-type primary sequence, themselves obtained by solid-phase peptide synthesis. The glycopeptidyl constructs were joined by chemical ligation, followed by metal-free dethiylation, and subsequently folded. This homogeneous erythropoietin glycosylated at the three wild-type aspartates with N-linked high-mannose sialic acid–containing oligosaccharides and O-linked glycophorin exhibits Procrit-level in vivo activity in mice. PMID:24337294

  4. Intravitreal administration of erythropoietin and preservation of retinal ganglion cells in an experimental rat model of glaucoma.

    PubMed

    Tsai, James C; Wu, Li; Worgul, Basil; Forbes, Max; Cao, Jingtai

    2005-11-01

    The aim of this pilot study was to evaluate the potential neuroprotective effect of an intravitreal injection of erythropoietin (EPO) on retinal ganglion cell (RGC) preservation in an episcleral vessel cautery-induced rat model of glaucoma. The animals were randomly assigned into an unoperated control group (n = 11) and three experimental groups: episcleral vessel cautery only (EVC: n = 4), episcleral vessel cautery with intravitreal normal saline injection (EVC-NS; n = 5), and episcleral vessel cautery with intravitreal EPO treatment (EVC-EPO; n = 9). The intravitreal injections were limited to 5 mul containing either normal saline alone or 200 ng of EPO in normal saline administered immediately after the cautery procedure. RGCs were labeled retrogradely by FluoroGold neuron tracer 5 to 7 days prior to the collection of eyes at day 21 and counted in whole flat-mounted retinas with fluorescence microscopy. Compared to the RGC counts in retinal specimens from unoperated control rats (12,619 +/- 310), the corresponding RGC counts were significantly decreased in both the EVC (9116 +/- 273; p < 0.005) and EVC-NS (9489 +/- 293; p < 0.005) groups but not significantly decreased in the EVC-EPO (11,212 +/- 414; p = 0.051) treated retinas. A single intravitreal 200 ng dose of EPO appears to have a protective effect on RGC viability in an in vivo rat model of glaucoma. Further experimental studies are needed to confirm these preliminary results and to optimize the appropriate dose and frequency of EPO delivery in animal models of glaucoma.

  5. Delayed Administration of Pyroglutamate Helix B Surface Peptide (pHBSP), a Novel Nonerythropoietic Analog of Erythropoietin, Attenuates Acute Kidney Injury

    PubMed Central

    Patel, Nimesh S A; Kerr-Peterson, Hannah L; Brines, Michael; Collino, Massimo; Rogazzo, Mara; Fantozzi, Roberto; Wood, Elizabeth G; Johnson, Florence L; Yaqoob, Muhammad M; Cerami, Anthony; Thiemermann, Christoph

    2012-01-01

    In preclinical studies, erythropoietin (EPO) reduces ischemia-reperfusion–associated tissue injury (for example, stroke, myocardial infarction, acute kidney injury, hemorrhagic shock and liver ischemia). It has been proposed that the erythropoietic effects of EPO are mediated by the classic EPO receptor homodimer, whereas the tissue-protective effects are mediated by a hetero-complex between the EPO receptor monomer and the β-common receptor (termed “tissue-protective receptor”). Here, we investigate the effects of a novel, selective-ligand of the tissue-protective receptor (pyroglutamate helix B surface peptide [pHBSP]) in a rodent model of acute kidney injury/dysfunction. Administration of pHBSP (10 μg/kg intraperitoneally [i.p.] 6 h into reperfusion) or EPO (1,000 IU/kg i.p. 4 h into reperfusion) to rats subjected to 30 min ischemia and 48 h reperfusion resulted in significant attenuation of renal and tubular dysfunction. Both pHBSP and EPO enhanced the phosphorylation of Akt (activation) and glycogen synthase kinase 3β (inhibition) in the rat kidney after ischemia-reperfusion, resulting in prevention of the activation of nuclear factor-κB (reduction in nuclear translocation of p65). Interestingly, the phosphorylation of endothelial nitric oxide synthase was enhanced by EPO and, to a much lesser extent, by pHBSP, suggesting that the signaling pathways activated by EPO and pHBSP may not be identical. PMID:22415011

  6. Single high-dose intramyocardial administration of erythropoietin promotes early intracardiac proliferation, proves safety and restores cardiac performance after myocardial infarction in rats.

    PubMed

    Gäbel, Ralf; Klopsch, Christian; Furlani, Dario; Yerebakan, Can; Li, Wenzhong; Ugurlucan, Murat; Ma, Nan; Steinhoff, Gustav

    2009-07-01

    Various studies demonstrate erythropoietin (EPO) as a cardioprotective growth hormone. Recent findings reveal EPO in addition might induce proliferation cascades inside myocardium. We aimed to evaluate whether a single high-dose intramyocardial EPO administration safely elevates early intracardiac cell proliferation after myocardial infarction (MI). Following permanent MI in rats EPO (3000 U/kg) in MI EPO-treatment group (n=99) or saline in MI control group (n=95) was injected along the infarction border. Intramyocardial EPO injection activated the genes of cyclin D1 and cell division cycle 2 kinase (cdc2) at 24 h after MI (n=6, P<0.05) evaluated by real time-PCR. The number of Ki-67+ intracardiac cells analyzed following immunohistochemistry was significantly enhanced by 45% in the peri-infarction zone at 48 h after EPO treatment (n=6, P<0.001). Capillary density was significantly enhanced by 17% as early as seven days (n=6, P<0.001). After six weeks, left ventricular performance assessed by conductance catheters was restored under baseline and dobutamine induced stress conditions (n=11-14, P<0.05). No thrombus formation was observed in the heart and in distant organs. No deleterious systemic adverse effects were apparent. Single high-dose intramyocardial EPO delivery proved safety and promoted early intracardiac cell proliferation, which might in part have contributed to an attenuated myocardial functional decline.

  7. The Impact of Tumor Expression of Erythropoietin Receptors and Erythropoietin on Clinical Outcome of Esophageal Cancer Patients Treated With Chemoradiation

    SciTech Connect

    Rades, Dirk Golke, Helmut; Schild, Steven E.; Kilic, Ergin

    2008-05-01

    Background: To investigate the impact of tumor erythropoietin receptors (Epo-R) and erythropoietin (Epo) expression in 64 patients with Stage III esophageal cancer receiving or not receiving erythropoietin during chemoradiation. Materials and Methods: The impact of tumor Epo-R expression, Epo expression, and 10 additional factors (age, Karnofsky-Performance-Score [KPS], tumor length, T and N stage, histology and grading, hemoglobin during radiotherapy, erythropoietin administration, surgery) on overall survival (OS) and locoregional control (LC) was evaluated. Results: Improved OS was associated with low ({<=}20%) Epo expression (p = 0.049), KPS >80 (p 0.008), T3 stage (p = 0.010), hemoglobin {>=}12 g/dL (p < 0.001), and surgery (p = 0.010). Erythropoietin receptor expression showed a trend (p = 0.09). Locoregional control was associated with T stage (p = 0.005) and hemoglobin (p < 0.001), almost with erythropoietin administration (p = 0.06). On multivariate analyses, OS was associated with KPS (p = 0.045) and hemoglobin (p = 0.032), LC with hemoglobin (p < 0.001). Patients having low expression of both Epo-R and Epo had better OS (p = 0.003) and LC (p = 0.043) than others. Two-year OS was nonsignificantly better (p = 0.25) in patients with low Epo-R expression receiving erythropoietin (50%) than in those with higher Epo-R expression receiving erythropoietin (21%), low Epo-R expression/no erythropoietin administration (29%), or higher Epo-R expression/no erythropoietin administration (18%). Two-year LC rates were, respectively, 65%, 31%, 26%, and 29% (p = 0.20). Results for Epo expression were similar. Conclusions: Higher Epo-R expression or Epo expression seemed to be associated with poorer outcomes. Patients with low expression levels receiving erythropoietin seemed to do better than patients with higher expression levels or not receiving erythropoietin. The data need to be confirmed in a larger series of patients.

  8. Pre-immunization with an Intramuscular Injection of AAV9-Human Erythropoietin Vectors Reduces the Vector-Mediated Transduction following Re-Administration in Rat Brain

    PubMed Central

    Yang, Chun; Yang, Wei-Hua; Chen, Sha-Sha; Ma, Bao-Feng; Li, Bin; Lu, Tao; Qu, Ting-Yu; Klein, Ronald L.; Zhao, Li-Ru; Duan, Wei-Ming

    2013-01-01

    We have recently demonstrated that adeno-associated virus serotype 9 (AAV9)-mediated human erythropoietin (hEPO) gene delivery into the brain protects dopaminergic (DA) neurons in the substantia nigra in a rat model of Parkinson's disease. In the present study, we examined whether pre-exposure to AAV9-hEPO vectors with an intramuscular or intrastriatal injection would reduce AAV9-mediated hEPO transduction in rat brain. We first characterized transgene expression and immune responses against AAV9-hEPO vectors in rat striatum at 4 days, 3 weeks and 6 months, and with doses ranging from 1011 to 1013 viral genomes. To sensitize immune system, rats received an injection of AAV9-hEPO into either the muscle or the left striatum, and then sequentially an injection of AAV9-hEPO into the right striatum 3 weeks later. We observed that transgene expression exhibited in a time course and dose dependent manner, and inflammatory and immune responses displayed in a time course manner. Intramuscular, but not intrastriatal injections of AAV9-hEPO resulted in reduced levels of hEPO transduction and increased levels of the major histocompatibility complex (MHC) class I and class II antigen expression in the striatum following AAV9-hEPO re-administration. There were infiltration of the cluster of differentiation 4 (CD4)-and CD8-lymphacytes, and accumulation of activated microglial cells and astrocytes in the virally injected striatum. In addition, the sera from the rats with intramuscular injections of AAV9-hEPO contained greater levels of antibodies against both AAV9 capsid protein and hEPO protein than the other treatment groups. hEPO gene expression was negatively correlated with the levels of circulating antibodies against AAV9 capsid protein. Intramuscular and intrastriatal re-administration of AAV9-hEPO led to increased numbers of red blood cells in peripheral blood. Our results suggest that pre-immunization with an intramuscular injection can lead to the reduction of transgene

  9. The pre-ischaemic neuroprotective effects of N1-dansyl-spermine in a transient focal cerebral ischaemia model in mice.

    PubMed

    Li, Jun; Henman, Martin C; Tatlisumak, Turgut; Shaw, Graham G; Doyle, Karen M

    2005-09-07

    The pre-ischaemic neuroprotective potential of a novel polyamine/NMDA antagonist N1-dansyl-spermine (1-5 mg kg(-1)) was studied in a transient focal cerebral ischaemia model in mice in comparison to a reference compound, MK-801 (1 or 3 mg kg(-1)). The intraluminal suture transient middle cerebral artery occlusion (MCAO) model was used. N1-dansyl-spermine and MK-801 were administered (i.p.) 30 min prior to ischaemia. A range of histological and behavioural assessments was employed. N1-dansyl-spermine had a comparable effect to MK-801 at reducing the percentage hemisphere lesion volume (%HLV) at the doses tested. Furthermore, N1-dansyl-spermine reduced the ischaemic brain oedema, which MK-801 did not. N1-dansyl-spermine significantly reversed the decrease of locomotor activity (LMA) caused by the MCAO and showed a significant effect at improving the rotarod performance impaired by MCAO. In contrast, MK-801 had no beneficial effect on sensorimotor function and even worsened the LMA. These results clearly demonstrate the pre-ischaemic neuroprotective effect of N1-dansyl-spermine in a transient focal cerebral ischaemia model.

  10. Association between early administration of high-dose erythropoietin in preterm infants and brain MRI abnormality at term-equivalent age.

    PubMed

    Leuchter, Russia Ha-Vinh; Gui, Laura; Poncet, Antoine; Hagmann, Cornelia; Lodygensky, Gregory Anton; Martin, Ernst; Koller, Brigitte; Darqué, Alexandra; Bucher, Hans Ulrich; Hüppi, Petra Susan

    2014-08-27

    Premature infants are at risk of developing encephalopathy of prematurity, which is associated with long-term neurodevelopmental delay. Erythropoietin was shown to be neuroprotective in experimental and retrospective clinical studies. To determine if there is an association between early high-dose recombinant human erythropoietin treatment in preterm infants and biomarkers of encephalopathy of prematurity on magnetic resonance imaging (MRI) at term-equivalent age. A total of 495 infants were included in a randomized, double-blind, placebo-controlled study conducted in Switzerland between 2005 and 2012. In a nonrandomized subset of 165 infants (n=77 erythropoietin; n=88 placebo), brain abnormalities were evaluated on MRI acquired at term-equivalent age. Participants were randomly assigned to receive recombinant human erythropoietin (3000 IU/kg; n=256) or placebo (n=239) intravenously before 3 hours, at 12 to 18 hours, and at 36 to 42 hours after birth. The primary outcome of the trial, neurodevelopment at 24 months, has not yet been assessed. The secondary outcome, white matter disease of the preterm infant, was semiquantitatively assessed from MRI at term-equivalent age based on an established scoring method. The resulting white matter injury and gray matter injury scores were categorized as normal or abnormal according to thresholds established in the literature by correlation with neurodevelopmental outcome. At term-equivalent age, compared with untreated controls, fewer infants treated with recombinant human erythropoietin had abnormal scores for white matter injury (22% [17/77] vs 36% [32/88]; adjusted risk ratio [RR], 0.58; 95% CI, 0.35-0.96), white matter signal intensity (3% [2/77] vs 11% [10/88]; adjusted RR, 0.20; 95% CI, 0.05-0.90), periventricular white matter loss (18% [14/77] vs 33% [29/88]; adjusted RR, 0.53; 95% CI, 0.30-0.92), and gray matter injury (7% [5/77] vs 19% [17/88]; adjusted RR, 0.34; 95% CI, 0.13-0.89). In an analysis of secondary

  11. 21 CFR 864.7250 - Erythropoietin assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Erythropoietin assay. 864.7250 Section 864.7250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7250...

  12. Testing for recombinant erythropoietin.

    PubMed

    Delanghe, Joris R; Bollen, Mathieu; Beullens, Monique

    2008-03-01

    Erythropoietin (Epo) is a glycoprotein hormone that promotes the production of red blood cells. Recombinant human Epo (rhEpo) is illicitly used to improve performance in endurance sports. Doping in sports is discouraged by the screening of athletes for rhEpo. Both direct tests (indicating the presence of exogeneous Epo isoforms) and indirect tests (indicating hematological changes induced by exogenous Epo administration) can be used for Epo detection. At present, the test adopted by the World Anti Doping Agency is based on a combination of isoelectric focusing and double immunoblotting, and distinguishes between endogenous and rhEpo. However, the adopted monoclonal anti-Epo antibodies are not monospecific. Therefore, the test can occasionally lead to the false-positive detection of rhEpo (epoetin-beta) in post-exercise, protein-rich urine, or in case of contamination of the sample with microorganisms. An improved preanalytical care may counteract a lot of these problems. Adaptation of the criteria may be helpful to further refine direct Epo testing. Indirect tests have the disadvantage that they require blood instead of urine samples, but they can be applied to detect a broader range of performance improving techniques which are illicitly used in sports.

  13. Anemia treatment with erythropoietin in pregnant renal recipients.

    PubMed

    Cyganek, A; Pietrzak, B; Kociszewska-Najman, B; Sanko-Resmer, J; Paczek, L; Wielgos, M

    2011-10-01

    Pregnancies in renal transplant patients are considered to be high risk. Anemia is one of the major complications of pregnancy occurring among 65% to 85% of cases in this setting, especially since these patients carry additional risk factors. Herein we have presented five renal transplant recipients who were women who were treated with human recombinant erythropoietin due to severe anemia that developed during pregnancy. Hemoglobin levels below 9 g/dL after 3 weeks of oral iron administration were assumed to be qualifying criteria for erythropoietin treatment. No complication was observed to be associated with the treatment. Two of the five patients required blood transfusions despite erythropoietin administration. Two cases delivered small for gestational fetus age. Erythropoietin therapy in pregnant kidney transplant recipients should be considered to be a safe method to reduce the need for blood transfusions.

  14. Erythropoietin and Nonhematopoietic Effects.

    PubMed

    Nekoui, Alireza; Blaise, Gilbert

    2017-01-01

    Erythropoietin (EPO) is the main regulator of red blood cell production. Since the 1990s, EPO has been used for the treatment of anemia associated with end-stage renal failure and chemotherapy. The erythropoietin receptors were found on other organs such as the brain, spinal cord, heart and skin. In addition, it has been shown that many tissues produce and locally release EPO in response to hypoxic, biochemical and physical stress. In cellular, animal and clinical studies, EPO protects tissues from ischemia and reperfusion injury, has antiapoptotic effects and improves regeneration after injury. In this article, we mainly review the nonhematopoietic effects and new possible clinical indications for EPO.

  15. Sex-Related Difference in Nitric Oxide Metabolites Levels after Nephroprotectant Supplementation Administration against Cisplatin-Induced Nephrotoxicity in Wistar Rat Model: The Role of Vitamin E, Erythropoietin, or N-Acetylcysteine.

    PubMed

    Nematbakhsh, Mehdi; Pezeshki, Zahra

    2013-01-01

    Background. Nitric oxide (NO) concentration in serum is altered by cisplatin (CP), and NO influences CP-induced nephrotoxicity. The effect of nephroprotectant agent supplementation (vitamin E, human recombinant erythropoietin (EPO), or n-acetylcysteine (NAC)) on the NO metabolites levels after CP administration in the two genders was determined. Methods. Sixty-four adult Wistar rats were randomly divided into 10 groups. Male and female rats in different groups received vehicle (saline), CP (7 mg/kg) alone, CP plus EPO (100 IU/kg), CP plus vitamin E (250 mg/kg), and CP plus NAC (600 mg/kg). CP was administrated as a single dose, but the supplementations were given for a period of 7 days. Results. In male rats, the serum levels of total NO metabolites (NO x ) and nitrite were increased significantly (P < 0.05) by CP. However, vitamin E significantly reduced the serum levels of these metabolites, which was increased by administration of CP (P < 0.05), and such findings were not observed for female rats. The EPO or NAC did not influence NO metabolites neither in male rats nor in female rats. Conclusion. Although vitamin E, EPO, and NAC are reported to be nephroprotectant agents against CP-induced nephrotoxicity, only vitamin E could reduce the level of all NO metabolites only in male rats.

  16. Erythropoietin and oxidative stress.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2008-05-01

    Unmitigated oxidative stress can lead to diminished cellular longevity, accelerated aging, and accumulated toxic effects for an organism. Current investigations further suggest the significant disadvantages that can occur with cellular oxidative stress that can lead to clinical disability in a number of disorders, such as myocardial infarction, dementia, stroke, and diabetes. New therapeutic strategies are therefore sought that can be directed toward ameliorating the toxic effects of oxidative stress. Here we discuss the exciting potential of the growth factor and cytokine erythropoietin for the treatment of diseases such as cardiac ischemia, vascular injury, neurodegeneration, and diabetes through the modulation of cellular oxidative stress. Erythropoietin controls a variety of signal transduction pathways during oxidative stress that can involve Janus-tyrosine kinase 2, protein kinase B, signal transducer and activator of transcription pathways, Wnt proteins, mammalian forkhead transcription factors, caspases, and nuclear factor kappaB. Yet, the biological effects of erythropoietin may not always be beneficial and may be poor tolerated in a number of clinical scenarios, necessitating further basic and clinical investigations that emphasize the elucidation of the signal transduction pathways controlled by erythropoietin to direct both successful and safe clinical care.

  17. Erythropoietin is Neuroprotective in a Transgenic Mouse Model of Multiple System Atrophy

    PubMed Central

    Pallua, Anton; Stefanova, Nadia; Poewe, Werner; Wenning, Gregor K.

    2016-01-01

    Multiple system atrophy is a rapidly progressive neurodegenerative disorder with a markedly reduced life expectancy. Failure of symptomatic treatment raises an urgent need for disease-modifying strategies. We have investigated the neuroprotective potential of erythropoietin in (proteolipid protein)-α-synuclein transgenic mice exposed to 3-nitropropionic acid featuring multiple system atrophy-like pathology including oligodendroglial α-synuclein inclusions and selective neuronal degeneration. Mice were treated with erythropoietin starting before (early erythropoietin) and after (late erythropoietin) intoxication with 3-nitropropionic acid. Nonintoxicated animals receiving erythropoietin and intoxicated animals treated with saline served as control groups. Behavioral tests included pole test, open field activity, and motor behavior scale. Immunohistochemistry for tyrosine hydroxylase and dopamine and cyclic adenosine monophosphate-regulated phosphoprotein (DARPP-32) was analyzed stereologically. Animals receiving erythropoietin before and after 3-nitropropionic acid intoxication scored significantly lower on the motor behavior scale and they performed better in the pole test than controls with no significant difference between early and late erythropoietin administration. Similarly, rearing scores were worse in 3-nitropropionic acid-treated animals with no difference between the erythropoietin subgroups. Immunohistochemistry revealed significant attenuation of 3-nitropropionic acid-induced loss of tyrosine hydroxylase and DARPP-32 positive neurons in substantia nigra pars compacta and striatum, respectively, in both erythropoietin-treated groups without significant group difference in the substantia nigra. However, at striatal level, a significant difference between early and late erythropoietin administration was observed. In the combined (proteolipid protein)-α-synuclein 3-nitropropionic acid multiple system atrophy mouse model, erythropoietin appears to rescue

  18. Human recombinant erythropoietin in the prevention and treatment of anemia of prematurity.

    PubMed

    Ohls, Robin K

    2002-01-01

    Human recombinant erythropoietin has been studied extensively as treatment for a variety of anemias. Since in vitro studies showed the primary etiology of the anemia of prematurity to be insufficient serum erythropoietin concentrations, clinical trials have evaluated the administration of human recombinant erythropoietin to preterm infants to treat this indication. These studies were followed by pharmacokinetic determinations in animal models and preterm infants, which revealed that preterm infants required greater doses of human recombinant erythropoietin because of a more rapid clearance and greater volume of distribution. Recent studies have focused on the administration of human recombinant erythropoietin in the first weeks of life to alleviate the anemia caused by excessive phlebotomy losses, and to prevent the anemia of prematurity. In addition, human recombinant erythropoietin has been tried clinically in a variety of neonatal populations in an attempt to decrease or eliminate transfusions. Although much information has been accumulated about the clinical use of human recombinant erythropoietin in preterm infants over the last 15 years, many questions remain unanswered. The evolution of clinical practice in the care of extremely low birthweight infants continues to affect the number of transfusions. It is likely that human recombinant erythropoietin administration in combination with instituting rigorous transfusion guidelines and decreasing phlebotomy losses will have the greatest impact in decreasing transfusion requirements in all preterm and term neonates, regardless of the etiology of their anemia.

  19. Erythropoietin and Neonatal Neuroprotection

    PubMed Central

    Juul, Sandra E.; Pet, Gillian C.

    2015-01-01

    Certain groups of neonates are at high risk of developing long-term neurodevelopmental impairment (NDI) and might be considered candidates for neuroprotective interventions. This chapter will explore some of these high-risk groups, relevant mechanisms of brain injury, and specific mechanisms of cellular injury and death. The potential of erythropoietin (Epo) to act as a neuroprotective agent for neonatal brain injury will be discussed. Clinical trials of Epo neuroprotection in preterm and term infants are updated. PMID:26250911

  20. Erythropoietin and Breast Cancer

    DTIC Science & Technology

    2008-03-01

    and/or findings contained in this report are those of the author( s ) and should not be construed as an official Department of the Army position...CONTRACT NUMBER Erythropoietin and Breast Cancer 5b. GRANT NUMBER W81XWH-06-1-0737 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT...NUMBER Arthur J. Sytkowski, MD 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING

  1. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  2. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  3. Neuroprotective Effect of Erythropoietin in Postoperation Cervical Spinal Cord Injury: Case Report and Review

    PubMed Central

    Nekoui, Alireza; Del Carmen Escalante Tresierra, Violeta; Abdolmohammadi, Sadegh; Shedid, Daniel; Blaise, Gilbert

    2015-01-01

    Introduction: New research shows shown that erythropoietin has neuro-protective effects. In preclinical trial and human clinical trials, it was demonstrated that erythropoietin is effective treatment for spinal cord injury. Early administration of medications after injury increases the hope of attenuating secondary damage and maximizing an improved outcome. Case presentation: A 42-year-old female patient presented with gait instability and progressive weakness in her right leg over a 6-year period. She was diagnosed as myelomalacia and was candidate for cervical discectomy. After surgery, she suffered from right hemiplegia due to spinal cord injury that did not respond well to routine treatment. Darbepoetin alpha (Aranesp) 100 mcg, subcutaneous daily for three days, was added to the patient’s treatment seven days after trauma and resulted in rapid improvement. The patient recovered progressively and was discharged from the hospital ten days after erythropoietin therapy. Conclusions: This case report supports the beneficial role of erythropoietin in function, maintenance, and recovery of neurons. Erythropoietin is a double-edge sword, as long-term erythropoietin therapy has some complications, like thromboembolism and stroke. Recent studies suggested that erythropoietin should be given as single high dose to exert a rapid neuro-protective effect with minimal hematopoietic side effects. We believe that the effects and other adverse consequences of erythropoietin and its non-erythropoietic derivatives should be evaluated in clinical trials. PMID:26705520

  4. Erythropoietin use and abuse

    PubMed Central

    John, M. Joseph; Jaison, Vineeth; Jain, Kunal; Kakkar, Naveen; Jacob, Jubbin J.

    2012-01-01

    Recombinant human erythropoietin (rhEPO) is arguably the most successful therapeutic application of recombinant DNA technology till date. It was isolated in 1977 and the gene decoded in 1985. Since then, it has found varied applications, especially in stimulating erythropoiesis in anemia due to chronic conditions like renal failure, myelodysplasia, infections like HIV, in prematurity, and in reducing peri-operative blood transfusions. The discovery of erythropoietin receptor (EPO-R) and its presence in non-erythroid cells has led to several areas of research. Various types of rhEPO are commercially available today with different dosage schedules and modes of delivery. Their efficacy in stimulating erythropoiesis is dose dependent and differs according to the patient's disease and nutritional status. EPO should be used carefully according to guidelines as unsolicited use can result in serious adverse effects. Because of its capacity to improve oxygenation, it has been abused by athletes participating in endurance sports and detecting this has proved to be a challenge. PMID:22470858

  5. Physiology and Pharmacology of Erythropoietin

    PubMed Central

    Jelkmann, Wolfgang

    2013-01-01

    Summary Human erythropoietin (Epo) is a 30.4 kDa glycoprotein hormone composed of a single 165 amino acid residues chain to which four glycans are attached. The kidneys are the primary sources of Epo, its synthesis is controlled by hypoxia-inducible transcription factors (HIFs). Epo is an essential factor for the viability and proliferation of erythrocytic progenitors. Whether Epo exerts cytoprotection outside the bone marrow still needs to be clarified. Epo deficiency is the primary cause of the anemia in chronic kidney disease (CKD). Treatment with recombinant human Epo (rhEpo, epoetin) can be beneficial not only in CKD but also for other indications, primarily anemia in cancer patients receiving chemotherapy. Considering unwanted events, the administration of rhEpo or its analogs may increase the incidence of thromboembolism. The expiry of the patents for the original epoetins has initiated the production of similar biological medicinal products (‘biosimilars’). Furthermore, analogs (darbepoetin alfa, methoxy PEG-epoetin beta) with prolonged survival in circulation have been developed (‘biobetter’). New erythropoiesis-stimulating agents are in clinical trials. These include compounds that augment erythropoiesis directly (e.g. Epo mimetic peptides or activin A binding protein) and chemicals that act indirectly by stimulating endogenous Epo synthesis (HIF stabilizers). PMID:24273483

  6. [Overview of erythropoietin].

    PubMed

    Lacombe, C; Mayeux, P; Casadevall, N

    1991-01-01

    Erythropoietin (Epo) is a glycoprotein that promotes the proliferation and differentiation of erythrocyte precursors. The major site of Epo production is the kidney and the liver is the main extra renal site of Epo production. Epo producing cells were identified by in situ hybridization, in the kidney, they are peritubular cells, most likely endothelial cells of the cortex and outer medulla; in the liver, they are mainly hepatocytes. The Epo secretion is stimulated by hypoxia, which is detected by an oxygen sensor. The Epo receptor is a multimeric protein, one chain which binds Epo has been cloned. However the structure of the Epo receptor is still puzzling, and one or more accessory chains remain to be identified. Since the clonage of the Epo gene, recombinant Epo has been available and allowed the treatment of patients with renal diseases with a constant efficacy.

  7. Erythropoietin and blood doping

    PubMed Central

    Robinson, N; Giraud, S; Saudan, C; Baume, N; Avois, L; Mangin, P; Saugy, M

    2006-01-01

    Objective and method To outline the direct and indirect approaches in the fight against blood doping in sports, the different strategies that have been used and are currently being used to fight efficiently against blood doping are presented and discussed. Results and conclusions The paper outlines the different approaches and diagnostic tools that some federations have to identify and target sportspeople demonstrating abnormal blood profiles. Originally blood tests were introduced for medical reasons and for limiting misuse of recombinant human erythropoietin (rHuEPO). In this way it became possible to prevent athletes with haematocrit levels well above normal, and potentially dangerous for their health, competing in sport. Today, with nearly a decade of blood testing experience, sports authorities should be familiar with some of the limitations and specially the ability of blood tests performed prior to competitions to fight efficiently against the misuse of rHuEPO, blood transfusion, and artificial haemoglobin. PMID:16799100

  8. Erythropoietin and diabetes mellitus

    PubMed Central

    Maiese, Kenneth

    2015-01-01

    Erythropoietin (EPO) is a 30.4 kDa growth factor and cytokine that governs cell proliferation, immune modulation, metabolic homeostasis, vascular function, and cytoprotection. EPO is under investigation for the treatment of variety of diseases, but appears especially suited for the treatment of disorders of metabolism that include diabetes mellitus (DM). DM and the complications of this disease impact a significant portion of the global population leading to disability and death with currently limited therapeutic options. In addition to its utility for the treatment of anemia, EPO can improve cardiac function, reduce fatigue, and improve cognition in patients with DM as well as regulate cellular energy metabolism, obesity, tissue repair and regeneration, apoptosis, and autophagy in experimental models of DM. Yet, EPO can have adverse effects that involve the vasculature system and unchecked cellular proliferation. Critical to the cytoprotective capacity and the potential for a positive clinical outcome with EPO are the control of signal transduction pathways that include protein kinase B, the mechanistic target of rapamycin, Wnt signaling, mammalian forkhead transcription factors of the O class, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), and AMP activated protein kinase. Therapeutic strategies that can specifically target and control EPO and its signaling pathways hold great promise for the development of new and effective clinical treatments for DM and the complications of this disorder. PMID:26516410

  9. Erythropoietin and diabetes mellitus.

    PubMed

    Maiese, Kenneth

    2015-10-25

    Erythropoietin (EPO) is a 30.4 kDa growth factor and cytokine that governs cell proliferation, immune modulation, metabolic homeostasis, vascular function, and cytoprotection. EPO is under investigation for the treatment of variety of diseases, but appears especially suited for the treatment of disorders of metabolism that include diabetes mellitus (DM). DM and the complications of this disease impact a significant portion of the global population leading to disability and death with currently limited therapeutic options. In addition to its utility for the treatment of anemia, EPO can improve cardiac function, reduce fatigue, and improve cognition in patients with DM as well as regulate cellular energy metabolism, obesity, tissue repair and regeneration, apoptosis, and autophagy in experimental models of DM. Yet, EPO can have adverse effects that involve the vasculature system and unchecked cellular proliferation. Critical to the cytoprotective capacity and the potential for a positive clinical outcome with EPO are the control of signal transduction pathways that include protein kinase B, the mechanistic target of rapamycin, Wnt signaling, mammalian forkhead transcription factors of the O class, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), and AMP activated protein kinase. Therapeutic strategies that can specifically target and control EPO and its signaling pathways hold great promise for the development of new and effective clinical treatments for DM and the complications of this disorder.

  10. Erythropoietin Neuroprotection in Neonatal Cardiac Surgery: A Phase I/II Safety and Efficacy Trial

    PubMed Central

    Andropoulos, Dean B.; Brady, Ken; Easley, R. Blaine; Dickerson, Heather A.; Voigt, Robert G.; Shekerdemian, Lara S.; Meador, Marcie R.; Eisenman, Carol A.; Hunter, Jill V.; Turcich, Marie; Rivera, Carlos; McKenzie, E. Dean; Heinle, Jeffrey S.; Fraser, Charles D.

    2012-01-01

    Objectives Neonates undergoing complex congenital heart surgery have a significant incidence of neurological problems. Erythropoietin has anti-apoptotic, anti-excitatory, and anti-inflammatory properties to prevent neuronal cell death in animal models, and improves neurodevelopmental outcomes in full term neonates with hypoxic ischemic encephalopathy. We designed a prospective phase I/II trial of erythropoietin neuroprotection in neonatal cardiac surgery to assess safety, and indicate efficacy. Methods Neonates undergoing surgery for D-transposition of the great vessels, hypoplastic left heart syndrome, or aortic arch reconstruction were randomized to 3 perioperative doses of erythropoietin, or placebo. Neurodevelopmental testing with Bayley Scales of Infant and Toddler Development III was performed at age 12 months. Results 59 patients received study drug. Safety profile, including MRI brain injury, clinical events, and death, was not different between groups. 3 patients in each group died. 42 patients (22 erythropoietin, 20 placebo, 79% of survivors) returned for 12-month follow-up. The mean Cognitive Scores were erythropoietin, 101.1 ± 13.6, placebo, 106.3 ± 10.8 (p=0.19); Language Scores were erythropoietin 88.5 ± 12.8, placebo 92.4 ± 12.4 (p=0.33); and Motor Scores were erythropoietin 89.9 ± 12.3, placebo 92.6 ± 14.1, (p=0.51). Conclusions Safety profile for erythropoietin administration was not different than placebo. Neurodevelopmental outcomes were not different between groups, however this pilot study was not powered to definitively address this outcome. Lessons learned from the current study suggest optimized study design features for a larger prospective trial to definitively address the utility of erythropoietin for neuroprotection in this population. PMID:23102686

  11. Erythropoietin in Stroke Therapy: Friend or Foe

    PubMed Central

    Souvenir, Rhonda; Doycheva, Desislava; Zhang, John H; Tang, Jiping

    2015-01-01

    Recombinant human erythropoietin (rhEPO), over the past decade, was hailed as an auspicious therapeutic strategy for various types of brain injuries. The promising results from experiments conducted in animal models of stroke led to a hurried clinical trial that was swiftly aborted in Phase II. The multiple neuroprotective modalities of rhEPO failed to translate smoothly to human adult ischemic brain injury and provided limited aid to neonates. In light of the antithetical results, several questions were raised as to why and how this clinical trial failed. There was bolstering evidence from the preliminary studies that pointed to a bright future. Therefore, the objective of this review is to address these questions by discussing the signaling pathways of rhEPO that are reported to mediate the neuroprotective effect in various animal models of brain injury. Major biomedical bibliographical databases (MEDLINE, ISI, PubMed, and Cochrane Library) were searched with the use of keywords such as erythropoietin, stroke, neonatal hypoxia ischemia, intracerebral hemorrhage, etc. This article will discuss the confounding factors that influence the efficacy of rhEPO treatment hence challenging its clinical translatability. Lastly, rhEPO may still be a promising therapeutic candidate for neonates in spite of its shortcoming in clinical trial if caution is taken with the dose and duration of its administration. PMID:25620101

  12. Biology of erythropoietin.

    PubMed

    Lacombe, C; Mayeux, P

    1998-08-01

    Erythropoietin (Epo) controls the proliferation, differentiation and survival of the erythroid progenitors. This cytokine was cloned in 1985 and rapidly became used for treatment of anemia of renal failure, opening the way to the first clinical trials of a hematopoietic growth factor. The clonage of one chain of the Epo receptor followed in 1989, thereby opening the research on intracellular signal transduction induced by Epo. Epo is synthesized mainly by the kidney and the liver and sequences required for tissue-specific expression have been localized in the Epo gene. A 3'enhancer is responsible for hypoxia-inducible Epo gene expression. HIF-1 alpha and beta proteins bind to this enhancer. Gene regulation by hypoxia is widespread in many cells and involves numerous genes in addition to the Epo gene. The Epo receptor belongs to the cytokine receptor family and includes a p66 chain which is dimerized upon Epo activation; two accessory proteins defined by cross-linking remain to be characterized. Epo binding induces the stimulation of Jak2 tyrosine kinase. Jak2 activation leads to the tyrosine phosphorylation of several proteins including the Epo receptor itself. As a result, different intracellular pathways are activated: Ras/MAP kinase, phosphatidylinositol 3-kinase and STAT transcription factors. However, the exact mechanisms by which the proliferation and/or the differentiation of erythroid cells are regulated after Epo stimulation are not known. Furthermore, target disruption of both Epo and Epo receptor showed that Epo was not involved in the commitment of the erythroid lineage and seemed to act mainly as a survival factor.

  13. Increased preoperative collection of autologous blood with recombinant human erythropoietin therapy in tertiary care hospitals of Jammu

    PubMed Central

    Sharma, Kumkum; Sharma, Sumit B.; Pukhta, Imran A.; Sharma, Amit B.; Salaria, Abdul Q.

    2013-01-01

    Introduction: To study whether the administration of recombinant human erythropoietin increases the amount of autologous blood that can be collected before orthopaedic surgery. Materials and Methods: We conducted a randomized controlled trial of recombinant human erythropoietin in 68 adults scheduled for elective orthopedic procedures. The patients received either erythropoietin 600 units/kg of body weight or placebo intravenously every 5th day prior to each phlebotomy for 21 days during which time up to 5 units of blood was collected. Patients were excluded from donation when their hematocrit values were less than 33%. All patients received iron sulphate 325mg orally 3 times daily. The mean number of units collected per patient was 4.33 ± 0.4 for erythropoietin group and 3.05± 0.71 for the placebo group. Results: The mean packed red cell volume donated by patients who received erythropoietin was 32% greater than that donated by patients who received placebo (196.3 vs. 169.4 ml, p<0.05). 68% in the placebo group and 9% of patients treated with erythropoietin were unable to donate ≥4 units. No adverse effects were attributed to erythropoietin. While participating in the study, complications developed in 2 patients one in each group necessitating their removal from the study. Conclusion: We conclude that recombinant human erythropoietin increases the ability of the patients about to undergo elective surgery to donate autologous blood units. PMID:23559764

  14. Maximizing the erythropoietin response: iron strategies.

    PubMed

    Prabhu, Mayoor V; Nayak, Aditi; Sridhar, G; Subhramanyam, S V; Nayak, K S

    2012-01-01

    Anemia is a significant cause of morbidity and lowers the quality of life of patients suffering from chronic kidney disease (CKD). Iron deficiency is the most important cause of erythropoietin (EPO) hyporesponsiveness in CKD. EPO administration significantly increases the costs of CKD management. It follows that paramount importance must be given to enhancing responsiveness to EPO thereby ensuring that the patient derives maximum benefit. Intravenous iron (IVI) administration has been used for decades to replenish body iron stores. Multiple preparations of Iron are available in the market. However, IVI administration is fraught with dangers like adverse drug reactions, susceptibility to infection, and, as recently postulated, direct cellular toxicity. Traditional approaches to IVI administration have focused on multiple administrations of lower doses for fear of adverse reactions. However, recent studies have demonstrated that higher doses can be safely administered in a single infusion, thereby reducing hospitalization costs and patient inconvenience. Newer preparations of IVI are relatively safer, easier to administer and efficacious. Preparations like Iron sucrose, ferumoxytol, ferric carboxymaltose and iron isomaltoside do not require test doses and allow higher doses to be administered at a time with cost and effect benefits.

  15. Human CD133+ Renal Progenitor Cells Induce Erythropoietin Production and Limit Fibrosis After Acute Tubular Injury

    PubMed Central

    Aggarwal, Shikhar; Grange, Cristina; Iampietro, Corinne; Camussi, Giovanni; Bussolati, Benedetta

    2016-01-01

    Persistent alterations of the renal tissue due to maladaptive repair characterize the outcome of acute kidney injury (AKI), despite a clinical recovery. Acute damage may also limit the renal production of erythropoietin, with impairment of the hemopoietic response to ischemia and possible lack of its reno-protective action. We aimed to evaluate the effect of a cell therapy using human CD133+ renal progenitor cells on maladaptive repair and fibrosis following AKI in a model of glycerol-induced rhabdomyolysis. In parallel, we evaluated the effect of CD133+ cells on erythropoietin production. Administration of CD133+ cells promoted the restoration of the renal tissue, limiting the presence of markers of injury and pro-inflammatory molecules. In addition, it promoted angiogenesis and protected against fibrosis up to day 60. No effect of dermal fibroblasts was observed. Treatment with CD133+ cells, but not with PBS or fibroblasts, limited anemia and increased erythropoietin levels both in renal tissue and in circulation. Finally, CD133+ cells contributed to the local production of erythropoietin, as observed by detection of circulating human erythropoietin. CD133+ cells appear therefore an effective source for cell repair, able to restore renal functions, including erythropoietin release, and to limit long term maldifferentiation and fibrosis. PMID:27853265

  16. The Neuroprotective Effect of Erythropoietin in Rat Hippocampus in an Endotoxic Shock Model.

    PubMed

    Ramírez-Jirano, Luis Javier; Zenteno-Savín, Tania; Gaxiola-Robles, Ramón; Ramos-González, Elsy Janeth; Torres-Mendoza, Blanca Miriam; Bitzer-Quintero, Oscar Kurt

    2016-01-01

    Sepsis is characterized by an early systemic inflammation in response to infection. In the brain, inflammation is associated with expression of pro-inflammatory cytokines (e.g. tumor necrosis factor-α, interleukin-1β and interleukin-6, among others) that may induce an overproduction of reactive oxygen and nitrogen species. The constitutive expression of cytokines in the brain is low, but may be induced by various stimuli, including lipopolysaccharide, which causes neuronal damage. Erythropoietin, among other effects, acts as a multifunctional neurotrophic factor implicated in neurogenesis, angiogenesis, vascular permeability, and immune regulation in the central nervous system. In an experimental model of endotoxic shock, we studied the neuroprotective capacity of erythropoietin in the rat hippocampus and compared with melatonin, a neurohormone with an important antioxidant and immunomodulatory effect. In 21-day-old male Wistar rats divided into eight groups, we administered by intraperitoneal injection lipopolysaccharide, erythropoietin, melatonin, or combinations thereof. The hippocampus was dissected and morphological (histological analysis) and biochemical (cytokine levels) studies were conducted. The number of dead neuronal cells in histological sections in groups treated with lipopolysaccharide was higher compared to the erythropoietin group. There was a greater decrease (70%) in interleukin-1β concentrations in rats with endotoxic shock that received erythropoietin compared to the lipopolysaccharide group. The neuronal cell loss caused by endotoxic shock and interleukin-1β levels were reduced by the administration of the hematopoietic cytokine erythropoietin in this experimental model.

  17. Novel applications of recombinant erythropoietin.

    PubMed

    Sharples, Edward J; Thiemermann, Christoph; Yaqoob, Magdi M

    2006-04-01

    Recombinant erythropoietin (EPO) was introduced into clinical practice after the identification of EPO as the major haemopoietic growth factor determining survival and maturation of erythroid precursors. Advances in our understanding of the novel sites of action of EPO in the vasculature, brain, heart and kidney have opened new avenues of therapeutic potential for EPO, and have led to an increased understanding of the biological roles of EPO and its mechanisms of cell protection.

  18. Erythropoietin abuse and erythropoietin gene doping: detection strategies in the genomic era.

    PubMed

    Diamanti-Kandarakis, Evanthia; Konstantinopoulos, Panagiotis A; Papailiou, Joanna; Kandarakis, Stylianos A; Andreopoulos, Anastasios; Sykiotis, Gerasimos P

    2005-01-01

    The administration of recombinant human erythropoietin (rhEPO) increases the maximum oxygen consumption capacity, and is therefore abused as a doping method in endurance sports. The detection of erythropoietin (EPO) abuse is based on direct pharmacological and indirect haematological approaches, both of which have several limitations. In addition, current detection methods cannot cope with the emerging doping strategies of EPO mimicry, analogues and gene doping, and thus novel detection strategies are urgently needed. Direct detection methods for EPO misuse can be either pharmacological approaches that identify exogenous substances based on their physicochemical properties, or molecular methods that recognise EPO transgenes or gene transfer vectors. Since direct detection with molecular methods requires invasive procedures, it is not appropriate for routine screening of large numbers of athletes. In contrast, novel indirect methods based on haematological and/or molecular profiling could be better suited as screening tools, and athletes who are suspect of doping would then be submitted to direct pharmacological and molecular tests. This article reviews the current state of the EPO doping field, discusses available detection methods and their shortcomings, outlines emerging pharmaceutical and genetic technologies in EPO misuse, and proposes potential directions for the development of novel detection strategies.

  19. Reevaluation of erythropoietin production by the nephron.

    PubMed

    Nagai, Takanori; Yasuoka, Yukiko; Izumi, Yuichiro; Horikawa, Kahori; Kimura, Miho; Nakayama, Yushi; Uematsu, Takayuki; Fukuyama, Takashi; Yamazaki, Taiga; Kohda, Yukimasa; Hasuike, Yukiko; Nanami, Masayoshi; Kuragano, Takahiro; Kobayashi, Noritada; Obinata, Masuo; Tomita, Kimio; Tanoue, Akito; Nakanishi, Takeshi; Kawahara, Katsumasa; Nonoguchi, Hiroshi

    2014-06-27

    Erythropoietin production has been reported to occur in the peritubular interstitial fibroblasts in the kidney. Since the erythropoietin production in the nephron is controversial, we reevaluated the erythropoietin production in the kidney. We examined mRNA expressions of erythropoietin and HIF PHD2 using high-sensitive in situ hybridization system (ISH) and protein expression of HIF PHD2 using immunohistochemistry in the kidney. We further investigated the mechanism of erythropoietin production by hypoxia in vitro using human liver hepatocell (HepG2) and rat intercalated cell line (IN-IC cells). ISH in mice showed mRNA expression of erythropoietin in proximal convoluted tubules (PCTs), distal convoluted tubules (DCTs) and cortical collecting ducts (CCDs) but not in the peritubular cells under normal conditions. Hypoxia induced mRNA expression of erythropoietin largely in peritubular cells and slightly in PCTs, DCTs, and CCDs. Double staining with AQP3 or AE1 indicated that erythropoietin mRNA expresses mainly in β-intercalated or non α/non β-intercalated cells of the collecting ducts. Immunohistochemistry in rat showed the expression of HIF PHD2 in the collecting ducts and peritubular cells and its increase by anemia in peritubular cells. In IN-IC cells, hypoxia increased mRNA expression of erythropoietin, erythropoietin concentration in the medium and protein expression of HIF PHD2. These data suggest that erythropoietin is produced by the cortical nephrons mainly in the intercalated cells, but not in the peritubular cells, in normal hematopoietic condition and by mainly peritubular cells in hypoxia, suggesting the different regulation mechanism between the nephrons and peritubular cells. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Erythropoietin neuroprotection in neonatal cardiac surgery: a phase I/II safety and efficacy trial.

    PubMed

    Andropoulos, Dean B; Brady, Ken; Easley, Ronald B; Dickerson, Heather A; Voigt, Robert G; Shekerdemian, Lara S; Meador, Marcie R; Eisenman, Carol A; Hunter, Jill V; Turcich, Marie; Rivera, Carlos; McKenzie, Emmett D; Heinle, Jeffrey S; Fraser, Charles D

    2013-07-01

    Neonates undergoing complex congenital heart surgery have a significant incidence of neurologic problems. Erythropoietin has antiapoptotic, antiexcitatory, and anti-inflammatory properties to prevent neuronal cell death in animal models, and improves neurodevelopmental outcomes in full-term neonates with hypoxic ischemic encephalopathy. We designed a prospective phase I/II trial of erythropoietin neuroprotection in neonatal cardiac surgery to assess safety and indicate efficacy. Neonates undergoing surgery for D-transposition of the great vessels, hypoplastic left heart syndrome, or aortic arch reconstruction were randomized to 3 perioperative doses of erythropoietin or placebo. Neurodevelopmental testing using the Bayley Scales of Infant and Toddler Development III was performed at age 12 months. Fifty-nine patients received the study drug. Safety profile, including magnetic resonance imaging brain injury, clinical events, and death, was not different between groups. Three patients in each group died. Forty-two patients (22 in the erythropoietin group and 20 in the placebo group; 79% of survivors) returned for 12-month follow-up. In the group receiving erythropoietin, mean Cognitive Scale scores were 101.1 ± 13.6, Language Scale scores were 88.5 ± 12.8, and Motor Scale scores were 89.9 ± 12.3. In the group receiving placebo, Cognitive Scale scores were 106.3 ± 10.8 (P = .19), Language Scores were 92.4 ± 12.4 (P = .33), and Motor Scale scores were 92.6 ± 14.1 (P = .51). Safety profile for erythropoietin administration was not different than placebo. Neurodevelopmental outcomes were not different between groups; however, this pilot study was not powered to definitively address this outcome. Lessons learned suggest optimized study design features for a larger prospective trial to definitively address the utility of erythropoietin for neuroprotection in this population. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby

  1. Cytoprotective doses of erythropoietin or carbamylated erythropoietin have markedly different procoagulant and vasoactive activities

    PubMed Central

    Coleman, Thomas R.; Westenfelder, Christof; Tögel, Florian E.; Yang, Ying; Hu, Zhuma; Swenson, LeAnne; Leuvenink, Henri G. D.; Ploeg, Rutger J.; d’Uscio, Livius V.; Katusic, Zvonimir S.; Ghezzi, Pietro; Zanetti, Adriana; Kaushansky, Kenneth; Fox, Norma E.; Cerami, Anthony; Brines, Michael

    2006-01-01

    Recombinant human erythropoietin (rhEPO) is receiving increasing attention as a potential therapy for prevention of injury and restoration of function in nonhematopoietic tissues. However, the minimum effective dose required to mimic and augment these normal paracrine functions of erythropoietin (EPO) in some organs (e.g., the brain) is higher than for treatment of anemia. Notably, a dose-dependent risk of adverse effects has been associated with rhEPO administration, especially in high-risk groups, including polycythemia–hyperviscosity syndrome, hypertension, and vascular thrombosis. Of note, several clinical trials employing relatively high dosages of rhEPO in oncology patients were recently halted after an increase in mortality and morbidity, primarily because of thrombotic events. We recently identified a heteromeric EPO receptor complex that mediates tissue protection and is distinct from the homodimeric receptor responsible for the support of erythropoiesis. Moreover, we developed receptor-selective ligands that provide tools to assess which receptor isoform mediates which biological consequence of rhEPO therapy. Here, we demonstrate that rhEPO administration in the rat increases systemic blood pressure, reduces regional renal blood flow, and increases platelet counts and procoagulant activities. In contrast, carbamylated rhEPO, a heteromeric receptor-specific ligand that is fully tissue protective, increases renal blood flow, promotes sodium excretion, reduces injury-induced elevation in procoagulant activity, and does not effect platelet production. These preclinical findings suggest that nonerythropoietic tissue-protective ligands, which appear to elicit fewer adverse effects, may be especially useful in clinical settings for tissue protection. PMID:16585502

  2. Recombinant erythropoietin in clinical practice

    PubMed Central

    Ng, T; Marx, G; Littlewood, T; Macdougall, I

    2003-01-01

    The introduction of recombinant human erythropoietin (RHuEPO) has revolutionised the treatment of patients with anaemia of chronic renal disease. Clinical studies have demonstrated that RHuEPO is also useful in various non-uraemic conditions including haematological and oncological disorders, prematurity, HIV infection, and perioperative therapies. Besides highlighting both the historical and functional aspects of RHuEPO, this review discusses the applications of RHuEPO in clinical practice and the potential problems of RHuEPO treatment. PMID:12897214

  3. Erythropoietin and Its Angiogenic Activity

    PubMed Central

    Kimáková, Patrícia; Solárová, Zuzana; Komel, Radovan

    2017-01-01

    Erythropoietin (EPO) is the main hematopoietic hormone acting on progenitor red blood cells via stimulation of cell growth, differentiation, and anti-apoptosis. However, its receptor (EPOR) is also expressed in various non-hematopoietic tissues, including endothelium. EPO is a pleiotropic growth factor that exhibits growth stimulation and cell/tissue protection on numerous cells and tissues. In this article we review the angiogenesis potential of EPO on endothelial cells in heart, brain, and leg ischemia, as well as its role in retinopathy protection and tumor promotion. Furthermore, the effect of EPO on bone marrow and adipose tissue is also discussed. PMID:28703764

  4. Erythropoietin and iron.

    PubMed

    Kaltwasser, J P; Gottschalk, R

    1999-03-01

    Serum ferritin concentration is most informative in estimating the amount of storage iron available for a particular individual. The serum transferrin receptor concentration, in contrast to serum ferritin, provides direct information about any deficit in the adequacy of iron supply to the erythropoiesis. The combination of serum transferrin receptor and serum ferritin provides complete information about storage and functional iron compartments. Using this combination along with the hemoglobin concentration, it is possible to define the iron nutritional status completely. Inflammatory conditions as well as parenteral iron administration interfere, however, with the direct and quantitative ferritin to storage iron relationship and, therefore, have to be considered carefully with respect to diagnostic purposes. The diagnostic use of the serum transferrin receptor is presently limited because of limitations in methodology and definition (standardization) of reference ranges.

  5. 21 CFR 864.7250 - Erythropoietin assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... erythropoietin (an enzyme that regulates the production of red blood cells) in serum or urine. This assay provides diagnostic information for the evaluation of erythrocytosis (increased total red cell mass) and...

  6. 21 CFR 864.7250 - Erythropoietin assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... erythropoietin (an enzyme that regulates the production of red blood cells) in serum or urine. This assay provides diagnostic information for the evaluation of erythrocytosis (increased total red cell mass) and...

  7. 21 CFR 864.7250 - Erythropoietin assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... erythropoietin (an enzyme that regulates the production of red blood cells) in serum or urine. This assay provides diagnostic information for the evaluation of erythrocytosis (increased total red cell mass) and...

  8. 21 CFR 864.7250 - Erythropoietin assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... erythropoietin (an enzyme that regulates the production of red blood cells) in serum or urine. This assay provides diagnostic information for the evaluation of erythrocytosis (increased total red cell mass) and...

  9. Erythropoietin Neuroprotection with Traumatic Brain Injury

    PubMed Central

    Ponce, Lucido L.; Navarro, Jovany Cruz; Ahmed, Osama; Robertson, Claudia S.

    2012-01-01

    Numerous experimental studies in recent years have suggested that erythropoietin (EPO) is an endogenous mediator of neuroprotection in various central nervous system disorders, including TBI. Many characteristics of EPO neuroprotection that have been defined in TBI experimental models suggest that it is an attractive candidate for a new treatment of TBI. EPO targets multiple mechanisms known to cause secondary injury after TBI, including anti-excitotoxic, antioxidant, anti-edematous, and anti-inflammatory mechanisms. EPO crosses the blood brain barrier. EPO has a known dose response and time window for neuroprotection and neurorestoration that would be practical in the clinical setting. However, EPO also stimulates erythropoiesis, which can result in thromboembolic complications. Derivatives of EPO which do not bind to the classical EPO receptor (carbamylated EPO) or that have such a brief half-life in the circulation that they do not stimulate erythropoiesis (asialo EPO and neuro EPO) have the neuroprotective activities of EPO without these potential thromboembolic adverse effects associated with EPO administration. Likewise, a peptide based on the structure of the Helix B segment of the EPO molecule that does not bind to the EPO receptor (pyruglutamate Helix B surface peptide) has promise as another alternative to EPO that may provide neuroprotection without stimulating erythropoiesis. PMID:22421507

  10. Downstream modulation of extrinsic apoptotic pathway in streptozotocin-induced Alzheimer's dementia in rats: Erythropoietin versus curcumin.

    PubMed

    Samy, Doaa M; Ismail, Cherine A; Nassra, Rasha A; Zeitoun, Teshreen M; Nomair, Azhar M

    2016-01-05

    Erythropoietin and curcumin showed promising neuroprotective effects in various models of Alzheimer's dementia. This study was designed to compare the beneficial effects of erythropoietin and/or curcumin in intracerebro-ventricular (ICV) streptozotocin-induced Alzheimer's like disease in rats. Rats received ICV injection of either saline (control, n=8 rats), or streptozotocin. Three weeks following surgery, streptozotocin-injected rats were assigned into 4 groups (8 rats each); vehicle, curcumin (80mg/kg/day, orally), erythropoietin (500 IU/kg every other day, intraperitoneally) and combined (curcumin and erythropoietin)-treated groups. After 3 months of treatment, rats were subjected to neurobehavioral testing, and then killed for biochemical and histological assessment of hippocampus. Fas ligand protein and caspase-8 activity as mediators of extrinsic apoptotic pathway, oxidative stress markers (malondialdehyde and reduced glutathione) and β-amyloid (1-40 and 1-42) peptides were measured. The results showed that administration of erythropoietin suppressed extrinsic apoptosis better than curcumin, while curcumin was more effective in combating oxidative stress in ICV-streptozotocin injected rats. Both erythropoietin and curcumin treatments (individually or combined) equally reduced the hippocampal β-amyloid accumulation and improved cognitive impairment in Morris water maze and passive avoidance tasks. The combined treatment was the most effective in ameliorating apoptosis and oxidative stress rather than behavioral responses or β-amyloid burden. In conclusion, ICV-streptozotocin-induced Alzheimer's dementia activates hippocampal Fas ligand-mediated apoptosis, which could be reduced by erythropoietin and/or curcumin treatment. Curcumin supplementation alone could ameliorate cognitive deficits and reverse biochemical alterations in ICV-streptozotocin Alzheimer's rat model without the hazardous polycythemic effect of long-term erythropoietin injection.

  11. The effect of erythropoietin on biomechanical properties of the Achilles tendon during the healing process: an experimental study.

    PubMed

    Bilal, Okkes; Guney, Ahmet; Kalender, Ali Murat; Kafadar, Ibrahim Halil; Yildirim, Muzaffer; Dundar, Nuh

    2016-04-28

    The aim of this study was to examine the potential biomechanical and histological benefits of systemic erythropoietin administration during the healing of Achilles tendon injury in a rat experimental model. Eighty Sprague-Dawley female rats were included in this study. Animals were randomly assigned into two groups with 40 animals in each: erythropoietin group and control group. Then each group was further divided into four subgroups corresponding to four time points with 10 animals in each. A full-thickness cut was made on the Achilles tendon of each animal and then the tendon was sutured with modified Kessler method. Erythropoietin groups received intraperitoneal erythropoietin (500 IU/kg/day) every day at same time throughout the study period, and the control groups received saline in a similar manner. Animals were sacrificed at four time points, and tensile test was performed on each tendon sample to assess maximum load for each sample. In addition, histopathological examination and scoring was done. Both groups had improvement on tensile test (maximum load) over time. However, groups did not differ with regard to maximum load in any of the time points. Similarly, groups did not differ with regard to any of the histopathological scores over time. The findings of this study do not support the benefit of systemic erythropoietin administration in Achilles tendon healing process. Further evidence from larger experimental studies is required to justify any such potential benefit.

  12. Specific activities of poetam preparation (superlow-doses of antibodies to erythropoietin) and recombinant erythropoietin.

    PubMed

    Dygai, A M; Zhdanov, V V; Udut, E V; Simanina, E V; Gur'yantseva, L A; Khrichkova, T Yu; Epshtein, O I; Sergeeva, S A

    2006-09-01

    We compared the capacity of superlow-dose of antibodies to erythropoietin (Poetam) and recombinant erythropoietin (Recormon) to stimulate the recovery of adriamycin-suppressed erythropoiesis in mice. Both preparations exhibited high erythron activation capacity and considerably increased the content of erythrocytes and reticulocytes in the peripheral blood and content of erythrokaryocytes and erythroid precursors in the hemopoietic tissue of experimental animals. The effect of Recormon manifested immediately after injection, while the effect of Poetam was somewhat delayed, but more lasting (due to activation of host erythropoietin system).

  13. [The role of erythropoietin in improvement of wound healing].

    PubMed

    Sorg, H; Kuhbier, J W; Menger, B; Reimers, K; Harder, Y; Vogt, P M

    2010-11-01

    Pleiotropic substances are characterized by their versatile and complex range of actions which makes them potential new active agents for the therapy of wounds. Besides its known effect to increase red blood cell production, the glycoprotein hormone erythropoietin (EPO) has been found to demonstrate a tissue protective effect in several other organs. The administration of EPO during skin wound healing is most likely essentially based on its cytopotective, proangiogenic, antiapoptotic and antiinflammatory effects. Herein EPO stimulates a coordinated interaction of different types of cells at a low or only a single dose. This review article aims to present the advantages and disadvantages of EPO administration in different experimental models to study the healing and regeneration processes of the skin and discusses possible clinical applications.

  14. Symmetric Signaling by an Asymmetric 1 Erythropoietin: 2 Erythropoietin Receptor Complex

    PubMed Central

    Zhang, Yingxin L.; Radhakrishnan, Mala L.; Lu, Xiaohui; Gross, Alec W.; Tidor, Bruce; Lodish, Harvey F.

    2009-01-01

    Summary Via sites 1 and 2, erythropoietin binds asymmetrically to two identical receptor monomers, although it is unclear how asymmetry affects receptor activation and signaling. Here we report the design and validation of two mutant erythropoietin receptors that probe the role of individual members of the receptor dimer by selectively binding either site 1 or site 2 on erythropoietin. Ba/F3 cells expressing either mutant receptor do not respond to erythropoietin, but cells co-expressing both receptors respond to erythropoietin by proliferation and activation of the JAK2-Stat5 pathway. A truncated receptor with only one cytosolic tyrosine (Y343) is sufficient for signaling in response to erythropoietin, regardless of the monomer on which it is located. Similarly, only one receptor in the dimer needs a juxtamembrane hydrophobic L253 or W258 residue, essential for JAK2 activation. We conclude that despite asymmetry in the ligand-receptor interaction, both sides are competent for signaling, and appear to signal equally. PMID:19187767

  15. Symmetric signaling by an asymmetric 1 erythropoietin: 2 erythropoietin receptor complex.

    PubMed

    Zhang, Yingxin L; Radhakrishnan, Mala L; Lu, Xiaohui; Gross, Alec W; Tidor, Bruce; Lodish, Harvey F

    2009-01-30

    Via sites 1 and 2, erythropoietin binds asymmetrically to two identical receptor monomers, although it is unclear how asymmetry affects receptor activation and signaling. Here we report the design and validation of two mutant erythropoietin receptors that probe the role of individual members of the receptor dimer by selectively binding either site 1 or site 2 on erythropoietin. Ba/F3 cells expressing either mutant receptor do not respond to erythropoietin, but cells co-expressing both receptors respond to erythropoietin by proliferation and activation of the JAK2-Stat5 pathway. A truncated receptor with only one cytosolic tyrosine (Y343) is sufficient for signaling in response to erythropoietin, regardless of the monomer on which it is located. Similarly, only one receptor in the dimer needs a juxtamembrane hydrophobic L253 or W258 residue, essential for JAK2 activation. We conclude that despite asymmetry in the ligand-receptor interaction, both sides are competent for signaling, and appear to signal equally.

  16. Development of a new radioimmunoassay for erythropoietin using recombinant erythropoietin

    SciTech Connect

    Mason-Garcia, M.; Beckman, B.S.; Brookins, J.W.; Powell, J.S.; Lanham, W.; Blaisdell, S.; Keay, L.; Li, S.C.; Fisher, J.W. )

    1990-11-01

    The development of a 24 hour radioimmunoassay for erythropoietin (EPO) using EPO derived from recombinant DNA as both immunogen and ligand is described in the present paper. Mixed breed rabbits immunized with 10 micrograms/kg of EPO derived from a stably transfected cell line (MD) produced antibodies to EPO with high titer (up to 1:896,000 final dilution in the tube), high affinity (8.4 x 10(11) liter/M), and good specificity. Purified EPO from the above source or from AmGen Biologicals (AG) were successfully radioiodinated with the chloramine-T method and used as ligand in the radioimmunoassay. Standard dose-response curves prepared with EPO from both commercial sources were not significantly different and showed a sensitivity of 0.75 to 0.96 mU/tube. The dose-response curves in both systems also showed parallelism with serially diluted serum from a patient with aplastic anemia. Within-assay and between-assay precision were determined by assaying multiple replicates of a serum pool. Recovery of exogenous EPO added to a serum pool averaged 97% for both systems. The range of normal human serum EPO was determined by assaying the sera of 153 hematologically-normal adult subjects and was found to be 1.1 to 27.3 mU/ml for MD EPO and 0.5 to 16.7 mU/ml for AG EPO. Sera from several patients with hematologic abnormalities were also assayed, including those of 36 patients with anemia of end-stage renal disease (mean +/- SEM, 29.5 +/- 4.0 mU/ml; P less than 0.01). In conclusion, this new, more rapid and sensitive radioimmunoassay system can be used to measure EPO levels in sera from normal human subjects and patients with several types of anemia, and should also be very useful in therapeutic drug monitoring of patients receiving EPO from various commercial sources.

  17. Outcomes with the Use of Recombinant Human Erythropoietin in Critically Ill Burn Patients

    DTIC Science & Technology

    2010-09-01

    human erythropoietin (rhEPO) has been approved by the U.S. Food and Drug Administration for use in anemic patient with chronic kidney disease ( CKD ).7...January 1, 2007 to December 31, 2008). Patients treated with rhEPO who also had any other indication for erythropoiesis before BICU to in- clude CKD ...17 In addition, mechanisms that lead to benefit in anemic patient with CKD may be at play in AK1. 18 Whether there may be a mortality benefit

  18. Perioperative erythropoietin efficacy in renal transplantation.

    PubMed

    Mohiuddin, M K; El-Asir, L; Gupta, A; Brown, A; Torpey, N; Ward, M; Talbot, D; Ahmed, S

    2007-01-01

    There is no consensus on the usage of erythropoietin in the immediate postoperative period to prevent anemia and delayed graft function. A retrospective case note audit of renal transplants included hemoglobin (Hb) and serum creatinine (Scr) values preoperatively as well as at days 7, 14, 30, 60, and 90. Patients were categorized as those receiving erythropoietin during the first 6 months posttransplant (Epo+ve) and those not receiving any erythropoietin (Epo-ve). Hb decreased from 12.4 +/- 1.6 g/L preoperatively to 9.5 +/- 1.5 g/L at day 14 and then rose to 10.5 +/- 1.6 g/L at 1 month and 12.4 +/- 1.7 g/L at 3 months. There was no difference in absolute Hb values in three transplant groups. Scr decreased from 597.0 +/- 200.1 mmol/L preoperatively to 254.1 +/- 196.9 mmol/L at day 14 and continued to fall to 163.8 +/- 98.9 mmol/L at 1 month and 147.8 +/- 66.9 mmol/L at 3 months. There was no difference in absolute Hb values and delayed graft function in the three transplant groups. With respect to anemia and delayed graft function, the use of erythropoietin in the first 3 months had little impact. We suggest that such an expensive medication may be safely omitted in the immediate postoperative period.

  19. In vivo angiogenic activity of erythropoietin.

    PubMed

    Ribatti, Domenico

    2013-01-01

    The role of erythropoietin (Epo) has been demonstrated in tissues outside the hematopoietic system, including the cardiovascular system, where Epo promotes various effects in endothelial cells. Here, we have demonstrated the angiogenic capacity of recombinant human Epo (rhuEpo) in vivo, by means of the chick embryo chorioallantoic membrane (CAM) assay, a well-established in vivo assay to study angiogenesis and antiangiogenesis.

  20. Caveat Oncologist: Clinical Findings and Consequences of Distributing Counterfeit Erythropoietin in the United States

    PubMed Central

    Qureshi, Zaina P.; Norris, LeAnn; Sartor, Oliver; McKoy, June M.; Armstrong, John; Raisch, Dennis W.; Garg, Vishvas; Stafkey-Mailey, Dana; Bennett, Charles Lee

    2012-01-01

    Purpose: Counterfeit pharmaceuticals pose risks domestically. Because of their cost, cancer pharmaceuticals are vulnerable. We review findings from a domestic counterfeiting episode involving erythropoietin and outline anticounterfeiting recommendations for policy makers, patients, and health care professionals. Materials and Methods: Information was obtained on patients who received counterfeit erythropoietin, its distribution, and criminal investigations into counterfeiting networks. Interview sources included a physician, an attorney, employees of the Florida Department of Health and Human Services and the US Food and Drug Administration's (FDA) Office of Criminal Investigation, manufacturers, and wholesalers. Other sources included the book “Dangerous Doses,” LexisNexis (search terms “counterfeit” and “erythropoietin”) and the FDA database. Results: Counterfeit product consisted of 2,000 U vials with counterfeit labels denoting 40,000 U. The counterfeiters, in collaboration with a Miami pharmacy, purchased 110,000 erythropoietin 2,000 U vials and affixed counterfeit labels to each vial. Products were then sold via the pharmaceutical “gray market” to wholesalers, then pharmacy chains. Investigations by Florida government officials implicated 17 persons, all of whom were found guilty of trafficking in counterfeit pharmaceuticals. Despite the large size of the operation, the FDA received reports of only 12 patients who had received counterfeit erythropoietin and detailed information for only two individuals. A 17-year-old liver transplant recipient and a 61-year-old patient with breast cancer experienced loss of efficacy after receiving counterfeit erythropoietin. Conclusion: Wider use of FDA anticounterfeit initiatives, limiting pharmaceutical suppliers to reputable distributors, and educating providers and patients about signs of counterfeit drugs can improve the safety of cancer pharmaceuticals. PMID:23077434

  1. Antiapoptotic properties of recombinant human erythropoietin protects against tubular cyclosporine toxicity.

    PubMed

    Pallet, Nicolas; Bouvier, Nicolas; Legendre, Christophe; Beaune, Philippe; Thervet, Eric; Choukroun, Gabriel; Martinez, Frank

    2010-01-01

    During the early post transplant period, the tubular epithelium is the main target of injuries including ischemia reperfusion and toxicity effects from calcineurin inhibitors. Taking into account the tissue protective effects of erythropoietin mediated through its antiapoptotic properties, we tested whether administration of recombinant human erythropoietin protects against acute cyclosporine nephrotoxicity. Four groups of five rats were intraperitoneally treated over 28 days with 100UI/Kg/48h Epoetin beta (15mg/kg/day CsA diluted in olive oil, 100UI/Kg/48h Epoetin beta+15mg/kg/day CsA, or olive oil. Histological changes due to tubular necrosis were evaluated with Masson'Trichrome staining. Apoptotic nuclei in kidneys were detected using the Terminal deoxynucleotidyl Transferase Biotin-dUTP Nick End Labeling (TUNEL) method. Phospho-Akt, Akt, cleaved caspase 3 and non cleaved caspase 3 expression were evaluated using immunblotting. We demonstrate that recombinant human erythropoietin (epoetin beta) improves renal function and protects against acute tubular injury. Our data suggest that this nephroprotective effect is mediated by Akt activation and inhibition of tubular apoptosis. Indeed, western blotting analysis of caspase 3 cleavage and Akt phosphorylation demonstrates that rhEPO activate Akt signaling and inhibits caspase 3 cleavage induced by CsA. TUNEL staining confirms that rhEPO inhibits CsA-induced tubular apoptosis. In conclusion, we describe here a new potential target of recombinant human erythropoietin and our results provide an interesting framework for further nephroprotective therapies based on recombinant human erythropoietin. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Pure red cell aplasia due to antibody against erythropoietin in hemodialysis patients

    PubMed Central

    Rahbar, Maryam; Chitsazian, Zahra; Abdoli, Firoozeh; Moeini Taba, Seyed-Masoud; Akbari, Hosein

    2017-01-01

    Background Anemia is a common complication of chronic renal failure due to reduce erythropoietin production by kidneys. Anemia treated with recombinant human erythropoietin (rHu-EPO). Pure red cell aplasia (PRCA) due to antibody productionagainst rHu-EPO is a rare but major complication of this drug. Objectives The aim of this study was to determine the prevalence of PRCA due to antibodies in dialysis patients with resistant anemia who received erythropoietin. Patients and Methods We studied 128 under maintenance hemodialysis patients more than 3 month in Kashan. In patients with anemia who received erythropoietin with dose requirements based on weight and anemia and without any another cause for anemia, evaluate for PRCA and anti-rHu-EPO antibody level were measured by ELISA. Results In this research, 75 patients (58.6%) were male and 53 patients (41.4%) were female. The mean age of the patients was 59.05 ± 16.66 years. The result of analysis showed that 55 (43%) patients had anemia with hemoglobin level less than 10 mg/dL. Only 3 patients had PRCA and antibodies against erythropoietin in serum. There were no correlation between age, gender, cause of renal failure, hemodialysis duration, hemoglobin level, rHu-EPO dose and levels of anti-rHu-EPO antibody serum value. Conclusions The result of this study indicated that administration of rHu-EPO in dialysis patients afflicted to kidney failure may cause PRCA especially through intravenous injection. However, this change is not statistically significant. PMID:28042550

  3. A quest for erythropoietin over nine decades.

    PubMed

    Fisher, J W

    1998-01-01

    The major research accomplishments of the author are described from the time of his PhD thesis work on the mechanism of cobalt polycythemia to the present day. His early work on the quest for the cell that produces erythropoietin (Epo) to his current work on oxygen sensing and signal transduction pathways involved in erythropoietin gene expression are reported. He describes his main research interest in the mechanism of cobalt polycythemia between 1954 and 1962 and his research on how hormones such as the glucocorticoids function in the regulation of erythropoiesis (1956-1962). His major findings during this period were the discovery that hydrocortisone and corticosterone stimulated erythropoiesis (1958) and that cobalt increased erythropoietin production in the isolated perfused dog kidney (1961). He describes how he was led astray in some of his early studies on the cells in the kidney that produce erythropoietin, because of the less-developed technology available to him at that time; and how in situ hybridization and other molecular biology techniques enabled him to confirm some of the earlier work in mice by other investigators that interstitial cells in the kidney were the site of production of erythropoietin in the primate. His work in the controversial area of the mechanism of the anemia of end-stage renal disease is described in detail, as it pertains to Epo deficiency and suppressed erythroid progenitor cell response to Epo. He also discusses his recent work on signal transduction pathways (hypoxia, nitric oxide, adenosine, and C kinase) in oxygen sensing and Epo gene expression.

  4. Tract-based spatial statistics to assess the neuroprotective effect of early erythropoietin on white matter development in preterm infants.

    PubMed

    O'Gorman, Ruth L; Bucher, Hans U; Held, Ulrike; Koller, Brigitte M; Hüppi, Petra S; Hagmann, Cornelia F

    2015-02-01

    infants treated with recombinant human erythropoietin than in those treated with placebo (P < 0.001). We conclude that early recombinant human erythropoietin administration improves white matter development in preterm infants assessed by diffusion tensor imaging and tract-based spatial statistics. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Polycythemia in transgenic mice expressing the human erythropoietin gene

    SciTech Connect

    Semenza, G.L.; Traystman, M.D.; Gearhart, J.D.; Antonarakis, S.E. )

    1989-04-01

    Erythropoietin is a glycoprotein hormone that regulates mammalian erythropoiesis. To study the expression of the human erythropoietin gene, EPO, 4 kilobases of DNA encompassing the gene with 0.4 kilobase of 5{prime} flanking sequence and 0.7 kilobase of 3{prime} flanking sequence was microinjected into fertilized mouse eggs. Transgenic mice were generated that are polycythemic, with increased erythrocytic indices in peripheral blood, increased numbers of erythroid precursors in hematopoietic tissue, and increased serum erythropoietin levels. Transgenic homozygotes show a greater degree of polycythemia than do heterozygotes as well as striking extramedullary erythropoiesis. Human erythropoietin RNA was found not only in fetal liver, adult liver, and kidney but also in all other transgenic tissues analyzed. Anemia induced increased human erythropoietin RNA levels in liver but not kidney. These transgenic mice represent a unique model of polycythemia due to increased erythropoietin levels.

  6. Prognostic Significance of Erythropoietin in Pancreatic Adenocarcinoma

    PubMed Central

    Becker, Verena; Giese, Thomas; Bergmann, Frank; Hinz, Ulf; Keleg, Shereen; Heller, Anette; Sipos, Bence; Klingmüller, Ursula; Büchler, Markus W.; Werner, Jens; Giese, Nathalia A.

