NASA Technical Reports Server (NTRS)
Walsh, J. L.; Weston, R. P.; Samareh, J. A.; Mason, B. H.; Green, L. L.; Biedron, R. T.
2000-01-01
An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity finite-element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a high-speed civil transport configuration. The paper describes both the preliminary results from implementing and validating the multidisciplinary analysis and the results from an aerodynamic optimization. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture compliant software product. A companion paper describes the formulation of the multidisciplinary analysis and optimization system.
NASA Technical Reports Server (NTRS)
Oman, B. H.
1977-01-01
The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.
ERIC Educational Resources Information Center
Cabaroglu, Nese; Basaran, Suleyman; Roberts, Jon
2010-01-01
This study compares pauses, repetitions and recasts in matched task interactions under face-to-face and computer-mediated conditions. Six first-year English undergraduates at a Turkish University took part in Skype-based voice chat with a native speaker and face-to-face with their instructor. Preliminary quantitative analysis of transcripts showed…
ERIC Educational Resources Information Center
1968
The present report proposes a central computing facility and presents the preliminary specifications for such a system. It is based, in part, on the results of earlier studies by two previous contractors on behalf of the U.S. Office of Education. The recommendations are based upon the present contractors considered evaluation of the earlier…
Preliminary structural sizing of a Mach 3.0 high-speed civil transport model
NASA Technical Reports Server (NTRS)
Blackburn, Charles L.
1992-01-01
An analysis has been performed pertaining to the structural resizing of a candidate Mach 3.0 High Speed Civil Transport (HSCT) conceptual design using a computer program called EZDESIT. EZDESIT is a computer program which integrates the PATRAN finite element modeling program to the COMET finite element analysis program for the purpose of calculating element sizes or cross sectional dimensions. The purpose of the present report is to document the procedure used in accomplishing the preliminary structural sizing and to present the corresponding results.
A Modeling and Data Analysis of Laser Beam Propagation in the Maritime Domain
2015-05-18
approach to computing pdfs is the Kernel Density Method (Reference [9] has an intro - duction to the method), which we will apply to compute the pdf of our...The project has two parts to it: 1) we present a computational analysis of different probability density function approximation techniques; and 2) we... computational analysis of different probability density function approximation techniques; and 2) we introduce preliminary steps towards developing a
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Florance, Jennifer P.; Heeg, Jennifer; Wieseman, Carol D.; Perry, Boyd P.
2011-01-01
This paper presents preliminary computational aeroelastic analysis results generated in preparation for the first Aeroelastic Prediction Workshop (AePW). These results were produced using FUN3D software developed at NASA Langley and are compared against the experimental data generated during the HIgh REynolds Number Aero- Structural Dynamics (HIRENASD) Project. The HIRENASD wind-tunnel model was tested in the European Transonic Windtunnel in 2006 by Aachen University0s Department of Mechanics with funding from the German Research Foundation. The computational effort discussed here was performed (1) to obtain a preliminary assessment of the ability of the FUN3D code to accurately compute physical quantities experimentally measured on the HIRENASD model and (2) to translate the lessons learned from the FUN3D analysis of HIRENASD into a set of initial guidelines for the first AePW, which includes test cases for the HIRENASD model and its experimental data set. This paper compares the computational and experimental results obtained at Mach 0.8 for a Reynolds number of 7 million based on chord, corresponding to the HIRENASD test conditions No. 132 and No. 159. Aerodynamic loads and static aeroelastic displacements are compared at two levels of the grid resolution. Harmonic perturbation numerical results are compared with the experimental data using the magnitude and phase relationship between pressure coefficients and displacement. A dynamic aeroelastic numerical calculation is presented at one wind-tunnel condition in the form of the time history of the generalized displacements. Additional FUN3D validation results are also presented for the AGARD 445.6 wing data set. This wing was tested in the Transonic Dynamics Tunnel and is commonly used in the preliminary benchmarking of computational aeroelastic software.
Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design
NASA Technical Reports Server (NTRS)
Harmon, T. J.; Roschak, E.
1993-01-01
A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.
Preliminary design methods for fiber reinforced composite structures employing a personal computer
NASA Technical Reports Server (NTRS)
Eastlake, C. N.
1986-01-01
The objective of this project was to develop a user-friendly interactive computer program to be used as an analytical tool by structural designers. Its intent was to do preliminary, approximate stress analysis to help select or verify sizing choices for composite structural members. The approach to the project was to provide a subroutine which uses classical lamination theory to predict an effective elastic modulus for a laminate of arbitrary material and ply orientation. This effective elastic modulus can then be used in a family of other subroutines which employ the familiar basic structural analysis methods for isotropic materials. This method is simple and convenient to use but only approximate, as is appropriate for a preliminary design tool which will be subsequently verified by more sophisticated analysis. Additional subroutines have been provided to calculate laminate coefficient of thermal expansion and to calculate ply-by-ply strains within a laminate.
Computer Guided Instructional Design.
ERIC Educational Resources Information Center
Merrill, M. David; Wood, Larry E.
1984-01-01
Describes preliminary efforts to create the Lesson Design System, a computer-guided instructional design system written in Pascal for Apple microcomputers. Its content outline, strategy, display, and online lesson editors correspond roughly to instructional design phases of content and strategy analysis, display creation, and computer programing…
The ASTRO-1 preliminary design review coupled load analysis
NASA Technical Reports Server (NTRS)
Mcghee, D. S.
1984-01-01
Results of the ASTRO-1 preliminary design review coupled loads analysis are presented. The M6.0Y Generic Shuttle mathematical models were used. Internal accelerations, interface forces, relative displacements, and net e.g., accelerations were recovered for two ASTRO-1 payloads in a tandem configuration. Twenty-seven load cases were computed and summarized. Load exceedences were found and recommendations made.
Aerodynamic preliminary analysis system 2. Part 2: User's manual
NASA Technical Reports Server (NTRS)
Sova, G.; Divan, P.; Spacht, L.
1991-01-01
An aerodynamic analysis system based on potential theory at subsonic and/or supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations have multiple nonplanar surfaces of arbitrary planforms and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral-directional characteristics may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis. Computation times on an IBM 3081 are typically less than one minute of CPU/Mach number at subsonic, supersonic, or hypersonic speeds. This is a user manual for the computer programming.
Assessment of the information content of patterns: an algorithm
NASA Astrophysics Data System (ADS)
Daemi, M. Farhang; Beurle, R. L.
1991-12-01
A preliminary investigation confirmed the possibility of assessing the translational and rotational information content of simple artificial images. The calculation is tedious, and for more realistic patterns it is essential to implement the method on a computer. This paper describes an algorithm developed for this purpose which confirms the results of the preliminary investigation. Use of the algorithm facilitates much more comprehensive analysis of the combined effect of continuous rotation and fine translation, and paves the way for analysis of more realistic patterns. Owing to the volume of calculation involved in these algorithms, extensive computing facilities were necessary. The major part of the work was carried out using an ICL 3900 series mainframe computer as well as other powerful workstations such as a RISC architecture MIPS machine.
NASA Technical Reports Server (NTRS)
Tanner, C. J.; Kruse, G. S.; Oman, B. H.
1975-01-01
A preliminary design analysis tool for rapidly performing trade-off studies involving fatigue, fracture, static strength, weight, and cost is presented. Analysis subprograms were developed for fatigue life, crack growth life, and residual strength; and linked to a structural synthesis module which in turn was integrated into a computer program. The part definition module of a cost and weight analysis program was expanded to be compatible with the upgraded structural synthesis capability. The resultant vehicle design and evaluation program is named VDEP-2. It is an accurate and useful tool for estimating purposes at the preliminary design stage of airframe development. A sample case along with an explanation of program applications and input preparation is presented.
Graphics Flutter Analysis Methods, an interactive computing system at Lockheed-California Company
NASA Technical Reports Server (NTRS)
Radovcich, N. A.
1975-01-01
An interactive computer graphics system, Graphics Flutter Analysis Methods (GFAM), was developed to complement FAMAS, a matrix-oriented batch computing system, and other computer programs in performing complex numerical calculations using a fully integrated data management system. GFAM has many of the matrix operation capabilities found in FAMAS, but on a smaller scale, and is utilized when the analysis requires a high degree of interaction between the engineer and computer, and schedule constraints exclude the use of batch entry programs. Applications of GFAM to a variety of preliminary design, development design, and project modification programs suggest that interactive flutter analysis using matrix representations is a feasible and cost effective computing tool.
1970-07-01
communications problem is confined to transfer between the vehicle and the surface and to recording the data in a form suitable for processing and analysis at a...information available for later analysis would be of greater significance. Thus, computers used to receive and record data may be used to perform preliminary...basic design of boosters and payloads to the reduction and analysis of the data after mission completion. Computers function to schedule experiments
Summary and Comparison of Multiphase Streambed Scour Analysis at Selected Bridge Sites in Alaska
Conaway, Jeffrey S.
2004-01-01
The U.S. Geological Survey and the Alaska Department of Transportation and Public Facilities undertook a cooperative multiphase study of streambed scour at selected bridges in Alaska beginning in 1994. Of the 325 bridges analyzed for susceptibility to scour in the preliminary phase, 54 bridges were selected for a more intensive analysis that included site investigations. Cross-section geometry and hydraulic properties for each site in this study were determined from field surveys and bridge plans. Water-surface profiles were calculated for the 100- and 500-year floods using the Hydrologic Engineering Center?s River Analysis System and scour depths were calculated using methods recommended by the Federal Highway Administration. Computed contraction-scour depths for the 100- and 500-year recurrence-interval discharges exceeded 5 feet at six bridges, and pier-scour depths exceeded 10 feet at 24 bridges. Complex pier-scour computations were made at 10 locations where the computed contraction-scour depths would expose pier footings. Pressure scour was evaluated at three bridges where the modeled flood water-surface elevations intersected the bridge structure. Site investigation at the 54 scour-critical bridges was used to evaluate the effectiveness of the preliminary scour analysis. Values for channel-flow angle of attack and approach-channel width were estimated from bridge survey plans for the preliminary study and were measured during a site investigation for this study. These two variables account for changes in scour depths between the preliminary analysis and subsequent reanalysis for most sites. Site investigation is needed for best estimates of scour at bridges with survey plans that indicate a channel-flow angle of attack and for locations where survey plans did not include sufficient channel geometry upstream of the bridge.
Multidisciplinary optimization of an HSCT wing using a response surface methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giunta, A.A.; Grossman, B.; Mason, W.H.
1994-12-31
Aerospace vehicle design is traditionally divided into three phases: conceptual, preliminary, and detailed. Each of these design phases entails a particular level of accuracy and computational expense. While there are several computer programs which perform inexpensive conceptual-level aircraft multidisciplinary design optimization (MDO), aircraft MDO remains prohibitively expensive using preliminary- and detailed-level analysis tools. This occurs due to the expense of computational analyses and because gradient-based optimization requires the analysis of hundreds or thousands of aircraft configurations to estimate design sensitivity information. A further hindrance to aircraft MDO is the problem of numerical noise which occurs frequently in engineering computations. Computermore » models produce numerical noise as a result of the incomplete convergence of iterative processes, round-off errors, and modeling errors. Such numerical noise is typically manifested as a high frequency, low amplitude variation in the results obtained from the computer models. Optimization attempted using noisy computer models may result in the erroneous calculation of design sensitivities and may slow or prevent convergence to an optimal design.« less
Preliminary Evaluation of MapReduce for High-Performance Climate Data Analysis
NASA Technical Reports Server (NTRS)
Duffy, Daniel Q.; Schnase, John L.; Thompson, John H.; Freeman, Shawn M.; Clune, Thomas L.
2012-01-01
MapReduce is an approach to high-performance analytics that may be useful to data intensive problems in climate research. It offers an analysis paradigm that uses clusters of computers and combines distributed storage of large data sets with parallel computation. We are particularly interested in the potential of MapReduce to speed up basic operations common to a wide range of analyses. In order to evaluate this potential, we are prototyping a series of canonical MapReduce operations over a test suite of observational and climate simulation datasets. Our initial focus has been on averaging operations over arbitrary spatial and temporal extents within Modern Era Retrospective- Analysis for Research and Applications (MERRA) data. Preliminary results suggest this approach can improve efficiencies within data intensive analytic workflows.
Gravity model development for precise orbit computations for satellite altimetry
NASA Technical Reports Server (NTRS)
Marsh, James G.; Lerch, Francis, J.; Smith, David E.; Klosko, Steven M.; Pavlis, Erricos
1986-01-01
Two preliminary gravity models developed as a first step in reaching the TOPEX/Poseidon modeling goals are discussed. They were obtained by NASA-Goddard from an analysis of exclusively satellite tracking observations. With the new Preliminary Gravity Solution-T2 model, an improved global estimate of the field is achieved with an improved description of the geoid.
Knowledge-based low-level image analysis for computer vision systems
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.; Baxi, Himanshu; Ranganath, M. V.
1988-01-01
Two algorithms for entry-level image analysis and preliminary segmentation are proposed which are flexible enough to incorporate local properties of the image. The first algorithm involves pyramid-based multiresolution processing and a strategy to define and use interlevel and intralevel link strengths. The second algorithm, which is designed for selected window processing, extracts regions adaptively using local histograms. The preliminary segmentation and a set of features are employed as the input to an efficient rule-based low-level analysis system, resulting in suboptimal meaningful segmentation.
Study on the Preliminary Design of ARGO-M Operation System
NASA Astrophysics Data System (ADS)
Seo, Yoon-Kyung; Lim, Hyung-Chul; Rew, Dong-Young; Jo, Jung Hyun; Park, Jong-Uk; Park, Eun-Seo; Park, Jang-Hyun
2010-12-01
Korea Astronomy and Space Science Institute has been developing one mobile satellite laser ranging system named as accurate ranging system for geodetic observation-mobile (ARGO-M). Preliminary design of ARGO-M operation system (AOS) which is one of the ARGO-M subsystems was completed in 2009. Preliminary design results are applied to the following development phase by performing detailed design with analysis of pre-defined requirements and analysis of the derived specifications. This paper addresses the preliminary design of the whole AOS. The design results in operation and control part which is a key part in the operation system are described in detail. Analysis results of the interface between operation-supporting hardware and the control computer are summarized, which is necessary in defining the requirements for the operation-supporting hardware. Results of this study are expected to be used in the critical design phase to finalize the design process.
ERIC Educational Resources Information Center
Steiner, N.; Sidhu, T. K.; Frenette, E. C.; Mitchell, K.; Perrin, E. C.
2011-01-01
Clinically significant attention problems among children present a significant obstacle to increasing student achievement. Computer-based attention training holds great promise as a way for schools to address this problem. The aim of this project is to evaluate the efficacy of two computer-based attention training systems in schools. One program…
A Computer Program for Preliminary Data Analysis
Dennis L. Schweitzer
1967-01-01
ABSTRACT. -- A computer program written in FORTRAN has been designed to summarize data. Class frequencies, means, and standard deviations are printed for as many as 100 independent variables. Cross-classifications of an observed dependent variable and of a dependent variable predicted by a multiple regression equation can also be generated.
Intelligent redundant actuation system requirements and preliminary system design
NASA Technical Reports Server (NTRS)
Defeo, P.; Geiger, L. J.; Harris, J.
1985-01-01
Several redundant actuation system configurations were designed and demonstrated to satisfy the stringent operational requirements of advanced flight control systems. However, this has been accomplished largely through brute force hardware redundancy, resulting in significantly increased computational requirements on the flight control computers which perform the failure analysis and reconfiguration management. Modern technology now provides powerful, low-cost microprocessors which are effective in performing failure isolation and configuration management at the local actuator level. One such concept, called an Intelligent Redundant Actuation System (IRAS), significantly reduces the flight control computer requirements and performs the local tasks more comprehensively than previously feasible. The requirements and preliminary design of an experimental laboratory system capable of demonstrating the concept and sufficiently flexible to explore a variety of configurations are discussed.
NASA Technical Reports Server (NTRS)
Butler, J. H.
1971-01-01
A preliminary analysis of the relative motion of a free flying experiment module in the vicinity of a space station under the perturbative effects of drag and earth oblateness was made. A listing of a computer program developed for determining the relative motion of a module utilizing the Cowell procedure is presented, as well as instructions for its use.
Automation of the aircraft design process
NASA Technical Reports Server (NTRS)
Heldenfels, R. R.
1974-01-01
The increasing use of the computer to automate the aerospace product development and engineering process is examined with emphasis on structural analysis and design. Examples of systems of computer programs in aerospace and other industries are reviewed and related to the characteristics of aircraft design in its conceptual, preliminary, and detailed phases. Problems with current procedures are identified, and potential improvements from optimum utilization of integrated disciplinary computer programs by a man/computer team are indicated.
ERIC Educational Resources Information Center
Talib, Othman; Matthews, Robert; Secombe, Margaret
2005-01-01
This paper discusses the potential of applying computer-animated instruction (CAnI) as an effective conceptual change strategy in teaching electrochemistry in comparison to conventional lecture-based instruction (CLI). The core assumption in this study is that conceptual change in learners is an active, constructive process that is enhanced by the…
NASA Technical Reports Server (NTRS)
Farrell, C. E.; Krauze, L. D.
1983-01-01
The IDEAS computer of NASA is a tool for interactive preliminary design and analysis of LSS (Large Space System). Nine analysis modules were either modified or created. These modules include the capabilities of automatic model generation, model mass properties calculation, model area calculation, nonkinematic deployment modeling, rigid-body controls analysis, RF performance prediction, subsystem properties definition, and EOS science sensor selection. For each module, a section is provided that contains technical information, user instructions, and programmer documentation.