    2011-01-01

    Background Erythropoietin (Epo) administration has been reported to have tumor-promoting effects in anemic cancer patients. We investigated the prognostic impact of endogenous Epo in patients with pancreatic ductal adenocarcinoma (PDAC). Methodology The clinico-pathological relevance of hemoglobin (Hb, n = 150), serum Epo (sEpo, n = 87) and tissue expression of Epo/Epo receptor (EpoR, n = 104) was analyzed in patients with PDAC. Epo/EpoR expression, signaling, growth, invasion and chemoresistance were studied in Epo-exposed PDAC cell lines. Results Compared to donors, median preoperative Hb levels were reduced by 15% in both chronic pancreatitis (CP, p<0.05) and PDAC (p<0.001), reaching anemic grade in one third of patients. While inversely correlating to Hb (r = −0.46), 95% of sEPO values lay within the normal range. The individual levels of compensation were adequate in CP (observed to predicted ratio, O/P = 0.99) but not in PDAC (O/P = 0.85). Strikingly, lower sEPO values yielding inadequate Epo responses were prominent in non-metastatic M0-patients, whereas these parameters were restored in metastatic M1-group (8 vs. 13 mU/mL; O/P = 0.82 vs. 0.96; p<0.01)—although Hb levels and the prevalence of anemia were comparable. Higher sEpo values (upper quartile ≥16 mU/ml) were not significantly different in M0 (20%) and M1 (30%) groups, but were an independent prognostic factor for shorter survival (HR 2.20, 10 vs. 17 months, p<0.05). The pattern of Epo expression in pancreas and liver suggested ectopic release of Epo by capillaries/vasa vasorum and hepatocytes, regulated by but not emanating from tumor cells. Epo could initiate PI3K/Akt signaling via EpoR in PDAC cells but failed to alter their functions, probably due to co-expression of the soluble EpoR isoform, known to antagonize Epo. Conclusion/Significance Higher sEPO levels counteract anemia but worsen outcome in PDAC patients. Further trials are required to clarify how

  7. Prognostic significance of erythropoietin in pancreatic adenocarcinoma.

    PubMed

    Welsch, Thilo; Zschäbitz, Stefanie; Becker, Verena; Giese, Thomas; Bergmann, Frank; Hinz, Ulf; Keleg, Shereen; Heller, Anette; Sipos, Bence; Klingmüller, Ursula; Büchler, Markus W; Werner, Jens; Giese, Nathalia A

    2011-01-01

    Erythropoietin (Epo) administration has been reported to have tumor-promoting effects in anemic cancer patients. We investigated the prognostic impact of endogenous Epo in patients with pancreatic ductal adenocarcinoma (PDAC). The clinico-pathological relevance of hemoglobin (Hb, n = 150), serum Epo (sEpo, n = 87) and tissue expression of Epo/Epo receptor (EpoR, n = 104) was analyzed in patients with PDAC. Epo/EpoR expression, signaling, growth, invasion and chemoresistance were studied in Epo-exposed PDAC cell lines. Compared to donors, median preoperative Hb levels were reduced by 15% in both chronic pancreatitis (CP, p<0.05) and PDAC (p<0.001), reaching anemic grade in one third of patients. While inversely correlating to Hb (r = -0.46), 95% of sEPO values lay within the normal range. The individual levels of compensation were adequate in CP (observed to predicted ratio, O/P = 0.99) but not in PDAC (O/P = 0.85). Strikingly, lower sEPO values yielding inadequate Epo responses were prominent in non-metastatic M0-patients, whereas these parameters were restored in metastatic M1-group (8 vs. 13 mU/mL; O/P = 0.82 vs. 0.96; p<0.01)--although Hb levels and the prevalence of anemia were comparable. Higher sEpo values (upper quartile ≥ 16 mU/ml) were not significantly different in M0 (20%) and M1 (30%) groups, but were an independent prognostic factor for shorter survival (HR 2.20, 10 vs. 17 months, p<0.05). The pattern of Epo expression in pancreas and liver suggested ectopic release of Epo by capillaries/vasa vasorum and hepatocytes, regulated by but not emanating from tumor cells. Epo could initiate PI3K/Akt signaling via EpoR in PDAC cells but failed to alter their functions, probably due to co-expression of the soluble EpoR isoform, known to antagonize Epo. Higher sEPO levels counteract anemia but worsen outcome in PDAC patients. Further trials are required to clarify how overcoming a sEPO threshold ≥16 mU/ml by endogenous or exogenous means may predispose to or

  8. Statistical analysis plan for the Erythropoietin in Traumatic Brain Injury trial: a randomised controlled trial of erythropoietin versus placebo in moderate and severe traumatic brain injury.

    PubMed

    Presneill, Jeffrey; Little, Lorraine; Nichol, Alistair; French, Craig; Cooper, D James; Haddad, Samir; Duranteau, Jacques; Huet, Olivier; Skrifvars, Markus; Arabi, Yaseen; Bellomo, Rinaldo

    2014-12-20

    The Erythropoietin in Traumatic Brain Injury (EPO-TBI) trial aims to determine whether the administration of erythropoietin to patients with moderate or severe traumatic brain injury improves patient-centred outcomes. EPO-TBI is a multicentre, blinded, randomised, parallel groups, placebo-controlled, phase III superiority trial of erythropoietin in ICU patients with traumatic brain injury conducted in Australia and New Zealand, Saudi Arabia and Europe; 606 critically ill patients aged 15 to 65 years with moderate or severe acute traumatic brain injury will be enrolled. Trial patients will receive either 40,000 IU erythropoietin or placebo by subcutaneous injection administered weekly for up to three doses during their ICU admission. The primary outcome measure is the proportion of unfavourable neurological outcomes, comprising death or severe disability, observed at 6 months following randomisation utilizing the Extended Glasgow Outcome Scale. Secondary outcomes, also assessed at 6 months following randomisation, include the probability of an equal or greater Extended Glasgow Outcome Scale level, mortality, the proportions of patients with proximal deep venous thrombosis or with composite thrombotic vascular events, as well as assessment of quality of life and cost-effectiveness. The planned sample size will allow 90% power to detect a reduction from 50% to 36% in unfavourable neurological outcomes at a two-sided alpha of 0.05. A detailed analysis plan has been developed for EPO-TBI that is consistent with international guidelines. This plan specifies the statistical models for evaluation of primary and secondary outcomes, as well as defining covariates for adjusted analyses. Application of this statistical analysis plan to the forthcoming EPO-TBI trial will facilitate unbiased analyses of these important clinical data. Australian New Zealand Clinical Trials Registry: ACTRN12609000827235 (22 September 2009). ClinicalTrials.gov: NCT00987454 (29 September 2009

  9. What evidence supports use of erythropoietin as a novel neurotherapeutic?

    PubMed

    Brines, Michael

    2002-09-01

    In its hormonal role, erythropoietin is produced by the kidney in response to hypoxic stress and signals the bone marrow to increase the number of circulating erythrocytes. It has become clear in recentyears, however, that erythropoietin and its receptor are members of a cytokine superfamily that mediates diverse functions in nonhematopoietic tissues. Nonhormonal erythropoietin actions include a critical role in the development, maintenance, protection, and repair of the central nervous system (CNS). Our group has found serendipitously that recombinant human erythropoietin administered into the systemic circulation is not strictly excluded from the brain. Human recombinant erythropoietin appears within the cerebrospinal fluid in neuroprotective concentrations, probably by translocation initiated by binding to the erythropoietin receptor on the luminal surface of the endothelium. This observation suggested that recombinant human erythropoietin could be therapeutic for CNS diseases, a possibility further supported by positive findings in a model of ischemic stroke. Recombinant human erythropoietin administered systemically either in advance of, or up to 3 hours after, a cerebral arterial occlusion in rats prevents apoptosis of neurons within the ischemic penumbra and reduces infarction volume by 75%. Erythropoietin also dramatically reduces postinfarct inflammation in this model. Other brain and spinal cord injuries such as mechanical trauma, experimental autoimmune encephalitis or subarachnoid hemorrhage also respond favorably to erythropoietin administered within a similar window of time. In addition to ameliorating neuronal injury, erythropoietic therapy also directly modulates neuronal excitability and acts as a trophic factor for neurons in vivo and in vitro. Erythropoietin may therefore provide benefit in epileptic or degenerative neurologic diseases. Given the outstanding safety record for recombinant human erythropoietin after more than a decade in widespread

  10. Long-term results of enriched environment and erythropoietin after hypobaric hypoxia in rats.

    PubMed

    Hralová, M; Angerová, Y; Gueye, T; Bortelová, J; Svestková, O; Zima, T; Lippertová-Grünerová, M

    2013-01-01

    After global cerebral hypoxia, many patients are severely disabled even after intensive neurorehabilitation. Secondary mechanisms of brain injury as a result of biochemical and physiological events occur within a period of hours to months, and provide a window of opportunity for therapeutic intervention. Erythropoietin (EPO) has been shown to be neuroprotective in the brain subjected to a variety of injuries. Fifty-nine 3-month-old male Wistar rats were randomly distributed to experimental groups with respect to the housing (enriched environment - EE, standard housing - SH), to hypoxia exposure, and to EPO treatment. An acute mountain sickness model was used as a hypobaric hypoxia simulating an altitude of 8000 m. One half of the animals received erythropoietin injections, while the others were injected saline. Spatial memory was tested in a Morris water maze (MWM). The escape latency and the path length were measured. Better spatial learning in MWM was only seen in the group that received erythropoietin together with enriched environment. EPO administration itself had no influence on spatial memory. The results were very similar for both latencies and path lengths. These results support the idea that after brain injuries, the recovery can be potentiated by EPO administration combined with neurorehabilitation.

  11. Impact of an Interleukin-1 Receptor Antagonist and Erythropoietin on Experimental Myocardial Ischemia/Reperfusion Injury

    PubMed Central

    Grothusen, Christina; Hagemann, Angelika; Attmann, Tim; Braesen, Jan; Broch, Ole; Cremer, Jochen; Schoettler, Jan

    2012-01-01

    Background. Revascularization of infarcted myocardium results in release of inflammatory cytokines mediating myocardial reperfusion injury and heart failure. Blockage of inflammatory pathways dampens myocardial injury and reduces infarct size. We compared the impact of the interleukin-1 receptor antagonist Anakinra and erythropoietin on myocardial ischemia/reperfusion injury. In contrast to others, we hypothesized that drug administration prior to reperfusion reduces myocardial damage. Methods and Results. 12–15 week-old Lewis rats were subjected to myocardial ischemia by a 1 hr occlusion of the left anterior descending coronary artery. After 15 min of ischemia, a single shot of Anakinra (2 mg/kg body weight (bw)) or erythropoietin (5000 IE/kg bw) was administered intravenously. In contrast to erythropoietin, Anakinra decreased infarct size (P < 0.05, N = 4/group) and troponin T levels (P < 0.05, N = 4/group). Conclusion. One-time intravenous administration of Anakinra prior to myocardial reperfusion reduces infarct size in experimental ischemia/reperfusion injury. Thus, Anakinra may represent a treatment option in myocardial infarction prior to revascularization. PMID:22649318

  12. Erythropoietin: physiology and pharmacology update.

    PubMed

    Fisher, James W

    2003-01-01

    This minireview is an update of a 1997 review on erythropoietin (EPO) in this journal. EPO is a 30,400-dalton glycoprotein that regulates red cell production. In the human, EPO is produced by peritubular cells in the kidneys of the adult and in hepatocytes in the fetus. Small amounts of extra-renal EPO are produced by the liver in adult human subjects. EPO binds to an erythroid progenitor cell surface receptor that includes a p66 chain, and, when activated, the p66 protein becomes dimerized. EPO receptor activation induces a JAK2 tyrosine kinase, which leads to tyrosine phosphorylation of the EPO receptor and several proteins. EPO receptor binding leads to intracellular activation of the Ras/mitogen-activated kinase pathway, which is involved with cell proliferation, phosphatidylinositol 3-kinase, and STATS 1, 3, 5A, and 5B transcriptional factors. EPO acts primarily to rescue erythroid cells from apoptosis (programmed cell death) to increase their survival. EPO acts synergistically with several growth factors (SCF, GM-CSF, 1L-3, and IGF-1) to cause maturation and proliferation of erythroid progenitor cells (primarily colony-forming unit-E). Oxygen-dependent regulation of EPO gene expression is postulated to be controlled by a hypoxia-inducible transcription factor (HIF-1alpha). Hypoxia-inducible EPO production is controlled by a 50-bp hypoxia-inducible enhancer that is approximately 120 bp 3' to the polyadenylation site. Hypoxia signal transduction pathways involve kinases A and C, phospholipase A(2), and transcription factors ATF-1 and CREB-1. A model has been proposed for adenosine activation of EPO production that involves protein kinases A and C and the phospholipase A(2) pathway. Other effects of EPO include a hematocrit-independent, vasoconstriction-dependent hypertension, increased endothelin production, upregulation of tissue renin, change in vascular tissue prostaglandins production, stimulation of angiogenesis, and stimulation of endothelial and vascular

  13. Recombinant erythropoietin in humans has a prolonged effect on circulating erythropoietin isoform distribution.

    PubMed

    Aachmann-Andersen, Niels Jacob; Just Christensen, Søren; Lisbjerg, Kristian; Oturai, Peter; Meinild-Lundby, Anne-Kristine; Holstein-Rathlou, Niels-Henrik; Lundby, Carsten; Vidiendal Olsen, Niels

    2014-01-01

    The membrane-assisted isoform immunoassay (MAIIA) quantitates erythropoietin (EPO) isoforms as percentages of migrated isoforms (PMI). We evaluated the effect of recombinant human EPO (rhEPO) on the distribution of EPO isoforms in plasma in a randomized, placebo-controlled, double-blinded, cross-over study. 16 healthy subjects received either low-dose Epoetin beta (5000 IU on days 1, 3, 5, 7, 9, 11 and 13); high-dose Epoetin beta (30.000 IU on days 1, 2 and 3 and placebo on days 5, 7, 9, 11 and 13); or placebo on all days. PMI on days 4, 11 and 25 was determined by interaction of N-acetyl glucosamine with the glycosylation dependent desorption of EPO isoforms. At day 25, plasma-EPO in both rhEPO groups had returned to values not different from the placebo group. PMI with placebo, reflecting the endogenous EPO isoforms, averaged 82.5 (10.3) % (mean (SD)). High-dose Epoetin beta decreased PMI on days 4 and 11 to 31.0 (4.2)% (p<0.00001) and 45.2 (7.3)% (p<0.00001). Low-dose Epoetin beta decreased PMI on days 4 and 11 to 46.0 (12.8)% (p<0.00001) and 46.1 (10.4)% (p<0.00001). In both rhEPO groups, PMI on day 25 was still decreased (high-dose Epoetin beta: 72.9 (19.4)% (p=0.029); low-dose Epoetin beta: 73.1 (17.8)% (p=0.039)). In conclusion, Epoetin beta leaves a footprint in the plasma-EPO isoform pattern. MAIIA can detect changes in EPO isoform distribution up til at least three weeks after administration of Epoetin beta even though the total EPO concentration has returned to normal.

  14. Resistance of dialyzed patients to erythropoietin

    PubMed Central

    Alves, Michelle Teodoro; Vilaça, Sandra Simone; Carvalho, Maria das Graças; Fernandes, Ana Paula; Dusse, Luci Maria Sant’Ana; Gomes, Karina Braga

    2015-01-01

    Resistance to recombinant human erythropoietin is a common condition in dialyzed patients with chronic kidney disease and is associated with more hospitalizations, increased mortality and frequent blood transfusions. The main cause of hyporesponsiveness to recombinant human erythropoietin in these patients is iron deficiency. However, a high proportion of patients does not respond to treatment, even to the use of intravenous iron, which indicates the presence of other important causes of resistance. In addition to the iron deficiency, the most common causes of resistance include inflammation, infection, malnutrition, inadequate dialysis, and hyperparathyroidism, although other factors may be associated. In the presence of adequate iron stores, other causes should be investigated and treated appropriately. PMID:26041422

  15. Effect of plethora on erythropoietin levels

    SciTech Connect

    Moccia, G.; Miller, M.E.; Garcia, J.F.; Cronkite, E.P.

    1980-01-01

    The mechanism by which plethora suppresses erythropoiesis in experimental animals has been assumed to be related to a decrease in erythropoietin (Ep) levels. Prior to the advent of a radioimmunoassay (RIA) for Ep this theory could not be confirmed because of the insensitivity of the bioassay for Ep. In the present study hypertransfusion induced plethora was associated with approximately a 50% reduction in plasma Ep levels in CF/sub 1/ mice.

  16. Regenerative medicine: does Erythropoietin have a role?

    PubMed

    Buemi, Michele; Lacquaniti, Antonio; Maricchiolo, Giulia; Bolignano, Davide; Campo, Susanna; Cernaro, Valeria; Sturiale, Alessio; Grasso, Giovanni; Buemi, Antoine; Allegra, Alessandro; Donato, Valentina; Genovese, Lucrezia

    2009-01-01

    Regenerative Medicine, a recent new medical domain, aims to develop new therapies through the stimulation of natural regenerative processes also in human beings. In this field, Erythropoietin (EPO) represents a significant subject of research. Several studies allow the assertion that EPO, in different concentrations, has protective effects mainly on the central nervous system, cardiovascular system and renal tissue. This action is carried out through one of few regenerative activities of human beings: angiogenesis. This mechanism, which involves endothelial stem cells and VEGF (Vascular Endothelial Growth Factor), has been experimentally demonstrated with Recombinant human erythropoietin (rHuEPO) and Darbepoetin, a long-acting EPO derivate. Furthermore, the demonstration of a cardiac production of EPO in Fugu rubripes and in Zebrafish has led cardiologists to "discover" Erythropoietin, postulating a hypothetical role in treatment of cardiovascular disease for this hormone. This is some of the experimental evidence which demonstrates that EPO can be in reason considered an important element of research of Regenerative Medicine and put in the network of drugs able to regenerate tissues and organs.

  17. CLINICAL APPLICATION OF RECOMBINANT ERYTHROPOIETIN IN BETA-THALASSAEMIA INTERMEDIA.

    PubMed

    Asadov, Ch; Alimirzoyeva, Z; Hasanova, M; Mammadova, T; Shirinova, A

    2016-06-01

    Research objective is to study the efficacy of recombinant erythropoietin (epoetin alfa) as alternative method of treatment beta-thalassemia intermedia. Study involved 58 patients with beta-thalassemia intermedia (23 women and 35 men). In all observed patients was defined levels of hemoglobin (Hb), red blood cells (RBC), erythrocyte indexes (MCV, MCH, MCHC), hemoglobin fractions (HbA, HbA2, HbF), serum ferritin, serum erythropoietin before and after administrated rEPO. All patients received rEPO during 6 month at the dose - 10000 IU subcutaneously. The majority of patients - 39 (67%) had a good response to rEPO (increase in hemoglobin level more than 20 g/l); 16 patients (28%) had a mean response (increase in Hb 10 - 20 g/l); in 3 (5%) patients occurred poor response to rEPO therapy (increase in Hb <10 g/l). After rEPO treatment of beta-thalassemia intermedia patients there was a statistically significant change in the number of RBC, levels of HbF and sEPO. The evaluation of interdependence between the indices of the baseline sEPO and increased Hb values in patients after rEPO treatment revealed the presence of the reverse direct relationship (r=-0.67). Based on the results, it can be concluded that the use of rEPO in complex therapy of beta-thalassemia intermedia leads to increased levels of Hb and consequently reducing the need for blood transfusions, and accordingly expected to prevent severe complications of blood transfusion (alloimmunization, hypersplenism, iron overload, contamination transmissible infections) facilitating normal growth and development, and a better quality of life.

  18. Procedures for monitoring recombinant erythropoietin and analogs in doping.

    PubMed

    Lamon, Séverine; Robinson, Neil; Saugy, Martial

    2010-03-01

    Hemoglobin concentration is one of the principal factors of aerobic power and, consequently, of performance in many types of physical activities. The use of recombinant human erythropoietin is, therefore, particularly powerful for improving the physical performances of patients, and, more generally, improving their quality of life. This article discusses procedures for monitoring recombinant erythropoietin and its analogues in doping for athletic performance.

  19. Molecular and cellular aspects of erythropoietin and erythropoiesis

    SciTech Connect

    Rich, I.N.

    1987-01-01

    This book contains over 30 papers. Some of the titles are: The Molecular Biology of Erythropoietin and the Expression of its Gene; The Molecolar Biology of Erythropoietin; Retroviral Vectors for Gene Transfer and Expression in Haematopietic Cells; Monocyte-Macrophage Mediated Suppression of Erythoropoieis in Renal Anemaia; and Standards for the Assay of Eythropoietin.

  20. Ion channels in human erythroblasts. Modulation by erythropoietin.

    PubMed Central

    Cheung, J Y; Elensky, M B; Brauneis, U; Scaduto, R C; Bell, L L; Tillotson, D L; Miller, B A

    1992-01-01

    To investigate the mechanism of intracellular Ca2+ ([Cai]) increase in human burst-forming unit-erythroid-derived erythroblasts by erythropoietin, we measured [Cai] with digital video imaging, cellular phosphoinositides with high performance liquid chromatography, and plasma membrane potential and currents with whole cell patch clamp. Chelation of extracellular free Ca2+ abolished [Cai] increase induced by erythropoietin. In addition, the levels of inositol-1,4,5-trisphosphate did not increase in erythropoietin-treated erythroblasts. These results indicate that in erythropoietin-stimulated cells, Ca2+ influx rather than intracellular Ca2+ mobilization was responsible for [Cai] rise. Both Ni2+ and moderately high doses of nifedipine blocked [Cai] increase, suggesting involvement of ion channels. Resting membrane potential in human erythroblasts was -10.9 +/- 1.0 mV and was not affected by erythropoietin, suggesting erythropoietin modulated a voltage-independent ion channel permeable to Ca2+. No voltage-dependent ion channel but a Ca(2+)-activated K+ channel was detected in human erythroblasts. The magnitude of erythropoietin-induced [Cai] increase, however, was insufficient to open Ca(2+)-activated K+ channels. Our data suggest erythropoietin modulated a voltage-independent ion channel permeable to Ca2+, resulting in sustained increases in [Cai]. PMID:1385476

  1. Testosterone Induces Erythrocytosis via Increased Erythropoietin and Suppressed Hepcidin: Evidence for a New Erythropoietin/Hemoglobin Set Point

    PubMed Central

    Travison, Thomas G.; Basaria, Shehzad; Davda, Maithili N.; Guo, Wen; Li, Michelle; Connor Westfall, John; Bae, Harold; Gordeuk, Victor; Bhasin, Shalender

    2014-01-01

    Background. The mechanisms by which testosterone increases hemoglobin and hematocrit remain unclear. Methods. We assessed the hormonal and hematologic responses to testosterone administration in a clinical trial in which older men with mobility limitation were randomized to either placebo or testosterone gel daily for 6 months. Results. The 7%–10% increase in hemoglobin and hematocrit, respectively, with testosterone administration was associated with significantly increased erythropoietin (EPO) levels and decreased ferritin and hepcidin levels at 1 and 3 months. At 6 months, EPO and hepcidin levels returned toward baseline in spite of continued testosterone administration, but EPO levels remained nonsuppressed even though elevated hemoglobin and hematocrit higher than at baseline, suggesting a new set point. Consistent with increased iron utilization, soluble transferrin receptor (sTR) levels and ratio of sTR/log ferritin increased significantly in testosterone-treated men. Hormonal and hematologic responses were similar in anemic participants. The majority of testosterone-treated anemic participants increased their hemoglobin into normal range. Conclusions. Testosterone-induced increase in hemoglobin and hematocrit is associated with stimulation of EPO and reduced ferritin and hepcidin concentrations. We propose that testosterone stimulates erythropoiesis by stimulating EPO and recalibrating the set point of EPO in relation to hemoglobin and by increasing iron utilization for erythropoiesis. PMID:24158761

  2. Safety of preoperative erythropoietin in surgical calvarial remodeling: an 8-year retrospective review and analysis.

    PubMed

    Naran, Sanjay; Cladis, Franklyn; Fearon, Jeffrey; Bradley, James; Michelotti, Brett; Cooper, Gregory; Cray, James; Katchikian, Hurig; Grunwaldt, Lorelei; Pollack, Ian F; Losee, Joseph

    2012-08-01

    Calvarial remodeling is typically associated with significant blood loss. Although preoperative erythropoiesis-stimulating agents have proven to significantly decrease the need for blood transfusions, recent data in adults have raised concerns that elevating hemoglobin levels greater than 12.5 g/dl may increase the risk of thrombotic events. This study was designed to assess the risks of erythropoietin in the pediatric population. Records were retrospectively reviewed from 2000 to 2008 at three major metropolitan children's hospitals of all children undergoing calvarial remodeling after receiving preoperative erythropoietin. Demographic and perioperative outcome data were reviewed, including transfusion reactions, pressure ulcer secondary to prolonged positioning, pneumonia, infection, deep vein thrombosis, cerebrovascular accident, pulmonary embolism, sagittal sinus thrombosis, pure red cell aplasia, and myocardial infarction. A total of 369 patients met the inclusion criteria (mean age, 0.86±1.1 years). On average, three preoperative doses of erythropoietin were administered (600 U/kg). Iron was also supplemented. No complications associated with dosing were noted, there were no thrombotic events identified, and no other major complications were seen (i.e., death or blindness). Thirty-one patients (8.40 percent) experienced one or more postoperative complications. There was no significant correlation between hemoglobin levels greater than 12.5 g/dl and the occurrence of any noted complication. With zero thrombotic postoperative complications, the authors estimate the risk of a thrombotic event in the pediatric population to be less than 0.81 percent (95 percent confidence). These data suggest that preoperative administration of erythropoietin in children undergoing calvarial remodeling does not appear to increase the incidence of thrombotic events or other significant complications. Therapeutic, IV.

  3. State-of-the-art biosimilar erythropoietins in the management of renal anemia: lessons learned from Europe and implications for US nephrologists.

    PubMed

    Covic, Adrian; Abraham, Ivo

    2015-09-01

    The European Medicines Agency (EMA), under a strictly regulated pathway, has approved several biosimilar products since 2005, including biosimilar versions of the erythropoiesis-stimulating agent (ESA) epoetin alfa since 2007. Subsequent to these approvals, the use of biosimilar epoetin alfa in the management of renal anemia has grown steadily throughout Europe. With the enactment of the US Biologics Price Competition and Innovation Act of 2009, a US Food and Drug Administration regulatory approval process for biosimilars was legalized. Thus, biosimilar erythropoietin products are expected to be available for prescription in the USA by mid-decade, presumably at a price that is competitive with the originator brand-name reference products. In this paper, we describe the status of originator and biosimilar ESAs, review the clinical development and regulatory approval of biosimilar erythropoietins in Europe, and summarize relevant efficacy and safety information of biosimilar erythropoietins in relation to their reference products to provide a background for US nephrologists as they appraise biosimilar erythropoietins as treatment options for renal anemia. Key lessons learned from Europe are that (a) EMA-approved biosimilar erythropoietins have comparable efficacy and safety profiles to their reference product erythropoietin; (b) pharmacovigilance preapproval and postapproval are critical, especially with regard to immunogenicity and vascular thromboembolic events; (c) strict preapproval and postapproval requirements must guide the regulatory pathway for biosimilars; and (d) high-quality manufacturing and production processes must be established to ensure quality biosimilar products. The availability of biosimilar erythropoietins in the USA will provide nephrologists with alternative effective, and potentially more affordable, treatment options for patients with renal anemia.

  4. Erythropoietin-induced iritis-like reaction.

    PubMed

    Beiran, I; Krasnitz, I; Mezer, E; Meyer, E; Miller, B

    1996-01-01

    The present report describes an iritis-like reaction found in 13 patients treated with recombinant human erythropoietin (Eprex), a drug given to hemodialysis patients for their chronic anemia. Among 120 patients being treated by hemodialysis in two centers affiliated with our medical center, ten out of 30 Eprex-treated patients but none of 90 not being treated with Eprex developed this reaction. The observations described support a causal relation between Eprex treatment and the iritis-like reaction. Further investigative effort is needed to establish the mechanism.

  5. Erythropoietin protects cardiac myocytes against anthracycline-induced apoptosis

    SciTech Connect

    Fu Ping; Arcasoy, Murat O. . E-mail: arcas001@mc.duke.edu

    2007-03-09

    The cardiotoxic adverse effects of anthracycline antibiotics limit their therapeutic utility as essential components of chemotherapy regimens for hematologic and solid malignancies. Here we show that the hematopoietic cytokine erythropoietin attenuates doxorubicin-induced apoptosis of primary neonatal rat ventricular cardiomyocytes in a dose-dependent manner. Erythropoietin treatment induced rapid, time-dependent phosphorylation of MAP kinases (MAPK) Erk1/2 and the phosphatidylinositol 3-kinase substrate Akt. Treatment of cardiomyocytes with inhibitors of phosphatidylinositol 3-kinase (LY294002) or Akt (Akti-1/2) abolished the protective effect of erythropoietin, whereas treatment with MAPK kinase (MEK1) inhibitor U0126 did not. Erythropoietin also induced the phosphorylation of GSK-3{beta}, a downstream target of PI3K-Akt. Because phosphorylation is known to inactivate GSK-3{beta}, we investigated whether GSK-3{beta} inhibition is cardioprotective. We found that GSK-3{beta} inhibitors SB216763 or lithium chloride blocked doxorubicin-induced cardiomyocyte apoptosis in a manner similar to erythropoietin, suggesting that GSK-3{beta} inhibition is involved in erythropoietin-mediated cardioprotection. Erythropoietin may serve as a novel cardioprotective agent against anthracycline-induced cardiotoxicity.

  6. Erythropoietin as a novel brain and kidney protective agent.

    PubMed

    Moore, E M; Bellomo, R; Nichol, A D

    2011-05-01

    Erythropoietin is a 30.4 kDa glycoprotein produced by the kidney, which is mostly known for its physiological function in regulating red blood cell production in the bone marrow Accumulating evidence, however suggests that erythropoietin has additional organ protective effects, which may specifically be useful in protecting the brain and kidneys from injury. Experimental evidence suggests that these protective mechanisms are multi-factorial in nature and may include inhibition of apoptotic cell death, stimulation of cellular regeneration, inhibition of deleterious pathways and promotion of recovery. In this article we review the physiology of erythropoietin, assess previous work that supports the role of erythropoietin as a general tissue protective agent and explain the mechanisms by which it may achieve this tissue protective effect. We then focus on specific laboratory and clinical data that suggest that erythropoietin has a strong brain protective and kidney protective effect. In addition, we comment on the implications of these studies for clinicians at the bedside and for researchers designing controlled trials to further elucidate the true clinical utility of erythropoietin as a neuroprotective and nephroprotective agent. Finally, we describe EPO-TBI, a double-blinded multi-centre randomised controlled trial involving the authors that is being conducted to investigate the organ protective effects of erythropoietin on the brain, and also assesses its effect on the kidneys.

  7. Erythropoietin Pathway: A Potential Target for the Treatment of Depression

    PubMed Central

    Ma, Chongyang; Cheng, Fafeng; Wang, Xueqian; Zhai, Changming; Yue, Wenchao; Lian, Yajun; Wang, Qingguo

    2016-01-01

    During the past decade, accumulating evidence from both clinical and experimental studies has indicated that erythropoietin may have antidepressant effects. In addition to the kidney and liver, many organs have been identified as secretory tissues for erythropoietin, including the brain. Its receptor is expressed in cerebral and spinal cord neurons, the hypothalamus, hippocampus, neocortex, dorsal root ganglia, nerve axons, and Schwann cells. These findings may highlight new functions for erythropoietin, which was originally considered to play a crucial role in the progress of erythroid differentiation. Erythropoietin and its receptor signaling through JAK2 activate multiple downstream signaling pathways including STAT5, PI3K/Akt, NF-κB, and MAPK. These factors may play an important role in inflammation and neuroprogression in the nervous system. This is particularly true for the hippocampus, which is possibly related to learning, memory, neurocognitive deficits and mood alterations. Thus, the influence of erythropoietin on the downstream pathways known to be involved in the treatment of depression makes the erythropoietin-related pathway an attractive target for the development of new therapeutic approaches. Focusing on erythropoietin may help us understand the pathogenic mechanisms of depression and the molecular basis of its treatment. PMID:27164096

  8. Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin in athletes. Blood sampling and doping control

    PubMed Central

    SOUILLARD, AGNES; AUDRAN, MICHEL; BRESSOLLE, FRANÇOISE; GAREAU, RAYNALD; DUVALLET, ALAIN; CHANAL, JEAN-LOUIS

    1996-01-01

    1The pharmacokinetics of recombinant human erythropoietin (rHuEpo) were initially determined in two healthy volunteers after a single subcutaneous dose (50 u kg−1). Twenty subjects then received repeated subcutaneous administrations of high dose (200 u kg−1) rHuEpo and 10 subjects received placebo. An immunoradiometric assay was used to measure the concentrations of erythropoietin (Epo) in serum and urine. 2Serum Epo concentration-time profiles were best described by a one-compartment open model with zero-order input. The mean elimination half-life (±s.d.) was 42.0±34.2 h. Clearance, uncorrected for bioavailability, was 0.05±0.01 l h−1 kg& minus;1. Erythropoietin concentrations returned to normal values in serum and urine, 7 and 4 days after the last administration, respectively. 3The recombinant hormone was well tolerated. Significant changes in reticulocytes and red blood cells, haemoglobin concentrations and haematocrit were observed after administration of rHuEpo. In the control group, these parameters remained unchanged. 4The change in reticulocytes was used as an index of the therapeutic effect of rHuEpo. The concentration-effect relationship was best described by an exponential model. 5These data show the limitations of the measurement of Epo concentrations in blood and urine samples, collected in athletes during competition, for antidoping control. Epo doping can be detected only during or within 4 to 7 days of ending, a course of rHuEpo. PMID:8877027

  9. Polycythemia, increased erythropoietin levels in a patient with renal lymphoma

    PubMed Central

    Bhat, Riyaz Ahmad; Khan, Imran; Khan, Irfan; Mir, Mohd Ashraf

    2014-01-01

    A young male presented to our clinic with 3 months history of shortness of breathness and progressive distension of abdomen. On investigations, patient had renal failure, polycythemia and nephromegaly. A diagnosis of non-Hodgkin's lymphoma was made on renal and lymph node biopsy. Serum erythropoietin concentrations were physiologically inappropriate. – Erythropoietin immunohistochemistry on renal tissue samples demonstrated positive staining for tumor cells. This patient was managed as a case of infiltrative lymphoproliferative disorder with kidney involvement having polycythemia owing to paraneoplastic Erythropoietin production and possibly local hypoxia produced by tumor cells. With maximum efforts, we could not find such an association in the literature. PMID:25161994

  10. Anemia and erythropoietin in space flights.

    PubMed

    De Santo, Natale G; Cirillo, Massimo; Kirsch, Karl A; Correale, Giacomo; Drummer, Christian; Frassl, Waltraud; Perna, Alessandra F; Di Stazio, Enzo; Bellini, Luigi; Gunga, Hanns-Christian

    2005-11-01

    Since the very early manned missions in space, a state of anemia associated with reduced erythropoietin levels and reduced plasma volume was disclosed. The reduction in red blood cell mass is driven by a process of selective hemolysis, which has been named neocytolysis. This phenomenon also occurs in people living at a high altitude who descend rapidly to sea level. The origin of the signal leading to destruction of newly produced red blood cells probably is located in central circulation, but the operating mechanism is unknown. The importance of plasma cell volume reduction in the genesis of a lower red cell mass also is supported by the inverse correlation seen at moderate altitude. People arriving at moderate altitude have increased erythropoietin concentration that decreases after a few days and is in inverse correlation with central venous pressure. Studies under simulated microgravity conditions in human beings (bed rest, head-down tilt at -6 degrees , water immersion) and in rats provide further insight in unraveling the mechanism of astronauts' anemia, a problem difficult to study in space because of the limited availability of spaceflights.

  11. Efficacy of a single, weekly dose of recombinant erythropoietin in myelodysplastic syndromes.

    PubMed

    Musto, Pellegrino; Falcone, Antonietta; Sanpaolo, Grazia; Bodenizza, Carlo; La Sala, Antonio; Perla, Gianni; Carella, Angelo Michele

    2003-07-01

    Thirteen patients with low-to-intermediate risk myelodysplastic syndrome (MDS) received recombinant erythropoietin (r-EPO) at the single, weekly dose of 40.000 U for at least 8 weeks. Five patients (38.4%) achieved a major erythroid response (increased haemoglobin levels > 2 g/dl and/or transfusion independence), which is currently maintained after 3-11 months, without modification of r-EPO dose. This study suggests that 40.000 U r-EPO given once a week may be at least as effective as the more frequent (daily or three times a week) administrations of the drug usually employed in MDS patients.

  12. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after multiple subcutaneous doses in healthy subjects.

    PubMed

    Krzyzanski, Wojciech; Jusko, William J; Wacholtz, Mary C; Minton, Neil; Cheung, Wing K

    2005-11-01

    A pharmacokinetic and pharmacodynamic (PK/PD) model for recombinant human erythropoietin (Epoetin alfa) in healthy subjects was developed to describe the time profiles of changes in serum Epoetin alfa and the pharmacological responses of percent reticulocytes, total red blood cell counts, and hemoglobin after single and multiple subcutaneous administration of Epoetin alfa. Data used in the development of the model were obtained from a clinical study carried out in healthy volunteers in which Epoetin alfa was administered either as 150 IU/kg three-times-a-week (t.i.w.) or fixed 40,000 IU weekly (q.w.) doses for 4 weeks. A dual-absorption rate model (fast zero-order and slow first-order inputs) with linear disposition kinetics was used to characterize the pharmacokinetics of erythropoietin after subcutaneous administration. A new catenary cell production and lifespan loss model was used to fit the pharmacodynamic data yielding estimates of SC50, Smax, and other pharmacodynamic parameters. Flip-flop kinetics was apparent in the pharmacokinetics as the absorption rate was slower (k(a) = 0.7 day(-1)) than the elimination rate (CL/V(d) = 1.2-9.2 day(-1)). In the pharmacodynamics, an SC50 of 58 mIU/mL was estimated indicating that low serum erythropoietin concentrations were sufficient to produce pharmacological effects. The established PK/PD model predicts similar pharmacological responses of hemoglobin and total red blood cell counts for the 150 IU/kg t.i.w. and 40,000 IU q.w. regimens in healthy subjects.

  13. Novel uses for recombinant erythropoietin therapy in unlicensed indications.

    PubMed

    Macartney, Christine A; Adgey, A A Jennifer; Jones, Frank G C; Morris, Treen C M; McMullin, Mary-Frances

    2004-01-01

    Clinical uses for recombinant human erythropoietin (rHuEPO) therapy continue to expand. Initial use was in anaemia associated with end-stage renal disease, but more recently there have been many reports of the benefits of erythropoietin in other clinical situations such as cancer-related anaemia. Recombinant erythropoietin reduces the need for blood transfusion and hence exposure to donor blood products as well as improving quality of life. We report four patients who were transfusion dependent, none of whom had licensed indications for the use of recombinant erythropoietin. Two patients had microangiopathic haemolytic anaemia secondary to mechanical valve haemolysis and were unsuitable for any further cardiac intervention. One patient had anaemia of chronic disease and anti-Vel red cell antibodies, making compatible blood transfusions difficult to obtain. The fourth patient had primary thrombocythaemia and developed transfusion-dependent anaemia secondary to myelosuppressive agents. All four patients had a relative deficiency in endogenous erythropoietin levels ranging between 7 and 41 IU/l. After commencing recombinant erythropoietin therapy, all had a response in haemoglobin of at least 1 g/dl with an overall improvement in their quality of life. We conclude that rHuEPO is a very convenient and useful form of treatment in transfusion-dependent anaemia and in some cases beyond the licensed indications.

  14. Erythropoietin Levels in Elderly Patients with Anemia of Unknown Etiology

    PubMed Central

    Sriram, Swetha; Martin, Alison; Xenocostas, Anargyros; Lazo-Langner, Alejandro

    2016-01-01

    Background In many elderly patients with anemia, a specific cause cannot be identified. This study investigates whether erythropoietin levels are inappropriately low in these cases of “anemia of unknown etiology” and whether this trend persists after accounting for confounders. Methods This study includes all anemic patients over 60 years old who had erythropoietin measured between 2005 and 2013 at a single center. Three independent reviewers used defined criteria to assign each patient’s anemia to one of ten etiologies: chronic kidney disease, iron deficiency, chronic disease, confirmed myelodysplastic syndrome (MDS), suspected MDS, vitamin B12 deficiency, folate deficiency, anemia of unknown etiology, other etiology, or multifactorial etiology. Iron deficiency anemia served as the comparison group in all analyses. We used linear regression to model the relationship between erythropoietin and the presence of each etiology, sequentially adding terms to the model to account for the hemoglobin concentration, estimated glomerular filtration rate (eGFR) and Charlson Comorbidity Index. Results A total of 570 patients met the inclusion criteria. Linear regression analysis showed that erythropoietin levels in chronic kidney disease, anemia of chronic disease and anemia of unknown etiology were lower by 48%, 46% and 27%, respectively, compared to iron deficiency anemia even after adjusting for hemoglobin, eGFR and comorbidities. Conclusions We have shown that erythropoietin levels are inappropriately low in anemia of unknown etiology, even after adjusting for confounders. This suggests that decreased erythropoietin production may play a key role in the pathogenesis of anemia of unknown etiology. PMID:27310832

  15. Current perspectives on protective roles of erythropoietin in cardiovascular system: erythropoietin receptor as a novel therapeutic target.

    PubMed

    Kagaya, Yutaka; Asaumi, Yasuhide; Wang, Wanting; Takeda, Morihiko; Nakano, Makoto; Satoh, Kimio; Fukumoto, Yoshihiro; Shimokawa, Hiroaki

    2012-06-01

    Erythropoietin (EPO) is a principal regulator that promotes proliferation and terminal differentiation of erythroid progenitor cells. EPO receptors are expressed not only in hematopoietic lineage cells but also in the cardiovascular system. We performed animal experiments using transgene-rescued EPO receptor null mutant mice (EpoR-/- rescued) that express the EPO receptor exclusively in the hematopoietic cells. The results of these experiments suggest that endogenous EPO/EPO receptor system in the heart exerts cardioprotective effects against myocardial injury induced by ischemia followed by reperfusion and pressure-overload induced left ventricular dysfunction. Many animal experiments have shown that the administration of recombinant human EPO also elicits cardioprotective effects against myocardial injury induced by ischemia and reperfusion. In contrast to the promising results of these animal experiments, recent clinical trials failed to demonstrate the reduction in infarct size or improvement of cardiac function by the administration of recombinant human EPO in patients with acute myocardial infarction who underwent primary percutaneous coronary intervention. It should be tested in future clinical studies whether a relatively low dose of recombinant human EPO or its derivatives that have no erythropoietic action reduces infarct size and ameliorates cardiac dysfunction in patients with acute myocardial infarction. In this article, we review implications of anemia associated with chronic heart failure, roles of the endogenous EPO/EPO receptor system, and the effects of the administration of erythropoiesis-stimulating agents in pathologic conditions of the heart by focusing on the EPO receptor as a potential candidate of novel therapeutic targets in cardiovascular diseases.

  16. Regeneration in the nervous system with erythropoietin

    PubMed Central

    Maiese, Kenneth

    2015-01-01

    Globally, greater than 30 million individuals are afflicted with disorders of the nervous system accompanied by tens of thousands of new cases annually with limited, if any, treatment options. Erythropoietin (EPO) offers an exciting and novel therapeutic strategy to address both acute and chronic neurodegenerative disorders. EPO governs a number of critical protective and regenerative mechanisms that can impact apoptotic and autophagic programmed cell death pathways through protein kinase B (Akt), sirtuins, mammalian forkhead transcription factors, and wingless signaling. Translation of the cytoprotective pathways of EPO into clinically effective treatments for some neurodegenerative disorders has been promising, but additional work is necessary. In particular, development of new treatments with erythropoiesis-stimulating agents such as EPO brings several important challenges that involve detrimental vascular outcomes and tumorigenesis. Future work that can effectively and safely harness the complexity of the signaling pathways of EPO will be vital for the fruitful treatment of disorders of the nervous system. PMID:26549969

  17. Effects of erythropoietin on the bone microenvironment.

    PubMed

    McGee, S J; Havens, A M; Shiozawa, Y; Jung, Y; Taichman, R S

    2012-02-01

    It has been well established that blood and bone share a unique, regulatory relationship with one another, though the specifics of this relationship still remain unanswered. Erythropoietin (Epo) is known primarily for its role as a hematopoietic hormone. However, after the discovery of Epo receptor outside the hematopoietic tissues, Epo has been avidly studied for its possible nonhematopoietic effects. It has been proposed that Epo interacts with bone both directly, by activating bone marrow stromal cells, and indirectly, through signaling pathways on hematopoietic stem cells. Yet, the role of Epo in regulating skeletal maintenance and regeneration remains controversial. Here, we review the current state of knowledge pertaining to the effects of Epo on the skeleton.

  18. Erythropoietin in bone - Controversies and consensus.

    PubMed

    Hiram-Bab, Sahar; Neumann, Drorit; Gabet, Yankel

    2017-01-01

    Erythropoietin (Epo) is the main hormone that regulates the production of red blood cells (hematopoiesis), by stimulating their progenitors. Beyond this vital function, several emerging roles have been noted for Epo in other tissues, including neurons, heart and retina. The skeletal system is also affected by Epo, however, its actions on bone are, as yet, controversial. Here, we review the seemingly contradicting evidence regarding Epo effects on bone remodeling. We also discuss the evidence pointing to a direct versus indirect effect of Epo on the osteoblastic and osteoclastic cell lineages. The current controversy may derive from a context-dependent mode of action of Epo, namely opposite skeletal actions during bone regeneration and steady-state bone remodeling. Differences in conclusions from the published in-vitro studies may thus relate to the different experimental conditions. Taken together, these studies indicate a complexity of Epo functions in bone cells.

  19. Regeneration in the nervous system with erythropoietin.

    PubMed

    Maiese, Kenneth

    2016-01-01

    Globally, greater than 30 million individuals are afflicted with disorders of the nervous system accompanied by tens of thousands of new cases annually with limited, if any, treatment options. Erythropoietin (EPO) offers an exciting and novel therapeutic strategy to address both acute and chronic neurodegenerative disorders. EPO governs a number of critical protective and regenerative mechanisms that can impact apoptotic and autophagic programmed cell death pathways through protein kinase B (Akt), sirtuins, mammalian forkhead transcription factors, and wingless signaling. Translation of the cytoprotective pathways of EPO into clinically effective treatments for some neurodegenerative disorders has been promising, but additional work is necessary. In particular, development of new treatments with erythropoiesis-stimulating agents such as EPO brings several important challenges that involve detrimental vascular outcomes and tumorigenesis. Future work that can effectively and safely harness the complexity of the signaling pathways of EPO will be vital for the fruitful treatment of disorders of the nervous system.

  20. Erythropoietin (EPO) in acute kidney injury.

    PubMed

    Moore, Elizabeth; Bellomo, Rinaldo

    2011-03-21

    Erythropoietin (EPO) is a 30.4 kDa glycoprotein produced by the kidney, and is mostly well-known for its physiological function in regulating red blood cell production in the bone marrow. Accumulating evidence, however, suggests that EPO has additional organ protective effects, which may be useful in the prevention or treatment of acute kidney injury. These protective mechanisms are multifactorial in nature and include inhibition of apoptotic cell death, stimulation of cellular regeneration, inhibition of deleterious pathways, and promotion of recovery.In this article, we review the physiology of EPO, assess previous work that supports the role of EPO as a general tissue protective agent, and explain the mechanisms by which it may achieve this tissue protective effect. We then focus on experimental and clinical data that suggest that EPO has a kidney protective effect.

  1. [Treatment of renal anemia with erythropoietin].

    PubMed

    Spustova, V; Kovac, A

    1999-08-01

    During the last decade, a considerable amount of new information has accumulated regarding therapy optimalization of renal anaemia with recombinant human erythropoietin (EPO). Key question involved is EPO hyporesponsiveness caused by absolute or functional iron deficiency. Most controversial issue in the treatment of renal anaemia in patients with chronic renal insufficiency is the definition of optimal target haemoglobin. Many questions about optimizing EPO therapy were considered at the 2nd European Epoetin Symposium which was held in April 1998 on Crete. Discussion was devoted also to revision of a draft version of the European Best Practice Guidelines for the Management of Anaemia in Patients with Chronic Renal Failure. The presented review is on summary of new insights presented at the symposium. (Ref. 85.)

  2. Effect of erythropoietin on free radical oxidation and glycoprotein expression in platelets under conditions of chronic renal failure.

    PubMed

    Osikov, M V

    2014-05-01

    A short-term open prospective study examined 62 patients at the terminal stage of chronic renal failure. The experimental group received erythropoietin in a total dose of about 40,000 U. The expression of glycoproteins IIb-IIIa, IIb, and Ib was enhanced, the content of LPO products was elevated, and SOD and catalase activities were reduced in platelets from patients with chronic renal failure. Administration of erythropoietin partially restored free radical oxidation and expression of glycoproteins IIb-IIIa, IIb, and Ib in platelets. A significant correlation was revealed between the expression of platelet receptors on the one hand, and content of LPO products and SOD and catalase activities, on the other hand.

  3. Recombinant human erythropoietin dosing errors due to concentrated EPO.

    PubMed

    Spiegel, D M; Nemenoff, R A

    2010-06-01

    Recombinant human erythropoietin (rHuEPO) is widely used to treat anemia. A dialysis provider enacted a policy utilizing 20,000 U/ml multi-dose vials for rHuEPO dosing. The purpose of this study was to determine the accuracy and precision in administering small rHuEPO doses from this vial. Ten registered nurses (RNs) were selected at random, supplied with a rHuEPO vial refilled with water, and instructed to withdraw the following amounts (1,200 U, 2,400 U, 3,600 U) using standard procedures and assuming the standard rHuEPO concentration of 20,000 U/ml. Samples were drawn up in duplicate and placed into 1.5 ml micro-centrifuge tubes. The volumes were measured using P-100 or P-200 microliter pipettes. The equivalent amount of rHuEPO was calculated by multiplying the volume by 20 U/microl. The rHuEPO dosing errors were large and on occasion greater than 100% at the 1,200 U dose. The variability for each RN, while large, was less than the inter-RN variability (within-RN % error 9.6% vs. 29.8% between-RN % error at the 1,200 unit dose). Errors occurred in both directions, both under- and overdosing. Utilizing concentrated rHuEPO resulted in significant dosing errors at low rHuEPO doses. The implications include inaccurate medication administration and disparity between administered and billed dosages. Policy decisions that effect medication administration need to be carefully evaluated to determine their impact on patient well-being and safety.

  4. Successful Treatment of Severe Anemia using Erythropoietin in a Jehovah Witness with Non-Hodgkin Lymphoma.

    PubMed

    Agapidou, Alexandra; Vakalopoulou, Sofia; Papadopoulou, Theodosia; Chadjiaggelidou, Christina; Garypidou, Vasileia

    2014-11-19

    Blood transfusion many times works in a life-saving way when a patient is facing a critical situation. However, some patients, such as Jehovah's Witnesses, may refuse their administration because it opposes to their religion beliefs. Thus, clinicians are forced to respect patients' preferences and seek other treatments in order to overcome the obstacle of the transfusion. In 1989, recombinant human erythropoietin (rHuEPO) was approved by the United States Food and Drug Administration (FDA) for the treatment of anemia associated with chronic renal failure. This is an amino acid glycol-protein that stimulates red blood cell production in the same manner as endogenous erythropoietin. Other treatment indications approved by the FDA include anemia due to chronic kidney disease, anemia secondary to zidovudine therapy in patients with human immunodeficiency virus infection, and anemia secondary to cancer chemotherapy. The drug also has been used for many off-label indications. Many Jehovah's Witnesses have accepted rHuEPO as a treatment option to maintain and enhance erythropoiesis. This paper reports the case of a 57-year-old Jehovah's Witness man, who was diagnosed with severe anemia due to aggressive non Hodgkin lymphoma and refused transfusion of blood; thanks to the treatment with rHuEPO he has managed to complete chemotherapy and has survived a life threatening situation.

  5. Successful Treatment of Severe Anemia using Erythropoietin in a Jehovah Witness with Non-Hodgkin Lymphoma

    PubMed Central

    Agapidou, Alexandra; Vakalopoulou, Sofia; Papadopoulou, Theodosia; Chadjiaggelidou, Christina; Garypidou, Vasileia

    2014-01-01

    Blood transfusion many times works in a life-saving way when a patient is facing a critical situation. However, some patients, such as Jehovah’s Witnesses, may refuse their administration because it opposes to their religion beliefs. Thus, clinicians are forced to respect patients’ preferences and seek other treatments in order to overcome the obstacle of the transfusion. In 1989, recombinant human erythropoietin (rHuEPO) was approved by the United States Food and Drug Administration (FDA) for the treatment of anemia associated with chronic renal failure. This is an amino acid glycol-protein that stimulates red blood cell production in the same manner as endogenous erythropoietin. Other treatment indications approved by the FDA include anemia due to chronic kidney disease, anemia secondary to zidovudine therapy in patients with human immunodeficiency virus infection, and anemia secondary to cancer chemotherapy. The drug also has been used for many off-label indications. Many Jehovah’s Witnesses have accepted rHuEPO as a treatment option to maintain and enhance erythropoiesis. This paper reports the case of a 57-year-old Jehovah’s Witness man, who was diagnosed with severe anemia due to aggressive non Hodgkin lymphoma and refused transfusion of blood; thanks to the treatment with rHuEPO he has managed to complete chemotherapy and has survived a life threatening situation. PMID:25568760

  6. Pharmacological Effects of Erythropoietin and its Derivative Carbamyl erythropoietin in Cerebral White Matter Injury

    NASA Astrophysics Data System (ADS)

    Liu, Wei

    Periventricular leukomalacia (PVL) is the predominant form of brain injury in the premature infant and the most common cause of cerebral palsy, yet no therapy currently exists for this serious human disorder. As PVL often occurs in preterm infants suffering from cerebral hypoxia/ischemia with or without prior exposure to maternal-fetal infection/inflammation, we used hypoxia/ischemia with or without lipopolysaccharide (LPS) injection, to produce clinically relevant PVL-like lesions in the white matter in postnatal day six (P6) mice. We studied the white matter pathology under different conditions, such as different durations of hypoxia and different doses of LPS, to evaluate the effects of those etiological factors on neonatal white matter injury. Distinct related pathological events were investigated at different time points during the progression of PVL. We used immunohistochemistry, histological analysis, and electron microscopy (EM) to study demylination that occurs in the white matter area, which is consistent with the pathology of human PVL. Previous studies have shown that erythropoietin (EPO) and its derivative carbamylated EPO (CEPO) are neuroprotective in various experimental models of brain injury. However, none of these studies investigated their efficacy against white matter injury using appropriate animal models of PVL. We produced unilateral or bilateral white matter injury in P6 mice using unilateral carotid ligation (UCL) followed by hypoxia (6% oxygen, 35 min) or by UCL/hypoxia plus LPS injection, respectively. We administered a single intraperitoneal (i.p.) dose of EPO or CEPO (5000 IU/kg) immediately after the insult, and found both drugs to provide significant protection against white matter injury in PVL mice compared to vehicle-treated groups. In addition, EPO and CEPO treatments attenuated neurobehavioral dysfunctions in an acute manner after PVL injury. EPO and CEPO have relatively few adverse effects, and thus may be a therapeutic agent

  7. Effect of recombinant erythropoietin on functional activity of cultured human cells.

    PubMed

    Emel'yanova, E A; Kosykh, A V; Sukhanov, Yu V; Vorotelyak, E A; Vasil'ev, A V

    2012-08-01

    We studied the effect of recombinant human erythropoietin on functional activity of skin cells in vitro. It was found that erythropoietin stimulated proliferation of mesenchymal and epithelial cells and effectively protected epidermal HaCaT cells from apoptosis. Insignificant effect of erythropoietin on contraction of collagen gel by mesenchymal cells was revealed. These findings suggest that erythropoietin can be a promising component of wound-healing preparations.

  8. Use of recombinant human erythropoietin as an antianemic and performance enhancing drug.

    PubMed

    Jelkmann, W

    2000-07-01

    The glycoprotein hormone erythropoietin is an essential viability and growth factor for the erythrocytic progenitors in the bone marrow. Tissue hypoxia is the main stimulus for the synthesis of the hormone in the kidneys and the liver. Endogenous erythropoietin and recombinant human erythropoietin (rHu-EPO) are similar with respect to their biological and chemical properties except for some microheterogeneities in their 4 carbohydrate chains. Generic products and alternatives to rHu-EPO are in development. Renal anemia can be corrected by rHu-EPO in a dose-dependent and predictable way without major side effects apart from a possible increase in arterial blood pressure. The optimal target hematocrit still needs to be defined. There are rare reports of antibody formation towards rHu-EPO in humans. Patients suffering from non-renal anemias may also benefit from the prescription of rHu-EPO. The drug has been approved for treatment of tumor patients with platinum-induced anemia. The cost-effectiveness and medical justification of the administration of rHu-EPO in tumor patients with respect to its positive effects on tumor oxygenation, tumor growth inhibition and support of chemo- and radiotherapy is still a matter of debate. In surgical patients, the pharmacological application of rHu-EPO can increase the yield of blood units in autologous blood donation programs and lower the severity and duration of postoperative anemia, if applicated some days prior to surgery. While rHu-EPO is a godsend in medical practice, its abuse as an performance enhancing drug by athletes in endurance sports is an unethical and potentially dangerous procedure. Unequivocal methods for detection of rHu-EPO doping still need to be established.

  9. Role of erythropoietin in anemia after heart transplantation.

    PubMed

    Gleissner, Christian A; Klingenberg, Roland; Staritz, Peter; Koch, Achim; Ehlermann, Philipp; Wiggenhauser, Alfred; Dengler, Thomas J

    2006-10-10

    Anemia after heart transplantation is common; however, there are scant data on etiology and treatment. This study evaluates type of anemia and the effects of erythropoietin therapy. In 37 anemic heart transplant recipients (31 male/59.1+/-10.3 years/hemoglobin <12.0 g/dl), complete anemia work-up was performed including erythropoietin determination. For three months, 12 anemic patients with renal failure (9 male/64.1+/-13.6 years) were treated with 1-3x4000 IU of epoietin beta/week; treatment endpoints were hemoglobin levels and quality of life as determined by questionnaire. In 31 patients no other cause of anemia than renal insufficiency (mean creatinine 1.9+/-0.9 mg/dl, mean calculated GFR 50.8+/-21.5 ml/min, no hemodialysis) was found; in 93.5% of these patients with renal insufficiency, measured erythropoietin levels were markedly lower than predicted [Beguin Y, Clemons GK, Pootrakul P, Fillet G. Quantitative assessment of erythropoiesis and functional classification of anemia based on measurements of serum transferrin receptor and erythropoietin. Blood 1993; 81(4):1067-1076.]. There was an inverse correlation of hemoglobin levels with serum creatinine/creatinine clearance and a strong trend for inverse correlation of erythropoietin levels. All 12 patients treated with erythropoietin showed a significant increase in hemoglobin levels after three months returning to pre-treatment values within 3 months of cessation of therapy (before study 10.8+/-1.1 g/dl, end of study 14.1+/-1.7 g/dl, three months after end of study 11.6+/-2.1 g/dl; p<0.005). Quality of life was significantly improved in eight patients (75%). Anemia after heart transplantation is associated with moderate renal failure and low erythropoietin levels in most patients. Erythropoietin therapy resulted in increased hemoglobin levels in all and improved quality of life in 75% of patients. Erythropoietin may be a superior marker of functional renal impairment after heart transplantation; its

  10. Erythropoietin concentrations and isoforms in urine of anonymous Olympic athletes during the Nagano Olympic Games.

    PubMed

    Berglund, B; Wide, L

    2002-12-01

    The ordinary doping control urine samples of 36 anonymous participants (cross-country skiers, biathlon athletes, and curling athletes) of the 1998 Nagano Olympic Games were analyzed for erythropoietin and erythropoietin isoforms. The urine erythropoietin concentration (IU/l) was determined with a competitive radioimmunoassay method and the isoforms were studied by electrophoresis and given as milli albumin mobility units (mAMU). Erythropoietin was detectable in 23 out of 36 specimens (64%). The biathlon and curling athletes had similar urine concentration of erythropoietin. The group of 16 cross-country skiers had significantly (P < 0.05) increased urine concentration of erythropoietin as compared to curling athletes and four of them had urine erythropoietin concentrations between 3.6 and 5.1 IU/l. The electrophoretic mobility of erythropoietin was determined in all eight samples with urine concentration of erythropoietin of more than 2 (range 2.1-5.1) IU/l. No single urine specimen with a median erythropoietin electrophoretic mobility below the cut-off level of 670 mAMU (indicative of doping with recombinant erythropoietin) was registered. Erythropoietin in urine was detected in 71% and the isoforms of Epo characterized in 29% of the anonymous Olympic endurance athletes. The urine concentration of erythropoietin in the biathlon and curling athletes were similar to those of non-athletes. The group of cross-country skiers had higher levels of erythropoietin in urine. These higher levels of urine erythropoietin in cross-country skiers are partly due to more concentrated urine specimens.

  11. Pure red cell aplasia and anti-erythropoietin antibodies in patients treated with epoetin.

    PubMed

    Casadevall, Nicole

    2003-11-01

    Recombinant human erythropoietin (epoetin) was first used for the treatment of renal anaemia in 1986. During the first 10 years of its use, epoetin-induced antibodies were a rare complication and only three cases of patients with epoetin-induced antibodies associated with pure red cell aplasia (PRCA) were published. Since 1998, however, there has been a significant increase in the number of patients developing severe anaemia during the course of epoetin treatment due to neutralizing antibodies. Patients with PRCA present with an absolute resistance to epoetin therapy and then rapidly develop severe anaemia with a very low reticulocyte count (<10 000/mm(3)). Consequently, patients become dependent on blood transfusions to maintain an acceptable level of haemoglobin. By December 2002, approximately 142 patients worldwide had been diagnosed with antibody-positive PRCA after receiving epoetin. The vast majority of these patients had been treated with the Eprex/Erypo brand of epoetin alfa, but there were also some cases in which patients had been receiving epoetin beta (NeoRecormon). To date, there have been no cases of antibody-mediated PRCA reported with the sole use of darbepoetin alfa (Aranesp). All patients with epoetin-induced anti-erythropoietin antibodies had received the drug subcutaneously (s.c.), and almost all had chronic kidney disease-related anaemia. To our knowledge, no patient treated exclusively by intravenous (i.v.) administration has developed anti-erythropoietin antibodies. The increase in reported cases coincides with the removal of human serum albumin from the ex-US formulation of epoetin alfa, in order to comply with new regulations from the European regulatory authorities. It has been proposed that the new formulation is less stable, allowing aggregates of erythropoietin molecules to form, which increases the probability of antibody formation. Treatment with epoetin must be discontinued if PRCA is suspected. Patients do not respond to an

  12. The effects of erythropoietin signaling on telomerase regulation in non-erythroid malignant and non-malignant cells

    SciTech Connect

    Uziel, Orit; Kanfer, Gil; Beery, Einat; Yelin, Dana; Shepshelovich, Daniel; Bakhanashvili, Mary; Nordenberg, Jardena; Lahav, Meir

    2014-07-18

    Highlights: • We assumed that some of erythropoietin adverse effects may be mediated by telomerase activity. • EPO administration increased telomerase activity, cells proliferation and migration. • The inhibition of telomerase modestly repressed the proliferative effect of erythropoietin. • Telomere shortening caused by long term inhibition of the enzyme totally abolished that effect. • This effect was mediated via the Lyn–AKT axis and not by the canonical JAK2–STAT pathway. - Abstract: Treatment with erythropoietin (EPO) in several cancers is associated with decreased survival due to cancer progression. Due to the major importance of telomerase in cancer biology we hypothesized that some of these effects may be mediated through EPO effect on telomerase. For this aim we explored the possible effects of EPO on telomerase regulation, cell migration and chemosensitivity in non-erythroid malignant and non-malignant cells. Cell proliferation, telomerase activity (TA) and cell migration increased in response to EPO. EPO had no effect on cancer cells sensitivity to cisplatinum and on the cell cycle status. The inhibition of telomerase modestly repressed the proliferative effect of EPO. Telomere shortening caused by long term inhibition of the enzyme abolished the effect of EPO, suggesting that EPO effects on cancer cells are related to telomere dynamics. TA was correlated with the levels of Epo-R. The increase in TA was mediated post-translationally through the Lyn-Src and not the canonical JAK2 pathway.

  13. Assessing the need for transfusion of premature infants and role of hematocrit, clinical signs, and erythropoietin level.

    PubMed

    Keyes, W G; Donohue, P K; Spivak, J L; Jones, M D; Oski, F A

    1989-09-01

    There are no clear criteria for administration of blood to premature infants. In the past, indications for transfusion have included tachypnea, tachycardia, poor weight gain, apnea, bradycardia, pallor, lethargy, decreased activity, or poor feeding. Some have suggested that erythropoietin levels may also be useful in determining the need for transfusion. Data were studied from 11 premature infants with birth weights less than 1500 g collected throughout 469 hospital days. During that period the infants received a total of 37 blood transfusions. No overall relationship was found between hematocrit of 19% to 64% and heart rate, respiratory rate, or the occurrence of bradycardia; ie, these variables proved to be clinically unreliable as indicators of hematocrit. Furthermore, no predictable effect of transfusion could be identified on heart rate, respiratory rate, or on the incidence of apnea or bradycardia. It was anticipated that frequent episodes of apnea or bradycardia might increase serum erythropoietin concentration. To the contrary, more frequent bradycardia was associated with the low erythropoietin levels because those infants tended to receive transfusions for "symptomatic" anemia. The data are consistent with the concept that "anemia of prematurity" is not predictably associated with symptoms classically attributed to anemia. Possible reasons for this are that the premature infant has a different inherent response to anemia; that it is inappropriate to extrapolate symptoms of severe acute anemia to persons with mild or moderate chronic anemia; or, most likely, that other determinants of heart rate, respiratory rate, and apnea/bradycardia are of more importance than mild or moderate anemia.

  14. Mystery Story about Erythropoietin (Epo) and Erythropoietin Receptor (EpoR) are Disguised?

    PubMed

    Cubranić, Aleksandar; Redzovic, Arnela; Dobrila-Dintinjana, Renata; Vukelić, Jelena; Dintinjana, Marijan

    2015-05-01

    In this review we would like to focus our attention upon very controversial reports on Erythropoietin (Epo) and Erythropoietin Receptor (EpoR) expression in cancer patients. The effects of Epo on cancerous tissues are poorly understood. Hypoxia results in an increase in the level of the production of both Epo and EpoR via activation of the hypoxia-inducible factor 1 (HIF-1) pathway. HIF-1α, promotes the expression of vascular endothelial growth factor (VEGF). The signaling through VEGF in both a paracrine and an autocrine manner is required for the homeostasis of adult vessels. Macrophages stimulate vessel sprouting via a soluble factor other than VEGF, rather than through direct contact with endothelial cells. The intriguing questions are set about many researches to link Epo/EpoR expression and function in order to establish one of the mechanisms of tumor growth, disease progression of cancer patient. However, it is uncertain role in tumour angiogenesis as promoter and stimulator of tumour growth which should need to be furtherly validated.

  15. Erythropoietin and erythropoietin receptor in hepatocellular carcinoma: correlation with vasculogenic mimicry and poor prognosis.

    PubMed

    Yang, Zhihong; Sun, Baocun; Zhao, Xiulan; Shao, Bing; An, Jindan; Gu, Qiang; Wang, Yong; Dong, Xueyi; Zhang, Yanhui; Qiu, Zhiqiang

    2015-01-01

    To evaluate erythropoietin (Epo) and erythropoietin receptor (EpoR) expression, its relationship with vasculogenic mimicry (VM) and its prognostic value in human hepatocellular carcinoma (HCC), we examined Epo/EpoR expression and VM formation using immunohistochemistry and CD31/PAS (periodic acid-Schiff) double staining on 92 HCC specimens. The correlation between Epo/EpoR expression and VM formation was analyzed using two-tailed Chi-square test and Spearman correlation analysis. Survival curves were generated using Kaplan-Meier method. Multivariate analysis was performed using Cox regression model to assess the prognostic values. Results showed positive correlation between Epo/EpoR expression and VM formation (P < 0.05). Patients with Epo or EpoR expression exhibited poorer overall survival (OS) than Epo-negative or EpoR-negative patients (P < 0.05). Epo-positive/VM-positive and EpoR-positive/VM-positive patients had the worst OS (P < 0.05). In multivariate survival analysis, age, Epo and EpoR were independent prognostic factors related to OS. These results will provide evidence for further research on HCC microcirculation patterns and also will provide new possible targets for HCC diagnosis and treatment.

  16. Erythropoietin's inhibiting impact on hepcidin expression occurs indirectly.

    PubMed

    Gammella, Elena; Diaz, Victor; Recalcati, Stefania; Buratti, Paolo; Samaja, Michele; Dey, Soumyadeep; Noguchi, Constance Tom; Gassmann, Max; Cairo, Gaetano

    2015-02-15

    Under conditions of accelerated erythropoiesis, elevated erythropoietin (Epo) levels are associated with inhibition of hepcidin synthesis, a response that ultimately increases iron availability to meet the enhanced iron needs of erythropoietic cells. In the search for erythroid regulators of hepcidin, many candidates have been proposed, including Epo itself. We aimed to test whether direct interaction between Epo and the liver is required to regulate hepcidin. We found that prolonged administration of high doses of Epo in mice leads to great inhibition of liver hepcidin mRNA levels, and concomitant induction of the hepcidin inhibitor erythroferrone (ERFE). Epo treatment also resulted in liver iron mobilization, mediated by increased ferroportin activity and accompanied by reduced ferritin levels and increased TfR1 expression. The same inhibitory effect was observed in mice that do not express the homodimeric Epo receptor (EpoR) in liver cells because EpoR expression is restricted to erythroid cells. Similarly, liver signaling pathways involved in hepcidin regulation were not influenced by the presence or absence of hepatic EpoR. Moreover, Epo analogs, possibly interacting with the postulated heterodimeric β common EpoR, did not affect hepcidin expression. These findings were supported by the lack of inhibition on hepcidin found in hepatoma cells exposed to various concentrations of Epo for different periods of times. Our results demonstrate that hepcidin suppression does not require the direct binding of Epo to its liver receptors and rather suggest that the role of Epo is to stimulate the synthesis of the erythroid regulator ERFE in erythroblasts, which ultimately downregulates hepcidin.

  17. Safety of Intravitreally Administered Recombinant Erythropoietin (An AOS Thesis)

    PubMed Central

    Tsai, James C.

    2008-01-01

    Purpose This study investigated the safety and potential retinal toxicity of intravitreally administered erythropoietin (EPO) in a rodent animal model. Methods Forty-two healthy Sprague-Dawley rats were divided into one of 7 groups (N = 6 per group): control, sham injection, vehicle injection, and EPO injections of 50 ng (5 U), 100 ng (10 U), 250 ng (25 U), and 625 ng (62.5 U). Only the right eye was treated in each animal. Standard full-field dark- and light-adapted electroretinography (ERG) was obtained at 1 day prior to injection and then on postinjection days 3, 7, 14, and 21. Intraocular pressure (IOP) was measured at the conclusion of each ERG recording. Animals were sacrificed and the eyes underwent histologic examination with light microscopy and hematoxylin-eosin staining. Results Rod peak, scotopic, and photopic responses (amplitude and latency) were not statistically different in the animals receiving 50 to 100 ng EPO. In the 250-ng group, the photopic b-wave amplitude at day 21 was elevated (P <.05), whereas in the 625-ng group, the scotopic OP3 latency ratio was higher at baseline (P <.05). No significant histologic abnormalities were noted except for one animal (625-ng group) with qualitative differences in retinal layer thickness and cellular density. Conclusions Intravitreal administration of EPO (at doses up to 625 ng) does not cause adverse effects on retinal function as assessed by ERG. Moreover, single intravitreal dosing does not appear to elicit retinal neovascularization. Further investigation is warranted to assess fully the potential of this neuroprotective cytokine as a treatment for glaucoma. PMID:19277250

  18. Recent developments in doping testing for erythropoietin.

    PubMed

    Reichel, Christian

    2011-08-01

    The constant development of new erythropoiesis-stimulating agents (ESAs), since the first introduction of recombinant erythropoietin (rhEpo) for clinical use, has also necessitated constant development of methods for detecting the abuse of these substances. Doping with ESAs is prohibited according to the World Anti-Doping Code and its prohibited list of substances and methods. Since the first publication of a direct and urine-based detection method in 2000, which uses changes in the Epo isoform profile as detected by isoelectric focusing in polyacrylamide slab gels (IEF-PAGE), the method has been constantly adapted to the appearance of new ESAs (e.g., Dynepo, Mircera). Blood had to be introduced as an additional matrix, because Mircera (a PEGylated Epo) is best confirmed in serum or plasma after immunoaffinity purification. A Mircera ELISA was developed for fast screening of sera. With the appearance of Dynepo and copy epoetins, the additional application of sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE or equivalent) became necessary. The haematological module of the Athlete Biological Passport is the latest development in multivariable indirect testing for ESA doping. The article summarizes the main strategies currently used in Epo anti-doping testing with special focus on new developments made between 2009 and 2010.

  19. Blood doping : infusions, erythropoietin and artificial blood.

    PubMed

    Eichner, E Randy

    2007-01-01

    As science marches on, athletes and coaches march close behind. Researchers have long been interested in how red cell mass and blood volume affect exercise capacity. Interest in blood doping soared after the 1968 Mexico City Olympics. Studies in the 1970s and 1980s suggested that transfusing red cells could speed endurance performance. Diverse athletes of the time were accused of blood doping. In the late 1980s, recombinant human erythropoietin (EPO) began to supplant transfusion for doping. EPO use is a suspect in nearly 20 deaths in 4 years in European cyclists. In the 1998 Tour de France, a team was ejected for using EPO and six other teams quit the race. The beat goes on; in recent years, diverse endurance and sprint athletes have been caught or accused of using EPO. Tests to detect EPO are improving but are not yet foolproof. As EPO tests improve, blood transfusion is back in vogue and some athletes may have infused artificial blood. Tests for detecting artificial blood also exist, but it seems it will take widespread, year-round, unannounced, out-of-competition testing and stern penalties to deter blood doping.

  20. Change in Erythropoietin Pharmacokinetics Following Hematopoietic Transplantation

    PubMed Central

    Widness, JA; Schmidt, RL; Hohl, RJ; Goldman, FD; Al-Huniti, NH; Freise, KJ; Veng-Pedersen, P

    2010-01-01

    Pre-clinical studies have demonstrated that bone marrow ablation has a profound effect in decreasing erythropoietin (EPO) elimination. The study’s objective was to determine in humans if EPO pharmacokinetics (PKs) are perturbed following bone marrow ablation. EPO PK studies were performed in eight subjects, aged 4 to 61 years, undergoing fully myeloablative hematopoietic stem cell transplantation. Serial PK studies using intravenous injection of recombinant human EPO (92±2.0 U/kg) (mean±SEM) were carried out during four periods of altered marrow integrity: baseline pre-ablation, post-ablation pre-transplant, early post-transplant pre-engraftment, and late post-transplant full engraftment. Compared with baseline, post-ablation pre-transplant and early post-transplant EPO PKs demonstrated declines in clearance increases in terminal elimination half-life of 36 and 95%, respectively. Clearance and half-life returned to baseline following full engraftment. The association of EPO elimination with decreased bone marrow activity in patients undergoing transplantation conclusively establishes the bone marrow as a key determinant of EPO elimination in humans. PMID:17429351

  1. EPO's alter ego: erythropoietin has multiple actions.

    PubMed

    Lappin, Terence R; Maxwell, A Peter; Johnston, Patrick G

    2002-01-01

    Many cancer patients suffer from anemia, which has a major detrimental effect on their quality of life. Recombinant human erythropoietin (rHuEPO) is now widely used in cancer patients, as it improves hematocrit, lowers blood transfusion requirements, and improves quality of life. Recent research indicates that EPO has pleiotropic effects on the body well beyond the maintenance of red cell mass, but the mechanisms involved in relieving fatigue and improving quality of life in cancer patients are poorly understood. EPO receptors (EPO-Rs) have been detected in many different cells and tissues, providing evidence for autocrine, paracrine, and endocrine functions of EPO. Apart from its endocrine function, EPO may have a generalized role as an antiapoptotic agent that is associated with enhancement of muscle tone, mucosal status, and gonadal and cognitive function. The recent discovery of EPO-Rs in breast tumor vasculature, while raising important questions about the possible effects of pharmacological doses of rHuEPO on tumor cells, also suggests that the receptors could provide a useful target for drugs attached to EPO.

  2. Erythropoietin alleviates hepatic insulin resistance via PPARγ-dependent AKT activation

    PubMed Central

    Ge, Zhijuan; Zhang, Pengzi; Hong, Ting; Tang, Sunyinyan; Meng, Ran; Bi, Yan; Zhu, Dalong

    2015-01-01

    Erythropoietin (EPO) has beneficial effects on glucose metabolism and insulin resistance. However, the mechanism underlying these effects has not yet been elucidated. This study aimed to investigate how EPO affects hepatic glucose metabolism. Here, we report that EPO administration promoted phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation in palmitic acid (PA)-treated HepG2 cells and in the liver of high-fat diet (HFD)-fed mice, whereas adenovirus-mediated silencing of the erythropoietin receptor (EPOR) blocked EPO-induced AKT signalling in HepG2 cells. Importantly, a peroxisome proliferator-activated receptor γ (PPARγ) antagonist and PPARγ small interfering RNA (siRNA) abrogated the EPO-induced increase in p-AKT in HepG2 cells. Lentiviral vector-mediated hepatic PPARγ silencing in HFD-fed C57BL/6 mice impaired EPO-mediated increases in glucose tolerance, insulin sensitivity and hepatic AKT activation. Furthermore, EPO activated the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signalling pathway, and AMPKα and SIRT1 knockdown each attenuated the EPO-induced PPARγ expression and deacetylation and PPARγ-dependent AKT activation in HepG2 cells. In summary, these findings suggest that PPARγ is involved in EPO/EPOR-induced AKT activation, and targeting the PPARγ/AKT pathway via EPO may have therapeutic implications for hepatic insulin resistance and type 2 diabetes. PMID:26643367

  3. Benefits and risks of anemia correction with recombinant human erythropoietin in children maintained by hemodialysis.

    PubMed

    Montini, G; Zacchello, G; Baraldi, E; Zanconato, S; Suppiej, A; Fabris, F; Andreetta, B; Pavanello, L; Zacchello, F

    1990-10-01

    Ten children with renal failure (age range 2 years 6 months to 18 years 9 months; median 11 years 10 months), maintained by long-term hemodialysis, had successful correction of their anemia after intravenous administration of recombinant human erythropoietin in a dosage escalating every 2 weeks (75 to 150 to 300 to 450 IU/kg/wk). Mean hemoglobin concentration increased from 6.4 +/- 0.9 to 11.5 +/- 1.0 gm/dl. Blood cell counts used to evaluate the correction of anemia were done after dialysis; this was especially important for children less compliant with water restriction. The higher hemoglobin concentration resulted in improvement of the quality of life, a greater tolerance for physical effort (exercise tolerance doubled and the ventilatory anaerobic threshold increased significantly), correction of some subclinical central nervous system abnormalities detected by evoked potentials testing, and reduction of bleeding time. Few side effects were noted; severe hypertension developed in one patient when postdialysis hematocrit was only 28%, and there were two episodes of hypertransaminasemia with no other evidence of liver dysfunction. We conclude that in children with renal failure the use of recombinant human erythropoietin to correct anemia is safe and strongly advisable, because of the resolution of many of the symptoms correlated with anemia.

  4. Effects of Erythropoietin on Electrocardiogram Changes in Carbon Monoxide Poisoning: an Experimental Study in Rats

    PubMed Central

    Asgharian Rezaee, Mitra; Moallem, Seyed Adel; Imenshahidi, Mohsen; Farzadnia, Mahdi; Mohammadpour, Amir Hooshang

    2012-01-01

    The aim of this study was to define the electrocardiogram (ECG) changes following the moderate to severe CO intoxication in rats, and also evaluating the effect of erythropoietin (EPO) on observed cardiac disturbances. The growing literature on erythropoietin effect on cardiac ischemia led us to question its effect on cardiotoxicity due to the carbon monoxide poisoning. Wistar rats were exposed to three different concentrations of CO (250 PPM, 1000 PPM or 3000 PPM). EPO was administrated (5000 IU/Kg, intraperitoneal injection) at the end of CO exposure and then the animals were re-oxygenated with ambient air. Subsequently ECG recording, heart rate and carboxyhemoglobin values were evaluated. ECG changes following the CO intoxication included ST segment elevation and depression, T wave inversion and first-degree AV block. Ischemic ECG changes reduced significantly in EPO-treated animals. In the present study, for the first time, EPO was investigated for the management of cardiac complications due to the CO poisoning. Our results showed that EPO could inhibit ischemic changes of ECG after the CO poisoning. PMID:24250553

  5. Cytoprotective effect of glutaraldehyde erythropoietin on HEK293 kidney cells after silver nanoparticle exposure.

    PubMed

    Sooklert, Kanidta; Chattong, Supreecha; Manotham, Krissanapong; Boonwong, Chawikan; Klaharn, I-yanut; Jindatip, Depicha; Sereemaspun, Amornpun

    2016-01-01

    The toxic effects from exposure to silver nanoparticles (AgNPs), which are broadly present in many consumer products, have long raised concerns. Many studies have focused on the mechanisms of nanosilver, which cause toxicity in human cells, but little is known about prevention of this type of injury. This study investigated the in vitro effects of glutaraldehyde erythropoietin (GEPO), a cytoprotective compound derived from erythropoietin, in terms of cell protection against AgNP-induced injury. HEK293 cells were pretreated with or without GEPO before administration of AgNPs. The protective effects of GEPO in this cell line were assessed by the percentage of viable cells, alterations of cell morphology, and the proliferative capability of the cells. In addition, we assessed the role of GEPO in lowering cellular oxidative stress and regulating expression of the anti-apoptotic protein Bcl2. The results showed rescue effects on the percentage of viable and proliferative cells among GEPO pretreated cells. Pretreatment with GEPO maintained the normal cell shape and ultrastructural morphology. Moreover, GEPO reduced the generation of reactive oxygen species in cells and activated expression of Bcl2, which are the major mechanisms in protection against cellular toxicity induced by AgNPs. In conclusion, our study showed that the cytotoxic effects from exposure to AgNPs can be prevented by GEPO.

  6. Neurobehavioral and cytotoxic effects of vanadium during oligodendrocyte maturation: a protective role for erythropoietin.

    PubMed

    Mustapha, Oluwaseun; Oke, Bankole; Offen, Nils; Sirén, Anna-Leena; Olopade, James

    2014-07-01

    Vanadium exposure has been known to lead to lipid peroxidation, demyelination and oligodendrocytes depletion. We investigated behaviour and glial reactions in juvenile mice after early neonatal exposure to vanadium, and examined the direct effects of vanadium in oligodendrocyte progenitor cultures from embryonic mice. Neonatal pups exposed to vanadium via lactation for 15 and 22 days all had lower body weights. Behavioural tests showed in most instances a reduction in locomotor activity and negative geotaxis. Brain analyses revealed astrocytic activation and demyelination in the vanadium exposed groups compared to the controls. In cell culture, exposure of oligodendrocytes to 300 μM sodium metavanadate significantly increased cell death. Expression of the oligodendrocyte specific proteins, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and oligodendrocyte specific protein (OSP/Claudin) were reduced upon vanadium treatment while simultaneous administration of erythropoietin (EPO; 4-12 U/ml) counteracted vanadium-toxicity. The data suggest that oligodendrocyte damage may explain the increased vulnerability of the juvenile brain to vanadium and support a potential for erythropoietin as a protective agent against vanadium-toxicity during perinatal brain development and maturation.

  7. Human erythropoietin gene delivery for cardiac remodeling of myocardial infarction in rats.

    PubMed

    Lee, Youngsook; McGinn, Arlo N; Olsen, Curtis D; Nam, Kihoon; Lee, Minhyung; Shin, Sug Kyun; Kim, Sung Wan

    2013-10-10

    Considerable efforts have been made to exploit cardioprotective drugs and gene delivery systems for myocardial infarction (MI). The promising cardioprotective effects of recombinant human erythropoietin (rHuEPO) protein in animal experiments have not been consistently reproduced in clinical human trials of acute MI; however, the mechanisms underlying the inconsistent discrepancies are not yet fully understood. We hypothesized that the plasmid human erythropoietin gene (phEPO) delivered by our bioreducible polymer might produce cardioprotective effects on post-infarct cardiac remodeling. We demonstrated that intramyocardial delivery of phEPO by an arginine-grafted poly(disulfide amine) (ABP) polymer in infarcted rats preserves cardiac geometry and systolic function. The reduced infarct size of phEPO/ABP delivery was followed by decrease in fibrosis, protection from cardiomyocyte loss, and down-regulation of apoptotic activity. In addition, the increased angiogenesis and decreased myofibroblast density in the border zone of the infarct support the beneficial effects of phEPO/ABP administration. Furthermore, phEPO/ABP delivery induced prominent suppression on Ang II and TGF-β activity in all subdivisions of cardiac tissues except for the central zone of infarct. These results of phEPO gene therapy delivered by a bioreducible ABP polymer provide insight into the lack of phEPO gene therapy translation in the treatment of acute MI to human trials. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Human Erythropoietin Gene Delivery for Cardiac Remodeling of Myocardial Infarction in Rats

    PubMed Central

    Lee, Youngsook; McGinn, Arlo N.; Olsen, Curtis D.; Nam, Kihoon; Lee, Minhyung; Shin, Sug Kyun; Kim, Sung Wan

    2013-01-01

    Considerable efforts have been made to exploit cardioprotective drugs and gene delivery systems for myocardial infarction (MI). The promising cardioprotective effects of recombinant human erythropoietin (rHuEPO) protein in animal experiments have not been consistently reproduced in clinical human trials of acute MI; however, the mechanisms underlying the inconsistent discrepancies are not yet fully understood. We hypothesized that the plasmid human erythropoietin gene (phEPO) delivered by our bioreducible polymer might produce cardioprotective effects on post-infarct cardiac remodeling. We demonstrated that intramyocardial delivery of phEPO by an arginine-grafted poly(disulfide amine) (ABP) polymer in infarcted rats preserves cardiac geometry and systolic function. The reduced infarct size of phEPO/ABP delivery was followed by decrease in fibrosis, protection from cardiomyocyte loss, and down-regulation of apoptotic activity. In addition, the increased angiogenesis and decreased myofibroblast density in the border zone of the infarct support the beneficial effects of phEPO/ABP administration. Furthermore, phEPO/ABP delivery induced prominent suppression on Ang II and TGF-β activity in all subdivisions of cardiac tissues except for the central zone of infarct. These results of phEPO gene therapy delivered by a bioreducible ABP polymer provide insight into the lack of phEPO gene therapy translation in the treatment of acute MI to human trials. PMID:23806842

  9. Erythropoietin Restores Long-Term Neurocognitive Function Involving Mechanisms of Neuronal Plasticity in a Model of Hyperoxia-Induced Preterm Brain Injury

    PubMed Central

    Sifringer, Marco; van de Looij, Yohan; Herz, Josephine; Sizonenko, Stéphane V.; Kempe, Karina; Palasz, Joanna; Hadamitzky, Martin; Fandrey, Joachim

    2016-01-01

    Cerebral white and grey matter injury is the leading cause of an adverse neurodevelopmental outcome in prematurely born infants. High oxygen concentrations have been shown to contribute to the pathogenesis of neonatal brain damage. Here, we focused on motor-cognitive outcome up to the adolescent and adult age in an experimental model of preterm brain injury. In search of the putative mechanisms of action we evaluated oligodendrocyte degeneration, myelination, and modulation of synaptic plasticity-related molecules. A single dose of erythropoietin (20,000 IU/kg) at the onset of hyperoxia (24 hours, 80% oxygen) in 6-day-old Wistar rats improved long-lasting neurocognitive development up to the adolescent and adult stage. Analysis of white matter structures revealed a reduction of acute oligodendrocyte degeneration. However, erythropoietin did not influence hypomyelination occurring a few days after injury or long-term microstructural white matter abnormalities detected in adult animals. Erythropoietin administration reverted hyperoxia-induced reduction of neuronal plasticity-related mRNA expression up to four months after injury. Thus, our findings highlight the importance of erythropoietin as a neuroregenerative treatment option in neonatal brain injury, leading to improved memory function in adolescent and adult rats which may be linked to increased neuronal network connectivity. PMID:27493706

  10. Erythropoietin Restores Long-Term Neurocognitive Function Involving Mechanisms of Neuronal Plasticity in a Model of Hyperoxia-Induced Preterm Brain Injury.

    PubMed

    Hoeber, Daniela; Sifringer, Marco; van de Looij, Yohan; Herz, Josephine; Sizonenko, Stéphane V; Kempe, Karina; Serdar, Meray; Palasz, Joanna; Hadamitzky, Martin; Endesfelder, Stefanie; Fandrey, Joachim; Felderhoff-Müser, Ursula; Bendix, Ivo

    2016-01-01

    Cerebral white and grey matter injury is the leading cause of an adverse neurodevelopmental outcome in prematurely born infants. High oxygen concentrations have been shown to contribute to the pathogenesis of neonatal brain damage. Here, we focused on motor-cognitive outcome up to the adolescent and adult age in an experimental model of preterm brain injury. In search of the putative mechanisms of action we evaluated oligodendrocyte degeneration, myelination, and modulation of synaptic plasticity-related molecules. A single dose of erythropoietin (20,000 IU/kg) at the onset of hyperoxia (24 hours, 80% oxygen) in 6-day-old Wistar rats improved long-lasting neurocognitive development up to the adolescent and adult stage. Analysis of white matter structures revealed a reduction of acute oligodendrocyte degeneration. However, erythropoietin did not influence hypomyelination occurring a few days after injury or long-term microstructural white matter abnormalities detected in adult animals. Erythropoietin administration reverted hyperoxia-induced reduction of neuronal plasticity-related mRNA expression up to four months after injury. Thus, our findings highlight the importance of erythropoietin as a neuroregenerative treatment option in neonatal brain injury, leading to improved memory function in adolescent and adult rats which may be linked to increased neuronal network connectivity.

  11. Carbamylated Erythropoietin: A Prospective Drug Candidate for Neuroprotection

    PubMed Central

    Chen, Jianmin; Yang, Zheng; Zhang, Xiao

    2015-01-01

    Carbamylated erythropoietin (cEpo), which is neuroprotective but lacks hematopoietic activity, has been attracting rising concerns. However, the cellular and molecular mechanisms involved in the process of neuroprotection of cEpo are not well known. Based on several recent reports, the neuroprotective effects of cEpo are illustrated, and signaling pathways involved in the different effects of erythropoietin and cEpo are discussed. These newly reported researches may shed new light on the development and application of cEpo, a prospective drug candidate for neuroprotection. PMID:26862298

  12. Expression of platelet-derived growth factor BB, erythropoietin and erythropoietin receptor in canine and feline osteosarcoma

    PubMed Central

    Meyer, F.R.L.; Steinborn, R.; Grausgruber, H.; Wolfesberger, B.; Walter, I.

    2015-01-01

    The discovery of expression of the erythropoietin receptor (EPO-R) on neoplastic cells has led to concerns about the safety of treating anaemic cancer patients with EPO. In addition to its endocrine function, the receptor may play a role in tumour progression through an autocrine mechanism. In this study, the expression of EPO, EPO-R and platelet-derived growth factor BB (PDGF-BB) was analysed in five feline and 13 canine osteosarcomas using immunohistochemistry (IHC) and reverse transcription polymerase chain reaction (RT-PCR). EPO expression was positive in all tumours by IHC, but EPO mRNA was only detected in 38% of the canine and 40% of the feline samples. EPO-R was expressed in all samples by quantitative RT-PCR (RT-qPCR) and IHC. EPO-R mRNA was expressed at higher levels in all feline tumours, tumour cell lines, and kidney when compared to canine tissues. PDGF-BB expression was variable by IHC, but mRNA was detected in all samples. To assess the functionality of the EPO-R on tumour cells, the proliferation of canine and feline osteosarcoma cell lines was evaluated after EPO administration using an alamarBlue assay and Ki67 immunostaining. All primary cell lines responded to EPO treatment in at least one of the performed assays, but the effect on proliferation was very low indicating only a weak responsiveness of EPO-R. In conclusion, since EPO and its receptor are expressed by canine and feline osteosarcomas, an autocrine or paracrine tumour progression mechanism cannot be excluded, although in vitro data suggest a minimal role of EPO-R in osteosarcoma cell proliferation. PMID:26189892

  13. The Effect of Presurgery Recombinant Erythropoietin on Post-surgery Hematocrit following Orthognathic Surgery

    PubMed Central

    Politano, Nicholas; Jaskolka, Michael; Blakey, George; Turvey, Timothy; White, Raymond; Phillips, Ceib

    2013-01-01

    Purpose Compare the post-surgery red cell mass as indicated by hematocrit value of orthognathic surgery patients given iron supplementation and a single presurgery dose of erythropoietin alpha(EPO) and patients who did not receive either EPO or iron supplementation (NEPO). Subjects and Methods Subjects who had a Lefort I osteotomy(LFI) or a combination of a LFI and bilateral sagittal split osteotomy(BSSO) between 2005 and 2008, and were at least 13 years of age, were included. Subjects were excluded if they had a history of maxillofacial trauma, a craniofacial syndrome, or a major systemic medical condition. Subjects had either the drug administered with iron supplements prior to surgery(EPO; Surgeon A protocol) or received neither (NEPO; Surgeon B protocol). Venous blood samples were taken, in accordance with clinic protocol, before surgery (before administration of EPO) and on post-surgery day 1. Multiple linear regression with backward selection was used to analyze the change in hematocrit value. Explanatory variables included group, pre-surgery hematocrit, age, gender, length of surgery, blood loss, and crystalloid (fluid replacement) volume. Results 178 eligible patients were included: 86 patients (48%) had a combination LFI and BSSO and 92 patients (52%) an isolated LFI. 114 (64%) had erythropoietin alpha/ iron supplements administered presurgery, while 64 did not. The average change in hematocrit as an indicator of the change in red cell mass was statistically significantly different(P= 0.01) for the subjects who received preoperative administration of EPO with iron supplementation compared to those who did not receive EPO+Iron. The administration of EPO + iron was protective: the decrease in hematocrit after surgery was smaller for subjects in the EPO group even after controlling for age, gender, preoperative hematocrit, length of surgery, blood loss, and crystalloid (fluid replacement ) volume. Conclusions A single presurgery dose of erythropoietin with

  14. Recombinant Human Erythropoietin Antagonizes Trastuzumab Treatment of Breast Cancer Cells via Jak2-Mediated Activation of Src and Inactivation of PTEN

    PubMed Central

    Liang, Ke; Esteva, Francisco J.; Albarracin, Constance; Stemke-Hale, Katherine; Lu, Yang; Bianchini, Giampaolo; Yang, Ching-Yi; Li, Yong; Li, Xinqun; Chen, Chun-Te; Mills, Gordon B.; Hortobagyi, Gabriel N.; Mendelsohn, John; Hung, Mien-Chie; Fan, Zhen

    2010-01-01

    SUMMARY We found that the receptor for erythropoietin (EpoR) is coexpressed with human epidermal growth factor receptor-2 (HER2) in a significant percentage of human breast tumor specimens and breast cancer cell lines. Exposure of HER2 and EpoR dual-positive breast cancer cells to recombinant human erythropoietin (rHuEPO) activated cell signaling. Concurrent treatment of the cells with rHuEPO and trastuzumab reduced the cells’ response to trastuzumab both in vitro and in vivo. We identified Jak2-mediated activation of Src and inactivation of PTEN as underlying mechanisms through which rHuEPO antagonizes trastuzumab-induced therapeutic effects. Furthermore, we found that compared with administration of trastuzumab alone, concurrent administration of rHuEPO and trastuzumab correlated with shorter progression-free and overall survival in patients with HER2-positive metastatic breast cancer. PMID:21075308

  15. Cumulative iron dose and resistance to erythropoietin.

    PubMed

    Rosati, A; Tetta, C; Merello, J I; Palomares, I; Perez-Garcia, R; Maduell, F; Canaud, B; Aljama Garcia, P

    2015-10-01

    Optimizing anemia treatment in hemodialysis (HD) patients remains a priority worldwide as it has significant health and financial implications. Our aim was to evaluate in a large cohort of chronic HD patients in Fresenius Medical Care centers in Spain the value of cumulative iron (Fe) dose monitoring for the management of iron therapy in erythropoiesis-stimulating agent (ESA)-treated patients, and the relationship between cumulative iron dose and risk of hospitalization. Demographic, clinical and laboratory parameters from EuCliD(®) (European Clinical Dialysis Database) on 3,591 patients were recorded including ESA dose (UI/kg/week), erythropoietin resistance index (ERI) [U.I weekly/kg/gr hemoglobin (Hb)] and hospitalizations. Moreover the cumulative Fe dose (mg/kg of bodyweight) administered over the last 2 years was calculated. Univariate and multivariate analyses were performed to identify the main predictors of ESA resistance and risk of hospitalization. Patients belonging to the 4th quartile of ERI were defined as hypo-responders. The 2-year iron cumulative dose was significantly higher in the 4th quartile of ERI. In hypo-responders, 2-year cumulative iron dose was the only iron marker associated with ESA resistance. At case-mix adjusted multivariate analysis, 2-year iron cumulative dose was an independent predictor of hospitalization risk. In ESA-treated patients cumulative Fe dose could be a useful tool to monitor the appropriateness of Fe therapy and to prevent iron overload. To establish whether the associations between cumulative iron dose, ERI and hospitalization risk are causal or attributable to selection bias by indication, clinical trials are necessary.

  16. Increased Synthesis of Liver Erythropoietin with CKD.

    PubMed

    de Seigneux, Sophie; Lundby, Anne-Kristine Meinild; Berchtold, Lena; Berg, Anders H; Saudan, Patrick; Lundby, Carsten

    2016-08-01

    Anemia of CKD seems to be related to impaired production of renal erythropoietin (Epo). The glycosylation pattern of Epo depends on the synthesizing cell and thus, can indicate its origin. We hypothesized that synthesis of Epo from nonkidney cells increases to compensate for insufficient renal Epo production during CKD. We determined plasma Epo levels and Epo glycosylation patterns in 33 patients with CKD before undergoing dialysis and nine patients with CKD undergoing dialysis. We compared these values with values obtained in healthy volunteers and other controls. Although patients with CKD before undergoing dialysis had median (interquartile range) Epo levels higher than those of healthy controls (13.8 IU/L; interquartile range, 10.0-20.7 IU/L versus 8.4 IU/L; interquartile range, 7.6-9.0 IU/L; P<0.01), these patients were moderately anemic (mean±SD; hemoglobin =118±17 g/L). Detected as the percentage of migrated isoforms (PMI), Epo glycosylation in patients with CKD before undergoing dialysis (PMI=36.1±11.7%) differed from that in healthy controls (PMI=9.2±3.8%; P<0.01) but not from that in umbilical cord plasma (PMI=53.9±10.6%; P>0.05), which contains mainly liver-derived Epo. Furthermore, glycosylation modification correlated with eGFR loss. These results suggest that patients with CKD maintain persistent Epo synthesis despite declining renal function, and this maintenance may result in part from increased liver Epo synthesis.

  17. Acute normobaric hypoxia stimulates erythropoietin release.

    PubMed

    Mackenzie, Richard W A; Watt, Peter W; Maxwell, Neil S

    2008-01-01

    Investigations studying the secretion of EPO (erythropoietin) in response to acute hypoxia have produced mixed results. Further, the errors associated with the various methods used to determine EPO are not well documented. The purpose of the current study was to determine the EPO response of 17 trained male subjects to either an acute bout of normobaric hypoxia (Hy; n = 10) or normoxia (Con; n = 7). A secondary aim was to determine the error associated with the measurement of EPO. After baseline tests, the treatment group (Hy) underwent a single bout of hypoxic exposure (F(I(O(2))) approximately 0.148; 3100 m) consisting of a 90-min rest period followed by a 30-min exercise phase (50% V(O)(2max)). Venous blood samples were drawn pre (0 min) and post (120 min) each test to assess changes in plasma EPO (DeltaEPO). The control (Con) group was subjected to the same general experimental design, but placed in a normoxic environment (F(I(O(2))) approximately 0.2093). The Hy group demonstrated a mean increase in EPO [19.3 (4.4) vs. 24.1 (5.1) mU/mL], p < 0.04, post 120 min of normobaric hypoxia. The calculated technical error of measurement for EPO was 2.1 mU/mL (9.8%). It was concluded that an acute bout of hypoxia, has the capacity to elevate plasma EPO. This study also demonstrates that the increase in EPO accumulation was 2 times greater than the calculated measurement of error.

  18. Studies on the Liver to Kidney Switch of Erythropoietin Production

    PubMed Central

    Zanjani, Esmail D.; Ascensao, Joao L.; McGlave, Philip B.; Banisadre, Mussa; Ash, Robert C.

    1981-01-01

    Although the liver is the major site of erythropoietin (Ep) production in the fetus, this function is assumed by kidneys in the adult. The mechanisms underlying the liver to kidney switch of Ep formation are not understood. We studied the natural progression of this transition in sheep by measuring Ep production in response to anemia in normal and bilaterally nephrectomized fetal and newborn sheep beginning at about 80 d gestation (normal gestation: 140 d). Removal of both kidneys before induction of anemia did not affect Ep formation up to about 120 d of gestation. A significant reduction (29%, P < 0.02) in Ep synthesis was first noted at about 130 d of gestation (initiation of switch). This level of nephrectomy-induced reduction of Ep formation persisted until about 15 d after birth. Thereafter, bilateral nephrectomy caused further significant decreases (P < 0.05) in Ep production, gradually resulting in near total absence of Ep production at about day 40 postpartum (completion of switch). Chronic administration of testosterone (12 mg/wk) or estradiole benzoate (1.5 mg/d, 5 d/wk) to the fetus/newborn beginning at 85-90 d of gestation enhanced or suppressed erythropoiesis, respectively, but failed to affect the time at which the liver to kidney switch was initiated and/or completed. By contrast, a significant delay (P < 0.001) in the onset, but not completion of the switch occurred in animals that were either thyroidectomized or rendered chronically anemic beginning in the second third of the gestation period. Administration of thyroxin (1.2 mg/d, 5 d/wk) to thyroidectomized fetus/newborns not only prevented the delay in the initiation of the switch, but also accelerated the rate at which the switch was completed. These results demonstrate that in sheep (a) the liver to kidney switch of Ep production is initiated in utero during the last third of the gestation period, but is completed after birth, (b) this transition occurs gradually; the assumption of Ep

  19. Recombinant human erythropoietin offers neuroprotection through inducing endogenous erythropoietin receptor and neuroglobin in a neonatal rat model of periventricular white matter damage.

    PubMed

    Zhu, Lihua; Huang, Li; Wen, Quan; Wang, Ting; Qiao, Lixing; Jiang, Li

    2017-03-27

    Recombinant human erythropoietin (rh-EPO) has been reported to have protective effects against brain injury. The purpose of this study was to evaluate the levels of erythropoietin receptor (EPOR) and neuroglobin (Ngb) in a neonatal rat model of periventricular white matter damage (PWMD), and to identify the relationship between the two proteins. On postnatal day 3 (P3), rats underwent permanent ligation of the right common carotid artery followed by 6% O2 for 4h (HI) or sham operation and normoxic exposure (sham). Immediately after HI, rats received a single intraperitoneal injection of rh-EPO (5U/g) or saline. We assessed the expression level of Ngb and EPOR on postnatal days 5, 7, 10 and 14. EPOR in the HI rats was initially increased as compared to the sham rats at P5. Subsequently, EPOR expression decreased, but was maintained at a higher level than in sham rats from P7 to P14. In rh-EPO treated rats, the increase in EPOR was greater than in HI rats at P5. However, EPOR levels decreased sharply from P7 to P14. In HI rats, Ngb was increased compared to the sham rats from P5 to P14. Ngb levels were further upregulated after rh-EPO administration from P5 to P10 compared to HI rats. However, this upregulation decreased at P14. In conclusion, this study shows that EPOR and Ngb were upregulated, and both of them act as important coordinated neuroprotectors in rh-EPO treatment of PWMD. However, the two proteins exhibit different expression patterns.

  20. Recombinant erythropoietin found in seized blood bags from sportsmen.

    PubMed

    Mallorquí, Joaquim; Segura, Jordi; de Bolòs, Carme; Gutiérrez-Gallego, Ricardo; Pascual, Jose A

    2008-02-01

    During an anti-doping investigation, the Spanish Guardia Civil confiscated blood bags from elite sportsmen. A novel immuno-purification method demonstrated that plasma samples with elevated erythropoietin (EPO) contained recombinant material (rEPO). This shows that rEPO is used before autologous blood transfusions and that rEPO analysis in plasma can be reliably addressed.

  1. The anemia of prematurity. Factors governing the erythropoietin response.

    PubMed

    Stockman, J A; Garcia, J F; Oski, F A

    1977-03-24

    We performed sequential studies in 45 premature infants (birth weights less than 1500 g) from 7 to 120 days of age to determine factors governing the erythropoietin response to a declining hemoglobin concentration. The hemoglobin level and the plasma erythropoietin showed a significant inverse correlation (r = 0.50, P less than 0.001), as did, even more strikingly, the plasma erythropoietin response and the infants' oxygen-unloading capacity (r = 0.55, P less than 0.001). In infants with "right-shifted" oxygen-hemoglobin dissociation curves (hemoglobin F less than 30 per cent) hemoglobin levels fell 2 to 3 g per deciliter lower than those in infants with "left-shifted" curves (hemoglobin F greater than 60 per cent) before comparable erythropoietin responses occurred. It appears that premature infants respond appropriately to alterations in oxygen unloading capacity and that the position of the oxygen-hemoglobin dissociation curve and not the hemoglobin concentration alone has a major role in modulated erythropoiesis.

  2. Endogenous erythropoietin signaling facilitates skeletal muscle repair and recovery following pharmacologically induced damage

    PubMed Central

    Jia, Yi; Suzuki, Norio; Yamamoto, Masayuki; Gassmann, Max; Noguchi, Constance Tom

    2012-01-01

    Erythropoietin acts by binding to its cell surface receptor on erythroid progenitor cells to stimulate erythrocyte production. Erythropoietin receptor expression in nonhematopoietic tissue, including skeletal muscle progenitor cells, raises the possibility of a role for erythropoietin beyond erythropoiesis. Mice with erythropoietin receptor restricted to hematopoietic tissue were used to assess contributions of endogenous erythropoietin to promote skeletal myoblast proliferation and survival and wound healing in a mouse model of cardiotoxin induced muscle injury. Compared with wild-type controls, these mice had fewer skeletal muscle Pax-7+ satellite cells and myoblasts that do not proliferate in culture, were more susceptible to skeletal muscle injury and reduced maximum load tolerated by isolated muscle. In contrast, mice with chronic elevated circulating erythropoietin had more Pax-7+ satellite cells and myoblasts with increased proliferation and survival in culture, decreased muscle injury, and accelerated recovery of maximum load tolerated by isolated muscle. Skeletal muscle myoblasts also produced endogenous erythropoietin that increased at low O2. Erythropoietin promoted proliferation, survival, and wound recovery in myoblasts via the phosphoinositide 3-kinase/AKT pathway. Therefore, endogenous and exogenous erythropoietin contribute to increasing satellite cell number following muscle injury, improve myoblast proliferation and survival, and promote repair and regeneration in this mouse induced muscle injury model independent of its effect on erythrocyte production.—Jia, Y., Suzuki, N., Yamamoto, M., Gassmann, M., Noguchi, C. T. Endogenous erythropoietin signaling facilitates skeletal muscle repair and recovery following pharmacologically induced damage. PMID:22490927

  3. Autologous blood collection in anemic patients using low-dose erythropoietin therapy.

    PubMed

    Mott, L S; Bechinski, J; Jones, M J

    1997-06-01

    Autologous donation of blood for use during elective surgery is being recommended and used more frequently. Autologous donation and transfusion represent the safest way to handle elective surgical blood requirements because they eliminate the risk of transfusion-transmitted disease and alloimmunization, and significantly reduce the other risks associated with homologous transfusion. Many individuals, particularly women and the elderly, do not have sufficient initial hemoglobin concentration or hemopoietic reserve to effectively use autologous donation. Use of standard-dose recombinant human erythropoietin (rHuEPO) (600 units/kg) to mitigate these limitations is costly. The optimal dose, interval, and route of administration for rHuEPO therapy has yet to be perfected. This article describes a program using low-dose (< 100 units/kg) rHuEPO and also discusses the effectiveness, cost savings, and clinical indications for the use of low-dose rHuEPO.

  4. Anti-Erythropoietin Antibody Associated Pure Red Cell Aplasia Resolved after Liver Transplantation

    PubMed Central

    Hung, Annie K.; Guy, Jennifer; Behler, Caroline M.; Lee, Eugene E.

    2015-01-01

    Patients undergoing antiviral therapy for chronic hepatitis C often develop anemia secondary to ribavirin and interferon. Recombinant erythropoietin has been used to improve anemia associated with antiviral therapy and to minimize dose reductions, which are associated with decreased rates of sustained virologic response. A rare potential side effect of recombinant erythropoietin is anti-erythropoietin antibody associated pure red cell aplasia. In chronic kidney disease patients with this entity, there have been good outcomes associated with renal transplant and subsequent immunosuppression. In this case, a chronic liver disease patient developed anti-erythropoietin associated pure red cell aplasia and recovered after liver transplantation and immunosuppression. It is unclear whether it is the transplanted organ, the subsequent immunosuppression, or the combination that contributed to the response. In conclusion, anti-erythropoietin associated pure red cell aplasia is a serious complication of erythropoietin therapy, but this entity should not be considered a contraindication for solid organ transplantation. PMID:26240773

  5. Erythropoietin inhibits apoptosis induced by photodynamic therapy in ovarian cancer cells.

    PubMed

    Solár, Peter; Koval, Ján; Mikes, Jaromír; Kleban, Ján; Solárová, Zuzana; Lazúr, Ján; Hodorová, Ingrid; Fedorocko, Peter; Sytkowski, Arthur J

    2008-08-01

    Recombinant human erythropoietin is widely used to treat anemia associated with cancer and with the myelosuppressive effects of chemotherapy, particularly platinum-based regimens. Erythropoietin is the principal regulator of erythroid cell proliferation, differentiation, and apoptosis. Recently, the antiapoptotic and proliferative effects of erythropoietin on nonhematopoietic cells were also established. We now show the effect of erythropoietin treatment on the response of A2780 and SKOV3 ovarian carcinoma cell lines to photodynamic therapy (PDT) using hypericin. SKOV3 exhibited an increased resistance to hypericin when cells were treated with erythropoietin. This resistance was reversed by treatment of SKOV3 cells with the specific Janus kinase 2 kinase inhibitor AG490 or the tyrosine kinase inhibitor genistein. These results support a role for the specific erythropoietin-induced Janus kinase 2/STAT signal transduction pathway in PDT resistance. Evidence of erythropoietin signaling was obtained by the demonstration of Akt phosphorylation in both A2780 and SKOV3 cells. Erythropoietin-treated SKOV3 cells exhibited decreased apoptosis induced by hypericin, an effect that was blocked by the phosphoinositide 3-kinase/Akt inhibitor wortmannin. These results may have important implications for ovarian cancer patients undergoing PDT and receiving erythropoietin.

  6. Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice

    PubMed Central

    Pichon, Aurélien; Jeton, Florine; El Hasnaoui-Saadani, Raja; Hagström, Luciana; Launay, Thierry; Beaudry, Michèle; Marchant, Dominique; Quidu, Patricia; Macarlupu, Jose-Luis; Favret, Fabrice; Richalet, Jean-Paul; Voituron, Nicolas

    2016-01-01

    Despite its well-known role in red blood cell production, it is now accepted that erythropoietin (Epo) has other physiological functions. Epo and its receptors are expressed in many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs suggests other roles than those usually assigned to this protein. Thus, the aim of this review is to describe the effects of Epo deficiency on adaptation to normoxic and hypoxic environments and to suggest a key role of Epo on main physiological adaptive functions. Our original model of Epo-deficient (Epo-TAgh) mice allowed us to improve our knowledge of the possible role of Epo in O2 homeostasis. The use of anemic transgenic mice revealed Epo as a crucial component of adaptation to hypoxia. Epo-TAgh mice survive well in hypoxic conditions despite low hematocrit. Furthermore, Epo plays a key role in neural control of ventilatory acclimatization and response to hypoxia, in deformability of red blood cells, in cerebral and cardiac angiogenesis, and in neuro- and cardioprotection. PMID:27800506

  7. Erythropoietin and carbamylated erythropoietin promote histone deacetylase 5 phosphorylation and nuclear export in rat hippocampal neurons

    SciTech Connect

    Jo, Hye-Ryeong; Kim, Yong-Seok; Son, Hyeon

    2016-01-29

    Erythropoietin (EPO) produces neurotrophic effects in animal model of neurodegeneration. However, clinical use of EPO is limited due to thrombotic risk. Carbamylated EPO (cEPO), devoid of thrombotic risk, has been proposed as a novel neuroprotective and neurotrophic agent although the molecular mechanisms of cEPO remain incomplete. Here, we show a previously unidentified role of histone deacetylase 5 (HDAC5) in the actions of EPO and cEPO. EPO and cEPO regulate the HDAC5 phosphorylation at two critical sites, Ser259 and Ser498 through a protein kinase D (PKD) dependent pathway. In addition, EPO and cEPO rapidly stimulates nuclear export of HDAC5 in rat hippocampal neurons which expressing HDAC5-GFP. Consequently, EPO and cEPO enhanced the myocyte enhancer factor-2 (MEF2) target gene expression. Taken together, our results reveal that EPO and cEPO mediate MEF2 target gene expression via the regulation of HDAC5 phosphorylation at Ser259/498, and suggest that HDAC5 could be a potential mechanism contributing to the therapeutic actions of EPO and cEPO.

  8. Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice.

    PubMed

    Pichon, Aurélien; Jeton, Florine; El Hasnaoui-Saadani, Raja; Hagström, Luciana; Launay, Thierry; Beaudry, Michèle; Marchant, Dominique; Quidu, Patricia; Macarlupu, Jose-Luis; Favret, Fabrice; Richalet, Jean-Paul; Voituron, Nicolas

    2016-01-01

    Despite its well-known role in red blood cell production, it is now accepted that erythropoietin (Epo) has other physiological functions. Epo and its receptors are expressed in many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs suggests other roles than those usually assigned to this protein. Thus, the aim of this review is to describe the effects of Epo deficiency on adaptation to normoxic and hypoxic environments and to suggest a key role of Epo on main physiological adaptive functions. Our original model of Epo-deficient (Epo-TAg(h)) mice allowed us to improve our knowledge of the possible role of Epo in O2 homeostasis. The use of anemic transgenic mice revealed Epo as a crucial component of adaptation to hypoxia. Epo-TAg(h) mice survive well in hypoxic conditions despite low hematocrit. Furthermore, Epo plays a key role in neural control of ventilatory acclimatization and response to hypoxia, in deformability of red blood cells, in cerebral and cardiac angiogenesis, and in neuro- and cardioprotection.

  9. [Use of human recombinant erythropoietin in children with cancer].

    PubMed

    Guyot, D; Margueritte, G

    2005-09-01

    Eighty percent of children with cancer suffer from anemia at the time of diagnosis. The physiopathology of anemia is complex. Although anemia can be life threatening, its consequences on the physical, psychological and social state of the child are often minimized. Blood transfusion is the main treatment of anemia: its efficacy is immediate but shortlasting, and it involves infectious and hemolytic risks. The human recombinant erythropoietin has been used for more than 25-years, and is often prescribed to adults with cancer and anemia. The human recombinant erythropoietin rHuEPO is nowadays used when blood transfusion is contra-indicated because of religious or cultural considerations, although several promising studies have been conducted about rHuEPO and children with cancer since 1996: it might be soon the preferential alternative treatment to anemia in children with cancer.

  10. Use of erythropoietin in emergencies: massive intoxication by chloramines.

    PubMed

    Lorenzo, I; Medina, M; Calderon, P; Castro, S; Lazaro, R

    1996-01-01

    Recombinant human Erythropoietin (rHuEPO) is normally used to correct anaemia in patients with End Stage Renal Disease (ESRD), that are in Regular Dialysis Treatment (RDT). This anaemia is usually due to the existence of two factors: A decrease in the erythropoiesis of the bone marrow and an increase in peripheral haemolysis and, consequently, a decrease in the life span of the red cells.

  11. Erythropoietin-Associated PRCA: Still an Unsolved Mystery.

    PubMed

    Schellekens, Huub; Jiskoot, Wim

    2006-09-01

    The peak of erythropoietin-associated pure red cell aplasia (PRCA) incidents occurred over 4 years ago, but the debate on what triggered the autoimmune disorder continues today. The association with the recombinant human erythropoietin (epoetin, rhEPO) alpha-branded Eprex (Johnson and Johnson), makes PRCA of interest to medical and scientific communities, as well as the biotechnology industry, as it opens a broader question of the potential immunogenicity of biopharmaceuticals in general. An overview of the background and a perspective on current thought in erythropoietin-associated PRCA may assist in avoiding a repeat of similar immunogenic cases with other biopharmaceuticals and their emerging follow-on products. At the same time, it is also important to clarify what are the relevant questions to ask in order to ensure appropriate testing in the regulation of biopharmaceuticals. The upsurge of PRCA is associated with a formulation change introduced in 1998 when human serum albumin (HSA) as protein stabilizer was exchanged with polysorbate 80. Several explanations have been offered to explain how this change led to Eprex-associated PRCA. Leachates from uncoated rubber stoppers acting as adjuvant are blamed by the manufacturer of Eprex, but the experimental data substantiating this claim are poor and the leachates theory has no biological rationale and is also inconsistent with epidemiological and clinical data. A more likely explanation that is consistent with all data is a higher tendency for aggregate formation during handling and storage due to the exchange of HSA by polysorbate 80 as stabilizer.

  12. Recombinant erythropoietin differently affects proliferation of mesothelioma cells but not sensitivity to cisplatin and pemetrexed.

    PubMed

    Palumbo, Camilla; Battisti, Sonia; Carbone, Daniela; Albonici, Loredana; Alimandi, Maurizio; Bei, Roberto; Modesti, Andrea

    2008-04-01

    The combination of cisplatin and pemetrexed represents the newly established standard of care for patients with unresectable malignant mesothelioma (MM). However, this chemotherapy regimen appears to be associated with an increased prevalence of higher grade anemia as compared to treatment with cisplatin alone. Human recombinant erythropoietin (rHuEpo) is currently used for the treatment of anemia in cancer patients. Still, following the finding that the erythropoietin receptor (EpoR) is expressed by several tumor cells types and after the trials reporting that the recombinant cytokine can adversely affect tumor progression and patient survival, the clinical safety of rHuEpo administration to neoplastic patients has recently been questioned. The observation that the expression of EpoR, variably associated with the expression of the cognate ligand, is a common feature of MM cells prompted us to investigate whether treatment with rHuEpo could elicit proliferative and cytoprotective signals in EpoR-positive MM cell lines. Biochemical responsiveness of MM cells to rHuEpo was demonstrated by the time-course activation of both ERK1/2 and AKT following treatment with the recombinant cytokine. A moderately increased mitogenic activity was observed in two out of five MM cell lines treated with pharmacologically relevant concentrations of rHuEpo. On the other hand, the recombinant cytokine, administered either before or after cisplatin and pemetrexed, failed to interfere with the cytotoxic effects exerted by the chemotherapeutic drugs on the five MM cell lines. According to the presented findings, rHuEpo appears to have an overall limited impact on cell growth and no effect on MM sensitivity to chemotherapy.

  13. Erythropoietin as a performance-enhancing drug: Its mechanistic basis, detection, and potential adverse effects.

    PubMed

    Salamin, Olivier; Kuuranne, Tiia; Saugy, Martial; Leuenberger, Nicolas

    2017-01-22

    Erythropoietin (EPO) is the main hormone regulating red blood cell (RBC) production. The large-scale production of a recombinant human erythropoietin (rHuEPO) by biotechnological methods has made possible its widespread therapeutic use as well as its misuse in sports. Since the marketing of the first epoetin in 1989, the development has progressed to the third-generation analogs. However, the production of rHuEPO is costly, and the frequent administration of an injectable formula is not optimal for compliance of therapeutic patients. Hence, pharmaceutical industries are currently developing alternative approaches to stimulate erythropoiesis, which might offer new candidates for doping purposes. The hypoxia inducible factors (HIF) pathway is of particular interest. The introduction of new erythropoiesis-stimulating agents (ESAs) for clinical use requires subsequent development of anti-doping methods for detecting the abuse of these substances. The detection of ESAs is based on two different approaches, namely, the direct detection of exogenous substances and the indirect detection, for which the effects of the substances on specific biomarkers are monitored. Omics technologies, such as ironomics or transcriptomics, are useful for the development of new promising biomarkers for the detection of ESAs. Finally, the illicit use of ESAs associates with multiple health risks that can be irreversible, and an essential facet of anti-doping work is to educate athletes of these risks. The aim of this review is to provide an overview of the evolution of ESAs, the research and implementation of the available detection methods, and the side effects associated with the misuse of ESAs. Copyright © 2017. Published by Elsevier B.V.

  14. Erythropoietin reduces cumulative nephrotoxicity from cisplatin and enhances renal tubular cell proliferation.

    PubMed

    Zafirov, Dimce; Petrusevska, G; Sikole, Aleksandar; Trojacanec, J; Labacevski, N; Kostova, E; Jakovski, K; Atanasovska, E; Petrov, S

    2008-12-01

    Cisplatin, a heavy metal complex, is one of the most active drugs used in the treatment of several human malignancies. However, high-dose therapy with cisplatin is limited by its cumulative nephrotoxicity. The main objectives of this study were to determine the role of recombinant human erythropoietin (Epoetin alfa) in the prevention of nephrotoxicity induced experimentally in Wistar rats by long-term administration of cisplatin (2 mg/kg/b.w./week) over eight weeks, and an evaluation of its effect on renal tubular cell proliferation. The animals were randomly assigned into three groups, each including 25 rats. Group 1 (CP) received only cisplatin (2 mg/kg/b.w./week), group 2 (CP+EPO) received cisplatin (2 mg/kg/b.w./week) and epoetin alfa (150 IE/kg/b.w./three times a week), and group 3 (control group) received only saline. During the study, the following tests for the assessment of the renal function and renal damages were performed: determination of concentration of serum creatinine and BUN and determination of total protein quantity in 24-hour urine samples. At the end of the study, the abdomen was opened and both kidneys of the rats were removed and sent for histological and morphometric analysis. Ki-67 was used as a tool to determine a proliferative index. The results obtained have shown that epoetin alfa significantly reduced the functional renal failures and renal damages, and increased toleration of high doses of cisplatin. At the same time, our results with regard to tubular proliferative index have confirmed that one of the possible mechanisms by which erythropoietin accomplishes its renoprotective effect is stimulation of tubular cell proliferation and regeneration.

  15. Erythropoietin in the General Population: Reference Ranges and Clinical, Biochemical and Genetic Correlates

    PubMed Central

    Grote Beverborg, Niels; Verweij, Niek; Klip, IJsbrand T.; van der Wal, Haye H.; Voors, Adriaan A.; van Veldhuisen, Dirk J.; Gansevoort, Ron T.; Bakker, Stephan J. L.; van der Harst, Pim; van der Meer, Peter

    2015-01-01

    Background Although erythropoietin has been used for decades in the treatment of anemia, data regarding endogenous levels in the general population are scarce. Therefore, we determined erythropoietin reference ranges and its clinical, biochemical and genetic associations in the general population. Methods We used data from 6,777 subjects enrolled in the Prevention of REnal and Vascular ENd-stage Disease (PREVEND) study. Fasting venous blood samples were obtained in the morning from all participants from 2001–2003. Serum erythropoietin concentrations were measured using a fully automated chemiluminescent enzyme-labeled immunometric assay. A genome-wide association study was performed to identify genetic determinants. Results Mean age (± SD) was 53 ± 12 years and 50% were female. Median (IQR) erythropoietin concentrations were 7.6 (5.8–9.9) IU/L in men and 7.9 (6.0–10.6) IU/L in women. A strong positive correlation was found between erythropoietin and waist circumference, glucose and systolic blood pressure (all P < 0.05). In subjects with normal renal function there was a strong exponential relation between hemoglobin and erythropoietin, whereas in renal impairment (eGFR < 60 mL/min/1.73m²) this relation was linear (men) or absent (women) (P < 0.001 for interaction). Single-nucleotide polymorphisms at the HBS1L-MYB locus were shown to be related to erythropoietin levels (P < 9x10-21), more significantly than other erythrocyte parameters. Conclusion We provide age-specific reference ranges for endogenous serum erythropoietin. Erythropoietin levels are positively associated with the components of the metabolic syndrome, except cholesterol. We show that even mild renal failure blunts erythropoietin production and propose the HBS1L-MYB locus as a regulator of erythropoietin. PMID:25915923

  16. Association of Serum Erythropoietin with Cardiovascular Events, Kidney Function Decline and Mortality: The Health ABC Study

    PubMed Central

    Garimella, Pranav S.; Katz, Ronit; Patel, Kushang V.; Kritchevsky, Stephen B.; Parikh, Chirag R.; Ix, Joachim H.; Fried, Linda F.; Newman, Anne B.; Shlipak, Michael G.; Harris, Tamara B.; Sarnak, Mark J.

    2015-01-01

    Background Studies suggest that in patients with heart failure (HF), high serum erythropoietin is associated with risk of recurrent HF and mortality. Trials of erythropoietin stimulating agents in persons with kidney disease have also suggested an increased incidence of adverse clinical events. No studies have evaluated the association of endogenous erythropoietin levels with clinical outcomes in the community living older adults. Methods and Results Erythropoietin concentration was measured in 2,488 participants aged 70–79 years in the Health, Aging and Body Composition Study. Associations of erythropoietin with incident HF, coronary heart disease (CHD), stroke, mortality, and ≥30% decline in estimated glomerular filtration rate (eGFR) were examined using Cox proportional hazards and logistic regression over 10.7 years of follow up. Mean (SD) age was 75 (3) years and median (quartile 1, quartile 3) erythropoietin was 12.3 (9.0, 17.2) mIU/mL. There were 503 incident HF events and each doubling of serum erythropoietin was associated with a 25% increased risk of incident HF 1.25 (95% CI 1.13, 1.48) after adjusting for demographics, prevalent cardiovascular disease (CVD), CVD risk factors, kidney function and serum hemoglobin. There was no interaction of serum erythropoietin with chronic kidney disease or anemia (p>0.50). There were 330 incident CHD events, 161 strokes, 1,112 deaths and 698 outcomes of ≥ 30% decline in eGFR. Serum erythropoietin was not significantly associated with these outcomes. Conclusions Higher levels of endogenous erythropoietin are associated with incident HF in older adults. Studies need to elucidate the mechanisms through which endogenous erythropoietin levels associate with specific outcomes. PMID:26721912

  17. Effect of relative hypoparathyroidism on the responsiveness to recombinant human erythropoietin in chronic hemodialysis patients: a single Saudi center experience.

    PubMed

    Al Saran, Khalid; Sabry, Alaa; Hassan, Ashraf H

    2013-07-01

    Anemia is a common concomitant disorder in dialysis patients. The responsiveness to recombinant human erythropoietin in hemodialysis (HD) patients with relative hypoparathyroidism [4 ≤ intact parathyroid hormone (iPTH) ≤16.5 pmol/L] remains undetermined. We retrospectively studied 70 chronic hemodialysis patients who were divided into two groups: Group A (32 patients) had 16.5 ≤ iPTH levels <33.5 pmol/L and Group B (38 patients) had 4 ≥ iPTH≤16.5 pmol/L during the preceding six months without 1- (OH) Vitamin D3 administration. The percentage of female gender was significantly higher in Group B compared with Group A (P = 0.018). In Groups A and B, the mean weekly recombinant human erythropoietin dose (U/kg/ week) was 227.96 ± 95.24 vs. 154.1 ± 84.9 (P = 0.001) and the mean hemoglobin level was 11.15 ± 0.63 g/dL versus 11.62 ± 0.63 g/dL (P = 0.008). There was no significant statistical difference regarding the other biochemical markers (serum ferritin, iron saturation, serum Ca, serum alkaline phosphatase, C-reactive protein, serum B12, serum folate levels, residual renal function and Kt/v) between the groups. If other factors related to anemia are excluded in chronic HD patients, the lower the iPTH level (relative hypoparathyroidism) the better the responsiveness to recombinant human erythropoietin.

  18. Effects of CNTO 530, an erythropoietin mimetic-IgG4 fusion protein, on embryofetal development in rats and rabbits.

    PubMed

    Martin, Pauline L; Sachs, Clifford; Hoberman, Alan; Jiao, Qun; Bugelski, Peter J

    2010-04-01

    CNTO 530is a biopharmaceutical consisting of a novel peptide that mimics the actions of erythropoietin, fused to the Fc fragment of human IgG4. Pharmacokinetic and pharmacodynamic studies showed that CNTO 530 produced sustained increases in red blood cell parameters in rats and rabbits and that the serum half life of CNTO 530 was 2 days in rabbits and 3 days in rats. For the evaluation of embryofetal development, CNTO 530 was injected at loading doses of 0, 0.9/1, 6, or 60 mg/kg subcutaneously (SC) on gestation day (GD)7 followed by maintenance doses of 0, 0.3, 2, or 20 mg/kg SC every 3 days through GD16 in rats and every 2 days through GD19 in rabbits (GD0 was the day of mating). Rats were Caesarean sectioned on GD21, rabbits on GD29. Administration of CNTO 530 was associated with an increase in hematocrit at all dose levels and a decrease in maternal body weight gains. Fetuses exhibited reduced body weight and delayed ossification. Soft tissue changes were limited to cardiovascular alterations in the high-dose rabbits only. Rat and rabbit fetuses were exposed to CNTO 530 in all dose groups. These studies show that the embryo/fetal development effects observed following CNTO 530 treatment during organogenesis are qualitatively similar to those seen with other erythropoietin agonists and are likely a secondary consequence of increased hematocrit in the dams. Unlike other erythropoietin receptor agonists, CNTO 530 was able to cross the placental barrier, which was considered likely the result of FcRn-mediated transcytosis. 2010 Wiley-Liss, Inc.

  19. [Tumor anemia. Overview of the role of human recombinant erythropoietin (r-hu-EPO) in treatment of tumor anemia].

    PubMed

    Monnerat, C; Leyvraz, S

    1999-01-28

    The prevalence of anaemia in patients with cancer lies between 10 and 40%, depending on the type of tumor and chemotherapy. Anaemia has a significant impact on the quality of life, along with pain or disease progression. There are multiple causes but the physiopathology resembles that of inflammatory anaemia. The following mechanisms can be distinguished: a resistance of the erythroid precursor cells (BFU-e, CFU-e) to erythropoietin, an inappropriately decreased renal erythropoietin secretion for a given haemoglobin value and alterations of the iron metabolism leading to a functional iron deficiency. Recombinant human erythropoietin (r-hu-EPO) is safe and efficient in the treatment of anaemia of chronic renal failure and rheumatoid arthritis. In oncology different phase I and II studies have demonstrated an efficacy (increase of haemoglobin, decrease of transfusion requirements) in about 50% of all adult patients. A response to a subcutaneous r-hu-EPO treatment with a relatively high posology of 150 U/kg three times a week can be expected after one to two months. No single reliable parameter will predict a response to the r-hu-EPO treatment. Several phase III studies confirm that anaemia in cancer patients undergoing chemotherapy (notably with cisplatin) can be corrected in 40 to 60% of all cases and that the haemoglobin increase improves the quality of life. Finally, recent clinical trials suggest that an early r-hu-EPO treatment might prevent the occurrence of anaemia secondary to chemotherapy. Several parameters will have to be specified such as the precise definition of the groups at risk, the appropriate haemoglobin level to initiate a r-hu-EPO treatment, its optimal posology, as well as the role of the iron substitution and its route of administration. The impact of the r-hu-EPO treatment on the quality of life of cancer patients constitutes a priority for future studies, which will have define the exact role of r-hu-EPO in oncology management.

  20. Designing a small molecule erythropoietin mimetic.

    PubMed

    Guarnieri, Frank

    2015-01-01

    Erythropoietin (EPO) is a protein made by the kidneys in response to low red blood cell count that is secreted into the bloodstream and binds to a receptor on hematopoietic stem cells in the bone marrow inducing them to become new red blood cells. EPO made with recombinant DNA technology was brought to market in the 1980s to treat anemia caused by kidney disease and cancer chemotherapy. Because EPO infusion was able to replace blood transfusions in many cases, it rapidly became a multibillion dollar per year drug and as the first biologic created with recombinant technology it launched the biotech industry. For many years intense research was focused on creating a small molecule orally available EPO mimetic. The Robert Wood Johnson (RWJ) group seemed to definitively establish that only large peptides with a minimum of 60 residues could replace EPO, as anything less was not a full agonist. An intense study of the published work led me to hypothesize that the size of the mimetic is not the real issue, but the symmetry making and breaking of the EPO receptor induced by the ligand is the key to activating the stem cells. This analysis meant that residues in the binding site of the receptor deemed absolutely essential for ligand binding and activation from mutagenesis experiments, were probably not really that important. My fundamental hypotheses were: (a) the symmetric state of the homodimeric receptor is the most stable state and thus must be the off-state, (b) a highly localized binding site exists at a pivot point where the two halves of the receptor meet, (c) small molecules can be created that have high potency for this site that will be competitive with EPO and thus can displace the protein-protein interaction, (d) small symmetric molecules will stabilize the symmetric off-state of the receptor, and (e) a key asymmetry in the small molecule will stabilize a mirror image asymmetry in the receptor resulting in the stabilization of the on-state and proliferation of

  1. Erythropoietin and carbamylated erythropoietin are neuroprotective following spinal cord hemisection in the rat.

    PubMed

    King, V R; Averill, S A; Hewazy, D; Priestley, J V; Torup, Lars; Michael-Titus, A T

    2007-07-01

    The cytokine erythropoietin (EPO) has been shown to be neuroprotective in a variety of models of central and peripheral nervous system injury. Derivatives of EPO that lack its erythropoietic effects have recently been developed, and the initial reports suggest that they have a neuroprotective potential comparable to that of EPO. One such derivative is carbamylated EPO (CEPO). In the current study we compared the effects of treatment with EPO and CEPO on some of the early neurodegenerative events that occur following spinal cord injury (SCI) induced by hemisection. Adult male Wistar rats received a unilateral hemisection of the spinal cord. Thirty minutes and 24 h following injury, animals received an intraperitoneal injection of saline, EPO (40 microg/kg) or CEPO (40 microg/kg). Results indicated that 3 days post-injury, both CEPO and EPO decreased to a similar extent the size of the lesion compared with control animals. Both compounds also decreased the number of terminal transferase-mediated dUTP nick-end labelling (TUNEL)-labelled apopotic nuclei around the lesion site, as well as the number of axons expressing the injury marker beta-amyloid precursor protein. EPO and CEPO also increased Schwann cell infiltration into the lesion site, although neither compound had any effect on macrophage infiltration either within the lesion site itself or in the surrounding intact tissue. In addition, immunohistochemistry showed an increased expression of both the EPO receptor and the beta common receptor subunit, the components of the receptor complex proposed to mediate the neuroprotective effects of EPO and CEPO in neurons near the site of the injury. The results show that not only does CEPO have an efficacy comparable to that of EPO in its neuroprotective potential following injury, but also that changes in the receptors for these compounds following SCI may underlie their neuroprotective efficacy.

  2. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution

    PubMed Central

    Luo, Bangwei; Wang, Jinsong; Liu, Zongwei; Shen, Zigang; Shi, Rongchen; Liu, Yu-Qi; Liu, Yu; Jiang, Man; Wu, Yuzhang; Zhang, Zhiren

    2016-01-01

    Inflammation resolution is an active process, the failure of which causes uncontrolled inflammation which underlies many chronic diseases. Therefore, endogenous pathways that regulate inflammation resolution are fundamental and of wide interest. Here, we demonstrate that phagocyte respiratory burst-induced hypoxia activates macrophage erythropoietin signalling to promote acute inflammation resolution. This signalling is activated following acute but not chronic inflammation. Pharmacological or genetical inhibition of the respiratory burst suppresses hypoxia and macrophage erythropoietin signalling. Macrophage-specific erythropoietin receptor-deficient mice and chronic granulomatous disease (CGD) mice, which lack the capacity for respiratory burst, display impaired inflammation resolution, and exogenous erythropoietin enhances this resolution in WT and CGD mice. Mechanistically, erythropoietin increases macrophage engulfment of apoptotic neutrophils via PPARγ, promotes macrophage removal of debris and enhances macrophage migration to draining lymph nodes. Together, our results provide evidences of an endogenous pathway that regulates inflammation resolution, with important implications for treating inflammatory conditions. PMID:27397585

  3. Diffuse neonatal hemangiomatosis in a very low-birthweight infant treated with erythropoietin.

    PubMed

    Okuno, Takashi; Tokuriki, Shuko; Yoshino, Tomomi; Tanaka, Nanae; Ohshima, Yusei

    2015-04-01

    Diffuse neonatal hemangiomatosis (DNH) is a rare condition characterized by the concomitant development of multiple cutaneous infantile hemangiomas (IH) and visceral hemangiomas. Recently, an association between erythropoietin treatment and an increased incidence of infantile hemangioma was noted. A Japanese male infant was born via cesarean section at 27 weeks of gestation. Following the commencement of erythropoietin treatment for anemia of prematurity, he developed multiple cutaneous hemangiomas, high cardiac output heart failure and hepatomegaly. Abdominal imaging indicated comorbidity of diffuse infantile hepatic hemannigomas, resulting in the final diagnosis of DNH. The discontinuation of erythropoietin treatment and long-term therapy with propranolol improved the hepatic lesions and cutaneous hemangiomas. The possibility of multiple organ involvement and the exacerbating effects of erythropoietin treatment should be considered in cases in which multiple cutaneous hemangiomas develop in preterm infants receiving erythropoietin treatment. © 2015 Japan Pediatric Society.

  4. An integrative 'omics' solution to the detection of recombinant human erythropoietin and blood doping.

    PubMed

    Pitsiladis, Yannis P; Durussel, Jérôme; Rabin, Olivier

    2014-05-01

    Administration of recombinant human erythropoietin (rHumanEPO) improves sporting performance and hence is frequently subject to abuse by athletes, although rHumanEPO is prohibited by the WADA. Approaches to detect rHumanEPO doping have improved significantly in recent years but remain imperfect. A new transcriptomic-based longitudinal screening approach is being developed that has the potential to improve the analytical performance of current detection methods. In particular, studies are being funded by WADA to identify a 'molecular signature' of rHumanEPO doping and preliminary results are promising. In the first systematic study to be conducted, the expression of hundreds of genes were found to be altered by rHumanEPO with numerous gene transcripts being differentially expressed after the first injection and further transcripts profoundly upregulated during and subsequently downregulated up to 4 weeks postadministration of the drug; with the same transcriptomic pattern observed in all participants. The identification of a blood 'molecular signature' of rHumanEPO administration is the strongest evidence to date that gene biomarkers have the potential to substantially improve the analytical performance of current antidoping methods such as the Athlete Biological Passport for rHumanEPO detection. Given the early promise of transcriptomics, research using an 'omics'-based approach involving genomics, transcriptomics, proteomics and metabolomics should be intensified in order to achieve improved detection of rHumanEPO and other doping substances and methods difficult to detect such a recombinant human growth hormone and blood transfusions.

  5. Induction of erythropoiesis using human vascular networks genetically engineered for controlled erythropoietin release.

    PubMed

    Lin, Ruei-Zeng; Dreyzin, Alexandra; Aamodt, Kristie; Li, Dan; Jaminet, Shou-Ching S; Dudley, Andrew C; Melero-Martin, Juan M

    2011-11-17

    For decades, autologous ex vivo gene therapy has been postulated as a potential alternative to parenteral administration of recombinant proteins. However, achieving effective cellular engraftment of previously retrieved patient cells is challenging. Recently, our ability to engineer vasculature in vivo has allowed for the introduction of instructions into tissues by genetically modifying the vascular cells that build these blood vessels. In the present study, we genetically engineered human blood-derived endothelial colony-forming cells (ECFCs) to express erythropoietin (EPO) under the control of a tetracycline-regulated system, and generated subcutaneous vascular networks capable of systemic EPO release in immunodeficient mice. These ECFC-lined vascular networks formed functional anastomoses with the mouse vasculature, allowing direct delivery of recombinant human EPO into the bloodstream. After activation of EPO expression, erythropoiesis was induced in both normal and anemic mice, a process that was completely reversible. This approach could relieve patients from frequent EPO injections, reducing the medical costs associated with the management of anemia. We propose this ECFC-based gene-delivery strategy as a viable alternative technology when routine administration of recombinant proteins is needed.

  6. Induction of erythropoiesis using human vascular networks genetically engineered for controlled erythropoietin release

    PubMed Central

    Lin, Ruei-Zeng; Dreyzin, Alexandra; Aamodt, Kristie; Li, Dan; Jaminet, Shou-Ching S.; Dudley, Andrew C.

    2011-01-01

    For decades, autologous ex vivo gene therapy has been postulated as a potential alternative to parenteral administration of recombinant proteins. However, achieving effective cellular engraftment of previously retrieved patient cells is challenging. Recently, our ability to engineer vasculature in vivo has allowed for the introduction of instructions into tissues by genetically modifying the vascular cells that build these blood vessels. In the present study, we genetically engineered human blood–derived endothelial colony-forming cells (ECFCs) to express erythropoietin (EPO) under the control of a tetracycline-regulated system, and generated subcutaneous vascular networks capable of systemic EPO release in immunodeficient mice. These ECFC-lined vascular networks formed functional anastomoses with the mouse vasculature, allowing direct delivery of recombinant human EPO into the bloodstream. After activation of EPO expression, erythropoiesis was induced in both normal and anemic mice, a process that was completely reversible. This approach could relieve patients from frequent EPO injections, reducing the medical costs associated with the management of anemia. We propose this ECFC-based gene-delivery strategy as a viable alternative technology when routine administration of recombinant proteins is needed. PMID:21937702

  7. Investigation of purification process stresses on erythropoietin peptide mapping profile

    PubMed Central

    Sepahi, Mina; Kaghazian, Hooman; Hadadian, Shahin; Norouzian, Dariush

    2015-01-01

    Background: Full compliance of recombinant protein peptide mapping chromatogram with the standard reference material, is one of the most basic quality control tests of biopharmaceuticals. Changing a single amino acid substitution or side chain diversity for a given peptide changes protein hydrophobicity and causes peak shape or retention time alteration in a peptide mapping assay. In this work, the effect of different stresses during the recombinant erythropoietin (EPO) purification process, including pH 4, pH 5, and room temperature were checked on product peptide mapping results. Materials and Methods: Cell culture harvest was purified under stress by different chromatographic techniques consisting of gel filtration, anionic ion exchange, concentration by ultrafiltration, and high resolution size exclusion chromatography. To induce more pH stresses, the purified EPO was exposed to pH stress 4 and 5 by exchanging buffer by a 10 KDa dialysis sac overnight. The effects of temperature and partial deglycosylation (acid hydrolysis) on purified EPO were also studied by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and peptide mapping analysis. Removal of sialic acid by mild hydrolysis was performed by exposure to two molar acetic acid at 80°C for 3 h. Results: No significant effect was observed between intact and stressed erythropoietin peptide mapping profiles and SDS-PAGE results. To validate the sensibility of the technique, erythropoietin was partially acid hydrolyzed and significant changes in the chromatographic peptide map of the intact form and a reduction on its molecular weight were detected, which indicates some partial deglycosylation. Conclusions: Purification process does not alter the peptide mapping profile and purification process stresses are not the cause of peptide mapping noncompliance. PMID:26261816

  8. The relationship of serum erythropoietin level with coronary collateral grade.

    PubMed

    Sahinarslan, Asife; Yalcin, Ridvan; Kocaman, Sinan Altan; Ercin, Ugur; Tanalp, Ali Cevat; Topal, Salih; Bukan, Neslihan; Boyaci, Bulent; Cengel, Atiye

    2011-01-01

    Erythropoietin has been shown to induce neovascularization and protect against ischemic vascular injury. We investigated whether a higher serum erythropoietin (EPO) level is related to better coronary collateral vessel grade. Ninety-nine patients with stable angina pectoris who have at least 1 coronary stenosis of equal to or greater than 70% at coronary angiography were prospectively enrolled. Serum EPO and vascular endothelial growth factor (VEGF) levels were studied. Coronary collateral degree was graded according to the Rentrop method. Patients with grade 2-3 collateral degree were included in the good collateral group and formed Group I. The patients with grade 0-1 collateral degree were included in the poor collateral group and formed Group II. The serum EPO level was significantly higher in the good collateral group (17.3 ± 9.3 mU/mL vs 11.7 ± 5.0 mU/mL; P < 0.001). There was also a positive correlation between serum EPO level and Rentrop score (r = 0.39; P < 0.001). In multivariate analysis, serum EPO level (odds ratio [OR] 1.336; 95% confidence interval [CI], 1.120-1.593; P = 0.001), oxygen saturation (OR 0.638; 95% CI, 0.422-0.963; P = 0.033) and presence of chronic total occlusion (CTO) (OR 26.7; 95% CI, 3.874-184.6; P = 0.001) were independently related to well-developed coronary collaterals. Higher serum EPO level is related to better coronary collateral development. Erythropoietin may have a positive effect on the development of collaterals and may provide a new agent for the treatment strategies to enhance coronary collateral vessel development. Copyright © 2011 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  9. Investigation of purification process stresses on erythropoietin peptide mapping profile.

    PubMed

    Sepahi, Mina; Kaghazian, Hooman; Hadadian, Shahin; Norouzian, Dariush

    2015-01-01

    Full compliance of recombinant protein peptide mapping chromatogram with the standard reference material, is one of the most basic quality control tests of biopharmaceuticals. Changing a single amino acid substitution or side chain diversity for a given peptide changes protein hydrophobicity and causes peak shape or retention time alteration in a peptide mapping assay. In this work, the effect of different stresses during the recombinant erythropoietin (EPO) purification process, including pH 4, pH 5, and room temperature were checked on product peptide mapping results. Cell culture harvest was purified under stress by different chromatographic techniques consisting of gel filtration, anionic ion exchange, concentration by ultrafiltration, and high resolution size exclusion chromatography. To induce more pH stresses, the purified EPO was exposed to pH stress 4 and 5 by exchanging buffer by a 10 KDa dialysis sac overnight. The effects of temperature and partial deglycosylation (acid hydrolysis) on purified EPO were also studied by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and peptide mapping analysis. Removal of sialic acid by mild hydrolysis was performed by exposure to two molar acetic acid at 80°C for 3 h. No significant effect was observed between intact and stressed erythropoietin peptide mapping profiles and SDS-PAGE results. To validate the sensibility of the technique, erythropoietin was partially acid hydrolyzed and significant changes in the chromatographic peptide map of the intact form and a reduction on its molecular weight were detected, which indicates some partial deglycosylation. Purification process does not alter the peptide mapping profile and purification process stresses are not the cause of peptide mapping noncompliance.

  10. AMPK is involved in mediation of erythropoietin influence on metabolic activity and reactive oxygen species production in white adipocytes.

    PubMed

    Wang, Li; Di, Lijun; Noguchi, Constance Tom

    2014-09-01

    Erythropoietin, discovered for its indispensable role during erythropoiesis, has been used in therapy for selected red blood cell disorders in erythropoietin-deficient patients. The biological activities of erythropoietin have been found in animal models to extend to non-erythroid tissues due to the expression of erythropoietin receptor. We previously demonstrated that erythropoietin promotes metabolic activity and white adipocytes browning to increase mitochondrial function and energy expenditure via peroxisome proliferator-activated receptor alpha and Sirtuin1. Here we report that AMP-activated protein kinase was activated by erythropoietin possibly via Ca(2+)/calmodulin-dependent protein kinase kinase in adipocytes as well as in white adipose tissue from diet induced obese mice. Erythropoietin increased cellular nicotinamide adenine dinucleotide via increased AMP-activated protein kinase activity, possibly leading to Sirtuin1 activation. AMP-activated protein kinase knock down reduced erythropoietin mediated increase in cellular oxidative function including the increased oxygen consumption rate, fatty acid utilization and induction of key metabolic genes. Under hypoxia, adipocytes were found to generate more reactive oxygen species, and erythropoietin reduced the reactive oxygen species and increased antioxidant gene expression, suggesting that erythropoietin may provide protection from oxidative stress in adipocytes. Erythropoietin also reversed increased nicotinamide adenine dinucleotide by hypoxia via increased AMP-activated protein kinase. Additionally, AMP-activated protein kinase is found to be involved in erythropoietin stimulated increase in oxygen consumption rate, fatty acid oxidation and mitochondrial gene expression. AMP-activated protein kinase knock down impaired erythropoietin stimulated increases in antioxidant gene expression. Collectively, our findings identify the AMP-activated protein kinase involvement in erythropoietin signaling in

  11. [Iron supplementation during erythropoietin therapy in patients on hemodialysis].

    PubMed

    Svára, F; Sulková, S; Kvasnićka, J; Polakovic, V

    1996-12-01

    The development of secondary anaemia is a constant associated phenomenon of chronic renal failure. During its treatment by recombinant human erythropoietin (rHuEPO) erythropoiesis is accelerated and this increases demands on the supply of dietary erythropoietic precursors (Fe, pyridoxine, folic acid, vitamin B12). In particular as regards iron, frequently the dietary amount is not sufficient and supplementation is necessary. The objective of the present work is to compare oral and intravenous iron supplementation in the treatment of secondary anaemia by rHuEPO in patients with chronic renal failure treated by haemodialysis. A group of haemodialyzed patients (n = 61) treated with erythropoietin, where the serum ferritin concentration had dropped beneath 300 ng/ml, or the transferrin concentration below 0.20 was divided at random into two sub-groups. To group "A" Actiferrin was administered 3 x 1 cps/d (Ferrosi sulfas heptahydricus, corresponding to 34.5 mg elemental Fe and serine 129 mg per capsule, i.e. a total of 724.5 mg elemental Fe per week). To group "A" Ferrum-Lek was administered 1 vial per week by the i.v. route (Ferri oxidum saccharatum, corresponding to 100 mg elemental iron per week). The two groups were comparable as to the mean erythropoietin dose (50 U/kg per week) and the patients' mean age (61 years), the male/female ratio and the spectrum of basic diseases. After six weeks of treatment a comparable increase of the haematocrit and serum iron concentration was observed in both groups. As to transferrin saturation, there was a more marked increment in the intravenously supplemented group. The serum ferritin values in group "A" declined, while in group "F" they increased. After both types of iron supplementation a comparable increase of the haematocrit and serum iron concentration occurred, the iron reserves represented by serum ferritin differed however and from the long-term aspect they are in favour of intravenous iron supplementation in

  12. Erythropoietin-dependent anaemia: a possible complication of diabetic neuropathy.

    PubMed

    Hadjadj, S; Torremocha, F; Fanelli, A; Brizard, A; Bauwens, M; Maréchaud, R

    2001-06-01

    We report the case of a 52-year-old woman with long-term type 1 diabetes mellitus, complicated with proliferative retinopathy, autonomic neuropathy and microalbuminuria and moderate renal failure. A normochromic, normocytic are generative anaemia had been diagnosed for three years. Clinical and biological investigations for the aetiology of anaemia remained normal or negative. Anaemia was associated with a concentration of erythropoietin (EPO) in the normal range, but inappropriately low regarding anaemia. Treatment with recombinant EPO induced a rapid increase in haemoglobin level and improved the patient's quality of life. The role of diabetic neuropathy in the genesis of anaemia, in conjunction with a modest renal impairment is discussed.

  13. Effects of Intraosseous Erythropoietin during Hemorrhagic Shock in Swine

    PubMed Central

    Borovnik-Lesjak, Vesna; Whitehouse, Kasen; Baetiong, Alvin; Miao, Yang; Currie, Brian M.; Velmurugan, Sathya; Radhakrishnan, Jeejabai; Gazmuri, Raúl J.

    2014-01-01

    Objective To determine whether erythropoietin given during hemorrhagic shock (HS) ameliorates organ injury while improving resuscitation and survival. Methods Three series of 24 pigs each were studied. In an initial series, 50% of the blood volume (BV) was removed in 30 minutes and normal saline (threefold the blood removed) started at minute 90 infusing each third in 30, 60, and 150 minutes with shed blood reinfused at minute 330 (HS-50BV). In a second series, the same HS-50BV protocol was used but removing an additional 15% of BV from minute 30 to 60 (HS-65BV). In a final series, blood was removed as in HS-65BV and intraosseous vasopressin given from minute 30 (0.04 U/kg min−1) until start of shed blood reinfusion at minute 150 (HS-65BV+VP). Normal saline was reduced to half the blood removed and given from minute 90 to 120 in half of the animals. In each series, animals were randomized 1∶1 to receive erythropoietin (1,200 U/kg) or control solution intraosseously after removing 10% of the BV. Results In HS-50BV, O2 consumption remained near baseline yielding minimal lactate increases, 88% resuscitability, and 60% survival at 72 hours. In HS-65BV, O2 consumption was reduced and lactate increased yielding 25% resuscitability. In HS-65BV+VP, vasopressin promoted hemodynamic stability yielding 92% resuscitability and 83% survival at 72 hours. Erythropoietin did not affect resuscitability or subsequent survival in any of the series but increased interleukin-10, attenuated lactate increases, and ameliorated organ injury based on lesser troponin I, AST, and ALT increases and lesser neurological deficits in the HS-65BV+VP series. Conclusions Erythropoietin given during HS in swine failed to alter resuscitability and 72 hour survival regardless of HS severity and concomitant treatment with fluids and vasopressin but attenuated acute organ injury. The studies also showed the efficacy of vasopressin and restrictive fluid resuscitation for hemodynamic stabilization and

  14. The pleiotropic effects of erythropoietin in infection and inflammation

    PubMed Central

    Nairz, Manfred; Sonnweber, Thomas; Schroll, Andrea; Theurl, Igor; Weiss, Günter

    2012-01-01

    Erythropoietin (EPO) is a multi-functional cytokine, which exerts erythropoietic effects but also carries anti-apoptotic and immune-modulatory activities upon binding to two distinct receptors which are expressed on erythroid, parenchymal and immune cells, respectively. Whereas EPO ameliorates hemolytic anemia in malaria or trypanosomiasis and improves the course of autoimmune diseases such as inflammatory bowel disease or autoimmune encephalomyelitis, it deleteriously inhibits macrophage functions in Salmonella infection in animal models. Thus, the specific modulation of extra-erythropoietic EPO activity forms an attractive therapeutic target in infection and inflammation. PMID:22094132

  15. Tissue protection by erythropoietin: new findings in a moving field.

    PubMed

    Nangaku, Masaomi

    2013-09-01

    Two groups elucidate novel mechanisms of tissue protection by erythropoietin (EPO). Hu et al. demonstrate that Klotho's protective effect against oxidant-induced cytotoxicity is partially mediated by an increase in the endogenous expression of the classical EPO receptor (EpoR). While erythropoiesis is stimulated by the canonical EpoR homodimer, the tissue-protective effects of EPO are mediated through a heterodimeric 'tissue-protective' receptor. Coldewey et al. demonstrate a protective role of the 'tissue-protective' EpoR against acute kidney injury.

  16. Expression of adrenomedullin in rats after spinal cord injury and intervention effect of recombinant human erythropoietin.

    PubMed

    Zhao, Liang; Jing, Yu; Qu, Lin; Meng, Xiangwei; Cao, Yang; Tan, Huibing

    2016-12-01

    The expression of adrenomedullin (ADM) in injured tissue of rat spinal cord was observed and the effect of recombinant human erythropoietin was analyzed. A total of 45 Sprague-Dawley rats were selected and divided into 3 equal groups including, a sham-operation group in which rats received an excision of vertebral plate; a spinal cord injury model group and a recombinant human erythropoietin group in which rats with spinal cord injury received a caudal vein injection of 300 units recombinant human erythropoietin after injury. Hematoxylin and eosin staining was performed to observe the spinal cord injury conditions. Immunohistochemical staining was performed to observe the expression of ADM. Pathologic changes in the group of recombinant human erythropoietin at various times were significantly less severe than those in the group of spinal cord injury model. The expression of ADM was increased particularly in the group of recombinant human erythropoietin (P<0.01). The improved Tarlov scores of the group of spinal cord injury model and the group of recombinant human erythropoietin were lower than those of the sham-operation group at 3, 6 and 9 days (P<0.01). Thus, the recombinant human erythropoietin is capable of alleviating the secondary injury of spinal cord. One of the mechanisms may be achieved by promoting the increase of ADM expression.