Analysis of Compression Pad Cavities for the Orion Heatshield
NASA Technical Reports Server (NTRS)
Thompson, Richard A.; Lessard, Victor R.; Jentink, Thomas N.; Zoby, Ernest V.
2009-01-01
Current results of a program for analysis of the compression pad cavities on the Orion heatshield are reviewed. The program was supported by experimental tests, engineering modeling, and applied computations with an emphasis on the latter presented in this paper. The computational tools and approach are described along with calculated results for wind tunnel and flight conditions. Correlations of the computed results are shown which can produce a credible prediction of heating augmentation due to cavity disturbances. The models developed for use in preliminary design of the Orion heatshield are presented.
Preliminary In-Flight Loads Analysis of In-Line Launch Vehicles using the VLOADS 1.4 Program
NASA Technical Reports Server (NTRS)
Graham, J. B.; Luz, P. L.
1998-01-01
To calculate structural loads of in-line launch vehicles for preliminary design, a very useful computer program is VLOADS 1.4. This software may also be used to calculate structural loads for upper stages and planetary transfer vehicles. Launch vehicle inputs such as aerodynamic coefficients, mass properties, propellants, engine thrusts, and performance data are compiled and analyzed by VLOADS to produce distributed shear loads, bending moments, axial forces, and vehicle line loads as a function of X-station along the vehicle's length. Interface loads, if any, and translational accelerations are also computed. The major strength of the software is that it enables quick turnaround analysis of structural loads for launch vehicles during the preliminary design stage of its development. This represents a significant improvement over the alternative-the time-consuming, and expensive chore of developing finite element models. VLOADS was developed as a Visual BASIC macro in a Microsoft Excel 5.0 work book on a Macintosh. VLOADS has also been implemented on a PC computer using Microsoft Excel 7.0a for Windows 95. VLOADS was developed in 1996, and the current version was released to COSMIC, NASA's Software Technology Transfer Center, in 1997. The program is a copyrighted work with all copyright vested in NASA.
Interactive computer graphics system for structural sizing and analysis of aircraft structures
NASA Technical Reports Server (NTRS)
Bendavid, D.; Pipano, A.; Raibstein, A.; Somekh, E.
1975-01-01
A computerized system for preliminary sizing and analysis of aircraft wing and fuselage structures was described. The system is based upon repeated application of analytical program modules, which are interactively interfaced and sequence-controlled during the iterative design process with the aid of design-oriented graphics software modules. The entire process is initiated and controlled via low-cost interactive graphics terminals driven by a remote computer in a time-sharing mode.
Efficient Process Migration for Parallel Processing on Non-Dedicated Networks of Workstations
NASA Technical Reports Server (NTRS)
Chanchio, Kasidit; Sun, Xian-He
1996-01-01
This paper presents the design and preliminary implementation of MpPVM, a software system that supports process migration for PVM application programs in a non-dedicated heterogeneous computing environment. New concepts of migration point as well as migration point analysis and necessary data analysis are introduced. In MpPVM, process migrations occur only at previously inserted migration points. Migration point analysis determines appropriate locations to insert migration points; whereas, necessary data analysis provides a minimum set of variables to be transferred at each migration pint. A new methodology to perform reliable point-to-point data communications in a migration environment is also discussed. Finally, a preliminary implementation of MpPVM and its experimental results are presented, showing the correctness and promising performance of our process migration mechanism in a scalable non-dedicated heterogeneous computing environment. While MpPVM is developed on top of PVM, the process migration methodology introduced in this study is general and can be applied to any distributed software environment.
NASA Technical Reports Server (NTRS)
1973-01-01
The logistics of orbital vehicle servicing computer specifications was developed and a number of alternatives to improve utilization of the space shuttle and the tug were investigated. Preliminary results indicate that space servicing offers a potential for reducing future operational and program costs over ground refurbishment of satellites. A computer code which could be developed to simulate space servicing is presented.
Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package
NASA Technical Reports Server (NTRS)
1979-01-01
The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.
NASA Astrophysics Data System (ADS)
Wan, Junwei; Chen, Hongyan; Zhao, Jing
2017-08-01
According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.
Engineering computer graphics in gas turbine engine design, analysis and manufacture
NASA Technical Reports Server (NTRS)
Lopatka, R. S.
1975-01-01
A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.
A preliminary computer pattern analysis of satellite images of mature extratropical cyclones
NASA Technical Reports Server (NTRS)
Burfeind, Craig R.; Weinman, James A.; Barkstrom, Bruce R.
1987-01-01
This study has applied computerized pattern analysis techniques to the location and classification of features of several mature extratropical cyclones that were depicted in GOES satellite images. These features include the location of the center of the cyclone vortex core and the location of the associated occluded front. The cyclone type was classified in accord with the scheme of Troup and Streten. The present analysis was implemented on a personal computer; results were obtained within approximately one or two minutes without the intervention of an analyst.
DEVELOPMENT OF WELDED SEAL FOR S3G REACTOR VESSEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, J.W.
1958-01-01
The development program consisted of preliminary design, welding accessibility and feasibility, pressure and displacement cycling, theoretical analysis and life computation, photoelastic analysis, and comparison of PWR straight sample cycling. Design ''C'' of the three primary designs considered proved more satisfactory from a fatigue life standpoint. (W.D. M.)
Analysis, preliminary design and simulation systems for control-structure interaction problems
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, Kenneth F.
1991-01-01
Software aspects of control-structure interaction (CSI) analysis are discussed. The following subject areas are covered: (1) implementation of a partitioned algorithm for simulation of large CSI problems; (2) second-order discrete Kalman filtering equations for CSI simulations; and (3) parallel computations and control of adaptive structures.
NASA Technical Reports Server (NTRS)
Goldsmith, V.; Morris, W. D.; Byrne, R. J.; Whitlock, C. H.
1974-01-01
A computerized wave climate model is developed that applies linear wave theory and shelf depth information to predict wave behavior as they pass over the continental shelf as well as the resulting wave energy distributions along the coastline. Reviewed are also the geomorphology of the Mid-Atlantic Continental Shelf, wave computations resulting from 122 wave input conditions, and a preliminary analysis of these data.
Extension of a simplified computer program for analysis of solid-propellant rocket motors
NASA Technical Reports Server (NTRS)
Sforzini, R. H.
1973-01-01
A research project to develop a computer program for the preliminary design and performance analysis of solid propellant rocket engines is discussed. The following capabilities are included as computer program options: (1) treatment of wagon wheel cross sectional propellant configurations alone or in combination with circular perforated grains, (2) calculation of ignition transients with the igniter treated as a small rocket engine, (3) representation of spherical circular perforated grain ends as an alternative to the conical end surface approximation used in the original program, and (4) graphical presentation of program results using a digital plotter.
Aeroelastic Considerations in the Preliminary Design Aircraft
1983-09-01
system for aeroelastic analysis FINDEX- Lockheed’s DMS for matrices and NASTRAN tables FSD- fully stressed design algorithm Lockheed- Lockheed-California...Company MLC- maneuver load control NASA- National Aeronautics and Space Adminstration NASTRAN - structural finite element program developed by NASA...Computer Program Validation All major computing programs (FAMAS, NASTRAN , etc.), except the weight distribution program, the panel sizing and allowable
The use of ERTS imagery in reservoir management and operation
NASA Technical Reports Server (NTRS)
Cooper, S. (Principal Investigator)
1973-01-01
There are no author-identified significant results in this report. Preliminary analysis of ERTS-1 imagery suggests that the configuration and areal coverage of surface waters, as well as other hydrologically related terrain features, may be obtained from ERTS-1 imagery to an extent that would be useful. Computer-oriented pattern recognition techniques are being developed to help automate the identification and analysis of hydrologic features. Considerable man-machine interaction is required while training the computer for these tasks.
NASA Technical Reports Server (NTRS)
Hoadley, A. W.; Porter, A. J.
1990-01-01
This paper presents data on a preliminary analysis of the thermal dynamic characteristics of the Airborne Information Management System (AIMS), which is a continuing design project at NASA Dryden. The analysis established the methods which will be applied to the actual AIMS boards as they become available. The paper also describes the AIMS liquid cooling system design and presents a thermodynamic computer model of the AIMS cooling system, together with an experimental validation of this model.
NASA Technical Reports Server (NTRS)
Thompson, R. A.; Sutton, Kenneth
1987-01-01
A computational analysis, modification, and preliminary redesign study was performed on the nozzle contour of the Langley Hypersonic CF4 Tunnel. This study showed that the existing nozzle was contoured incorrectly for the design operating condition, and this error was shown to produce the measured disturbances in the exit flow field. A modified contour was designed for the current nozzle downstream of the maximum turning point that would provide a uniform exit flow. New nozzle contours were also designed for an exit Mach number and Reynolds number combination which matches that attainable in the Langley 20-Inch Mach 6 Tunnel. Two nozzle contours were designed: one having the same exit radius but a larger mass flow rate than that of the existing CF4 Tunnel, and the other having the same mass flow rate but a smaller exit radius than that of the existing CF4 Tunnel.
High Throughput Sequence Analysis for Disease Resistance in Maize
USDA-ARS?s Scientific Manuscript database
Preliminary results of a computational analysis of high throughput sequencing data from Zea mays and the fungus Aspergillus are reported. The Illumina Genome Analyzer was used to sequence RNA samples from two strains of Z. mays (Va35 and Mp313) collected over a time course as well as several specie...
Guidelines for Computing Longitudinal Dynamic Stability Characteristics of a Subsonic Transport
NASA Technical Reports Server (NTRS)
Thompson, Joseph R.; Frank, Neal T.; Murphy, Patrick C.
2010-01-01
A systematic study is presented to guide the selection of a numerical solution strategy for URANS computation of a subsonic transport configuration undergoing simulated forced oscillation about its pitch axis. Forced oscillation is central to the prevalent wind tunnel methodology for quantifying aircraft dynamic stability derivatives from force and moment coefficients, which is the ultimate goal for the computational simulations. Extensive computations are performed that lead in key insights of the critical numerical parameters affecting solution convergence. A preliminary linear harmonic analysis is included to demonstrate the potential of extracting dynamic stability derivatives from computational solutions.
Mir, R.; Johnson, H.; Mathur, R.; Wise, L.; Kahn, L. B.
1995-01-01
The proliferative index of 63 breast carcinomas was measured on Ki-67 immunostained frozen tissue sections with a computer-assisted image analysis system. The mean proliferative index in estrogen-positive breast carcinomas was lower than in estrogen-negative carcinomas. An inverse relationship between proliferative index and short-term disease-free survival was noted. Images Figure 1 Figure 2 PMID:7674345
Aerodynamic preliminary analysis system. Part 2: User's manual and program description
NASA Technical Reports Server (NTRS)
Divan, P.; Dunn, K.; Kojima, J.
1978-01-01
A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple nonplanar surfaces of arbitrary planform and open or closed slender bodies or noncircular contour are analyzed. Longitudinal and lateral-directional static and rotary derivative solutions are generated. The analysis is implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.
Test plane uniformity analysis for the MSFC solar simulator lamp array
NASA Technical Reports Server (NTRS)
Griner, D. B.
1976-01-01
A preliminary analysis was made on the solar simulator lamp array. It is an array of 405 tungsten halogen lamps with Fresnel lenses to achieve the required spectral distribution and collimation. A computer program was developed to analyze lamp array performance at the test plane. Measurements were made on individual lamp lens combinations to obtain data for the computer analysis. The analysis indicated that the performance of the lamp array was about as expected, except for a need to position the test plane within 2.7 m of the lamp array to achieve the desired 7 percent uniformity of illumination tolerance.
Research and analysis of head-directed area-of-interest visual system concepts
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1983-01-01
An analysis and survey with conjecture supporting a preliminary data base design is presented. The data base is intended for use in a Computer Image Generator visual subsystem for a rotorcraft flight simulator that is used for rotorcraft systems development, not training. The approach taken was to attempt to identify the visual perception strategies used during terrain flight, survey environmental and image generation factors, and meld these into a preliminary data base design. This design is directed at Data Base developers, and hopefully will stimulate and aid their efforts to evolve such a Base that will support simulation of terrain flight operations.
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Patnaik, Surya N.
2000-01-01
A preliminary aircraft engine design methodology is being developed that utilizes a cascade optimization strategy together with neural network and regression approximation methods. The cascade strategy employs different optimization algorithms in a specified sequence. The neural network and regression methods are used to approximate solutions obtained from the NASA Engine Performance Program (NEPP), which implements engine thermodynamic cycle and performance analysis models. The new methodology is proving to be more robust and computationally efficient than the conventional optimization approach of using a single optimization algorithm with direct reanalysis. The methodology has been demonstrated on a preliminary design problem for a novel subsonic turbofan engine concept that incorporates a wave rotor as a cycle-topping device. Computations of maximum thrust were obtained for a specific design point in the engine mission profile. The results (depicted in the figure) show a significant improvement in the maximum thrust obtained using the new methodology in comparison to benchmark solutions obtained using NEPP in a manual design mode.
Protocol Analysis of Man-Computer Languages: Design and Preliminary Findings
1975-07-01
describes a statistical moael o propot of the exercise. It is one particular model used for analysis of variance which allows us to test the significance of... Body : Congressman Blake will be visiting Camp Smith to confer with J6, J612, and Col. Smith with regard to operation of the pilot project on
Correlation signatures of wet soils and snows. [algorithm development and computer programming
NASA Technical Reports Server (NTRS)
Phillips, M. R.
1972-01-01
Interpretation, analysis, and development of algorithms have provided the necessary computational programming tools for soil data processing, data handling and analysis. Algorithms that have been developed thus far, are adequate and have been proven successful for several preliminary and fundamental applications such as software interfacing capabilities, probability distributions, grey level print plotting, contour plotting, isometric data displays, joint probability distributions, boundary mapping, channel registration and ground scene classification. A description of an Earth Resources Flight Data Processor, (ERFDP), which handles and processes earth resources data under a users control is provided.
Unified Engineering Software System
NASA Technical Reports Server (NTRS)
Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.
1989-01-01
Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.
Interactive Graphics Analysis for Aircraft Design
NASA Technical Reports Server (NTRS)
Townsend, J. C.
1983-01-01
Program uses higher-order far field drag minimization. Computer program WDES WDEM preliminary aerodynamic design tool for one or two interacting, subsonic lifting surfaces. Subcritical wing design code employs higher-order far-field drag minimization technique. Linearized aerodynamic theory used. Program written in FORTRAN IV.
Aerodynamic preliminary analysis system. Part 1: Theory. [linearized potential theory
NASA Technical Reports Server (NTRS)
Bonner, E.; Clever, W.; Dunn, K.
1978-01-01
A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple non-planar surfaces of arbitrary planform and open or closed slender bodies of non-circular contour may be analyzed. Longitudinal and lateral-directional static and rotary derivative solutions may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.
Performance and Sizing Tool for Quadrotor Biplane Tailsitter UAS
NASA Astrophysics Data System (ADS)
Strom, Eric
The Quadrotor-Biplane-Tailsitter (QBT) configuration is the basis for a mechanically simplistic rotorcraft capable of both long-range, high-speed cruise as well as hovering flight. This work presents the development and validation of a set of preliminary design tools built specifically for this aircraft to enable its further development, including: a QBT weight model, preliminary sizing framework, and vehicle analysis tools. The preliminary sizing tool presented here shows the advantage afforded by QBT designs in missions with aggressive cruise requirements, such as offshore wind turbine inspections, wherein transition from a quadcopter configuration to a QBT allows for a 5:1 trade of battery weight for wing weight. A 3D, unsteady panel method utilizing a nonlinear implementation of the Kutta-Joukowsky condition is also presented as a means of computing aerodynamic interference effects and, through the implementation of rotor, body, and wing geometry generators, is prepared for coupling with a comprehensive rotor analysis package.
Multiphysics Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen
2006-01-01
The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics methodology. Formulations for heat transfer in solids and porous media were implemented and anchored. A two-pronged approach was employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of hydrogen dissociation and recombination on heat transfer and thrust performance. The formulations and preliminary results on both aspects are presented.
Advanced space system analysis software. Technical, user, and programmer guide
NASA Technical Reports Server (NTRS)
Farrell, C. E.; Zimbelman, H. F.
1981-01-01
The LASS computer program provides a tool for interactive preliminary and conceptual design of LSS. Eight program modules were developed, including four automated model geometry generators, an associated mass properties module, an appendage synthesizer module, an rf analysis module, and an orbital transfer analysis module. The existing rigid body controls analysis module was modified to permit analysis of effects of solar pressure on orbital performance. A description of each module, user instructions, and programmer information are included.
Analysis and Preliminary Design of an Advanced Technology Transport Flight Control System
NASA Technical Reports Server (NTRS)
Frazzini, R.; Vaughn, D.
1975-01-01
The analysis and preliminary design of an advanced technology transport aircraft flight control system using avionics and flight control concepts appropriate to the 1980-1985 time period are discussed. Specifically, the techniques and requirements of the flight control system were established, a number of candidate configurations were defined, and an evaluation of these configurations was performed to establish a recommended approach. Candidate configurations based on redundant integration of various sensor types, computational methods, servo actuator arrangements and data-transfer techniques were defined to the functional module and piece-part level. Life-cycle costs, for the flight control configurations, as determined in an operational environment model for 200 aircraft over a 15-year service life, were the basis of the optimum configuration selection tradeoff. The recommended system concept is a quad digital computer configuration utilizing a small microprocessor for input/output control, a hexad skewed set of conventional sensors for body rate and body acceleration, and triple integrated actuators.
Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools
NASA Astrophysics Data System (ADS)
Sánchez Pineda, A.
2015-12-01
We explore the potential of current web applications to create online interfaces that allow the visualization, interaction and real cut-based physics analysis and monitoring of processes through a web browser. The project consists in the initial development of web- based and cloud computing services to allow students and researchers to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte- Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based H → ZZ → llqq analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online.
Dual Nozzle Aerodynamic and Cooling Analysis Study.
1981-02-27
program and to the aerodynamic model computer program. This pro - cedure was used to define two secondary nozzle contours for the baseline con - figuration...both the dual-throat and dual-expander con - cepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow...preliminary heat transfer analysis of both con - cepts, and (5) engineering analysis of data from the NASA/MSFC hot-fire testing of a dual-throat
NASA Technical Reports Server (NTRS)
Michal, Todd R.
1998-01-01
This study supports the NASA Langley sponsored project aimed at determining the viability of using Euler technology for preliminary design use. The primary objective of this study was to assess the accuracy and efficiency of the Boeing, St. Louis unstructured grid flow field analysis system, consisting of the MACGS grid generation and NASTD flow solver codes. Euler solutions about the Aero Configuration/Weapons Fighter Technology (ACWFT) 1204 aircraft configuration were generated. Several variations of the geometry were investigated including a standard wing, cambered wing, deflected elevon, and deflected body flap. A wide range of flow conditions, most of which were in the non-linear regimes of the flight envelope, including variations in speed (subsonic, transonic, supersonic), angles of attack, and sideslip were investigated. Several flowfield non-linearities were present in these solutions including shock waves, vortical flows and the resulting interactions. The accuracy of this method was evaluated by comparing solutions with test data and Navier-Stokes solutions. The ability to accurately predict lateral-directional characteristics and control effectiveness was investigated by computing solutions with sideslip, and with deflected control surfaces. Problem set up times and computational resource requirements were documented and used to evaluate the efficiency of this approach for use in the fast paced preliminary design environment.
Multiphysics Thrust Chamber Modeling for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Cheng, Gary; Chen, Yen-Sen
2006-01-01
The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation. A two-pronged approach is employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of heat transfer on thrust performance. Preliminary results on both aspects are presented.
NASA Technical Reports Server (NTRS)
1973-01-01
An improved method for estimating aircraft weight and cost using a unique and fundamental approach was developed. The results of this study were integrated into a comprehensive digital computer program, which is intended for use at the preliminary design stage of aircraft development. The program provides a means of computing absolute values for weight and cost, and enables the user to perform trade studies with a sensitivity to detail design and overall structural arrangement. Both batch and interactive graphics modes of program operation are available.
NASA Technical Reports Server (NTRS)
Jackson, R. J.; Wang, T. T.
1974-01-01
A computer program was developed to describe the performance of ramjet and scramjet cycles. The program performs one dimensional calculations of the equilibrium, real-gas internal flow properties of the engine. The program can be used for the following: (1) preliminary design calculation and (2) design analysis of internal flow properties corresponding to stipulated flow areas. Only the combustion of hydrogen in air is considered in this case.
CORSS: Cylinder Optimization of Rings, Skin, and Stringers
NASA Technical Reports Server (NTRS)
Finckenor, J.; Rogers, P.; Otte, N.
1994-01-01
Launch vehicle designs typically make extensive use of cylindrical skin stringer construction. Structural analysis methods are well developed for preliminary design of this type of construction. This report describes an automated, iterative method to obtain a minimum weight preliminary design. Structural optimization has been researched extensively, and various programs have been written for this purpose. Their complexity and ease of use depends on their generality, the failure modes considered, the methodology used, and the rigor of the analysis performed. This computer program employs closed-form solutions from a variety of well-known structural analysis references and joins them with a commercially available numerical optimizer called the 'Design Optimization Tool' (DOT). Any ring and stringer stiffened shell structure of isotropic materials that has beam type loading can be analyzed. Plasticity effects are not included. It performs a more limited analysis than programs such as PANDA, but it provides an easy and useful preliminary design tool for a large class of structures. This report briefly describes the optimization theory, outlines the development and use of the program, and describes the analysis techniques that are used. Examples of program input and output, as well as the listing of the analysis routines, are included.
Preliminary Numerical and Experimental Analysis of the Spallation Phenomenon
NASA Technical Reports Server (NTRS)
Martin, Alexandre; Bailey, Sean C. C.; Panerai, Francesco; Davuluri, Raghava S. C.; Vazsonyi, Alexander R.; Zhang, Huaibao; Lippay, Zachary S.; Mansour, Nagi N.; Inman, Jennifer A.; Bathel, Brett F.;
2015-01-01
The spallation phenomenon was studied through numerical analysis using a coupled Lagrangian particle tracking code and a hypersonic aerothermodynamics computational fluid dynamics solver. The results show that carbon emission from spalled particles results in a significant modification of the gas composition of the post shock layer. Preliminary results from a test-campaign at the NASA Langley HYMETS facility are presented. Using an automated image processing of high-speed images, two-dimensional velocity vectors of the spalled particles were calculated. In a 30 second test at 100 W/cm2 of cold-wall heat-flux, more than 1300 particles were detected, with an average velocity of 102 m/s, and most frequent observed velocity of 60 m/s.
ROUTES: a computer program for preliminary route location.
S.E. Reutebuch
1988-01-01
An analytical description of the ROUTES computer program is presented. ROUTES is part of the integrated preliminary harvest- and transportation-planning software package, PLANS. The ROUTES computer program is useful where grade and sideslope limitations are important in determining routes for vehicular travel. With the program, planners can rapidly identify route...
Evolutionary computing for the design search and optimization of space vehicle power subsystems
NASA Technical Reports Server (NTRS)
Kordon, Mark; Klimeck, Gerhard; Hanks, David; Hua, Hook
2004-01-01
Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment. Out preliminary results demonstrate that this approach has the potential to improve the space system trade study process by allowing engineers to statistically weight subsystem goals of mass, cost and performance then automatically size power elements based on anticipated performance of the subsystem rather than on worst-case estimates.
Three-dimensional aerodynamic shape optimization of supersonic delta wings
NASA Technical Reports Server (NTRS)
Burgreen, Greg W.; Baysal, Oktay
1994-01-01
A recently developed three-dimensional aerodynamic shape optimization procedure AeSOP(sub 3D) is described. This procedure incorporates some of the most promising concepts from the area of computational aerodynamic analysis and design, specifically, discrete sensitivity analysis, a fully implicit 3D Computational Fluid Dynamics (CFD) methodology, and 3D Bezier-Bernstein surface parameterizations. The new procedure is demonstrated in the preliminary design of supersonic delta wings. Starting from a symmetric clipped delta wing geometry, a Mach 1.62 asymmetric delta wing and two Mach 1. 5 cranked delta wings were designed subject to various aerodynamic and geometric constraints.
Ambusam, Subramaniam; Omar, Baharudin; Joseph, Leonard; Deepashini, Harithasan
2015-01-01
Computer users are exposed to work related neck disorders due to repetitive movement and static posture for prolonged period. Viewing document and typing simultaneously are one of the contributing factors for neck disorders. This preliminary study was conducted to evaluate the effects of the document holder on the postural neck muscles activity among computer users. Nine healthy participants with pre-defined inclusion and exclusion criteria were recruited for the study. Neck muscles activity were analyzed using the surface electromyography (EMG) in five different document location such as flat right, flat left, flat center, stand right and stand left during a 5 min typing task. The mean and standard deviation results showed a least amount of muscles activity using a document holder compared to without document holder. Nevertheless, the statistical analysis showed no significant differences between the using of a document holder. The effects of document holder on head excursion and neck muscle activity is recommended in clinical neck pain population.
Ascent Aerodynamic Pressure Distributions on WB001
NASA Technical Reports Server (NTRS)
Vu, B.; Ruf, J.; Canabal, F.; Brunty, J.
1996-01-01
To support the reusable launch vehicle concept study, the aerodynamic data and surface pressure for WB001 were predicted using three computational fluid dynamic (CFD) codes at several flow conditions between code to code and code to aerodynamic database as well as available experimental data. A set of particular solutions have been selected and recommended for use in preliminary conceptual designs. These computational fluid dynamic (CFD) results have also been provided to the structure group for wing loading analysis.
1974-07-01
automated manufacturing processes and a rough technoeconomic evaluation of those concepts. Our evaluation is largely based on estimates; therefore, the...must be subjected to thorough analysis and experimental verification before they can be considered definitive. They are being published at this time...hardware and sensor technology, manufacturing engineering, automation, and economic analysis . Members of this team inspected over thirty manufacturing
NASA Technical Reports Server (NTRS)
Capo, M. A.; Disney, R. K.; Jordan, T. A.; Soltesz, R. G.; Woodsum, H. C.
1969-01-01
Eight computer programs make up a nine volume synthesis containing two design methods for nuclear rocket radiation shields. The first design method is appropriate for parametric and preliminary studies, while the second accomplishes the verification of a final nuclear rocket reactor design.
Graphics; For Regional Policy Making, a Preliminary Study.
ERIC Educational Resources Information Center
Ewald, William R., Jr.
The use of graphics (maps, charts, diagrams, renderings, photographs) for regional policy formulation and decision making is discussed at length. The report identifies the capabilities of a number of tools for analysis/synthesis/communication, especially computer assisted graphics to assist in community self-education and the management of change.…
DOT National Transportation Integrated Search
2012-08-01
With the purpose to minimize or prevent crash-induced fires in road and rail transportation, the : current interest in bio-derived and blended transportation fuels is increasing. Based on two years : of preliminary testing and analysis, it appears to...
B and V photometry and analysis of the eclipsing binary RZ CAS
NASA Astrophysics Data System (ADS)
Riazi, N.; Bagheri, M. R.; Faghihi, F.
1994-01-01
Photoelectric light curves of the eclipsing binary RZ Cas are presented for B and V filters. The light curves are analyzed for light and geometrical elements, starting with a previously suggested preliminary method. The approximate results thus obtained are then optimised through the Wilson-Devinney computer programs.
Structural dynamics and vibrations of damped, aircraft-type structures
NASA Technical Reports Server (NTRS)
Young, Maurice I.
1992-01-01
Engineering preliminary design methods for approximating and predicting the effects of viscous or equivalent viscous-type damping treatments on the free and forced vibration of lightly damped aircraft-type structures are developed. Similar developments are presented for dynamic hysteresis viscoelastic-type damping treatments. It is shown by both engineering analysis and numerical illustrations that the intermodal coupling of the undamped modes arising from the introduction of damping may be neglected in applying these preliminary design methods, except when dissimilar modes of these lightly damped, complex aircraft-type structures have identical or nearly identical natural frequencies. In such cases, it is shown that a relatively simple, additional interaction calculation between pairs of modes exhibiting this 'modal response' phenomenon suffices in the prediction of interacting modal damping fractions. The accuracy of the methods is shown to be very good to excellent, depending on the normal natural frequency separation of the system modes, thereby permitting a relatively simple preliminary design approach. This approach is shown to be a natural precursor to elaborate finite element, digital computer design computations in evaluating the type, quantity, and location of damping treatment.
Chen, W P; Tang, F T; Ju, C W
2001-08-01
To quantify stress distribution of the foot during mid-stance to push-off in barefoot gait using 3-D finite element analysis. To simulate the foot structure and facilitate later consideration of footwear. Finite element model was generated and loading condition simulating barefoot gait during mid-stance to push-off was used to quantify the stress distributions. A computational model can provide overall stress distributions of the foot subject to various loading conditions. A preliminary 3-D finite element foot model was generated based on the computed tomography data of a male subject and the bone and soft tissue structures were modeled. Analysis was performed for loading condition simulating barefoot gait during mid-stance to push-off. The peak plantar pressure ranged from 374 to 1003 kPa and the peak von Mises stress in the bone ranged from 2.12 to 6.91 MPa at different instants. The plantar pressure patterns were similar to measurement result from previous literature. The present study provides a preliminary computational model that is capable of estimating the overall plantar pressure and bone stress distributions. It can also provide quantitative analysis for normal and pathological foot motion. This model can identify areas of increased pressure and correlate the pressure with foot pathology. Potential applications can be found in the study of foot deformities, footwear, surgical interventions. It may assist pre-treatment planning, design of pedorthotic appliances, and predict the treatment effect of foot orthosis.
Computer code for preliminary sizing analysis of axial-flow turbines
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.
1992-01-01
This mean diameter flow analysis uses a stage average velocity diagram as the basis for the computational efficiency. Input design requirements include power or pressure ratio, flow rate, temperature, pressure, and rotative speed. Turbine designs are generated for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse) or for any specified stage swirl split. Exit turning vanes can be included in the design. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, and last stage absolute and relative Mach numbers. An analysis is presented along with a description of the computer program input and output with sample cases. The analysis and code presented herein are modifications of those described in NASA-TN-D-6702. These modifications improve modeling rigor and extend code applicability.
Structural Optimization Methodology for Rotating Disks of Aircraft Engines
NASA Technical Reports Server (NTRS)
Armand, Sasan C.
1995-01-01
In support of the preliminary evaluation of various engine technologies, a methodology has been developed for structurally designing the rotating disks of an aircraft engine. The structural design methodology, along with a previously derived methodology for predicting low-cycle fatigue life, was implemented in a computer program. An interface computer program was also developed that gathers the required data from a flowpath analysis program (WATE) being used at NASA Lewis. The computer program developed for this study requires minimum interaction with the user, thus allowing engineers with varying backgrounds in aeropropulsion to successfully execute it. The stress analysis portion of the methodology and the computer program were verified by employing the finite element analysis method. The 10th- stage, high-pressure-compressor disk of the Energy Efficient Engine Program (E3) engine was used to verify the stress analysis; the differences between the stresses and displacements obtained from the computer program developed for this study and from the finite element analysis were all below 3 percent for the problem solved. The computer program developed for this study was employed to structurally optimize the rotating disks of the E3 high-pressure compressor. The rotating disks designed by the computer program in this study were approximately 26 percent lighter than calculated from the E3 drawings. The methodology is presented herein.
Subsonic flutter analysis addition to NASTRAN. [for use with CDC 6000 series digital computers
NASA Technical Reports Server (NTRS)
Doggett, R. V., Jr.; Harder, R. L.
1973-01-01
A subsonic flutter analysis capability has been developed for NASTRAN, and a developmental version of the program has been installed on the CDC 6000 series digital computers at the Langley Research Center. The flutter analysis is of the modal type, uses doublet lattice unsteady aerodynamic forces, and solves the flutter equations by using the k-method. Surface and one-dimensional spline functions are used to transform from the aerodynamic degrees of freedom to the structural degrees of freedom. Some preliminary applications of the method to a beamlike wing, a platelike wing, and a platelike wing with a folded tip are compared with existing experimental and analytical results.
Preliminary Analysis of LORAN-C System Reliability for Civil Aviation.
1981-09-01
overviev of the analysis technique. Section 3 describes the computerized LORAN-C coverage model which is used extensively in the reliability analysis...Xth Plenary Assembly, Geneva, 1963, published by International Telecomunications Union. S. Braff, R., Computer program to calculate a Karkov Chain Reliability Model, unpublished york, MITRE Corporation. A-1 I.° , 44J Ili *Y 0E 00 ...F i8 1110 Prelim inary Analysis of Program Engineering & LORAN’C System ReliabilityMaintenance Service i ~Washington. D.C.
NASA Technical Reports Server (NTRS)
Janz, R. F.
1974-01-01
The systems cost/performance model was implemented as a digital computer program to perform initial program planning, cost/performance tradeoffs, and sensitivity analyses. The computer is described along with the operating environment in which the program was written and checked, the program specifications such as discussions of logic and computational flow, the different subsystem models involved in the design of the spacecraft, and routines involved in the nondesign area such as costing and scheduling of the design. Preliminary results for the DSCS-II design are also included.
Gómez-Ros, J M; Bedogni, R; Domingo, C; Eakins, J S; Roberts, N; Tanner, R J
2018-01-29
This article describes the purpose, the proposed problems and the reference solutions of an international comparison on neutron spectra unfolding in Bonner spheres spectrometry, organised within the activities of EURADOS working group 6: computational dosimetry. The exercise considered four realistic situations: a medical accelerator, a workplace field, an irradiation room and a skyshine scenario. Although a detailed analysis of the submitted solutions is under preparation, the preliminary discussion of some physical aspects of the problem, e.g. the changes in the unfolding results due to the perturbation of the neutron field by the Bonner spheres, is presented. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Bogusz, Michael
1993-01-01
The need for a systematic methodology for the analysis of aircraft electromagnetic compatibility (EMC) problems is examined. The available computer aids used in aircraft EMC analysis are assessed and a theoretical basis is established for the complex algorithms which identify and quantify electromagnetic interactions. An overview is presented of one particularly well established aircraft antenna to antenna EMC analysis code, the Aircraft Inter-Antenna Propagation with Graphics (AAPG) Version 07 software. The specific new algorithms created to compute cone geodesics and their associated path losses and to graph the physical coupling path are discussed. These algorithms are validated against basic principles. Loss computations apply the uniform geometrical theory of diffraction and are subsequently compared to measurement data. The increased modelling and analysis capabilities of the newly developed AAPG Version 09 are compared to those of Version 07. Several models of real aircraft, namely the Electronic Systems Trainer Challenger, are generated and provided as a basis for this preliminary comparative assessment. Issues such as software reliability, algorithm stability, and quality of hardcopy output are also discussed.