  17. Endogenous erythropoietin varies significantly with inflammation-related proteins in extremely premature newborns

    PubMed Central

    Logan, J. Wells; Allred, Elizabeth N.; Fichorova, Raina N.; Engelke, Stephen; Dammann, Olaf; Leviton, Alan

    2014-01-01

    Introduction Erythropoietin, a pluripotent glycoprotein essential for erythropoiesis, fetal growth, and development, has recently been implicated in innate immune regulation. Data from the ELGAN Study allowed us to evaluate relationships between endogenous erythropoietin and 25 inflammation-related proteins in extremely premature newborns. Methods We measured the concentrations of 25 inflammation-related proteins and of erythropoietin in blood spots collected on postnatal days 1, 7, and 14 from 936 infants born before 28 weeks gestation. We calculated the odds that infants with an inflammation-related protein in the highest quartile for gestational age and collection day had an erythropoietin concentration in the highest or lowest quartile. Results The proportion of children with inflammation-associated protein concentrations in the top quartile tended to increase monotonically with increasing quartile of EPO concentrations on 2 of the 3 days assessed. To a large extent, on each of the 3 days assessed, the odds ratios for an erythropoietin concentration in the top quartile were significantly elevated among those with an inflammation-related protein concentration in the top quartile. Conclusions Our findings suggest that in very preterm newborns, circulating levels of endogenous erythropoietin vary significantly with circulating levels of inflammation-related proteins. Elevation of endogenous erythropoietin might not be an epiphenomenon, but instead might contribute to subsequent events, by either promoting or reducing inflammation, or by promoting an anti-injury or repair capability. PMID:25022958

  18. Endogenous erythropoietin varies significantly with inflammation-related proteins in extremely premature newborns.

    PubMed

    Logan, J Wells; Allred, Elizabeth N; Fichorova, Raina N; Engelke, Stephen; Dammann, Olaf; Leviton, Alan

    2014-09-01

    Erythropoietin, a pluripotent glycoprotein essential for erythropoiesis, fetal growth, and development, has recently been implicated in innate immune regulation. Data from the ELGAN Study allowed us to evaluate relationships between endogenous erythropoietin and 25 inflammation-related proteins in extremely premature newborns. We measured the concentrations of 25 inflammation-related proteins and of erythropoietin in blood spots collected on postnatal days 1, 7, and 14 from 936 infants born before 28 weeks gestation. We calculated the odds that infants with an inflammation-related protein in the highest quartile for gestational age and collection day had an erythropoietin concentration in the highest or lowest quartile. The proportion of children with inflammation-associated protein concentrations in the top quartile tended to increase monotonically with increasing quartile of EPO concentrations on 2 of the 3 days assessed. To a large extent, on each of the 3 days assessed, the odds ratios for an erythropoietin concentration in the top quartile were significantly elevated among those with an inflammation-related protein concentration in the top quartile. Our findings suggest that in very preterm newborns, circulating levels of endogenous erythropoietin vary significantly with circulating levels of inflammation-related proteins. Elevation of endogenous erythropoietin might not be an epiphenomenon, but instead might contribute to subsequent events, by either promoting or reducing inflammation, or by promoting an anti-injury or repair capability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. In vitro protection of adipose tissue-derived mesenchymal stem cells by erythropoietin.

    PubMed

    Ercan, Ertugrul; Bagla, Aysel Guven; Aksoy, Ayca; Gacar, Gulcin; Unal, Z Seda; Asgun, H Fatih; Karaoz, Erdal

    2014-01-01

    Mobilization of stem cells and their differentiation into cardiomyocytes are known to have protective effects after myocardial infarction. The integrity of transplanted mesenchymal stem cells for cardiac regeneration is dependent on cell-cell or cell-matrix interaction, which is adversely affected by reactive oxygen species in an ischemic environment. Treatment with erythropoietin was shown to protect human adipose tissue derived mesenchymal stem cells in an ischemic injury in vitro model. The analyses indicated that expression of erythropoietin receptors played a pivotal role in erythropoietin mediated cell survival. In this study, the anti-apoptotic effect of erythropoietin on stem cells was analyzed in apoptosis-induced human mesenchymal stem cells. Apoptosis was induced in cultured adult human adipose tissue derived mesenchymal stem cells by hydrogen peroxide. A group of cultured cells was also treated with recombinant human erythropoietin in a concentration of 50 ng mL(-1). The degree of apoptosis was analyzed by flow-cytometry and immunohistochemical staining for Caspase 3. The average percentages of apoptotic cells were significantly higher in H2O2-induced stem cells than in cells co-cultured with erythropoietin (63.03 ± 4.96% vs 29 ± 3.41%, p<0.01). We conclude that preconditioning with erythropoietin suppresses apoptosis of mesenchymal stem cells and enhances their survival. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Expression of adrenomedullin in rats after spinal cord injury and intervention effect of recombinant human erythropoietin

    PubMed Central

    Zhao, Liang; Jing, Yu; Qu, Lin; Meng, Xiangwei; Cao, Yang; Tan, Huibing

    2016-01-01

    The expression of adrenomedullin (ADM) in injured tissue of rat spinal cord was observed and the effect of recombinant human erythropoietin was analyzed. A total of 45 Sprague-Dawley rats were selected and divided into 3 equal groups including, a sham-operation group in which rats received an excision of vertebral plate; a spinal cord injury model group and a recombinant human erythropoietin group in which rats with spinal cord injury received a caudal vein injection of 300 units recombinant human erythropoietin after injury. Hematoxylin and eosin staining was performed to observe the spinal cord injury conditions. Immunohistochemical staining was performed to observe the expression of ADM. Pathologic changes in the group of recombinant human erythropoietin at various times were significantly less severe than those in the group of spinal cord injury model. The expression of ADM was increased particularly in the group of recombinant human erythropoietin (P<0.01). The improved Tarlov scores of the group of spinal cord injury model and the group of recombinant human erythropoietin were lower than those of the sham-operation group at 3, 6 and 9 days (P<0.01). Thus, the recombinant human erythropoietin is capable of alleviating the secondary injury of spinal cord. One of the mechanisms may be achieved by promoting the increase of ADM expression. PMID:28101163

  1. [Is there still a role for recombinant erythropoietin in the management of anaemia of critical illness?].

    PubMed

    Muñoz, Manuel; Ramón Leal-Noval, Santiago; García-Erce, José Antonio

    2009-05-23

    There is a high prevalence of anaemia among patients admitted to the intensive care unit (ICU), and it may have a negative effect on patient's outcome. The most common treatment for anaemia in the ICU patient is allogeneic blood transfusion (ABT), yet it has been found to be a risk factor associated with an increased risk of morbidity and mortality in critical care patients. As a reduction of erythropoietin secretion and action is observed in most ICU patients, the administration of (rHuEPO) has emerged as a therapeutic option. Unfortunately, the results from different studies show that rHuEPO treatment results in a small reduction of ABT requirements when "restrictive" transfusion criteria are applied, which has only been supported by three of the studies. Yet this did not result in a decreased mortality rate, except for patients with a diagnosis on admission of trauma in two studies, even though one study reported a dose-dependent increase of thrombotic vascular events among patients without thromboprophylaxis. Altogether, clinical data suggest a role for rHuEPO in the treatment of anaemia in trauma patients, especially in those sustaining neurotrauma, whereas for non-trauma patients without an approved indication, rHuEPO administration is an expensive approach, does not seem to improve outcome, and might result in serious adverse effects. Consequently, more basic and clinical studies are required to ascertain which patients are more likely to benefit from these treatments, as well as to identify the optimal doses and administration schedules, and iron administration.

  2. Involvement of BDNF and NGF in the mechanism of neuroprotective effect of human recombinant erythropoietin nanoforms.

    PubMed

    Solev, I N; Balabanyan, V Yu; Volchek, I A; Elizarova, O S; Litvinova, S A; Garibova, T L; Voronina, T A

    2013-06-01

    Human recombinant erythropoietin adsorbed on poly(butyl)cyanoacrylate nanoparticles and administered intraperitoneally in a dose of 0.05 mg/kg exhibited a neuroprotective effect in experimental intracerebral posttraumatic hematomas (hemorrhagic stroke) and reduced animal mortality. Human recombinant erythropoietin, native and adsorbed on lactic and glycolic acid copolymer-based nanoparticles, exhibited no antistroke effect on this model. Analysis of reverse transcription PCR products showed that human recombinant erythropoietin adsorbed on poly(butyl)cyanoacrylate nanoparticles more than 2-fold increased the expression of BDNF and NGF neurotrophins in the rat brain frontal cortex and hippocampus.

  3. Protective role of erythropoietin during testicular torsion of the rats.

    PubMed

    Yazihan, Nuray; Ataoglu, Haluk; Koku, Naim; Erdemli, Esra; Sargin, Ayse Kose

    2007-10-01

    Testicular torsion is an important clinical urgency. Similar mechanisms occurred after detorsion of the affected testis as in the ischemia reperfusion (I/R) damage. This study was designed to investigate the effects of erythropoietin (EPO) treatment after unilateral testicular torsion. Fifty male Sprague-Dawley rats were divided into five groups. Group 1 underwent a sham operation of the right testis under general anesthesia. Group 2 was same as sham, and EPO (3,000 IU/kg) infused i.p., group 3 underwent a similar operation but the right testis was rotated 720 degrees clockwise for 1 h, maintained by fixing the testis to the scrotum, and saline infused during the procedure. Group 4 underwent similar torsion but EPO was infused half an hour before the detorsion procedure, and in group 5, EPO was infused after detorsion procedure. Four hours after detorsion, ipsilateral and contralateral testes were taken out for evaluation. Treatment with EPO improved testicular structures in the ipsilateral testis but improvement was less in the contralateral testis histologically, but EPO treatment decreased germ cell apoptosis in both testes following testicular IR. TNF-alpha, IL-1beta, IL-6 and nitrite levels decreased after EPO treatment especially in the ipsilateral testis. We conclude that testicular I/R causes an increase in germ cell apoptosis both in the ipsilateral and contralateral testes. Erythropoietin has antiapoptotic and anti-inflammatory effects following testicular torsion.

  4. Serum immunoreactive erythropoietin in HIV-infected patients

    SciTech Connect

    Spivak, J.L.; Barnes, D.C.; Fuchs, E.; Quinn, T.C. )

    1989-06-02

    Serum immunoreactive erythropoietin (SIE) and hemoglobin levels were measured in 152 patients infected with the human immunodeficiency virus. Anemia was present in 18% of asymptomatic patients who tested positive for the human immunodeficiency virus, 50% of patients with a condition related to the acquired immunodeficiency syndrome (AIDS), and 75% of patients with AIDS. The mean SIE level for untreated AIDS patients was greater than for patients who tested positive for human immunodeficiency virus or patients with an AIDS-related condition but not outside the normal range for SIE, and the incremental increase in SIE level for a given decline in hemoglobin level was much less in AIDS patients than in patients with uncomplicated iron deficiency anemia. Forty-two patients were treated with zidovudine, and the hemoglobin level fell 10 g/L or more in 48%. The data indicate that SIE level is inappropriately low in anemic AIDS patients. The ability of these patients to produce erythropoietin is intact and can be expressed with zidovudine therapy. However, even very high levels of SIE fail to stimulate erythropoiesis adequately.

  5. The effect of erythropoietin on normal and neoplastic cells

    PubMed Central

    Elliott, Steve; Sinclair, Angus M

    2012-01-01

    Erythropoietin (Epo) is an essential hormone that binds and activates the Epo receptor (EpoR) resident on the surface of erythroid progenitor cells, thereby promoting erythropoiesis. Recombinant human erythropoietin has been used successfully for over 20 years to treat anemia in millions of patients. In addition to erythropoiesis, Epo has also been reported to have other effects, such as tissue protection and promotion of tumor cell growth or survival. This became of significant concern in 2003, when some clinical trials in cancer patients reported increased tumor progression and worse survival outcomes in patients treated with erythropoiesis-stimulating agents (ESAs). One of the potential mechanisms proffered to explain the observed safety issues was that functional EpoR was expressed in tumors and/or endothelial cells, and that ESAs directly stimulated tumor growth and/or antagonized tumor ablative therapies. Since then, numerous groups have performed further research evaluating this potential mechanism with conflicting data and conclusions. Here, we review the biology of endogenous Epo and EpoR expression and function in erythropoiesis, and evaluate the evidence pertaining to the expression of EpoR on normal nonhematopoietic and tumor cells. PMID:22848149

  6. Erythropoietin Activates Mitochondrial Biogenesis and Couples Red Cell Mass to Mitochondrial Mass in the Heart

    EPA Science Inventory

    RATIONALE: Erythropoietin (EPO) is often administered to cardiac patients with anemia, particularly from chronic kidney disease, and stimulation of erythropoiesis may stabilize left ventricular and renal function by recruiting protective effects beyond the correction of anemia. O...

  7. Erythropoietin Activates Mitochondrial Biogenesis and Couples Red Cell Mass to Mitochondrial Mass in the Heart

    EPA Science Inventory

    RATIONALE: Erythropoietin (EPO) is often administered to cardiac patients with anemia, particularly from chronic kidney disease, and stimulation of erythropoiesis may stabilize left ventricular and renal function by recruiting protective effects beyond the correction of anemia. O...

  8. Erythropoietin inhibits liver gelatinases during galactosamine-induced hepatic damage in rats.

    PubMed

    Madro, Agnieszka; Kurzepa, Jacek; Czechowska, Grazyna; Słomka, Maria; Celiński, Krzysztof; Szymonik-Lesiuk, Stanisława

    2009-01-01

    Matrix metalloproteinase (MMP)-2 and -9 (gelatinases) participate in extracellular protein remodeling. Moreover, they are involved in the development of hepatic fibrosis. The goal of this study was to evaluate liver gelatinase activities after erythropoietin (Epo) treatment (1U/dose, sc) in experimentally damaged livers of rats treated with D-galactosamine (Gal, 800 mg/kg/dose, ip). Sixty rats were divided into six equal groups: I - received 5 doses of Epo and a single dose of Gal [the experiment duration (ED): 10 days]; II - received 5 doses of Epo and 3 doses of Gal (ED: 14 days); III - received only 5 doses of Epo (ED: 9 days); IV - received 3 doses of Gal (ED: 5 days);V - received a single dose of Gal (ED: 1 day); VI - control group (ED: 9 days). The animals were sacrificed and the livers were collected 48 h after the last drug administration. The activity of gelatinases was measured using gelatin zymography. No fluctuations in gelatinase activities were observed after the administration of a single dose of Gal in comparison to the control group. However, a significant increase in gelatinase activities was observed after treatment with three doses of Gal. Five doses of Epo administrated before Gal treatment prevented elevated gelatinase activities: MMP-9 activity was comparable to control, and MMP-2 activity was decreased (group II). The gelatinase activities was lower in group I and II in comparison to the control group. These results revealed that Epo decreases MMP-2 and MMP-9 activity, suggesting that it is a hepatoprotective agent against hepatic damage induced by galactosamine injection.

  9. Erythropoietin preserves the integrity and quality of organs for transplantation after cardiac death.

    PubMed

    Maio, Rui; Sepodes, Bruno; Patel, Nimesh S A; Thiemermann, Christoph; Mota-Filipe, Helder; Costa, Paulo

    2011-02-01

    Previous studies have shown that treatment with erythropoietin (EPO) exerts important cytoprotective and antiapoptotic effects. Donor organs recovered after cardiac death (DCD) can alleviate the shortage of organs required for transplantation. However, organs obtained subsequent to cardiac death demonstrate an increased incidence of delayed graft function and primary nonfunction. The aim of this study was to determine the effects of EPO administration to the donor in a porcine model of kidney transplantation under DCD conditions. Landrace pigs received 1,000 IU/kg i.v. EPO 30 min before cardiac arrest. Kidneys were then subjected to 30 min of warm ischemia and were transplanted after 24 h of cold storage. Renal dysfunction, injury, and inflammation were evaluated 4 h after transplantation. Transplantation of kidneys from DCD resulted in significant renal dysfunction, injury, and inflammation. This study provides the first evidence that pretreatment of the donor with a single pharmacologically relevant dose of EPO causes substantial attenuation of the dysfunction and injury associated with the transplantation of kidneys recovered after cardiac death.

  10. Effects of Erythropoietin on Adipose Tissue: A Possible Strategy in Refilling

    PubMed Central

    Sabbatini, Maurizio; Bosetti, Michela; Borrone, Alessia; Boldorini, Renzo; Taveggia, Antonio; Verna, Giovanni; Cannas, Mario

    2015-01-01

    Background: The increased resorption and the difficulty of the fat graft take following autologous fat transplantation procedure are associated with reduced fat tissue revascularization and increased apoptosis of adipose cells. We suppose that the lipofilling procedure induces an inflammatory environment within the fat graft mass, whose evolution influences the efficacy of autologous fat graft survival. Erythropoietin (EPO) is a glycoprotein hormone known to exert angiogenetic and anti-inflammatory effects; therefore, our purpose was to investigate its reaction with adipose tissue used in lipofilling. Methods: Fat masses were harvested using manual suction lipectomy and then seeded on dishes in appropriate culture and treated for 3 weeks with 3 doses of EPO. CD31 and CD68 immunohistochemistry was used to identify microvessels and several infiltrating leukocyte cells. Results: Following EPO administration, we have detected an increase in the number of CD31-positive microvessel endothelium cells and CD31-positive small leukocytes and a reduction of CD68-positive cells. These effects were more conspicuous following higher EPO dose. Conclusions: Our findings evidence EPO treatment as a useful strategy to sustain the revascularization of grafted tissue and to reduce its inflammatory state. PMID:26034645

  11. HPLC-MS/MS investigation of biochemical markers for the disclosure of erythropoietin abuse in sports

    NASA Astrophysics Data System (ADS)

    Appolonova, S. A.; Dikunets, M. A.; Rodchenkov, G. M.

    2009-04-01

    The polypeptide hormone erythropoietin (EPO), which is a forbidden doping drug, was determined by high-performance liquid chromatography combined with tandem mass spectrometry (HPLC-MS/MS). The hypothesis about the influence of EPO on the asymmetric dimethylarginine (ADMA)-dimethylargininedime-thylaminohydrolase (DDAH)-NO-synthase system was verified. Changes in this system can serve as indirect biochemical markers of the presence of the forbidden EPO drug in the organism. In the test group, the concentrations of biochemical markers varied from 10 to 40 μg/ml for ADMA and symmetrical DMA (SDMA) and from 0.5 to 10 μg/ml for arginine and citrulline. A single intravenous administration of r-HuEPO (Epocrin, 2000 ME/day) for two volunteers reliably increased ADMA, SDMA, arginine, and citrulline concentrations to 40-270 μg/ml, 40-240μg/ml, 10-60 μg/ml, and 12-140 μg/ml, respectively, with respect to the reference values. The simultaneous increase in arginine, methylarginines, and citrulline contents could be an indirect marker of EPO abuse. The method is recommended for fast screening analysis.

  12. Endogenous Erythropoietin as Part of the Cytokine Network in the Pathogenesis of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Mengozzi, Manuela; Cervellini, Ilaria; Bigini, Paolo; Martone, Sara; Biondi, Antonella; Pedotti, Rosetta; Gallo, Barbara; Barbera, Sara; Mennini, Tiziana; Boraso, Mariaserena; Marinovich, Marina; Petit, Edwige; Bernaudin, Myriam; Bianchi, Roberto; Viviani, Barbara; Ghezzi, Pietro

    2008-01-01

    Erythropoietin (EPO) is of great interest as a therapy for many of the central nervous system (CNS) diseases and its administration is protective in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Endogenous EPO is induced by hypoxic/ischemic injury, but little is known about its expression in other CNS diseases. We report here that EPO expression in the spinal cord is induced in mouse models of chronic or relapsing-remitting EAE, and is prominently localized to motoneurons. We found a parallel increase of hypoxia-inducible transcription factor (HIF)-1α, but not HIF-2α, at the mRNA level, suggesting a possible role of non-hypoxic factors in EPO induction. EPO mRNA in the spinal cord was co-expressed with interferon (IFN)–γ and tumor necrosis factor (TNF), and these cytokines inhibited EPO production in vitro in both neuronal and glial cells. Given the known inhibitory effect of EPO on neuroinflammation, our study indicates that EPO should be viewed as part of the inflammatory/anti-inflammatory network in MS. PMID:18670620

  13. Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury.

    PubMed

    Jantzie, L L; Getsy, P M; Firl, D J; Wilson, C G; Miller, R H; Robinson, S

    2014-07-01

    Therapeutic agents that restore the inhibitory actions of γ-amino butyric acid (GABA) by modulating intracellular chloride concentrations will provide novel avenues to treat stroke, chronic pain, epilepsy, autism, and neurodegenerative and cognitive disorders. During development, upregulation of the potassium-chloride co-transporter KCC2, and the resultant switch from excitatory to inhibitory responses to GABA guide the formation of essential inhibitory circuits. Importantly, maturation of inhibitory mechanisms is also central to the development of excitatory circuits and proper balance between excitatory and inhibitory networks in the developing brain. Loss of KCC2 expression occurs in postmortem samples from human preterm infant brains with white matter lesions. Here we show that late gestation brain injury in a rat model of extreme prematurity impairs the developmental upregulation of potassium chloride co-transporters during a critical postnatal period of circuit maturation in CA3 hippocampus by inducing a sustained loss of oligomeric KCC2 via a calpain-dependent mechanism. Further, administration of erythropoietin (EPO) in a clinically relevant postnatal dosing regimen following the prenatal injury protects the developing brain by reducing calpain activity, restoring oligomeric KCC2 expression and attenuating KCC2 fragmentation, thus providing the first report of a safe therapy to address deficits in KCC2 expression. Together, these data indicate it is possible to reverse abnormalities in KCC2 expression during the postnatal period, and potentially reverse deficits in inhibitory circuit formation central to cognitive impairment and epileptogenesis.

  14. Short-term effects of erythropoietin on neurodevelopment in infants with cerebral palsy: a pilot study.

    PubMed

    Lee, Hee Song; Song, Junyoung; Min, Kyunghoon; Choi, Yong-Soo; Kim, Sun-Mi; Cho, Sung-Rae; Kim, MinYoung

    2014-10-01

    Cerebral palsy (CP) is a disabling condition characterized by the motor impairment, which is difficult to be ameliorated. In the brain of infants with CP, there are persistent pathomechanisms including accentuated neuroinflammation. Since erythropoietin was demonstrated to have neuroprotective effect via anti-inflammatory and anti-apoptotic properties, we hypothesized that the administration of recombinant human EPO (rhEPO) could help children with CP, especially young infants. We investigated the therapeutic efficacy of rhEPO for infants with CP, who had been undergoing active rehabilitation in hospitalized setting to eliminate treatment bias. Twenty infants with CP were randomly divided into EPO or control group equally. We compared the changes in the Gross Motor Function Measure (GMFM) and the Bayley Scales of Infant Development-II (BSID-II) scores during one month of hospitalization between two groups. The improvements after 1 month on the GMFM A and GMFM total scores differed significantly between the groups (p = 0.003, p = 0.04, respectively). However, the changes after 6 months were not different between the two groups. The scores of BSID-II did not show any differences at 1-month and 6-months post-treatment. These results indicated that rhEPO could have therapeutic efficacy for infants with CP during the active rehabilitation and anti-inflammation was suggested to be one of its therapeutic mechanisms. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus

    PubMed Central

    Hassouna, I; Ott, C; Wüstefeld, L; Offen, N; Neher, R A; Mitkovski, M; Winkler, D; Sperling, S; Fries, L; Goebbels, S; Vreja, I C; Hagemeyer, N; Dittrich, M; Rossetti, M F; Kröhnert, K; Hannke, K; Boretius, S; Zeug, A; Höschen, C; Dandekar, T; Dere, E; Neher, E; Rizzoli, S O; Nave, K-A; Sirén, A-L; Ehrenreich, H

    2016-01-01

    Recombinant human erythropoietin (EPO) improves cognitive performance in neuropsychiatric diseases ranging from schizophrenia and multiple sclerosis to major depression and bipolar disease. This consistent EPO effect on cognition is independent of its role in hematopoiesis. The cellular mechanisms of action in brain, however, have remained unclear. Here we studied healthy young mice and observed that 3-week EPO administration was associated with an increased number of pyramidal neurons and oligodendrocytes in the hippocampus of ~20%. Under constant cognitive challenge, neuron numbers remained elevated until >6 months of age. Surprisingly, this increase occurred in absence of altered cell proliferation or apoptosis. After feeding a 15N-leucine diet, we used nanoscopic secondary ion mass spectrometry, and found that in EPO-treated mice, an equivalent number of neurons was defined by elevated 15N-leucine incorporation. In EPO-treated NG2-Cre-ERT2 mice, we confirmed enhanced differentiation of preexisting oligodendrocyte precursors in the absence of elevated DNA synthesis. A corresponding analysis of the neuronal lineage awaits the identification of suitable neuronal markers. In cultured neurospheres, EPO reduced Sox9 and stimulated miR124, associated with advanced neuronal differentiation. We are discussing a resulting working model in which EPO drives the differentiation of non-dividing precursors in both (NG2+) oligodendroglial and neuronal lineages. As endogenous EPO expression is induced by brain injury, such a mechanism of adult neurogenesis may be relevant for central nervous system regeneration. PMID:26809838

  16. Erythropoietin receptor expression in the human urogenital tract: immunolocalization in the prostate, neurovascular bundle and penis.

    PubMed

    Liu, Tongyun; Allaf, Mohamad E; Lagoda, Gwen; Burnett, Arthur L

    2007-11-01

    To investigate whether the erythropoietin (EPO) receptor is expressed in human periprostatic (including the neurovascular bundles) and penile tissues, and define its distribution in these tissues, as the administration of exogenous EPO in cavernous nerve injury promoted the recovery of erectile function in a rat model. Human prostate (six samples) and penile (two) tissue were collected and paraffin-embedded. Tissue was sectioned and processed for immunohistochemical studies using an antibody for the EPO receptor; immunolocalization was assessed using light microscopy. There was prominent staining for the EPO receptor in neuronal cell bodies of the periprostatic neurovascular bundles, and in the axons emanating from these ganglia. The glandular epithelium of the prostate also had weak staining. There was EPO receptor immunoreactivity in the penile specimens in the penile dorsal nerves, sinusoidal endothelium of the corpus cavernosum, and endothelial cells lining the dorsal veins and arteries. All slides processed with no primary antibody or blocking peptide showed no staining. EPO receptor expression was identified and localized in human penile tissues and in the periprostatic neurovascular bundles responsible for erectile function. This suggests a likely role for endogenous EPO within these tissues, and provides the rationale for its clinical use as a protective agent locally.

  17. Erythropoietin modulates the structure of bone morphogenetic protein 2-engineered cranial bone.

    PubMed

    Sun, Hongli; Jung, Younghun; Shiozawa, Yusuke; Taichman, Russell S; Krebsbach, Paul H

    2012-10-01

    The ideally engineered bone should have similar structural and functional properties to the native tissue. Although structural integrity is critical for functional bone regeneration, we know less about modulating the structural properties of the engineered bone elicited by bone morphogenetic protein (BMP) than efficacy and safety. Erythropoietin (Epo), a primary erythropoietic hormone, has been used to augment blood transfusion in orthopedic surgery. However, the effects of Epo on bone regeneration are not well known. Here, we determined the role of Epo in BMP2-induced bone regeneration using a cranial defect model. Epo administration improved the quality of BMP2-induced bone and more closely resembled natural cranial bone with a higher bone volume (BV) fraction and lower marrow fraction when compared with BMP2 treatment alone. Epo increased red blood cells (RBCs) in peripheral blood and also increased hematopoietic and mesenchymal stem cell (MSC) populations in bone marrow. Consistent with our previous work, Epo increased osteoclastogenesis both in vitro and in vivo. Results from a metatarsal organ culture assay suggested that Epo-promoted osteoclastogenesis contributed to angiogenesis because angiogenesis was blunted when osteoclastogenesis was blocked by alendronate (ALN) or osteoprotegerin (OPG). Earlier calcification of BMP2-induced temporary chondroid tissue was observed in the Epo+BMP group compared to BMP2 alone. We conclude that Epo significantly enhanced the outcomes of BMP2-induced cranial bone regeneration in part through its actions on osteoclastogenesis and angiogenesis.

  18. Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response.

    PubMed

    Brines, M; Cerami, A

    2008-11-01

    In its classic hormonal role, erythropoietin (EPO) is produced by the kidney and regulates the number of erythrocytes within the circulation to provide adequate tissue oxygenation. EPO also mediates other effects directed towards optimizing oxygen delivery to tissues, e.g. modulating regional blood flow and reducing blood loss by promoting thrombosis within damaged vessels. Over the past 15 years, many unexpected nonhaematopoietic functions of EPO have been identified. In these more recently appreciated nonhormonal roles, locally-produced EPO signals through a different receptor isoform and is a major molecular component of the injury response, in which it counteracts the effects of pro-inflammatory cytokines. Acutely, EPO prevents programmed cell death and reduces the development of secondary, pro-inflammatory cytokine-induced injury. Within a longer time frame, EPO provides trophic support to enable regeneration and healing. As the region immediately surrounding damage is typically relatively deficient in endogenous EPO, administration of recombinant EPO can provide increased tissue protection. However, effective use of EPO as therapy for tissue injury requires higher doses than for haematopoiesis, potentially triggering serious adverse effects. The identification of a tissue-protective receptor isoform has facilitated the engineering of nonhaematopoietic, tissue-protective EPO derivatives, e.g. carbamyl EPO, that avoid these complications. Recently, regions within the EPO molecule mediating tissue protection have been identified and this has enabled the development of potent tissue-protective peptides, including some mimicking EPO's tertiary structure but unrelated in primary sequence.

  19. Erythropoietin responsive cardiomyogenic cells contribute to heart repair post myocardial infarction.

    PubMed

    Zafiriou, Maria Patapia; Noack, Claudia; Unsöld, Bernhard; Didie, Michael; Pavlova, Elena; Fischer, Henrike J; Reichardt, Holger M; Bergmann, Martin W; El-Armouche, Ali; Zimmermann, Wolfram-Hubertus; Zelarayan, Laura Cecilia

    2014-09-01

    The role of erythropoietin (Epo) in myocardial repair after infarction remains inconclusive. We observed high Epo receptor (EPOR) expression in cardiac progenitor cells (CPCs). Therefore, we aimed to characterize these cells and elucidate their contribution to myocardial regeneration on Epo stimulation. High EPOR expression was detected during murine embryonic heart development followed by a marked decrease until adulthood. EPOR-positive cells in the adult heart were identified in a CPC-enriched cell population and showed coexpression of stem, mesenchymal, endothelial, and cardiomyogenic cell markers. We focused on the population coexpressing early (TBX5, NKX2.5) and definitive (myosin heavy chain [MHC], cardiac Troponin T [cTNT]) cardiomyocyte markers. Epo increased their proliferation and thus were designated as Epo-responsive MHC expressing cells (EMCs). In vitro, EMCs proliferated and partially differentiated toward cardiomyocyte-like cells. Repetitive Epo administration in mice with myocardial infarction (cumulative dose 4 IU/g) resulted in an increase in cardiac EMCs and cTNT-positive cells in the infarcted area. This was further accompanied by a significant preservation of cardiac function when compared with control mice. Our study characterized an EPO-responsive MHC-expressing cell population in the adult heart. Repetitive, moderate-dose Epo treatment enhanced the proliferation of EMCs resulting in preservation of post-ischemic cardiac function.

  20. Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus.

    PubMed

    Hassouna, I; Ott, C; Wüstefeld, L; Offen, N; Neher, R A; Mitkovski, M; Winkler, D; Sperling, S; Fries, L; Goebbels, S; Vreja, I C; Hagemeyer, N; Dittrich, M; Rossetti, M F; Kröhnert, K; Hannke, K; Boretius, S; Zeug, A; Höschen, C; Dandekar, T; Dere, E; Neher, E; Rizzoli, S O; Nave, K-A; Sirén, A-L; Ehrenreich, H

    2016-12-01

    Recombinant human erythropoietin (EPO) improves cognitive performance in neuropsychiatric diseases ranging from schizophrenia and multiple sclerosis to major depression and bipolar disease. This consistent EPO effect on cognition is independent of its role in hematopoiesis. The cellular mechanisms of action in brain, however, have remained unclear. Here we studied healthy young mice and observed that 3-week EPO administration was associated with an increased number of pyramidal neurons and oligodendrocytes in the hippocampus of ~20%. Under constant cognitive challenge, neuron numbers remained elevated until >6 months of age. Surprisingly, this increase occurred in absence of altered cell proliferation or apoptosis. After feeding a (15)N-leucine diet, we used nanoscopic secondary ion mass spectrometry, and found that in EPO-treated mice, an equivalent number of neurons was defined by elevated (15)N-leucine incorporation. In EPO-treated NG2-Cre-ERT2 mice, we confirmed enhanced differentiation of preexisting oligodendrocyte precursors in the absence of elevated DNA synthesis. A corresponding analysis of the neuronal lineage awaits the identification of suitable neuronal markers. In cultured neurospheres, EPO reduced Sox9 and stimulated miR124, associated with advanced neuronal differentiation. We are discussing a resulting working model in which EPO drives the differentiation of non-dividing precursors in both (NG2+) oligodendroglial and neuronal lineages. As endogenous EPO expression is induced by brain injury, such a mechanism of adult neurogenesis may be relevant for central nervous system regeneration.

  1. Recombinant human erythropoietin modulates erythrocyte complement receptor 1 functional activity in patients with lupus nephritis.

    PubMed

    Kiss, E; Kávai, M; Csipõ, I; Szegedi, G

    1998-06-01

    Deposition of immune complexes (IC) is an important step in the pathogenesis of lupus nephritis. Impairment of IC-clearance contributes to the accumulation of IC. It may be partly attributed to decreased complement containing immune complex (ICC) binding by erythrocytic complement receptor 1 (ECR1). Stimulating erythropoiesis with recombinant human erythropoietin (rHuEPO) may enhance the IC-clearance as increasing ECR1 expression and/or functional activity. Ten anemic patients with lupus nephritis were treated with 50 IU rHuEPO (Eprex) per kg body weight three times a week during a five week period. ICC-binding capacity of ECR1 was determined with 125I-labelled, C3ib containing BSA-anti-BSA complexes. In addition to effective correction of anemia, indicated by increased red blood cell count (RBC), hemoglobin concentration and reticulocyte ratio, rHuEPO significantly improved decreased ECR1 functional (ICC-binding) activity in patients with lupus nephritis. This improvement correlated with the increase in reticulocyte ratio. Although patients were kept on their previous therapy during Eprex administration, their clinical condition also improved. That was shown by a decrease in Westergreen ratio, serum creatinine concentration and anti-dsDNA level and also by an increase in creatinine clearance. Results suggest a beneficial immune modulatory effect of rHuEPO in lupus nephritis.

  2. Reduced serum hydroxyl radical scavenging activity in erythropoietin therapy resistant renal anemia.

    PubMed

    Hirayama, Aki; Nagase, Sohji; Gotoh, Michihiro; Ueda, Atsushi; Ishizu, Takashi; Yoh, Keigyou; Aoyagi, Kazumasa; Terao, Junji; Koyama, Akio

    2002-11-01

    Relation between anemia resistant to recombinant human erythropoietin (rHuEPO) therapy and the oxidative stress in hemodialysis (HD) patients was investigated. Stable HD patients who had consistent hemoglobin concentrations on a constant dose of rHuEPO were studied. Patients were excluded if there were factors that might affect hemopoiesis or administration of antioxidant supplements. Patients were classified into three groups: High (9000 U/week), Low (1500-4500 U/week) and No rHuEPO group. Thiobarbituric acid reactive substances (TBARS) of sera and erythrocyte were examined. Serum superoxide and hydroxyl radical scavenging activities were measured using electron spin resonance. TBARS in the erythrocyte was higher in High rHuEPO group compared with No rHuEPO group, though the serum TBARS were similar. A diminution of serum hydroxyl radical scavenging activity was observed in High rHuEPO group. Hydroxyl radical signal intensity showed a strong correlation with the serum ferritin in High rHuEPO group, although ferritin concentrations were not different among the 3 groups. Superoxide scavenging activity showed no differences. These results indicate that increased lipid peroxidation in erythrocyte, raised by decreased serum hydroxyl radical scavenging activity, is one cause of rHuEPO resistant anemia. Serum ferritin may be involved in this hydroxyl radical production.

  3. Erythropoietin, testosterone, and thyroxine in the erythropoietic response of the snake, Xenochrophis piscator.

    PubMed

    Pati, A K; Thapliyal, J P

    1984-03-01

    The erythropoietic response of snakes was examined after injecting human urinary erythropoietin (Ep), testosterone propionate (TP), and L-thyroxine (T4), separately and in combinations, into starved ophids. The effect of starvation was reflected by a decrease in the number of erythrocytes, a fall in hemoglobin concentration, and a decline in hematocrit. Statistically significant elevation of erythrocyte number, hemoglobin concentration, and hematocrit was observed at 24 hr following the administration of Ep + T4, and Ep + TP + T4 into starved ophids. The erythrocyte number was also increased by T4 treatment at 24 hr. Furthermore, while T4 and Ep individually increased the red blood cell number at 168 hr, T4, TP + T4, and Ep + TP + T4 elevated the hemoglobin concentration and Ep + T4 and Ep + TP + T4 increased the hematocrit value. It is suggested that the influence of any one of the hormones utilized in the present study on blood morphology of fasted snakes depends to a greater extent on the presence or absence of the other hormone(s).

  4. Erythropoietin Promotes Neural Plasticity and Spatial Memory Recovery in Fimbria-Fornix-Lesioned Rats.

    PubMed

    Almaguer-Melian, William; Mercerón-Martínez, Daymara; Pavón-Fuentes, Nancy; Alberti-Amador, Esteban; Leon-Martinez, Rilda; Ledón, Nuris; Delgado Ocaña, Susana; Bergado Rosado, Jorge A

    2015-01-01

    Erythropoietin (EPO) upregulates the mitogen activated protein kinase (MAPK) cascade, a central signaling pathway in cellular plastic mechanisms, and is critical for normal brain development. We hypothesized that EPO could modulate the plasticity mechanisms supporting spatial memory recovery in fimbria-fornix-transected animals. Fimbria-fornix was transected in 3 groups of rats. Seven days later, EPO was injected daily for 4 consecutive days within 10 minutes after training on a water maze task. Our results show that EPO injections 10 minutes after training produced a substantial spatial memory recovery in fimbria-fornix-lesioned animals. In contrast, an EPO injection shortly after fimbria-fornix lesion surgery does not promote spatial-memory recovery. Neither does daily EPO injection 5 hours after the water maze performance. EPO, on the other hand, induced the expression of plasticity-related genes like arc and bdnf, but this effect was independent of training or lesion. This finding supports our working hypothesis that EPO can modulate transient neuroplastic mechanisms triggered by training in lesioned animals. Consequently, we propose that EPO administration can be a useful trophic factor to promote neural restoration when given in combination with training. © The Author(s) 2015.

  5. Epidermal growth factor and erythropoietin infusion accelerate functional recovery in combination with rehabilitation.

    PubMed

    Jeffers, Matthew S; Hoyles, Amy; Morshead, Cindi; Corbett, Dale

    2014-06-01

    Rehabilitation is the only treatment option for chronic stroke deficits, but unfortunately, it often provides incomplete recovery. In this study, a novel combination of growth factor administration and rehabilitation therapy was used to facilitate functional recovery in a rat model of cortical stroke. Ischemia was induced via injection of endothelin-1 into the sensorimotor cortex. This was followed by either a 2-week infusion of epidermal growth factor and erythropoietin or artificial cerebrospinal fluid into the ipsilateral lateral ventricle. Two weeks after ischemia, animals began an 8-week enriched rehabilitation program. Functional recovery was assessed after ischemia using the Montoya staircase-reaching task, beam-traversing, and cylinder test of forelimb asymmetry. The combination of growth factor infusion and rehabilitation led to a significant acceleration in recovery in the staircase task. When compared with controls, animals receiving the combination treatment attained significant recovery of function at 4 weeks after stroke, whereas those receiving rehabilitation alone did not recover until 10 weeks. Significant recovery was also observed on the beam-traversing and cylinder tasks. Combining behavioral rehabilitation with growth factor infusion accelerates motor recovery. These data suggest a promising new avenue of combination therapies that may have the potential to reduce the rehabilitation time necessary to recover from sensorimotor deficits arising from stroke. © 2014 American Heart Association, Inc.

  6. Nonerythropoietic Erythropoietin-Derived Peptide Suppresses Adipogenesis, Inflammation, Obesity and Insulin Resistance

    PubMed Central

    Liu, Yuqi; Luo, Bangwei; Shi, Rongchen; Wang, Jinsong; Liu, Zongwei; Liu, Wei; Wang, Shufeng; Zhang, Zhiren

    2015-01-01

    Erythropoietin (EPO) has been identified as being crucial for obesity modulation; however, its erythropoietic activity may limit its clinical application. EPO-derived Helix B-surface peptide (pHBSP) is nonerythrogenic but has been reported to retain other functions of EPO. The current study aimed to evaluate the effects and potential mechanisms of pHBSP in obesity modulation. We found that pHBSP suppressed adipogenesis, adipokine expression and peroxisome proliferator-activated receptor γ (PPARγ) levels during 3T3-L1 preadipocyte maturation through the EPO receptor (EPOR). In addition, also through EPOR, pHBSP attenuated macrophage inflammatory activation and promoted PPARγ expression. Furthermore, PPARγ deficiency partly ablated the anti-inflammatory activity of pHBSP in macrophages. Correspondingly, pHBSP administration to high-fat diet (HFD)-fed mice significantly improved obesity, insulin resistance (IR) and adipose tissue inflammation without stimulating hematopoiesis. Therefore, pHBSP can significantly protect against obesity and IR partly by inhibiting adipogenesis and inflammation. These findings have therapeutic implications for metabolic disorders, such as obesity and diabetes. PMID:26459940

  7. [Erythropoietin treatment for late anaemia after haemolytic disease of the newborn].

    PubMed

    Alvarez Domínguez, E; Pérez Fernández, J M; Figueras Aloy, J; Carbonell Estrany, X

    2010-12-01

    After several years of erythropoietin (EPO) use in the prophylaxis of anaemia of prematurity, it also began to be administered to treat post-haemolytic disease anaemia of the newborn in order to avoid blood transfusions. To show the results obtained with EPO treatment in post-haemolytic disease anemia of the newborn. Observational study in 13 newborns with late anaemia due to an hemolytic disease caused by Rh isoimmunization (9 cases), AB0 isoimmunization (2 cases), glucose-6-P-dehydrogenase deficiency (1 case) or idiopathic (1 case). The newborns began EPO treatment when they reached the haematocrit level for a blood transfusion. EPO treatment was started at 26±7 days of life (15-46), with a haematocrit value of 21.7±3% (18-27) and a reticulocyte count of 3.8±2.2%. Blood transfusion was not necessary in 11 newborns (haematocrit of 30.7±4.4% and reticulocytes of 5.9±1.4%), and only 2 newborns were admitted for a blood transfusion (haematocrit 18±4.4% and reticulocytes 0.6%). Significant increases in haemoglobin and reticulocyte figures were seen after EPO treatment. EPO administration proved useful to avoid blood transfusion in 84% of treated newborns. No adverse events were detected which could be attributed to this treatment,. Copyright © 2010 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  8. Erythropoietin reduces storage lesions and decreases apoptosis indices in blood bank red blood cells.

    PubMed

    Penuela, Oscar Andrés; Palomino, Fernando; Gómez, Lina Andrea

    2016-01-01

    Recent evidence shows a selective destruction of the youngest circulating red blood cells (neocytolysis) trigged by a drop in erythropoietin levels. The aim of this study was to evaluate the effect of recombinant human erythropoietin beta on the red blood cell storage lesion and apoptosis indices under blood bank conditions. Each one of ten red blood cell units preserved in additive solution 5 was divided in two volumes of 100mL and assigned to one of two groups: erythropoietin (addition of 665IU of recombinant human erythropoietin) and control (isotonic buffer solution was added). The pharmacokinetic parameters of erythropoietin were estimated and the following parameters were measured weekly, for six weeks: Immunoreactive erythropoietin, hemolysis, percentage of non-discocytes, adenosine triphosphate, glucose, lactate, lactate dehydrogenase, and annexin-V/esterase activity. The t-test or Wilcoxon's test was used for statistical analysis with significance being set for a p-value <0.05. Erythropoietin, when added to red blood cell units, has a half-life >6 weeks under blood bank conditions, with persistent supernatant concentrations of erythropoietin during the entire storage period. Adenosine triphosphate was higher in the Erythropoietin Group in Week 6 (4.19±0.05μmol/L vs. 3.53±0.02μmol/L; p-value=0.009). The number of viable cells in the Erythropoietin Group was higher than in the Control Group (77%±3.8% vs. 71%±2.3%; p-value <0.05), while the number of apoptotic cells was lower (9.4%±0.3% vs. 22%±0.8%; p-value <0.05). Under standard blood bank conditions, an important proportion of red blood cells satisfy the criteria of apoptosis. Recombinant human erythropoietin beta seems to improve storage lesion parameters and mitigate apoptosis. Copyright © 2015 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.

  9. Erythropoietin reduces storage lesions and decreases apoptosis indices in blood bank red blood cells

    PubMed Central

    Penuela, Oscar Andrés; Palomino, Fernando; Gómez, Lina Andrea

    2015-01-01

    Background Recent evidence shows a selective destruction of the youngest circulating red blood cells (neocytolysis) trigged by a drop in erythropoietin levels. Objective The aim of this study was to evaluate the effect of recombinant human erythropoietin beta on the red blood cell storage lesion and apoptosis indices under blood bank conditions. Methods Each one of ten red blood cell units preserved in additive solution 5 was divided in two volumes of 100 mL and assigned to one of two groups: erythropoietin (addition of 665 IU of recombinant human erythropoietin) and control (isotonic buffer solution was added). The pharmacokinetic parameters of erythropoietin were estimated and the following parameters were measured weekly, for six weeks: Immunoreactive erythropoietin, hemolysis, percentage of non-discocytes, adenosine triphosphate, glucose, lactate, lactate dehydrogenase, and annexin-V/esterase activity. The t-test or Wilcoxon's test was used for statistical analysis with significance being set for a p-value <0.05. Results Erythropoietin, when added to red blood cell units, has a half-life >6 weeks under blood bank conditions, with persistent supernatant concentrations of erythropoietin during the entire storage period. Adenosine triphosphate was higher in the Erythropoietin Group in Week 6 (4.19 ± 0.05 μmol/L vs. 3.53 ± 0.02 μmol/L; p-value = 0.009). The number of viable cells in the Erythropoietin Group was higher than in the Control Group (77% ± 3.8% vs. 71% ± 2.3%; p-value <0.05), while the number of apoptotic cells was lower (9.4% ± 0.3% vs. 22% ± 0.8%; p-value <0.05). Conclusions Under standard blood bank conditions, an important proportion of red blood cells satisfy the criteria of apoptosis. Recombinant human erythropoietin beta seems to improve storage lesion parameters and mitigate apoptosis. PMID:26969770

  10. [Application of recombinant erythropoietin during preparation for hepatic transplantation operation from the living kindred donor].

    PubMed

    Kotenko, O G; Mazur, A P; Dykhovichnaia, N Iu; Popov, A O; Gusev, A V

    2007-07-01

    First experience of application of the blood autodonorship programme, using recombinant erythropoietin (Eprex) plus preparations containing iron during their preparation for partial hepatic resection, was analyzed. Realization of this programme had permitted to escape the performance of allogenic hemotransfusion in 71.4% of donors, in whom the right or left hepatic lobe was taken out and in 100%--the left lateral section. The erythropoietin dosage regimes in different types of hepatic resections in living kindred donors were proposed.

  11. Anti-Inflammatory Effect of Erythropoietin in the TNBS-induced Colitis.

    PubMed

    Mateus, Vanessa; Rocha, João; Alves, Paula; Mota-Filipe, Helder; Sepodes, Bruno; Pinto, Rui Manuel Amaro

    2017-02-01

    Erythropoietin is a potent stimulator of erythroid progenitor cells, which is able to inhibit NF-kB activation, due to its pleiotropic properties, thus promoting an anti-inflammatory effect. As inflammatory bowel disease is a chronic disease with reduced quality of life, and the current pharmacotherapy only induces or maintains the patient in remission, there is a crucial need of new pharmacological approaches. The main objective of this study was to evaluate the effect of erythropoietin in the TNBS-induced colitis model in mice with a normal intestinal flora. Mice with TNBS-induced colitis were treated with a daily dose of erythropoietin at 500 IU/kg bw/day and 1000 IU/Kg bw/day IP during 4 days. As to clinical symptoms/signs, erythropoietin attenuated the decreased body-weight and reduced diarrhoea and oedema of the anus registered in the non-treated mice group in a dose-dependent manner. The anti-inflammatory properties of erythropoietin in the TNBS-induced colitis were confirmed by suppression of pro-inflammatory mediators, such as TNF-α, IL-1β and MPO, as well as a significant increase in the anti-inflammatory cytokine, IL-10, was promoted. These treated mice also presented a reduction in haemoglobin faecal and ALP, suggesting a beneficial effect of erythropoietin in the haemorrhagic focus and destruction of the enterocyte associated with the colon injury induced by TNBS, respectively. The histopathological score was reduced after treatment with erythropoietin, decreasing the severity and extension of the colitis. Furthermore, renal and hepatic biomarkers, as well as haematocrit concentration, remained stabilized after treatment. In conclusion, erythropoietin reduces the inflammatory response associated with TNBS-induced colitis in mice.

  12. High-dose phenobarbital or erythropoietin for the treatment of perinatal asphyxia in term newborns.

    PubMed

    Avasiloaiei, Andreea; Dimitriu, Cristina; Moscalu, Mihaela; Paduraru, Luminita; Stamatin, Maria

    2013-10-01

    The aim of this study was to compare two neuroprotective strategies to supportive care in the treatment of perinatal asphyxia. A total of 67 term newborns with perinatal asphyxia were included and randomized into three groups: one group received supportive treatment; another group received a single dose of 40 mg/kg phenobarbital; and the third received three daily doses of 1000 IU/kg erythropoietin. The following parameters were analyzed: gestational age, birthweight, Apgar scores, cord blood pH, total serum antioxidant status (TAS), superoxide dismutase (SOD), glutathione peroxidase (GPx) and malondialdehyde (MDA). The newborns were included in the follow-up program and examined up to 18 months of age. TAS was higher in the erythropoietin group than in the other groups. SOD and GPx were lower for infants treated with phenobarbital or erythropoietin compared to control infants. MDA was lower in the erythropoietin group compared to the other groups, although the difference was not statistically significant (P > 0.05). The mortality rate was lower in the phenobarbital and erythropoietin groups (both 4.6%) than in the control group (17.4%). Long-term neurologic follow up showed a high incidence of sequelae in the control group compared to the phenobarbital and erythropoietin groups. Follow-up results were better in the phenobarbital group than in the erythropoietin group for motor and cognitive function at 3 and 6 months and worse for expressive language. At 18 months, however, the differences between these two groups were not significant. High-dose phenobarbital or erythropoietin along with supportive treatment has a positive influence on the outcome of newborns with perinatal asphyxia. Phenobarbital has the advantage of low cost and simplicity. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  13. Rechallenge with intravenous recombinant human erythropoietin can be successful following the treatment of anti-recombinant erythropoietin associated pure red cell aplasia.

    PubMed

    Praditpornsilpa, Kearkiat; Tiranathanakul, Khajohn; Jootar, Saengsuree; Tungsanga, Kriang; Eiam-Ong, Somchai

    2014-05-01

    Anti recombinant human erythropoietin (r-HuEpo) associated pure red cell aplasia (PRCA) is an immunologic adverse effect of using subcutaneous r-HuEpo. Immunosuppressive agents have been suggested as treatment of this serious complication. After the reversal of anti-r-HuEpo antibody, the patients continue to have renal anemia and require long-term blood transfusion, albeit less frequently than when the antibody is positive. It is controversial whether re-challenging the patients with r-HuEpo is appropriate because re-challenging may cause the reappearance of the antibody. To balance the risk of antir-HuEpo antibody reappearance and longterm blood transfusion complications, we re-challenged r-HuEpo in five anti-r-HuEpo associated PRCA cases after a successful reversal of antibody using prednisolone in combination with cyclophosphamide. The rechallenge was performed intravenously since there were no reports of anti-r-HuEpo associated PRCA cases using this administration route. The duration after the reversal of antibody was 2.4 months before the re-challenge. Two patients were immediately re-challenged as soon as the antibodies reversed. After rechallenge with intravenous r-HuEpo, all patients responded to r-HuEpo: target level of Hb was maintained, blood transfusion was not required, and anti-r-HuEpo was consistently negative. All patients were followed for at least 6 months after re-challenge. Our data suggest that re-challenge with intravenous r-HuEpo can successfully treat anti- r-HuEpo associated PRCA.

  14. Development of a long-acting erythropoietin by fusing the carboxyl-terminal peptide of human chorionic gonadotropin beta-subunit to the coding sequence of human erythropoietin.

    PubMed

    Fares, Fuad; Ganem, Sherif; Hajouj, Taleb; Agai, Ester

    2007-10-01

    Human erythropoietin (EPO) is a glycoprotein hormone secreted from the kidney and controls red blood cell production. EPO has a wide clinical use in the treatment of anemia associated with renal disease, certain chronic diseases, and anemia related to chemotherapy and radiotherapy. One major issue regarding the clinical use of EPO is its relatively short half-life due to its clearance by glomerular filtration. Thus, the therapeutic protocol used in the treatment of patient-required frequent injections of EPO. To address this issue, we constructed a chimeric gene that contains the sequence of the carboxyl-terminal peptide (CTP) of human chorionic gonadotropin-beta subunit bearing four O-linked oligosaccharide recognition sites and the coding sequence of human EPO cDNA. Fusing the CTP to the carboxyl-terminal of EPO did not affect secretion, receptor binding affinity, or in vitro bioactivity. However, both in vivo potency and half-life of EPO-CTP were significantly enhanced. A single injection dose (660 IU/kg) of EPO wild-type administered once a week had no significant effect on haematocrit levels. However, EPO-CTP administered as 660 IU/kg once a week was effective as well as the same total dose of EPO wild-type administered as 220 IU/kg three times a week. This may emphasize the importance of sustained blood levels rather than total dose of administration for in vivo bioactivity. These data established the rationale for using this chimera as a long-acting EPO analog. The therapeutic efficacy of EPO-CTP analog needs to be established in higher animals and human clinical trials.

  15. Erythropoietin in patients with traumatic brain injury and extracranial injury-A post hoc analysis of the erythropoietin traumatic brain injury trial.

    PubMed

    Skrifvars, Markus B; Bailey, Michael; French, Craig; Presneill, Jeffrey; Nichol, Alistair; Little, Lorraine; Duranteau, Jacques; Huet, Olivier; Haddad, Samir; Arabi, Yaseen; McArthur, Colin; Cooper, D James; Bellomo, Rinaldo

    2017-09-01

    Erythropoietin (EPO) may reduce mortality after traumatic brain injury (TBI). Secondary brain injury is exacerbated by multiple trauma, and possibly modifiable by EPO. We hypothesized that EPO decreases mortality more in TBI patients with multiple trauma, than in patients with TBI alone. A post hoc analysis of the EPO-TBI randomized controlled trial conducted in 2009 to 2014. To evaluate the impact of injuries outside the brain, we calculated an extracranial Injury Severity Score (ISS) that included the same components of the ISS, excluding head and face components. We defined multiple trauma as two injured body regions with an Abbreviated Injury Scale (AIS) score of 3 or higher. Cox regression analyses, allowing for potential differential responses per the presence or absence of extracranial injury defined by these injury scores, were used to assess the effect of EPO on time to mortality. Of 603 included patients, the median extracranial ISS was 6 (interquartile range, 1-13) and 258 (43%) had an AIS score of 3 or higher in at least two body regions. On Cox regression, EPO was associated with decreased mortality in patients with greater extracranial ISS (interaction p = 0.048) and weakly associated with differential mortality with multiple trauma (AIS score > 3 or in two regions, interaction p = 0.17). At 6 months in patients with extracranial ISS higher than 6, 10 (6.8%) of 147 EPO-treated patients compared with 26 (17%) of 154 placebo-treated patients died (risk reduction, 10%; 95% confidence interval, 2.9-17%; p = 0.007). In this post hoc analysis, EPO administration was associated with a potential differential improvement in 6-month mortality in TBI patients with more severe extracranial injury. These findings need confirmation in future clinical and experimental studies. Therapeutic study, level III.

  16. The role of recombinant erythropoietin in childhood cancer.

    PubMed

    Shankar, Ananth Gouri

    2008-02-01

    Anemia in children with cancer is not an uncommon complication and is usually multifactorial in etiology. In numerous trials in adult cancer patients, treatment with recombinant erythropoietin has been shown to increase hemoglobin levels, reduce red blood cell transfusion requirements, and improve quality of life. Much less has been published of its use in the prevention or treatment of cancer-associated anemia (CAA) in children, in whom chemotherapy is usually more intensive and likely to result in greater myelosuppression. This review critically evaluates the published evidence of its use in childhood cancer especially; its safety and efficacy in the prevention and treatment of CAA and some indications for its use in childhood cancer are suggested.

  17. Procedures for monitoring recombinant erythropoietin and analogues in doping control.

    PubMed

    Segura, Jordi; Pascual, José A; Gutiérrez-Gallego, Ricardo

    2007-08-01

    The present report summarizes the main analytical strategies developed to identify the presence of recombinant erythropoietin (EPO) administered as a doping agent. Indirect evidence is based on the analysis of blood parameters (haemoglobin, haematocrit, reticulocytes, macrocytes, etc.) and serum markers (concentration of EPO and serum transferrin receptors, etc.). The problem of intertechnique comparison for reliable results evaluation is emphasized, especially for serum markers. Charge differences between isoforms of recombinant EPO and native urinary EPO are the grounds for the isoelectric focusing-double blotting-chemiluminescence detection method presently approved for doping control. Works addressing its advantages and limitations are presented and commented on. The chemical bases of the differential detection are highlighted and some future approaches for detection are also presented. The appearance and detectability of EPO analogues and mimetics susceptible for abuse are also addressed.

  18. Erythropoietin: new approaches to improved molecular designs and therapeutic alternatives.

    PubMed

    Debeljak, N; Sytkowski, A J

    2008-01-01

    Erythropoietin (Epo) is a glycoprotein hormone that is the prime regulator of erythropoiesis. Recombinant Epo is a highly effective pharmaceutical used to correct anemias associated with renal insufficiency, cancer and other diseases. Efforts to increase its efficacy in vivo by manipulating the protein's structure have met with some success, and novel Epo-like agents are in development. Additionally, efforts to create Epo mimetic agents are underway, as is the design of agents to increase endogenous production. Because Epo has tissue protective actions outside of erythropoiesis, other designs have focused on producing erythropoietically inactive molecules that still retain extra-hematopoietic activity. The demonstration that Epo can trigger signaling in some cancer cells with, potentially, adverse effects on patient health has raised warning signs in the medical community and has gained the attention of regulatory authorities.

  19. Erythropoietin modulates the neural control of hypoxic ventilation.

    PubMed

    Gassmann, Max; Soliz, Jorge

    2009-11-01

    Numerous factors involved in general homeostasis are able to modulate ventilation. Classically, this comprises several kind of molecules, including neurotransmitters and steroids that are necessary for fine tuning ventilation under different conditions such as sleep, exercise, and acclimatization to high altitude. Recently, however, we have found that erythropoietin (Epo), the main regulator of red blood cell production, influences both central (brainstem) and peripheral (carotid bodies) respiratory centers when the organism is exposed to hypoxic conditions. Here, we summarize the effect of Epo on the respiratory control in mammals and highlight the potential implication of Epo in the ventilatory acclimatization to high altitude, as well as in the several respiratory sickness and syndromes occurring at low and high altitude.

  20. From neurogenesis to neuroprotection in the epilepsy: signalling by erythropoietin.

    PubMed

    Castaneda-Arellano, Rolando; Beas-Zarate, Carlos; Feria-Velasco, Alfredo I; Bitar-Alatorre, Emilio W; Rivera-Cervantes, Martha C

    2014-06-01

    Epilepsy is a disorder characterised by recurrent seizures and molecular events, including the activation of early expression genes and the post-translational modifications of functional proteins. These events lead to changes in neurogenesis, mossy fibre sprouting, network reorganisation and neuronal death. The role of these events is currently a matter of great debate, especially as they relate to protection, repair, or further brain injury. In recent years, accumulating data have supported the idea that erythropoietin (EPO) regulates biological processes including neuroprotection and neurogenesis in several diseases, such as epilepsy. This review summarises the role of EPO in some of the molecular mechanisms involved in these events that could direct a more detailed approach for its use as a therapeutic alternative in reducing epileptic seizures.

  1. The Antioxidant Effect of Erythropoietin on Thalassemic Blood Cells

    PubMed Central

    Amer, Johnny; Dana, Mutaz; Fibach, Eitan

    2010-01-01

    Because of its stimulating effect on RBC production, erythropoietin (Epo) is used to treat anemia, for example, in patients on dialysis or on chemotherapy. In β-thalassemia, where Epo levels are low relative to the degree of anemia, Epo treatment improves the anemia state. Since RBC and platelets of these patients are under oxidative stress, which may be involved in anemia and thromboembolic complications, we investigated Epo as an antioxidant. Using flow-cytometry technology, we found that in vitro treatment with Epo of blood cells from these patients increased their glutathione content and reduced their reactive oxygen species, membrane lipid peroxides, and external phosphatidylserine. This resulted in reduced susceptibility of RBC to undergo hemolysis and phagocytosis. Injection of Epo into heterozygous (Hbbth3/+) β-thalassemic mice reduced the oxidative markers within 3 hours. Our results suggest that, in addition to stimulating RBC and fetal hemoglobin production, Epo might alleviate symptoms of hemolytic anemias as an antioxidant. PMID:21490911

  2. Human rhabdomyosarcoma cells express functional erythropoietin receptor: Potential therapeutic implications

    PubMed Central

    PONIEWIERSKA-BARAN, AGATA; SUSZYNSKA, MALWINA; SUN, WENYUE; ABDELBASET-ISMAIL, AHMED; SCHNEIDER, GABRIELA; BARR, FREDERIC G.; RATAJCZAK, MARIUSZ Z.

    2015-01-01

    The erythropoietin receptor (EpoR) is expressed by cells from the erythroid lineage; however, evidence has accumulated that it is also expressed by some solid tumors. This is an important observation, because recombinant erythropoietin (EPO) is employed in cancer patients to treat anemia related to chemo/radiotherapy. In our studies we employed eight rhabdomyosarcoma (RMS) cell lines (three alveolar-type RMS cell lines and five embrional-type RMS cell lines), and mRNA samples obtained from positive, PAX7-FOXO1-positive, and fusion-negative RMS patient samples. Expression of EpoR was evaluated by RT-PCR, gene array and FACS. The functionality of EpoR in RMS cell lines was evaluated by chemotaxis, adhesion, and direct cell proliferation assays. In some of the experiments, RMS cells were exposed to vincristine (VCR) in the presence or absence of EPO to test whether EPO may impair the therapeutic effect of VCR. We report for a first time that functional EpoR is expressed in human RMS cell lines as well as by primary tumors from RMS patients. Furthermore, EpoR is detectably expressed in both embryonal and alveolar RMS subtypes. At the functional level, several human RMS cell lines responded to EPO stimulation by enhanced proliferation, chemotaxis, cell adhesion, and phosphorylation of MAPKp42/44 and AKT. Moreover, RMS cells became more resistant to VCR treatment in the presence of EPO. Our findings have important potential clinical implications, indicating that EPO supplementation in RMS patients may have the unwanted side effect of tumor progression. PMID:26412593

  3. Preschool Assessment of Preterm Infants Treated With Darbepoetin and Erythropoietin

    PubMed Central

    Cannon, Daniel C.; Phillips, John; Caprihan, Arvind; Patel, Shrena; Winter, Sarah; Steffen, Michael; Yeo, Ronald A.; Campbell, Richard; Wiedmeier, Susan; Baker, Shawna; Gonzales, Sean; Lowe, Jean

    2016-01-01

    BACKGROUND: We previously reported improved neurodevelopmental outcomes at 2 years among infants treated with the erythropoiesis-stimulating agents (ESAs) darbepoetin alfa (darbepoetin) or erythropoietin. Here we characterize 4-year outcomes. METHODS: Former preterm infants randomly assigned to receive darbepoetin (10 μg/kg, once per week), erythropoietin (400 U/kg, 3 times/week), or placebo through 35 weeks’ postconceptual age were evaluated at 3.5 to 4 years of age. For comparison, healthy children formerly delivered full term (term controls [TCs]) were also recruited. All participants were assessed by using measures of full-scale IQ (FSIQ) and general language from the Wechsler Preschool and Primary Scale of Intelligence, Third Edition, and an overall measure of executive function, on the basis of tests evaluating inhibitory control and spatial working memory. Rates of neurodevelopmental impairment were compared across groups. RESULTS: Multivariate analysis of variance compared children randomly assigned to ESAs (n = 39), placebo (n =14), and TCs (n = 24). FSIQ and performance IQ were significantly higher in the ESA group than in the placebo group (FSIQ: 91.1 ± 17.5 vs 79.2 ± 18.5, P = .036; performance IQ: 93.0 ± 17.0 vs 79.5 ± 19.5, P = .018). Follow-up analyses revealed that the children receiving ESAs performed better than those who received placebo on executive function tasks. The ESA group’s performance was below that of TCs, but the results did not reach significance on executive function. The incidence of neurodevelopmental impairment was greater in the placebo group than in the ESA group. CONCLUSIONS: ESA-treated infants had better cognitive outcomes and less developmental impairment at 3.5 to 4 years of age compared with placebo-treated infants. ESAs show promise in improving long-term cognitive outcomes of infants born prematurely. PMID:26908704

  4. Increased Erythropoietin Elimination in Fetal Sheep Following Chronic Phlebotomy

    PubMed Central

    Freise, Kevin. J.; Widness, John A.; Segar, Jeffrey L.; Schmidt, Robert L.; Veng-Pedersen, Peter

    2010-01-01

    Purpose To determine by pharmacokinetic (PK) means the role of erythropoietin-receptor (EPO-R) upregulation in fetuses on the elimination of erythropoietin (EPO). Materials and Methods Six fetal sheep were catheterized at a gestational age of 125–127 days and phlebotomized daily for 6 days. Paired tracer PK studies using recombinant human EPO (rHuEPO) were conducted in the sheep fetuses at baseline and post-phlebotomy, 7 days later. A PK model with Michaelis-Menten elimination was simultaneously fit to the PK data at baseline and post-phlebotomy for each fetus. Results Daily phlebotomies reduced the hemoglobin levels from baseline values of 10.8 (5%) (mean (C.V.)) g/dl to a nadir of 4.5 (17%) g/dl post-phlebotomy. The endogenous EPO concentration rapidly increased after the first phlebotomy and remained elevated, although variable, thereafter. The Michaelis-Menten maximal rHuEPO elimination rate parameter, Vmax, was significantly greater post-phlebotomy than at baseline (p < 0.05), increasing 1.31 fold. The fetal baseline “linear” clearance at very low concentrations of rHuEPO was determined to be 117 ml/kg/h, similar to that determined in newborn sheep but 2–3 fold higher than that determined in adult sheep. Conclusions The observed increase in Vmax is consistent with an up-regulation of EPO-R due to a positive feedback resulting from the phlebotomy-induced anemia. PMID:17457660

  5. Transplantation of erythropoietin gene-modified neural stem cells improves the repair of injured spinal cord.

    PubMed

    Wu, Min-Fei; Zhang, Shu-Quan; Gu, Rui; Liu, Jia-Bei; Li, Ye; Zhu, Qing-San

    2015-09-01

    The protective effects of erythropoietin on spinal cord injury have not been well described. Here, the eukaryotic expression plasmid pcDNA3.1 human erythropoietin was transfected into rat neural stem cells cultured in vitro. A rat model of spinal cord injury was established using a free falling object. In the human erythropoietin-neural stem cells group, transfected neural stem cells were injected into the rat subarachnoid cavity, while the neural stem cells group was injected with non-transfected neural stem cells. Dulbecco's modified Eagle's medium/F12 medium was injected into the rats in the spinal cord injury group as a control. At 1-4 weeks post injury, the motor function in the rat lower limbs was best in the human erythropoietin-neural stem cells group, followed by the neural stem cells group, and lastly the spinal cord injury group. At 72 hours, compared with the spinal cord injury group, the apoptotic index and Caspase-3 gene and protein expressions were apparently decreased, and the bcl-2 gene and protein expressions were noticeably increased, in the tissues surrounding the injured region in the human erythropoietin-neural stem cells group. At 4 weeks, the cavities were clearly smaller and the motor and somatosensory evoked potential latencies were remarkably shorter in the human erythropoietin-neural stem cells group and neural stem cells group than those in the spinal cord injury group. These differences were particularly obvious in the human erythropoietin-neural stem cells group. More CM-Dil-positive cells and horseradish peroxidase-positive nerve fibers and larger amplitude motor and somatosensory evoked potentials were found in the human erythropoietin-neural stem cells group and neural stem cells group than in the spinal cord injury group. Again, these differences were particularly obvious in the human erythropoietin-neural stem cells group. These data indicate that transplantation of erythropoietin gene-modified neural stem cells into the

  6. Nonclinical evaluation of the potential for mast cell activation by an erythropoietin analog

    SciTech Connect

    Weaver, James L.

    2015-09-15

    The erythropoietin analog peginesatide was withdrawn from marketing due to unexpected severe anaphylactic reactions associated with administration of the multi-use formulation. The adverse events occurred rapidly following the first ever administration of the drug with most affected patients becoming symptomatic in less than 30 min. This is most consistent with an anaphylactoid reaction due to direct activation of mast cells. Laboratory evaluation was undertaken using rat peritoneal mast cells as the model system. Initial studies showed that high concentrations of the formulated drug as well as formulated vehicle alone could cause mast cell degranulation as measured by histamine release. The purified active drug was not able to cause histamine release whereas the vehicle filtrate and lab created drug vehicle were equally potent at causing histamine release. Individual formulations of vehicle leaving one component out showed that histamine release was due to phenol. Dose response studies with phenol showed a very sharp dose response curve that was similar in three buffer systems. Cellular analysis by flow cytometry showed that the histamine release was not due to cell death, and that changes in light scatter parameters consistent with degranulation were rapidly observed. Limited testing with primary human mast cells showed a similar dose response of histamine release with exposure to phenol. To provide in vivo confirmation, rats were injected with vehicle formulated with various concentrations of phenol via a jugular vein cannula. Significant release of histamine was detected in blood samples taken 2 min after dosing at the highest concentrations tested. - Highlights: • Peginesatide caused severe anaphylactoid reactions in 0.2% of patients. • Both formulated drug and vehicle cause degranulation of rat mast cells. • Phenol was identified as the vehicle component causing degranulation. • Human mast cells show similar dose response to phenol as rat mast cells

  7. Prophylactic erythropoietin exacerbates ventilation-induced lung inflammation and injury in preterm lambs.

    PubMed

    Polglase, Graeme R; Barton, Samantha K; Melville, Jacqueline M; Zahra, Valerie; Wallace, Megan J; Siew, Melissa L; Tolcos, Mary; Moss, Timothy J M

    2014-05-01

    Ventilation-induced lung injury (VILI) of preterm neonates probably contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). Erythropoietin (EPO) has been suggested as a therapy for BPD. The aim of this study was to determine whether prophylactic administration of EPO reduces VILI in preterm newborn lambs. Lambs at 126 days of gestation (term is 147 days) were delivered and ventilated with a high tidal volume strategy for 15 min to cause lung injury, then received gentle ventilation until 2 h of age. Lambs were randomized to receive intravenous EPO (5000 IU kg(-1): Vent+EPO; n = 6) or phosphate-buffered saline (Vent; n = 7) soon after birth: unventilated controls (UVC; n = 8) did not receive ventilation or any treatment. Physiological parameters were recorded throughout the experimental procedure. Samples of lung were collected for histological and molecular assessment of inflammation and injury. Samples of liver were collected to assess the systemic acute phase response. Vent+EPO lambs received higher F IO 2, P aO 2 and oxygenation during the first 10 min than Vent lambs. There were no differences in physiological indices beyond this time. Total lung injury score, airway wall thickness, inflammation and haemorrhage were higher in Vent+EPO lambs than in Vent lambs. Lung inflammation and early markers of lung and systemic injury were elevated in ventilated lambs relative to unventilated lambs; EPO administration further increased lung inflammation and markers of lung and systemic injury. Prophylactic EPO exacerbates VILI, which may increase the incidence and severity of long-term respiratory disease. More studies are required before EPO can be used for lung protection in preterm infants.

  8. Pharmacokinetics and pharmacodynamics of the erythropoietin Mimetibody construct CNTO 528 in healthy subjects.

    PubMed

    Pérez-Ruixo, Juan José; Krzyzanski, Wojciech; Bouman-Thio, Esther; Miller, Bruce; Jang, Haishan; Bai, Stephen A; Zhou, Honghui; Yohrling, Jennifer; Cohen, Adam; Burggraaf, Jacobus; Franson, Kari; Davis, Hugh M

    2009-01-01

    Anaemia is a serious comorbidity that is common in patients with renal failure or cancer. CNTO 528 is the first Mimetibody developed to mimic the effects of erythropoietin (EPO), a hormone that stimulates the production of red blood cells (RBCs). The objective of this study was to develop a pharmacokinetic and pharmacodynamic model for CNTO 528 in healthy male subjects. A pharmacokinetic/pharmacodynamic model for CNTO 528 was developed to describe the serum concentration versus time profile and the pharmacological responses of percentage of reticulocytes, total RBC counts and haemoglobin concentration after a single intravenous administration of CNTO 528 at 0.03, 0.09, 0.3 and 0.9 mg/kg in 24 healthy subjects. An open, linear, two-compartment model was used to characterize the pharmacokinetic parameters of CNTO 528. A catenary cell production and lifespan loss model was used to fit the pharmacodynamic data, yielding estimates of drug potency (SC(50)), efficacy (S(max)) and other pharmacodynamic parameters. Bootstrap and posterior predictive checks (PPC) were used to evaluate the model. Administration of CNTO 528 stimulated the production of reticulocytes, RBCs and haemoglobin. CNTO 528 exhibits a half-life of 141 hours, or approximately 5.9 days. The SC(50) was estimated to be 0.37 mg/L, indicating that low serum CNTO 528 concentration was sufficient to produce pharmacological effects. Compared with historical controls, CNTO 528 S(max) appears to be 2-fold higher than recombinant human EPO. Bootstrap analysis and PPCs confirmed the accuracy and precision in the parameter estimates and the adequacy of the model to describe the CNTO 528 pharmacokinetics and pharmacodynamics. The mechanistic population model was suitable to characterize the pharmacokinetics and pharmacodynamics of intravenously administered CNTO 528 in healthy subjects. This qualified model is deemed appropriate to conduct clinical trial simulations and to support the decision-making process for dose

  9. Effect of short-term recombinant human erythropoietin therapy in the prevention of anemia of prematurity in very low birth weight neonates.

    PubMed

    Yasmeen, B H N; Chowdhury, M A K A; Hoque, M M; Hossain, M M; Jahan, R; Akhtar, S

    2012-12-01

    Premature infants especially those with birth weight < 1500 g suffer from Anaemia of prematurity (AOP) and associated problems. Erythropoietin therapy is a safe effective way to prevent and to treat anaemia of prematurity. To evaluate the effect of short-term administration of recombinant human erythropoietin (rHuEPO) with iron and folic acid in very low birth weight (VLBW) neonates in the prevention of anaemia of prematurity. A randomized controlled trial was carried out at Dhaka Shishu Hospital. Sixty preterm very low birth weight (PTVLBW) babies were enrolled in this study. Thirty were assigned to rHuEPO group and 30 as control. Baseline haematologic values were estimated before administration of rHuEPO. From day 7 of life rHuEPO-200 IU/kg/dose subcutaneously every alternate day for 2 weeks was administered to rHuEPO group. All infants in both groups have received oral iron, folic acid from day 14. Clinical and haematological assessment was done at 6 and 10 weeks of life. Baseline clinical characteristics and haematologic values were almost similar in both groups. This study has shown increase in haematological values (haemoglobin and haematocrit) and reduction in the number of blood transfusions during both the 1st and 2nd follow up in rHuEPO group in comparison to control group (p < 0.01). Short-term rHuEPO appears to be very effective in prevention of Anaemia of prematurity.

  10. Optimizing preoperative haemoglobin in major orthopaedic surgery using intravenous iron with or without erythropoietin. An epidemiologic study.

    PubMed

    Basora, M; Colomina, M J; Tio, M; Mora, L; Sánchez-Etayo, G; Salazar, F; Ciércoles, E; Paños, M; Guerrero, E; Berge, R

    2015-01-01

    To evaluate the effectiveness of intravenous iron treatment, with or without associated erythropoietin (rHuEPO), measured as haemoglobin (Hb) increase. The relationships between the Hb increase and parameters used to evaluate anaemia were analysed. Retrospective observational study carried out in two third-level hospitals between January 2005 and December 2009. The study included patients with iron deficiency anaemia scheduled for elective orthopaedic surgery and treated with intravenous iron sucrose alone or associated with rHuEPO. Treatment efficacy was analysed based on the Hb increase from baseline to just before surgery. A total of 412 patients who received a median of 800mg of iron sucrose were included; 125 of them (30.4%) additionally received 2.4 vials of rHuEPO. The Hb increase was 0.8 (1.1) g/dL in patients treated with intravenous iron and 1.5 (1.3) g/dL in those additionally given rHuEPO(P<.01). The percentage of hypochromic red blood cells (r=0.52) and soluble transferrin receptor (r=0.59) value were significantly correlated to the Hb increase in patients receiving iron. In patients with iron deficiency anaemia, the effectiveness of iron sucrose treatment to optimize Hb before surgery was moderate; adjuvant administration of erythropoietin improved the results. Determination of functional iron status parameters may improve the treatment effectiveness. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Absence of hematological side effects in acute and subacute nasal dosing of erythropoietin with a low content of sialic acid.

    PubMed

    Lagarto, Alicia; Bueno, Viviana; Guerra, Isbel; Valdés, Odalys; Couret, Micaela; López, Raisel; Vega, Yamile

    2011-09-01

    The use of human recombinant erythropoietin (EPO) as a neuroprotective agent is limited due to its hematological side effects. An erythropoietin along with a low content of sialic acid (rhEPOb), similar to that produced in the brain during hypoxia, may be used as a neuroprotective agent without risk of thrombotic events. The objective of this investigation was to assess the toxicological potential of a nasal formulation with rhEPOb in acute, subacute and nasal irritation assays in rats. Healthy Wistar rats (Cenp:Wistar) were used for the assays. In an irritation test, animals received 15 μl of rhEPOb into the right nostril. Rats were sacrificed after 24 h and slides of the nasal mucosa tissues were examined. Control and treated groups showed signs of a minimal irritation consisting of week edema and vascular congestion in all animals. In the acute toxicity test, the dose of 47,143 UI/kg was administered by nasal route. Hematological patterns, body weight, relative organ weight, and organ integrity were not affected by single dosing with rhEPOb. In the subacute toxicity test, Wistar rats of both sexes received 6,600 UI/kg/day for 14 days. The toxicological endpoints examined included animal body weight, food consumption, hematological and biochemical patterns, selected tissue weights, and histopathological examinations. An increase of lymphocytes was observed in males that was considered to reflect an immune response to treatment. Histopathological examination of organs and tissues did not reveal treatment-induced changes. The administration of rhEPOb at daily doses of 6,600 UI/kg during 14 days did not produce hematological side effects. These results suggest that rhEPOb could offer the same neuroprotection as EPO, without hematological side effects.

  12. Association of Serum Erythropoietin With Cardiovascular Events, Kidney Function Decline, and Mortality: The Health Aging and Body Composition Study.

    PubMed

    Garimella, Pranav S; Katz, Ronit; Patel, Kushang V; Kritchevsky, Stephen B; Parikh, Chirag R; Ix, Joachim H; Fried, Linda F; Newman, Anne B; Shlipak, Michael G; Harris, Tamara B; Sarnak, Mark J

    2016-01-01

    Studies suggest that in patients with heart failure (HF), high serum erythropoietin is associated with risk of recurrent HF and mortality. Trials of erythropoietin-stimulating agents in persons with kidney disease have also suggested an increased incidence of adverse clinical events. No large studies of which we are aware have evaluated the association of endogenous erythropoietin levels with clinical outcomes in the community-living older adults. Erythropoietin concentration was measured in 2488 participants aged 70-79 years in the Health, Aging and Body Composition Study. Associations of erythropoietin with incident HF, coronary heart disease, stroke, mortality, and ≥ 30% decline in estimated glomerular filtration rate were examined using Cox proportional hazards and logistic regression over 10.7 years of follow-up. Mean (SD) age was 75 (3) years and median (quartile 1, quartile 3) erythropoietin was 12.3 (9.0, 17.2) mIU/mL. There were 503 incident HF events, and each doubling of serum erythropoietin was associated with a 25% increased risk of incident HF 1.25 (95% confidence interval 1.13, 1.48) after adjusting for demographics, prevalent cardiovascular disease, cardiovascular disease risk factors, kidney function, and serum hemoglobin. There was no interaction of serum erythropoietin with chronic kidney disease or anemia (P > 0.50). There were 330 incident coronary heart disease events, 161 strokes, 1112 deaths, and 698 outcomes of ≥ 30% decline in estimated glomerular filtration rate. Serum erythropoietin was not significantly associated with these outcomes. Higher levels of endogenous erythropoietin are associated with incident HF in older adults. Studies need to elucidate the mechanisms through which endogenous erythropoietin levels associate with specific outcomes. © 2015 American Heart Association, Inc.

  13. [Inadequate erythropoietin production (epo) in patients with multiple myeloma].

    PubMed

    Kostova, Gabriela; Siljanovski, Nikola

    2004-01-01

    Anaemia is the most common haematological complication in patients with malignant diseases. It is found in 60%-90% of cases with multiple myeloma. The pathogenesis of this hypoproliferative, normochromic, normocytic anaemia is complex. Results from clinical studies which evaluate the efficacy of recombinant human erythropoietin (rHuEpo) refer to the possibility that patients with multiple myeloma independently of renal function could have Epo deficiency. Based on this finding, the aim of the study was to evaluate the erythropoietin production in patients with multiple myeloma in order to define clinical conditions of Epo deficiency and thereby enable rational use of this expensive drug. 42 patients with multiple myeloma were examined. The control group consisted of 25 patients with iron deficiency anaemia. 14 healthy volunteers represented the so-called "normal" control. The adequacy of Epo production was estimated from the graphic representation of the linear regression between Epo and haemoglobin (Hb) in the control group, as well as from O/PEpo ratio as a measure of the degree of adequacy of Epo production (O -- observed Epo value, P -- predicted Epo value from the regression equation of the control group). The erythropoietic activity was estimated from the graphic representation of the linear regression between soluble transferin receptors (sTfR) and Hb in the control group, as well as from O/PsTfR ratio, as a measure of the degree of adequacy of erythropoietic activity (O -- observed sTfR value, P -- predicted sTfR value from the regression equation of the control group). Significant inverse correlation between Epo and Hb was found in patients with multiple myeloma but preserved renal function, which was not the case in patients with renal insufficiency. 43% of patients without renal insufficiency and 85% of patients with renal insufficiency had inadequate Epo response to anaemia. In both patient groups (with and without renal insufficiency) instead of the

  14. Effects of early parenteral iron combined erythropoietin in preterm infants

    PubMed Central

    Qiao, Linxia; Tang, Qingya; Zhu, Wenying; Zhang, Haiyan; Zhu, Yuefang; Wang, Hua

    2017-01-01

    Abstract Backgroud: The aim of the study was to evaluate the effect of early parenteral iron supplementation combined erythropoietin for prevention of anemia in preterm infants. Methods: In total, 96 preterm infants were randomly assigned to 3 groups: a control group receiving standard parenteral nutrition (group 1: n = 31), an iron-supplemented group (group 2: IS, n = 33), and an iron-supplemented combined erythropoietin group (group 3: IS+EPO, n = 32). The primary objective was to assess hemoglobin (Hb) levels. The secondary objectives included assessment of red blood cell counts (RBC), mean cell volume (MCV), serum iron, ferritin, percentages of reticulocyte (RET), total iron binding capacity (TIBC) and oxidative stress, which was assessed by measuring plasma levels of malondialdehyde and superoxide dismutase at baseline and at 2 weeks. The blood routine indices including Hb, RBC, MCV, and percentages of RET were measured at corrected age of 1 and 3 months. Results: At 2 weeks of life, the percentages of reticulocyte in group 2 and group 3 were significantly higher than those in group 1 (2.1±0.4, 2.5±0.3, and 1.7±0.3, respectively, P < 0.001, P<0.001), whereas TIBC were significantly lower than those in group 1 (36.7±4.6, 36.0±4.7, and 41.6 ± 5.2 respectively, P = 0.011, P = 0.006). There were no significant differences in RBC counts, the levels of hemoglobin, ferritin, malondialdehyde, and superoxide dismutase among the 3 groups at 2weeks of life. RBC, Hb, MCV, body weight, body length, and head circumference at a corrected age of 1 month did not differ among 3 groups. At corrected age of 3months, more infants in the control group had abnormal Hb and MCV levels (Hb levels: 114.3 ± 21.3, 123.7 ± 31.6, and 125.1 ± 21.2, P = 0.021, P = 0.034, respectively; MCV: 74.1 ± 3.5, 78.3 ± 4.7 and 79.1 ± 5.2, P = 0.017, P = 0.012, respectively), whereas cases of oral iron, cases of breastfeeding

  15. The hematopoietic growth factor "erythropoietin" enhances the therapeutic effect of mesenchymal stem cells in Alzheimer's disease.

    PubMed

    Khairallah, M I; Kassem, L A; Yassin, N A; El Din, M A Gamal; Zekri, M; Attia, M

    2014-01-01

    Alzheimer's disease is a neurodegenerative disorder clinically characterized by cognitive dysfunction and by deposition of amyloid plaques, neurofibrillary tangles in the brain. The study investigated the therapeutic effect of combined mesenchymal stem cells and erythropoietin on Alzheimer's disease. Five groups of mice were used: control group, Alzheimer's disease was induced in four groups by a single intraperitoneal injection of 0.8 mg kg(-1) lipopolysaccharide and divided as follows: Alzheimer's disease group, mesenchymal stem cells treated group by injecting mesenchymal stem cells into the tail vein (2 x 10(6) cells), erythropoietin treated group (40 microg kg(-1) b.wt.) injected intraperitoneally 3 times/week for 5 weeks and mesenchymal stem cells and erythropoietin treated group. Locomotor activity and memory were tested using open field and Y-maze. Histological, histochemical, immunohistochemical studies, morphometric measurements were examined in brain sections of all groups. Choline transferase activity, brain derived neurotrophic factor expression and mitochondrial swellings were assessed in cerebral specimens. Lipopolysaccharide decreased locomotor activity, memory, choline transferase activity and brain derived neurotrophic factor. It increased mitochondrial swelling, apoptotic index and amyloid deposition. Combined mesenchymal stem cells and erythropoietin markedly improved all these parameters. This study proved the effective role of mesenchymal stem cells in relieving Alzheimer's disease symptoms and manifestations; it highlighted the important role of erythropoietin in the treatment of Alzheimer's disease.

  16. Nutritional assessment in anemic hemodialysis patients treated with recombinant human erythropoietin.

    PubMed

    Bárány, P; Pettersson, E; Ahlberg, M; Hultman, E; Bergström, J

    1991-06-01

    Nutritional status was assessed in 25 anemic hemodialysis patients before and during erythropoietin treatment. Nutritional assessment included regular blood chemistry determinations, anthropometric measurements, analysis of protein content in skeletal muscle, and estimation of daily protein intake from protein catabolic rate determinations (using urea kinetic modelling) and dialysis efficiency for urea. These measurements were done immediately prior to erythropoietin treatment, after anemia correction and after one year of maintenance erythropoietin treatment. Both relative body weights and subcutaneous fat stores were low at the start, but increased significantly (p less than 0.05) during the study. Sixteen of the 25 patients gained weight and eight patients lost weight. The patients with weight gain had at the start of the study low weight indices (body weight 89.9 +/- 7.6% of ideal body weight, body mass index 20.6 +/- 1.6), significantly (p less than 0.005) lower than the patients with weight loss. Although protein malnutrition was not obvious from arm anthropometrics, alkali soluble protein/DNA ratio or from serum albumin determinations, ASP/DNA ratio, increased in three of five patients investigated after one year on erythropoietin treatment. Neither protein catabolic rate nor dialysis efficiency changed significantly during the study. We conclude that anemia correction with erythropoietin has a positive effect on malnutrition in hemodialysis patients. In patients with underweight, an adjustment of fat stores was initially observed, followed possibly by an improvement in muscle protein content.

  17. No response to recombinant human erythropoietin therapy in patients with congenital dyserythropoietic anemia type I.

    PubMed

    Tamary, H; Shalev, H; Pinsk, V; Zoldan, M; Zaizov, R

    1999-01-01

    Congenital dyserythropoietic anemia (CDA) type I is a rare inherited bone marrow disorder characterized by moderate to severe macrocytic anemia with pathognomonic cytopathology of nucleated red blood cells. Previous studies have suggested that serum erythropoietin levels in affected patients are lower than expected for the degree of anemia. An earlier study demonstrated a substantial increase in the number of CFU-E in CDA type I pattern on addition of exogenous erythropoietin. The present study reports on the response to recombinant human erythropoietin in 8 patients with CDA type I. Eighteen weeks of treatment, starting at 300 IU/kg twice a week and gradually increasing to 500 IU/kg three times a week, did not have a substantial effect on the mean hemoglobin value. These results indicate that recombinant human erythropoietin (rHuEpo) is not beneficial to patients with CDA type I and that the relatively low levels of serum erythropoietin probably play no major role in the pathogenesis of the disease.

  18. Administrators: Nursing Home Administrator

    ERIC Educational Resources Information Center

    Kahl, Anne

    1976-01-01

    Responsibilities, skills needed, training needed, earnings, employment outlook, and sources of additional information are outlined for the administrator who holds the top management job in a nursing home. (JT)

  19. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice

    SciTech Connect

    Semenza, G.L.; Nejfelt, M.K.; Gearhart, J.D.; Antonarakis, S.E. ); Koury, S.T. )

    1991-10-01

    Synthesis of erythropoietin, the primary humoral regulator or erythropoiesis, in liver and kidney is inducible by anemia or hypoxia. Analysis of human erythropoietin gene expression in transgenic mice revealed that sequences located 6-14 kilobases 5{prime} to the gene direct expression to the kidney, whereas sequences within the immediate 3{prime}-flanking region control hepatocyte-specific expression. Human erythropoietin transcription initiation sites were differentially utilized in liver and kidney. Inducible transgene expression was precisely targeted to peritubular interstitial cells in the renal cortex that synthesize endogenous mouse erythropoietin. These studies demonstrate that multiple erythropoietin gene regulatory elements control cello-type-specific expression and inducibility by a fundamental physiologic stimulus, hypoxia.

  20. Discovery and Characterization of Nonpeptidyl Agonists of the Tissue-Protective Erythropoietin Receptor

    PubMed Central

    Church, Timothy J.; Leonoudakis, Dmitri; Lariosa-Willingham, Karen; Frigon, Normand L.; Tettenborn, Connie S.; Spencer, Jeffrey R.; Punnonen, Juha

    2015-01-01

    Erythropoietin (EPO) and its receptor are expressed in a wide variety of tissues, including the central nervous system. Local expression of both EPO and its receptor is upregulated upon injury or stress and plays a role in tissue homeostasis and cytoprotection. High-dose systemic administration or local injection of recombinant human EPO has demonstrated encouraging results in several models of tissue protection and organ injury, while poor tissue availability of the protein limits its efficacy. Here, we describe the discovery and characterization of the nonpeptidyl compound STS-E412 (2-[2-(4-chlorophenoxy)ethoxy]-5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine), which selectively activates the tissue-protective EPO receptor, comprising an EPO receptor subunit (EPOR) and the common β-chain (CD131). STS-E412 triggered EPO receptor phosphorylation in human neuronal cells. STS-E412 also increased phosphorylation of EPOR, CD131, and the EPO-associated signaling molecules JAK2 and AKT in HEK293 transfectants expressing EPOR and CD131. At low nanomolar concentrations, STS-E412 provided EPO-like cytoprotective effects in primary neuronal cells and renal proximal tubular epithelial cells. The receptor selectivity of STS-E412 was confirmed by a lack of phosphorylation of the EPOR/EPOR homodimer, lack of activity in off-target selectivity screening, and lack of functional effects in erythroleukemia cell line TF-1 and CD34+ progenitor cells. Permeability through artificial membranes and Caco-2 cell monolayers in vitro and penetrance across the blood-brain barrier in vivo suggest potential for central nervous system availability of the compound. To our knowledge, STS-E412 is the first nonpeptidyl, selective activator of the tissue-protective EPOR/CD131 receptor. Further evaluation of the potential of STS-E412 in central nervous system diseases and organ protection is warranted. PMID:26018904

  1. Erythropoietin improved cognitive function and decreased hippocampal caspase activity in rat pups after traumatic brain injury.

    PubMed

    Schober, Michelle E; Requena, Daniela F; Block, Benjamin; Davis, Lizeth J; Rodesch, Christopher; Casper, T Charles; Juul, Sandra E; Kesner, Raymond P; Lane, Robert H

    2014-02-15

    Traumatic brain injury (TBI) is a leading cause of acquired neurologic disability in children. Erythropoietin (EPO), an anti-apoptotic cytokine, improved cognitive outcome in adult rats after TBI. To our knowledge, EPO has not been studied in a developmental TBI model. We hypothesized that EPO would improve cognitive outcome and increase neuron fraction in the hippocampus in 17-day-old (P17) rat pups after controlled cortical impact (CCI). EPO or vehicle was given at 1, 24, and 48 h after CCI and at post injury day (PID) 7. Cognitive outcome at PID14 was assessed using Novel Object Recognition (NOR). Hippocampal EPO levels, caspase activity, and mRNA levels of the apoptosis factors Bcl2, Bax, Bcl-xL, and Bad were measured during the first 14 days after injury. Neuron fraction and caspase activation in CA1, CA3, and DG were studied at PID2. EPO normalized recognition memory after CCI. EPO blunted the increased hippocampal caspase activity induced by CCI at PID1, but not at PID2. EPO increased neuron fraction in CA3 at PID2. Brain levels of exogenous EPO appeared low relative to endogenous. Timing of EPO administration was associated with temporal changes in hippocampal mRNA levels of EPO and pro-apoptotic factors. Conclusion/Speculation: EPO improved recognition memory, increased regional hippocampal neuron fraction, and decreased caspase activity in P17 rats after CCI. We speculate that EPO improved cognitive outcome in rat pups after CCI as a result of improved neuronal survival via inhibition of caspase-dependent apoptosis early after injury.

  2. Erythropoietin Improved Cognitive Function and Decreased Hippocampal Caspase Activity in Rat Pups after Traumatic Brain Injury

    PubMed Central

    Requena, Daniela F.; Block, Benjamin; Davis, Lizeth J.; Rodesch, Christopher; Casper, T. Charles; Juul, Sandra E.; Kesner, Raymond P.; Lane, Robert H.

    2014-01-01

    Abstract Traumatic brain injury (TBI) is a leading cause of acquired neurologic disability in children. Erythropoietin (EPO), an anti-apoptotic cytokine, improved cognitive outcome in adult rats after TBI. To our knowledge, EPO has not been studied in a developmental TBI model. Hypothesis: We hypothesized that EPO would improve cognitive outcome and increase neuron fraction in the hippocampus in 17-day-old (P17) rat pups after controlled cortical impact (CCI). Methods: EPO or vehicle was given at 1, 24, and 48 h after CCI and at post injury day (PID) 7. Cognitive outcome at PID14 was assessed using Novel Object Recognition (NOR). Hippocampal EPO levels, caspase activity, and mRNA levels of the apoptosis factors Bcl2, Bax, Bcl-xL, and Bad were measured during the first 14 days after injury. Neuron fraction and caspase activation in CA1, CA3, and DG were studied at PID2. Results: EPO normalized recognition memory after CCI. EPO blunted the increased hippocampal caspase activity induced by CCI at PID1, but not at PID2. EPO increased neuron fraction in CA3 at PID2. Brain levels of exogenous EPO appeared low relative to endogenous. Timing of EPO administration was associated with temporal changes in hippocampal mRNA levels of EPO and pro-apoptotic factors. Conclusion/Speculation: EPO improved recognition memory, increased regional hippocampal neuron fraction, and decreased caspase activity in P17 rats after CCI. We speculate that EPO improved cognitive outcome in rat pups after CCI as a result of improved neuronal survival via inhibition of caspase-dependent apoptosis early after injury. PMID:23972011

  3. Recombinant human erythropoietin therapy in critically ill patients: a dose-response study [ISRCTN48523317

    PubMed Central

    Georgopoulos, Dimitris; Matamis, Dimitris; Routsi, Christina; Michalopoulos, Argiris; Maggina, Nina; Dimopoulos, George; Zakynthinos, Epaminondas; Nakos, George; Thomopoulos, George; Mandragos, Kostas; Maniatis, Alice

    2005-01-01

    Introduction The aim of this study was to assess the efficacy of two dosing schedules of recombinant human erythropoietin (rHuEPO) in increasing haematocrit (Hct) and haemoglobin (Hb) and reducing exposure to allogeneic red blood cell (RBC) transfusion in critically ill patients. Method This was a prospective, randomized, multicentre trial. A total of 13 intensive care units participated, and a total of 148 patients who met eligibility criteria were enrolled. Patients were randomly assigned to receive intravenous iron saccharate alone (control group), intravenous iron saccharate and subcutaneous rHuEPO 40,000 units once per week (group A), or intravenous iron saccharate and subcutaneous rHuEPO 40,000 units three times per week (group B). rHuEPO was given for a minimum of 2 weeks or until discharge from the intensive care unit or death. The maximum duration of therapy was 3 weeks. Results The cumulative number of RBC units transfused, the average numbers of RBC units transfused per patient and per transfused patient, the average volume of RBCs transfused per day, and the percentage of transfused patients were significantly higher in the control group than in groups A and B. No significant difference was observed between group A and B. The mean increases in Hct and Hb from baseline to final measurement were significantly greater in group B than in the control group. The mean increase in Hct was significantly greater in group B than in group A. The mean increase in Hct in group A was significantly greater than that in control individuals, whereas the mean increase in Hb did not differ significantly between the control group and group A. Conclusion Administration of rHuEPO to critically ill patients significantly reduced the need for RBC transfusion. The magnitude of the reduction did not differ between the two dosing schedules, although there was a dose response for Hct and Hb to rHuEPO in these patients. PMID:16277712

  4. Hepatoprotective effects of erythropoietin on D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure in mice.

    PubMed

    Yang, Xue-Fei; He, Yi; Li, Hai-Yuan; Liu, Xin; Chen, Huan; Liu, Jian-Bang; Ji, Wen-Jun; Wang, Bing; Chen, Li-Na

    2014-07-01

    Fulminant hepatic failure is a severe clinical syndrome associated with a high rate of patient mortality. Recent studies have shown that in addition to its hematopoietic effect, erythropoietin (EPO) has multiple protective effects and exhibits antiapoptotic, antioxidant and anti-inflammatory activities. The present study aimed to determine the hepatoprotective effect of EPO and to elucidate the underlying mechanisms using a D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced model of acute liver injury. Experimental groups of mice were administered with various doses of EPO (1,000, 3,000 or 10,000 U/kg, intraperitoneal) once per day for 3 days, prior to injection with D-GalN (700 mg/kg)/LPS (10 µg/kg). Mice were sacrificed 8 h after treatment with D‑GalN/LPS. Liver function and histopathology, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH‑Px) activities and EPO receptor (EPOR) and phosphatidylinositol 3-kinase (PI3K) mRNA expression were evaluated. D-GalN/LPS administration markedly induced liver injury, as evidenced by elevated levels of serum aminotransferases, as well as histopathological changes. Compared with the D-GalN/LPS group, pretreatment with EPO significantly decreased the levels of aspartate aminotransferase, alanine aminotransferase and MDA, and increased the activities of SOD and GSH-Px. Furthermore, the protective effects of EPO were paralleled by an upregulation in the mRNA expression of EPOR and PI3K. These data suggest that EPO can ameliorate D-GalN/LPS-induced acute liver injury by reducing oxidative stress and upregulating the mRNA expression of EPOR and PI3K.

  5. Oxygen breathing may be a cheaper and safer alternative to exogenous erythropoietin (EPO).

    PubMed

    Burk, R

    2007-01-01

    Erythropoietin (EPO) is a glycoprotein hormone produced by renal tissue in response to hypoxia; EPO functions as a cytokine to precursor cells produced by the bone marrow, stimulating red blood cell production. Erythropoiesis stimulating agents (ESAs) are manufactured molecules designed to mimic the ability of endogenous EPO to bind to EPO receptors and increase red blood cell production. To achieve desired dosing schedules and avoid the need for blood transfusions, oncologists have become increasingly reliant on ESAs to counter the anemia often experienced during chemotherapy. In recent years, significant concerns have been raised about the safety of ESAs, including the possibility of increased cardiovascular events and even increased tumor growth and accelerated mortality in cancer patients. ESAs also contribute significantly to the expense of chemotherapy, rendering them unavailable to some patients and available to others only upon achieving insurance-mandated levels of anemia. A recently discovered "normobaric oxygen paradox" demonstrates that renal tissue can be stimulated to increase EPO production via a simple pattern of oxygen breathing at normal atmospheric pressures. This leads directly to the hypothesis that oxygen breathing may provide chemotherapy patients with a convenient and inexpensive alternative to ESAs. Stimulating endogenous EPO production eliminates the small risk of immune system reaction associated with ESAs. Further, the endogenous physiological EPO doses provided by this method may be safer, in terms of cancer mortality, than the exogenous pharmacological doses inherent in ESA administration. A single patient test case is presented to support the hypothesis that normobaric oxygen breathing can be an effective replacement for ESAs in treating chemotherapy-induced anemia. In this case, a stage III breast cancer patient undergoing dose-dense AC+T chemotherapy obtained a clear response equivalent to ESA treatment by using a pattern of simple

  6. New insights for identification of doping with recombinant human erythropoietin micro-doses after high hydration.

    PubMed

    Martin, L; Ashenden, M; Bejder, J; Hoffmann, M; Nordsborg, N; Karstoft, K; Morkeberg, J; Sharpe, K; Lasne, F; Marchand, A

    2016-11-01

    To minimize the chances of being caught after doping with recombinant human erythropoietins (rhEPO), athletes have turned to new practices using micro-doses and excess fluid ingestion to accelerate elimination and decrease the probability of detection. Our objective was to test the sensitivity of detection by validated methods (IEF: isoelectric focusing; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis) when such practices are used. First, after a three-week rhEPO boost period and 10 days of wash out, detection of a single 900 IU micro-dose of Eprex® was evaluated in healthy male subjects. After an injection in the evening, urine and plasma samples were collected the following morning. Half of the subjects then drank a bolus of water and new samples were collected 80 min later. Interestingly, rhEPO was detected in 100% of the samples even after water ingestion. A second similar protocol was then performed with a single injection of a micro-dose of rhEPO (500 IU or 900 IU), without a prior rhEPO boost. In addition, urine and plasma samples were also collected 15 and 20 h post rhEPO administration. Once again drinking water did not affect the rate of detection. Urine appeared a better matrix to detect micro-doses after 10 h, enabling between 92% and 100% of identification at that time. The rate of identification decreased rapidly thereafter, in particular for the 500 IU micro-dose. However IEF analysis still resulted in 71% identification of rhEPO in urine after 20 h. These results could help to define a better strategy for controlling and identifying athletes using rhEPO micro-doses. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Neuroprotective Effect of Erythropoietin against Pressure Ulcer in a Mouse Model of Small Fiber Neuropathy

    PubMed Central

    Danigo, Aurore; Magy, Laurent; Richard, Laurence; Desmoulière, Alexis; Bourthoumieu, Sylvie; Funalot, Benoît; Demiot, Claire

    2014-01-01

    An increased risk of skin pressure ulcers (PUs) is common in patients with sensory neuropathies, including those caused by diabetes mellitus. Recombinant human erythropoietin (rhEPO) has been shown to protect the skin against PUs developed in animal models of long-term diabetes. The aim of this work was to determine whether rhEPO could prevent PU formation in a mouse model of drug-inducedSFN. Functional SFN was induced by systemic injection of resiniferatoxin (RTX, 50 µg/kg, i.p.). RhEPO (3000 UI/kg, i.p.) was given the day before RTX injection and then every other day. Seven days after RTX administration, PUs were induced by applying two magnetic plates on the dorsal skin. RTX-treated mice expressed thermal and mechanical hypoalgesia and showed calcitonin gene-related peptide (CGRP) and substance P (SP) depletion without nerve degeneration or vascular dysfunction. RTX mice developed significantly larger stage 2 PUs than Vehicle mice. RhEPO prevented thermal and mechanical hypoalgesia and neuropeptide depletion in small nerve fibers. RhEPO increased hematocrit and altered endothelium-dependent vasodilatation without any effect on PU formation in Vehicle mice. The characteristics of PUs in RTX mice treated with rhEPO and Vehicle mice were found similar. In conclusion, RTX appeared to increased PU development through depletion of CGRP and SP in small nerve fibers, whereas systemic rhEPO treatment had beneficial effect on peptidergic nerve fibers and restored skin protective capacities against ischemic pressure. Our findings support the evaluation of rhEPO and/or its non-hematopoietic analogs in preventing to prevent PUs in patients with SFN. PMID:25422898

  8. Capillary/myocyte mismatch in the heart in renal failure--a role for erythropoietin?

    PubMed

    Amann, K; Buzello, M; Simonaviciene, A; Miltenberger-Miltenyi, G; Koch, A; Nabokov, A; Gross, M L; Gless, B; Mall, G; Ritz, E

    2000-07-01

    Chronic renal failure is characterized by remodeling of the heart with left ventricular hypertrophy (increasing oxygen demand) and capillary deficit leading to capillary/myocyte mismatch (decreasing oxygen supply). Erythropoietin (Epo) has known angiogenic properties causing endothelial cell activation, migration and sprouting, mediated at least in part via the JAK/STAT (Janus kinase/signal transducers and activators of transcription) pathway. In uraemic cardiac hypertrophy the presence of diminished capillary supply implies that capillary growth does not keep pace with development of hypertrophy. To investigate whether this was due to a deficit of the angiogenic hormone Epo we examined whether Epo levels are altered and whether an increase in haematocrit by administration of rhEpo influences capillary supply, i.e. capillary/myocyte mismatch in experimental renal failure. Male Spraque-Dawley rats were either subjected to partial renal ablation or sham operation. Only modest amounts of renal tissue were removed so that the rats were not anemic. Subgroups of rats received either human (rh)Epo alone or in combination with unspecific antihypertensive treatment (dihydralazine plus furosemide) in order to control the Epo induced rise in blood pressure. Capillary supply was measured stereologically as capillary length per volume myocardium using the orientator method. Capillary length density was reduced by approximately 25% after partial renal ablation (3237+/-601 vs 4293+/-501 mm/mm(3) in controls). It was not statistically different in animals with partial renal ablation+rhEpo+antihypertensive treatment (3620+/-828 mm/mm(3)) compared to partial ablation alone. The study shows that lack of Epo does not cause, or contribute to, the deficit of capillary growth in the hypertrophied left ventricle of rats with renal failure. In addition, a rise in haematocrit is not accompanied by beneficial effects on alterations of cardiovascular structure in experimental renal failure.

  9. Design, modeling, expression, and chemoselective PEGylation of a new nanosize cysteine analog of erythropoietin.

    PubMed

    Cohan, Reza Ahangari; Madadkar-Sobhani, Armin; Khanahmad, Hossein; Roohvand, Farzin; Aghasadeghi, Mohammad Reza; Hedayati, Mohammad Hossein; Barghi, Zahra; Ardestani, Mehdi Shafiee; Inanlou, Davoud Nouri; Norouzian, Dariush

    2011-01-01

    Recombinant human erythropoietin (rhEPO) is considered to be one of the most pivotal pharmaceutical drugs in the market because of its clinical application in the treatment of anemia-associated disorders worldwide. However, like other therapeutic proteins, it does not have suitable pharmacokinetic properties for it to be administrated at least two to three times per week. Chemoselective cysteine PEGylation, employing molecular dynamics and graphics in in silico studies, can be considered to overcome such a problem. A special kind of EPO analog was elicited based on a literature review, homology modeling, molecular dynamic simulation, and factors affecting the PEGylation reaction. Then, cDNA of the selected analog was generated by site-directed mutagenesis and subsequently cloned into the expression vector. The construct was transfected to Chinese hamster ovary/dhfr(-) cells, and highly expressed clones were selected via methotrexate amplification. Ion-immobilized affinity and size exclusion (SE) chromatography techniques were used to purify the expressed analog. Thereafter, chemoselective PEGylation was performed and a nanosize PEGylated EPO was obtained through dialysis. The in vitro biologic assay and in vivo pharmacokinetic parameters were studied. Finally, E31C analog Fourier transform infrared, analytical SE-high-performance liquid chromatography, zeta potential, and size before and after PEGylation were characterized. The findings indicate that a novel nanosize EPO31-PEG has a five-fold longer terminal half-life in rats with similar biologic activity compared with unmodified rhEPO in proliferation cell assay. The results also show that EPO31-PEG size and charge versus unmodified protein was increased in a nanospectrum, and this may be one criterion of EPO biologic potency enhancement. This kind of novel engineered nanosize PEGylated EPO has remarkable advantages over rhEPO.

  10. Design, modeling, expression, and chemoselective PEGylation of a new nanosize cysteine analog of erythropoietin

    PubMed Central

    Cohan, Reza Ahangari; Madadkar-Sobhani, Armin; Khanahmad, Hossein; Roohvand, Farzin; Aghasadeghi, Mohammad Reza; Hedayati, Mohammad Hossein; Barghi, Zahra; Ardestani, Mehdi Shafiee; Inanlou, Davoud Nouri; Norouzian, Dariush

    2011-01-01

    Background: Recombinant human erythropoietin (rhEPO) is considered to be one of the most pivotal pharmaceutical drugs in the market because of its clinical application in the treatment of anemia-associated disorders worldwide. However, like other therapeutic proteins, it does not have suitable pharmacokinetic properties for it to be administrated at least two to three times per week. Chemoselective cysteine PEGylation, employing molecular dynamics and graphics in in silico studies, can be considered to overcome such a problem. Methods: A special kind of EPO analog was elicited based on a literature review, homology modeling, molecular dynamic simulation, and factors affecting the PEGylation reaction. Then, cDNA of the selected analog was generated by site-directed mutagenesis and subsequently cloned into the expression vector. The construct was transfected to Chinese hamster ovary/dhfr− cells, and highly expressed clones were selected via methotrexate amplification. Ion-immobilized affinity and size exclusion (SE) chromatography techniques were used to purify the expressed analog. Thereafter, chemoselective PEGylation was performed and a nanosize PEGylated EPO was obtained through dialysis. The in vitro biologic assay and in vivo pharmacokinetic parameters were studied. Finally, E31C analog Fourier transform infrared, analytical SE-high-performance liquid chromatography, zeta potential, and size before and after PEGylation were characterized. Results: The findings indicate that a novel nanosize EPO31-PEG has a five-fold longer terminal half-life in rats with similar biologic activity compared with unmodified rhEPO in proliferation cell assay. The results also show that EPO31-PEG size and charge versus unmodified protein was increased in a nanospectrum, and this may be one criterion of EPO biologic potency enhancement. Discussion: This kind of novel engineered nanosize PEGylated EPO has remarkable advantages over rhEPO. PMID:21753873

  11. Erythropoietin elevates VO2,max but not voluntary wheel running in mice.

    PubMed

    Kolb, E M; Kelly, S A; Middleton, K M; Sermsakdi, L S; Chappell, M A; Garland, T

    2010-02-01

    Voluntary activity is a complex trait, comprising both behavioral (motivation, reward) and anatomical/physiological (ability) elements. In the present study, oxygen transport was investigated as a possible limitation to further increases in running by four replicate lines of mice that have been selectively bred for high voluntary wheel running and have reached an apparent selection limit. To increase oxygen transport capacity, erythrocyte density was elevated by the administration of an erythropoietin (EPO) analogue. Mice were given two EPO injections, two days apart, at one of two dose levels (100 or 300 microg kg(-1)). Hemoglobin concentration ([Hb]), maximal aerobic capacity during forced treadmill exercise (VO2,max) and voluntary wheel running were measured. [Hb] did not differ between high runner (HR) and non-selected control (C) lines without EPO treatment. Both doses of EPO significantly (P<0.0001) increased [Hb] as compared with sham-injected animals, with no difference in [Hb] between the 100 microg kg(-1) and 300 microg kg(-1) dose levels (overall mean of 4.5 g dl(-1) increase). EPO treatment significantly increased VO2,max by approximately 5% in both the HR and C lines, with no dosexline type interaction. However, wheel running (revolutions per day) did not increase with EPO treatment in either the HR or C lines, and in fact significantly decreased at the higher dose in both line types. These results suggest that neither [Hb] per se nor VO2,max is limiting voluntary wheel running in the HR lines. Moreover, we hypothesize that the decrease in wheel running at the higher dose of EPO may reflect direct action on the reward pathway of the brain.

  12. Detection of erythropoietin misuse by the Athlete Biological Passport combined with reticulocyte percentage.

    PubMed

    Bejder, Jacob; Aachmann-Andersen, Niels Jacob; Bonne, Thomas Christian; Olsen, Niels Vidiendal; Nordsborg, Nikolai Baastrup

    2016-10-01

    The sensitivity of the adaptive model of the Athlete Biological Passport (ABP) and reticulocyte percentage (ret%) in detection of recombinant human erythropoietin (rHuEPO) misuse was evaluated using both a long-term normal dose and a brief high dose treatment regime. Sixteen subjects received either 65 IU rHuEPO × kg(-1) every second day for two weeks (normal-dose), 390 IU rHuEPO × kg(-1) on three consecutive days (high-dose), or frequent placebo treatment for 13 days in a randomized, placebo-controlled, double-blind crossover design. Blood variables were measured 4, 11, and 25 days following treatment initiation. The ABP based on haemoglobin concentration ([Hb]) and OFF-hr score ([Hb] - 60 × √ret%) yielded atypical profiles following both normal-dose and high-dose treatment (0 %, 31 %, 13 % vs. 21 %, 33 %, 20 % at days 4, 11, and 25 after normal and high dose, respectively). Including ret% as a stand-alone marker for atypical blood profiles increased (P < 0.05) the sensitivity of the adaptive model at day 11 to 63 % and 67 % for normal-dose and high-dose rHuEPO administration, respectively. In conclusion, ~30 % of subjects injecting a normal-dose rHuEPO for two weeks or a high-dose rHuEPO for three days will present an atypical ABP profile. Including ret% as a stand-alone parameter improves the sensitivity two-fold. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after single and multiple doses in healthy volunteers.

    PubMed

    Ramakrishnan, Rohini; Cheung, Wing K; Wacholtz, Mary C; Minton, Neil; Jusko, William J

    2004-09-01

    This study describes a pharmacokinetic (PK) model to account for serum recombinant human erythropoietin (rHuEpo) concentrations in healthy volunteers following intravenous (IV) and subcutaneous (SC) dosing; it also characterizes the pharmacodynamics (PD) of SC rHuEpo effects on reticulocytes, red blood cells (RBC), and hemoglobin (Hb) in blood. Data were obtained from 4 clinical studies carried out in healthy volunteers. Epoetin alfa (rHuEpo) was administered as 5 single IV doses ranging from 10 to 500 IU/kg, as 8 single SC doses ranging from 300 to 2400 IU/kg, and as 2 multiple SC dosage regimens (150 IU/kg/3 times a week [tiw] and 600 IU/kg/wk). A dual-absorption rate model (fast zero-order and slow first-order inputs) with nonlinear disposition characterized the PK of SC rHuEpo. A high K(m) value was obtained indicating that clearance was mildly nonlinear. Absorption was slow (t(max) approximately 24 hours), and the bioavailability of SC rHuEpo increased with dose (ranging from 46%-100%). A catenary cell production and loss model with a feedback down regulation component was used to fit the reticulocyte data yielding estimates of the stimulatory capacity (S(max)), sensitivity (SC(50)), and life span parameters. These parameters were used for simulations of RBC and Hb profiles. An SC(50) of 27 to 61 IU/L was estimated indicating that low physiological plasma rHuEpo concentrations were sufficient to produce pharmacological effects. No marked sex-dependent differences in clinical responses to rHuEpo therapy were found despite baseline differences. Realistic pharmacokinetic and physiological models accounted for clinical responses from a wide array of dosing conditions with rHuEpo. The rationale for greater efficacy of SC administration of rHuEpo compared to IV was ascertained.

  14. Study on the inflammatory intervention of erythropoietin on NEC

    PubMed Central

    QI, WEIBIN; SHEN, QIONG; ZHANG, LIN; HAN, LI-PING; WANG, SUMIN

    2016-01-01

    The aim of this study was to investigate the effect of erythropoietin (EPO) on the inflammatory response and the mechanism analysis of the Τoll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway of NEC. A total of 94 patients with necrotizing enterocolitis (NEC) were randomly divided into the control (42 cases) and observation (52 cases) groups, The control group received the standard medical treatment plan, whereas for the observation group this treatment plan was combined with the application of recombinant EPO for intramuscular injection treatment. The clinical effect was subsequently compared. The results showed that the complication and death rates in the observation group were significantly lower than those in the control group with statistically significant differences (P<0.05). Following treatments, the levels of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in the observation group were significantly lower than those in the control group. The expression levels of mRNA of TLR4 and NF-κB in the observation group were significantly lower than those in the control group, with statistically significant differences (P<0.05). In summary, EPO was able to reduce the levels of inflammatory response of TNF-α and IL-6 through the TLR4/NF-κB signaling pathway, and improve the NEC, thus providing a basis for the clinical treatment of NEC. PMID:27284304

  15. Erythropoietin, Stem Cell Factor, and Cancer Cell Migration.

    PubMed

    Vazquez-Mellado, Maria J; Monjaras-Embriz, Victor; Rocha-Zavaleta, Leticia

    2017-01-01

    Cell migration of normal cells is tightly regulated. However, tumor cells are exposed to a modified microenvironment that promotes cell migration. Invasive migration of tumor cells is stimulated by receptor tyrosine kinases (RTKs) and is regulated by growth factors. Erythropoietin (Epo) is a glycoprotein hormone that regulates erythropoiesis and is also known to be a potent chemotactic agent that induces cell migration by binding to its receptor (EpoR). Expression of EpoR has been documented in tumor cells, and the potential of Epo to induce cell migration has been explored. Stem cell factor (SCF) is a cytokine that synergizes the effects of Epo during erythropoiesis. SCF is the ligand of c-Kit, a member of the RTKs family. Molecular activity of RTKs is a primary stimulus of cell motility. Thus, expression of the SCF/c-Kit axis is associated with cell migration. In this chapter, we summarize data describing the potential effect of Epo/EpoR and SCF/c-Kit as promoters of cancer cell migration. We also integrate recent findings on molecular mechanisms of Epo/EpoR- and SCF/c-Kit-mediated migration described in various cancer models. © 2017 Elsevier Inc. All rights reserved.

  16. Erythropoietin enhances hippocampal long-term potentiation and memory.

    PubMed

    Adamcio, Bartosz; Sargin, Derya; Stradomska, Alicja; Medrihan, Lucian; Gertler, Christoph; Theis, Fabian; Zhang, Mingyue; Müller, Michael; Hassouna, Imam; Hannke, Kathrin; Sperling, Swetlana; Radyushkin, Konstantin; El-Kordi, Ahmed; Schulze, Lizzy; Ronnenberg, Anja; Wolf, Fred; Brose, Nils; Rhee, Jeong-Seop; Zhang, Weiqi; Ehrenreich, Hannelore

    2008-09-09

    Erythropoietin (EPO) improves cognition of human subjects in the clinical setting by as yet unknown mechanisms. We developed a mouse model of robust cognitive improvement by EPO to obtain the first clues of how EPO influences cognition, and how it may act on hippocampal neurons to modulate plasticity. We show here that a 3-week treatment of young mice with EPO enhances long-term potentiation (LTP), a cellular correlate of learning processes in the CA1 region of the hippocampus. This treatment concomitantly alters short-term synaptic plasticity and synaptic transmission, shifting the balance of excitatory and inhibitory activity. These effects are accompanied by an improvement of hippocampus dependent memory, persisting for 3 weeks after termination of EPO injections, and are independent of changes in hematocrit. Networks of EPO-treated primary hippocampal neurons develop lower overall spiking activity but enhanced bursting in discrete neuronal assemblies. At the level of developing single neurons, EPO treatment reduces the typical increase in excitatory synaptic transmission without changing the number of synaptic boutons, consistent with prolonged functional silencing of synapses. We conclude that EPO improves hippocampus dependent memory by modulating plasticity, synaptic connectivity and activity of memory-related neuronal networks. These mechanisms of action of EPO have to be further exploited for treating neuropsychiatric diseases.

  17. The non-haematopoietic biological effects of erythropoietin.

    PubMed

    Arcasoy, Murat O

    2008-04-01

    In the haematopoietic system, the principal function of erythropoietin (Epo) is the regulation of red blood cell production, mediated by its specific cell surface receptor (EpoR). Following the cloning of the Epo gene (EPO) and characterization of the selective haematopoietic action of Epo in erythroid lineage cells, recombinant Epo forms (epoetin-alfa, epoetin-beta and the long-acting analogue darbepoetin-alfa) have been widely used for treatment of anaemia in chronic kidney disease and chemotherapy-induced anaemia in cancer patients. Ubiquitous EpoR expression in non-erythroid cells has been associated with the discovery of diverse biological functions for Epo in non-haematopoietic tissues. During development, Epo-EpoR signalling is required not only for fetal liver erythropoiesis, but also for embryonic angiogenesis and brain development. A series of recent studies suggest that endogenous Epo-EpoR signalling contributes to wound healing responses, physiological and pathological angiogenesis, and the body's innate response to injury in the brain and heart. Epo and its novel derivatives have emerged as major tissue-protective cytokines that are being investigated in the first human studies involving neurological and cardiovascular diseases. This review focuses on the scientific evidence documenting the biological effects of Epo in non-haematopoietic tissues and discusses potential future applications of Epo and its derivatives in the clinic.

  18. Erythropoietin, Forkhead Proteins, and Oxidative Injury: Biomarkers and Biology

    PubMed Central

    Maiese, Kenneth; Hou, Jinling; Chong, Zhao Zhong; Shang, Yan Chen

    2009-01-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO), and members of the mammalian forkhead transcription factors of the O class (FoxOs), may offer the greatest promise for new treatment regimens, since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. Yet, EPO and FoxOs may sometimes have unexpected and undesirable effects that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as the complex role that EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation. PMID:19802503

  19. Activation of the erythropoietin receptor in human skeletal muscle.

    PubMed

    Rundqvist, Helene; Rullman, Eric; Sundberg, Carl Johan; Fischer, Helene; Eisleitner, Katarina; Ståhlberg, Marcus; Sundblad, Patrik; Jansson, Eva; Gustafsson, Thomas

    2009-09-01

    Erythropoietin receptor (EPOR) expression in non-hematological tissues has been shown to be activated by locally produced and/or systemically delivered EPO. Improved oxygen homeostasis, a well-established consequence of EPOR activation, is very important for human skeletal muscle performance. In the present study we investigate whether human skeletal muscle fibers and satellite cells express EPOR and if it is activated by exercise. Ten healthy males performed 65 min of cycle exercise. Biopsies were obtained from the vastus lateralis muscle and femoral arterio-venous differences in EPO concentrations were estimated. The EPOR protein was localized in areas corresponding to the sarcolemma and capillaries. Laser dissection identified EPOR mRNA expression in muscle fibers. Also, EPOR mRNA and protein were both detected in human skeletal muscle satellite cells. In the initial part of the exercise bout there was a release of EPO from the exercising leg to the circulation, possibly corresponding to an increased bioavailability of EPO. After exercise, EPOR mRNA and EPOR-associated JAK2 phosphorylation were increased. Interaction with JAK2 is required for EPOR signaling and the increase found in phosphorylation is therefore closely linked to the activation of EPOR. The receptor activation by acute exercise suggests that signaling through EPOR is involved in exercise-induced skeletal muscle adaptation, thus extending the biological role of EPO into the skeletal muscle.

  20. A mouse model for an erythropoietin-deficiency anemia.

    PubMed

    Zeigler, Brandon M; Vajdos, Janis; Qin, Wenning; Loverro, Linda; Niss, Knut

    2010-01-01

    In mammals, the production of red blood cells is tightly regulated by the growth factor erythropoietin (EPO). Mice lacking a functional Epo gene are embryonic lethal, and studying erythropoiesis in EPO-deficient adult animals has therefore been limited. In order to obtain a preclinical model for an EPO-deficient anemia, we developed a mouse in which Epo can be silenced by Cre recombinase. After induction of Cre activity, Epo(KO/flox) mice experience a significant reduction of serum EPO levels and consequently develop a chronic, normocytic and normochromic anemia. Furthermore, compared with wild-type mice, Epo expression in Epo(KO/flox) mice is dramatically reduced in the kidney, and expression of a well-known target gene of EPO signaling, Bcl2l1, is reduced in the bone marrow. These observations are similar to the clinical display of anemia in patients with chronic kidney disease. In addition, during stress-induced erythropoiesis these mice display the same recovery rate as their heterozygous counterparts. Taken together, these results demonstrate that this model can serve as a valuable preclinical model for the anemia of EPO deficiency, as well as a tool for the study of stress-induced erythropoiesis during limiting conditions of EPO.

  1. ERYTHROPOIETIN: ELUCIDATING NEW CELLULAR TARGETS THAT BROADEN THERAPEUTIC STRATEGIES

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Li, Faqi; Shang, Yan Chen

    2008-01-01

    Given that erythropoietin (EPO) is no longer believed to have exclusive biological activity in the hematopoietic system, EPO is now considered to have applicability in a variety of nervous system disorders that can overlap with vascular disease, metabolic impairments, and immune system function. As a result, EPO may offer efficacy for a broad number of disorders that involve Alzheimer’s disease, cardiac insufficiency, stroke, trauma, and diabetic complications. During a number of clinical conditions, EPO is robust and can prevent metabolic compromise, neuronal and vascular degeneration, and inflammatory cell activation. Yet, use of EPO is not without its considerations especially in light of frequent concerns that may compromise clinical care. Recent work has elucidated a number of novel cellular pathways governed by EPO that can open new avenues to avert deleterious effects of this agent and offer previously unrecognized perspectives for therapeutic strategies. Obtaining greater insight into the role of EPO in the nervous system and elucidating its unique cellular pathways may provide greater cellular viability not only in the nervous system but also throughout the body. PMID:18396368

  2. Erythropoietin elevation in the chronically hyperglycemic fetal lamb

    SciTech Connect

    Philipps, A.F. Widness, J.A.; Garcia, J.F.; Raye, J.R.; Swartz, R.

    1982-05-01

    The effects of chronic fetal glucose infusion upon fetal oxygenation and endogenous erythropoietin (Ep) production were studied using the chronically catheterized fetal lamb. Fetal glucose infusion at rates between 5 and 20 mg/kg/min resulted in sustained fetal hyperglycemia. During glucose infusion (maximal glucose concentration achieved = 55.4 +/- 3.7 mg/dl) fetal arterial oxygen contents fell from 5.8 +/- 0.9 to 4.2 +/- 1.0 ml/dl while no changes were observed in simultaneously sampled, noninfused twins. Although plasma insulin concentration rose in the infused fetuses, the elevations were inconstant and no relationship between fetal plasma insulin concentration and decrement in fetal oxygen content was evident. The changes in plasma Ep concentration were noted prior to any significant fetal metabolic acidosis (as evidence of tissue hypoxia) and no changes in plasma Ep concentration were observed in simultaneously sampled noninfused twins. No relationship was apparent between fetal arterial plasma insulin and Ep concentrations. Since neither fetal anemia nor hemodilution occurred in these preparations, glucose-induced fetal hyposemia is the likely mechanism behind elevated fetal Ep concentrations in these experiments. Similarities between this animal model and human fetuses and infants of diabetic mothers suggest that chronic in utero hypoxemia may be a common feature responsible for such diverse abnomalities as polycythemia, hyperbilirubinemia, and late fetal demise. The mechanism behind the glucose-induced fetal hypoxemia is not known.

  3. Role of hydrogen peroxide in hypoxia-induced erythropoietin production.

    PubMed Central

    Fandrey, J; Frede, S; Jelkmann, W

    1994-01-01

    The addition of exogenous H2O2 inhibited hypoxia-induced erythropoietin (Epo) production in the human hepatoma cell line HepG2. Likewise, elevation of endogenous H2O2 levels by the addition of menadione or the catalase inhibitor, aminotriazole, dose-dependently lowered Epo production. The inhibitory effect of exogenous H2O2 on Epo formation could be completely overcome by co-incubation with catalase. When GSH levels in HepG2 cells were lowered, Epo production was more susceptible to H2O2-induced inhibition, indicating that H2O2 might affect thiol groups in regulatory proteins. Endogenous production of H2O2 in HepG2 cells was dependent on the pericellular O2 tension, being lowest under conditions of hypoxia. Our results support the hypothesis that an H2O2-generating haem protein might be part of the O2 sensor that controls Epo production. High H2O2 levels under conditions of normoxia suppress, whereas lower levels in hypoxic cells allow epo gene expression. Images Figure 1 PMID:7980410

  4. Effects of erythropoietin in skin wound healing are dose related.

    PubMed

    Sorg, Heiko; Krueger, Christian; Schulz, Torsten; Menger, Michael D; Schmitz, Frank; Vollmar, Brigitte

    2009-09-01

    The hematopoietic growth factor erythropoietin (EPO) attracts attention due to its all-tissue-protective pleiotropic properties. We studied the effect of EPO on dermal regeneration using intravital microscopy in a model of full dermal thickness wounds in the skin-fold chamber of hairless mice. Animals received repetitive low doses or high doses of EPO (RLD-EPO or RHD-EPO) or a single high dose of EPO (SHD-EPO). SHD-EPO accelerated wound epithelialization, reduced wound cellularity, and induced maturation of newly formed microvascular networks. In contrast, RHD-EPO impaired the healing process, as indicated by delayed epithelialization, high wound cellularity, and lack of maturation of microvascular networks. Also, RHD-EPO caused an excessive erythrocyte mass and rheological malfunction, further deteriorating vessel and tissue maturation. Moreover, RHD-EPO altered fibroblast and keratinocyte migration in vitro, while both cell types exposed to RLD-EPO, and, in particular, to SHD-EPO showed accelerated wound scratch closure. In summary, our data show that a single application of a high dose of EPO accelerates and improves skin wound healing.

  5. Low dose erythropoietin stimulates bone healing in mice.

    PubMed

    Garcia, P; Speidel, V; Scheuer, C; Laschke, M W; Holstein, J H; Histing, T; Pohlemann, T; Menger, M D

    2011-02-01

    Beyond its classical role in regulation of erythropoiesis, erythropoietin (EPO) has been shown to exert protective and regenerative actions in a variety of non-hematopoietic tissues. However, little is known about potential actions in bone regeneration. To analyze fracture healing in mice, a femoral 0.25 mm osteotomy gap was stabilized with a pin-clip technique. Animals were treated with 500 U EPO/kg bw per day or with vehicle only. After 2 and 5 weeks, fracture healing was analyzed biomechanically, radiologically and histologically. Expression of PCNA and NFκB was examined by Western blot analysis. Vascularization was analyzed by immunohistochemical staining of PECAM-1. Circulating endothelial progenitor cells were measured by flow-cytometry. Herein, we demonstrate that EPO-treatment significantly accelerates bone healing in mice. This is indicated by a significantly greater biomechanical stiffness and a higher radiological density of the periosteal callus at 2 and 5 weeks after fracture and stabilization. Histological analysis demonstrated significantly more bone and less cartilage and fibrous tissue in the periosteal callus. Endosteal vascularization was significantly increased in EPO-treated animals when compared to controls. The number of circulating endothelial progenitor cells was significantly greater in EPO-treated animals. The herein shown acceleration of healing by EPO may represent a promising novel treatment strategy for fractures with delayed healing and non-union formation.

  6. Neurite outgrowth on cultured spiral ganglion neurons induced by erythropoietin.

    PubMed

    Berkingali, Nurdanat; Warnecke, Athanasia; Gomes, Priya; Paasche, Gerrit; Tack, Jan; Lenarz, Thomas; Stöver, Timo

    2008-09-01

    The morphological correlate of deafness is the loss of hair cells with subsequent degeneration of spiral ganglion neurons (SGN). Neurotrophic factors have a neuroprotective effect, and especially brain-derived neurotrophic factor (BDNF) has been demonstrated to protect SGN in vitro and after ototoxic trauma in vivo. Erythropoietin (EPO) attenuates hair cell loss in rat cochlea explants that were treated with gentamycin. Recently, it has also been shown that EPO reduces the apoptose rate in hippocampal neurons. Therefore, the aim of the study was to examine the effects of EPO on SGN in vitro. Spiral ganglion cells were isolated from neonatal rats and cultured for 48 h in serum-free medium supplemented with EPO and/or BDNF. Results showed that survival rates of SGN were not significantly improved when cultivated with EPO alone. Also, EPO did not further increase BDNF-induced survival of SGN. However, significant elongation of neurites was determined when SGN were cultivated with EPO alone. Even though a less than additive effect was observed, combined treatment with BDNF and EPO led to a significant elongation of neurites when compared to individual treatment with BDNF or EPO. It can be concluded that EPO induces neurite outgrowth rather than promoting survival. Thus, EPO presents as an interesting candidate to enhance and modulate the regenerative effect of BDNF on SGN.

  7. Topical erythropoietin promotes wound repair in diabetic rats.

    PubMed

    Hamed, Saher; Ullmann, Yehuda; Masoud, Muhannad; Hellou, Elias; Khamaysi, Ziad; Teot, Luc

    2010-01-01

    Wound healing in diabetic patients is slower than in healthy individuals. Erythropoietin (EPO) has non-hemopoietic targets in the skin, and systemically administered EPO promotes wound healing in experimental animals. This study investigated the effect of topical EPO treatment on defective wound repair in the skin of diabetic rats. Full-thickness excisional skin wounds were made in 38 rats, of which 30 had diabetes. The wounds were then treated topically with a cream that contained either vehicle, 600 IU ml(-1) EPO (low dose), or 3,000 IU ml(-1) (high dose) EPO. We assessed the rate of wound closure during the 12-day treatment period, and microvascular density (MVD), vascular endothelial growth factor (VEGF), and hydroxyproline (HP) contents, and the extent of apoptosis in wound tissues at the end of the 12-day treatment period. Topical EPO treatment significantly reduced the time to final wound closure. This increased rate of closure of the two EPO-treated wounds in diabetic rats was associated with increased MVD, VEGF, and HP contents, and a reduced extent of apoptosis. In light of our finding that topical EPO treatment promotes skin wound repair in diabetic rats, we propose that topical EPO treatment is a therapeutically beneficial method of treating chronic diabetic wounds.

  8. Local erythropoietin signaling enhances regeneration in peripheral axons.

    PubMed

    Toth, C; Martinez, J A; Liu, W Q; Diggle, J; Guo, G F; Ramji, N; Mi, R; Hoke, A; Zochodne, D W

    2008-06-23

    Erythropoietin (EPO) and its receptor (EPO-R), mediate neuroprotection from axonopathy and apoptosis in the peripheral nervous system (PNS). We examined the impact and potential mechanisms of local EPO signaling on regenerating PNS axons in vivo and in vitro. As a consequence of injury, peripheral nerve axons and DRG neurons have a marked increase in the expression of EPO and EPO-R. Local delivery of EPO via conduit over 2 weeks to rat sciatic nerve following crush injury increased the density and maturity of regenerating myelinated axons growing distally from the crush site. In addition, EPO also rescued retrograde degeneration and atrophy of axons. EPO substantially increased the density and intensity of calcitonin gene-related peptide (CGRP) expression within outgrowing axons. Behavioral improvements in sensorimotor function also occurred in rats exposed to near nerve EPO delivery. EPO delivery led to decreased nuclear factor kappaB (NFkB) activation but increased phosphorylation of Akt and STAT3 within nerve and dorsal root ganglia neurons indicating rescue from an injury phenotype. Spinal cord explant studies also demonstrated a similar dose-dependent effect of EPO upon motor axonal outgrowth. Local EPO signaling enhances regenerating peripheral nervous system axons in addition to its known neuroprotection. Exogenous EPO may have a therapeutic role in a large number of peripheral nerve diseases through its impact on regeneration.

  9. Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes.

    PubMed

    Tojo, Yutaka; Sekine, Hiroki; Hirano, Ikuo; Pan, Xiaoqing; Souma, Tomokazu; Tsujita, Tadayuki; Kawaguchi, Shin-ichi; Takeda, Norihiko; Takeda, Kotaro; Fong, Guo-Hua; Dan, Takashi; Ichinose, Masakazu; Miyata, Toshio; Yamamoto, Masayuki; Suzuki, Norio

    2015-08-01

    Erythropoietin (Epo) is produced in the kidney and liver in a hypoxia-inducible manner via the activation of hypoxia-inducible transcription factors (HIFs) to maintain oxygen homeostasis. Accelerating Epo production in hepatocytes is one plausible therapeutic strategy for treating anemia caused by kidney diseases. To elucidate the regulatory mechanisms of hepatic Epo production, we analyzed mouse lines harboring liver-specific deletions of genes encoding HIF-prolyl-hydroxylase isoforms (PHD1, PHD2, and PHD3) that mediate the inactivation of HIF1α and HIF2α under normal oxygen conditions. The loss of all PHD isoforms results in both polycythemia, which is caused by Epo overproduction, and fatty livers. We found that deleting any combination of two PHD isoforms induces polycythemia without steatosis complications, whereas the deletion of a single isoform induces no apparent phenotype. Polycythemia is prevented by the loss of either HIF2α or the hepatocyte-specific Epo gene enhancer (EpoHE). Chromatin analyses show that the histones around EpoHE dissociate from the nucleosome structure after HIF2α activation. HIF2α also induces the expression of HIF3α, which is involved in the attenuation of Epo production. These results demonstrate that the total amount of PHD activity is more important than the specific function of each isoform for hepatic Epo expression regulated by a PHD-HIF2α-EpoHE cascade in vivo.

  10. Erythropoietin-loaded oligochitosan nanoparticles for treatment of periventricular leukomalacia.

    PubMed

    Wang, Ting; Hu, Yan; Leach, Michelle K; Zhang, Long; Yang, Wenjing; Jiang, Li; Feng, Zhang-Qi; He, Nongyue

    2012-01-17

    In this study, a single intraperitoneal injection of erythropoietin (EPO) loaded oligochitosan nanoparticles (epo-NPs) (average diameter 266 nm) was investigated as a treatment for periventricular leukomalacia (PVL). Nanoparticles were fabricated using a gelation technology process. PVL rats models were prepared to examine the therapeutic efficacy of epo-NPs and analyze the mechanism by which epo-NPs protect white matter. The metabolization of epo-NPs in the liver was also investigated. The pathology and behavioral data show that this single injection of a low quantity of epo-NPs had an excellent therapeutic effect on the rat model of PVL. The EPO release curve in phosphate buffered saline solution was a good fit with the zero-order kinetics distribution and was maintained at around 25% in 48 h. In vivo experiments demonstrated that 50 IU/kg epo-NPs had the same effect as a 5000 IU/kg direct injection of free EPO. Nanoparticles prolonged the time course of EPO metabolization in the liver and the stable release of EPO from the nanoparticles kept the plasma concentration of EPO at around 100 IU/ml during the 8-12h post-injection. Therefore, we suggest that oligochitosan based nanoparticles are an effective vehicle for drug delivery.

  11. Hepatic erythropoietin response in cirrhosis. A contemporary review.

    PubMed

    Risør, Louise Madeleine; Fenger, Mogens; Olsen, Niels Vidiendal; Møller, Søren

    2016-01-01

    The main function of erythropoietin (EPO) is to maintain red blood cell mass, but in recent years, increasing evidence has suggested a wider biological role not solely related to erythropoiesis, e.g. angiogenesis and tissue protection. EPO is produced in the liver during fetal life, but the main production shifts to the kidney after birth. The liver maintains a production capacity of up to 10% of the total EPO synthesis in healthy controls, but can be up-regulated to 90-100%. However, the hepatic EPO synthesis has been shown not to be adequate for correction of anemia in the absence of renal-derived EPO. Elevated circulating EPO has been reported in a number of diseases, but data from cirrhotic patients are sparse and the level of plasma EPO in patients with cirrhosis is controversial. Cirrhosis is characterized by liver fibrosis, hepatic dysfunction and the release of proinflammatory cytokines, which lead to arterial hypotension, hepatic nephropathy and anemia. An increase in EPO due to renal hypoperfusion, hypoxia and anemia or an EPO-mediated hepato-protective and regenerative mechanism is plausible. However, poor hepatic synthesis capacity, a decreasing co-factor level and inflammatory feedback mechanisms may explain a potential insufficient EPO response in end-stage cirrhosis. Finally, the question remains as to whether a potential increase in EPO production in certain stages of cirrhosis originates from the kidney or liver. This paper aims to review contemporary aspects of EPO relating to chronic liver disease.

  12. Erythropoietin-Mediated Regulation of Central Respiratory Command.

    PubMed

    Seaborn, Tommy; Caravagna, Céline

    2017-01-01

    Erythropoietin (Epo) is a cytokine expressed throughout the body, including in the central nervous system where it can act as a breathing modulator in the central respiratory network. In vitro, Epo allows maintaining the activity of respiratory neurons during acute hypoxia, resulting in inhibition of the hypoxia-induced rhythm depression. In vivo, Epo action on the central respiratory command results in enhancement of the acute hypoxic ventilatory response, allowing a better oxygenation of the body by improvement of gases exchanges in the lungs. Importantly, this effect of Epo is age-dependent, being observed at adulthood and at both early and late postnatal ages, but not at middle postnatal ages, when an important setup of the central respiratory command occurs. Epo regulation of the central respiratory command involves at least two intracellular signaling pathways, PI3K-Akt and MEK-ERK pathways. However, the exact mechanism underlying the action of Epo on the central respiratory control remains to be deciphered, as well as the exact cell types and nuclei involved in this control. Epo-mediated effect on the central respiratory command is regulated by several factors, including hypoxia, sex hormones, and an endogen antagonist. Although more knowledge is needed before reaching the clinical trial step, Epo seems to be a promising therapeutic treatment, notably against newborn breathing disorders. © 2017 Elsevier Inc. All rights reserved.

  13. Erythropoietin regulates Treg cells in asthma through TGFβ receptor signaling.

    PubMed

    Wan, Guoshi; Wei, Bing

    2015-01-01

    Asthma is a chronic inflammatory disorder of the airways, the development of which is suppressed by regulatory T cells (Treg). Erythropoietin (EPO) is originally defined as a hematopoietic growth factor. Recently, the anti-inflammatory effects of EPO in asthma have been acknowledged. However, the underlying mechanisms remain ill-defined. Here, we showed that EPO treatment significantly reduced the severity of an ovalbumin (OVA)-induced asthma in mice, seemingly through promoting Foxp3-mediated activation of Treg cells in OVA-treated mouse lung. The activation of Treg cells resulted from increases in transforming growth factor β1 (TGFβ1), which were mainly produced by M2 macrophages (M2M). In vitro, Co-culture with M2M increased Foxp3 levels in Treg cells and the Treg cell number, in a TGFβ receptor signaling dependent manner. Moreover, elimination of macrophages abolished the therapeutic effects of EPO in vivo. Together, our data suggest that EPO may increase M2M, which activate Treg cells through TGFβ receptor signaling to mitigate the severity of asthma.

  14. Erythropoietin, forkhead proteins, and oxidative injury: biomarkers and biology.

    PubMed

    Maiese, Kenneth; Hou, Jinling; Chong, Zhao Zhong; Shang, Yan Chen

    2009-10-02

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO), and members of the mammalian forkhead transcription factors of the O class (FoxOs), may offer the greatest promise for new treatment regimens, since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. Yet, EPO and FoxOs may sometimes have unexpected and undesirable effects that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as the complex role that EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.

  15. Oxygen-dependent Regulation of Erythropoietin Receptor Turnover and Signaling*

    PubMed Central

    Heir, Pardeep; Srikumar, Tharan; Bikopoulos, George; Bunda, Severa; Poon, Betty P.; Lee, Jeffrey E.; Raught, Brian; Ohh, Michael

    2016-01-01

    von Hippel-Lindau (VHL) disease is a rare familial cancer predisposition syndrome caused by a loss or mutation in a single gene, VHL, but it exhibits a wide phenotypic variability that can be categorized into distinct subtypes. The phenotypic variability has been largely argued to be attributable to the extent of deregulation of the α subunit of hypoxia-inducible factor α, a well established target of VHL E3 ubiquitin ligase, ECV (Elongins/Cul2/VHL). Here, we show that erythropoietin receptor (EPOR) is hydroxylated on proline 419 and 426 via prolyl hydroxylase 3. EPOR hydroxylation is required for binding to the β domain of VHL and polyubiquitylation via ECV, leading to increased EPOR turnover. In addition, several type-specific VHL disease-causing mutants, including those that have retained proper binding and regulation of hypoxia-inducible factor α, showed a severe defect in binding prolyl hydroxylated EPOR peptides. These results identify EPOR as the second bona fide hydroxylation-dependent substrate of VHL that potentially influences oxygen homeostasis and contributes to the complex genotype-phenotype correlation in VHL disease. PMID:26846855

  16. Effect of Erythropoietin and Stem Cells on Traumatic Brain Injury.

    PubMed

    Tunc Ata, Melek; Turgut, Günfer; Akbulut, Metin; Kocyigit, Ali; Karabulut, Aysun; Senol, Hande; Turgut, Sebahat

    2016-05-01

    To investigate the healing effects of erythropoietin (EPO) and stem cells (SCs) in traumatic brain injury (TBI). Twenty-nine Wistar albino rats were used and separated into the following groups: control (C), EPO, SC, and SC+EPO. Group C received a TBI only, with no treatment. In the EPO group, 1000 U/kg EPO was given intraperitoneally at 30 minutes after TBI. In SC group, immediately after formation of TBI, 3 × 10,000 CD34(+) stem cells were injected into the affected area. In the SC+EPO group, half an hour after TBI and the injection of stem cells, 1000 U/kg EPO was injected. Before and after injury, trauma coordination performance was measured by the rotarod and inclined plane tests. Seven weeks after trauma, rat brains were examined by radiology and histology. Rotarod performance test did not change remarkably, even after the injury. Compared with group C, the SC+EPO group was found to have significant differences in the inclined plane test results. Separately given, SCs and EPO have a positive effect on TBI, and our findings suggest that their coadministration is even more powerful. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Erythropoietin enhances hippocampal long-term potentiation and memory

    PubMed Central

    Adamcio, Bartosz; Sargin, Derya; Stradomska, Alicja; Medrihan, Lucian; Gertler, Christoph; Theis, Fabian; Zhang, Mingyue; Müller, Michael; Hassouna, Imam; Hannke, Kathrin; Sperling, Swetlana; Radyushkin, Konstantin; El-Kordi, Ahmed; Schulze, Lizzy; Ronnenberg, Anja; Wolf, Fred; Brose, Nils; Rhee, Jeong-Seop; Zhang, Weiqi; Ehrenreich, Hannelore

    2008-01-01

    Background Erythropoietin (EPO) improves cognition of human subjects in the clinical setting by as yet unknown mechanisms. We developed a mouse model of robust cognitive improvement by EPO to obtain the first clues of how EPO influences cognition, and how it may act on hippocampal neurons to modulate plasticity. Results We show here that a 3-week treatment of young mice with EPO enhances long-term potentiation (LTP), a cellular correlate of learning processes in the CA1 region of the hippocampus. This treatment concomitantly alters short-term synaptic plasticity and synaptic transmission, shifting the balance of excitatory and inhibitory activity. These effects are accompanied by an improvement of hippocampus dependent memory, persisting for 3 weeks after termination of EPO injections, and are independent of changes in hematocrit. Networks of EPO-treated primary hippocampal neurons develop lower overall spiking activity but enhanced bursting in discrete neuronal assemblies. At the level of developing single neurons, EPO treatment reduces the typical increase in excitatory synaptic transmission without changing the number of synaptic boutons, consistent with prolonged functional silencing of synapses. Conclusion We conclude that EPO improves hippocampus dependent memory by modulating plasticity, synaptic connectivity and activity of memory-related neuronal networks. These mechanisms of action of EPO have to be further exploited for treating neuropsychiatric diseases. PMID:18782446

  18. Erythropoietin and Cancer: The Unintended Consequences of Anemia Correction

    PubMed Central

    Debeljak, Nataša; Solár, Peter; Sytkowski, Arthur J.

    2014-01-01

    Until 1990, erythropoietin (EPO) was considered to have a single biological purpose and action, the stimulation of red blood cell growth and differentiation. Slowly, scientific and medical opinion evolved, beginning with the discovery of an effect on endothelial cell growth in vitro and the identification of EPO receptors (EPORs) on neuronal cells. We now know that EPO is a pleiotropic growth factor that exhibits an anti-apoptotic action on numerous cells and tissues, including malignant ones. In this article, we present a short discussion of EPO, receptors involved in EPO signal transduction, and their action on non-hematopoietic cells. This is followed by a more detailed presentation of both pre-clinical and clinical data that demonstrate EPO’s action on cancer cells, as well as tumor angiogenesis and lymphangiogenesis. Clinical trials with reported adverse effects of chronic erythropoiesis-stimulating agents (ESAs) treatment as well as clinical studies exploring the prognostic significance of EPO and EPOR expression in cancer patients are reviewed. Finally, we address the use of EPO and other ESAs in cancer patients. PMID:25426117

  19. Use of erythropoietin and parenteral iron dextran in a severely anemic Jehovah's Witness with colon cancer.

    PubMed

    Madura, J A

    1993-10-01

    A Jehovah's Witness presented with colon cancer and profound anemia. On admission, her hemoglobin level was 30 g/L (3.0 g/dL). She refused all transfusions and failed to respond to oral iron therapy. She was ultimately prepared for surgery using recombinant human erythropoietin, iron dextran, and total parenteral nutrition. It took nearly 1 month to increase her hemoglobin level to an acceptable preoperative level of 110 g/L (11.0 g/dL). During the postoperative period, erythropoietin and parenteral iron therapy were briefly continued and a follow-up hemoglobin level of greater than 120 g/L (12.0 g/dL) was observed. Recombinant human erythropoietin, along with parenteral iron and adequate nutrition, may be useful in patients who refuse transfusion or cannot be transfused because of difficult cross-reacting antibodies.

  20. Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial.

    PubMed

    Nichol, Alistair; French, Craig; Little, Lorraine; Haddad, Samir; Presneill, Jeffrey; Arabi, Yaseen; Bailey, Michael; Cooper, D James; Duranteau, Jacques; Huet, Olivier; Mak, Anne; McArthur, Colin; Pettilä, Ville; Skrifvars, Markus; Vallance, Shirley; Varma, Dinesh; Wills, Judy; Bellomo, Rinaldo

    2015-12-19

    Erythropoietin might have neurocytoprotective effects. In this trial, we studied its effect on neurological recovery, mortality, and venous thrombotic events in patients with traumatic brain injury. Erythropoietin in Traumatic Brain Injury (EPO-TBI) was a double-blind, placebo-controlled trial undertaken in 29 centres (all university-affiliated teaching hospitals) in seven countries (Australia, New Zealand, France, Germany, Finland, Ireland, and Saudi Arabia). Within 24 h of brain injury, 606 patients were randomly assigned by a concealed web-based computer-generated randomisation schedule to erythropoietin (40,000 units subcutaneously) or placebo (0·9% sodium chloride subcutaneously) once per week for a maximum of three doses. Randomisation was stratified by severity of traumatic brain injury (moderate vs severe) and participating site. With the exception of designated site pharmacists, the site dosing nurses at all sites, and the pharmacists at the central pharmacy in France, all study personnel, patients, and patients' relatives were masked to treatment assignment. The primary outcome, assessed at 6 months by modified intention-to-treat analysis, was improvement in the patients' neurological status, summarised as a reduction in the proportion of patients with an Extended Glasgow Outcome Scale (GOS-E) of 1-4 (death, vegetative state, and severe disability). Two equally spaced preplanned interim analyses were done (after 202 and 404 participants were enrolled). This study is registered with ClinicalTrials.gov, number NCT00987454. Between May 3, 2010, and Nov 1, 2014, 606 patients were enrolled and randomly assigned to erythropoietin (n=308) or placebo (n=298). Ten of these patients (six in the erythropoietin group and four in the placebo group) were lost to follow up at 6 months; therefore, data for the primary outcome analysis was available for 596 patients (302 in the erythropoietin group and 294 in the placebo group). Compared with placebo, erythropoietin did

  1. The anemia of microgravity and recumbency. Role of sympathetic neural control of erythropoietin production

    NASA Astrophysics Data System (ADS)

    Robertson, David; Krantz, Sanford B.; Biaggioni, Italo

    We hypothesize that reduced sympathetic stimulation of erythropoietin production may maintain the anemia which develops in virtually all space travellers. We tested this hypothesis in a human model of reduced sympathetic activity. Thirty-three patients with the Bradbury-Eggleston syndrome were divided into three groups according to their hemoglobin (Hgb) level. Patients with low Hgb had lower upright norepinephrine and lower upright renin. Patients with anemia also had inappropriately low plasma erythropoietin levels. We administered recombinant erythropoietin (Epogen) 25-50 units/kg s.c. 3 times per week and found that the anemia seen in autonomic failure could be reversed by this treatment. These results support the hypothesis that erythropoiesis is modulated by the sympathetic nervous system and that such mechanisms may also operate in the microgravity environment where sympathetic activity is reduced.