Systems cost/performance analysis; study 2.3. Volume 3: Programmer's manual and user's guide
NASA Technical Reports Server (NTRS)
1975-01-01
The implementation of the entire systems cost/performance model as a digital computer program was studied. A discussion of the operating environment in which the program was written and checked, the program specifications such as discussions of logic and computational flow, the different subsystem models involved in the design of the spacecraft, and routines involved in the nondesign area such as costing and scheduling of the design were covered. Preliminary results for the DSCS-2 design are also included.
The implementation and use of Ada on distributed systems with high reliability requirements
NASA Technical Reports Server (NTRS)
Knight, J. C.
1987-01-01
A preliminary analysis of the Ada implementation of the Advanced Transport Operating System (ATOPS), an experimental computer control system developed at NASA Langley for a modified Boeing 737 aircraft, is presented. The criteria that was determined for the evaluation of this approach is described. A preliminary version of the requirements for the ATOPS is contained. This requirements specification is not a formal document, but rather a description of certain aspects of the ATOPS system at a level of detail that best suits the needs of the research. The survey of backward error recovery techniques is also presented.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.
1979-01-01
The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.
Computer content analysis of schizophrenic speech: a preliminary report.
Tucker, G J; Rosenberg, S D
1975-06-01
Computer analysis significantly differtiated the thermatic content of the free speech of 10 schizophrenic patients from that of 10 nonschizophrenic patients and from the content of transcripts of dream material from 10 normal subjects. Schizophrenic patients used the thematic categories in factor 1 (the "schizophrenic factor") 3 times more frequently than the nonschizophrenics and 10 times more frequently than the normal subjects (p smaller than 01). In general, the language content of the schizophrenic patient mirrored an almost agitated attempt to locate oneself in time and space and to defend against internal discomfort and confusion. The authors discuss the implications of this study for future research.
NASA Technical Reports Server (NTRS)
1973-01-01
A computer program for space shuttle orbit injection propulsion system analysis (SOPSA) is described to show the operational characteristics and the computer system requirements. The program was developed as an analytical tool to aid in the preliminary design of propellant feed systems for the space shuttle orbiter main engines. The primary purpose of the program is to evaluate the propellant tank ullage pressure requirements imposed by the need to accelerate propellants rapidly during the engine start sequence. The SOPSA program will generate parametric feed system pressure histories and weight data for a range of nominal feedline sizes.
The Games Universities Play (With Apologies to Dr. Berne). Working Paper.
ERIC Educational Resources Information Center
Skelton, John E.
A preliminary study of alternative methods of organizing, managing, and financing computing at the nation's institutions of higher education is explored in the context of transactional analysis. The purpose and contents of the forthcoming final report (designed for university presidents) is described. The games, as intended and defined by the…
A Preliminary Psychometric Analysis of a Measure of Information Technology Literacy Skills
ERIC Educational Resources Information Center
Lombardi, Allison R.; Izzo, Margo V.; Rifenbark, Graham G.; Murray, Alexa; Buck, Andrew; Johnson, Victor
2017-01-01
Information technology (IT) literacy skills are increasingly important for all adolescents to learn, as the majority of post-school pursuits will require at least some amount of computer skills. For adolescents with disabilities, this urgency is perhaps more pronounced, as this subpopulation typically experiences more dismal post-school outcomes…
Integrating Statistical Visualization Research into the Political Science Classroom
ERIC Educational Resources Information Center
Draper, Geoffrey M.; Liu, Baodong; Riesenfeld, Richard F.
2011-01-01
The use of computer software to facilitate learning in political science courses is well established. However, the statistical software packages used in many political science courses can be difficult to use and counter-intuitive. We describe the results of a preliminary user study suggesting that visually-oriented analysis software can help…
NASA Technical Reports Server (NTRS)
Hoffer, R. M.; Landgrebe, D. A. (Principal Investigator); Goodrick, F. E.
1972-01-01
There are no author-identified significant results in this report. The principal problem encountered has been the lack of good quality, small scale baseline photography for the test areas. Analysis of the ERTS-1 data for the San Juan Site will emphasize development of a preliminary spectral classification defining grass cover categories, and then selection of subframes for intensive investigation of the forestry, geologic, and hydrologic properties of the area. Primary work has been devoted to the selection and digitization of areas for topographic modeling, and compilation of ground based data maps necessary for computer analysis. Study effort has emphasized: geomorphic features; macro-vegetation; micro-vegetation; snow-hydrology; insect/disease damage; and blow-down. Analysis of a frame of the Lake Texoma area indicates a great deal of potential in the analysis and interpretation of ERTS imagery. Preliminary results of investigations of geologic, forest, range, cropland, and water resources of the area are summarized.
NASA Technical Reports Server (NTRS)
Rodgers, T. E.; Johnson, J. F.
1977-01-01
The logic and methodology for a preliminary grouping of Spacelab and mixed-cargo payloads is proposed in a form that can be readily coded into a computer program by NASA. The logic developed for this preliminary cargo grouping analysis is summarized. Principal input data include the NASA Payload Model, payload descriptive data, Orbiter and Spacelab capabilities, and NASA guidelines and constraints. The first step in the process is a launch interval selection in which the time interval for payload grouping is identified. Logic flow steps are then taken to group payloads and define flight configurations based on criteria that includes dedication, volume, area, orbital parameters, pointing, g-level, mass, center of gravity, energy, power, and crew time.
Reich, Sven; Fischer, Sören; Sobotta, Bernhard; Klapper, Horst-Uwe; Gozdowski, Stephan
2010-01-01
The purpose of this preliminary study was to evaluate the clinical performance of chairside-generated crowns over a preliminary time period of 24 months. Forty-one posterior crowns made of a machinable lithium disilicate ceramic for full-contour crowns were inserted in 34 patients using a chairside computer-aided design/computer-assisted manufacturing technique. The crowns were evaluated at baseline and after 6, 12, and 24 months according to modified United States Public Health Service criteria. After 2 years, all reexamined crowns (n = 39) were in situ; one abutment exhibited secondary caries and two abutments received root canal treatment. Within the limited observation period, the crowns revealed clinically satisfying results.
Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D
NASA Technical Reports Server (NTRS)
Carle, Alan; Fagan, Mike; Green, Lawrence L.
1998-01-01
This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.
Planar doped barrier devices for subharmonic mixers
NASA Technical Reports Server (NTRS)
Lee, T. H.; East, J. R.; Haddad, G. I.
1991-01-01
An overview is given of planar doped barrier (PDB) devices for subharmonic mixer applications. A simplified description is given of PDB characteristics along with a more complete numerical analysis of the current versus voltage characteristics of typical structures. The analysis points out the tradeoffs between the device structure and the resulting characteristics that are important for mixer performance. Preliminary low-frequency characterization results are given for the device structures, and a computer analysis of subharmonic mixer parameters and performance is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, E.R.
1983-09-01
The appendixes for the Saguaro Power Plant includes the following: receiver configuration selection report; cooperating modes and transitions; failure modes analysis; control system analysis; computer codes and simulation models; procurement package scope descriptions; responsibility matrix; solar system flow diagram component purpose list; thermal storage component and system test plans; solar steam generator tube-to-tubesheet weld analysis; pipeline listing; management control schedule; and system list and definitions.
Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Irwin, Ryan W.; Tinker, Michael L.
2005-01-01
Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.
NASA Technical Reports Server (NTRS)
DeChant, Lawrence J.
1997-01-01
In spite of the rapid advances in both scalar and parallel computational tools, the large number and breadth of variables involved in aerodynamic systems make the use of parabolized or even boundary layer fluid flow models impractical for both preliminary design and inverse design problems. Given this restriction, we have concluded that reduced or approximate models are an important family of tools for design purposes. This study of a combined perturbation/numerical modeling methodology with an application to ejector-mixer nozzles (shown schematically in the following figure) is nearing completion. The work is being funded by a grant from the NASA Lewis Research Center to Texas A&M University. These ejector-mixer nozzle models are designed to be of use to the High Speed Civil Transport Program and may be adopted by both NASA and industry. A computer code incorporating the ejector-mixer models is under development. This code, the Differential Reduced Ejector/Mixer Analysis (DREA), can be run fast enough to be used as a subroutine or to be called by a design optimization routine. Simplified conservation equations--x-momentum, energy, and mass conservation--are used to define the model. Unlike other preliminary design models, DREA requires minimal empirical input and includes vortical mixing and a fully compressible formulation among other features. DREA is being validated by comparing it with results obtained from open literature and proprietary industry data. Preliminary results for a subsonic ejector and a supersonic ejector are shown. In addition, dedicated experiments have been performed at Texas A&M. These experiments use a hydraulic/gas flow analog to provide information about the inviscid mixing interface structure. Final validation and documentation of this work is expected by May of 1997. However, preliminary versions of DREA can be expected in early 1997. In summary, DREA provides a sufficiently detailed and realistic ejector-mixer nozzle model at a computational cost compatible with preliminary design applications.
Automated eddy current analysis of materials
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1990-01-01
This research effort focused on the use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures. A major emphasis was on incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) has been a goal in the overall concept and is essential for the final implementation for expert system interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of the flaw can be performed. In eddy current or any other expert systems used to analyze signals in real time in a production environment, it is important to simplify computational procedures as much as possible. For that reason, we have chosen to use the measured resistance and reactance values for the preliminary aspects of this work. A simple computation, such as phase angle of the signal, is certainly within the real time processing capability of the computer system. In the work described here, there is a balance between physical measurements and finite element calculations of those measurements. The goal is to evolve into the most cost effective procedures for maintaining the correctness of the knowledge base.
Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert C. O'Brien; Andrew C. Klein; William T. Taitano
Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.
Economics of liquid hydrogen from water electrolysis
NASA Technical Reports Server (NTRS)
Lin, F. N.; Moore, W. I.; Walker, S. W.
1985-01-01
An economical model for preliminary analysis of LH2 cost from water electrolysis is presented. The model is based on data from vendors and open literature, and is suitable for computer analysis of different scenarios for 'directional' purposes. Cost data associated with a production rate of 10,886 kg/day are presented. With minimum modification, the model can also be used to predict LH2 cost from any electrolyzer once the electrolyzer's cost data are available.
A histogram-based technique for rapid vector extraction from PIV photographs
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.
1991-01-01
A new analysis technique, performed totally in the image plane, is proposed which rapidly extracts all available vectors from individual interrogation regions on PIV photographs. The technique avoids the need for using Fourier transforms with the associated computational burden. The data acquisition and analysis procedure is described, and results of a preliminary simulation study to evaluate the accuracy of the technique are presented. Recently obtained PIV photographs are analyzed.
Study of aircraft in intraurban transportation systems, volume 1
NASA Technical Reports Server (NTRS)
Stout, E. G.; Kesling, P. H.; Matteson, H. C.; Sherwood, D. E.; Tuck, W. R., Jr.; Vaughn, L. A.
1971-01-01
An analysis of an effective short range, high density computer transportation system for intraurban systems is presented. The seven county Detroit, Michigan, metropolitan area, was chosen as the scenario for the analysis. The study consisted of an analysis and forecast of the Detroit market through 1985, a parametric analysis of appropriate short haul aircraft concepts and associated ground systems, and a preliminary overall economic analysis of a simplified total system designed to evaluate the candidate vehicles and select the most promising VTOL and STOL aircraft. Data are also included on the impact of advanced technology on the system, the sensitivity of mission performance to changes in aircraft characteristics and system operations, and identification of key problem areas that may be improved by additional research. The approach, logic, and computer models used are adaptable to other intraurban or interurban areas.
Development of an Object-Oriented Turbomachinery Analysis Code within the NPSS Framework
NASA Technical Reports Server (NTRS)
Jones, Scott M.
2014-01-01
During the preliminary or conceptual design phase of an aircraft engine, the turbomachinery designer has a need to estimate the effects of a large number of design parameters such as flow size, stage count, blade count, radial position, etc. on the weight and efficiency of a turbomachine. Computer codes are invariably used to perform this task however, such codes are often very old, written in outdated languages with arcane input files, and rarely adaptable to new architectures or unconventional layouts. Given the need to perform these kinds of preliminary design trades, a modern 2-D turbomachinery design and analysis code has been written using the Numerical Propulsion System Simulation (NPSS) framework. This paper discusses the development of the governing equations and the structure of the primary objects used in OTAC.
Propulsion/flight control integration technology (PROFIT) design analysis status
NASA Technical Reports Server (NTRS)
Carlin, C. M.; Hastings, W. J.
1978-01-01
The propulsion flight control integration technology (PROFIT) program was designed to develop a flying testbed dedicated to controls research. The preliminary design, analysis, and feasibility studies conducted in support of the PROFIT program are reported. The PROFIT system was built around existing IPCS hardware. In order to achieve the desired system flexibility and capability, additional interfaces between the IPCS hardware and F-15 systems were required. The requirements for additions and modifications to the existing hardware were defined. Those interfaces involving the more significant changes were studied. The DCU memory expansion to 32K with flight qualified hardware was completed on a brassboard basis. The uplink interface breadboard and a brassboard of the central computer interface were also tested. Two preliminary designs and corresponding program plans are presented.
Improved biliary detection and diagnosis through intelligent machine analysis.
Logeswaran, Rajasvaran
2012-09-01
This paper reports on work undertaken to improve automated detection of bile ducts in magnetic resonance cholangiopancreatography (MRCP) images, with the objective of conducting preliminary classification of the images for diagnosis. The proposed I-BDeDIMA (Improved Biliary Detection and Diagnosis through Intelligent Machine Analysis) scheme is a multi-stage framework consisting of successive phases of image normalization, denoising, structure identification, object labeling, feature selection and disease classification. A combination of multiresolution wavelet, dynamic intensity thresholding, segment-based region growing, region elimination, statistical analysis and neural networks, is used in this framework to achieve good structure detection and preliminary diagnosis. Tests conducted on over 200 clinical images with known diagnosis have shown promising results of over 90% accuracy. The scheme outperforms related work in the literature, making it a viable framework for computer-aided diagnosis of biliary diseases. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ingram, J. E.; Murray, T. O.
1989-01-01
An assessment of the static strength of the Aeroassist Flight Experiment (AFE) Carrier Vehicle is presented. The Carrier Vehicle is the structural component which provides the mounting platform for the experiments, on-board computers, batteries, and other black boxes. In addition, the Solid Rocket Motor (SRM), the Thrusters, and the Aerobrake are all attached directly to the Carrier Vehicle. The basic approach in this analysis was to develop a NASTRAN Finite Element Model as a parallel effort to the preliminary design, and to use the internal loads from this model to perform the stress analysis. The NASTRAN method of Inertial Relief was employed. This method involves either specifying a set of CG (center of gravity) accelerations or applying forces at the CG and representing the Carrier Vehicle and all its mounted devices with the proper stiffness and mass properties.
ERIC Educational Resources Information Center
Canelos, James; And Others
This study examined the effects of two cognitive styles--field dependents-independents and reflectivity-impulsivity--on learning from microcomputer-based instruction. In the first of three experimental designs, a programmed instruction text on the human heart was used which contained both visual and verbal information in an instructional display,…
Preliminary logging analysis system (PLANS): overview.
R.H. Twito; S.E. Reutebuch; R.J. McGaughey; C.N. Mann
1987-01-01
The paper previews a computer-aided design system, PLANS, that is useful for developing timber harvest and road network plans on large-scale topographic maps. Earlier planning techniques are reviewed, and the advantages are explained of using advanced planning systems like PLANS. There is a brief summary of the input, output, and function of each program in the PLANS...
Preliminary eddy current modelling for the large angle magnetic suspension test fixture
NASA Technical Reports Server (NTRS)
Britcher, Colin
1994-01-01
This report presents some recent developments in the mathematical modeling of the Large Angle Magnetic Suspension Test Fixture (LAMSTF) at NASA Langley Research Center. It is shown that these effects are significant, but may be amenable to analysis, modeling and measurement. A theoretical framework is presented, together with a comparison of computed and experimental data.
Bào, Yīmíng; Kuhn, Jens H
2018-01-01
During the last decade, genome sequence-based classification of viruses has become increasingly prominent. Viruses can be even classified based on coding-complete genome sequence data alone. Nevertheless, classification remains arduous as experts are required to establish phylogenetic trees to depict the evolutionary relationships of such sequences for preliminary taxonomic placement. Pairwise sequence comparison (PASC) of genomes is one of several novel methods for establishing relationships among viruses. This method, provided by the US National Center for Biotechnology Information as an open-access tool, circumvents phylogenetics, and yet PASC results are often in agreement with those of phylogenetic analyses. Computationally inexpensive, PASC can be easily performed by non-taxonomists. Here we describe how to use the PASC tool for the preliminary classification of novel viral hemorrhagic fever-causing viruses.
Experimental and analytical investigation of active loads control for aircraft landing gear
NASA Technical Reports Server (NTRS)
Morris, D. L.; Mcgehee, J. R.
1983-01-01
A series hydraulic, active loads control main landing gear from a light, twin-engine civil aircraft was investigated. Tests included landing impact and traversal of simulated runway roughness. It is shown that the active gear is feasible and very effective in reducing the force transmitted to the airframe. Preliminary validation of a multidegree of freedom active gear flexible airframe takeoff and landing analysis computer program, which may be used as a design tool for active gear systems, is accomplished by comparing experimental and computed data for the passive and active gears.