  2. Grafted Neural Precursors Integrate Into Mouse Striatum, Differentiate and Promote Recovery of Function Through Release of Erythropoietin in MPTP-Treated Mice

    PubMed Central

    Giallongo, Toniella; Viaggi, Cristina; Gombalova, Zuzana; Latorre, Elisa; Mazza, Massimiliano; Vaglini, Francesca; Di Giulio, Anna Maria; Gorio, Alfredo

    2016-01-01

    Erythropoietin-releasing neural precursor cells (Er-NPCs) are a subclass of subventricular zone-derived neural progenitors, capable of surviving for 6 hr after death of donor. They present higher neural differentiation. Here, Er-NPCs were studied in animal model of Parkinson’s disease. Dopaminergic degeneration was caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intraperitoneal administration in C57BL/6 mice. The loss of function was evaluated by specific behavioral tests. Er-NPCs (2.5 × 105) expressing the green fluorescent protein were administered by stereotaxic injection unilaterally in the left striatum. At the end of observational research period (2 weeks), most of the transplanted Er-NPCs were located in the striatum, while several had migrated ventrally and caudally from the injection site, up to ipsilateral and contralateral substantia nigra. Most of transplanted cells had differentiated into dopaminergic, cholinergic, or GABAergic neurons. Er-NPCs administration also promoted a rapid functional improvement that was already evident at the third day after cells administration. This was accompanied by enhanced survival of nigral neurons. These effects were likely promoted by Er-NPCs-released erythropoietin (EPO), since the injection of Er-NPCs in association with anti-EPO or anti-EPOR antibodies had completely neutralized the recovery of function. In addition, intrastriatal administration of recombinant EPO mimics the effects of Er-NPCs. We suggest that Er-NPCs, and cells with similar properties, may represent good candidates for cellular therapy in neurodegenerative disorders of this kind. PMID:27789613

  3. Recombinant human erythropoietin suppresses endothelial cell apoptosis and reduces the ratio of Bax to Bcl-2 proteins in the aortas of apolipoprotein E-deficient mice

    PubMed Central

    Warren, Jeffrey S.; Zhao, Ying; Yung, Raymond; Desai, Anjali

    2013-01-01

    Recent clinical trials have raised concern that therapy with recombinant human erythropoietin (EPO) may increase cardiovascular disease risk, event rate, and mortality. Endothelial cell (EC) apoptosis has been implicated in both atherogenesis as well as in the destabilization and rupture of atheromatous plaques. In the current study we observed that EPO and the EPO-mimetic peptide EMP-1 markedly suppressed lipopolysaccharide-induced apoptosis in EC monolayers. Therapeutic concentrations of EPO upregulated Bcl-2 expression while concurrently diminishing expression of Bax, resulting in a net decrease in the ratio of Bax to Bcl-2 protein concentrations. In vivo studies demonstrated that erythropoietin receptor (EPOR) is abundantly expressed in murine aorta and that EPO treatment for 10 weeks markedly decreased the ratio of Bax to Bcl-2 protein in the aortas of apolipoprotein E-deficient (APO E-KO) mice fed a high-fat diet. To our knowledge these data are the first to reveal a modulation of regulators of the apoptotic pathway in murine aorta by chronic EPO treatment. These observations imply that long-term administration of EPO may have the potential to affect plaque stability. PMID:21242808

  4. The anemia of primary autonomic failure and its reversal with recombinant erythropoietin

    NASA Technical Reports Server (NTRS)

    Biaggioni, I.; Robertson, D.; Krantz, S.; Jones, M.; Haile, V.

    1994-01-01

    OBJECTIVE: To determine if chronic sympathetic deprivation is associated with anemia and a low erythropoietin response. DESIGN: Survey of the prevalence and characteristics of anemia in patients with severe primary autonomic failure. SETTING: A referral service for autonomic failure in a tertiary teaching hospital. PATIENTS: 84 patients with primary autonomic failure who had symptomatic orthostatic hypotension. INTERVENTION: Open-label trial with human recombinant erythropoietin. RESULTS: Anemia was present in 32 of 84 patients (38%; 95% Cl, 27% to 50%). Plasma norepinephrine levels, measured in patients standing upright, were lower in the patient group with lower hemoglobin levels. Mean values in 22 patients with a hemoglobin level of less than 120 g/L were as follows: hemoglobin, 108 g/L (range, 87 to 118 g/L); hematocrit, 0.33; corrected reticulocyte counts, 0.008; mean corpuscular volume, 89 fL (89 microns 3); serum iron, 16.5 mumol/L (92 micrograms/dL); total iron binding capacity, 43.3 mumol/L (242 micrograms/dL); ferritin, 184 micrograms/L; serum vitamin B12, 410 pmol/L (556 pg/mL); and serum folate, 22.7 nmol/L (10 ng/mL). No relation was found between serum erythropoietin and blood hemoglobin levels. In seven of nine patients with autonomic failure who had hemoglobin levels less than 120 g/L, serum erythropoietin levels decreased below the 95% confidence interval corresponding to patients with iron deficiency anemia. Therapy with recombinant erythropoietin improved mean hemoglobin levels (from 108 to 133 g/L) in all patients treated (n = 5) at relatively low doses (25 to 50 units/kg body weight, subcutaneously, three times a week). CONCLUSIONS: Our data support the hypothesis that the sympathetic nervous system stimulates erythropoiesis in humans because anemia is a frequent occurrence in patients with severe autonomic failure and is associated with a blunted erythropoietin response.

  5. The anemia of primary autonomic failure and its reversal with recombinant erythropoietin

    NASA Technical Reports Server (NTRS)

    Biaggioni, I.; Robertson, D.; Krantz, S.; Jones, M.; Haile, V.

    1994-01-01

    OBJECTIVE: To determine if chronic sympathetic deprivation is associated with anemia and a low erythropoietin response. DESIGN: Survey of the prevalence and characteristics of anemia in patients with severe primary autonomic failure. SETTING: A referral service for autonomic failure in a tertiary teaching hospital. PATIENTS: 84 patients with primary autonomic failure who had symptomatic orthostatic hypotension. INTERVENTION: Open-label trial with human recombinant erythropoietin. RESULTS: Anemia was present in 32 of 84 patients (38%; 95% Cl, 27% to 50%). Plasma norepinephrine levels, measured in patients standing upright, were lower in the patient group with lower hemoglobin levels. Mean values in 22 patients with a hemoglobin level of less than 120 g/L were as follows: hemoglobin, 108 g/L (range, 87 to 118 g/L); hematocrit, 0.33; corrected reticulocyte counts, 0.008; mean corpuscular volume, 89 fL (89 microns 3); serum iron, 16.5 mumol/L (92 micrograms/dL); total iron binding capacity, 43.3 mumol/L (242 micrograms/dL); ferritin, 184 micrograms/L; serum vitamin B12, 410 pmol/L (556 pg/mL); and serum folate, 22.7 nmol/L (10 ng/mL). No relation was found between serum erythropoietin and blood hemoglobin levels. In seven of nine patients with autonomic failure who had hemoglobin levels less than 120 g/L, serum erythropoietin levels decreased below the 95% confidence interval corresponding to patients with iron deficiency anemia. Therapy with recombinant erythropoietin improved mean hemoglobin levels (from 108 to 133 g/L) in all patients treated (n = 5) at relatively low doses (25 to 50 units/kg body weight, subcutaneously, three times a week). CONCLUSIONS: Our data support the hypothesis that the sympathetic nervous system stimulates erythropoiesis in humans because anemia is a frequent occurrence in patients with severe autonomic failure and is associated with a blunted erythropoietin response.

  6. Incidence of erythropoietin antibody-mediated pure red cell aplasia: the Prospective Immunogenicity Surveillance Registry (PRIMS)

    PubMed Central

    Macdougall, Iain C.; Casadevall, Nicole; Locatelli, Francesco; Combe, Christian; London, Gerard M.; Di Paolo, Salvatore; Kribben, Andreas; Fliser, Danilo; Messner, Hans; McNeil, John; Stevens, Paul; Santoro, Antonio; De Francisco, Angel L.M.; Percheson, Paul; Potamianou, Anna; Foucher, Arnaud; Fife, Daniel; Mérit, Véronique; Vercammen, Els

    2015-01-01

    Background Subcutaneous administration of Eprex® (epoetin alfa) in patients with chronic kidney disease (CKD) was contraindicated in the European Union between 2002 and 2006 after increased reports of anti-erythropoietin antibody-mediated pure red cell aplasia (PRCA). The Prospective Immunogenicity Surveillance Registry (PRIMS) was conducted to estimate the incidence of antibody-mediated PRCA with subcutaneous administration of a new coated-stopper syringe presentation of Eprex® and to compare this with the PRCA incidence with subcutaneous NeoRecormon® (epoetin beta) and Aranesp® (darbepoetin alfa). Methods PRIMS was a multicentre, multinational, non-interventional, parallel-group, immunogenicity surveillance registry. Adults with CKD receiving or about to initiate subcutaneous Eprex®, NeoRecormon® or Aranesp® for anaemia were enrolled and followed for up to 3 years. Unexplained loss or lack of effect (LOE), including suspected PRCA, was reported, with antibody testing for confirmation of PRCA. Results Of the 15 333 patients enrolled, 5948 received Eprex® (8377 patient-years) and 9356 received NeoRecormon®/Aranesp® (14 286 patient-years). No treatment data were available for 29 patients. Among 23 patients with LOE, five cases of PRCA were confirmed (Eprex®, n = 3; NeoRecormon®, n = 1; Aranesp®, n = 1). Based on exposed time, PRCA incidence was 35.8/100 000 patient-years (95% CI 7.4–104.7) for Eprex® versus 14.0/100 000 patient-years (95% CI 1.7–50.6) for NeoRecormon®/Aranesp®. The incidence of PRCA with Eprex® was not significantly different versus comparator ESAs (rate ratio: 2.56; 95% CI 0.43–15.31). An analysis based on observed time produced similar findings. Conclusion This large, prospective registry demonstrates that PRCA is rare with subcutaneous administration of either the new coated-stopper syringe presentation of Eprex®, or NeoRecormon® or Aranesp®. PMID:25239637

  7. Protective effects of erythropoietin against acute lung injury in a rat model of acute necrotizing pancreatitis

    PubMed Central

    Tascilar, Oge; Cakmak, Güldeniz Karadeniz; Tekin, Ishak Ozel; Emre, Ali Ugur; Ucan, Bulent Hamdi; Bahadir, Burak; Acikgoz, Serefden; Irkorucu, Oktay; Karakaya, Kemal; Balbaloglu, Hakan; Kertis, Gürkan; Ankarali, Handan; Comert, Mustafa

    2007-01-01

    AIM: To investigate the effect of exogenous erythro-poietin (EPO) administration on acute lung injury (ALI) in an experimental model of sodium taurodeoxycholate-induced acute necrotizing pancreatitis (ANP). METHODS: Forty-seven male Wistar albino rats were randomly divided into 7 groups: sham group (n = 5), 3 ANP groups (n = 7 each) and 3 EPO groups (n = 7 each). ANP was induced by retrograde infusion of 5% sodium taurodeoxycholate into the common bile duct. Rats in EPO groups received 1000 U/kg intramuscular EPO immediately after induction of ANP. Rats in ANP groups were given 1 mL normal saline instead. All animals were sacrificed at postoperative 24 h, 48 h and 72 h. Serum amilase, IL-2, IL-6 and lung tissue malondialdehyde (MDA) were measured. Pleural effusion volume and lung/body weight (LW/BW) ratios were calculated. Tissue levels of TNF-α, IL-2 and IL-6 were screened immunohistochemically. Additionally, ox-LDL accumulation was assessed with immune-fluorescent staining. Histopathological alterations in the lungs were also scored. RESULTS: The mean pleural effusion volume, calculated LW/BW ratio, serum IL-6 and lung tissue MDA levels were significantly lower in EPO groups than in ANP groups. No statistically significant difference was observed in either serum or tissue values of IL-2 among the groups. The level of tumor necrosis factor-α (TNF-α) and IL-6 and accumulation of ox-LDL were evident in the lung tissues of ANP groups when compared to EPO groups, particularly at 72 h. Histopathological evaluation confirmed the improvement in lung injury parameters after exogenous EPO administration, particularly at 48 h and 72 h. CONCLUSION: EPO administration leads to a significant decrease in ALI parameters by inhibiting polymorphonuclear leukocyte (PMNL) accumulation, decreasing the levels of proinflammatory cytokines in circulation, preserving microvascular endothelial cell integrity and reducing oxidative stress-associated lipid peroxidation and therefore, can

  8. Effect of exercise conditioning on red blood cell volume and erythropoietin concentration in the beagle dog.

    PubMed

    Mägerlein, H U; Heffner, S A; Fedde, M R

    1990-09-01

    To determine if endurance conditioning has a stimulating effect on red blood cell and erythropoietin production, we exercised five beagle dogs on a motor-driven treadmill for 1 hour per day, 5 days per week, for 6 weeks at a speed near their maximal capability. Three additional beagles were kept in cages and served as nonconditioned controls. Endurance conditioning in these dogs produced no increase in red blood cell mass, serum erythropoietin concentration, or any other blood cell index measured. We conclude that this type of exercise conditioning does not produce the necessary stimulus for an increase in erythropoiesis.

  9. Comparison of Neurite Outgrowth Induced by Erythropoietin (EPO) and Carbamylated Erythropoietin (CEPO) in Hippocampal Neural Progenitor Cells.

    PubMed

    Oh, Dong Hoon; Lee, In Young; Choi, Miyeon; Kim, Seok Hyeon; Son, Hyeon

    2012-08-01

    A previous animal study has shown the effects of erythropoietin (EPO) and its non-erythropoietic carbamylated derivative (CEPO) on neurogenesis in the dentate gyrus. In the present study, we sought to investigate the effect of EPO on adult hippocampal neurogenesis, and to compare the ability of EPO and CEPO promoting dendrite elongation in cultured hippocampal neural progenitor cells. Two-month-old male BALB/c mice were given daily injections of EPO (5 U/g) for seven days and were sacrificed 12 hours after the final injection. Proliferation assays demonstrated that EPO treatment increased the density of bromodeoxyuridine (BrdU)-labeled cells in the subgranular zone (SGZ) compared to that in vehicle-treated controls. Functional differentiation studies using dissociated hippocampal cultures revealed that EPO treatment also increased the number of double-labeled BrdU/microtubule-associated protein 2 (MAP2) neurons compared to those in vehicle-treated controls. Both EPO and CEPO treatment significantly increased the length of neurites and spine density in MAP2(+) cells. In summary, these results provide evidences that EPO and CEPO promote adult hippocampal neurogenesis and neuronal differentiation. These suggest that EPO and CEPO could be a good candidate for treating neuropsychiatric disorders such as depression and anxiety associated with neuronal atrophy and reduced hippocampal neurogenesis.

  10. Erythropoietin messenger RNA levels in developing mice and transfer of /sup 125/I-erythropoietin by the placenta

    SciTech Connect

    Koury, M.J.; Bondurant, M.C.; Graber, S.E.; Sawyer, S.T.

    1988-07-01

    Erythropoietin (EP) mRNA was measured in normal and anemic mice during fetal and postnatal development. Normal fetal livers at 14 d of gestation contained a low level of EP mRNA. By day 19 of gestation, no EP mRNA was detected in normal or anemic fetal livers or normal fetal kidneys, but anemic fetal kidneys had low levels of EP mRNA. Newborn through adult stage mice responded to anemia by accumulating renal and hepatic EP mRNA. However, total liver EP mRNA was considerably less than that of the kidneys. Juvenile animals, 1-4 wk old, were hyperresponsive to anemia in that they produced more EP mRNA than adults. Moreover, nonanemic juveniles had readily measured renal EP mRNA, whereas the adult level was at the lower limit of detection. Because of the very low level of fetal EP mRNA, placental transfer of EP was evaluated. When administered to the pregnant mouse, /sup 125/I-EP was transferred in significant amounts to the fetuses. These results indicate that in mice the kidney is the main organ of EP production at all stages of postnatal development and that adult kidney may also play some role in providing EP for fetal erythropoiesis via placental transfer of maternal hormone.

  11. Association of JAK2 and STAT5 with erythropoietin receptors. Role of receptor phosphorylation in erythropoietin signal transduction.

    PubMed

    Sawyer, S T; Penta, K

    1996-12-13

    Cytokine receptors act at least partially by associating with Janus tyrosine protein kinases at the conserved box one motif of the receptor. These receptor-associated kinases then activate STAT transcription factors through phosphorylation. We found that the 78-kDa erythropoietin receptor (EPOR), a highly modified form of the 66-kDa receptor which is abundant in HCD57 cells, was phosphorylated on serine residues without EPO stimulation. Coprecipitation experiments showed the 78-kDa EPOR but not the more abundant 66-kDa EPOR was associated with JAK2, a Janus protein kinase, in both the presence and absence of EPO. Solubilized 78-kDa EPOR bound to purified, genetically engineered JAK2 better than the 62-76-kDa receptor proteins, and additional phosphorylation of tyrosine residues further increased the binding of the 78-kDa EPOR to JAK2-agarose beads. STAT5 DNA binding was activated by 10-100-fold lower concentrations of EPO in HCD57 cells than in primary erythroid cells, and STAT5 associated with the EPOR in an EPO-dependent manner. These data suggest that phosphorylation of either serine or tyrosine residues of the EPOR can enhance the association of the receptor with JAK2, possibly increasing the sensitivity to EPO.

  12. Epobis is a Nonerythropoietic and Neuroprotective Agonist of the Erythropoietin Receptor with Anti-Inflammatory and Memory Enhancing Effects.

    PubMed

    Dmytriyeva, Oksana; Pankratova, Stanislava; Korshunova, Irina; Walmod, Peter S

    2016-01-01

    The cytokine erythropoietin (EPO) stimulates proliferation and differentiation of erythroid progenitor cells. Moreover, EPO has neuroprotective, anti-inflammatory, and antioxidative effects, but the use of EPO as a neuroprotective agent is hampered by its erythropoietic activity. We have recently designed the synthetic, dendrimeric peptide, Epobis, derived from the sequence of human EPO. This peptide binds the EPO receptor and promotes neuritogenesis and neuronal cell survival. Here we demonstrate that Epobis in vitro promotes neuritogenesis in primary motoneurons and has anti-inflammatory effects as demonstrated by its ability to decrease TNF release from activated AMJ2-C8 macrophages and rat primary microglia. When administered systemically Epobis is detectable in both plasma and cerebrospinal fluid, demonstrating that the peptide crosses the blood-brain barrier. Importantly, Epobis is not erythropoietic, but systemic administration of Epobis in rats delays the clinical signs of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, and the peptide has long-term, but not short-term, effects on working memory, detected as an improved social memory 3 days after administration. These data reveal Epobis to be a nonerythropoietic and neuroprotective EPO receptor agonist with anti-inflammatory and memory enhancing properties.

  13. Effect of recombinant human erythropoietin on mitomycin C-induced oxidative stress and genotoxicity in rat kidney and heart tissues.

    PubMed

    Rjiba-Touati, K; Ayed-Boussema, I; Guedri, Y; Achour, A; Bacha, H; Abid-Essefi, S

    2016-01-01

    Mitomycin C (MMC) is an antineoplastic agent used for the treatment of several human malignancies. Nevertheless, the prolonged use of the drug may result in a serious heart and kidney injuries. Recombinant human erythropoietin (rhEPO) has recently been shown to exert an important cytoprotective effect in experimental brain injury and ischemic acute renal failure. The aim of the present work is to investigate the cardioprotective and renoprotective effects of rhEPO against MMC-induced oxidative damage and genotoxicity. Our results showed that MMC induced oxidative stress and DNA damage. rhEPO administration in any treatment conditions decreased oxidative damage induced by MMC. It reduced malondialdehyde and protein carbonyl levels. rhEPO ameliorated reduced glutathione plus oxidized glutathione modulation and the increased catalase activity after MMC treatment. Furthermore, rhEPO restored DNA damage caused by MMC. We concluded that rhEPO administration especially in pretreatment condition protected rats against MMC-induced heart and renal oxidative stress and genotoxicity.

  14. Localized and sustained delivery of erythropoietin from PLGA microspheres promotes functional recovery and nerve regeneration in peripheral nerve injury.

    PubMed

    Zhang, Wei; Gao, Yuan; Zhou, Yan; Liu, Jianheng; Zhang, Licheng; Long, Anhua; Zhang, Lihai; Tang, Peifu

    2015-01-01

    Erythropoietin (EPO) has been demonstrated to exert neuroprotective effects on peripheral nerve injury recovery. Though daily intraperitoneal injection of EPO during a long period of time was effective, it was a tedious procedure. In addition, only limited amount of EPO could reach the injury sites by general administration, and free EPO is easily degraded in vivo. In this study, we encapsulated EPO in poly(lactide-co-glycolide) (PLGA) microspheres. Both in vitro and in vivo release assays showed that the EPO-PLGA microspheres allowed sustained release of EPO within a period of two weeks. After administration of such EPO-PLGA microspheres, the peripheral nerve injured rats had significantly better recovery compared with those which received daily intraperitoneal injection of EPO, empty PLGA microspheres, or saline treatments. This was supported by the functional, electrophysiological, and histological evaluations of the recovery done at week 8 postoperatively. We conclude that sustained delivery of EPO could be achieved by using EPO-PLGA microspheres, and such delivery method could further enhance the recovery function of EPO in nerve injury recovery.

  15. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    PubMed

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels.

  16. Epobis is a Nonerythropoietic and Neuroprotective Agonist of the Erythropoietin Receptor with Anti-Inflammatory and Memory Enhancing Effects

    PubMed Central

    Korshunova, Irina

    2016-01-01

    The cytokine erythropoietin (EPO) stimulates proliferation and differentiation of erythroid progenitor cells. Moreover, EPO has neuroprotective, anti-inflammatory, and antioxidative effects, but the use of EPO as a neuroprotective agent is hampered by its erythropoietic activity. We have recently designed the synthetic, dendrimeric peptide, Epobis, derived from the sequence of human EPO. This peptide binds the EPO receptor and promotes neuritogenesis and neuronal cell survival. Here we demonstrate that Epobis in vitro promotes neuritogenesis in primary motoneurons and has anti-inflammatory effects as demonstrated by its ability to decrease TNF release from activated AMJ2-C8 macrophages and rat primary microglia. When administered systemically Epobis is detectable in both plasma and cerebrospinal fluid, demonstrating that the peptide crosses the blood-brain barrier. Importantly, Epobis is not erythropoietic, but systemic administration of Epobis in rats delays the clinical signs of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, and the peptide has long-term, but not short-term, effects on working memory, detected as an improved social memory 3 days after administration. These data reveal Epobis to be a nonerythropoietic and neuroprotective EPO receptor agonist with anti-inflammatory and memory enhancing properties. PMID:27990061

  17. A re-assessment of erythropoietin as a neuroprotective agent following rat spinal cord compression or contusion injury.

    PubMed

    Pinzon, Alberto; Marcillo, Alexander; Pabon, Diego; Bramlett, Helen M; Bunge, Mary Bartlett; Dietrich, W Dalton

    2008-09-01

    This study was initiated due to an NIH "Facilities of Research--Spinal Cord Injury" contract to support independent replication of published studies that appear promising for eventual clinical testing. We repeated a study reporting the beneficial effects of recombinant human erythropoietin (rhEPO) treatment after spinal cord injury (SCI). Moderate thoracic SCI was produced by two methods: 1) compression due to placement of a modified aneurysm clip (20 g, 10 s) at the T3 spinal segment (n=45) [followed by administration of rhEPO 1000 IU/kg/IP in 1 or 3 doses (treatment groups)] and 2) contusion by means of the MASCIS impactor (n = 42) at spinal T9 (height 12.5 cm, weight 10 g) [followed by the administration of rhEPO 5000 IU/kg/IP for 7d or single dose (treatment groups)]. The use of rhEPO following moderate compressive or contusive injury of the thoracic spinal cord did not improve the locomotor behavior (BBB rating scale). Also, secondary changes (i.e. necrotic changes followed by cavitation) were not significantly improved with rhEPO therapy. With these results, although we cannot conclude that there will be no beneficial effect in different SCI models, we caution researchers that the use of rhEPO requires further investigation before implementing clinical trials.

  18. A Re-assessment of Erythropoietin as a Neuroprotective Agent Following Rat Spinal Cord Compression or Contusion Injury

    PubMed Central

    Pinzon, Alberto; Marcillo, Alexander; Pabon, Diego; Bramlett, Helen M.; Bunge, Mary Bartlett; Dietrich, W. Dalton

    2011-01-01

    This study was initiated due to an NIH “Facilities of Research – Spinal Cord Injury” contract to support independent replication of published studies that appear promising for eventual clinical testing. We repeated a study reporting the beneficial effects of recombinant human erythropoietin (rhEPO) treatment after spinal cord injury (SCI). Moderate thoracic SCI was produced by two methods: 1) compression due to placement of a modified aneurysm clip (20g, 10 seconds) at the T3 spinal segment (n=45) [followed by administration of rhEPO 1000 IU/kg/IP in 1 or 3 doses (treatment groups)] and 2) contusion by means of the MASCIS impactor (n=42) at spinal T9 (height 12.5 cm, weight 10 g) [followed by the administration of rhEPO 5000 IU/kg/IP/7d or single dose (treatment groups)]. The use of rhEPO following moderate compressive or contusive injury of the thoracic spinal cord did not improve the locomotor behavior (BBB rating scale). Also, secondary changes (i.e. necrotic changes followed by cavitation) were not significantly improved with rhEPO therapy. With these results, although we cannot conclude that there will be no beneficial effect in different SCI models, we caution researchers that the use of rhEPO requires further investigation before implementing clinical trials. PMID:18625498

  19. Darbepoietin-alfa has comparable erythropoietic stimulatory effects to recombinant erythropoietin whilst preserving the bone marrow microenvironment.

    PubMed

    Dewamitta, Sita R; Russell, Megan R; Nandurkar, Harshal; Walkley, Carl R

    2013-05-01

    Erythropoiesis stimulating agents are widely used for the treatment of anemia. Recently, we reported erythroid expansion with impaired B lymphopoiesis and loss of trabecular bone in C57BL/6 mice following ten days of treatment with low-dose short acting recombinant human erythropoietin. We have assessed erythropoietin against longer-acting darbepoietin-alfa at a comparable erythroid stimulatory dosage regime. Darbepoietin-alfa and erythropoietin induced similar in vivo erythropoietic expansion. Both agents induced an expansion of the colony-forming unit-erythroid populations. However, unlike erythropoietin, darbepoietin-alfa did not impair bone marrow B lymphopoiesis. Strikingly the bone loss observed with erythropoietin was not apparent following darbepoietin-alfa treatment. This analysis demonstrates that whilst darbepoietin-alfa has similar in vivo erythropoietic potency to erythropoietin, it preserves the bone marrow microenvironment. Thus erythropoietin and darbepoietin-alfa manifest different action showing that erythropoiesis stimulating agents have differential non-erythroid effects dependent on their duration of action.

  20. Effects of systemic erythropoietin on ischemic wound healing in rats.

    PubMed

    Arslantaş, Mustafa Kemal; Arslantaş, Reyhan; Tozan, Emine Nur

    2015-03-01

    Results of in vivo studies have shown erythropoietin (EPO) is associated with anti-inflammatory, anti-apoptotic, and cell protective effects on wound healing. These effects are dose-dependent. The aim of this study was to evaluate whether the duration of EPO treatment affects the healing process in the ischemic wound. Forty-two (42) Sprague-Dawley rats were anesthetized, wounded with H-shaped flaps, and randomized to 2 groups; Group 1 received 400 u/kg/day EPO and Group 2 received a saline solution, both via intraperitoneal injection following the wounding. All substances were administered once daily at the same time for up to 10 days after surgery. At days 3, 5, and 10, 7 rats from each group were sacrificed. Skin samples were stained with hematoxylin/eosin, viewed under an optical microscope at 10X and 40X magnification, and analyzed by blinded investigators for re-epithelialization, neovascularization amount and maturation of granulation tissue, inflammatory cells, and ulcer healing using an evaluation scale where 0 = none; 1 = partial; 2 = complete, but immature/thin: and 4 = complete and mature. Blood hemoglobin and hematocrit levels also were measured. Data were analyzed using ANOVA one-way test (P <0.05). Hemoglobin and hematocrit levels rose while subsequent doses of EPO were administered over time, accompanied by a transient surge in healing on day 5, when differences in healing scores were significant. Flap necrosis, ulceration, and abscess were noted on post-wounding day 10 near the pedicle. The study showed EPO therapy can improve wound healing early in the post-wounding period but can reduce wound healing after post-injury treatment day 5. Further research is necessary, particularly to establish how EPO influences the microcirculation and rheology.

  1. Protection against cisplatin-induced nephrotoxicity by recombinant human erythropoietin.

    PubMed

    Yalcin, Suayib; Müftüoğlu, Sevda; Cetin, Eren; Sarer, Banu; Yildirim, Berna Akkuş; Zeybek, Dilara; Orhan, Bülent

    2003-01-01

    Cisplatin (CDDP) is a potent nephrotoxin, and nephrotoxicity is its most important dose-limiting toxicity. In this study, we aimed to investigate the role of recombinant human erythropoietin (rhEPO) in the protection of cisplatin-induced nephrotoxicity and compare its efficacy with the cell-protective agent amifostine. All experiments were conducted on female Wistar albino rats. Animals were randomly assigned to four groups, each including six rats. Group A received only CDDP, group B received CDDP plus rhEPO, group C received CDDP plus amifostine, and group D received only rhEPO. At the end of 7 wk, hemoglobin (Hgb), hematocrite (Htc), blood urea nitrogen (BUN), and creatinine (Cr) levels were determined and kidneys of the rats were removed. The weights of the kidneys were measured and sent for histopathological examination. Proximal tubules from four areas of the kidney (outer cortex, inner cortex, the medullary ray, and outer stripe of outer medulla [OSOM]) were evaluated. There were statistically significant differences among the groups in terms of tubular scores, including overall renal tubular score, cortex, inner cortex, OSOM, and medullary ray tubular scores, and Htc levels. Group A rats had the worse tubular scores in all categories when compared to group D rats. When the results of groups B and C were compared, there were no differences in terms of BUN, Cr levels, and tubular scores, but the Htc level was significantly higher in group B. Group B rats had better overall and OSOM tubular scores when compared to group A. Group C also had better overall and OSOM tubular scores compared to group A. The present study showed for the first time that rhEPO plays an important role in the prevention of cisplatin-induced nephrotoxicity and it is as effective as amifostine.

  2. Plant recombinant erythropoietin attenuates inflammatory kidney cell injury.

    PubMed

    Conley, Andrew J; Mohib, Kanishka; Jevnikar, Anthony M; Brandle, Jim E

    2009-02-01

    Human erythropoietin (EPO) is a pleiotropic cytokine with remarkable tissue-protective activities in addition to its well-established role in red blood cell production. Unfortunately, conventional mammalian cell cultures are unlikely to meet the anticipated market demands for recombinant EPO because of limited capacity and high production costs. Plant expression systems may address these limitations to enable practical, cost-effective delivery of EPO in tissue injury prevention therapeutics. In this study, we produced human EPO in tobacco and demonstrated that plant-derived EPO had tissue-protective activity. Our results indicated that targeting to the endoplasmic reticulum (ER) provided the highest accumulation levels of EPO, with a yield approaching 0.05% of total soluble protein in tobacco leaves. The codon optimization of the human EPO gene for plant expression had no clear advantage; furthermore, the human EPO signal peptide performed better than a tobacco signal peptide. In addition, we found that glycosylation was essential for the stability of plant recombinant EPO, whereas the presence of an elastin-like polypeptide fusion had a limited positive impact on the level of EPO accumulation. Confocal microscopy showed that apoplast and ER-targeted EPO were correctly localized, and N-glycan analysis demonstrated that complex plant glycans existed on apoplast-targeted EPO, but not on ER-targeted EPO. Importantly, plant-derived EPO had enhanced receptor-binding affinity and was able to protect kidney epithelial cells from cytokine-induced death in vitro. These findings demonstrate that tobacco plants may be an attractive alternative for the production of large amounts of biologically active EPO.

  3. Targeted erythropoietin selectively stimulates red blood cell expansion in vivo

    PubMed Central

    Burrill, Devin R.; Vernet, Andyna; Collins, James J.; Silver, Pamela A.; Way, Jeffrey C.

    2016-01-01

    The design of cell-targeted protein therapeutics can be informed by natural protein–protein interactions that use cooperative physical contacts to achieve cell type specificity. Here we applied this approach in vivo to the anemia drug erythropoietin (EPO), to direct its activity to EPO receptors (EPO-Rs) on red blood cell (RBC) precursors and prevent interaction with EPO-Rs on nonerythroid cells, such as platelets. Our engineered EPO molecule was mutated to weaken its affinity for EPO-R, but its avidity for RBC precursors was rescued via tethering to an antibody fragment that specifically binds the human RBC marker glycophorin A (huGYPA). We systematically tested the impact of these engineering steps on in vivo markers of efficacy, side effects, and pharmacokinetics. huGYPA transgenic mice dosed with targeted EPO exhibited elevated RBC levels, with only minimal platelet effects. This in vivo selectivity depended on the weakening EPO mutation, fusion to the RBC-specific antibody, and expression of huGYPA. The terminal plasma half-life of targeted EPO was ∼28.3 h in transgenic mice vs. ∼15.5 h in nontransgenic mice, indicating that huGYPA on mature RBCs acted as a significant drug sink but did not inhibit efficacy. In a therapeutic context, our targeting approach may allow higher restorative doses of EPO without platelet-mediated side effects, and also may improve drug pharmacokinetics. These results demonstrate how rational drug design can improve in vivo specificity, with potential application to diverse protein therapeutics. PMID:27114509

  4. Recombinant human erythropoietin improves neurological outcomes in very preterm infants

    PubMed Central

    Song, Juan; Sun, Huiqing; Xu, Falin; Kang, Wenqing; Gao, Liang; Guo, Jiajia; Zhang, Yanhua; Xia, Lei; Wang, Xiaoyang

    2016-01-01

    Objective To evaluate the efficacy and safety of repeated low‐dose human recombinant erythropoietin (rhEPO) in the improvement of neurological outcomes in very preterm infants. Methods A total of 800 infants of ≤32‐week gestational age who had been in an intensive care unit within 72 hours after birth were included in the trial between January 2009 and June 2013. Preterm infants were randomly assigned to receive rhEPO (500IU/kg; n = 366) or placebo (n = 377) intravenously within 72 hours after birth and then once every other day for 2 weeks. The primary outcome was death or moderate to severe neurological disability assessed at 18 months of corrected age. Results Death and moderate/severe neurological disability occurred in 91 of 338 very preterm infants (26.9%) in the placebo group and in 43 of 330 very preterm infants (13.0%) in the rhEPO treatment group (relative risk [RR] = 0.40, 95% confidence interval [CI] = 0.27–0.59, p < 0.001) at 18 months of corrected age. The rate of moderate/severe neurological disability in the rhEPO group (22 of 309, 7.1%) was significantly lower compared to the placebo group (57 of 304, 18.8%; RR = 0.32, 95% CI = 0.19–0.55, p < 0.001), and no excess adverse events were observed. Interpretation Repeated low‐dose rhEPO treatment reduced the risk of long‐term neurological disability in very preterm infants with no obvious adverse effects. Ann Neurol 2016;80:24–34 PMID:27130143

  5. Charting a course for erythropoietin in traumatic brain injury

    PubMed Central

    Maiese, Kenneth

    2016-01-01

    Traumatic brain injury (TBI) is a severe public health problem that impacts more than four million individuals in the United States alone and is increasing in incidence on a global scale. Importantly, TBI can result in acute as well as chronic impairments for the nervous system leaving individuals with chronic disability and in instances of severe trauma, death becomes the ultimate outcome. In light of the significant negative health consequences of TBI, multiple therapeutic strategies are under investigation, but those focusing upon the cytokine and growth factor erythropoietin (EPO) have generated a great degree of enthusiasm. EPO can control cell death pathways tied to apoptosis and autophagy as well oversees processes that affect cellular longevity and aging. In vitro studies and experimental animal models of TBI have shown that EPO can restore axonal integrity, promote cellular proliferation, reduce brain edema, and preserve cellular energy homeostasis and mitochondrial function. Clinical studies for neurodegenerative disorders that involve loss of cognition or developmental brain injury support a positive role for EPO to prevent or reduce injury in the nervous system. However, recent clinical trials with EPO and TBI have not produced such clear conclusions. Further clinical studies are warranted to address the potential efficacy of EPO during TBI, the concerns with the onset, extent, and duration of EPO therapeutic strategies, and to focus upon the specific downstream pathways controlled by EPO such as protein kinase B (Akt), mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), sirtuins, wingless pathways, and forkhead transcription factors for improved precision against the detrimental effects of TBI. PMID:27081573

  6. Targeted erythropoietin selectively stimulates red blood cell expansion in vivo.

    PubMed

    Burrill, Devin R; Vernet, Andyna; Collins, James J; Silver, Pamela A; Way, Jeffrey C

    2016-05-10

    The design of cell-targeted protein therapeutics can be informed by natural protein-protein interactions that use cooperative physical contacts to achieve cell type specificity. Here we applied this approach in vivo to the anemia drug erythropoietin (EPO), to direct its activity to EPO receptors (EPO-Rs) on red blood cell (RBC) precursors and prevent interaction with EPO-Rs on nonerythroid cells, such as platelets. Our engineered EPO molecule was mutated to weaken its affinity for EPO-R, but its avidity for RBC precursors was rescued via tethering to an antibody fragment that specifically binds the human RBC marker glycophorin A (huGYPA). We systematically tested the impact of these engineering steps on in vivo markers of efficacy, side effects, and pharmacokinetics. huGYPA transgenic mice dosed with targeted EPO exhibited elevated RBC levels, with only minimal platelet effects. This in vivo selectivity depended on the weakening EPO mutation, fusion to the RBC-specific antibody, and expression of huGYPA. The terminal plasma half-life of targeted EPO was ∼28.3 h in transgenic mice vs. ∼15.5 h in nontransgenic mice, indicating that huGYPA on mature RBCs acted as a significant drug sink but did not inhibit efficacy. In a therapeutic context, our targeting approach may allow higher restorative doses of EPO without platelet-mediated side effects, and also may improve drug pharmacokinetics. These results demonstrate how rational drug design can improve in vivo specificity, with potential application to diverse protein therapeutics.

  7. Chloramine-induced haemolysis presenting as erythropoietin resistance.

    PubMed

    Fluck, S; McKane, W; Cairns, T; Fairchild, V; Lawrence, A; Lee, J; Murray, D; Polpitiye, M; Palmer, A; Taube, D

    1999-07-01

    In December 1996 we identified an outbreak of erythropoietin (rHuEpo) resistance requiring a substantial increase in rHuEpo dosage in one of our four haemodialysis (HD) units. The dialysate chloramine levels in this unit had risen from <0.1 p.p.m. in 1996 to 0.25-0.3 p.p.m. in 1997. In the other three HD units levels remained <0.1 p.p.m. Other parameters of water quality were within accepted standards. Monthly records of haemoglobin level and rHuEpo dose were available for 148 patients between January 1996 and May 1998. Seventy-two patients, with no recognized cause of rHuEpo resistance, were analysed in detail (August 1997 to April 1998). A subgroup of 15 patients was examined for evidence of haemolysis during HD (methaemoglobin and haptoglobin levels, reticulocyte counts and Heinz bodies). Larger carbon columns were installed in December 1997 to effect chloramine removal. There was an increase in mean methaemoglobinaemia of 23% (P<0.01) and a 21% fall in mean haptoglobin (P<0.01) across HD, although no patient had a reticulocytosis and only one patient with G6PD deficiency had Heinz bodies. Following installation of larger carbon columns there was an 18.6% rise (P<0.001) in mean haemoglobin level and a subsequent 25.0% reduction (P<0.001) in mean rHuEpo dose. Intradialytic changes in methaemoglobin and haptoglobin were abolished. The dialysate chloramine levels fell to < 0.1 p.p.m. Water company records subsequently revealed a sustained twofold increase in mains water chloramine from November 1996. This is the first report linking chloramine exposure and rHuEpo resistance, with only subtle signs of haemolysis. Unheralded changes in mains water constituents can directly affect dialysate water quality and clinical outcomes.

  8. Erythropoietin: Powerful Protection of Ischemic and Post-Ischemic Brain

    PubMed Central

    Nguyen, Anh Q.; Cherry, Brandon H.; Scott, Gary F.; Ryou, Myoung-Gwi; Mallet, Robert T.

    2015-01-01

    Ischemic brain injury inflicted by stroke and cardiac arrest ranks among the leading causes of death and long-term disability in the United States. The brain consumes large amounts of metabolic substrates and oxygen to sustain its energy requirements. Consequently, the brain is exquisitely sensitive to interruptions in its blood supply, and suffers irreversible damage after 10–15 minutes of severe ischemia. Effective treatments to protect the brain from stroke and cardiac arrest have proven elusive, due to the complexities of the injury cascades ignited by ischemia and reperfusion. Although recombinant tissue plasminogen activator and therapeutic hypothermia have proven efficacious for stroke and cardiac arrest, respectively, these treatments are constrained by narrow therapeutic windows, potentially detrimental side effects and the limited availability of hypothermia equipment. Mounting evidence demonstrates the cytokine hormone erythropoietin (EPO) to be a powerful neuroprotective agent and a potential adjuvant to established therapies. Classically, EPO originating primarily in the kidneys promotes erythrocyte production by suppressing apoptosis of proerythroid progenitors in bone marrow. However, the brain is capable of producing EPO, and EPO’s membrane receptors and signaling components also are expressed in neurons and astrocytes. EPO activates signaling cascades that increase the brain’s resistance to ischemia-reperfusion stress by stabilizing mitochondrial membranes, limiting formation of reactive oxygen and nitrogen intermediates, and suppressing pro-inflammatory cytokine production and neutrophil infiltration. Collectively, these mechanisms preserve functional brain tissue and, thus, improve neurocognitive recovery from brain ischemia. This article reviews the mechanisms mediating EPO-induced brain protection, critiques the clinical utility of exogenous EPO to preserve brain threatened by ischemic stroke and cardiac arrest, and discusses the

  9. Timing and Determinants of Erythropoietin Deficiency in Chronic Kidney Disease

    PubMed Central

    Mercadal, Lucile; Metzger, Marie; Casadevall, Nicole; Haymann, Jean Philippe; Karras, Alexandre; Boffa, Jean-Jacques; Flamant, Martin; Vrtovsnik, François; Stengel, Bénédicte; Froissart, Marc

    2012-01-01

    Summary Background and objectives Anemia in patients with CKD is highly related to impaired erythropoietin (EPO) response, the timing and determinants of which remain unknown. Design, setting, participants, & measurements This study measured EPO levels and studied their relation to GFR measured by 51Cr-EDTA renal clearance (mGFR) in 336 all-stage CKD patients not receiving any erythropoiesis-stimulating agent. Results In patients with anemia defined by World Health Organization criteria (hemoglobin [Hb] <13 g/dl in men and 12 g/dl in women), EPO response to Hb level varied by mGFR level. EPO and Hb levels were negatively correlated (r=−0.22, P=0.04) when mGFR was >30 ml/min per 1.73 m2, whereas they were not correlated when mGFR was <30 (r=0.09, P=0.3; P for interaction=0.01). In patients with anemia, the ratio of observed EPO to the level predicted by the equation for their Hb level decreased from 0.72 (interquartile range, 0.57–0.95) for mGFR ≥60 ml/min per 1.73 m2 to 0.36 (interquartile range, 0.16–0.69) for mGFR <15. Obesity, diabetes with nephropathy other than diabetic glomerulopathy, absolute iron deficiency, and high C-reactive protein concentrations were associated with increased EPO levels, independent of Hb and mGFR. Conclusions Anemia in CKD is marked by an early relative EPO deficiency, but several factors besides Hb may persistently stimulate EPO synthesis. Although EPO deficiency is likely the main determinant of anemia in patients with advanced CKD, the presence of anemia in those with mGFR >30 ml/min per 1.73 m2 calls for other explanatory factors. PMID:22096037

  10. Erythropoietin Augments Survival of Glioma Cells After Radiation and Temozolomide

    SciTech Connect

    Hassouna, Imam; Sperling, Swetlana; Kim, Ella; Schulz-Schaeffer, Walter; Rave-Fraenk, Margret; Hasselblatt, Martin; Jelkmann, Wolfgang; Giese, Alf; Ehrenreich, Hannelore

    2008-11-01

    Purpose: Despite beneficial effects of irradiation/chemotherapy on survival of glioblastoma (GBM) patients, collateral damage to intact neural tissue leads to 'radiochemobrain' and reduced quality of life in survivors. For prophylactic neuroprotection, erythropoietin (EPO) is a promising candidate, provided that concerns regarding potential tumor promoting effects are alleviated. Methods and Materials: Human GBM-derived cell lines U87, G44, G112, and the gliosarcoma-derived line G28 were treated with EPO, with and without combinations of irradiation or temozolomide (TMZ). Responsiveness of glioma cells to EPO was measured by cell migration from spheroids, cell proliferation, and clonogenic survival. Implantation of U87 cells into brains of nude mice, followed 5 days later by EPO treatment (5,000 U/kg intraperitoneal every other day for 2 weeks) should reveal effects of EPO on tumor growth in vivo. Reverse transcriptase-polymerase chain reaction was performed for EPOR, HIF-1{alpha}, and epidermal growth factor receptor (EGFR)vIII in cell lines and 22 human GBM specimens. Results: EPO did not modulate basal glioma cell migration and stimulated proliferation in only one of four cell lines. Importantly, EPO did not enhance tumor growth in mouse brains. Preincubation of glioma cells with EPO for 3 h, followed by irradiation and TMZ for another 24 h, resulted in protection against chemoradiation-induced cytotoxicity in three cell lines. Conversely, EPO induced a dose-dependent decrease in survival of G28 gliosarcoma cells. In GBM specimens, expression of HIF-1{alpha} correlated positively with expression of EPOR and EGFRvIII. EPOR and EGFRvIII expression did not correlate. Conclusions: EPO is unlikely to appreciably influence basal glioma growth. However, concomitant use of EPO with irradiation/chemotherapy in GBM patients is not advisable.

  11. Predialysis versus postdialysis hematocrit evaluation during erythropoietin therapy.

    PubMed

    Movilli, Ezio; Pertica, Nicoletta; Camerini, Corrado; Cancarini, Giovanni C; Brunori, Giuliano; Scolari, Francesco; Maiorca, Rosario

    2002-04-01

    American guidelines for the management of renal anemia by recombinant human erythropoietin (rHuEPO) recommend collecting a predialysis blood sample to evaluate hemoglobin (Hb) and hematocrit (Hct) levels in hemodialysis patients. Although a predialysis blood sample is appropriate for evaluating when to start rHuEPO treatment, the same sample would not be appropriate for evaluating the target Hb/Hct to be maintained, particularly when normal or near-normal values are pursued. We measured the degree of intradialytic and extradialytic variation of Hb, Hct, and body weight in 68 stable hemodialysis patients on maintenance subcutaneous rHuEPO treatment. Hb and Hct concentrations were determined before and after dialysis. In 16 patients, Hb and Hct concentrations also were assessed 24 hours after the end of dialysis. Predialysis versus postdialysis Hb and Hct concentrations for all patients were 10.5 +/- 1.3 g/dL versus 11.5 +/- 1.3 g/dL (P < 0.0001) and 32 +/- 4% versus 35 +/- 4% (P < 0.0001). The intradialytic percent variation (%Delta) of Hct and body weight were 10 +/- 6% and -6.3 +/- 3.5%. There was a close inverse correlation between %Delta of Hct and Hb and %Delta of body weight (P < 0.0001). In patients with body weight losses 2.5 kg or more per session, the mean %Delta of Hct was 12 +/- 7%. In the 16 patients studied 24 hours after the end of the dialysis session, Hct and Hb values remained significantly higher compared with the predialysis levels (P < 0.001), suggesting a slow reequilibration of the intravascular volume in the first 24 hours after hemodialysis. For these reasons, predialysis samples for monitoring the target Hb and Hct levels in patients treated by rHuEPO should be considered with caution.

  12. Low dose exogenous erythropoietin elicits an ergogenic effect in standardbred horses.

    PubMed

    McKeever, K H; Agans, J M; Geiser, S; Lorimer, P J; Maylin, G A

    2006-08-01

    Recombinant human erythropoietin (rhuEPO) causes an increase in red blood cell production and aerobic capacity in other species; however, data are lacking on effects in the horse. This study tested the hypothesis that rhuEPO administration would alter red cell volume (RCV), aerobic capacity (VO2max) and indices of anaerobic power. Eight healthy, unfit mares accustomed to the laboratory and experimental protocols were randomly assigned to either a control (CON, n = 4; 3 ml saline 3 times/week for 3 weeks) or EPO group (EPO, n = 4, 50 iu/kg bwt rhuEPO/3 ml saline 3 times/week for 3 weeks). Exercise tests (GXT) were performed on a treadmill (6% incline), 1 week before and 1 week after treatment. The GXT started at 4 m/sec, with a 1 m/sec increase every 60 sec until the horse reached fatigue. Oxygen uptake was measured via an open flow indirect calorimeter. Blood samples were collected before, during (each step) and 2 and 15 min post GXT to measure packed cell volume (PCV), haemoglobin concentration (Hb), blood lactate concentration (LA) and plasma protein concentration (TP). Plasma volume (PV) was measured using Evans Blue dye. Blood volume (BV) and RCV were calculated using PCV from the 8 m/sec step of the GXT. There were no alterations (P>0.05) in any parameters in CON horses. By week 3, EPO produced increases (P<0.05) in resting PCV (37 +/- 2 vs. 51 +/- 2) and Hb (37%). RCV (26%) and VO2max (19%) increased, but BV did not change (P>0.05) due to decreased PV (-11%, P<0.05). There was a significant increase in velocity at VO2max and LApeak for horses treated with rhuEPO and substantial decrease (P<0.05) in VO2 recovery time when the pretreatment GXT was compared to the post treatment GXT. No differences (P<0.05) were detected for TP, VLA4, run time or Vmax. Low dose rhuEPO administration increases RCV and aerobic capacity without altering anaerobic power. This study demonstrates that rhuEPO enhances aerobic capacity and exercise performance, a question relevant to

  13. Postoperative high-dose intravenous iron sucrose with low dose erythropoietin therapy after total hip replacement.

    PubMed

    Yoon, Jiyeol; Kim, Sungmin; Lee, Soo Chan; Lim, Hongsub

    2010-12-01

    Erythropoietin combined with parenteral iron sucrose therapy is an alternative to blood transfusion in anemic patients. It was shown to be effective in surgical patients in several previous studies when used in conjunction with other methods. However, there are no guidelines about safety limits in dosage amounts or intervals. In this study, we report a case of significant postoperative hemorrhage managed with high dose parenteral iron sucrose, low dose erythropoietin, vitamin B(12), vitamin C, and folic acid. An 80-year-old female patient presented for severe anemia after a total hip arthroplasty and refused an allogenic blood transfusion as treatment. The preoperative hemoglobin of 12.2 g/dL decreased to 5.3 g/dL postoperatively. She received the aforementioned combination of iron sucrose, erythropoietin, and vitamins. A total of 1,500 mg of intravenous iron sucrose was given postoperatively for 6 consecutive days. Erythropoietin was also administered at 2,000 IU every other day for a total of 12,000 IU. The patient was discharged in good condition on the twelfth postoperative day with a hemoglobin of 8.5 g/dL. Her hemoglobin was at 11.2 g/dL on the twentieth postoperative day.

  14. Erythropoietin stimulation of human adipose tissue for therapeutic refilling releases protective cytokines

    PubMed Central

    Sabbatini, Maurizio; Bosetti, Michela; Borrone, Alessia; Moalem, Liah; Taveggia, Antonio; Verna, Giovanni; Cannas, Mario

    2016-01-01

    Apoptosis and inflammatory processes may be at the basis of reducing graft survival. Erythropoietin is a tissue-protective hormone with pleiotropic potential, and it interferes with the activities of pro-inflammatory cytokines and stimulates healing following injury, preventing destruction of tissue surrounding the injury site. It may represent a useful tool to increase the autograft integration. Through the use of multipanel kit cytokine analysis we have detected the cytokines secreted by human tissue adipose mass seeded in culture following withdrawal by Coleman’s modified technique in three groups: control, after lipopolysaccharides stimulation and after erythropoietin stimulation. In the control group, we have observed expression of factors that may have a role in protecting the tissue homeostatic mechanism. But the same factors were secreted following stimulation with lipopolysaccharides combined with others factors that delineated the inflammatory state. Instead through erythropoietin stimulation, the factors known to exert tissue-protective action were secreted. Therefore, the use of a trophic factors such as erythropoietin may help to inhibit the potential inflammatory process development and stimulate the activation of reparative/regenerative process in the tissue graft. PMID:27738510

  15. The Winding Pathway to Erythropoietin Along the Chemistry–Biology Frontier: A Success At Last

    PubMed Central

    Wilson, Rebecca M.; Dong, Suwei; Wang, Ping; Danishefsky, Samuel J.

    2016-01-01

    The total synthesis of a homogeneous erythropoietin, possessing the native amino acid sequence and chitobiose glycans at each of the three wild-type sites of N-glycosylation, has been accomplished in our laboratory. We provide herein an account of our decade-long research effort en route to this formidable target compound. PMID:23775885

  16. Erythropoietin and erythropoietin receptor coexpression is associated with poor survival in stage I non-small cell lung cancer.

    PubMed

    Saintigny, Pierre; Besse, Benjamin; Callard, Patrice; Vergnaud, Anne-Claire; Czernichow, Sébastien; Colombat, Magali; Girard, Philippe; Validire, Pierre; Breau, Jean-Luc; Bernaudin, Jean-François; Soria, Jean-Charles

    2007-08-15

    This study was designed to evaluate the prognostic effect of erythropoietin (EPO) and EPO receptor (EPO-R) expression in stage I non-small cell lung cancer (NSCLC) patients. EPO and EPO-R expression in 158 tumor samples from resected stage I NSCLC was evaluated using immunohistochemistry and tissue array technology. EPO-R and EPO were highly expressed in 20.9% and 35.4% of tumors, respectively. High EPO-R expression compared with negative or low-level expression was associated with a poor 5-year disease-specific survival (60.6% versus 80.8%; P = 0.01, log-rank test). High EPO expression compared with negative and low-level expression was associated with a trend toward a poor 5-year disease-specific survival (69.6% versus 80.4%; P = 0.13, log-rank test). A high level of EPO-R and EPO coexpression was associated with a poor 5-year disease-specific survival compared with other groups of patients (50.0% versus 80.0% survival at the end of follow-up; P = 0.005, log-rank test). In multivariate analysis for disease-specific survival, high-level EPO-R and EPO coexpression was an independent prognostic factor for disease-specific survival (hazard ratio, 2.214; 95% confidence interval, 1.012-4.848; P = 0.046). These results establish the pejorative prognostic value of EPO and EPO-R expression in early-stage resected NSCLC and suggest a potential paracrine and/or autocrine role of endogenous EPO in NSCLC aggressiveness.

  17. Characterization of the erythropoietin/erythropoietin receptor axis in a rat model of liver damage and cholangiocarcinoma development.

    PubMed

    Moriconi, Federico; Ramadori, Pierluigi; Schultze, Frank C; Blaschke, Martina; Amanzada, Ahmad; Khan, Sajjad; Ramadori, Giuliano

    2013-03-01

    It has been recently shown that the biological effects of erythropoietin (EPO) are not limited to the hematopoietic compartment but, as pleiotropic glycoprotein, this hormone can exert pro-angiogenic and tissue-protective functions also in a wide range of non-hematopoietic organs. The role of EPO and the effective functionality of its receptor in solid tumors are still a controversial point of debate. In the present work we analyzed the gene expression of EPO and its cognate receptor (EpoR) in a rat model of thioacetamide-induced damage and tumor. An analysis of the EPO/EpoR axis was also performed on human cholangiocarcinoma (CC) cell lines. A progressive increase of EPO and EpoR mRNA can already be observed during the fibrotic-cirrhotic development with a peak of expression rising at tumor formation (24.7 ± 9.9-fold increase and 15.5 ± 1.1-fold increase, respectively, for the two genes). Co-localization studies by immunofluorescence revealed hepatocytes in the regenerative cirrhotic nodules (Hep Par-1(+)) and in the dysplastic bile duct cells (CK19(+)) as the major EPO producers in this specific condition. The same cell populations, together with endothelial cells, exhibited an increased expression of EpoR, although all the non-parenchymal cell populations in the liver exhibited modest basal mRNA levels. Challenging human CC cells, Mz-Cha-2, with a combination of EPO and SCF resulted in a synergistic effect on the gene expression of EPO, CyclinD1 and PCNA. This study suggests that the autocrine and paracrine release of endogenous EPO in the microenvironment may contribute to the development and maintenance of the CC possibly in cooperation with other signaling pathways.

  18. Computational and functional analysis of biopharmaceutical drugs in zebrafish: Erythropoietin as a test model.

    PubMed

    Guarienti, Michela; Giacopuzzi, Edoardo; Gianoncelli, Alessandra; Sigala, Sandra; Spano, Pierfranco; Pecorelli, Sergio; Pani, Luca; Memo, Maurizio

    2015-12-01

    The zebrafish (Danio rerio) is a very popular vertebrate model system, especially embryos represent a valuable tool for in vivo pharmacological assays. This is mainly due to the zebrafish advantages when compared to other animal models. Erythropoietin is a glycoprotein hormone that acts principally on erythroid progenitors, stimulating their survival, proliferation and differentiation. Recombinant human erythropoietin (rhEPO) has been widely used in medicine to treat anemia and it is one of the best-selling biotherapeutics worldwide. The recombinant molecule, industrially produced in CHO cells, has the same amino acid sequence of endogenous human erythropoietin, but differs in the glycosylation pattern. This may influence efficacy and safety, particularly immunogenicity, of the final product. We employed the zebrafish embryo as a vertebrate animal model to perform in vivo pharmacological assays. We conducted a functional analysis of rhEPO alpha Eprex(®) and two biosimilars, the erythropoietin alpha Binocrit(®) and zeta Retacrit(®). By in silico analysis and 3D modeling we proved the interaction between recombinant human erythropoietin and zebrafish endogenous erythropoietin receptor. Then we treated zebrafish embryos with the 3 rhEPOs and we investigated their effect on erythrocytes production with different assays. By real time-PCR we observed the relative upregulation of gata1 (2.4 ± 0.3 fold), embryonic α-Hb (1.9 ± 0.2 fold) and β-Hb (1.6 ± 0.1 fold) transcripts. A significant increase in Stat5 phosphorylation was also assessed in embryos treated with rhEPOs when compared with the negative controls. Live imaging in tg (kdrl:EGFP; gata1:ds-red) embryos, o-dianisidine positive area quantification and cyanomethemoglobin content quantification revealed a 1.8 ± 0.3 fold increase of erythrocytes amount in embryos treated with rhEPOs when compared with the negative controls. Finally, we verified that recombinant human erythropoietins did not cause any

  19. Erythropoietin against cisplatin-induced peripheral neurotoxicity in rats.

    PubMed

    Orhan, Bulent; Yalcin, Suayib; Nurlu, Gulay; Zeybek, Dilara; Muftuoglu, Sevda

    2004-01-01

    Cisplatin (CDDP) is a potent anticancer drug, and neurotoxicity is one of its most important dose-limiting toxicities. In this study we investigated the role of recombinant human erythropoietin (rhuEPO) for protection against CDDP-induced neurotoxicity. All experiments were conducted on female Wistar-albino rats. Animals were randomly assigned to three groups. Group A received only CDDP, group B received CDDP plus rhuEPO, and group C received only rhuEPO. Electroneurography (ENG) was done in the beginning and at the end of 7 wk, then the rats were sacrificed and the sciatic nerve was removed for histopathological examination. The mean initial latency was 2.7438 ms in group A, 2.4875 ms in group B, and 2.62 ms in group C. After 7 wk of treatment, the latency was 2.4938, 2.6313, and 2.3900 ms, respectively. The difference in latencies was not statistically significant. The amplitude of compound muscle action potential (CMAP) was 12.8125 mV, 14.3875 mV, and 14.5600 mV before the treatment and 8.4875, 12.8250, and, 13.0800 mV after treatment, respectively. Amplitude of CMAP was significantly greater in rhuEPO-treated groups (groups B and C) compared to cisplatin only Group A. The mean area of CMAP was 12.2625, 12.3500, and, 12.2800 mV s before the treatment and 5.7125, 10.6463, and 9.1600 mV s after the treatment, respectively. The area of CMAP was significantly larger in rhuEPO-treated groups. In histopathological studies thick, thin, and total number of nerve fibers were 4053, 5050, and 9103, in group A, 5100, 8231, and 13331, in group B, and 5264, 6010, and 11274, in group C respectively. In the microscopic examination active myelinization process was observed in rhuEPO-treated groups. We concluded that at the given dose and schedule CDDP-induced motor neuropathy and rhuEPO prevented this neuropathy by sparing the number of normal nerve fibers and by protecting the amplitude and area of CMAP. We concluded that rhuEPO may also play a role in active myelinization and

  20. Serum erythropoietin and outcome after ischaemic stroke: a prospective study

    PubMed Central

    Åberg, N David; Stanne, Tara M; Jood, Katarina; Schiöler, Linus; Blomstrand, Christian; Andreasson, Ulf; Blennow, Kaj; Zetterberg, Henrik; Isgaard, Jörgen; Jern, Christina; Svensson, Johan

    2016-01-01

    Objectives Erythropoietin (EPO), which is inversely associated with blood haemoglobin (Hb), exerts neuroprotective effects in experimental ischaemic stroke (IS). However, clinical treatment trials have so far been negative. Here, in patients with IS, we analysed whether serum EPO is associated with (1) initial stroke severity, (2) recovery and (3) functional outcome. Design Prospective. Controls available at baseline. Setting A Swedish hospital-initiated study with outpatient follow-up after 3 months. Participants Patients (n=600; 64% males, mean age 56 years, controls n=600) were included from the Sahlgrenska Academy Study on IS (SAHLSIS). Primary and secondary outcome measures In addition to EPO and Hb, initial stroke severity was assessed by the Scandinavian Stroke Scale (SSS) and compared with SSS after 3 months (follow-up) as a measure of recovery. Functional outcome was evaluated using the modified Rankin Scale (mRS) at follow-up. Serum EPO and SSS were divided into quintiles in the multivariate regression analyses. Results Serum EPO was 21% and 31% higher than in controls at the acute phase of IS and follow-up, respectively. In patients, acute serum EPO was 19.5% higher in severe versus mild IS. The highest acute EPO quintile adjusted for sex, age and Hb was associated with worse stroke severity quintile (OR 1.70, 95% CI 1.00 to 2.87), better stroke recovery quintile (OR 1.93, CI 1.09 to 3.41) and unfavourable mRS 3–6 (OR 2.59, CI 1.15 to 5.80). However, the fourth quintile of EPO increase (from acute to follow-up) was associated with favourable mRS 0–2 (OR 3.42, CI 1.46 to 8.03). Only the last association withstood full adjustment. Conclusions The crude associations between EPO and worse stroke severity and outcome lost significance after multivariate modelling. However, in patients in whom EPO increased, the association with favourable outcome remained after adjustment for multiple covariates. PMID:26916692

  1. Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO).

    PubMed

    Chen, Gang; Shi, Ji Xin; Hang, Chun Hua; Xie, Weiying; Liu, Jian; Liu, Xiaoming

    2007-10-02

    Erythropoietin (EPO) has recently been shown to have a neuroprotective effect in animal models of traumatic brain injury (TBI). However, the precise mechanisms remain unclear. Cerebral inflammation plays an important role in the pathogenesis of secondary brain injury after TBI. We, therefore, tried to analyze how recombinant human erythropoietin (rhEPO) might effect the inflammation-related factors common to TBI: nuclear factor kappa B (NF-kappaB), interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and intercellular adhesion molecule-1 (ICAM-1) in a rat TBI model. Male rats were given 0 or 5000 units/kg injections of rhEPO 1h post-injury and on days 1, 2 and 3 after surgery. Brain samples were extracted at 3 days after trauma. We measured NF-kappaB by electrophoretic mobility shift assay (EMSA); IL-1beta, TNF-alpha and IL-6 by enzyme-linked immunosorbent assay (ELISA); ICAM-1 by immunohistochemistry; brain edema by wet/dry method; blood-brain barrier (BBB) permeability by Evans blue extravasation and cortical apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method. We found that NF-kappaB, pro-inflammatory cytokines and ICAM-1 were increased in all injured animals. In animals given rhEPO post-TBI, NF-kappaB, IL-1beta, TNF-alpha and ICAM-1 were decreased in comparison to vehicle-treated animals. Measures of IL-6 showed no change after rhEPO treatment. Administration of rhEPO reduced brain edema, BBB permeability and apoptotic cells in the injured brain. In conclusion, post-TBI rhEPO administration may attenuate inflammatory response in the injured rat brain, and this may be one mechanism by which rhEPO improves outcome following TBI.

  2. The effectiveness and safety of preoperative use of erythropoietin in patients scheduled for total hip or knee arthroplasty

    PubMed Central

    Zhao, Yan; Jiang, Chao; Peng, Huiming; Feng, Bin; Li, Yulong; Weng, Xisheng

    2016-01-01

    Abstract Introduction: Because allogeneic blood transfusion carries a risk of serious complications, erythropoietin (EPO) has been used in patients scheduled for total hip or knee arthroplasty in an effort to reduce the need for allogeneic blood transfusion; however, its efficacy, cost-effectiveness, and safety are still controversial. The purpose of this review was to determine the hematopoiesis-promoting effect and potential complications, as well as the cost-effectiveness, of preoperative use of EPO in patients scheduled for total hip or knee arthroplasty. Methods: : We searched MEDLINE, EMBASE, Cochrane, and ClinicalTrials.gov databases for relevant literature from 2000 to 2015. Risk of bias was assessed for all included studies and data were extracted and analyzed. Results: Preoperative use of EPO was associated with lower exposure to allogeneic blood transfusion (odds ratio = 0.41) and higher hemoglobin concentration after surgery (standardized mean difference = 0.86, P < 0.001). Complications were not generally reported, but there was no significant difference between the group with and without EPO based on given data. Cost-effectiveness was also summarized but was not conclusive. Conclusion: Preoperative administration of EPO reduces the requirement for allogeneic blood transfusion and increases hemoglobin level after surgery. The studies of cost-effectiveness were not conclusive. Further studies and guidelines specific to blood management in the perioperative stage of total knee and hip arthroplasty are expected. PMID:27399121

  3. Alterations of systemic and muscle iron metabolism in human subjects treated with low-dose recombinant erythropoietin.

    PubMed

    Robach, Paul; Recalcati, Stefania; Girelli, Domenico; Gelfi, Cecilia; Aachmann-Andersen, Niels J; Thomsen, Jonas J; Norgaard, Anne M; Alberghini, Alessandra; Campostrini, Natascia; Castagna, Annalisa; Viganò, Agnese; Santambrogio, Paolo; Kempf, Tibor; Wollert, Kai C; Moutereau, Stéphane; Lundby, Carsten; Cairo, Gaetano

    2009-06-25

    The high iron demand associated with enhanced erythropoiesis during high-altitude hypoxia leads to skeletal muscle iron mobilization and decrease in myoglobin protein levels. To investigate the effect of enhanced erythropoiesis on systemic and muscle iron metabolism under nonhypoxic conditions, 8 healthy volunteers were treated with recombinant erythropoietin (rhEpo) for 1 month. As expected, the treatment efficiently increased erythropoiesis and stimulated bone marrow iron use. It was also associated with a prompt and considerable decrease in urinary hepcidin and a slight transient increase in GDF-15. The increased iron use and reduced hepcidin levels suggested increased iron mobilization, but the treatment was associated with increased muscle iron and L ferritin levels. The muscle expression of transferrin receptor and ferroportin was up-regulated by rhEpo administration, whereas no appreciable change in myoglobin levels was observed, which suggests unaltered muscle oxygen homeostasis. In conclusion, under rhEpo stimulation, the changes in the expression of muscle iron proteins indicate the occurrence of skeletal muscle iron accumulation despite the remarkable hepcidin suppression that may be mediated by several factors, such as rhEpo or decreased transferrin saturation or both.

  4. In vivo erythropoietin requirements of regenerating erythroid progenitors (BFU-e, CFU-e) in bone marrow of mice.

    PubMed

    Udupa, K B; Reissmann, K R

    1979-06-01

    Erythroid progenitors (B-8, B-4, CFU-e) in the femoral marrow of polycythemic mice were measured by in vitro culture assays after a single administration of BCNU or Myleran. BCNU reduced pluripotent stem cells to 40% and erythroid progenitors to less than 5% of normal. B-8, the earliest erythroid progenitors, regenerated without erythropoietin (Epo) completely within 5 days. At 14 days after BCNU, intermediate progenitors (B-4) attained 60% of their normal numbers and CFU-e attained approximately 30%. Daily injections of Epo promptly restored normal B-4 numbers and near-normal CFU-e numbers in BCNU-treated mice. After Myleran, CFU-s remained below 2% of normal for 14 days, and no regeneration of the B-8 occurred with or without daily Epo injections. The findings suggest that regneration of B-8 was dependent on cell inflow from the pluripotent stem cell compartment but was independent of the presence of Epo. Intermediate progenitors (B-4) required Epo and the presence of B-8 for complete and permanent regeneration. CFU-e were the most Epo-dependent of the three progenitors. B-4, recruited by Epo, required after their formation a second exposure to the hormone in order to progress into the CFU-e stage.

  5. Bloodless surgery in a patient with thalassemia minor. Usefulness of erythropoietin, preoperative blood donation and intraoperative blood salvage.

    PubMed

    Pérez Ferrer, A; Ferrazza, V; Gredilla, E; de Vicente, J; de la Rua, A; Larrea, A

    2007-05-01

    A patient with thalassemia minor and idiopathic scoliosis was scheduled for posterior vertebral arthrodesis. The diagnosis of thalassemia minor was made during the preoperative assessment. Preoperative blood cell count displayed the following data: red blood count 5.4 x 106/microL, haemoglobin 11.6 g/dL and hematocrit 36.9%. As corrective surgery for scoliosis is associated with major blood loss, the patient was scheduled for preoperative treatment with human recombinant erythropoietin (rHuEPO), autologous blood donation, intraoperative blood cell salvage and administration of tranexamic acid. The use of rHuEPO was intended to increase hemoglobin (12.1 g/dL) levels at the moment of surgery following the donation of 2 autologous blood units. 1000 mL of salvaged blood were processed. The output line of the blood cell salvage machine did not show any sign of increased red cell haemolysis. The postoperative course was uneventful and the patient was discharged from the postoperative intensive care unit on day 7 after surgery with no allogenic blood transfusion. No references detailing the use of rHuEPO and autologous blood donation preoperatively in patients with thalassemia minor and only one case report discussed the utility of intraoperative blood cell salvage in a patient with thalassemia intermedia. Although further experience is needed, this case report suggests that even for patients with thalassemia minor, methods focused on allogenic blood salvage can be used safely.

  6. Anemia lessens and its prevention with recombinant human erythropoietin worsens glomerular injury and hypertension in rats with reduced renal mass.

    PubMed Central

    Garcia, D L; Anderson, S; Rennke, H G; Brenner, B M

    1988-01-01

    Chronic renal disease is frequently characterized by anemia, which may modify systemic and renal hemodynamics. In adult Munich-Wistar rats, the mild anemia (hematocrit, approximately equal to 42 vol/dl) that accompanies five-sixths nephrectomy was either made more severe (approximately equal to 30 vol/dl) by feeding a low iron diet or prevented (approximately equal to 50 vol/dl) by administration of recombinant human erythropoietin (r-HuEpo). In functional studies performed 4 weeks after renal ablation, untreated rats exhibited mild anemia with systemic hypertension and elevation of the single nephron glomerular filtration rate due to glomerular capillary hyperperfusion and hypertension. Preventing anemia with r-HuEpo worsened systemic and glomerular hypertension, effects largely obviated by induction of more marked anemia with the low iron diet. Untreated rats followed for 6 weeks postablation exhibited progressive proteinuria and sclerosis involving 12% of glomeruli, contrasted with 33% in rats given r-HuEpo. Even after 12 weeks, sclerosis involved only 6% of glomeruli in rats with more severe anemia but progressed to 30% in untreated rats. Thus, anemia limits systemic and glomerular hypertension and glomerular injury, whereas its prevention by r-HuEpo severely accelerates hemodynamically mediated glomerular injury in this model. These results suggest that anemia is a hemodynamically favorable adaptation to chronic renal disease and that its overly vigorous correction may have adverse renal hemodynamic and structural consequences. PMID:3413082

  7. Erythropoietin promotes axonal regeneration after optic nerve crush in vivo by inhibition of RhoA/ROCK signaling pathway.

    PubMed

    Tan, Haibo; Zhong, Yisheng; Shen, Xi; Cheng, Yu; Jiao, Qin; Deng, Lianfu

    2012-11-01

    We investigated whether the RhoA/ROCK pathway was involved in the effect of erythropoietin (EPO) to promote retinal ganglion cells (RGCs) axonal regeneration in a rat optic nerve crush (ONC) model. We demonstrated that both EPO and ROCK inhibitor Y-27632 significantly enhanced RGCs survival and axon regeneration in vivo, and the effects of these agents were additive. Expression of active-RhoA was decreased after EPO or Y-27632 per pull down assay and affinity precipitation. Administration of EPO and Y-27632 cocktail resulted in even more RhoA inactivation, decreased expression of ROCK-1 and ROCK-2, and increased expression of growth associated protein-43 (GAP-43) protein per immunohistochemistry and western blot analysis. Down-regulation of active-RhoA, ROCK-1, and ROCK-2 expression by EPO coincided with the appearance of larger numbers of regenerating axons. In conclusion, the RhoA/ROCK signaling pathway was involved in the EPO effect to promote RGCs axon regeneration after ONC.

  8. Patients with anaemia can shift from kidney to liver production of erythropoietin as shown by glycoform analysis.

    PubMed

    Lönnberg, Maria; Garle, Mats; Lönnberg, Lina; Birgegård, Gunnar

    2013-01-01

    The primary production site of erythropoietin (EPO) is shifted from the liver to the kidney shortly after birth. Under conditions of lost or reduced kidney production, it is valuable to measure the production capacity of the liver. However, there is a lack of urine or serum based methods that can distinguish endogenous EPO produced in different cell types. Here is presented a method based on chromatographic interaction with the lectin wheat germ agglutinin (WGA) that can distinguish presumably liver-produced EPO, found in anaemic patients receiving epoetin and darbepoetin, from kidney-produced EPO found in healthy individuals. All the tested samples from haemodialysis patients with end-stage renal disease showed a presence of liver EPO. In some samples, the liver-produced EPO made up 90-100% of total EPO at a concentration of 8-10 ng/L in urine, which indicates that the liver has a quite high production capacity, although not adequate for the degree of anaemia. This glycoform analysis has made it possible to affirm that some anaemic patients can increase their liver-production of EPO. The use of such a method can give better insight into the regulation of non-renal endogenous EPO production, a potential source of EPO intended to replace administration of exogenous EPO.

  9. Detection of recombinant human erythropoietin in urine for doping analysis: interpretation of isoelectric profiles by discriminant analysis.

    PubMed

    Lasne, Françoise; Thioulouse, Jean; Martin, Laurent; de Ceaurriz, Jacques

    2007-06-01

    The detection in urine of recombinant human erythropoietin (rHuEPO), a hormone misused by endurance athletes as a doping agent, is based on the differentiation of its isoelectric pattern from that of the corresponding natural hormone. Different empirical criteria have been proposed for discriminating the images of the patterns but none of them have been elaborated from a rational statistical approach. Discriminant analysis was applied to a dataset of profiles defined as positive (116 profiles from 26 subjects) (presence of rHuEPO and possibly residual natural endogenous hormone) and negative (131 profiles from 131 subjects) (presence of natural endogenous hormone only). The different bands were numbered according to a template of 16 possible positions and their relative intensities constituted the 16 variables of the statistical analysis. This method was then tested with data from an administration trial of low doses (6.7-10 IU/kg) following high-dose (265 IU/kg) injections (71 profiles from one subject). The analysis of the dataset clearly separated the negative and positive profiles. A cross-validation procedure confirmed that the analysis was extremely stable: with ten-fold cross-validation, no false positives were observed even with 100,000 simulations. Furthermore, the detection of rHuEPO in the profiles from the low-dose trial was greatly improved in comparison with a previously validated empirical criterion.

  10. A distributed lag model with first order auto-regressive error term for hemoglobin response to erythropoietin in dialysis patients.

    PubMed

    Gupta, Ashwani K; Besarab, Anatole

    2007-10-11

    There is an urgent need to devise an erythropoietin dosing protocol which can help regulate hemoglobin levels within the range recommended by the Kidney Disease Outcomes Quality Initiative(KDOQI). The objective of this analysis was to mathematically model the dose response relationship between Hemoglobin(Hb) and Erythropoietin(EPO). Such a model may be used to predict a patient's EPO requirements and guide dosing accordingly. A dynamic regression model with a distributed lag structure was used with good results.

  11. Effect of recombinant erythropoietin on ischemia-reperfusion-induced apoptosis in rat liver.

    PubMed

    Shawky, Heba M; Younan, Sandra M; Rashed, Leila A; Shoukry, Heba

    2012-03-01

    Ischemia-reperfusion (I/R) cannot be avoided in liver transplantation procedures, and apoptosis is a central mechanism of cell death after liver reperfusion. Protective effect of recombinant erythropoietin (rhEPO) on liver apoptosis has not been clearly investigated. This work investigated intraportal (IP) rhEPO-protective effect in a rat model of hepatic I/R-induced apoptosis and its appropriated time and dose of administration. Eight groups were included (n = 10/group): sham-operated, I/R (45 min ischemia and 2 h reperfusion), preconditioned rhEPO I/R (24 h or 30 min before ischemia), and postconditioned rhEPO I/R (before reperfusion) using two different rhEPO doses (1,000 and 5,000 IU/kg). When compared with the sham-operated group, the I/R group showed significant increase of serum levels of aspartate and alanine aminotransferases (AST, ALT), hepatic caspase-9 activity(894.99 ± 176.90 relative fluorescence units (RFU)/mg/min versus 458.48 ± 82.96 RFU/mg/min), and Fas ligand (FasL) expression, histopathological damages, and significant decrease in the antiapoptotic Bcl-xL/apoptotic Bax ratio(0.38 ± 0.21 versus 3.35 ± 0.77) rhEPO-improved ALT and AST but failed to reduce FasL expression in all groups compared with the I/R group. Thirty minutes and 24 h preconditioning with rhEPO (1,000 IU/kg) increased Bcl-xL/Bax ratio and reduced caspase-9 activity, and the same effect was observed when higher dose was given 24 h before ischemia. Preconditioning was more effective than postconditioning in improving caspase-9 activity, and no dose-dependent effect was observed. In conclusion, single IP rhEPO injection 30 min before ischemia has an advantage over rhEPO postconditioning in improving post-hepatic I/R-induced apoptosis with no additional time- and dose-dependent effects which may provide potentially useful guide in liver transplantation procedures.

  12. Efficacy of erythropoietin on dialysis in patients with beta thalassemia minor.

    PubMed

    Di Iorio, Biagio; De Nicola, Luca; Bellizzi, Vincenzo; Minutolo, Roberto; Zamboli, Pasquale; Rubino, Roberto; Fuiano, Giorgio; Conte, Giuseppe

    2004-01-01

    It is unknown whether chronic erythropoietin (EPO) treatment is able to normalize hemoglobin (Hb) levels and ameliorate cardiac remodeling avoiding blood transfusions in uremic blood transfusion-dependent patients with beta-thalassemia minor (beta-thal). In 12 hemodialysis (HD) patients with beta-thal, requiring blood transfusions despite EPO therapy, we planned to increase Hb levels up to the target levels (11-12 g/dl) within a one-year period by administering progressively higher doses of EPO (correction phase). We also planned to maintain the Hb target for an additional year (maintenance phase). In the year before the study, patients required 3.3 +/- 0.9 units of packed red blood cells. At baseline, the Hb level obtained with an EPO dose of 212 +/- 73 U/kg/week i.v. was 8.2 +/- 0.8 g/dl. The EPO dose was gradually increased within the first year up to 458 +/- 78 U/kg/week at month 12 (correction phase) and then significantly tapered down during the maintenance phase (390 +/- 54 U/kg/week at month 24). During the correction phase, the Hb levels markedly increased (11.1 +/- 0.3 g/dl at month 12) and did not change in the maintenance phase. No blood transfusion was required throughout the 2 years of follow-up. Left ventricular (LV) mass index progressively decreased from the basal value of 144 +/- 12 to 124 +/- 11 g/m2 in the first year and normalized in all patients at month 24 (109 +/- 12 g/m2, p < 0.001); this occurred in the absence of any change of LV cavity volume index (<90 ml/m2). In HD transfusion-dependent patients with beta-thal, the administration of high EPO dose for 2 years permits the attainment and the maintenance of Hb targets without blood transfusions. This therapeutic approach permits a complete remission of concentric LV hypertrophy without any adverse effects on the vascular system.

  13. Erythropoietin increases expression and function of transient receptor potential canonical 5 channels.

    PubMed

    Liu, Ying; Xu, Yunfei; Thilo, Florian; Friis, Ulla G; Jensen, Boye L; Scholze, Alexandra; Zheng, Junhua; Tepel, Martin

    2011-08-01

    Hypertension is a common complication in hemodialysis patients during erythropoietin (EPO) treatment. The underlying mechanisms of EPO-induced hypertension still remain to be determined. Increased transient receptor potential canonical (TRPC) channels have been associated with hypertension. Now, TRPC gene expression was investigated using quantitative real-time RT-PCR and immunoblotting in cultured human endothelial cells and in monocytes from hemodialysis patients. EPO dose-dependently increased TRPC5 mRNA in endothelial cells. EPO increased TRPC5 mRNA stability, that is, EPO prolonged the half-life period for TRPC5 mRNA from 16 hours (control) to 24 hours (P<0.05). The poly(A) tail length was measured by rapid amplification of cDNA ends-poly(A) test. Increased TRPC5 mRNA stability was attributed to longer 3' poly(A) tail lengths after EPO administration. EPO also significantly increased TRPC5 channel protein abundance by 70% (P<0.05). Whole-cell patch clamp showed that angiotensin II-induced, TRPC5-mediated currents were dramatically increased in endothelial cells treated with EPO. Fluorescent dye techniques confirmed that increased calcium influx after EPO treatment was abolished after TRPC5 knockdown (P<0.05). EPO also significantly increased intracellular reactive oxygen species production. Knockdown of TRPC5 alleviated EPO-induced reactive oxygen species generation in endothelial cells (P<0.05). In vivo, EPO-treated hemodialysis patients showed significantly increased amounts of TRPC5 mRNA in monocytes compared with EPO-free hemodialysis patients (6.0±2.4 [n=12] versus 1.0±0.5 [n=9]; P<0.01). Patients undergoing EPO treatment also showed significantly elevated systolic blood pressure (160±7 versus 139±6 mm Hg; P<0.05). Our findings suggest that upregulated functional TRPC5 gene may be one cause of EPO-induced hypertension in patients with chronic kidney disease.

  14. Discovery and Characterization of Nonpeptidyl Agonists of the Tissue-Protective Erythropoietin Receptor.

    PubMed

    Miller, James L; Church, Timothy J; Leonoudakis, Dmitri; Lariosa-Willingham, Karen; Frigon, Normand L; Tettenborn, Connie S; Spencer, Jeffrey R; Punnonen, Juha

    2015-08-01

    Erythropoietin (EPO) and its receptor are expressed in a wide variety of tissues, including the central nervous system. Local expression of both EPO and its receptor is upregulated upon injury or stress and plays a role in tissue homeostasis and cytoprotection. High-dose systemic administration or local injection of recombinant human EPO has demonstrated encouraging results in several models of tissue protection and organ injury, while poor tissue availability of the protein limits its efficacy. Here, we describe the discovery and characterization of the nonpeptidyl compound STS-E412 (2-[2-(4-chlorophenoxy)ethoxy]-5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine), which selectively activates the tissue-protective EPO receptor, comprising an EPO receptor subunit (EPOR) and the common β-chain (CD131). STS-E412 triggered EPO receptor phosphorylation in human neuronal cells. STS-E412 also increased phosphorylation of EPOR, CD131, and the EPO-associated signaling molecules JAK2 and AKT in HEK293 transfectants expressing EPOR and CD131. At low nanomolar concentrations, STS-E412 provided EPO-like cytoprotective effects in primary neuronal cells and renal proximal tubular epithelial cells. The receptor selectivity of STS-E412 was confirmed by a lack of phosphorylation of the EPOR/EPOR homodimer, lack of activity in off-target selectivity screening, and lack of functional effects in erythroleukemia cell line TF-1 and CD34(+) progenitor cells. Permeability through artificial membranes and Caco-2 cell monolayers in vitro and penetrance across the blood-brain barrier in vivo suggest potential for central nervous system availability of the compound. To our knowledge, STS-E412 is the first nonpeptidyl, selective activator of the tissue-protective EPOR/CD131 receptor. Further evaluation of the potential of STS-E412 in central nervous system diseases and organ protection is warranted. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Combination of granulocyte colony-stimulating factor and erythropoietin improves outcomes of patients with decompensated cirrhosis.

    PubMed

    Kedarisetty, Chandan Kumar; Anand, Lovkesh; Bhardwaj, Ankit; Bhadoria, Ajeet Singh; Kumar, Guresh; Vyas, Ashish Kumar; David, Paul; Trehanpati, Nirupama; Rastogi, Archana; Bihari, Chhagan; Maiwall, Rakhi; Garg, Hitendra Kumar; Vashishtha, Chitranshu; Kumar, Manoj; Bhatia, Vikram; Sarin, Shiv Kumar

    2015-06-01

    Patients with decompensated cirrhosis have significantly reduced survival without liver transplantation. Granulocyte colony-stimulating factor (G-CSF) has been shown to increase survival in patients with acute-on-chronic liver failure, and erythropoietin promoted hepatic regeneration in animal studies. We performed a double-blind, randomized, placebo-controlled trial to determine whether co-administration of these growth factors improved outcomes for patients with advanced cirrhosis. In a prospective study, consecutive patients with decompensated cirrhosis seen at the Institute of Liver and Biliary Sciences, New Delhi (from May 2011 through June 2012) were randomly assigned to groups given subcutaneous G-CSF (5 μg/kg/d) for 5 days and then every third day (12 total doses), along with subcutaneous darbopoietin α(40 mcg/wk) for 4 weeks (GDP group, n = 29), or only placebos (control group, n = 26). All patients also received standard medical therapy and were followed for 12 months. Histology was performed on liver biopsies. The primary end point was survival at 12 months. Baseline characteristics of patients were comparable; alcohol intake was the most common etiology of cirrhosis. A higher proportion of patients in the GDP group than controls survived until 12 months (68.6% vs 26.9%; P = .003). At 12 months, Child-Turcotte Pugh scores were reduced by 48.6% in the GDP group and 39.1% in the control group, from baseline (P = .001); Model for End Stage Liver Disease scores were reduced by 40.4% and 33%, respectively (P = .03). The need for large-volume paracentesis was significantly reduced in GDP group, compared with controls (P < .05). A lower proportion of patients in the GDP group developed septic shock (6.9%) during follow-up compared with controls (38.5%; P = .005). No major adverse events were observed in either group. In a single-center randomized trial, a significantly larger proportion of patients with decompensated cirrhosis given a combination of G-CSF and

  16. Effects of erythropoietin-dextran microparticle-based PLGA/PLA microspheres on RGCs.

    PubMed

    Rong, Xianfang; Yang, Sixing; Miao, Huamao; Guo, Tingting; Wang, Zhenyu; Shi, Wanru; Mo, Xiaofen; Yuan, Weien; Jin, Tuo

    2012-09-07

    We explored the neuroprotective effects of erythropoietin (EPO)-loaded dextran microparticle-based Poly(DL-lactide-co-glycolide)/Poly(DL-lactide) (PLGA/PLA) microspheres (EPO-dextran PLGA/PLA microspheres) on retinal ganglion cells (RGCs) in optic nerve crush rats for a prolonged period of time. EPO-dextran PLGA/PLA microspheres were prepared first by a novel solid-in-oil-in-water (S/O/W) technique. Then, the in vitro EPO release profile was assessed. Afterward, the bioactive effect of EPO released from EPO-dextran PLGA/PLA microspheres was explored in vitro on the retinal explants. Lastly, the neuroprotective effects of EPO-dextran PLGA/PLA microspheres on RGCs were evaluated in optic nerve crush rats with TUNEL staining for apoptotic RGCs. The level of glial fibrillary acidic protein (GFAP) expressed in retina was explored by immunohistochemistry staining. Survival RGCs were observed by DiI retrograde labeling using a DiI fluorescent tracer (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate). The results demonstrated that a sustained release of EPO from PLGA/PLA microspheres could last for at least 60 days. EPO released from the microspheres showed as efficaciously neuroregenerative as EPO protein solution on retinal explants (P = 0.2554 for neurite density, P = 0.1004 for neurite length). TUNEL staining revealed that EPO-dextran PLGA/PLA microspheres remarkably reduced RGCs death when compared to the control (untreated) group (P < 0.01 at five days and one week post-crush, P < 0.05 at two weeks post-crush). Increased GFAP expression in retina was reduced greatly in EPO-dextran PLGA/PLA microspheres-administrated rats two weeks post optic nerve crush. DiI retrograde labeling revealed that a single injection of EPO-dextran PLGA/PLA microspheres significantly promoted RGCs survival (P < 0.01 at four and eight weeks post-crush). A single intravitreal injection of EPO-dextran PLGA/PLA microspheres appeared to have a prolonged protective effect on

  17. Endogenous erythropoietin level and effects of exogenous erythropoietin in a rat model of blunt chest trauma-induced pulmonary contusion.

    PubMed

    Bakan, Vedat; Kurutaş, Ergül Belge; Çıralık, Harun; Gül, Mustafa; Çelik, Ahmet

    2016-07-01

    The present objective was to investigate endogen erythropoietin (EPO) level and relationship to oxidative stress within the first 24 hours of blunt chest trauma-induced pulmo-nary contusion (PCn) in a rat model. Thirty-five rats were divided into 3 groups. In the baseline control group (BC, n=7), rats were uninjured and untreated. In the positive control group (PC, n=21) rats were injured but untreated. In the EPO-24 group (n=7), rats were injured and a single dose of intra-peritoneal EPO (5000 IU/kg) was administered immediately after lung injury. The PC group was divided into 3 subgroups: PC-6 (n=7), PC-12 (n=7), and PC-24 (n=7). The BC group was subjected to thoracotomy, and the right lung was harvested. The PC subgroups were eu-thanized at 6, 12, and 24 hours after injury, respectively. The EPO-24 group was euthanized at the 24th hour after injury. Lung samples were obtained, levels of malondialdehyde (MDA) and EPO were analyzed, and activities of superoxide dismutase (SOD) and catalase (CAT) were then measured in homogenized lung tissue samples. Histologic damage to lung tissue in the BC group, the EPO-24 group, and PC subgroup euthanized at the 24th hour after injury were scored by a single pathologist blinded to group assignation. Mean MDA levels, as well as SOD and CAT activities, of the BC and EPO-24 groups were significantly lower than those of the PC group (p<0.005). Mean EPO concentra-tion of the PC group was significantly higher than that of the BC group (p<0.005). Lung tis-sue damage scores measured at 24 hours after injury were significantly lower in the EPO-24 group than in the PC group (p<0.005). In the present PCn rat model, EPO concentrations, as well as SOD and CAT levels, were high in lung tissue, when measured at 24 hours after PCn. When administered early after chest trauma, EPO significantly attenuated oxidative damage and tissue damage in the early phase, as assessed by biochemical markers and histologic scoring.

  18. Mathematical modeling reveals differential effects of erythropoietin on proliferation and lineage commitment of human hematopoietic progenitors in early erythroid culture

    PubMed Central

    Ward, Daniel; Carter, Deborah; Homer, Martin; Marucci, Lucia; Gampel, Alexandra

    2016-01-01

    Erythropoietin is essential for the production of mature erythroid cells, promoting both proliferation and survival. Whether erythropoietin and other cytokines can influence lineage commitment of hematopoietic stem and progenitor cells is of significant interest. To study lineage restriction of the common myeloid progenitor to the megakaryocyte/erythroid progenitor of peripheral blood CD34+ cells, we have shown that the cell surface protein CD36 identifies the earliest lineage restricted megakaryocyte/erythroid progenitor. Using this marker and carboxyfluorescein succinimidyl ester to track cell divisions in vitro, we have developed a mathematical model that accurately predicts population dynamics of erythroid culture. Parameters derived from the modeling of cultures without added erythropoietin indicate that the rate of lineage restriction is not affected by erythropoietin. By contrast, megakaryocyte/erythroid progenitor proliferation is sensitive to erythropoietin from the time that CD36 first appears at the cell surface. These results shed new light on the role of erythropoietin in erythropoiesis and provide a powerful tool for further study of hematopoietic progenitor lineage restriction and erythropoiesis. PMID:26589912

  19. Co-localization of erythropoietin mRNA and ecto-5'-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin.

    PubMed

    Bachmann, S; Le Hir, M; Eckardt, K U

    1993-03-01

    In adults, the kidneys are the major site of production of the glycoprotein hormone erythropoietin (EPO), but the type of renal cell producing EPO has not yet been identified. In the present study we used non-radioactive in situ hybridization with a digoxigenin-labeled cRNA probe to localize cells that produce erythropoietin (EPO) in kidneys of anemic rats. Cryostat sections from both native and perfusion-fixed tissue were used. Cells containing EPO mRNA were found exclusively in the peritubular space of the renal cortex. Using high-resolution interference contrast optics, we found that cells expressing EPO mRNA were not associated with the lumina of peritubular capillaries but rather were located in the angles between adjacent tubules or between tubules and vessels. These spaces are predominantly occupied by resident interstitial fibroblasts and by their cytoplasmic processes. To further identify the type of cell containing EPO mRNA, a double-labeling protocol was established that permitted on the same tissue section both in situ hybridization for EPO mRNA and parallel immunolabeling of ecto-5'-nucleotidase (5'-Nu), a surface marker of peritubular interstitial fibroblasts. The combined labeling technique revealed that a clear majority of cells expressing EPO mRNA also displayed staining for anti-5'-Nu. Staining for EPO mRNA was localized in central perinuclear parts of the interstitial cells, whereas 5'-Nu label was present on the cell surface, including the cytoplasmic processes. These data indicate that peritubular fibroblasts are cellular sites for production of erythropoietin.

  20. Erythropoietin resistance in end-stage renal disease patient with gastric antral vascular ectasia.

    PubMed

    Lee, Desiree Ji Re; Fragata, Juliana; Pestana, José Osmar Medina; Draibe, Sergio; Canziani, Maria Eugênia; Cendoroglo, Miguel; Góes, Miguel Ângelo de

    2015-01-01

    We observed a case of recombinant human erythropoietin resistance caused by Gastric Antral Vascular Ectasia in a 40-year-old female with ESRD on hemodialysis. Some associated factors such as autoimmune disease, hemolysis, heart and liver disease were discarded on physical examination and complementary tests. The diagnosis is based on the clinical history and endoscopic appearance of watermelon stomach. The histologic findings are fibromuscular proliferation and capillary ectasia with microvascular thrombosis of the lamina propria. However, these histologic findings are not necessary to confirm the diagnosis. Gastric Antral Vascular Ectasia is a serious condition and should be considered in ESRD patients on hemodialysis with anemia and resistance to recombinant human erythropoietin because GAVE is potentially curable with specific endoscopic treatment method or through surgical procedure.

  1. Secondary polycythaemia associated with high plasma erythropoietin concentrations in a dog with a necrotising pyelonephritis.

    PubMed

    Kessler, M

    2008-07-01

    An 11-year-old mixed breed dog was presented with anorexia, apathy and intermittent macrohaematuria, absolute polycythaemia (packed cell volume, 80 per cent; red blood cell, 12.2 x 10(6)/microl) and elevated erythropoietin concentrations. A renal mass was detected by ultrasonography and, following total nephrectomy, diagnosed as necrotising pyelonephritis. After surgery, the haematological parameters and erythropoietin values returned to normal, suggesting that the pyelonephritis was the cause of the polycythaemia. While secondary polycythaemia because of a non-neoplastic condition of the kidneys occasionally occurs in human beings, it has only extremely rarely been reported in dogs. This is the first case report of a unilateral pyelonephritis causing secondary polycythaemia in a dog.

  2. Comparison among three anion exchange chromatographic supports to capture erythropoietin from cell culture supernatant.

    PubMed

    Hernández, Lourdes; Stewart, Diobel; Zumalacárregui, Lourdes; Amaro, Daniel

    2015-06-01

    Affinity and ion exchange conventional chromatography have been used to capture erythropoietin (EPO) from mammalian cell culture supernatant. Currently, chromatographic adsorbent perfusion is available, however a limited number of applications have been found in the literature. In this work, three anion exchange chromatographic supports (gel, membrane and monolithic) were evaluated in the capture step of the recombinant erythropoietin purification process. The influences of load and flow rate on each support performance were analyzed. Also the purity of the EPO molecules was determined. A productivity analysis, as a decision tool for larger scale implementation, was done. As a conclusion, the evaluated supports are technically suitable to capture EPO with adequate recovery and good purity. However, the monolithic column admits high operating velocity, showing the highest adsorption capacity and productivity.

  3. Intraosseous Erythropoietin for Acute Tissue Protection in Battlefield Casualties Suffering Hypovolemic Shock

    DTIC Science & Technology

    2012-11-01

    resuscitation from ventricular fibrillation . Am J Ther 2007;14:361-8. 17  21. Grmec S, Strnad M, Kupnik D, Sinkovic A, Gazmuri RJ. Erythropoietin...National Instru- ments). Cardiac Function: Indices of car- diac function were derived from left ventricular pressures, report- ing the maximal and...the minimal rate of left ventricular pressure change (dP/dtmax and dP/dtmin), the stroke volume index (SVI), and the left and right ventricular

  4. Changes in erythropoietin levels during space flight or space flight simulation

    NASA Technical Reports Server (NTRS)

    Dunn, C. D. R.; Hen, J. P.

    1980-01-01

    Two hundred and seventy samples from 24 subjects involved in 3 bedrest studies and from 3 subjects involved in Spacelab Mission Development Test 3 were assayed for erythropoietin (Ep), in an in vitro fetal mouse liver cell assay, and for ferritin using a commercially available immunoradiometric assay kit. No trends or significant changes in serum Ep were observed. Serum ferritin concentrations tended to increases slightly during the 'missions', reflecting a redirection of iron from the suppressed erythron into iron stores.

  5. A novel reporter gene assay for recombinant human erythropoietin (rHuEPO) pharmaceutical products.

    PubMed

    Yang, Yushuai; Zhou, Yong; Yu, Lei; Li, Xiang; Shi, Xinchang; Qin, Xi; Rao, Chunming; Wang, Junzhi

    2014-11-01

    Accurate determination of in vitro biological activity of therapeutic erythropoietin is essential in quality control of recombinant human erythropoietin (rHuEPO) pharmaceutical products. However, most of currently-used methods leave much to be desired so that a simpler, quicker and more accurate method is urgently needed. The bioassay described here utilizes a sub clone of UT-7/epo cell line stably transfected with luciferase gene under the control of sis inducible element and interferon γ-activated sequence element promoter. Active erythropoietin could induce the expression of luciferase by signaling through the erythropoietin receptor and the dose-response curve showed good linearity, yielding a coefficient of determination of 0.99 or higher. The optimized assay was simpler with the operation completed within 24h and more sensitive with EC50 being 0.077IU/mL. The accuracy estimates ranged from 81.7% to 102.4%, and both intra-assay and inter-assay precision was below 15.0%. The robustness of the assay was demonstrated by no effect of passage levels of the cells on the performance of the assay (p values: 0.772 for sample 1 and 0.943 for sample 2). Besides, Bland-Altman analysis showed a high consistency of the new assay with in vivo reticulocyte assay in results. These results suggested that the new reporter gene assay can be a viable supplement to the traditional reticulocyte assay and employed in potency determination of rHuEPO pharmaceutical products. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Form CMS-2728 data versus erythropoietin claims data: implications for quality of care studies.

    PubMed

    Beaubrun, Anne C; Kanda, Eiichiro; Bond, T Christopher; McClellan, William M

    2013-01-01

    Medical Evidence Report Form CMS-2728 data is frequently used to study US dialysis patients, but the validity of these data have been called into question. We compared predialysis erythropoietin use as recorded on Form CMS-2728 with claims data as part of an assessment of quality of care among hemodialysis patients. Medicare claims were linked to Form CMS-2728 data for 18,870 patients. Dialysis patients, 67 years old or older, who started dialysis from 1 June 2005 to 31 May 2007 were eligible. Logistic and multivariate regressions were used to compare the use of either Form CMS-2728 or the corresponding claims data to predict mortality and the probability of meeting target hemoglobin levels. The sensitivity, specificity, and kappa coefficient for the predialysis erythropoietin indicator were 58.0%, 78.4%, and 0.36, respectively. Patients with a predialysis erythropoietin claim were less likely to die compared with patients without a claim (odds ratio = 0.80 and 95% confidence interval = 0.74-0.87), but there was no relationship observed between predialysis care and death using only Form CMS-2728 predictors. At the facility level, a predialysis erythropoietin claim was associated with a 0.085 increase in the rate of meeting target hemoglobin levels compared with patients without a claim (p = 0.041), but no statistically significant relationship was observed when using the Form CMS-2728 indicators. The agreement between Form CMS-2728 and claims data is poor and discordant results are observed when comparing the use of these data sources to predict health outcomes. Facilities with higher agreement between the two data sources may provide greater quality of care.

  7. Expression of GPI anchored human recombinant erythropoietin in CHO cells is devoid of glycosylation heterogeneity.

    PubMed

    Singh, Pankaj Kumar; Devasahayam, Mercy; Devi, Sobita

    2015-04-01

    Erythropoietin is a glycohormone involved in the regulation of the blood cell levels. It is a 166 amino acid protein having 3 N-glycosylation and one O-linked glycosylation sites, and is used to treat anaemia related illness. Though human recombinant erythropoietin (rEPO) is produced in CHO cells, the loss in quality control is 80% due to incomplete glycosylation of the rEPO with low levels of fully glycosylated active rEPO. Here, we describe the expression from CHO cells of fully glycosylated human rEPO when expressed as a GPI anchored molecule (rEPO-g). The results demonstrated the production of a homogenous completely glycosylated human rEPO-g as a 42 kD band without any low molecular weight glycoform variants as shown by affinity chromatography followed by SDS-PAGE and anti-human EPO specific western blot. The western blot using specific monoclonal antibody is the available biochemical technique to prove the presence of homogeneity in the expressed recombinant protein. The GPI anchor can be removed during the purification process to yield a therapeutically relevant recombinant erythropoietin molecule cells with a higher in vivo biological activity due to its high molecular weight of 40 kD. This is possibly the first report on the production of a homogenous and completely glycosylated human rEPO from CHO cells for efficient therapy.

  8. Isoforms of the Erythropoietin receptor in dopaminergic neurons of the Substantia Nigra.

    PubMed

    Marcuzzi, Federica; Zucchelli, Silvia; Bertuzzi, Maria; Santoro, Claudio; Tell, Gianluca; Carninci, Piero; Gustincich, Stefano

    2016-11-01

    Erythropoietin receptor (EpoR) regulates erythrocytes differentiation in blood. In the brain, EpoR has been shown to protect several neuronal cell types from cell death, including the A9 dopaminergic neurons (DA) of the Substantia Nigra (SN). These cells form the nigrostriatal pathway and are devoted to the control of postural reflexes and voluntary movements. Selective degeneration of A9 DA neurons leads to Parkinson's disease. By the use of nanoCAGE, a technology that allows the identification of Transcription Start Sites (TSSs) at a genome-wide level, we have described the promoter-level expression atlas of mouse A9 DA neurons purified with Laser Capture Microdissection (LCM). Here, we identify mRNA variants of the Erythropoietin Receptor (DA-EpoR) transcribed from alternative TSSs. Experimental validation and full-length cDNA cloning is integrated with gene expression analysis in the FANTOM5 database. In DA neurons, the EpoR gene encodes for a N-terminal truncated receptor. Based on STAT5 phosphorylation assays, we show that the new variant of N-terminally truncated EpoR acts as decoy when co-expressed with the full-length form. A similar isoform is also found in human. This work highlights new complexities in the regulation of Erythropoietin (EPO) signaling in the brain.

  9. Administrative Synergy

    ERIC Educational Resources Information Center

    Hewitt, Kimberly Kappler; Weckstein, Daniel K.

    2012-01-01

    One of the biggest obstacles to overcome in creating and sustaining an administrative professional learning community (PLC) is time. Administrators are constantly deluged by the tyranny of the urgent. It is a Herculean task to carve out time for PLCs, but it is imperative to do so. In this article, the authors describe how an administrative PLC…

  10. Randomized Trial of Neuroprotective Effects of Erythropoietin in Patients Receiving Adjuvant Chemotherapy for Breast Cancer: Positron Emission Tomography and Neuropsychological Study

    DTIC Science & Technology

    2008-09-01

    Effects of Erythropoietin in Patients Receiving Adjuvant Chemotherapy for Breast Cancer : Positron Emission Tomography and Neuropsychological Study...Neuroprotective Effects of Erythropoietin in Patients 5a. CONTRACT NUMBER Receiving Adjuvant Chemotherapy for Breast Cancer : Positron Emission Tomography...11 Introduction In the United States approximately 60-80% of patients diagnosed with breast cancer will receive

  11. Partial white and grey matter protection with prolonged infusion of recombinant human erythropoietin after asphyxia in preterm fetal sheep.

    PubMed

    Wassink, Guido; Davidson, Joanne O; Dhillon, Simerdeep K; Fraser, Mhoyra; Galinsky, Robert; Bennet, Laura; Gunn, Alistair J

    2017-03-01

    Perinatal asphyxia in preterm infants remains a significant contributor to abnormal long-term neurodevelopmental outcomes. Recombinant human erythropoietin has potent non-haematopoietic neuroprotective properties, but there is limited evidence for protection in the preterm brain. Preterm (0.7 gestation) fetal sheep received sham asphyxia (sham occlusion) or asphyxia induced by umbilical cord occlusion for 25 min, followed by an intravenous infusion of vehicle (occlusion-vehicle) or recombinant human erythropoietin (occlusion-Epo, 5000 international units by slow push, then 832.5 IU/h), starting 30 min after asphyxia and continued until 72 h. Recombinant human erythropoietin reduced neuronal loss and numbers of caspase-3-positive cells in the striatal caudate nucleus, CA3 and dentate gyrus of the hippocampus, and thalamic medial nucleus ( P < 0.05 vs. occlusion-vehicle). In the white matter tracts, recombinant human erythropoietin increased total, but not immature/mature oligodendrocytes ( P < 0.05 vs. occlusion-vehicle), with increased cell proliferation and reduced induction of activated caspase-3, microglia and astrocytes ( P < 0.05). Finally, occlusion-Epo reduced seizure burden, with more rapid recovery of electroencephalogram power, spectral edge frequency, and carotid blood flow. In summary, prolonged infusion of recombinant human erythropoietin after severe asphyxia in preterm fetal sheep was partially neuroprotective and improved electrophysiological and cerebrovascular recovery, in association with reduced apoptosis and inflammation.

  12. Testosterone Administration Inhibits Hepcidin Transcription and is Associated with Increased Iron Incorporation into Red Blood Cells

    PubMed Central

    Guo, Wen; Bachman, Eric; Li, Michelle; Roy, Cindy N.; Blusztajn, Jerzy; Wong, Siu; Chan, Stephen Y.; Serra, Carlo; Jasuja, Ravi; Travison, Thomas G.; Muckenthaler, Martina U.; Nemeth, Elizabeta; Bhasin, Shalender

    2013-01-01

    Testosterone administration increases hemoglobin levels and has been used to treat anemia of chronic disease. Erythrocytosis is the most frequent adverse event associated with testosterone therapy of hypogonadal men, especially older men. However, the mechanisms by which testosterone increases hemoglobin remain unknown. Testosterone administration in male and female mice was associated with a greater increase in hemoglobin and hematocrit, reticulocyte count, reticulocyte hemoglobin concentration, and serum iron and transferring saturation than placebo. Testosterone downregulated hepatic hepcidin mRNA expression, upregulated renal erythropoietin mRNA expression, and increased erythropoietin levels. Testosterone-induced suppression of hepcidin expression was independent of its effects on erythropoietin or hypoxia-sensing mechanisms. Transgenic mice with liver-specific constitutive hepcidin over-expression failed to exhibit the expected increase in hemoglobin in response to testosterone administration. Testosterone upregulated splenic ferroportin expression and reduced iron retention in spleen. After intravenous administration of transferrin-bound 58Fe, the amount of 58Fe incorporated into red blood cells was significantly greater in testosterone-treated mice than in placebo-treated mice. Serum from testosterone-treated mice stimulated hemoglobin synthesis in K562 erythroleukemia cells more than that from vehicle-treated mice. Testosterone administration promoted the association of androgen receptor (AR) with Smad1 and Smad4 to reduce their binding to BMP-response elements in hepcidin promoter in the liver. Ectopic expression of AR in hepatocytes suppressed hepcidin transcription; this effect was blocked dose-dependently by AR antagonist flutamide. Testosterone did not affect hepcidin mRNA stability. Conclusion: Testosterone inhibits hepcidin transcription through its interaction with BMP-Smad signaling. Testosterone administration is associated with increased iron

  13. Modernizing Administration.

    ERIC Educational Resources Information Center

    Lombardi, Vincent L.; Hildebrand, Verna

    1981-01-01

    Suggests assignment of research duties and rotation of teaching and management roles for college administrators, to increase their effectiveness and diminish the negative effects of declining enrollments. (JD)

  14. Brain penetrating IgG-erythropoietin fusion protein is neuroprotective following intravenous treatment in Parkinson's disease in the mouse.

    PubMed

    Zhou, Qing-Hui; Hui, Eric Ka-Wai; Lu, Jeff Zhiqiang; Boado, Ruben J; Pardridge, William M

    2011-03-25

    Parkinson's disease (PD) is caused by oxidative stress, and erythropoietin (EPO) reduces oxidative stress in the brain. However, EPO cannot be developed as a treatment for PD, because EPO does not cross the blood-brain barrier (BBB). A brain penetrating form of human EPO has been developed wherein EPO is fused to a chimeric monoclonal antibody (MAb) against the mouse transferrin receptor (TfR), which is designated as the cTfRMAb-EPO fusion protein. The TfRMAb acts as a molecular Trojan horse to transport the fused EPO into brain via transport on the BBB TfR. Experimental PD was induced in adult mice by the intra-striatal injection of 6-hydroxydopamine, and PD mice were treated with 1mg/kg of the cTfRMAb-EPO fusion protein intravenously (IV) every other day starting 1 h after toxin injection. Following 3weeks of treatment mice were euthanized for measurement of striatal tyrosine hydroxylase (TH) enzyme activity. Mice treated with the cTfRMAb-EPO fusion protein showed a 306% increase in striatal TH enzyme activity, which correlated with improvement in three assays of neurobehavior. The blood hematocrit increased 10% at 2weeks, with no further changes at 3weeks of treatment. A sandwich ELISA showed the immune reaction against the cTfRMAb-EPO fusion protein was variable and low titer. In conclusion, the present study demonstrates that a brain penetrating form of EPO is neuroprotective in PD following IV administration with minimal effects on erythropoiesis.

  15. Remote conditioning or erythropoietin before surgery primes kidneys to clear ischemia-reperfusion-damaged cells: a renoprotective mechanism?

    PubMed

    Gardner, David S; Welham, Simon J M; Dunford, Louise J; McCulloch, Thomas A; Hodi, Zsolt; Sleeman, Philippa; O'Sullivan, Saoirse; Devonald, Mark A J

    2014-04-15

    Acute kidney injury is common, serious with no specific treatment. Ischemia-reperfusion is a common cause of acute kidney injury (AKI). Clinical trials suggest that preoperative erythropoietin (EPO) or remote ischemic preconditioning may have a renoprotective effect. Using a porcine model of warm ischemia-reperfusion-induced AKI (40-min bilateral cross-clamping of renal arteries, 48-h reperfusion), we examined the renoprotective efficacy of EPO (1,000 iu/kg iv.) or remote ischemic preconditioning (3 cycles, 5-min inflation/deflation to 200 mmHg of a hindlimb sphygmomanometer cuff). Ischemia-reperfusion induced significant kidney injury at 24 and 48 h (χ(2), 1 degree of freedom, >10 for 6/7 histopathological features). At 2 h, a panel of biomarkers including plasma creatinine, neutrophil gelatinase-associated lipocalin, and IL-1β, and urinary albumin:creatinine could be used to predict histopathological injury. Ischemia-reperfusion increased cell proliferation and apoptosis in the renal cortex but, for pretreated groups, the apoptotic cells were predominantly intratubular rather than interstitial. At 48-h reperfusion, plasma IL-1β and the number of subcapsular cells in G2-M arrest were reduced after preoperative EPO, but not after remote ischemic preconditioning. These data suggest an intrarenal mechanism acting within cortical cells that may underpin a renoprotective function for preoperative EPO and, to a limited extent, remote ischemic preconditioning. Despite equivocal longer-term outcomes in clinical studies investigating EPO as a renoprotective agent in AKI, optimal clinical dosing and administration have not been established. Our data suggest further clinical studies on the potential renoprotective effect of EPO and remote ischemic preconditioning are justified.

  16. A single topical dose of erythropoietin applied on a collagen carrier enhances calvarial bone healing in pigs

    PubMed Central

    2014-01-01

    Background and purpose The osteogenic potency of erythropoietin (EPO) has been documented. However, its efficacy in a large-animal model has not yet been investigated; nor has a clinically safe dosage. The purpose of this study was to overcome such limitations of previous studies and thereby pave the way for possible clinical application. Our hypothesis was that EPO increases calvarial bone healing compared to a saline control in the same subject. Methods We used a porcine calvarial defect model. In each of 18 pigs, 6 cylindrical defects (diameter: 1 cm; height: 1 cm) were drilled, allowing 3 pairwise comparisons. Treatment consisted of either 900 IU/mL EPO or an equal volume of saline in combination with either autograft, a collagen carrier, or a polycaprolactone (PCL) scaffold. After an observation time of 5 weeks, the primary outcome (bone volume fraction (BV/TV)) was assessed with high-resolution quantitative computed tomography. Secondary outcome measures were histomorphometry and blood samples. Results The median BV/TV ratio of the EPO-treated collagen group was 1.06 (CI: 1.02–1.11) relative to the saline-treated collagen group. Histomorphometry showed a similar median effect size, but it did not reach statistical significance. Autograft treatment had excellent healing potential and was able to completely regenerate the bone defect independently of EPO treatment. Bony ingrowth into the PCL scaffold was sparse, both with and without EPO. Neither a substantial systemic effect nor adverse events were observed. The number of blood vessels was similar in EPO-treated defects and saline-treated defects. Interpretation Topical administration of EPO on a collagen carrier moderately increased bone healing. The dosing regime was safe, and could have possible application in the clinical setting. However, in order to increase the clinical relevance, a more potent but still clinically safe dose should be investigated. PMID:24564750

  17. Mimicking Hypoxia to Treat Anemia: HIF-Stabilizer BAY 85-3934 (Molidustat) Stimulates Erythropoietin Production without Hypertensive Effects

    PubMed Central

    Flamme, Ingo; Oehme, Felix; Ellinghaus, Peter; Jeske, Mario; Keldenich, Jörg; Thuss, Uwe

    2014-01-01

    Oxygen sensing by hypoxia-inducible factor prolyl hydroxylases (HIF-PHs) is the dominant regulatory mechanism of erythropoietin (EPO) expression. In chronic kidney disease (CKD), impaired EPO expression causes anemia, which can be treated by supplementation with recombinant human EPO (rhEPO). However, treatment can result in rhEPO levels greatly exceeding the normal physiological range for endogenous EPO, and there is evidence that this contributes to hypertension in patients with CKD. Mimicking hypoxia by inhibiting HIF-PHs, thereby stabilizing HIF, is a novel treatment concept for restoring endogenous EPO production. HIF stabilization by oral administration of the HIF-PH inhibitor BAY 85-3934 (molidustat) resulted in dose-dependent production of EPO in healthy Wistar rats and cynomolgus monkeys. In repeat oral dosing of BAY 85-3934, hemoglobin levels were increased compared with animals that received vehicle, while endogenous EPO remained within the normal physiological range. BAY 85-3934 therapy was also effective in the treatment of renal anemia in rats with impaired kidney function and, unlike treatment with rhEPO, resulted in normalization of hypertensive blood pressure in a rat model of CKD. Notably, unlike treatment with the antihypertensive enalapril, the blood pressure normalization was achieved without a compensatory activation of the renin–angiotensin system. Thus, BAY 85-3934 may provide an approach to the treatment of anemia in patients with CKD, without the increased risk of adverse cardiovascular effects seen for patients treated with rhEPO. Clinical studies are ongoing to investigate the effects of BAY 85-3934 therapy in patients with renal anemia. PMID:25392999

  18. ARA290, a Specific Agonist of Erythropoietin/CD131 Heteroreceptor, Improves Circulating Endothelial Progenitors' Angiogenic Potential and Homing Ability.

    PubMed

    Hache, Guillaume; Garrigue, Philippe; Bennis, Youssef; Stalin, Jimmy; Moyon, Anais; Cerami, Anthony; Brines, Michael; Blot-Chabaud, Marcel; Sabatier, Florence; Dignat-George, Francoise; Guillet, Benjamin

    2016-10-01

    Alternate erythropoietin (EPO)-mediated signaling via the EPOR/CD131 heteromeric receptor exerts the tissue-protective actions of EPO in a wide spectrum of injuries, especially ischemic diseases. Circulating endothelial progenitor cells contribute to endothelial repair and post-natal angiogenesis after chronic ischemic injury. This work aims to investigate the effects of ARA290, a specific agonist of EPOR/CD131 complex, on a subpopulation of endothelial progenitor cells named endothelial colony-forming cells (ECFCs) and to characterize its contribution to ECFCs-induced angiogenesis after peripheral ischemia. ARA290 effects on ECFCs properties were studied using cell cultures in vitro. We injected ARA290 to mice undergoing chronic hindlimb ischemia (CLI) in combination with ECFC transplantation. The homing of transplanted ECFC to ischemic tissue in vivo was assessed by SPECT/CT imaging. In vitro, ARA290 enhanced the proliferation, migration, and resistance to H2O2-induced apoptosis of ECFCs. After ECFC transplantation to mice with CLI, a single ARA290 injection enhanced the ischemic/non-ischemic ratio of hindlimb blood flow and capillary density after 28 days and the homing of radiolabeled transplanted cells to the ischemic leg 4 h after transplantation. Prior neutralization of platelet-endothelial cell adhesion molecule-1 (CD31) expressed by the transplanted cells inhibited ARA290-induced improvement of homing. ARA290 induces specific improvement of the biological activity of ECFCs. ARA290 administration in combination with ECFCs has a synergistic effect on post-ischemic angiogenesis in vivo. This potentiation appears to rely, at least in part, on a CD31-dependent increase in homing of the transplanted cells to the ischemic tissue.

  19. Theatre Administration.

    ERIC Educational Resources Information Center

    Gillespie, Patti P., Ed.

    1983-01-01

    The theme of this special journal issue is theatre administration. The journal is divided into four parts: a short introduction and three major sections on the role of the theatre chair, theatre administration in the 1980's, and evaluating creative work. Among others, topics covered in the issue's 13 articles include (1) the changing nature of the…

  20. Administrative Ecology

    ERIC Educational Resources Information Center

    McGarity, Augustus C., III; Maulding, Wanda

    2007-01-01

    This article discusses how all four facets of administrative ecology help dispel the claims about the "impossibility" of the superintendency. These are personal ecology, professional ecology, organizational ecology, and community ecology. Using today's superintendency as an administrative platform, current literature describes a preponderance of…

  1. Administrative Ecology

    ERIC Educational Resources Information Center

    McGarity, Augustus C., III; Maulding, Wanda

    2007-01-01

    This article discusses how all four facets of administrative ecology help dispel the claims about the "impossibility" of the superintendency. These are personal ecology, professional ecology, organizational ecology, and community ecology. Using today's superintendency as an administrative platform, current literature describes a preponderance of…

  2. Exercise aggravates cardiovascular risks and mortality in rats with disrupted nitric oxide pathway and treated with recombinant human erythropoietin.

    PubMed

    Meziri, Fayçal; Binda, Delphine; Touati, Sabeur; Pellegrin, Maxime; Berthelot, Alain; Touyz, Rhian M; Laurant, Pascal

    2011-08-01

    Chronic administration of recombinant human erythropoietin (rHuEPO) can generate serious cardiovascular side effects such as arterial hypertension (HTA) in clinical and sport fields. It is hypothesized that nitric oxide (NO) can protect from noxious cardiovascular effects induced by chronic administration of rHuEPO. On this base, we studied the cardiovascular effects of chronic administration of rHuEPO in exercise-trained rats treated with an inhibitor of NO synthesis (L-NAME). Rats were treated or not with rHuEPO and/or L-NAME during 6 weeks. During the same period, rats were subjected to treadmill exercise. The blood pressure was measured weekly. Endothelial function of isolated aorta and small mesenteric arteries were studied and the morphology of the latter was investigated. L-NAME induced hypertension (197 ± 6 mmHg, at the end of the protocol). Exercise prevented the rise in blood pressure induced by L-NAME (170 ± 5 mmHg). However, exercise-trained rats treated with both rHuEPO and L-NAME developed severe hypertension (228 ± 9 mmHg). Furthermore, in these exercise-trained rats treated with rHuEPO/L-NAME, the acetylcholine-induced relaxation was markedly impaired in isolated aorta (60% of maximal relaxation) and small mesenteric arteries (53%). L-NAME hypertension induced an internal remodeling of small mesenteric arteries that was not modified by exercise, rHuEPO or both. Vascular ET-1 production was not increased in rHuEPO/L-NAME/training hypertensive rats. Furthermore, we observed that rHuEPO/L-NAME/training hypertensive rats died during the exercise or the recovery period (mortality 51%). Our findings suggest that the use of rHuEPO in sport, in order to improve physical performance, represents a high and fatal risk factor, especially with pre-existing cardiovascular risk.

  3. Clinical efficacy and safety of recombinant canine erythropoietin in dogs with anemia of chronic renal failure and dogs with recombinant human erythropoietin-induced red cell aplasia.

    PubMed

    Randolph, John E; Scarlett, Janet; Stokol, Tracy; MacLeod, James N

    2004-01-01

    The efficacy and safety of recombinant canine erythropoietin (rcEPO) therapy was evaluated in 19 dogs with anemia of chronic renal failure (group 1) and 6 dogs with chronic renal failure and recombinant human erythropoietin (rhEPO)-induced red cell aplasia (group 2). Hematocrit (Hct) and absolute reticulocyte count (ARC) were monitored weekly for the first 8 weeks, CBC (including ARC) and serum iron profiles were evaluated monthly, and serum biochemical analyses were performed every 2 months for 6 (group 2) to 12 (group 1) months. For group 1 dogs, median Hct and ARC increased significantly during the 1st week of rcEPO treatment, and median Hct was sustained at >35% after week 5. In contrast, median Hct and ARC for group 2 did not change significantly with rcEPO treatment, even with doses greater than those used in group 1. Nevertheless, 2 (33%) of the 6 dogs in group 2 developed erythroid hyperplasia, reticulocytosis, and increases in Hct with rcEPO treatment. Although median systolic blood pressure did not change significantly in either group, 5 dogs developed systolic blood pressures > or = 180 mm Hg during the study. Appetite and energy level improved in most group 1 dogs with increases in Hct. Recombinant cEPO stimulated erythrocyte production in dogs with nonregenerative anemia secondary to chronic renal failure without causing the profound erythroid hypoplasia that can occur in rhEPO-treated dogs. Unfortunately, rcEPO was not as effective in restoring erythrocyte production in dogs that had previously developed rhEPO-induced red cell aplasia.

  4. Red blood cell cation transports in uraemic anaemia: evidence for an increased K/Cl co-transport activity. Effects of dialysis and erythropoietin treatment.

    PubMed

    De Franceschi, L; Olivieri, O; Girelli, D; Lupo, A; Bernich, P; Corrocher, R

    1995-10-01

    This study examines the role of uraemia and the effect of different dialysis treatments on red cell cation transport. We evaluated the main cation transport systems in erythrocytes of non-dialysed end-stage renal disease (ESRD) subjects, of patients undergoing haemodialysis (HD) and continuous ambulatory peritoneal dialysis (CAPD), as well as the changes induced by human recombinant erythropoietin (r-HuEPO) administration. In uraemic undialysed and dialysed patients, we observed an increase in K/Cl co-transport activity and in shrinkage-induced amiloride-sensitive (HMA-sensitive) Na efflux (Na/H exchange) and a decrease in Na/K pump and Na/K/Cl co-transport activity, while Na/Li exchange was increased only in dialysed patients. In uraemic erythrocytes, we showed for the first time an increased K/Cl co-transport activity, which was cell age independent. Generally, the different method of dialysis (CAPD or HD) did not modify the cation transport abnormalities observed. During the treatment with r-HuEPO, all the systems, with the exception of the Na/K pump and Na/K/Cl co-transport, increased their activities following the increase of circulating young red cells. The changes produced under r-HuEPO administration were transient and cation transports returned to the baseline values within 100 days of treatment, indicating a primary and prominent pathogenetic role of uraemia in modulating the red cell membrane cation transport activities.

  5. Historical review on the use of recombinant human erythropoietin in chronic renal failure.

    PubMed

    Winearls, C G

    1995-01-01

    The success of maintenance haemodialysis in the 1960s was blighted by the problem of anaemia. Treatment with iron, folic acid, androgens and transfusions did no more than minimize its effects. The need for a renewable source of erythropoietin was appreciated very early but the hope took 25 years to realize. Cloning and expression of the human gene was achieved in 1984 and clinical trials planned even before the descriptions of the recombinant hormone were published. The Amgen material was tested in parallel studies in Seattle and England and by the end of 1986 the efficacy of recombinant human erythropoietin (r-HuEPO) given in large intravenous bolus doses in reversing the anaemia of uraemia was established. The benefits were immediately obvious: relief from transfusion dependence was the unequivocal evidence but the effect on 'wellbeing' though subjective was remarkable. Large clinical trials were completed in Europe and the USA so that r-HuEPO was licensed as a therapeutic drug less than two years later. The pilot studies flagged a number of key issues: hypertension, sometimes with encephalopathy, occurred in patients whose blood pressure was labile before treatment; vascular access failure seemed more frequent and hyperkalaemia was thought to reflect less efficient dialysis. Failure to respond focused attention on iron balance as well as on factors such as infection, aluminium, and hyperparathyroidism. A more clear understanding of the pathogenesis of the anaemia of uraemia was made possible by dissection of the specific effects of the exogenous erythropoietin on erythroid function.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Oxidative stress during erythropoietin hyporesponsiveness anemia at end stage renal disease: Molecular and biochemical studies

    PubMed Central

    Khalil, Samar K.M.; Amer, H.A.; El Behairy, Adel M.; Warda, Mohamad

    2016-01-01

    Inflammation and oxidative stress are two faces of one coin in end stage renal disease patients (ESRD) on maintenance hemodialysis. Their interconnection induces anemia complicated with erythropoietin hyporesponsiveness. The biochemical bases behind the resistance to erythropoietin therapy with frequent hemoglobinemia, oxidative stress and iron status have not been fully understood. Here two equal groups (40 patients each) of responders and non-responders to recombinant human erythropoietin therapy (higher than 300 IU/kg/wk of epoetin) were investigated. Hematological and biochemical analyses of collected blood and serum samples were performed along with serum electrophoretic protein footprinting. The leukocytic DNA fragmentation was used to evaluate the degree of oxidative insult. The good responders showed lower erythrocyte malondialdehyde (E-MDA) level and less DNA fragmentation of circulating leukocytes than poor responders with elevated hemoglobin, albumin, A/G ratio, total iron, and ferritin levels. Contrariwise, lower erythrocyte superoxide dismutase (E-SOD) and catalase activities in EPO poor responder group were noticed. Neither other serum constituents nor electrophoretic protein pattern showed any difference between the two groups. There were higher levels of inflammatory markers, interleukin-6 (IL6) and C-reactive protein (CRP) in EPO poor responder than good responder. The negative correlations between Hb and both IL6 and CRP levels in the present data remotely indicate a positive correlation between inflammatory markers and severity of anemia. A direct correlation between Hb and antioxidant enzymes (E-SOD and catalase) was noticed, while inverse correlation with E-MDA was recorded. The study proved that oral supplementation of vitamin C to ESRD patients might mitigate the previously elevated serum MDA level in these patients. PMID:27222740

  7. Treatment of anaemia in haemodialysis patients with erythropoietin: long-term effects on exercise capacity.

    PubMed

    Bárány, P; Freyschuss, U; Pettersson, E; Bergström, J

    1993-04-01

    1. The effects of correcting anaemia on exercise capacity were evaluated in 21 haemodialysis patients (aged 39 +/- 12 years) before starting treatment with recombinant human erythropoietin (Hb concentration, 73 +/- 10 g/l; total Hb, 59 +/- 12% of expected), after correction of the anaemia to a Hb concentration of 108 +/- 7 g/l and a total Hb 82 +/- 10% of expected, and in 13 of the patients after 12 months on maintenance recombinant human erythropoietin treatment (Hb concentration 104 +/- 14 g/l, total Hb 79 +/- 17% of expected). Fifteen healthy subjects (aged 41 +/- 9 years), who took no regular exercise, constituted the control group. Maximal exercise capacity was determined on a bicycle ergometer. Oxygen uptake, respiratory quotient, blood lactate concentration, heart rate and blood pressure were measured at rest and at maximal workload. 2. After 6 +/- 3 months on recombinant human erythropoietin, maximal exercise capacity increased from 108 +/- 27 W to 130 +/- 36W (P < 0.001) and the maximal oxygen uptake increased from 1.24 +/- 0.39 litres/min to 1.50 +/- 0.45 litres/min (P < 0.001). No significant changes in respiratory quotient (1.16 +/- 0.13 versus 1.18 +/- 0.13) and blood lactate concentration (4.0 +/- 1.8 versus 3.6 +/- 1.1 mmol/l) at maximal workload were observed, but the blood lactate concentration in the patients was significantly lower than that in the control subjects (6.7 +/- 2.3 mmol/l, P < 0.01). After the correction of anaemia, the aerobic power was still 38% lower in the patients than in the control subjects and 17% lower than the reference values.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Preterm infant with a late presentation of blueberry muffin lesions secondary to recombinant erythropoietin.

    PubMed

    Rajpara, Anand; Blackmon, Joseph; Laarman, Rachel; Skaggs, Robert; Liolios, Ana; Lui, Deede; Fraga, Garth

    2013-09-14

    Our patient is a 26-week-old preterm female infant delivered by caesarean section secondary to severe maternal preeclampsia who had been receiving subcutaneous recombinant erythropoietin (r-EPO) for anemia of prematurity. At 8 weeks of age after 8 doses of r-EPO, the infant developed numerous non-blanching erythematous macules and patches located on the back, posterior shoulder, and posterior arms, concerning for late-onset blueberry muffin lesions. Biopsy of the lesions confirmed dermal hematopoiesis. After r-EPO was discontinued all skin lesions gradually resolved over a period of 2 weeks and never recurred.

  9. Erythropoietin-producing cells in the liver of ICR-derived glomerulonephritis (ICGN) mice.

    PubMed

    Yamaguchi-Yamada, Misuzu; Akashi, Naotsugu; Goto, Yasufumi; Anan, Sayuri; Yamamoto, Yoshie; Ogura, Atsuo; Manabe, Noboru

    2006-01-01

    The ICR-derived glomerulonephritis (ICGN) mouse is an appropriate model for anemia associated with chronic renal disorder (CRD). Insufficient renal production of erythropoietin (EPO) induces the anemia associated with CRD. EPO mRNA is expressed in both kidneys and liver of progressing-stage ICGN mice. Hypoxic stimulation induced the EPO mRNA expression in the liver as well as in the kidneys of ICGN mice. The localization of EPO-producing cells in the liver remains controversial. Present study using an amplified in situ hybridization technique identified that nonparenchymal cells were the source of hepatic EPO production in ICGN mice under both normoxia and hypoxia.

  10. Nonspecific shielding of unfavorable electrostatic intramolecular interactions in the erythropoietin native-state increase conformational stability and limit non-native aggregation

    PubMed Central

    Banks, Douglas D

    2015-01-01

    Previous equilibrium and kinetic folding studies of the glycoprotein erythropoietin indicate that sodium chloride increases the conformational stability of this therapeutically important cytokine, ostensibly by stabilizing the native-state [Banks DD, (2011) The Effect of Glycosylation on the Folding Kinetics of Erythropoietin. J Mol Biol 412:536–550]. The focus of the current report is to determine the underlying cause of the salt dependent increase in erythropoietin conformational stability and to understand if it has any impact on aggregation, an instability that remains a challenge to the biotech industry in maintaining the efficacy and shelf-life of protein therapeutics. Isothermal urea denaturation experiments conducted at numerous temperatures in the absence and presence of sodium chloride indicated that salt stabilizes erythropoietin primarily by increasing the difference in enthalpy between the native and unfolded sates. This result, and the finding that the salt induced increases in erythropoietin melting temperatures were independent of the identity of the salt cation and anion, indicates that salt likely increases the conformational stability of erythropoietin at neutral pH by nonspecific shielding of unfavorable electrostatic interaction(s) in the native-state. The addition of salt (even low concentrations of the strong chaotrope salt guanidinium hydrochloride) also exponentially decreased the initial rate of soluble erythropoietin non-native aggregation at 37 °C storage. PMID:25628168

  11. Exploring Erythropoietin and G-CSF Combination Therapy in Chronic Stroke Patients

    PubMed Central

    Shin, Yoon-Kyum; Cho, Sung-Rae

    2016-01-01

    Erythropoietin (EPO) and granulocyte-colony stimulating factor (G-CSF) are known to have neuroprotective actions. Based on previous reports showing the synergistic effects of EPO+G-CSF combination therapy in experimental models, we investigated the safety of EPO+G-CSF combination therapy in patients with chronic stroke. In a pilot study, 3 patients were treated with EPO and G-CSF for 5 consecutive days, with follow-up on day 30. In an exploratory double-blind study, 6 patients were allocated to treatment with either EPO+G-CSF or placebo. Treatment was applied once a day for 5 days per month over 3 months. Participants were followed up for 6 months. To substantiate safety, vital signs, adverse events, and hematological values were measured on days 0, 5, and 30 in each cycle and on day 180. Functional outcomes were determined on day 0 and 180. In the laboratory measurements, EPO+G-CSF combination therapy significantly elevated erythropoietin, CD34+ hematopoietic stem cells, white blood cells, and neutrophils on day 5 of each cycle. There were no observations of serious adverse events. In the functional outcomes, the grip power of the dominant hand was increased in the EPO+G-CSF treatment group. In conclusion, this exploratory study suggests a novel strategy of EPO+G-CSF combination therapy for stroke patients. PMID:27043535

  12. [Infantile pyknocytosis: A cause of noenatal hemolytic anemia. Is recombinant erythropoietin an alternative to transfusion?].

    PubMed

    Bagou, M; Rolland, E; Gay, C; Patural, H

    2016-01-01

    Infantile pyknocytosis is a neonatal hemolytic disorder which causes anemia and icterus and is characterized by the presence of an increased number of distorted red blood cells called pyknocytes. Resolution spontaneously occurs in the first semester of life. It has been generally described as a rare entity, with an occasional family history. We report seven cases of infantile pyknocytosis observed in our hospital in 3 years. Most of the infants presented with hemolytic icterus and profound anemia that was reaching its peak by the 3rd week of life. Three neonates received one to three red blood cell transfusions, according to former recommendations. However, the following four received a treatment with recombinant erythropoietin administered subcutaneously. Only one of these four cases required a transfusion. All of them were free of hematological disease 2-3 months after completion of treatment. Infantile pyknocytosis is a recognized cause of neonatal hemolytic anemia, which requires careful examination of red cell morphology on a peripheral blood smear. The cause of this transient disorder remains unknown. Our observations show that recombinant erythropoietin therapy is effective in treating infantile pyknocytosis and increases the reticulocyte response, thus improving the hemoglobin level.

  13. Erythropoietin therapy after allogeneic hematopoietic cell transplantation: a prospective, randomized trial.

    PubMed

    Jaspers, Aurélie; Baron, Frédéric; Willems, Evelyne; Seidel, Laurence; Hafraoui, Kaoutar; Vanstraelen, Gaetan; Bonnet, Christophe; Beguin, Yves

    2014-07-03

    We conducted a prospective randomized trial to assess hemoglobin (Hb) response to recombinant human erythropoietin (rhEPO) therapy after hematopoietic cell transplantation (HCT). Patients (N = 131) were randomized (1:1) between no treatment (control arm) or erythropoietin at 500 U/kg per week (EPO arm). Patients were also stratified into 3 cohorts: patients undergoing myeloablative HCT with rhEPO to start on day (D)28, patients given nonmyeloablative HCT (NMHCT) with rhEPO to start on D28, and patients also given NMHCT but with rhEPO to start on D0. The proportion of complete correctors (ie, Hb ≥13 g/dL) before D126 posttransplant was 8.1% in the control arm (median not reached) and 63.1% in the EPO arm (median, 90 days) (P < .001). Hb levels were higher and transfusion requirements decreased (P < .001) in the EPO arm, but not during the first month in the nonmyeloablative cohort starting rhEPO on D0. There was no difference in rates of thromboembolic events or other complications between the 2 arms. This is the first randomized trial to demonstrate that rhEPO therapy hastens erythroid recovery and decreases transfusion requirements when started one month after allogeneic HCT. There was no benefit to start rhEPO earlier after NMHCT.

  14. Benefits and risks of protracted treatment with human recombinant erythropoietin in patients having haemodialysis.

    PubMed Central

    Casati, S; Passerini, P; Campise, M R; Graziani, G; Cesana, B; Perisic, M; Ponticelli, C

    1987-01-01

    Fourteen patients with uraemic anaemia and having regular haemodialysis were given human recombinant erythropoietin in increasing doses, beginning with 24 U/kg thrice weekly. One patient was dropped from the study because of recurrent thrombosis of vascular access sites. In the other 13 patients, followed up for a mean of 9.1 months (range 8-11), haemoglobin concentrations increased from 62 (SD 8) to 105 (9) g/l. No antierythropoietin antibodies were detected during the study. The correction of anaemia was associated with a tendency to hyperkalaemia and a mild increase of unconjugated bilirubinaemia. In eight previously hypertensive patients antihypertensive treatment had to be reinforced, but in normotensive patients blood pressure did not change. Thrombosis of arteriovenous fistulas occurred in two patients and a cerebral ischaemic lesion in one. Protracted treatment with human recombinant erythropoietin evidently can maintain normal haemoglobin concentrations in uraemic patients over time. Full correction of anaemia, however, may trigger some vascular problems, particularly in hypertensive patients and those with a tendency to thromboembolism. PMID:3120854

  15. A novel mutation of the erythropoietin receptor gene associated with primary familial and congenital polycythaemia.

    PubMed

    O'Rourke, Kacey; Fairbairn, David J; Jackson, Kathryn A; Morris, Kirk L; Tey, Siok-Keen; Kennedy, Glen A

    2011-04-01

    Primary familial and congenital polycythaemia (PFCP) is a rare form of inherited erythrocytosis caused by heterozygous mutations in the erythropoietin receptor gene (EPOR). We present a novel mutation in the EPOR in a 15-year-old male who was referred to our clinic for investigation of a persistently elevated haemoglobin level. A significant family history of unexplained erythrocytosis spanning four generations of the patient's family was established. The family history was also significant for an apparent increased rate of cerebrovascular disease in individuals with erythrocytosis. The mutation detected in our patient resides in exon 8 of EPOR, similar to all other EPOR mutations responsible for PFCP. These mutations result in truncation of the cytoplasmic domain of the receptor and impair down-regulation of signalling via the erythropoietin receptor (EPOR). Clinical manifestations in published cases have varied widely and there is a paucity of firm recommendations regarding the management of affected patients. Given the strong family history of complications attributable to erythrocytosis we have recommended venesection with a haematocrit target of ≤0.45 for our patient.

  16. TRIPLE PLAY: PROMOTING NEUROVASCULAR LONGEVITY WITH NICOTINAMIDE, WNT, AND ERYTHROPOIETIN IN DIABETES MELLITUS

    PubMed Central

    Maiese, Kenneth

    2008-01-01

    Summary Oxidative stress is a principal pathway for the dysfunction and ultimate destruction of cells in the neuronal and vascular systems for several disease entities, non promoting the ravages of oxidative stress to any less of a degree than diabetes mellitus. Diabetes mellitus is increasing in incidence as a result of changes in human behavior that relate to diet and daily exercise and is predicted to affect almost 400 million individuals worldwide in another two decades. Furthermore, both type 1 and type 2 diabetes mellitus can lead to significant disability in the nervous and cardiovascular systems, such as cognitive loss and cardiac insufficiency. As a result, innovative strategies that directly target oxidative stress to preserve neuronal and vascular longevity could offer viable therapeutic options to diabetic patients in addition to more conventional treatments that are designed to control serum glucose levels. Here we discuss the novel application of nicotinamide, Wnt signaling, and erythropoietin that modulate cellular oxidative stress and offer significant promise for the prevention of diabetic complications in the nervous and vascular systems. Essential to this process is the precise focus upon diverse as well as common cellular pathways governed by nicotinamide, Wnt signaling, and erythropoietin to outline not only the potential benefits, but also the challenges and possible detriments of these therapies. In this way, new avenues of investigation can hopefully bypass toxic complications, or at the very least, avoid contraindications that may limit care and offer both safe and robust clinical treatment for patients. PMID:18342481

  17. Erythropoietin and IGF-1 signaling synchronize cell proliferation and maturation during erythropoiesis

    PubMed Central

    Kadri, Zahra; Lefevre, Carine; Goupille, Olivier; Penglong, Tipparat; Granger-Locatelli, Marine; Fucharoen, Suthat; Maouche-Chretien, Leila; Leboulch, Philippe; Chretien, Stany

    2015-01-01

    Tight coordination of cell proliferation and differentiation is central to red blood cell formation. Erythropoietin controls the proliferation and survival of red blood cell precursors, while variations in GATA-1/FOG-1 complex composition and concentrations drive their maturation. However, clear evidence of cross-talk between molecular pathways is lacking. Here, we show that erythropoietin activates AKT, which phosphorylates GATA-1 at Ser310, thereby increasing GATA-1 affinity for FOG-1. In turn, FOG-1 displaces pRb/E2F-2 from GATA-1, ultimately releasing free, proproliferative E2F-2. Mice bearing a Gata-1S310A mutation suffer from fatal anemia when a compensatory pathway for E2F-2 production involving insulin-like growth factor-1 (IGF-1) signaling is simultaneously abolished. In the context of the GATA-1V205G mutation resulting in lethal anemia, we show that the Ser310 cannot be phosphorylated and that constitutive phosphorylation at this position restores partial erythroid differentiation. This study sheds light on the GATA-1 pathways that synchronize cell proliferation and differentiation for tissue homeostasis. PMID:26680303

  18. Comparative structural study of N-linked oligosaccharides of urinary and recombinant erythropoietins

    SciTech Connect

    Tsuda, E.; Goto, M.; Murakami, A.; Akia, K.; Ueda, M.; Kawanishi, G.; Takahashi, N.; Sasaki, R.; Chiba, H.; Ishihara, H.; Mori, M.

    1988-07-26

    The structures of the N-linked oligosaccharides of the urinary erythropoietin (u-EPOI) purified from urine of aplastic anemic patients were analyzed and compared with those for recombinant erythropoietin (r-EPO) prepared with baby hamster kidney (BHK) cells. Asparagine-linked neutral oligosaccharides were released from each EPO protein by N-oligosaccharide glycopeptidase (almond) digestion. The reducing ends of the oligosaccharide chains thus obtained were aminated with a fluorescent reagent, 2-aminopyridine, and the mixture of pyridylamino derivatives of the oligosaccharides was separated by high-performance liquid chromatography (HPLC) on an ODS silica column. More than 8 and 13 kinds of oligosaccharide fractions for u-EPO and r-EPO (BHK), respectively, were completely separated by the one-step HPLC procedure. The structure of each oligosaccharide thus isolated was analyzed by a combination of sequential exoglycosidase digestion and another kind of HPLC with an amide-silica column. Furthermore, high-resolution proton nuclear magnetic resonance (/sup 1/H NMR) spectroscopy and methylation analyses were carried out in the case of r-EPO (BHK).

  19. Comparative structural study of N-linked oligosaccharides of urinary and recombinant erythropoietins.

    PubMed

    Tsuda, E; Goto, M; Murakami, A; Akai, K; Ueda, M; Kawanishi, G; Takahashi, N; Sasaki, R; Chiba, H; Ishihara, H

    1988-07-26

    The structures of the N-linked oligosaccharides of the urinary erythropoietin (u-EPO) purified from urine of aplastic anemic patients were analyzed and compared with those for recombinant erythropoietin (r-EPO) prepared with baby hamster kidney (BHK) cells. Asparagine-linked neutral oligosaccharides were released from each EPO protein by N-oligosaccharide glycopeptidase (almond) digestion. The reducing ends of the oligosaccharide chains thus obtained were aminated with a fluorescent reagent, 2-aminopyridine, and the mixture of pyridylamino derivatives of the oligosaccharides was separated by high-performance liquid chromatography (HPLC) on an ODS silica column. More than 8 and 13 kinds of oligosaccharide fractions for u-EPO and r-EPO (BHK), respectively, were completely separated by the one-step HPLC procedure. The structure of each oligosaccharide thus isolated was analyzed by a combination of sequential exoglycosidase digestion and another kind of HPLC with an amide-silica column. Furthermore, high-resolution proton nuclear magnetic resonance (1H NMR) spectroscopy and methylation analyses were carried out in the case of r-EPO (BHK).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. The lack of CD131 and the inhibition of Neuro-2a growth by carbamylated erythropoietin.

    PubMed

    Ding, Jing; Li, Qin-Ying; Yu, Jie-Zhong; Wang, Xin; Lu, Chuan-Zhen; Ma, Cun-Gen; Xiao, Bao-Guo

    2015-02-01

    Recombinant human erythropoietin (EPO), a glycohormone, is one of the leading biopharmaceutical products, while carbamylated erythropoietin (CEPO), an EPO derivative, is attracting widespread interest due to its neuroprotective effects without erythropoiesis in several cells and animal models. However, exogenous EPO promotes an angiogenic response from tumor cells and is associated with tumor growth, but knowledge of CEPO on tumor growth is lacking. Here we show that CEPO, but not EPO, inhibited Neuro-2a growth and viability. As expected, CEPO--unlike EPO--did not activate JAK-2 either in primary neurons or in Neuro-2a cells. Interestingly, CEPO did not induce GDNF expression and subsequent AKT activation in Neuro-2a cells. Before CEPO/EPO treatment, glial cell line-derived neurotrophic factor (GDNF) neutralization and GFR receptor blocking decreased the viability of EPO-treated Neuro-2a cells but did not influence CEPO-treated Neuro-2a cells. As compared to primary neurons, the expression of CD131, as a receptor complex binding to CEPO, is almost lacking in Neuro-2a cells. In BABL/C-nu mice, CEPO did not promote the growth of Neuro-2a cells nor extended the survival time compared to mice treated with EPO. The results indicate that CEPO did not promote tumor growth because of lower expression of CD131 and subsequent dysfunction of CD131/GDNF/AKT pathway in Neuro-2a cells, revealing its therapeutic potential in future clinical application.

  1. Ameliorative Effect of Recombinant Human Erythropoietin and Ischemic Preconditioning on Renal Ischemia Reperfusion Injury in Rats

    PubMed Central

    Elshiekh, Mohammed; Kadkhodaee, Mehri; Seifi, Behjat; Ranjbaran, Mina; Ahghari, Parisa

    2015-01-01

    Background: Ischemia-reperfusion (IR) injury is one of the most common causes of renal dysfunction. There is increasing evidence about the role of the reactive oxygen species (ROS) in these injuries and endogenous antioxidants seem to have an important role in decreasing the renal tissue injury. Objectives: The aim of this study was to compare the effect of recombinant human erythropoietin (EPO) and ischemic preconditioning (IPC) on renal IR injury. Materials and Methods: Twenty four male Wistar rats were allocated into four experimental groups: sham-operated, IR, EPO + IR, and IPC + IR. Rats were underwent 50 minutes bilateral ischemia followed by 24 hours reperfusion. Erythropoietin (5000 IU/kg, i.p) was administered 30 minutes before onset of ischemia. Ischemic preconditioning was performed by three cycles of 3 minutes ischemia followed by 3 minutes reperfusion. Plasma concentrations of urea and creatinine were measured. Kidney samples were taken for reactive oxidative species (ROS) measurement including superoxide dismutase (SOD) activity, glutathione (GSH) contents, and malondialdehyde (MDA) levels. Results: Compared to the sham group, IR led to renal dysfunction as evidenced by significantly higher plasma urea and creatinine. Treatment with EPO or IPC decreased urea, creatinine, and renal MDA levels and increased SOD activity and GSH contents in the kidney. Conclusions: Pretreatment with EPO and application of IPC significantly ameliorated the renal injury induced by bilateral renal IR. However, both treatments attenuated renal dysfunction and oxidative stress in kidney tissues. There were no significant differences between pretreatment with EPO or application of IPC. PMID:26866008

  2. Erythropoietin enhances whole body lipid oxidation during prolonged exercise in humans.

    PubMed

    Caillaud, Corinne; Connes, Philippe; Ben Saad, Helmi; Mercier, Jacques

    2015-03-01

    Animal studies have suggested that erythropoietin, besides its well-known hematopoietic effects, can modulate metabolism and prevent fat accumulation. We investigated the effects of repeated injections of recombinant human erythropoietin (EPO) on the balance of substrate oxidation during aerobic exercise in humans. Twelve healthy aerobically trained males received subcutaneously either moderate dose of EPO (50 U/kg, EPO) or saline injections (NaCl 0.9 %, control) three times a week for 4 weeks. Body weight, % fat, maximal aerobic capacity, and substrate utilization during exercise were assessed before and after treatment, while hemoglobin and hematocrit were monitored regularly during the treatment. Carbohydrate and fat oxidation were evaluated via indirect calorimetry, during a submaximal exercise performed at 75 % of the participants' maximal aerobic capacity (V̇(O2max)) for 60 min. Results showed that 4 weeks of EPO treatment significantly enhanced fat oxidation (+56 % in EPO versus -9 % in control) during exercise, independent of its effects on hematological parameters or V̇(O2max). This study shows that EPO can modulate substrate utilization during exercise, leading to enhanced fat utilization and lower use of carbohydrates. This opens new research directions exploring whether systemic EPO levels, in physiological conditions, participate to the modulation of fat oxidation.

  3. [PECULIARITIES OF ERYTHROPOIETIN SYNTHESIS CIRCADIAN RHYTHM IN PATIENTS WITH ESSENTIAL ARTERIAL HYPERTENSION].

    PubMed

    Radaeva, O A; Simbirtsev, A S

    2015-01-01

    Erythropoietin (ERO) is known to be the main regulator of proliferation and terminal dissociation of erythroid cells. Its receptors are expressed not only in hematopoietic cells but also in the tissues of the cardiovascular system. The aim of this work was to study specific features of circadian rhythm in erythropoietin synthesis and estimate the predictive informative value of serum ERO level variations as regards the risk of developing cardiovascular complications in patients with stage II essential arterial hypertension (EAH). ERO, neopterin, and interleukin-1 levels were measured in 200 such patients. It was shown that ERO levels increased (p < 0.001) compared with normal values (12.6 pg/ml, 95% CI 11.8-13.4 and 68 pg/ml, 95% CI 6.4-7.2 respectively). Analysis of circadian rhythm demonstrated that enhanced probability of complications in the absence of reduction of the ERO level at night time correlated with the decreased number of CD34 cells (p < 0.001) and the increased neopterin level (p < 0.001). It is concluded that these dependences suggest the necessity of further studies of yet unknown effects of ERO and ways of their application for the treatment of EAH.

  4. Effects of ganglioside G(M1) and erythropoietin on spinal cord lesions in rats: functional and histological evaluations

    PubMed Central

    Marcon, Raphael Martus; Cristante, Alexandre Fogaça; de Barros Filho, Tarcísio Eloy Pessoa; Ferreira, Ricardo; dos Santos, Gustavo Bispo

    2016-01-01

    OBJECTIVE: To evaluate the functional and histological effects of ganglioside G(M1) and erythropoietin after experimental spinal cord contusion injury. METHODS: Fifty male Wistar rats underwent experimental spinal cord lesioning using an NYU-Impactor device and were randomly divided into the following groups, which received treatment intraperitoneally. The G(M1) group received ganglioside G(M1) (30 mg/kg); the erythropoietin group received erythropoietin (1000 IU/kg); the combined group received both drugs; and the saline group received saline (0.9%) as a control. A fifth group was the laminectomy group, in which the animals were subjected to laminectomy alone, without spinal lesioning or treatment. The animals were evaluated according to the Basso, Beattie and Bresnahan (BBB) scale, motor evoked potential recordings and, after euthanasia, histological analysis of spinal cord tissue. RESULTS: The erythropoietin group had higher BBB scores than the G(M1) group. The combined group had the highest BBB scores, and the saline group had the lowest BBB scores. No significant difference in latency was observed between the three groups that underwent spinal cord lesioning and intervention. However, the combined group showed a significantly higher signal amplitude than the other treatment groups or the saline group (p<0.01). Histological tissue analysis showed no significant difference between the groups. Axonal index was significantly enhanced in the combined group than any other intervention (p<0.01). CONCLUSION: G(M1) and erythropoietin exert therapeutic effects on axonal regeneration and electrophysiological and motor functions in rats subjected to experimental spinal cord lesioning and administering these two substances in combination potentiates their effects. PMID:27438570

  5. Database Administrator

    ERIC Educational Resources Information Center

    Moore, Pam

    2010-01-01

    The Internet and electronic commerce (e-commerce) generate lots of data. Data must be stored, organized, and managed. Database administrators, or DBAs, work with database software to find ways to do this. They identify user needs, set up computer databases, and test systems. They ensure that systems perform as they should and add people to the…

  6. Administrative IT

    ERIC Educational Resources Information Center

    Grayson, Katherine, Ed.

    2006-01-01

    When it comes to Administrative IT solutions and processes, best practices range across the spectrum. Enterprise resource planning (ERP), student information systems (SIS), and tech support are prominent and continuing areas of focus. But widespread change can also be accomplished via the implementation of campuswide document imaging and sharing,…

  7. Engineering Administration.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    This book is intended to acquaint naval engineering officers with their duties in the engineering department. Standard shipboard organizations are analyzed in connection with personnel assignments, division operations, and watch systems. Detailed descriptions are included for the administration of directives, ship's bills, damage control, training…

  8. Database Administrator

    ERIC Educational Resources Information Center

    Moore, Pam

    2010-01-01

    The Internet and electronic commerce (e-commerce) generate lots of data. Data must be stored, organized, and managed. Database administrators, or DBAs, work with database software to find ways to do this. They identify user needs, set up computer databases, and test systems. They ensure that systems perform as they should and add people to the…

  9. Administrative IT

    ERIC Educational Resources Information Center

    Grayson, Katherine, Ed.

    2006-01-01

    When it comes to Administrative IT solutions and processes, best practices range across the spectrum. Enterprise resource planning (ERP), student information systems (SIS), and tech support are prominent and continuing areas of focus. But widespread change can also be accomplished via the implementation of campuswide document imaging and sharing,…

  10. Erythropoietin administration alone or in combination with endurance training affects neither skeletal muscle morphology nor angiogenesis in healthy young men.

    PubMed

    Larsen, Mads S; Vissing, Kristian; Thams, Line; Sieljacks, Peter; Dalgas, Ulrik; Nellemann, Birgitte; Christensen, Britt

    2014-10-01

    The aim was to investigate the ability of an erythropoiesis-stimulating agent (ESA), alone or in combination with endurance training, to induce changes in human skeletal muscle fibre and vascular morphology. In a comparative study, 36 healthy untrained men were randomly dispersed into the following four groups: sedentary-placebo (SP, n = 9); sedentary-ESA (SE, n = 9); training-placebo (TP, n = 10); or training-ESA (TE, n = 8). The ESA or placebo was injected once weekly. Training consisted of progressive bicycling three times per week for 10 weeks. Before and after the intervention period, muscle biopsies and magnetic resonance images were collected from the thigh muscles, blood was collected, body composition measured and endurance exercise performance evaluated. The ESA treatment (SE and TE) led to elevated haematocrit, and both ESA treatment and training (SE, TP and TE) increased maximal O2 uptake. With regard to skeletal muscle morphology, TP alone exhibited increases in whole-muscle cross-sectional area and fibre diameter of all fibre types. Also exclusively for TP was an increase in type IIa fibres and a corresponding decrease in type IIx fibres. Furthermore, an overall training effect (TP and TE) was statistically demonstrated in whole-muscle cross-sectional area, muscle fibre diameter and type IIa and type IIx fibre distribution. With regard to muscle vascular morphology, TP and TE both promoted a rise in capillary to muscle fibre ratio, with no differences between the two groups. There were no effects of ESA treatment on any of the muscle morphological parameters. Despite the haematopoietic effects of ESA, we provide novel evidence that endurance training rather than ESA treatment induces adaptational changes in angiogenesis and muscle morphology.