Preliminary study on the potential usefulness of array processor techniques for structural synthesis
NASA Technical Reports Server (NTRS)
Feeser, L. J.
1980-01-01
The effects of the use of array processor techniques within the structural analyzer program, SPAR, are simulated in order to evaluate the potential analysis speedups which may result. In particular the connection of a Floating Point System AP120 processor to the PRIME computer is discussed. Measurements of execution, input/output, and data transfer times are given. Using these data estimates are made as to the relative speedups that can be executed in a more complete implementation on an array processor maxi-mini computer system.
Time-Accurate Simulations and Acoustic Analysis of Slat Free-Shear Layer
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Singer, Bart A.; Berkman, Mert E.
2001-01-01
A detailed computational aeroacoustic analysis of a high-lift flow field is performed. Time-accurate Reynolds Averaged Navier-Stokes (RANS) computations simulate the free shear layer that originates from the slat cusp. Both unforced and forced cases are studied. Preliminary results show that the shear layer is a good amplifier of disturbances in the low to mid-frequency range. The Ffowcs-Williams and Hawkings equation is solved to determine the acoustic field using the unsteady flow data from the RANS calculations. The noise radiated from the excited shear layer has a spectral shape qualitatively similar to that obtained from measurements in a corresponding experimental study of the high-lift system.
Development of X-TOOLSS: Preliminary Design of Space Systems Using Evolutionary Computation
NASA Technical Reports Server (NTRS)
Schnell, Andrew R.; Hull, Patrick V.; Turner, Mike L.; Dozier, Gerry; Alverson, Lauren; Garrett, Aaron; Reneau, Jarred
2008-01-01
Evolutionary computational (EC) techniques such as genetic algorithms (GA) have been identified as promising methods to explore the design space of mechanical and electrical systems at the earliest stages of design. In this paper the authors summarize their research in the use of evolutionary computation to develop preliminary designs for various space systems. An evolutionary computational solver developed over the course of the research, X-TOOLSS (Exploration Toolset for the Optimization of Launch and Space Systems) is discussed. With the success of early, low-fidelity example problems, an outline of work involving more computationally complex models is discussed.
NASA Technical Reports Server (NTRS)
Stoll, Frederick
1993-01-01
The NLPAN computer code uses a finite-strip approach to the analysis of thin-walled prismatic composite structures such as stiffened panels. The code can model in-plane axial loading, transverse pressure loading, and constant through-the-thickness thermal loading, and can account for shape imperfections. The NLPAN code represents an attempt to extend the buckling analysis of the VIPASA computer code into the geometrically nonlinear regime. Buckling mode shapes generated using VIPASA are used in NLPAN as global functions for representing displacements in the nonlinear regime. While the NLPAN analysis is approximate in nature, it is computationally economical in comparison with finite-element analysis, and is thus suitable for use in preliminary design and design optimization. A comprehensive description of the theoretical approach of NLPAN is provided. A discussion of some operational considerations for the NLPAN code is included. NLPAN is applied to several test problems in order to demonstrate new program capabilities, and to assess the accuracy of the code in modeling various types of loading and response. User instructions for the NLPAN computer program are provided, including a detailed description of the input requirements and example input files for two stiffened-panel configurations.
Improvements to the fastex flutter analysis computer code
NASA Technical Reports Server (NTRS)
Taylor, Ronald F.
1987-01-01
Modifications to the FASTEX flutter analysis computer code (UDFASTEX) are described. The objectives were to increase the problem size capacity of FASTEX, reduce run times by modification of the modal interpolation procedure, and to add new user features. All modifications to the program are operable on the VAX 11/700 series computers under the VAX operating system. Interfaces were provided to aid in the inclusion of alternate aerodynamic and flutter eigenvalue calculations. Plots can be made of the flutter velocity, display and frequency data. A preliminary capability was also developed to plot contours of unsteady pressure amplitude and phase. The relevant equations of motion, modal interpolation procedures, and control system considerations are described and software developments are summarized. Additional information documenting input instructions, procedures, and details of the plate spline algorithm is found in the appendices.
Space shuttle rendezous, radiation and reentry analysis code
NASA Technical Reports Server (NTRS)
Mcglathery, D. M.
1973-01-01
A preliminary space shuttle mission design and analysis tool is reported emphasizing versatility, flexibility, and user interaction through the use of a relatively small computer (IBM-7044). The Space Shuttle Rendezvous, Radiation and Reentry Analysis Code is used to perform mission and space radiation environmental analyses for four typical space shuttle missions. Included also is a version of the proposed Apollo/Soyuz rendezvous and docking test mission. Tangential steering circle to circle low-thrust tug orbit raising and the effects of the trapped radiation environment on trajectory shaping due to solar electric power losses are also features of this mission analysis code. The computational results include a parametric study on single impulse versus double impulse deorbiting for relatively low space shuttle orbits as well as some definitive data on the magnetically trapped protons and electrons encountered on a particular mission.
NASA Technical Reports Server (NTRS)
Ngan, Angelen; Biezad, Daniel
1996-01-01
A study has been conducted to develop and to analyze a FORTRAN computer code for performing agility analysis on fighter aircraft configurations. This program is one of the modules of the NASA Ames ACSYNT (AirCraft SYNThesis) design code. The background of the agility research in the aircraft industry and a survey of a few agility metrics are discussed. The methodology, techniques, and models developed for the code are presented. The validity of the existing code was evaluated by comparing with existing flight test data. A FORTRAN program was developed for a specific metric, PM (Pointing Margin), as part of the agility module. Example trade studies using the agility module along with ACSYNT were conducted using a McDonnell Douglas F/A-18 Hornet aircraft model. Tile sensitivity of thrust loading, wing loading, and thrust vectoring on agility criteria were investigated. The module can compare the agility potential between different configurations and has capability to optimize agility performance in the preliminary design process. This research provides a new and useful design tool for analyzing fighter performance during air combat engagements in the preliminary design.
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas; Lyle, Karen H.; Burley, Casey L.
1998-01-01
An algorithm for generating appropriate velocity boundary conditions for an acoustic boundary element analysis from the kinematics of an operating propeller is presented. It constitutes the initial phase of Integrating sophisticated rotorcraft models into a conventional boundary element analysis. Currently, the pressure field is computed by a linear approximation. An initial validation of the developed process was performed by comparing numerical results to test data for the external acoustic pressure on the surface of a tilt-rotor aircraft for one flight condition.
Capturing Petascale Application Characteristics with the Sequoia Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vetter, Jeffrey S; Bhatia, Nikhil; Grobelny, Eric M
2005-01-01
Characterization of the computation, communication, memory, and I/O demands of current scientific applications is crucial for identifying which technologies will enable petascale scientific computing. In this paper, we present the Sequoia Toolkit for characterizing HPC applications. The Sequoia Toolkit consists of the Sequoia trace capture library and the Sequoia Event Analysis Library, or SEAL, that facilitates the development of tools for analyzing Sequoia event traces. Using the Sequoia Toolkit, we have characterized the behavior of application runs with up to 2048 application processes. To illustrate the use of the Sequoia Toolkit, we present a preliminary characterization of LAMMPS, a molecularmore » dynamics application of great interest to the computational biology community.« less
Transonic Blunt Body Aerodynamic Coefficients Computation
NASA Astrophysics Data System (ADS)
Sancho, Jorge; Vargas, M.; Gonzalez, Ezequiel; Rodriguez, Manuel
2011-05-01
In the framework of EXPERT (European Experimental Re-entry Test-bed) accurate transonic aerodynamic coefficients are of paramount importance for the correct trajectory assessment and parachute deployment. A combined CFD (Computational Fluid Dynamics) modelling and experimental campaign strategy was selected to obtain accurate coefficients. A preliminary set of coefficients were obtained by CFD Euler inviscid computation. Then experimental campaign was performed at DNW facilities at NLR. A profound review of the CFD modelling was done lighten up by WTT results, aimed to obtain reliable values of the coefficients in the future (specially the pitching moment). Study includes different turbulence modelling and mesh sensitivity analysis. Comparison with the WTT results is explored, and lessons learnt are collected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakosi, Jozsef; Christon, Mark A.; Francois, Marianne M.
Progress is reported on computational capabilities for the grid-to-rod-fretting (GTRF) problem of pressurized water reactors. Numeca's Hexpress/Hybrid mesh generator is demonstrated as an excellent alternative to generating computational meshes for complex flow geometries, such as in GTRF. Mesh assessment is carried out using standard industrial computational fluid dynamics practices. Hydra-TH, a simulation code developed at LANL for reactor thermal-hydraulics, is demonstrated on hybrid meshes, containing different element types. A series of new Hydra-TH calculations has been carried out collecting turbulence statistics. Preliminary results on the newly generated meshes are discussed; full analysis will be documented in the L3 milestone, THM.CFD.P5.05,more » Sept. 2012.« less
The Second National Survey of Instructional Uses of School Computers: A Preliminary Report.
ERIC Educational Resources Information Center
Becker, Henry Jay
This report presents preliminary descriptive data from a national survey of U.S. elementary schools, conducted in 1985, which focused on the schools' instructional uses of computers, including efficiency and cost-effectiveness. Specific topic areas covered include: (1) what hardware is in different types of schools; (2) which teachers use the…
MPI implementation of PHOENICS: A general purpose computational fluid dynamics code
NASA Astrophysics Data System (ADS)
Simunovic, S.; Zacharia, T.; Baltas, N.; Spalding, D. B.
1995-03-01
PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. The Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.
MPI implementation of PHOENICS: A general purpose computational fluid dynamics code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, S.; Zacharia, T.; Baltas, N.
1995-04-01
PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. Themore » Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.« less
Recent NASA Wake-Vortex Flight Tests, Flow-Physics Database and Wake-Development Analysis
NASA Technical Reports Server (NTRS)
Vicroy, Dan D.; Vijgen, Paul M.; Reimer, Heidi M.; Gallegos, Joey L.; Spalart, Philippe R.
1998-01-01
A series of flight tests over the ocean of a four engine turboprop airplane in the cruise configuration have provided a data set for improved understanding of wake vortex physics and atmospheric interaction. An integrated database has been compiled for wake characterization and validation of wake-vortex computational models. This paper describes the wake-vortex flight tests, the data processing, the database development and access, and results obtained from preliminary wake-characterization analysis using the data sets.
General aviation air traffic pattern safety analysis
NASA Technical Reports Server (NTRS)
Parker, L. C.
1973-01-01
A concept is described for evaluating the general aviation mid-air collision hazard in uncontrolled terminal airspace. Three-dimensional traffic pattern measurements were conducted at uncontrolled and controlled airports. Computer programs for data reduction, storage retrieval and statistical analysis have been developed. Initial general aviation air traffic pattern characteristics are presented. These preliminary results indicate that patterns are highly divergent from the expected standard pattern, and that pattern procedures observed can affect the ability of pilots to see and avoid each other.
NASA Technical Reports Server (NTRS)
Treiber, David A.; Muilenburg, Dennis A.
1995-01-01
The viability of applying a state-of-the-art Euler code to calculate the aerodynamic forces and moments through maximum lift coefficient for a generic sharp-edge configuration is assessed. The OVERFLOW code, a method employing overset (Chimera) grids, was used to conduct mesh refinement studies, a wind-tunnel wall sensitivity study, and a 22-run computational matrix of flow conditions, including sideslip runs and geometry variations. The subject configuration was a generic wing-body-tail geometry with chined forebody, swept wing leading-edge, and deflected part-span leading-edge flap. The analysis showed that the Euler method is adequate for capturing some of the non-linear aerodynamic effects resulting from leading-edge and forebody vortices produced at high angle-of-attack through C(sub Lmax). Computed forces and moments, as well as surface pressures, match well enough useful preliminary design information to be extracted. Vortex burst effects and vortex interactions with the configuration are also investigated.
An Investigation of the Flow Physics of Acoustic Liners by Direct Numerical Simulation
NASA Technical Reports Server (NTRS)
Watson, Willie R. (Technical Monitor); Tam, Christopher
2004-01-01
This report concentrates on reporting the effort and status of work done on three dimensional (3-D) simulation of a multi-hole resonator in an impedance tube. This work is coordinated with a parallel experimental effort to be carried out at the NASA Langley Research Center. The outline of this report is as follows : 1. Preliminary consideration. 2. Computation model. 3. Mesh design and parallel computing. 4. Visualization. 5. Status of computer code development. 1. Preliminary Consideration.
Program on application of communications satellites to educational development
NASA Technical Reports Server (NTRS)
Morgan, R. P.; Singh, J. P.
1971-01-01
Interdisciplinary research in needs analysis, communications technology studies, and systems synthesis is reported. Existing and planned educational telecommunications services are studied and library utilization of telecommunications is described. Preliminary estimates are presented of ranges of utilization of educational telecommunications services for 1975 and 1985; instructional and public television, computer-aided instruction, computing resources, and information resource sharing for various educational levels and purposes. Communications technology studies include transmission schemes for still-picture television, use of Gunn effect devices, and TV receiver front ends for direct satellite reception at 12 GHz. Two major studies in the systems synthesis project concern (1) organizational and administrative aspects of a large-scale instructional satellite system to be used with schools and (2) an analysis of future development of instructional television, with emphasis on the use of video tape recorders and cable television. A communications satellite system synthesis program developed for NASA is now operational on the university IBM 360-50 computer.
Analysis of rotor vibratory loads using higher harmonic pitch control
NASA Technical Reports Server (NTRS)
Quackenbush, Todd R.; Bliss, Donald B.; Boschitsch, Alexander H.; Wachspress, Daniel A.
1992-01-01
Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code.
Paediatric x-ray radiation dose reduction and image quality analysis.
Martin, L; Ruddlesden, R; Makepeace, C; Robinson, L; Mistry, T; Starritt, H
2013-09-01
Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%-55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children.
High-performance parallel analysis of coupled problems for aircraft propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.
1994-01-01
This research program deals with the application of high-performance computing methods for the analysis of complete jet engines. We have entitled this program by applying the two dimensional parallel aeroelastic codes to the interior gas flow problem of a bypass jet engine. The fluid mesh generation, domain decomposition, and solution capabilities were successfully tested. We then focused attention on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion that results from these structural displacements. This is treated by a new arbitrary Lagrangian-Eulerian (ALE) technique that models the fluid mesh motion as that of a fictitious mass-spring network. New partitioned analysis procedures to treat this coupled three-component problem are developed. These procedures involved delayed corrections and subcycling. Preliminary results on the stability, accuracy, and MPP computational efficiency are reported.
Golas, Ewa I; Czaplewski, Cezary
2014-09-01
This work theoretically investigates the mechanical properties of a novel silk-derived biopolymer as polymerized in silico from sericin and elastin-like monomers. Molecular Dynamics simulations and Steered Molecular Dynamics were the principal computational methods used, the latter of which applies an external force onto the system and thereby enables an observation of its response to stress. The models explored herein are single-molecule approximations, and primarily serve as tools in a rational design process for the preliminary assessment of properties in a new material candidate. © 2014 Wiley Periodicals, Inc.
A preliminary design study for a cosmic X-ray spectrometer
NASA Technical Reports Server (NTRS)
1972-01-01
The results are described of theoretical and experimental investigations aimed at the development of a curved crystal cosmic X-ray spectrometer to be used at the focal plane of the large orbiting X-ray telescope on the third High Energy Astronomical Observatory. The effort was concentrated on the development of spectrometer concepts and their evaluation by theoretical analysis, computer simulation, and laboratory testing with breadboard arrangements of crystals and detectors. In addition, a computer-controlled facility for precision testing and evaluation of crystals in air and vacuum was constructed. A summary of research objectives and results is included.
NASA Technical Reports Server (NTRS)
Greathouse, James S.; Schwing, Alan M.
2015-01-01
This paper explores use of computational fluid dynamics to study the e?ect of geometric porosity on static stability and drag for NASA's Multi-Purpose Crew Vehicle main parachute. Both of these aerodynamic characteristics are of interest to in parachute design, and computational methods promise designers the ability to perform detailed parametric studies and other design iterations with a level of control previously unobtainable using ground or flight testing. The approach presented here uses a canopy structural analysis code to define the inflated parachute shapes on which structured computational grids are generated. These grids are used by the computational fluid dynamics code OVERFLOW and are modeled as rigid, impermeable bodies for this analysis. Comparisons to Apollo drop test data is shown as preliminary validation of the technique. Results include several parametric sweeps through design variables in order to better understand the trade between static stability and drag. Finally, designs that maximize static stability with a minimal loss in drag are suggested for further study in subscale ground and flight testing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 8 2011-04-01 2011-04-01 false Election with respect to life insurance reserves... Provisions § 1.818-4 Election with respect to life insurance reserves computed on preliminary term basis. (a) In general. Section 818(c) permits a life insurance company issuing contracts with respect to which...
NASA Technical Reports Server (NTRS)
Levison, W. H.; Baron, S.
1984-01-01
Preliminary results in the application of a closed loop pilot/simulator model to the analysis of some simulator fidelity issues are discussed in the context of an air to air target tracking task. The closed loop model is described briefly. Then, problem simplifications that are employed to reduce computational costs are discussed. Finally, model results showing sensitivity of performance to various assumptions concerning the simulator and/or the pilot are presented.
NASA Astrophysics Data System (ADS)
Grinberg, Eduard I.; Nikolaev, Vadim S.; Sokolov, Nikolai A.; Doschatov, Vitaly V.; Usov, Veniamin A.; Gulidov, Aleksander I.