  11. Revisiting emergency anti-apoptotic cytokinotherapy: erythropoietin synergizes with stem cell factor, FLT-3 ligand, trombopoietin and interleukin-3 to rescue lethally-irradiated mice.

    PubMed

    Drouet, Michel; Grenier, Nancy; Hérodin, Francis

    2012-06-01

    We have re-evaluated the benefit of using erythropoietin (Epo) as a pleiotropic cytokine to counteract hematological and extra-hematological toxicity following lethal irradiation. B6D2F1 mice were exposed to a dose of 9 Gy gamma radiation resulting in 90% mortality at 30 days, and then injected with stem cell factor, FLT-3 ligand, thrombopoietin and interleukin-3 [i.e. SFT3] at two and 24 hours with or without Epo (1,000 IU/kg) at 2 hours and day 8. As controls, two groups of irradiated mice were given only Epo or Phosphate-buffered saline. Epo synergized with SFT3 to rescue lethally-irradiated mice from radiation-induced death (survival: 60%, 95% and 5% respectively for SFT3, SFT3+Epo and controls at 30 days, p<0.05), whereas Epo alone exhibited no protective effect. Hematopoietic parameters did not differ significantly between SFT3 and SFT3+Epo groups during the animal death period. Some beneficial effects on gastro-intestinal toxicity were noticed following administration of Epo, although lung, liver and kidney were not protected. Further studies are necessary to understand fully the mechanisms involved in these effects of Epo in order to optimize treatment with cytokines following high-dose irradiation.

  12. Effect of an intravenous iron dextran regimen on iron stores, hemoglobin, and erythropoietin requirements in hemodialysis patients.

    PubMed

    Park, L; Uhthoff, T; Tierney, M; Nadler, S

    1998-05-01

    Iron deficiency is a common cause of delayed or diminished response to erythropoietin (EPO) in hemodialysis patients. Although oral iron is often prescribed to replete iron stores, this approach to iron supplementation may not be adequate with chronic EPO therapy. Intravenous (IV) iron dextran may be an effective alternative approach to replete iron stores and may facilitate more cost-effective use of EPO. The purpose of this study was to evaluate an IV iron dextran regimen that consisted of a loading dose phase followed by monthly maintenance doses of iron dextran. The effect of this regimen on iron stores, hemoglobin, and EPO doses was evaluated. This was an open prospective study in adult hemodialysis patients who were iron deficient as defined by a serum ferritin less than 100 ng/mL or transferrin saturation (TSAT) of less than 20%. Patients were loaded with 1 g iron dextran in five divided doses and then received monthly maintenance doses of 100 mg for the 4-month study period. Values of serum ferritin, TSAT, hemoglobin, and EPO dose were followed for the 4-month study period. Thirty hemodialysis patients receiving EPO were identified as being iron deficient and were enrolled in the study. The mean serum ferritin increased significantly from 49 ng/mL at baseline to 225 ng/mL at the end of the study period (P < 0.0001). Mean TSAT also increased significantly from 27% to 33% (P = 0.002). Values for hemoglobin did not change significantly during the study period; however, there was a significant reduction in EPO dose from a mean baseline dose of 112 U/kg/wk to 88 U/kg/wk at the end of the study period (P = 0.009). Seventeen patients experienced an increase in hemoglobin or a decrease in EPO dose. Economic analysis showed that approximately $580 (Cdn) per patient per year could be saved by use of IV iron dextran. The administration of the IV iron dextran regimen in the iron-deficient hemodialysis population was effective at repleting and maintaining iron stores

  13. Cellular and molecular mechanisms regulating the hepatic erythropoietin expression during acute-phase response: a role for IL-6.

    PubMed

    Ramadori, Pierluigi; Ahmad, Ghayyor; Ramadori, Giuliano

    2010-09-01

    The source of circulating erythropoietin (EPO), the mediators and the mechanisms involved in the upregulation of EPO gene expression during acute-phase reaction are still poorly understood. Acute-phase reaction was induced by either intramuscular turpentine oil (TO) or intraperitoneal lipopolysaccharide (LPS) administration into wild-type and interleukin (IL)-6 knockout (KO) mice. Animals were killed at different time points and blood, liver and muscle tissue were collected. Serum levels of EPO were measured by enzyme-linked immunoadsorbent assay; liver and injured muscle samples were processed for RNA isolation and for protein analysis. EPO, hypoxia-inducible factors 1alpha and 2alpha (HIF-1alpha and HIF-2alpha) mRNA were analyzed by RT-PCR and the protein levels were analyzed by western blot and electrophoretic mobility shift assay. HIF-1alpha and HIF-2alpha localization was performed through immunofluorescence staining. EPO, HIF-1 and HIF-2 gene and protein expression levels were also analyzed in isolated mouse hepatocytes after stimulation with IL-6. In the wild-type animals, EPO serum levels increased dramatically at 12 h after the insults together with the hepatic gene expression. In TO-treated animals, the EPO gene expression reached an 8.2-fold increase at 12 h, and in LPS-treated mice a similar induction was recorded at 6 h (about 4.5-fold increase). In the IL-6KO strain, the upregulation after the inflammatory stimuli was much lower (only 2.0-fold increase). A progressive upregulation of HIF-1alpha and HIF-2alpha was detectable until 6 h after the insults, but only HIF-1alpha upregulation was reduced in IL-6KO mice. In isolated hepatocytes, stimulation with a single dose of IL-6 induced a nuclear accumulation of HIF-1alpha, in parallel with an increase of EPO mRNA. No effect on HIF-2alpha expression was found. IL-6 appears to be the main regulator of EPO gene expression and a major contributor for HIF-1alpha induction in hepatocytes and Kupffer cells

  14. Chemical synthesis of erythropoietin glycoforms for insights into the relationship between glycosylation pattern and bioactivity.

    PubMed

    Murakami, Masumi; Kiuchi, Tatsuto; Nishihara, Mika; Tezuka, Katsunari; Okamoto, Ryo; Izumi, Masayuki; Kajihara, Yasuhiro

    2016-01-01

    The role of sialyloligosaccharides on the surface of secreted glycoproteins is still unclear because of the difficulty in the preparation of sialylglycoproteins in a homogeneous form. We selected erythropoietin (EPO) as a target molecule and designed an efficient synthetic strategy for the chemical synthesis of a homogeneous form of five EPO glycoforms varying in glycosylation position and the number of human-type biantennary sialyloligosaccharides. A segment coupling strategy performed by native chemical ligation using six peptide segments including glycopeptides yielded homogeneous EPO glycopeptides, and folding experiments of these glycopeptides afforded the correctly folded EPO glycoforms. In an in vivo erythropoiesis assay in mice, all of the EPO glycoforms displayed biological activity, in particular the EPO bearing three sialyloligosaccharides, which exhibited the highest activity. Furthermore, we observed that the hydrophilicity and biological activity of the EPO glycoforms varied depending on the glycosylation pattern. This knowledge will pave the way for the development of homogeneous biologics by chemical synthesis.

  15. Expression and characterization of erythropoietin receptors on normal human bone marrow cells

    SciTech Connect

    Hoshino, S.; Teramura, M.; Takahashi, M.; Motoji, T.; Oshimi, K.; Ueda, M.; Mizoguchi, H.

    1989-05-01

    We studied the specific binding of /sup 125/I-labeled bioactive recombinant human erythropoietin (Epo) to human bone marrow mononuclear cells (BMNC) obtained from normal subjects. The /sup 125/I-labeled Epo bound specifically to the BMNC. Scatchard analysis of the data showed two classes of binding sites; one high affinity (Kd 0.07 nM) and the other low affinity (Kd 0.38 nM). The number of Epo binding sites per BMNC was 46 +/- 16 high-affinity receptors and 91 +/- 51 low-affinity receptors. The specific binding was displaced by unlabeled Epo, but not by other growth factors. Receptor internalization was observed significantly at 37 degrees C, but was prevented by the presence of 0.2% sodium azide. These findings indicate that human BMNC possess two classes of specific Epo receptors with characteristics of a hormone-receptor association.

  16. Is erythropoietin a worthy candidate for traumatic brain injury or are we heading the wrong way?

    PubMed Central

    Grasso, Giovanni; Alafaci, Concetta; Ghezzi, Pietro

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in the modern society. Although primary prevention is the only strategy that can counteract the primary brain damage, numerous preclinical studies have been accumulated in order to find therapeutic strategies against the secondary damage. In this scenario erythropoietin (EPO) has been shown to be a promising candidate as neuroprotective agent. A recent clinical trial, however, has shown that EPO has not an overall effect on outcomes following TBI thus renewing old concerns.  However, the results of a prespecified sensitivity analysis indicate that the effect of EPO on mortality remains still unclear. In the light of these observations, further investigations are needed to resolve doubts on EPO effectiveness in order to provide a more solid base for tailoring conclusive clinical trials. PMID:27239280

  17. Antiepoetin antibody-related pure red cell aplasia: successful remission with cessation of recombinant erythropoietin alone.

    PubMed

    Katagiri, Daisuke; Shibata, Maki; Katsuki, Takashi; Masumoto, Shoichi; Katsuma, Ai; Minami, Eri; Hoshino, Taro; Inoue, Tsuyoshi; Tada, Manami; Hinoshita, Fumihiko

    2010-10-01

    An elderly patient with pure red cell aplasia (PRCA) with antierythropoietin (anti-EPO) antibodies is described. PRCA due to alloimmunization is a rare and severe complication of recombinant human erythropoietin (rHu-EPO) therapy. Most reported patients with PRCA were cured primarily by immunosuppressive drug therapy. The patient in this case, however, did not want to receive any immunosuppressive drugs. Therefore, rHu-EPO injection was simply discontinued, the severe anemia gradually improved, and the hemoglobin approached normal range. This case is very rare and significant in that there have been few such elderly patients with rHu-EPO-induced PRCA in whom PRCA remission was achieved, with decreasing antibody titers, after cessation of rHu-EPO alone. Further cases are needed to assess how PRCA should be treated in patients with anti-EPO antibodies.

  18. Gel electrophoretic methods for the analysis of biosimilar pharmaceuticals using the example of recombinant erythropoietin.

    PubMed

    Reichel, Christian; Thevis, Mario

    2013-03-01

    Due to their versatility and cost-effectiveness, gel electrophoretic methods provide an important set of tools for the analysis of therapeutic proteins. As an increasing number of biosimilar pharmaceuticals are entering the market, techniques are required that allow reliable demonstration of comparability of these products with the reference products. Isoelectric focusing, SDS-PAGE, native PAGE and 2D electrophoresis (2D-PAGE) have been frequently applied for this purpose. Supplementary techniques are fluorophore-assisted carbohydrate electrophoresis and sarcosyl-PAGE. Of additional importance is the comparison of recombinant with endogenously synthesized glycoproteins. Reagent array analysis combined with SDS-PAGE and western blotting proved especially useful for this purpose. As an example for the application of these methods, the analysis of recombinant originator erythropoietins and some of their biosimilar counterparts is described.

  19. Role of cytochrome P sub 450 in the control of the production of erythropoietin

    SciTech Connect

    Fandrey, J.; Seydel, F.P.; Siegers, C.P.; Jelkmann, W. )

    1990-01-01

    Effects of agents affecting cytochrome P{sub 450} were studied on the production of erythropoietin (Epo) in cultures of the human hepatoma cell line HepG2. Epo was measured by radioimmunoassay of the culture media after 24 h of incubation. The addition of phenobarbital or 3-methylcholanthrene, which induce cytochrome P{sub 450}, significantly enhanced the formation of Epo. Likewise, the thyroid hormones T{sub 3} and T{sub 4} stimulated the rate of the production of Epo. On the other hand, the formation of Epo was lowered following the addition of diethyl-dithiocarbamate or cysteamine chloride, which inhibit cytochrome P{sub 450}. These findings support the idea that O{sub 2} sensitive hemoproteins of the microsomal mixed-functional oxidases play a role in the control of the synthesis of Epo.

  20. Neurodegenerative changes are prevented by Erythropoietin in the pmn model of motoneuron degeneration.

    PubMed

    Ruiz, Marta; Martínez-Vidal, Ana Fe; Morales, José Manuel; Monleón, Daniel; Giménez Y Ribotta, Minerva

    2014-08-01

    Motoneuron diseases are fatal neurodegenerative disorders characterized by a progressive loss of motoneurons, muscle weakness and premature death. The progressive motor neuronopathy (pmn) mutant mouse has been considered a good model for the autosomal recessive childhood form of spinal muscular atrophy (SMA). Here, we investigated the therapeutic potential of Erythropoietin (Epo) on this mutant mouse. Symptomatic or pre-symptomatic treatment with Epo significantly prolongs lifespan by 84.6% or 87.2% respectively. Epo preserves muscle strength and significantly attenuates behavioural motor deficits of mutant pmn mice. Histological and metabolic changes in the spinal cord evaluated by immunohistochemistry, western blot, and high-resolution (1)H-NMR spectroscopy were also greatly prevented by Epo-treatment. Our results illustrate the efficacy of Epo in improving quality of life of mutant pmn mice and open novel therapeutic pathways for motoneuron diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Chemical synthesis of erythropoietin glycoforms for insights into the relationship between glycosylation pattern and bioactivity

    PubMed Central

    Murakami, Masumi; Kiuchi, Tatsuto; Nishihara, Mika; Tezuka, Katsunari; Okamoto, Ryo; Izumi, Masayuki; Kajihara, Yasuhiro

    2016-01-01

    The role of sialyloligosaccharides on the surface of secreted glycoproteins is still unclear because of the difficulty in the preparation of sialylglycoproteins in a homogeneous form. We selected erythropoietin (EPO) as a target molecule and designed an efficient synthetic strategy for the chemical synthesis of a homogeneous form of five EPO glycoforms varying in glycosylation position and the number of human-type biantennary sialyloligosaccharides. A segment coupling strategy performed by native chemical ligation using six peptide segments including glycopeptides yielded homogeneous EPO glycopeptides, and folding experiments of these glycopeptides afforded the correctly folded EPO glycoforms. In an in vivo erythropoiesis assay in mice, all of the EPO glycoforms displayed biological activity, in particular the EPO bearing three sialyloligosaccharides, which exhibited the highest activity. Furthermore, we observed that the hydrophilicity and biological activity of the EPO glycoforms varied depending on the glycosylation pattern. This knowledge will pave the way for the development of homogeneous biologics by chemical synthesis. PMID:26824070

  2. Erythropoietin and thrombopoietin mimetics: Natural alternatives to erythrocyte and platelet disorders.

    PubMed

    Gutti, Usha; Pasupuleti, Satya Ratan; Sahu, Itishri; Kotipalli, Aneesh; Undi, Ram Babu; Kandi, Ravinder; Venakata Saladi, Raja Gopal; Gutti, Ravi Kumar

    2016-12-01

    Erythropoietin (EPO) and thrombopoietin (TPO) plays a major role in the regulation of hematopoietic development. Though, blood transfusion was the most widely used method to treat low blood count, over the years with advancements in recombinant technology and drug designing, the EPO and TPO mimetics are dominating the therapeutics industry. On the other hand, the recombinant human EPO and TPO are associated either with reduced half-life or immune reactions. The restoration of alternate medicine in recent years has the hope to overcome limitations associated with recombinant technology, to treat various disorder including blood diseases, with low to no side effects. The work in recent years on plant derived mimetics suggests a paradigm shift in the way diseases are treated. Here, we are providing a comprehensive review on the EPO and TPO recombinant counterparts and synthetic mimetics studied till date with a focus on the need for more natural alternatives.

  3. Cost minimization analysis of preoperative erythropoietin vs autologous and allogeneic blood donation in total joint arthroplasty.

    PubMed

    Green, William Scott; Toy, Pearl; Bozic, Kevin J

    2010-01-01

    Autologous blood donation and erythropoietin (EPO) have been shown to be effective in reducing allogeneic blood transfusion, but the cost-effectiveness of these interventions remains unclear. A cost minimization analysis was performed, comparing the total costs of allogeneic blood transfusion strategy and autologous and allogeneic blood transfusion strategy for 161 primary total hip arthroplasty (THA) and 195 total knee arthroplasty (TKA) patients. An EPO cost minimization model was constructed using a previously published algorithm for blood management after total joint arthroplasty. The least costly strategy was autologous blood donation in combination with allogeneic blood for THA and TKA patients at $856 and $892 per patient, respectively. The most costly strategy was allogeneic only at $1769 and $1352 per THA and TKA patient, respectively. The EPO strategy model predicted costs similar to the autologous and allogeneic. A strategy that combines autologous blood donation with EPO for patients who cannot donate autologous blood may provide the greatest cost savings and minimize allogeneic blood transfusion.

  4. Undifferentiated sarcoma of the liver: a case study of an erythropoietin-secreting tumor.

    PubMed

    Lin, JoAnn M; Heath, Jonathon E; Twaddell, William S; Castellani, Rudy J

    2014-09-01

    Undifferentiated embryonal sarcoma of the liver (UESL) is an uncommon hepatic tumor usually found in children, with rare cases reported in adults. We present a case of a 53-year-old woman with an undifferentiated sarcoma of the liver (USL), which resembles UESL, who initially presented with a markedly elevated hematocrit (61.2%). Cytogenetic studies for polycythemia vera were negative, but the patient's erythropoietin (EPO) was elevated. A computed tomography scan and subsequent partial hepatectomy revealed a well-circumscribed, partially cystic mass in the right lobe of the liver measuring 34 cm. Following surgery, the patient's EPO level and hematocrit dropped to within normal range and remained so for 1 year, at which point it rose again. A subsequent magnetic resonance imaging scan showed a liver mass at the previous resection margin, consistent with a recurrence. In this case study, we describe the first reported USL resembling an UESL that secretes EPO, which was a useful marker of tumor recurrence.

  5. Isoelectric profiles of human erythropoietin are different in serum and urine.

    PubMed

    Lasne, Françoise; Martin, Laurent; Martin, Jean Antoine; de Ceaurriz, Jacques

    2007-08-01

    By adding a step of immunoaffinity to the method we had previously developed for analysing erythropoietin (EPO) in urine, we were able to study the isoelectric profiles of this hormone in human serum samples. This method was sensitive enough to investigate samples presenting physiological levels of this hormone. Comparison with the corresponding profiles in urine showed that natural EPO was systematically more acidic in urine. The acidification process, which was not patent in the non-human primate Cynomolgus macaque, clearly also affected recombinant EPO when injected into humans. This process was unrelated to any enzymatic activity in urine since the incubation of natural or recombinant EPO in urine induced no transformation of their isoelectric profiles. The nature and mechanism of the structural modifications occurring during the renal handling of this hormone remain to be investigated.

  6. Effects of exercise on the secondary blood markers commonly used to suspect erythropoietin doping.

    PubMed

    Robinson, Neil; Saugy, Martial; Mangin, Patrice

    2003-01-01

    Numerous trials have reported that some haematological and biochemical parameters could be put together and be used to detect and fight recombinant erythropoietin doping. Unfortunately, none of the studies mentioned the necessity of taking pre-analytical precautions to avoid possible suspicious results coming from major plasma volume changes caused notably by dehydration. Therefore we studied the behaviour of the most common secondary blood markers before and after a strenuous physical activity to find out how reliable these parameters were. The soluble transferrin receptor and the haemoglobin concentrations as well as the haematocrit level increased significantly after effort, whereas the plasma EPO concentration and the reticulocyte count remained constant. On the other hand, if the values were corrected for haemoconcentration, the soluble transferrin receptor concentration remained stable.

  7. Erythropoietin in the critically ill: do we ask the right questions?

    PubMed Central

    2012-01-01

    There is a plethora of experimental data on the potential therapeutic benefits of recombinant human erythropoietin (rhEPO) and its synthetic derivatives in critical care medicine, in particular in ischemia/reperfusion injury. Most of the recent clinical trials have not shown clear benefits, and, in some patients, EPO-aggravated morbidity and mortality was even reported. Treatment with rhEPO has been successfully used in patients with anemia resulting from chronic kidney disease, but even a subset of this patient population does not adequately respond to rhEPO therapy. The following viewpoint uses rhEPO as an example to highlight the possible pitfalls in current practice using young healthy animals for the evaluation of therapies to treat patients of variable age and underlying chronic co-morbidity. PMID:23016869

  8. The SH2B1 adaptor protein associates with a proximal region of the erythropoietin receptor.

    PubMed

    Javadi, Mojib; Hofstätter, Edda; Stickle, Natalie; Beattie, Bryan K; Jaster, Robert; Carter-Su, Christin; Barber, Dwayne L

    2012-07-27

    Gene targeting experiments have shown that the cytokine erythropoietin (EPO), its cognate erythropoietin receptor (EPO-R), and associated Janus tyrosine kinase, JAK2, are all essential for erythropoiesis. Structural-functional and murine knock-in experiments have suggested that EPO-R Tyr-343 is important in EPO-mediated mitogenesis. Although Stat5 binds to EPO-R phosphotyrosine 343, the initial Stat5-deficient mice did not have profound erythroid abnormalities suggesting that additional Src homology 2 (SH2) domain-containing effectors may bind to EPO-R Tyr-343 and couple to downstream signaling pathways. We have utilized cloning of ligand target (COLT) screening to demonstrate that EPO-R Tyr(P)-343 and Tyr(P)-401 bind to the SH2 domain-containing adaptor protein SH2B1β. Immunoprecipitation and in vitro mixing experiments reveal that EPO-R binds to SH2B1 in an SH2 domain-dependent manner and that the sequence that confers SH2B1 binding to the EPO-R is pYXXL. Previous studies have shown that SH2B1 binds directly to JAK2, but we show that in hematopoietic cells, SH2B1β preferentially associates with the EPO-R. SH2B1 is capable of constitutive association with EPO-R, which is necessary for its optimal SH2-dependent recruitment to EPO-R-Tyr(P)-343/Tyr(P)-401. We also demonstrate that SH2B1 is responsive to EPO stimulation and becomes phosphorylated, most likely on serines/threonines, in an EPO dose- and time-dependent manner. In the absence of SH2B1, we observe enhanced activation of signaling pathways downstream of the EPO-R, indicating that SH2B1 is a negative regulator of EPO signaling.

  9. Erythropoietin reduces ischemia-reperfusion injury after liver transplantation in rats.

    PubMed

    Schmeding, Maximilian; Hunold, Gerhard; Ariyakhagorn, Veravoorn; Rademacher, Sebastian; Boas-Knoop, Sabine; Lippert, Steffen; Neuhaus, Peter; Neumann, Ulf P

    2009-07-01

    Human recombinant Erythropoietin (rHuEpo) has recently been shown to be a potent protector of ischemia- reperfusion injury in warm-liver ischemia. Significant enhancement of hepatic regeneration and survival after large volume partial hepatic resection has also been demonstrated. It was the aim of this study to evaluate the capacities of rHuEpo in the setting of rat liver transplantation. One-hundred-and-twenty Wistar rats were used: 60 recipients received liver transplantation following donor organ treatment (60 donors) with either 1000 IU rHuEpo or saline injection (controls) into portal veins (cold ischemia 18 h, University of Wisconsin (UW) solution). Recipients were allocated to two groups, which either received 1000 IU rHuEpo at reperfusion or an equal amount of saline (control). Animals were sacrificed at defined time-points (2, 4.5, 24, 48 h and 7 days postoperatively) for analysis of liver enzymes, histology [hematoxylin-eosin (HE) staining, periodic acid Schiff staining (PAS)], immunostaining [terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Hypoxyprobe] and real-time polymerase chain reaction (RT-PCR) of cytokine mRNA (IL-1, IL-6). Lactate dehydrogenase (LDH) and alanine aminotransferase (ALT) values were significantly reduced among the epo-treated animals 24 and 48 h after liver transplantation (LT). The TUNEL and Hypoxyprobe analyses as well as necrotic index evaluation displayed significant reduction of apoptosis and necrosis in rHuEpo-treated graft livers. Erythropoietin reduces ischemia-reperfusion injury after orthotopic liver transplantation in rats.

  10. A Nonhematopoietic Erythropoietin Analogue, ARA 290, Inhibits Macrophage Activation and Prevents Damage to Transplanted Islets.

    PubMed

    Watanabe, Masaaki; Lundgren, Torbjörn; Saito, Yu; Cerami, Anthony; Brines, Michael; Östenson, Claes-Göran; Kumagai-Braesch, Makiko

    2016-03-01

    Erythropoietin exerts anti-inflammatory, antiapoptotic, and cytoprotective effects in addition to its hematopoietic action. A nonhematopoietic erythropoietin analogue, ARA 290, has similar properties. The efficacy of pancreatic islet transplantation (PITx) is reduced due to islet damage that occurs during isolation and from the severe inflammatory reactions caused by the transplantation procedure. We investigated whether ARA 290 protects islets and ameliorates inflammatory responses following PITx thus improving engraftment. The effects of ARA 290 on pancreatic islets of C57BL/6J (H-2) mice and on murine macrophages were investigated using an in vitro culture model. As a marginal PITx, 185 islets were transplanted into the liver of streptozotocin-induced diabetic mice (H-2) via the portal vein. Recipients were given ARA 290 (120 μg/kg) intraperitoneally just before and at 0, 6, and 24 hours after PITx. Liver samples were obtained at 12 hours after PITx, and expression levels of proinflammatory cytokines were assessed. ARA 290 protected islets from cytokine-induced damage and apoptosis. Secretion of pro-inflammatory cytokines (IL-6, IL-12, and TNF-α) from macrophages was significantly inhibited by ARA 290. After the marginal PITx, ARA 290 treatment significantly improved the blood glucose levels when compared to those of control animals (P < 0.001). Upregulation of monocyte chemoattractant protein-1, macrophage inflammatory protein-1β, IL-1β, and IL-6 messenger RNA expression within the liver was suppressed by ARA 290 treatment. ARA 290 protected pancreatic islets from cytokine-induced damage and apoptosis and ameliorated the inflammatory response after PITx. ARA 290 appears to be a promising candidate for improvement of PITx.

  11. Neuroprotective effects of erythropoietin posttreatment against kainate-induced excitotoxicity in mixed spinal cultures.

    PubMed

    Yoo, Jong Yoon; Won, You Jin; Lee, Jong Hwan; Kim, Jong Uk; Sung, In Young; Hwang, Seung Jun; Kim, Mi Jung; Hong, Hea Nam

    2009-01-01

    Although the neuroprotective effects of erythropoietin (EPO) preconditioning are well known, the potential of postapplied EPO to protect neurons against excitotoxic injury has not been clearly established. Here we show that kainate (KA)-induced excitotoxicity, which plays a key role in secondary spinal cord injury, decreased neuron survival, inhibited neurite extension, and significantly reduced the expression of erythropoietin receptors (EpoR) in cultured spinal neurons. Posttreatment with EPO for 48 hr protected neurons against KA-induced injury, opposing KA-induced apoptosis and promoting regrowth of motoneuron neurites. These neuroprotective effects were paralleled by a restoration of EpoR expression. The importance of the EpoR signaling pathway was demonstrated using an EpoR blocking antibody, which neutralized the neuroprotective action of EPO posttreatment and prevented EPO-induced increases in EpoR expression. We also found that up-regulated EpoR stimulated the Janus kinase 2 (JAK2) pathway, which is known to facilitate neuronal growth and neurite regeneration. Although EPO posttreatment modestly attenuated KA-induced reactive gliosis in mixed neuron-glial cultures, blocking EpoR activity did not alter glial fibrillary acidic protein expression or astrocyte proliferation. In conclusion, 48 hr treatment with EPO following KA exposure induced EpoR-dependent protection against excitotoxic injury, demonstrating that preconditioning is not a prerequisite for neuroprotection by EPO. The neuroprotective effects of EPO posttreatment were mediated by an EpoR-dependent signaling pathway that possibly involves JAK2. The neuroprotective effect of EPO posttreatment against KA excitotoxicity appears to reflect direct effects on neurons and not indirect effects mediated by astrocytes.

  12. Transplantation of genetically engineered cardiac fibroblasts producing recombinant human erythropoietin to repair the infarcted myocardium

    PubMed Central

    Ruvinov, Emil; Sharabani-Yosef, Orna; Nagler, Arnon; Einbinder, Tom; Feinberg, Micha S; Holbova, Radka; Douvdevani, Amos; Leor, Jonathan

    2008-01-01

    Background Erythropoietin possesses cellular protection properties. The aim of the present study was to test the hypothesis that in situ expression of recombinant human erythropoietin (rhEPO) would improve tissue repair in rat after myocardial infarction (MI). Methods and results RhEPO-producing cardiac fibroblasts were generated ex vivo by transduction with retroviral vector. The anti-apoptotic effect of rhEPO-producing fibroblasts was evaluated by co-culture with rat neonatal cardiomyocytes exposed to H2O2-induced oxidative stress. Annexin V/PI assay and DAPI staining showed that compared with control, rhEPO forced expression markedly attenuated apoptosis and improved survival of cultured cardiomyocytes. To test the effect of rhEPO on the infarcted myocardium, Sprague-Dawley rats were subjected to permanent coronary artery occlusion, and rhEPO-producing fibroblasts, non-transduced fibroblasts, or saline, were injected into the scar tissue seven days after infarction. One month later, immunostaining identified rhEPO expression in the implanted engineered cells but not in controls. Compared with non-transduced fibroblasts or saline injection, implanted rhEPO-producing fibroblasts promoted vascularization in the scar, and prevented cell apoptosis. By two-dimensional echocardiography and postmortem morphometry, transplanted EPO-engineered fibroblasts did not prevent left ventricular (LV) dysfunction and adverse LV remodeling 5 and 9 weeks after MI. Conclusion In situ expression of rhEPO enhances vascularization and reduces cell apoptosis in the infarcted myocardium. However, local EPO therapy is insufficient for functional improvement after MI in rat. PMID:19014419

  13. DEFECTIVE ERYTHROPOIETIN PRODUCTION AND RETICULOCYTE RESPONSE IN ACUTE PLASMODIUM FALCIPARUM MALARIA-ASSOCIATED ANEMIA

    PubMed Central

    Leowattana, Wattana; Krudsood, Srivicha; Tangpukdee, Noppadon; Brittenham, Gary; Looareesuwan, Sornchai

    2011-01-01

    To elucidate the relationship between falciparum malaria-associated anemia and serum erythropoietin (Epo) levels and reticulocyte response during acute malaria infection, 87 adults aged 18-65 years presenting with acute, uncomplicated malaria were examined on enrollment and for 28 days of follow-up. The 87 patients were divided into 2 groups: those with anemia (n = 45) and those without (n = 42). Serum samples were taken on admission (Day 0), then on Days 7, 21, and 28, to measure the reticulocyte count, absolute reticulocyte count, reticulocyte hemoglobin content, and erythropoietin level (Epo). The absolute reticulocyte counts for the anemic patients were significantly higher than for those without anemia on Days 0, 7, 21, and 28. The serum Epo levels for the anemic patients were significantly higher than the non-anemic group only on Day 0 (44.39 ± 4.06 vs 25.91 ± 4.86 mIU/ml, p < 0.001). Inadequate Epo production was found in 31.03% (27/87) of patients on Day 0, 37.93% (33/87) on Day 7, 43.67% (38/87) on Day 21, and 39.08% (34/87) on Day 28. These results indicate defective Epo production and reticulocyte response in adult patients suffering from acute P. falciparum malaria, which differs from pediatric patients. Our findings may provide the basis for further study into the choice of therapeutic strategies to treat acute P. falciparum malaria-associated anemia with recombinant human Epo to correct refractory anemia due to malaria. PMID:19058593

  14. Erythropoietin assay: present status of methods, pitfalls, and results in polycythemic disorders.

    PubMed

    Popovic, W J; Adamson, J W

    1978-01-01

    Mammalian erythropoiesis is regulated primarily by the hormone erythropoietin (ESP). Studies of ESF have provided information about its biochemistry and its role in regulating hemoglobin synthesis. Such studies rely on assays for erythropoietic activity in biological fluid. The assay which has proven most valuable and is used most widely is based upon the incorporation of radioactive iron into newly-formed red cells of polycythemic mice. While this assay has gained wide acceptance, it is expensive, cumbersome, imprecise, and insensitive, capable of reliably detecting no less than 50 milliunits of erythropoietin. Improvements in assay techniques will require new methodology relying primarily on immunologic recognition for the determination of hormone activity. Currently under development and in experimental use are radioimmunoassays and a hemagglutination inhibition assay. While work has progressed in these areas, these assays are not of proven value at present and meaningful physiological correlations have not emerged from their use. Alternatively, assays for hormone activity using suspensions of hematopoietic cells and the measurement of incorporation of radioactive isotopes into hemoglobin have provided both improvement in sensitivity and precision. The disadvantage of these types of assays is that they are sensitive to factors other than ESF and may give misleading information, depending on whether the factors present stimulate or inhibit cellular proliferation and hemoglobin synthesis. While such techniques may provide a temporary solution to some problems associated with assaying ESF for purification or physiological studies, they are not the best answer to the overall problem of hormone detection and characterization. The most important contribution to this field will be the availability of large amounts of highly purified and well-characterized ESF.

  15. Widespread Expression of Erythropoietin Receptor in Brain and Its Induction by Injury

    PubMed Central

    Ott, Christoph; Martens, Henrik; Hassouna, Imam; Oliveira, Bárbara; Erck, Christian; Zafeiriou, Maria-Patapia; Peteri, Ulla-Kaisa; Hesse, Dörte; Gerhart, Simone; Altas, Bekir; Kolbow, Tekla; Stadler, Herbert; Kawabe, Hiroshi; Zimmermann, Wolfram-Hubertus; Nave, Klaus-Armin; Schulz-Schaeffer, Walter; Jahn, Olaf; Ehrenreich, Hannelore

    2015-01-01

    Erythropoietin (EPO) exerts potent neuroprotective, neuroregenerative and procognitive functions. However, unequivocal demonstration of erythropoietin receptor (EPOR) expression in brain cells has remained difficult since previously available anti-EPOR antibodies (EPOR-AB) were unspecific. We report here a new, highly specific, polyclonal rabbit EPOR-AB directed against different epitopes in the cytoplasmic tail of human and murine EPOR and its characterization by mass spectrometric analysis of immuno-precipitated endogenous EPOR, Western blotting, immunostaining and flow cytometry. Among others, we applied genetic strategies including overexpression, Lentivirus-mediated conditional knockout of EpoR and tagged proteins, both on cultured cells and tissue sections, as well as intracortical implantation of EPOR-transduced cells to verify specificity. We show examples of EPOR expression in neurons, oligodendroglia, astrocytes and microglia. Employing this new EPOR-AB with double-labeling strategies, we demonstrate membrane expression of EPOR as well as its localization in intracellular compartments such as the Golgi apparatus. Moreover, we show injury-induced expression of EPOR. In mice, a stereotactically applied stab wound to the motor cortex leads to distinct EpoR expression by reactive GFAP-expressing cells in the lesion vicinity. In a patient suffering from epilepsy, neurons and oligodendrocytes of the hippocampus strongly express EPOR. To conclude, this new analytical tool will allow neuroscientists to pinpoint EPOR expression in cells of the nervous system and to better understand its role in healthy conditions, including brain development, as well as under pathological circumstances, such as upregulation upon distress and injury. PMID:26349059

  16. Erythropoietin is involved in the angiogenic potential of bone marrow macrophages in multiple myeloma.

    PubMed

    De Luisi, Annunziata; Binetti, Laura; Ria, Roberto; Ruggieri, Simona; Berardi, Simona; Catacchio, Ivana; Racanelli, Vito; Pavone, Vincenzo; Rossini, Bernardo; Vacca, Angelo; Ribatti, Domenico

    2013-10-01

    Erythropoietin (Epo) is the crucial cytokine regulator of red blood cell production, and recombinant human erythropoietin (rHuEpo) is widely used in clinical practice for the treatment of anemia, primarily in kidney disease and in cancer. Increasing evidence suggests several biological roles for Epo and its receptor, Epo-R, unrelated to erythropoiesis, including angiogenesis. Epo-R has been found expressed in various non-haematopoietic cells and tissues, and in cancer cells. Here, we detected the expression of Epo-R in bone marrow-derived macrophages (BMMAs) from multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) patients and assessed whether Epo/Epo-R axis plays a role in MM macrophage-mediated angiogenesis. We found that Epo-R is over-expressed in BMMAs from MM patients with active disease compared to MGUS patients. The treatment of BMMAs with rHuEpo significantly increased the expression and secretion of key pro-angiogenic mediators, such as vascular endothelial growth factor, hepatocyte growth factor and monocyte chemotactic protein (MCP-1/CCL-2), through activation of JAK2/STAT5 and PI3 K/Akt pathways. In addition, the conditioned media harvested from rHuEpo-treated BMMAs enhanced bone marrow-derived endothelial cell migration and capillary morphogenesis in vitro, and induced angiogenesis in the chorioallantoic membrane of chick embryos in vivo. Furthermore, we found an increase in the circulating levels of several pro-angiogenic cytokines in serum of MM patients with anemia under treatment with Epo. Our findings highlight the direct effect of rHuEpo on macrophage-mediated production of pro-angiogenic factors, suggesting that Epo/Epo-R pathway may be involved in the regulation of angiogenic response occurring in MM.

  17. The pharmacokinetics and pharmacodynamics of recombinant human erythropoietin in haemodialysis patients.

    PubMed Central

    Brockmöller, J; Köchling, J; Weber, W; Looby, M; Roots, I; Neumayer, H H

    1992-01-01

    1. The pharmacokinetics of and therapeutic response to recombinant human erythropoietin (rcEPO) were studied in 12 patients under chronic haemodialysis on a thrice weekly intravenous rcEPO treatment scheme. The kinetics of rcEPO were also assessed after a subcutaneous injection during the initial period and during maintenance treatment. RcEPO was measured in plasma by radioimmunoassay. 2. After the first i.v. dose plasma erythropoietin concentrations were best described by a monoexponential disposition function with a mean (+/- s.d.) elimination half-life of 5.4 +/- 1.7 h. The volume of distribution was 70 +/- 5.2 ml kg-1 and the clearance was 10.1 +/- 3.5 ml h-1 kg-1 (n = 12). 3. After 3 months of continuous therapy, the plasma half-life of rcEPO decreased by 15% (P < 0.05, mean half-life during steady state: 4.6 +/- 2.8 h), while mean clearance and volume of distribution remained constant. 4. After the first s.c. injection the mean (+/- s.d.) absorption time was 22 +/- 11 h and systemic availability was 44 +/- 7%. 5. Changes in haemoglobin concentrations were described by a linear additive dose-response model, defined by an efficacy constant (Keff) and the mean erythrocyte lifetime (MRTHb). The sample mean (+/- s.d.) Keff was 0.043 +/- 0.017 g dl-1 Hb per 1000 units rcEPO and MRTHb was 10.02 +/- 1.75 weeks. The net effect of rcEPO treatment was described by the area under the unit-dose-response curve (AUEC) with a mean (+/- s.d.) value of 0.45 +/- 0.23 g dl-1 weeks. 6. RcEPO clearance showed a significant positive correlation (r2 = 0.41) with the effectiveness of rcEPO therapy, as measured by the parameters Keff or AUEC. PMID:1493082

  18. Recovery of radiation-induced dry eye and corneal damage by pretreatment with adenoviral vector-mediated transfer of erythropoietin to the salivary glands in mice.

    PubMed

    Rocha, Eduardo M; Cotrim, Ana P; Zheng, Changyu; Riveros, Paola Perez; Baum, Bruce J; Chiorini, John A

    2013-04-01

    Therapeutic doses of radiation (RTx) causes dry eye syndrome (DES), dry mouth, and as in other sicca syndromes, they are incurable. The aims of this work are as follows: (a) to evaluate a mouse model of DES induced by clinically relevant doses of radiation, and (b) to evaluate the protective effect of erythropoietin (Epo) in preventing DES. C3H female mice were subjected to five sessions of RTx, with or without pre-RTx retroductal administration of the AdLTR2EF1a-hEPO (AdEpo) vector in the salivary glands (SG), and compared with naïve controls at Day 10 (10d) (8 Gy fractions) and 56 days (56d) (6 Gy fractions) after RTx treatment. Mice were tested for changes in lacrimal glands (LG), tear secretion (phenol red thread), weight, hematocrit (Hct), and markers of inflammation, as well as microvessels and oxidative damage. Tear secretion was reduced in both RTx groups, compared to controls, by 10d. This was also seen at 56d in RTx but not AdEpo+RTx group. Hct was significantly higher in all AdEpo+RTx mice at 10d and 56d. Corneal epithelium was significantly thinner at 10d in the RTx group compared with AdEpo+RTx or the control mice. There was a significant reduction at 10d in vascular endothelial growth factor (VEGF)-R2 in LG in the RTx group that was prevented in the AdEpo+RTx group. In conclusion, RTx is able to induce DES in mice. AdEpo administration protected corneal epithelia and resulted in some recovery of LG function, supporting the value of further studies using gene therapy for extraglandular diseases.

  19. Pure and mixed erythroid colony formation in vitro stimulated by spleen conditioned medium with no detectable erythropoietin.

    PubMed Central

    Johnson, G R; Metcalf, D

    1977-01-01

    Cells from CBA fetal mouse liver formed pure or mixed erythroid colonies in semisolid agarculture after stimulation by medium conditioned by pokeweed mitogen-stimulated mouse spleen cells. In general shape, the erythroid colonies resembled typical 7-day single or multiple (burst) colonies. However one-third to one-half contained, in addition to erythroid cells, macrophages and neutrophils and, less commonly, megakaryocytes or eosinophils. Culture of micro manipulated single colony-forming cells showed these erythroid colonies to be clones. Colony-forming cells declined in frequency with advancing fetal age, but low numbers were detectable in adult bone marrow. Assays of spleen conditioned medium in polycythemic mice failed to detect erythropoietin; the cloning system may detect a fetal type of erythropoietin-independent, erythropoietic cell since few were detected in adult marrow. Images PMID:269439

  20. The influence of phenobarbital on cytochromes and reactive oxygen species in erythropoietin producing HepG2 cells.

    PubMed

    Ehleben, W; Porwol, T; Fandrey, J; Acker, H

    1998-12-04

    Light absorption photometry of HepG2 cells treated with phenobarbital for enhancing the content of cytochrome P-450 and the synthesis of erythropoietin revealed an influence on all cytochromes detectable in the wavelength range between 400 and 620 nm. No correlation was found between specific changes of cytochrome P-450 absorption and increased EPO synthesis as proposed earlier by Fandrey et al. (Life Sci. (1990) 47, 127-134). In the present study, however, the increased erythropoietin synthesis could be related to a decreased intracellular hydroxyl radical level described as crucial for the oxygen regulated gene expression (Kietzmann et al., Biochem. J. (1998) 335, 425-432; Porwol et al., Eur. J. Biochem. (1998) 256, 16-23).

  1. Erythropoietin test

    MedlinePlus

    ... polycythemia (high red blood cell count) or other bone marrow disorders. A change in red blood cells will affect the release of EPO. For example, persons with anemia have too few red blood cells, so more EPO is produced.

  2. Toward Homogeneous Erythropoietin: Application of Metal Free Dethiylation in the Chemical Synthesis of the Ala79-Arg166 Glycopeptide Domain

    PubMed Central

    Dong, Suwei; Shang, Shiying; Tan, Zhongping

    2013-01-01

    We describe herein the assembly of hEPO(79–166), a key glycopeptide segment en route to erythropoietin, in minimally protected form. Key to the success of this synthetic endeavor was the application of our two-step cysteine-free native chemical ligation strategy, by which we achieved formal ligation at alanine and proline residues through the use of an N-terminal amino acid surrogate presenting a readily removable thiol functionality. PMID:23585694

  3. Pure red cell aplasia associated with recombinant erythropoietin: a case report and brief review of the literature.

    PubMed

    Mohd Slim, M Atif; Shaik, Riaz

    2013-11-22

    Pure red cell aplasia (PRCA) is a rare adverse effect of recombinant erythropoietin (rEPO). Affected patients rapidly become transfusion-dependent, with many requiring immunosuppressive therapy for remission. We report a confirmed case in an elderly female, possibly the first of its kind in New Zealand, who was started on rEPO for anaemia of chronic kidney disease. We also briefly review current literature on rEPO-associated PRCA.

  4. Treatment of optic neuritis with erythropoietin (TONE): a randomised, double-blind, placebo-controlled trial—study protocol

    PubMed Central

    Diem, Ricarda; Molnar, Fanni; Beisse, Flemming; Gross, Nikolai; Drüschler, Katharina; Heinrich, Sven P; Joachimsen, Lutz; Rauer, Sebastian; Pielen, Amelie; Sühs, Kurt-Wolfram; Linker, Ralf Andreas; Huchzermeyer, Cord; Albrecht, Philipp; Hassenstein, Andrea; Aktas, Orhan; Guthoff, Tanja; Tonagel, Felix; Kernstock, Christoph; Hartmann, Kathrin; Kümpfel, Tania; Hein, Katharina; van Oterendorp, Christian; Grotejohann, Birgit; Ihorst, Gabriele; Maurer, Julia; Müller, Matthias; Volkmann, Martin; Wildemann, Brigitte; Platten, Michael; Wick, Wolfgang; Heesen, Christoph; Schiefer, Ulrich; Wolf, Sebastian; Lagrèze, Wolf A

    2016-01-01

    Introduction Optic neuritis leads to degeneration of retinal ganglion cells whose axons form the optic nerve. The standard treatment is a methylprednisolone pulse therapy. This treatment slightly shortens the time of recovery but does not prevent neurodegeneration and persistent visual impairment. In a phase II trial performed in preparation of this study, we have shown that erythropoietin protects global retinal nerve fibre layer thickness (RNFLT-G) in acute optic neuritis; however, the preparatory trial was not powered to show effects on visual function. Methods and analysis Treatment of Optic Neuritis with Erythropoietin (TONE) is a national, randomised, double-blind, placebo-controlled, multicentre trial with two parallel arms. The primary objective is to determine the efficacy of erythropoietin compared to placebo given add-on to methylprednisolone as assessed by measurements of RNFLT-G and low-contrast visual acuity in the affected eye 6 months after randomisation. Inclusion criteria are a first episode of optic neuritis with decreased visual acuity to ≤0.5 (decimal system) and an onset of symptoms within 10 days prior to inclusion. The most important exclusion criteria are history of optic neuritis or multiple sclerosis or any ocular disease (affected or non-affected eye), significant hyperopia, myopia or astigmatism, elevated blood pressure, thrombotic events or malignancy. After randomisation, patients either receive 33 000 international units human recombinant erythropoietin intravenously for 3 consecutive days or placebo (0.9% saline) administered intravenously. With an estimated power of 80%, the calculated sample size is 100 patients. The trial started in September 2014 with a planned recruitment period of 30 months. Ethics and dissemination TONE has been approved by the Central Ethics Commission in Freiburg (194/14) and the German Federal Institute for Drugs and Medical Devices (61-3910-4039831). It complies with the Declaration of Helsinki

  5. Garlic Accelerates Red Blood Cell Turnover and Splenic Erythropoietic Gene Expression in Mice: Evidence for Erythropoietin-Independent Erythropoiesis

    PubMed Central

    Akgül, Bünyamin; Lin, Kai-Wei; Ou Yang, Hui-Mei; Chen, Yen-Hui; Lu, Tzu-Huan; Chen, Chien-Hsiun; Kikuchi, Tateki; Chen, Yuan-Tsong; Tu, Chen-Pei D.

    2010-01-01

    Garlic (Allium sativum) has been valued in many cultures both for its health effects and as a culinary flavor enhancer. Garlic's chemical complexity is widely thought to be the source of its many health benefits, which include, but are not limited to, anti-platelet, procirculatory, anti-inflammatory, anti-apoptotic, neuro-protective, and anti-cancer effects. While a growing body of scientific evidence strongly upholds the herb's broad and potent capacity to influence health, the common mechanisms underlying these diverse effects remain disjointed and relatively poorly understood. We adopted a phenotype-driven approach to investigate the effects of garlic in a mouse model. We examined RBC indices and morphologies, spleen histochemistry, RBC half-lives and gene expression profiles, followed up by qPCR and immunoblot validation. The RBCs of garlic-fed mice register shorter half-lives than the control. But they have normal blood chemistry and RBC indices. Their spleens manifest increased heme oxygenase 1, higher levels of iron and bilirubin, and presumably higher CO, a pleiotropic gasotransmitter. Heat shock genes and those critical for erythropoiesis are elevated in spleens but not in bone marrow. The garlic-fed mice have lower plasma erythropoietin than the controls, however. Chronic exposure to CO of mice on garlic-free diet was sufficient to cause increased RBC indices but again with a lower plasma erythropoietin level than air-treated controls. Furthermore, dietary garlic supplementation and CO treatment showed additive effects on reducing plasma erythropoietin levels in mice. Thus, garlic consumption not only causes increased energy demand from the faster RBC turnover but also increases the production of CO, which in turn stimulates splenic erythropoiesis by an erythropoietin-independent mechanism, thus completing the sequence of feedback regulation for RBC metabolism. Being a pleiotropic gasotransmitter, CO may be a second messenger for garlic's other

  6. Evaluation of the osteogenesis and angiogenesis effects of erythropoietin and the efficacy of deproteinized bovine bone/recombinant human erythropoietin scaffold on bone defect repair.

    PubMed

    Li, Donghai; Deng, Liqing; Xie, Xiaowei; Yang, Zhouyuan; Kang, Pengde

    2016-06-01

    Erythropoietin (EPO) could promote the angiogenesis and may also play a role in bone regeneration. This study was conducted to evaluate the osteogenesis and angiogenesis effects of EPO and the efficacy of deproteinized bovine bone/recombinant human EPO scaffold on bone defect repair. Twenty-four healthy adult goats were chosen to build goat defects model and randomly divided into four groups. The goats were treated with DBB/rhEPO scaffolds (group A), porous DBB scaffolds (group B), autogenous cancellous bone graft (group C), and nothing (group D). Animals were evaluated with radiological and histological methods at 4, 8 and 12 weeks after surgery. The grey value of radiographs was used to evaluate the healing of the defects and the outcome revealed that the group A had a better outcome of defect healing compared with group B (P < 0.05). However, the grey values in group A were lower than group C at week 4 and week 8 (P < 0.05), but at week 12 their difference had no statistical significance (P > 0.05). The newly formed bone area was calculated from histological sections and the results demonstrated that the amount of new bone in group A increased significantly compared with that in group B (P < 0.05) but was inferior to that in group C (P > 0.05) at 4, 8, 12 weeks respectively. In addition, the expression of vascular endothelial growth factor (VEGF) by immunohistochemical testing and real-time polymerase chain reaction at 12 weeks in group A was significantly higher than that in group B (P < 0.05), and also better than that in group C at week 4 and week 8 (P < 0.05), but at week 12 their difference had no statistical significance (P > 0.05). Therefore, EPO has significant effects on bone formation and angiogenesis, and has capacity to promote the repair of bone defects. It is worthy of being recommended to further studies.

  7. Response to erythropoietin in erythroid subclones of the factor-dependent cell line 32D is determined by translocation of the erythropoietin receptor to the cell surface.

    PubMed Central

    Migliaccio, A R; Migliaccio, G; D'Andrea, A; Baiocchi, M; Crotta, S; Nicolis, S; Ottolenghi, S; Adamson, J W

    1991-01-01

    Regulation of the expression of the erythropoietin (Epo) receptor (EpoR) gene is under the control of transcriptional regulatory factor GATA-1. GATA-1 is expressed widely among the nonerythroid, factor-dependent subclones of the interleukin 3-dependent mouse cell line 32D. Consequently, to determine whether GATA-1 and EpoR gene expression are linked even in nonerythroid cells, we have studied the correlation of GATA-1 expression with expression and function of EpoR in these cell lines. EpoR mRNA (by RNase protection analysis) and EpoR protein (by specific antibody immunoprecipitation of metabolically labeled EpoR protein) were detectable not only in 32D and 32D Epo (an Epo-dependent subclone) but also in 32D GM, a subclone dependent for growth on granulocyte/macrophage colony-stimulating factor. EpoR mRNA also was detectable by PCR in 32D G, a subclone dependent for growth on granulocyte colony-stimulating factor. However, only 32D Epo cells bound 125I-labeled Epo and expressed EpoR protein on the cell surface, as determined by immunoprecipitation of surface-labeled proteins. These results indicate that, in these factor-dependent cell lines, the major regulatory step determining the erythroid-specific response to Epo is the efficiency of EpoR protein translocation to the cell surface. Mechanisms that could affect lineage-specific translocation are the presence of a chaperone protein, erythroid-specific editing of EpoR mRNA, or altered processing of the EpoR protein to the cell surface. In this model, lineage-restricted responses to growth factors such as Epo are determined not by expression of the genes for growth factor receptors but, rather, by appropriate processing of the receptor protein. Images PMID:1722318

  8. Use of recombinant erythropoietin for the management of severe hemolytic disease of the newborn of a K0 phenotype mother.

    PubMed

    Manoura, Antonia; Korakaki, Eftychia; Hatzidaki, Eleftheria; Saitakis, Emmanuel; Maraka, Sofia; Papamastoraki, Isabella; Matalliotakis, Emmanuel; Foundouli, Kaliopi; Giannakopoulou, Christine

    2007-01-01

    Very few people do not express any Kell antigens on their red blood cells (K0 phenotype). They can be immunized by transfusion or pregnancy and develop antibodies against Kell system antigens. These maternal antibodies can cause severe hemolytic disease of the fetus/newborn, as a result of the suppression of erythropoiesis and hemolysis. Multiple intrauterine transfusions in the management of severe hemolytic disease have been shown to cause erythropoietic suppression as well. Recombinant erythropoietin has been successfully used in the management of late anemia of infants with Rh hemolytic disease and in 1 case of KEL1 (Kell)-associated hemolytic disease. The authors present the case of severe hemolytic disease of a newborn due to KEL5 (Ku) isoimmunization of his K0 phenotype mother. Regular intrauterine transfusions were performed to manage the severe fetal anemia (Hb 3 g/dL). A male infant was born at the 36th week of gestation having normal hemoglobin (15.8 g/dL) and developed only mild hyperbilirubinemia. On the 15th day of life, the infant's hematocrit had fallen to 27.3%, with low reticulocyte count and low erythropoietin level. The infant was managed successfully with recombinant erythropoietin.

  9. Optimization and qualification of capillary zone electrophoresis method for glycoprotein isoform distribution of erythropoietin for quality control laboratory.

    PubMed

    Zhang, Junge; Chakraborty, Utpal; Villalobos, Annabelle P; Brown, John M; Foley, Joe P

    2009-10-15

    The European Pharmacopoeia (Ph. Eur.) monograph for Erythropoietin Concentrated Solution describes a capillary zone electrophoresis method for identification of recombinant human erythropoietin. However, this method has shown poor reproducibility due to inadequate capillary conditioning. We have modified the Ph. Eur. method to make it more robust and suitable for the quality control laboratory for the analysis of epoetin alfa and epoetin alfa after formulation with polysorbate 80. This study qualified the modified method by showing improved robustness and reproducibility. The study also characterized and qualified a secondary standard of epoetin alfa as a substitute for the primary standard, Ph. Eur. erythropoietin Biological Reference Preparation, which is available in limited supply. Four sets of analyses were performed to assess repeatability, intermediate precision, and the secondary standard. The results showed that the modified method is suitable for its intended purpose to test epoetin alfa and formulated epoetin alfa samples. The epoetin alfa secondary standard is a suitable substitute for the primary standard. Further, we developed a procedure for the removal of polysorbate 80 from formulated epoetin alfa, allowing the material to be analyzed by the modified Ph. Eur. method.

  10. SDS-PAGE of recombinant and endogenous erythropoietins: benefits and limitations of the method for application in doping control.

    PubMed

    Reichel, Christian; Kulovics, Ronald; Jordan, Veronika; Watzinger, Martina; Geisendorfer, Thomas

    2009-01-01

    Doping of athletes with recombinant and genetically modified erythropoietins (EPO) is currently detected by isoelectric focusing (IEF). The application of these drugs leads to a significant change in the isoform profile of endogenous urinary erythropoietin (uhEPO). Dynepo, MIRCERA, biosimilars with variable IEF-profiles as well as active urines and effort urines have made additional testing strategies necessary. The new generation of small molecule EPO-receptor stimulating agents like Hematide will also challenge the analytical concept of detecting the abuse of erythropoiesis stimulating agents (ESA). By determining their apparent molecular masses with SDS-PAGE a clear differentiation between endogenous and exogenous substances also concerning new EPO modifications is possible. Due to the orthogonal character of IEF- and SDS-PAGE both methods complement each other. The additional benefits of SDS-PAGE especially in relation to active and effort urines as well as the detection of Dynepo were investigated. Due to significant differences between the apparent molecular masses of uhEPO/serum EPO (shEPO) and recombinant, genetically or chemically modified erythropoietins the presence of active or effort urines was easily revealed. The characteristic band shape and apparent molecular mass of Dynepo on SDS-PAGE additionally evidenced the presence of this substance in urine. A protocol for the detection of EPO-doping in serum and plasma by SDS-PAGE was developed. Blood appears to be the ideal matrix for detecting all forms ESA-doping in the future.

  11. Long-term treatment of anemia with recombinant human erythropoietin in familial amyloidosis TTR V30M.

    PubMed

    Beirão, Idalina; Lobato, Luísa; Moreira, Luciana; Mp Costa, Paulo; Fonseca, Isabel; Cabrita, António; Porto, Graça

    2008-09-01

    Familial amyloidosis or familial amyloid polyneuropathy (FAP) TTR V30M is a hereditary disease presented, in most cases, as a sensorimotor and autonomic neuropathy. Normocytic and normochromic anaemia was found in 24.8% of symptomatic FAP patients associated to lower serum erythropoietin (Epo) levels. Erythropoietin has been reported as efficient in anaemia correction in this disease. To evaluate the tolerance and efficacy of this treatment, a retrospective longitudinal study with 24 patients was undertaken. Patients were followed for at least 6 months. Haemoglobin, hematocrit, iron status, serum creatinine and urea and r-HuEPO doses were monitored, at 0, 3 months, 6 months and at the end of the follow-up. Long-term use of r-HuEPO proved to be efficient in the treatment of anaemia in familial amyloidosis TTR V30M and, despite the disease progression, no resistance cases to this treatment were observed. Positive side effects, like improvement on orthostatic hypotension symptoms and well-being sensation, contributing to confirm erythropoietin as a drug of choice to treat anaemia in amyloidosis TTR V30M.

  12. Three-dimensional intracellular calcium gradients in single human burst-forming units-erythroid-derived erythroblasts induced by erythropoietin.

    PubMed Central

    Yelamarty, R V; Miller, B A; Scaduto, R C; Yu, F T; Tillotson, D L; Cheung, J Y

    1990-01-01

    We have previously shown that the intracellular free Ca2+ increase induced by erythropoietin is likely related to differentiation rather than proliferation in human BFU-E-derived erythroblasts (1989. Blood. 73:1188-1194). Since cell differentiation involves transcription of specific regions of the genome, and since nuclear endonucleases responsible for single strand DNA breaks observed in cells undergoing differentiation are Ca2+ dependent, we investigated whether the erythropoietin-induced calcium signal is transmitted from cytosol to nucleus in this study. To elucidate subcellular Ca2+ gradients, the technique of optical sectioning microscopy was used. After determining the empirical three-dimensional point spread function of the video imaging system, contaminating light signals from optical planes above and below the focal plane of interest were removed by deconvolution using the nearest neighboring approach. Processed images did not reveal any discernible subcellular Ca2+ gradients in unstimulated erythroblasts. By contrast, with erythropoietin stimulation, there was a two- to threefold higher Ca2+ concentration in the nucleus compared to the surrounding cytoplasm. We suggest that the rise in nuclear Ca2+ may activate Ca2(+)-dependent endonucleases and initiate differentiation. The approach described here offers the opportunity to follow subcellular Ca2+ changes in response to a wide range of stimuli, allowing new insights into the role of regional Ca2+ changes in regulation of cell function. Images PMID:2189892

  13. Cardioprotection of exogenous erythropoietin in mice with ligature-induced aortic stenosis: effects on maladaptive cardiac hypertrophy.

    PubMed

    Zheng, L; Xu, J; Qiu, W; Liu, X; Zhao, C-M; Chen, D; Chen, Y

    2010-02-01

    Pre-operative treatment with recombinant human erythropoietin may improve aortic stenosis patients' condition, including anemia and/or cardiac dysfunction, for subjecting to aortic valve replacement. In this study, we tested this hypothesis in a mouse model of aortic stenosis. Adult male mice were subjected to either aortic stenosis created by aortic ligature or sham operation. Aortic stenosis for 4 weeks caused cardiac hypertrophy, pulmonary congestion and left ventricular dysfunction. It was associated with increased levels of tumor necrosis factor-alpha in serum and myocardium, and reduced levels of interleukin-10 in myocardium but not in serum. Myocyte apoptosis rate, level of cleaved caspase 3, activity of nuclear factor-kappaB and expression of p38-MAPK pathway were also elevated. Erythropoietin treatment increased hematocrit but did not prevent the development of cardiac hypertrophy. It, however, reduced the apoptosis, prevented the increases in tumor necrosis factor-alpha, nuclear factor-kappaB activation and phosphorylation of p38, and attenuated the increases in lung weight, the decreases in LVEF and LVFS, and the increases in LVDd and LVDs. In conclusion recombinant human erythropoietin has cardioprotective effects in maladaptive cardiac hypertrophy by inhibiting nuclear factor-kappaB activation, phosphorylation of p38-MAPK pathway, and production of tumor necrosis factor-alpha, together leading to a reduced apoptosis.

  14. Hypoxic pulmonary vasoconstriction, carotid body function and erythropoietin production in adult rats perinatally exposed to hyperoxia.

    PubMed

    Prieto-Lloret, Jesus; Ramirez, Maria; Olea, Elena; Moral-Sanz, Javier; Cogolludo, Angel; Castañeda, Javier; Yubero, Sara; Agapito, Teresa; Gomez-Niño, Angela; Rocher, Asuncion; Rigual, Ricardo; Obeso, Ana; Perez-Vizcaino, Francisco; González, Constancio

    2015-06-01

    Adult animals that have been perinatally exposed to oxygen-rich atmospheres (hyperoxia), recalling those used for oxygen therapy in infants, exhibit a loss of hypoxic pulmonary vasoconstriction, whereas vasoconstriction elicited by depolarizing agents is maintained. Loss of pulmonary hypoxic vasoconstriction is not linked to alterations in oxygen-sensitive K(+) currents in pulmonary artery smooth muscle cells. Loss of hypoxic vasoconstriction is associated with early postnatal oxidative damage and corrected by an antioxidant diet. Perinatal hyperoxia damages carotid body chemoreceptor cell function and the antioxidant diet does not reverse it. The hypoxia-elicited increase in erythropoietin plasma levels is not affected by perinatal hyperoxia. The potential clinical significance of the findings in clinical situations such as pneumonia, chronic obstructive pulmonary disease or general anaesthesia is considered. Adult mammalians possess three cell systems that are activated by acute bodily hypoxia: pulmonary artery smooth muscle cells (PASMC), carotid body chemoreceptor cells (CBCC) and erythropoietin (EPO)-producing cells. In rats, chronic perinatal hyperoxia causes permanent carotid body (CB) atrophy and functional alterations of surviving CBCC. There are no studies on PASMC or EPO-producing cells. Our aim is to define possible long-lasting functional changes in PASMC or EPO-producing cells (measured as EPO plasma levels) and, further, to analyse CBCC functional alterations. We used 3- to 4-month-old rats born and reared in a normal atmosphere or exposed to perinatal hyperoxia (55-60% O2 for the last 5-6 days of pregnancy and 4 weeks after birth). Perinatal hyperoxia causes an almost complete loss of hypoxic pulmonary vasoconstriction (HPV), which was correlated with lung oxidative status in early postnatal life and prevented by antioxidant supplementation in the diet. O2 -sensitivity of K(+) currents in the PASMC of hyperoxic animals is normal, indicating that

  15. Hypoxic pulmonary vasoconstriction, carotid body function and erythropoietin production in adult rats perinatally exposed to hyperoxia

    PubMed Central

    Prieto-Lloret, Jesus; Ramirez, Maria; Olea, Elena; Moral-Sanz, Javier; Cogolludo, Angel; Castañeda, Javier; Yubero, Sara; Agapito, Teresa; Gomez-Niño, Angela; Rocher, Asuncion; Rigual, Ricardo; Obeso, Ana; Perez-Vizcaino, Francisco; González, Constancio

    2015-01-01

    Adult mammalians possess three cell systems that are activated by acute bodily hypoxia: pulmonary artery smooth muscle cells (PASMC), carotid body chemoreceptor cells (CBCC) and erythropoietin (EPO)-producing cells. In rats, chronic perinatal hyperoxia causes permanent carotid body (CB) atrophy and functional alterations of surviving CBCC. There are no studies on PASMC or EPO-producing cells. Our aim is to define possible long-lasting functional changes in PASMC or EPO-producing cells (measured as EPO plasma levels) and, further, to analyse CBCC functional alterations. We used 3- to 4-month-old rats born and reared in a normal atmosphere or exposed to perinatal hyperoxia (55–60% O2 for the last 5–6 days of pregnancy and 4 weeks after birth). Perinatal hyperoxia causes an almost complete loss of hypoxic pulmonary vasoconstriction (HPV), which was correlated with lung oxidative status in early postnatal life and prevented by antioxidant supplementation in the diet. O2-sensitivity of K+ currents in the PASMC of hyperoxic animals is normal, indicating that their inhibition is not sufficient to trigger HPV. Perinatal hyperoxia also abrogated responses elicited by hypoxia on catecholamine and cAMP metabolism in the CB. An increase in EPO plasma levels elicited by hypoxia was identical in hyperoxic and control animals, implying a normal functioning of EPO-producing cells. The loss of HPV observed in adult rats and caused by perinatal hyperoxia, comparable to oxygen therapy in premature infants, might represent a previously unrecognized complication of such a medical intervention capable of aggravating medical conditions such as regional pneumonias, atelectases or general anaesthesia in adult life. Key points Adult animals that have been perinatally exposed to oxygen-rich atmospheres (hyperoxia), recalling those used for oxygen therapy in infants, exhibit a loss of hypoxic pulmonary vasoconstriction, whereas vasoconstriction elicited by depolarizing agents is

  16. Anaemia in systemic lupus erythematosus: aetiological profile and the role of erythropoietin

    PubMed Central

    Voulgarelis, M.; Kokori, S.; Ioannidis, J.; Tzioufas, A.; Kyriaki, D.; Moutsopoulos, H.

    2000-01-01

    OBJECTIVE—To study the prevalence of different causes of anaemia in patients with systemic lupus erythematosus (SLE) and their associations with immunological and clinical parameters and to evaluate the contribution of erythropoietin (Epo) and anti-erythropoietin (anti-Epo) autoantibodies to the development of SLE anaemia.
METHODS—132 SLE patients with anaemia (defined as haemoglobin of 12 g/dl or less for women and 13.5 g/dl or less for men) from among a total of 345 consecutive SLE patients were prospectively enrolled into the study. Standard haematological and immunological tests were performed and serum Epo and anti-Epo antibodies were assayed.
RESULTS—The identified causes were anaemia of chronic disease (ACD) n=49 (37.1%), iron deficiency anaemia (IDA) n=47 (35.6%), autoimmune haemolytic anaemia (AHA) n=19 (14.4%) and other causes n=17 (12.9%). There was significant heterogeneity in the severity of anaemia between the four groups (p<0.01) with AHA cases being on average more severe. The proportion of patients with anticardiolipin antibodies, low complement levels and anti-dsDNA differed significantly among the four groups; these markers were particularly common in patients with AHA, and uncommon in patients with IDA. Twenty one of 100 tested patients had anti-Epo antibodies. Such antibodies were seen practically only in patients with ACD (odds ratio 3.1, p=0.041) and in patients with high lupus activity (ECLAM) scores (odds ratio 1.27 per point, p=0.055). Epo response was inadequate in 42.4% and 41.2% of patients with ACD and AHA, respectively.
CONCLUSIONS—Anaemia in SLE usually takes the form of ACD and IDA, however autoimmune haemolysis is not uncommon. SLE patients with different causes of anaemia differ in regard to several immunological parameters. Epo response is blunted in anaemic SLE patients, particularly those with ACD and AHA.

 PMID:10700431

  17. Serum immunoreactive erythropoietin levels and associated factors amongst HIV-infected children.

    PubMed

    Allen, U D; King, S M; Gomez, M P; Lapointe, N; Forbes, J C; Thorne, A; Kirby, M A; Bowker, J; Raboud, J; Singer, J; Mukwaya, G; Tobin, J; Read, S E

    1998-10-01

    To determine the spectrum of serum immunoreactive erythropoietin (SIE) levels amongst HIV-infected children aged < 13 years in relation to the levels among healthy children as well as those with renal failure; to examine the relationship between clinical and laboratory parameters and SIE levels. A cross-sectional study with a descriptive non-interventional format. HIV-infected Canadian subjects were recruited through four tertiary Canadian and one Bahamian centre. Children with renal failure and healthy children were recruited from one of the Canadian centres. Study subjects had clinical and laboratory profiles determined at baseline and at each of five follow-up periods over 1 year. SIE levels were measured by radioimmunoassay with a normal range of 12-28 IU/I. Data handling and statistical functions were performed by the Canadian HIV Trials Network. The study enrolled 133 HIV-infected subjects and 38 controls. Of these, 117 HIV-infected subjects, 24 healthy controls, and 11 controls with renal failure were eligible for analysis. The median age of infected subjects was 44 months, whereas that of healthy controls was 56 months, and 95 months for controls with renal failure. The median SIE levels were 14 and 11 IU/I for subjects with renal failure and healthy subjects, respectively. The median SIE level was 61 IU/I among zidovudine (ZDV)-treated subjects and 22 IU/I among ZDV-naive HIV-infected subjects. HIV-infected children almost invariably had SIE levels < 200 IU/I. The median SIE levels amongst HIV-infected subjects whose hemoglobin levels were < 100 g/l were 98 and 31 IU/I for ZDV-treated and ZDV-naive subjects, respectively (P = 0.002). This difference in median SIE levels between ZDV-treated subjects and ZDV-naive subjects was also observed among subjects whose hemoglobin levels were > 100 g/l (median, 58 and 15 IU/l, respectively; P < 0.001). Hemoglobin level was the most important predictor of log10 SIE (P < 0.01 for ZDV-treated and ZDV-naive subjects

  18. Analysis of the erythropoietin receptor gene in patients with myeloproliferative and myelodysplastic syndromes.

    PubMed

    Mittelman, M; Gardyn, J; Carmel, M; Malovani, H; Barak, Y; Nir, U

    1996-06-01

    The human erythropoietin receptor (EpoR) gene has been cloned and characterized. Very few EpoR genetic abnormalities have been reported so far. Polycythemia vera (PV) is characterized by low/normal serum erythropoietin (Epo) levels with proposed Epo hypersensitivity. Myelodysplastic syndromes (MDS) are characterized by refractory anemia with variable serum Epo levels. Several reports have suggested EpoR abnormalities in both types of stem cell disorders. We analyzed DNA obtained from peripheral blood mononuclear cells of seven healthy controls, 20 patients with myeloproliferative disorders (MPD, 11 patients with PV, five agnogenic myeloid metaplasia with myelofibrosis, four essential thrombocytosis) and eight patients with refractory anemia with ringed sideroblasts (RARS), an MDS variant. The DNA was digested with four restriction enzymes (BamHI, Bgl II, Sacl and HindIII), followed by Southern blot, using a 32P radiolabeled probe, containing 1.5 kb of the human EpoR cDNA. All 20 MPD patients and seven out of the eight MDS patients demonstrated a restriction pattern which was identical to the seven normal controls, as well as to the erythroid cell line K562, and also consistent with the expected restriction map, for all four enzymes tested. One RARS patient had a normal pattern with three enzymes but a different one with HindIII. The HindIII 12 kb large band was replaced by a faint 12 kb band and a new (about 9 kb) band appeared. The EpoR restriction map and the normal pattern obtained with the other three enzymes suggest that this patient has a 3 kb upstream deletion in one allelic EpoR gene. The same molecular pattern was detected in the patient's sister, who suffers from anemia with mild bone marrow (BM) dyserythropoiesis and plasmacytosis. Northern blot analysis showed that the patient's BM RNA carried normal EpoR message. This familial pattern may represent polymorphism. However, the patient's very high serum Epo level, her resistance to treatment with

  19. Effect of acute and chronic cobalt administration on carotid body chemoreceptors responses.

    PubMed

    Morelli, L; Di Giulio, C; Iezzi, M; Data, P G

    1994-06-30

    Chronic cobalt exposure leads to release and production of erythropoietin and consequently to polycythemia. Accordingly, cellular elements sensitive to oxygen in the carotid body, would manifest responses during acute and chronic cobalt administration. The carotid body, detects gas changes (PO2, PCO2/pH) in the arterial blood and regulates ventilation and circulation by the afferent nerve discharge. We hypothesized that cobalt interacts with an oxygen sensitive mechanism in the carotid chemoreception and in erythropoietin producing cells. Twelve cats were anesthetized, paralysed and artificially ventilated; few fiber preparation of carotid sinus nerve were recorded during close intraarterial injection of cobalt. In another protocol, 12 rats received an intraperitoneal dose of CoCl2 (10 mg/kg) daily for 6 weeks. At the end, the carotid body was fixed in situ by superfusion. Ultrastructural and morphometric studies were made. Acute administration (0.08-2.3 mumol) promptly stimulated the chemoreceptor afferents. Type I cells increased significantly along with erythropoiesis in the chronic cobalt treated rats. The stimulatory effects of cobalt on the carotid body chemoreceptor showed that sensitive mechanisms in the kidney and in the carotid body are similar, and cobalt interacts with the physiological responses of oxygen.

  20. Prognostic Impact of Erythropoietin Expression and Erythropoietin Receptor Expression on Locoregional Control and Survival of Patients Irradiated for Stage II/III Non-Small-Cell Lung Cancer

    SciTech Connect

    Rades, Dirk; Setter, Cornelia; Dahl, Olav; Schild, Steven E.; Noack, Frank

    2011-06-01

    Purpose: Prognostic factors can guide the physician in selecting the optimal treatment for an individual patient. This study investigates the prognostic value of erythropoietin (EPO) and EPO receptor (EPO-R) expression of tumor cells for locoregional control and survival in non-small-cell lung cancer (NSCLC) patients. Methods and Materials: Fourteen factors were investigated in 62 patients irradiated for stage II/III NSCLC, as follows: age, gender, Karnofsky performance score (KPS), histology, grading, TNM/American Joint Committee on Cancer (AJCC) stage, surgery, chemotherapy, pack years (average number of packages of cigarettes smoked per day multiplied by the number of years smoked), smoking during radiotherapy, hemoglobin levels during radiotherapy, EPO expression, and EPO-R expression. Additionally, patients with tumors expressing both EPO and EPO-R were compared to those expressing either EPO or EPO-R and to those expressing neither EPO nor EPO-R. Results: On univariate analysis, improved locoregional control was associated with AJCC stage II cancer (p < 0.048), surgery (p < 0.042), no smoking during radiotherapy (p = 0.024), and no EPO expression (p = 0.001). A trend was observed for a KPS of >70 (p = 0.08), an N stage of 0 to 1 (p = 0.07), and no EPO-R expression (p = 0.10). On multivariate analysis, AJCC stage II and no EPO expression remained significant. No smoking during radiotherapy was almost significant. On univariate analysis, improved survival was associated with N stage 0 to 1 (p = 0.009), surgery (p = 0.039), hemoglobin levels of {>=}12 g/d (p = 0.016), and no EPO expression (p = 0.001). On multivariate analysis, N stage 0 to 1 and no EPO expression maintained significance. Hemoglobin levels of {>=}12 g/d were almost significant. On subgroup analyses, patients with tumors expressing both EPO and EPO-R had worse outcomes than those expressing either EPO or EPO-R and those expressing neither EPO nor RPO-R. Conclusions: EPO expression of tumor cells

  1. A "classical" homodimeric erythropoietin receptor is essential for the antiapoptotic effects of erythropoietin on differentiated neuroblastoma SH-SY5Y and pheochromocytoma PC-12 cells.

    PubMed

    Um, Moonkyoung; Gross, Alec W; Lodish, Harvey F

    2007-03-01

    The hematopoietic cytokine erythropoietin (Epo) exerts cytoprotective effects on several types of neuronal cells both in vivo and in culture. Detailed molecular mechanisms underlying this phenomenon have not been elucidated and even the identity of the cytoprotective Epo receptors in neuronal cells is controversial. Here we show that Epo prevents staurosporine-induced apoptosis of differentiated human neuroblastoma SH-SY5Y cells, and activates the STAT5, AKT and MAPK signaling pathways. Differentiated SH-SY5Y cells have fewer than 50 high affinity Epo surface binding sites per cell, which could not be detected by standard assays measuring binding of 125I-labeled Epo. However, by measuring endocytosis of 125I-Epo, we could reliably quantify very small numbers of high-affinity Epo surface binding sites. Using SH-SY5Y cells stably expressing an Epo receptor (EpoR) shRNA and thus lacking detectable EpoR expression, we show that high affinity binding of Epo to these neuronal cells is mediated by the hematopoietic EpoR, and that this EpoR is also essential for the antiapoptotic activity of Epo. In contrast, a mutant Epo that has an intact binding site 1 but a non-functional binding site 2 and hence binds only to one cell surface EpoR molecule ("site 2" Epo mutant) displays si