1995-01-01
The paper presents results of more accurate computational analysis of the TOPAZ-2 system reactor core aerodynamic disruption at an inadvertent reentry. Given are preliminary results on the pattern of disruption of the core partially burnt during its descent in the atmosphere at its impact on the surface of water and sandstone (medium density concrete).
Large Advanced Space Systems (LASS) computer-aided design program additions
NASA Technical Reports Server (NTRS)
Farrell, C. E.
1982-01-01
The LSS preliminary and conceptual design requires extensive iteractive analysis because of the effects of structural, thermal, and control intercoupling. A computer aided design program that will permit integrating and interfacing of required large space system (LSS) analyses is discussed. The primary objective of this program is the implementation of modeling techniques and analysis algorithms that permit interactive design and tradeoff studies of LSS concepts. Eight software modules were added to the program. The existing rigid body controls module was modified to include solar pressure effects. The new model generator modules and appendage synthesizer module are integrated (interfaced) to permit interactive definition and generation of LSS concepts. The mass properties module permits interactive specification of discrete masses and their locations. The other modules permit interactive analysis of orbital transfer requirements, antenna primary beam n, and attitude control requirements.
Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation
NASA Technical Reports Server (NTRS)
Rouse, J. W., Jr. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Preliminary evaluation of autumnal phase ground truth data suggests that the sampling procedures at the Great Plains Corridor network test sites are adequate to show relatively small temporal changes in above-ground vegetation biomass and vegetation condition. Vegetation changes measured August through December, reflect grazing intensity and environmental conditions at the test sites. Preliminary analysis of black and white imagery suggests that detail in vegetation patterns is much greater than originally anticipated. A first look analysis of single band imagery and digital data at two locations shows that woodland, grassland, and cropland areas are easily delineated. Computer derived grey-scale maps from MSS digital data were shown to be useful in identifying the location of small fields and features of the natural and cultivated lands. Single band imagery and digital data are believed to have important application for synoptic land use mapping and inventory. Initial ratio analysis, using band 5 and 7 data, suggests the applicability in the greenness of a vegetative scene.
Toupin April, Karine; Higgins, Johanne; Ehrmann Feldman, Debbie
2016-07-28
Adherence to treatment in children with juvenile idiopathic arthritis (JIA) is associated with better outcomes. Assessing patient adherence in JIA, as well as attitudes and beliefs about prescribed treatments, is important for the clinician in order to optimize patient management. The objective of the current study was to evaluate the psychometric properties of the Parent (proxy-report) Adherence Report Questionnaires (PARQ), which assesses beliefs and behaviors related to adherence to treatments prescribed for JIA. A Rasch analysis was conducted on data collected with parents of children with JIA from two studies in which the PARQ was used as a measure of adherence. The PARQ showed preliminary evidence of multidimensionality with two factors, accounting for 38 % and 27 % of the variance respectively. The PARQ in its original version does not adhere to expectations of the Rasch model. A transformed version of the PARQ obtained by deletion of the general adherence scale and modification of visual analog scales into 5-point likert scales improved fit to the model and showed preliminary evidence of unidimensionality. The PARQ was transformed based on the results of the Rasch analysis. The transformed version of the PARQ shows preliminary evidence of unidimensionality and may allow computation of a total score, although further testing is needed to verify these findings.
Cognitive task analysis: Techniques applied to airborne weapons training
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terranova, M.; Seamster, T.L.; Snyder, C.E.
1989-01-01
This is an introduction to cognitive task analysis as it may be used in Naval Air Systems Command (NAVAIR) training development. The focus of a cognitive task analysis is human knowledge, and its methods of analysis are those developed by cognitive psychologists. This paper explains the role that cognitive task analysis and presents the findings from a preliminary cognitive task analysis of airborne weapons operators. Cognitive task analysis is a collection of powerful techniques that are quantitative, computational, and rigorous. The techniques are currently not in wide use in the training community, so examples of this methodology are presented alongmore » with the results. 6 refs., 2 figs., 4 tabs.« less
A Computationally Efficient Method for Polyphonic Pitch Estimation
NASA Astrophysics Data System (ADS)
Zhou, Ruohua; Reiss, Joshua D.; Mattavelli, Marco; Zoia, Giorgio
2009-12-01
This paper presents a computationally efficient method for polyphonic pitch estimation. The method employs the Fast Resonator Time-Frequency Image (RTFI) as the basic time-frequency analysis tool. The approach is composed of two main stages. First, a preliminary pitch estimation is obtained by means of a simple peak-picking procedure in the pitch energy spectrum. Such spectrum is calculated from the original RTFI energy spectrum according to harmonic grouping principles. Then the incorrect estimations are removed according to spectral irregularity and knowledge of the harmonic structures of the music notes played on commonly used music instruments. The new approach is compared with a variety of other frame-based polyphonic pitch estimation methods, and results demonstrate the high performance and computational efficiency of the approach.
NASA Technical Reports Server (NTRS)
Harwood, P. (Principal Investigator); Malin, P.; Finley, R.; Mcculloch, S.; Murphy, D.; Hupp, B.; Schell, J. A.
1977-01-01
The author has identified the following significant results. Four LANDSAT scenes were analyzed for the Harbor Island area test sites to produce land cover and land use maps using both image interpretation and computer-assisted techniques. When evaluated against aerial photography, the mean accuracy for three scenes was 84% for the image interpretation product and 62% for the computer-assisted classification maps. Analysis of the fourth scene was not completed using the image interpretation technique, because of poor quality, false color composite, but was available from the computer technique. Preliminary results indicate that these LANDSAT products can be applied to a variety of planning and management activities in the Texas coastal zone.
Aerodynamic heating and surface temperatures on vehicles for computer-aided design studies
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.; Kania, L. A.; Chitty, A.
1983-01-01
A computer subprogram has been developed to calculate aerodynamic and radiative heating rates and to determine surface temperatures by integrating the heating rates along the trajectory of a vehicle. Convective heating rates are calculated by applying the axisymmetric analogue to inviscid surface streamlines and using relatively simple techniques to calculate laminar, transitional, or turbulent heating rates. Options are provided for the selection of gas model, transition criterion, turbulent heating method, Reynolds Analogy factor, and entropy-layer swallowing effects. Heating rates are compared to experimental data, and the time history of surface temperatures are given for a high-speed trajectory. The computer subprogram is developed for preliminary design and mission analysis where parametric studies are needed at all speeds.
Topics in computational physics
NASA Astrophysics Data System (ADS)
Monville, Maura Edelweiss
Computational Physics spans a broad range of applied fields extending beyond the border of traditional physics tracks. Demonstrated flexibility and capability to switch to a new project, and pick up the basics of the new field quickly, are among the essential requirements for a computational physicist. In line with the above mentioned prerequisites, my thesis described the development and results of two computational projects belonging to two different applied science areas. The first project is a Materials Science application. It is a prescription for an innovative nano-fabrication technique that is built out of two other known techniques. The preliminary results of the simulation of this novel nano-patterning fabrication method show an average improvement, roughly equal to 18%, with respect to the single techniques it draws on. The second project is a Homeland Security application aimed at preventing smuggling of nuclear material at ports of entry. It is concerned with a simulation of an active material interrogation system based on the analysis of induced photo-nuclear reactions. This project consists of a preliminary evaluation of the photo-fission implementation in the more robust radiation transport Monte Carlo codes, followed by the customization and extension of MCNPX, a Monte Carlo code developed in Los Alamos National Laboratory, and MCNP-PoliMi. The final stage of the project consists of testing the interrogation system against some real world scenarios, for the purpose of determining the system's reliability, material discrimination power, and limitations.
Software For Design And Analysis Of Tanks And Cylindrical Shells
NASA Technical Reports Server (NTRS)
Luz, Paul L.; Graham, Jerry B.
1995-01-01
Skin-stringer Tank Analysis Spreadsheet System (STASS) computer program developed for use as preliminary design software tool that enables quick-turnaround design and analysis of structural domes and cylindrical barrel sections in propellant tanks or other cylindrical shells. Determines minimum required skin thicknesses for domes and cylindrical shells to withstand material failure due to applied pressures (ullage and/or hydrostatic) and runs buckling analyses on cylindrical shells and skin-stringers. Implemented as workbook program, using Microsoft Excel v4.0 on Macintosh II. Also implemented using Microsoft Excel v4.0 for Microsoft Windows v3.1 IBM PC.
Computer program for preliminary design analysis of axial-flow turbines
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1972-01-01
The program method is based on a mean-diameter flow analysis. Input design requirements include power or pressure ratio, flow, temperature, pressure, and speed. Turbine designs are generated for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse). Exit turning vanes can be included in the design. Program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, blading angles, and last-stage critical velocity ratios. The report presents the analysis method, a description of input and output with sample cases, and the program listing.
NASA Technical Reports Server (NTRS)
Chen, Shu-cheng, S.
2009-01-01
For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.
Multithreaded Model for Dynamic Load Balancing Parallel Adaptive PDE Computations
NASA Technical Reports Server (NTRS)
Chrisochoides, Nikos
1995-01-01
We present a multithreaded model for the dynamic load-balancing of numerical, adaptive computations required for the solution of Partial Differential Equations (PDE's) on multiprocessors. Multithreading is used as a means of exploring concurrency in the processor level in order to tolerate synchronization costs inherent to traditional (non-threaded) parallel adaptive PDE solvers. Our preliminary analysis for parallel, adaptive PDE solvers indicates that multithreading can be used an a mechanism to mask overheads required for the dynamic balancing of processor workloads with computations required for the actual numerical solution of the PDE's. Also, multithreading can simplify the implementation of dynamic load-balancing algorithms, a task that is very difficult for traditional data parallel adaptive PDE computations. Unfortunately, multithreading does not always simplify program complexity, often makes code re-usability not an easy task, and increases software complexity.
NASA Astrophysics Data System (ADS)
Uddin, M. Maruf; Fuad, Muzaddid-E.-Zaman; Rahaman, Md. Mashiur; Islam, M. Rabiul
2017-12-01
With the rapid decrease in the cost of computational infrastructure with more efficient algorithm for solving non-linear problems, Reynold's averaged Navier-Stokes (RaNS) based Computational Fluid Dynamics (CFD) has been used widely now-a-days. As a preliminary evaluation tool, CFD is used to calculate the hydrodynamic loads on offshore installations, ships, and other structures in the ocean at initial design stages. Traditionally, wedges have been studied more than circular cylinders because cylinder section has zero deadrise angle at the instant of water impact, which increases with increase of submergence. In Present study, RaNS based commercial code ANSYS Fluent is used to simulate the water entry of a circular section at constant velocity. It is seen that present computational results were compared with experiment and other numerical method.
Distributed interactive communication in simulated space-dwelling groups.
Brady, Joseph V; Hienz, Robert D; Hursh, Steven R; Ragusa, Leonard C; Rouse, Charles O; Gasior, Eric D
2004-03-01
This report describes the development and preliminary application of an experimental test bed for modeling human behavior in the context of a computer generated environment to analyze the effects of variations in communication modalities, incentives and stressful conditions. In addition to detailing the methodological development of a simulated task environment that provides for electronic monitoring and recording of individual and group behavior, the initial substantive findings from an experimental analysis of distributed interactive communication in simulated space dwelling groups are described. Crews of three members each (male and female) participated in simulated "planetary missions" based upon a synthetic scenario task that required identification, collection, and analysis of geologic specimens with a range of grade values. The results of these preliminary studies showed clearly that cooperative and productive interactions were maintained between individually isolated and distributed individuals communicating and problem-solving effectively in a computer-generated "planetary" environment over extended time intervals without benefit of one another's physical presence. Studies on communication channel constraints confirmed the functional interchangeability between available modalities with the highest degree of interchangeability occurring between Audio and Text modes of communication. The effects of task-related incentives were determined by the conditions under which they were available with Positive Incentives effectively attenuating decrements in performance under stressful time pressure. c2003 Elsevier Ltd. All rights reserved.
Dynamic Discharge Arc Driver. [computerized simulation
NASA Technical Reports Server (NTRS)
Dannenberg, R. E.; Slapnicar, P. I.
1975-01-01
A computer program using nonlinear RLC circuit analysis was developed to accurately model the electrical discharge performance of the Ames 1-MJ energy storage and arc-driver system. Solutions of circuit parameters are compared with experimental circuit data and related to shock speed measurements. Computer analysis led to the concept of a Dynamic Discharge Arc Driver (DDAD) capable of increasing the range of operation of shock-driven facilities. Utilization of mass addition of the driver gas offers a unique means of improving driver performance. Mass addition acts to increase the arc resistance, which results in better electrical circuit damping with more efficient Joule heating, producing stronger shock waves. Preliminary tests resulted in an increase in shock Mach number from 34 to 39 in air at an initial pressure of 2.5 torr.
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.
1991-01-01
Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.
Semantic Pattern Analysis for Verbal Fluency Based Assessment of Neurological Disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R; Ainsworth, Keela C; Brown, Tyler C
In this paper, we present preliminary results of semantic pattern analysis of verbal fluency tests used for assessing cognitive psychological and neuropsychological disorders. We posit that recent advances in semantic reasoning and artificial intelligence can be combined to create a standardized computer-aided diagnosis tool to automatically evaluate and interpret verbal fluency tests. Towards that goal, we derive novel semantic similarity (phonetic, phonemic and conceptual) metrics and present the predictive capability of these metrics on a de-identified dataset of participants with and without neurological disorders.
NASA Technical Reports Server (NTRS)
Hopkins, D. A.
1984-01-01
A unique upward-integrated top-down-structured approach is presented for nonlinear analysis of high-temperature multilayered fiber composite structures. Based on this approach, a special purpose computer code was developed (nonlinear COBSTRAN) which is specifically tailored for the nonlinear analysis of tungsten-fiber-reinforced superalloy (TFRS) composite turbine blade/vane components of gas turbine engines. Special features of this computational capability include accounting of; micro- and macro-heterogeneity, nonlinear (stess-temperature-time dependent) and anisotropic material behavior, and fiber degradation. A demonstration problem is presented to mainfest the utility of the upward-integrated top-down-structured approach, in general, and to illustrate the present capability represented by the nonlinear COBSTRAN code. Preliminary results indicate that nonlinear COBSTRAN provides the means for relating the local nonlinear and anisotropic material behavior of the composite constituents to the global response of the turbine blade/vane structure.
Computer-aided controllability assessment of generic manned Space Station concepts
NASA Technical Reports Server (NTRS)
Ferebee, M. J.; Deryder, L. J.; Heck, M. L.
1984-01-01
NASA's Concept Development Group assessment methodology for the on-orbit rigid body controllability characteristics of each generic configuration proposed for the manned space station is presented; the preliminary results obtained represent the first step in the analysis of these eight configurations. Analytical computer models of each configuration were developed by means of the Interactive Design Evaluation of Advanced Spacecraft CAD system, which created three-dimensional geometry models of each configuration to establish dimensional requirements for module connectivity, payload accommodation, and Space Shuttle berthing; mass, center-of-gravity, inertia, and aerodynamic drag areas were then derived. Attention was also given to the preferred flight attitude of each station concept.
NASA Technical Reports Server (NTRS)
Sozen, Mehmet
2003-01-01
In what follows, the model used for combustion of liquid hydrogen (LH2) with liquid oxygen (LOX) using chemical equilibrium assumption, and the novel computational method developed for determining the equilibrium composition and temperature of the combustion products by application of the first and second laws of thermodynamics will be described. The modular FORTRAN code developed as a subroutine that can be incorporated into any flow network code with little effort has been successfully implemented in GFSSP as the preliminary runs indicate. The code provides capability of modeling the heat transfer rate to the coolants for parametric analysis in system design.
Preliminary performance analysis of an interplanetary navigation system using asteroid based beacons
NASA Technical Reports Server (NTRS)
Jee, J. Rodney; Khatib, Ahmad R.; Muellerschoen, Ronald J.; Williams, Bobby G.; Vincent, Mark A.
1988-01-01
A futuristic interplanetary navigation system using transmitters placed on selected asteroids is introduced. This network of space beacons is seen as a needed alternative to the overly burdened Deep Space Network. Covariance analyses on the potential performance of these space beacons located on a candidate constellation of eight real asteroids are initiated. Simplified analytic calculations are performed to determine limiting accuracies attainable with the network for geometric positioning. More sophisticated computer simulations are also performed to determine potential accuracies using long arcs of range and Doppler data from the beacons. The results from these computations show promise for this navigation system.
Nogueira-Barbosa, Marcello H.; Gregio-Junior, Everaldo; Lorenzato, Mario Muller
2015-01-01
Objective The present study was aimed at investigating bone involvement secondary to rotator cuff calcific tendonitis at ultrasonography. Materials and Methods Retrospective study of a case series. The authors reviewed shoulder ultrasonography reports of 141 patients diagnosed with rotator cuff calcific tendonitis, collected from the computer-based data records of their institution over a four-year period. Imaging findings were retrospectively and consensually analyzed by two experienced musculoskeletal radiologists looking for bone involvement associated with calcific tendonitis. Only the cases confirmed by computed tomography were considered for descriptive analysis. Results Sonographic findings of calcific tendinopathy with bone involvement were observed in 7/141 (~ 5%) patients (mean age, 50.9 years; age range, 42-58 years; 42% female). Cortical bone erosion adjacent to tendon calcification was the most common finding, observed in 7/7 cases. Signs of intraosseous migration were found in 3/7 cases, and subcortical cysts in 2/7 cases. The findings were confirmed by computed tomography. Calcifications associated with bone abnormalities showed no acoustic shadowing at ultrasonography, favoring the hypothesis of resorption phase of the disease. Conclusion Preliminary results of the present study suggest that ultrasonography can identify bone abnormalities secondary to rotator cuff calcific tendinopathy, particularly the presence of cortical bone erosion. PMID:26811551
Nogueira-Barbosa, Marcello H; Gregio-Junior, Everaldo; Lorenzato, Mario Muller
2015-01-01
The present study was aimed at investigating bone involvement secondary to rotator cuff calcific tendonitis at ultrasonography. Retrospective study of a case series. The authors reviewed shoulder ultrasonography reports of 141 patients diagnosed with rotator cuff calcific tendonitis, collected from the computer-based data records of their institution over a four-year period. Imaging findings were retrospectively and consensually analyzed by two experienced musculoskeletal radiologists looking for bone involvement associated with calcific tendonitis. Only the cases confirmed by computed tomography were considered for descriptive analysis. Sonographic findings of calcific tendinopathy with bone involvement were observed in 7/141 (~ 5%) patients (mean age, 50.9 years; age range, 42-58 years; 42% female). Cortical bone erosion adjacent to tendon calcification was the most common finding, observed in 7/7 cases. Signs of intraosseous migration were found in 3/7 cases, and subcortical cysts in 2/7 cases. The findings were confirmed by computed tomography. Calcifications associated with bone abnormalities showed no acoustic shadowing at ultrasonography, favoring the hypothesis of resorption phase of the disease. Preliminary results of the present study suggest that ultrasonography can identify bone abnormalities secondary to rotator cuff calcific tendinopathy, particularly the presence of cortical bone erosion.
Development of an Efficient Binaural Simulation for the Analysis of Structural Acoustic Data
NASA Technical Reports Server (NTRS)
Lalime, Aimee L.; Johnson, Marty E.; Rizzi, Stephen A. (Technical Monitor)
2002-01-01
Binaural or "virtual acoustic" representation has been proposed as a method of analyzing acoustic and vibroacoustic data. Unfortunately, this binaural representation can require extensive computer power to apply the Head Related Transfer Functions (HRTFs) to a large number of sources, as with a vibrating structure. This work focuses on reducing the number of real-time computations required in this binaural analysis through the use of Singular Value Decomposition (SVD) and Equivalent Source Reduction (ESR). The SVD method reduces the complexity of the HRTF computations by breaking the HRTFs into dominant singular values (and vectors). The ESR method reduces the number of sources to be analyzed in real-time computation by replacing sources on the scale of a structural wavelength with sources on the scale of an acoustic wavelength. It is shown that the effectiveness of the SVD and ESR methods improves as the complexity of the source increases. In addition, preliminary auralization tests have shown that the results from both the SVD and ESR methods are indistinguishable from the results found with the exhaustive method.
Sensitivity analysis of a ground-water-flow model
Torak, Lynn J.; ,
1991-01-01
A sensitivity analysis was performed on 18 hydrological factors affecting steady-state groundwater flow in the Upper Floridan aquifer near Albany, southwestern Georgia. Computations were based on a calibrated, two-dimensional, finite-element digital model of the stream-aquifer system and the corresponding data inputs. Flow-system sensitivity was analyzed by computing water-level residuals obtained from simulations involving individual changes to each hydrological factor. Hydrological factors to which computed water levels were most sensitive were those that produced the largest change in the sum-of-squares of residuals for the smallest change in factor value. Plots of the sum-of-squares of residuals against multiplier or additive values that effect change in the hydrological factors are used to evaluate the influence of each factor on the simulated flow system. The shapes of these 'sensitivity curves' indicate the importance of each hydrological factor to the flow system. Because the sensitivity analysis can be performed during the preliminary phase of a water-resource investigation, it can be used to identify the types of hydrological data required to accurately characterize the flow system prior to collecting additional data or making management decisions.
Predictive analysis effectiveness in determining the epidemic disease infected area
NASA Astrophysics Data System (ADS)
Ibrahim, Najihah; Akhir, Nur Shazwani Md.; Hassan, Fadratul Hafinaz
2017-10-01
Epidemic disease outbreak had caused nowadays community to raise their great concern over the infectious disease controlling, preventing and handling methods to diminish the disease dissemination percentage and infected area. Backpropagation method was used for the counter measure and prediction analysis of the epidemic disease. The predictive analysis based on the backpropagation method can be determine via machine learning process that promotes the artificial intelligent in pattern recognition, statistics and features selection. This computational learning process will be integrated with data mining by measuring the score output as the classifier to the given set of input features through classification technique. The classification technique is the features selection of the disease dissemination factors that likely have strong interconnection between each other in causing infectious disease outbreaks. The predictive analysis of epidemic disease in determining the infected area was introduced in this preliminary study by using the backpropagation method in observation of other's findings. This study will classify the epidemic disease dissemination factors as the features for weight adjustment on the prediction of epidemic disease outbreaks. Through this preliminary study, the predictive analysis is proven to be effective method in determining the epidemic disease infected area by minimizing the error value through the features classification.
Preliminary Analysis of a Trusted Platform Module (TPM) Initialization Process
2007-06-01
during system startup. For a laptop, extra precaution must be taken to prevent the machine from transitioning into a Sleep or Hibernate mode, since... hibernate mode [81]. D. TEST AND AUDIT After the system has gone through the predefined initialization and configuration processes, it needs to go...Conference on Computer and Communications Security, 2004, pp. 308-317. [45] L. Sarmenta, “TPM/J java -based API for the Trusted Platform Module (TPM
NASA Technical Reports Server (NTRS)
1997-01-01
DARcorporation developed a General Aviation CAD package through a Small Business Innovation Research contract from Langley Research Center. This affordable, user-friendly preliminary design system for General Aviation aircraft runs on the popular 486 IBM-compatible personal computers. Individuals taking the home-built approach, small manufacturers of General Aviation airplanes, as well as students and others interested in the analysis and design of aircraft are possible users of the package. The software can cut design and development time in half.
Automated Support for da Vinci Surgical System
2011-05-01
MScore, which provides objective assessment measuring robotic surgery skills across all computed metrics (Figure 7). In addition to viewing single ...holding an object. Data Collection & Analysis (Task 5) Preliminary Experiments During the first phase of data collection, a single performance of...a single task (anastomosis) trial was recorded from six different users – three each for the da Vinci and the dV-Trainer platforms. On each platform
O'Reilly, Robert; Fedorko, Steve; Nicholson, Nigel
1983-01-01
This paper describes a structured interview process for medical school admissions supported by an Apple II computer system which provides feedback to interviewers and the College admissions committee. Presented are the rationale for the system, the preliminary results of analysis of some of the interview data, and a brief description of the computer program and output. The present data show that the structured interview yields very high interrater reliability coefficients, is acceptable to the medical school faculty, and results in quantitative data useful in the admission process. The system continues in development at this time, a second year of data will be shortly available, and further refinements are being made to the computer program to enhance its utilization and exportability.
Dynamic simulation and preliminary finite element analysis of gunshot wounds to the human mandible.
Tang, Zhen; Tu, Wenbing; Zhang, Gang; Chen, Yubin; Lei, Tao; Tan, Yinghui
2012-05-01
Due to the complications arising from gunshot wounds to the maxillofacial region, traditional models of gunshot wounds cannot meet our research needs. In this study, we established a finite element model and conducted preliminary simulation and analysis to determine the injury mechanism and degree of damage for gunshot wounds to the human mandible. Based on a previously developed modelling method that used animal experiments and internal parameters, digital computed tomography data for the human mandible were used to establish a three-dimensional finite element model of the human mandible. The mechanism by which a gunshot injures the mandible was dynamically simulated under different shot conditions. First, the residual velocities of the shootings using different projectiles at varying entry angles and impact velocities were calculated. Second, the energy losses of the projectiles and the rates of energy loss after exiting the mandible were calculated. Finally, the data were compared and analysed. The dynamic processes involved in gunshot wounds to the human mandible were successfully simulated using two projectiles, three impact velocities, and three entry angles. The stress distributions in different parts of mandible after injury were also simulated. Based on the computation and analysis of the modelling data, we found that the injury severity of the mandible and the injury efficiency of the projectiles differ under different injury conditions. The finite element model has many advantages for the analysis of ballistic wounds, and is expected to become an improved model for studying maxillofacial gunshot wounds. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bernier, Jean D.
1991-09-01
The imaging in real time of infrared background scenes with the Naval Postgraduate School Infrared Search and Target Designation (NPS-IRSTD) System was achieved through extensive software developments in protected mode assembly language on an Intel 80386 33 MHz computer. The new software processes the 512 by 480 pixel images directly in the extended memory area of the computer where the DT-2861 frame grabber memory buffers are mapped. Direct interfacing, through a JDR-PR10 prototype card, between the frame grabber and the host computer AT bus enables each load of the frame grabber memory buffers to be effected under software control. The protected mode assembly language program can refresh the display of a six degree pseudo-color sector in the scanner rotation within the two second period of the scanner. A study of the imaging properties of the NPS-IRSTD is presented with preliminary work on image analysis and contrast enhancement of infrared background scenes.
Computational Analysis of the G-III Laminar Flow Glove
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan
2011-01-01
Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.
Studies in astronomical time series analysis. I - Modeling random processes in the time domain
NASA Technical Reports Server (NTRS)
Scargle, J. D.
1981-01-01
Several random process models in the time domain are defined and discussed. Attention is given to the moving average model, the autoregressive model, and relationships between and combinations of these models. Consideration is then given to methods for investigating pulse structure, procedures of model construction, computational methods, and numerical experiments. A FORTRAN algorithm of time series analysis has been developed which is relatively stable numerically. Results of test cases are given to study the effect of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the light curve of the quasar 3C 272 is considered as an example.
NASA Technical Reports Server (NTRS)
Manford, J. S.; Bennett, G. R.
1985-01-01
The Space Station Program will incorporate analysis of operations constraints and considerations in the early design phases to avoid the need for later modifications to the Space Station for operations. The application of modern tools and administrative techniques to minimize the cost of performing effective orbital operations planning and design analysis in the preliminary design phase of the Space Station Program is discussed. Tools and techniques discussed include: approach for rigorous analysis of operations functions, use of the resources of a large computer network, and providing for efficient research and access to information.
A User's Guide for the Differential Reduced Ejector/Mixer Analysis "DREA" Program. 1.0
NASA Technical Reports Server (NTRS)
DeChant, Lawrence J.; Nadell, Shari-Beth
1999-01-01
A system of analytical and numerical two-dimensional mixer/ejector nozzle models that require minimal empirical input has been developed and programmed for use in conceptual and preliminary design. This report contains a user's guide describing the operation of the computer code, DREA (Differential Reduced Ejector/mixer Analysis), that contains these mathematical models. This program is currently being adopted by the Propulsion Systems Analysis Office at the NASA Glenn Research Center. A brief summary of the DREA method is provided, followed by detailed descriptions of the program input and output files. Sample cases demonstrating the application of the program are presented.
Spectral Analysis of B Stars: An Application of Bayesian Statistics
NASA Astrophysics Data System (ADS)
Mugnes, J.-M.; Robert, C.
2012-12-01
To better understand the processes involved in stellar physics, it is necessary to obtain accurate stellar parameters (effective temperature, surface gravity, abundances…). Spectral analysis is a powerful tool for investigating stars, but it is also vital to reduce uncertainties at a decent computational cost. Here we present a spectral analysis method based on a combination of Bayesian statistics and grids of synthetic spectra obtained with TLUSTY. This method simultaneously constrains the stellar parameters by using all the lines accessible in observed spectra and thus greatly reduces uncertainties and improves the overall spectrum fitting. Preliminary results are shown using spectra from the Observatoire du Mont-Mégantic.
Modeling of multi-rotor torsional vibrations in rotating machinery using substructuring
NASA Technical Reports Server (NTRS)
Soares, Fola R.
1986-01-01
The application of FEM modeling techniques to the analysis of torsional vibrations in complex rotating systems is described and demonstrated, summarizing results reported by Soares (1985). A substructuring approach is used for determination of torsional natural frequencies and resonant-mode shapes, steady-state frequency-sweep analysis, identification of dynamically unstable speed ranges, and characterization of transient linear and nonlinear systems. Results for several sample problems are presented in diagrams, graphs, and tables. STORV, a computer code based on this approach, is in use as a preliminary design tool for drive-train torsional analysis in the High Altitude Wind Tunnel at NASA Lewis.
Decoupled 1D/3D analysis of a hydraulic valve
NASA Astrophysics Data System (ADS)
Mehring, Carsten; Zopeya, Ashok; Latham, Matt; Ihde, Thomas; Massie, Dan
2014-10-01
Analysis approaches during product development of fluid valves and other aircraft fluid delivery components vary greatly depending on the development stage. Traditionally, empirical or simplistic one-dimensional tools are being deployed during preliminary design, whereas detailed analysis such as CFD (Computational Fluid Dynamics) tools are used to refine a selected design during the detailed design stage. In recent years, combined 1D/3D co-simulation has been deployed specifically for system level simulations requiring an increased level of analysis detail for one or more components. The present paper presents a decoupled 1D/3D analysis approach where 3D CFD analysis results are utilized to enhance the fidelity of a dynamic 1D modelin context of an aircraft fuel valve.
Static Aeroelastic Analysis with an Inviscid Cartesian Method
NASA Technical Reports Server (NTRS)
Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian; Smith, Stephen C.
2014-01-01
An embedded-boundary Cartesian-mesh flow solver is coupled with a three degree-offreedom structural model to perform static, aeroelastic analysis of complex aircraft geometries. The approach solves the complete system of aero-structural equations using a modular, loosely-coupled strategy which allows the lower-fidelity structural model to deform the highfidelity CFD model. The approach uses an open-source, 3-D discrete-geometry engine to deform a triangulated surface geometry according to the shape predicted by the structural model under the computed aerodynamic loads. The deformation scheme is capable of modeling large deflections and is applicable to the design of modern, very-flexible transport wings. The interface is modular so that aerodynamic or structural analysis methods can be easily swapped or enhanced. This extended abstract includes a brief description of the architecture, along with some preliminary validation of underlying assumptions and early results on a generic 3D transport model. The final paper will present more concrete cases and validation of the approach. Preliminary results demonstrate convergence of the complete aero-structural system and investigate the accuracy of the approximations used in the formulation of the structural model.
Probabilistic Assessment of National Wind Tunnel
NASA Technical Reports Server (NTRS)
Shah, A. R.; Shiao, M.; Chamis, C. C.
1996-01-01
A preliminary probabilistic structural assessment of the critical section of National Wind Tunnel (NWT) is performed using NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) computer code. Thereby, the capabilities of NESSUS code have been demonstrated to address reliability issues of the NWT. Uncertainties in the geometry, material properties, loads and stiffener location on the NWT are considered to perform the reliability assessment. Probabilistic stress, frequency, buckling, fatigue and proof load analyses are performed. These analyses cover the major global and some local design requirements. Based on the assumed uncertainties, the results reveal the assurance of minimum 0.999 reliability for the NWT. Preliminary life prediction analysis results show that the life of the NWT is governed by the fatigue of welds. Also, reliability based proof test assessment is performed.
NASA Technical Reports Server (NTRS)
Moore, J. T.; Squires, M. F.
1982-01-01
Preliminary results are shown relating the ageostrophic wind field, through the terms of a semigeostrophic wind equation (assuming adiabatic conditions and the geostrophic momentum approximation) to both air parcel trajectories and their vertical motion fields computed from the parcels' displacement on isentropic surfaces, with respect to pressure. The analysis of results considers both upper-level (324 K) ageostrophic fields and low-level (304 K) fields. Preliminary results tend to support Uccellini and Johnson's (1979) hypothesis concerning upper-level-jet/low-level-jet (ULJ/LLJ) coupling in the exit region of the ULJ. Future plans are described briefly for research intended to clarify the mechanism behind ULJ streak propagation, LLJ development and their relationship to the initiation of severe convection.
The engineering design integration (EDIN) system. [digital computer program complex
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Reiners, S. J.
1974-01-01
A digital computer program complex for the evaluation of aerospace vehicle preliminary designs is described. The system consists of a Univac 1100 series computer and peripherals using the Exec 8 operating system, a set of demand access terminals of the alphanumeric and graphics types, and a library of independent computer programs. Modification of the partial run streams, data base maintenance and construction, and control of program sequencing are provided by a data manipulation program called the DLG processor. The executive control of library program execution is performed by the Univac Exec 8 operating system through a user established run stream. A combination of demand and batch operations is employed in the evaluation of preliminary designs. Applications accomplished with the EDIN system are described.
Uncertainty Modeling for Robustness Analysis of Control Upset Prevention and Recovery Systems
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.; Khong, Thuan H.; Shin, Jong-Yeob; Kwatny, Harry; Chang, Bor-Chin; Balas, Gary J.
2005-01-01
Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems (developed for failure detection, identification, and reconfiguration, as well as upset recovery) need to be evaluated over broad regions of the flight envelope and under extreme flight conditions, and should include various sources of uncertainty. However, formulation of linear fractional transformation (LFT) models for representing system uncertainty can be very difficult for complex parameter-dependent systems. This paper describes a preliminary LFT modeling software tool which uses a matrix-based computational approach that can be directly applied to parametric uncertainty problems involving multivariate matrix polynomial dependencies. Several examples are presented (including an F-16 at an extreme flight condition, a missile model, and a generic example with numerous crossproduct terms), and comparisons are given with other LFT modeling tools that are currently available. The LFT modeling method and preliminary software tool presented in this paper are shown to compare favorably with these methods.
Preliminary Analysis of High-Flux RSG-GAS to Transmute Am-241 of PWR’s Spent Fuel in Asian Region
NASA Astrophysics Data System (ADS)
Budi Setiawan, M.; Kuntjoro, S.
2018-02-01
A preliminary study of minor actinides (MA) transmutation in the high flux profile RSG-GAS research reactor was performed, aiming at an optimal transmutation loading for present nuclear energy development. The MA selected in the analysis includes Am-241 discharged from pressurized water reactors (PWRs) in Asian region. Until recently, studies have been undertaken in various methods to reduce radiotoxicity from actinides in high-level waste. From the cell calculation using computer code SRAC2006, it is obtained that the target Am-241 which has a cross section of the thermal energy absorption in the region (group 8) is relatively large; it will be easily burned in the RSG-GAS reactor. Minor actinides of Am-241 which can be inserted in the fuel (B/T fuel) is 2.5 kg which is equivalent to Am-241 resulted from the partition of spent fuel from 2 units power reactors PWR with power 1000MW(th) operated for one year.
Recent CFD Simulations of Shuttle Orbiter Contingency Abort Aerodynamics
NASA Technical Reports Server (NTRS)
Papadopoulos, Periklis; Prabhu, Dinesh; Wright, Michael; Davies, Carol; McDaniel, Ryan; Venkatapathy, Ethiraj; Wersinski, Paul; Gomez, Reynaldo; Arnold, Jim (Technical Monitor)
2001-01-01
Modern Computational Fluid Dynamics (CFD) techniques were used to compute aerodynamic forces and moments of the Space Shuttle Orbiter in specific portions of contingency abort trajectory space. The trajectory space covers a Mach number range of 3.5-15, an angle-of-attack range of 20-60 degrees, an altitude range of 100-190 kft, and several different settings of the control surfaces (elevons, body flap, and speed brake). While approximately 40 cases have been computed, only a sampling of the results is presented here. The computed results, in general, are in good agreement with the Orbiter Operational Aerodynamic Data Book (OADB) data (i.e., within the uncertainty bands) for almost all the cases. However, in a limited number of high angle-of-attack cases (at Mach 15), there are significant differences between the computed results, especially the vehicle pitching moment, and the OADB data. A preliminary analysis of the data from the CFD simulations at Mach 15 shows that these differences can be attributed to real-gas/Mach number effects.
NASA Technical Reports Server (NTRS)
1972-01-01
Information backing up the key features of the manipulator system concept and detailed technical information on the subsystems are presented. Space station assembly and shuttle cargo handling tasks are emphasized in the concept analysis because they involve shuttle berthing, transferring the manipulator boom between shuttle and station, station assembly, and cargo handling. Emphasis is also placed on maximizing commonality in the system areas of manipulator booms, general purpose end effectors, control and display, data processing, telemetry, dedicated computers, and control station design.
Incident Energy Focused Design and Validation for the Floating Potential Probe
NASA Technical Reports Server (NTRS)
Fincannon, James
2002-01-01
Utilizing the spacecraft shadowing and incident energy analysis capabilities of the NASA Glenn Research Center Power and Propulsion Office's SPACE System Power Analysis for Capability Evaluation) computer code, this paper documents the analyses for various International Space Station (ISS) Floating Potential Probe (EPP) preliminary design options. These options include various solar panel orientations and configurations as well as deployment locations on the ISS. The incident energy for the final selected option is characterized. A good correlation between the predicted data and on-orbit operational telemetry is demonstrated. Minor deviations are postulated to be induced by degradation or sensor drift.
NASA Technical Reports Server (NTRS)
Pera, R. J.; Onat, E.; Klees, G. W.; Tjonneland, E.
1977-01-01
Weight and envelope dimensions of aircraft gas turbine engines are estimated within plus or minus 5% to 10% using a computer method based on correlations of component weight and design features of 29 data base engines. Rotating components are estimated by a preliminary design procedure where blade geometry, operating conditions, material properties, shaft speed, hub-tip ratio, etc., are the primary independent variables used. The development and justification of the method selected, the various methods of analysis, the use of the program, and a description of the input/output data are discussed.
Analysis of physical-chemical processes governing SSME internal fluid flows
NASA Technical Reports Server (NTRS)
Singhal, A. K.; Owens, S. F.; Mukerjee, T.; Keeton, L. W.; Prakash, C.; Przekwas, A. J.
1984-01-01
The efforts to adapt CHAM's computational fluid dynamics code, PHOENICS, to the analysis of flow within the high pressure fuel turbopump (HPFTP) aft-platform seal cavity of the SSME are summarized. In particular, the special purpose PHOENICS satellite and ground station specifically formulated for this application are listed and described, and the preliminary results of the first part two-dimensional analyses are presented and discussed. Planned three-dimensional analyses are also briefly outlined. To further understand the mixing and combustion processes in the SSME fuelside preburners, a single oxygen-hydrogen jet element was investigated.
Analysis of a combined refrigerator-generator space power system
NASA Technical Reports Server (NTRS)
Klann, J. L.
1973-01-01
Description of a single-shaft and a two-shaft rotating machinery arrangements using neon for application in a combined refrigerator-generator power system for space missions. The arrangements consist of combined assemblies of a power turbine, alternator, compressor, and cry-turbine with a single-stage radial-flow design. A computer program was prepared to study the thermodynamics of the dual system in the evaluation of its cryocooling/electric capacity and appropriate weight. A preliminary analysis showed that a two-shaft arrangement of the power- and refrigeration-loop rotating machinery provided better output capacities than a single-shaft arrangement, without prohibitive operating compromises.
Investigation of the external flow analysis for density measurements at high altitude
NASA Technical Reports Server (NTRS)
Bienkowski, G. K.
1984-01-01
The results of analysis performed on the external flow around the shuttle orbiter nose regions at the Shuttle Upper Atmosphere Mass Spectrometer (SUMS) inlet orifice are presented. The purpose of the analysis is to quantitatively characterize the flow conditions to facilitate SUMS flight data reduction and subsequent determination of orbiter aerodynamic force coefficients in the hypersonic rarefied flow regime. Experimental determination of aerodynamic force coefficients requires accurate simultaneous measurement of forces (or acceleration) and dynamic pressure along with independent knowledge of density and velocity. The SUMS provides independent measurement of dynamic pressure; however, it does so indirectly and requires knowledge of the relationship between measured orifice conditions and the dynamic pressure which can only be determined on the basis of molecule or theory for a winged configuration. Monte Carlo direct simulation computer codes were developed for both the flow field solution at the orifice and for the internal orifice flow. These codes were used to study issues associated with geometric modeling of the orbiter nose geometry and the modeling of intermolecular collisions including rotational energy exchange and a preliminary analysis of vibrational excitation and dissociation effects. Data obtained from preliminary simulation runs are presented.
Yield prediction by analysis of multispectral scanner data
NASA Technical Reports Server (NTRS)
Colwell, J. E.; Suits, G. H.
1975-01-01
A preliminary model describing the growth and grain yield of wheat was developed. The modeled growth characteristics of the wheat crop were used to compute wheat canopy reflectance using a model of vegetation canopy reflectance. The modeled reflectance characteristics were compared with the corresponding growth characteristics and grain yield in order to infer their relationships. It appears that periodic wheat canopy reflectance characteristics potentially derivable from earth satellites will be useful in forecasting wheat grain yield.
Modelling of eddy currents related to large angle magnetic suspension test fixture
NASA Technical Reports Server (NTRS)
Britcher, Colin P.; Foster, Lucas E.
1994-01-01
This report presents a preliminary analysis of the mathematical modelling of eddy current effects in a large-gap magnetic suspension system. It is shown that eddy currents can significantly affect the dynamic behavior and control of these systems, but are amenable to measurement and modelling. A theoretical framework is presented, together with a comparison of computed and experimental data related to the Large Angle Magnetic Suspension Test Fixture at NASA Langley Research Center.
Performance of GeantV EM Physics Models
NASA Astrophysics Data System (ADS)
Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.
2017-10-01
The recent progress in parallel hardware architectures with deeper vector pipelines or many-cores technologies brings opportunities for HEP experiments to take advantage of SIMD and SIMT computing models. Launched in 2013, the GeantV project studies performance gains in propagating multiple particles in parallel, improving instruction throughput and data locality in HEP event simulation on modern parallel hardware architecture. Due to the complexity of geometry description and physics algorithms of a typical HEP application, performance analysis is indispensable in identifying factors limiting parallel execution. In this report, we will present design considerations and preliminary computing performance of GeantV physics models on coprocessors (Intel Xeon Phi and NVidia GPUs) as well as on mainstream CPUs.
OPDOT: A computer program for the optimum preliminary design of a transport airplane
NASA Technical Reports Server (NTRS)
Sliwa, S. M.; Arbuckle, P. D.
1980-01-01
A description of a computer program, OPDOT, for the optimal preliminary design of transport aircraft is given. OPDOT utilizes constrained parameter optimization to minimize a performance index (e.g., direct operating cost per block hour) while satisfying operating constraints. The approach in OPDOT uses geometric descriptors as independent design variables. The independent design variables are systematically iterated to find the optimum design. The technical development of the program is provided and a program listing with sample input and output are utilized to illustrate its use in preliminary design. It is not meant to be a user's guide, but rather a description of a useful design tool developed for studying the application of new technologies to transport airplanes.
40 CFR 161.170 - Preliminary analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Preliminary analysis. (a) If the product is produced by an integrated system, the applicant must provide a preliminary analysis of each technical grade of active ingredient contained in the product to identify all... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Preliminary analysis. 161.170 Section...
NASA Technical Reports Server (NTRS)
Price, R.; Gady, S.; Heinemann, K.; Nelson, E. S.; Mulugeta, L.; Ethier, C. R.; Samuels, B. C.; Feola, A.; Vera, J.; Myers, J. G.
2015-01-01
A recognized side effect of prolonged microgravity exposure is visual impairment and intracranial pressure (VIIP) syndrome. The medical understanding of this phenomenon is at present preliminary, although it is hypothesized that the headward shift of bodily fluids in microgravity may be a contributor. Computational models can be used to provide insight into the origins of VIIP. In order to further investigate this phenomenon, NASAs Digital Astronaut Project (DAP) is developing an integrated computational model of the human body which is divided into the eye, the cerebrovascular system, and the cardiovascular system. This presentation will focus on the development and testing of the computational model of an integrated model of the cardiovascular system (CVS) and central nervous system (CNS) that simulates the behavior of pressures, volumes, and flows within these two physiological systems.
Forest and range mapping in the Houston area with ERTS-1
NASA Technical Reports Server (NTRS)
Heath, G. R.; Parker, H. D.
1973-01-01
ERTS-1 data acquired over the Houston area has been analyzed for applications to forest and range mapping. In the field of forestry the Sam Houston National Forest (Texas) was chosen as a test site, (Scene ID 1037-16244). Conventional imagery interpretation as well as computer processing methods were used to make classification maps of timber species, condition and land-use. The results were compared with timber stand maps which were obtained from aircraft imagery and checked in the field. The preliminary investigations show that conventional interpretation techniques indicated an accuracy in classification of 63 percent. The computer-aided interpretations made by a clustering technique gave 70 percent accuracy. Computer-aided and conventional multispectral analysis techniques were applied to range vegetation type mapping in the gulf coast marsh. Two species of salt marsh grasses were mapped.
X based interactive computer graphics applications for aerodynamic design and education
NASA Technical Reports Server (NTRS)
Benson, Thomas J.; Higgs, C. Fred, III
1995-01-01
Six computer applications packages have been developed to solve a variety of aerodynamic problems in an interactive environment on a single workstation. The packages perform classical one dimensional analysis under the control of a graphical user interface and can be used for preliminary design or educational purposes. The programs were originally developed on a Silicon Graphics workstation and used the GL version of the FORMS library as the graphical user interface. These programs have recently been converted to the XFORMS library of X based graphics widgets and have been tested on SGI, IBM, Sun, HP and PC-Lunix computers. The paper will show results from the new VU-DUCT program as a prime example. VU-DUCT has been developed as an educational package for the study of subsonic open and closed loop wind tunnels.
Computer image analysis of etched tracks from ionizing radiation
NASA Technical Reports Server (NTRS)
Blanford, George E.
1994-01-01
I proposed to continue a cooperative research project with Dr. David S. McKay concerning image analysis of tracks. Last summer we showed that we could measure track densities using the Oxford Instruments eXL computer and software that is attached to an ISI scanning electron microscope (SEM) located in building 31 at JSC. To reduce the dependence on JSC equipment, we proposed to transfer the SEM images to UHCL for analysis. Last summer we developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains. Tracks were formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. As part of a consortium effort to better understand the maturation of lunar soil and its relation to its infrared reflectance properties, we worked on lunar samples 67701,205 and 61221,134. These samples were etched for a shorter time (6 hours) than last summer's sample and this difference has presented problems for establishing the correct analysis conditions. We used computer counting and measurement of area to obtain preliminary track densities and a track density distribution that we could interpret for sample 67701,205. This sample is a submature soil consisting of approximately 85 percent mature soil mixed with approximately 15 percent immature, but not pristine, soil.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
..., 2011, the Department issued its Post-Preliminary Analysis of Cross-ownership and its Post- Preliminary Analysis of New Subsidy Allegations. On that date, the Department also issued its Post-Preliminary Analysis... Post-Preliminary Analysis: GOK Preferential Lending Under the Daewoo Workout, and the GOK, LGE, SEC...
POSTOP: Postbuckled open-stiffener optimum panels-theory and capability
NASA Technical Reports Server (NTRS)
Dickson, J. N.; Biggers, S. B.
1984-01-01
The computer program POSTOP was developed to serve as an aid in the analysis and sizing of stiffened composite panels that are loaded in the postbuckling regime. A comprehensive set of analysis routines was coupled to a widely used optimization program to produce this sizing code. POSTOP is intended for the preliminary design of metal or composite panels with open-section stiffeners, subjected to multiple combined biaxial compression (or tension), shear and normal pressure load cases. Longitudinal compression, however, is assumed to be the dominant loading. Temperature, initial bow eccentricity and load eccentricity effects are included. The panel geometry is assumed to be repetitive over several bays in the longitudinal (stiffener) direction as well as in the transverse direction. Analytical routines are included to compute panel stiffnesses, strains, local and panel buckling loads, and skin/stiffener interface stresses. The resulting program is applicable to stiffened panels as commonly used in fuselage, wing, or empennage structures. The analysis procedures and rationale for the assumptions used therein are described in detail.
NASA Astrophysics Data System (ADS)
Latief, F. D. E.; Mohammad, I. H.; Rarasati, A. D.
2017-11-01
Digital imaging of a concrete sample using high resolution tomographic imaging by means of X-Ray Micro Computed Tomography (μ-CT) has been conducted to assess the characteristic of the sample’s structure. A standard procedure of image acquisition, reconstruction, image processing of the method using a particular scanning device i.e., the Bruker SkyScan 1173 High Energy Micro-CT are elaborated. A qualitative and a quantitative analysis were briefly performed on the sample to deliver some basic ideas of the capability of the system and the bundled software package. Calculation of total VOI volume, object volume, percent of object volume, total VOI surface, object surface, object surface/volume ratio, object surface density, structure thickness, structure separation, total porosity were conducted and analysed. This paper should serve as a brief description of how the device can produce the preferred image quality as well as the ability of the bundled software packages to help in performing qualitative and quantitative analysis.
Advanced ECG in 2016: is there more than just a tracing?
Reichlin, Tobias; Abächerli, Roger; Twerenbold, Raphael; Kühne, Michael; Schaer, Beat; Müller, Christian; Sticherling, Christian; Osswald, Stefan
2016-01-01
The 12-lead electrocardiogram (ECG) is the most frequently used technology in clinical cardiology. It is critical for evidence-based management of patients with most cardiovascular conditions, including patients with acute myocardial infarction, suspected chronic cardiac ischaemia, cardiac arrhythmias, heart failure and implantable cardiac devices. In contrast to many other techniques in cardiology, the ECG is simple, small, mobile, universally available and cheap, and therefore particularly attractive. Standard ECG interpretation mainly relies on direct visual assessment. The progress in biomedical computing and signal processing, and the available computational power offer fascinating new options for ECG analysis relevant to all fields of cardiology. Several digital ECG markers and advanced ECG technologies have shown promise in preliminary studies. This article reviews promising novel surface ECG technologies in three different fields. (1) For the detection of myocardial ischaemia and infarction, QRS morphology feature analysis, the analysis of high frequency QRS components (HF-QRS) and methods using vectorcardiography as well as ECG imaging are discussed. (2) For the identification and management of patients with cardiac arrhythmias, methods of advanced P-wave analysis are discussed and the concept of ECG imaging for noninvasive localisation of cardiac arrhythmias is presented. (3) For risk stratification of sudden cardiac death and the selection of patients for medical device therapy, several novel markers including an automated QRS-score for scar quantification, the QRS-T angle or the T-wave peak-to-end-interval are discussed. Despite the existing preliminary data, none of the advanced ECG markers and technologies has yet accomplished the transition into clinical practice. Further refinement of these technologies and broader validation in large unselected patient cohorts are the critical next step needed to facilitate translation of advanced ECG technologies into clinical cardiology.
A NASTRAN-based computer program for structural dynamic analysis of Horizontal Axis Wind Turbines
NASA Technical Reports Server (NTRS)
Lobitz, Don W.
1995-01-01
This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWT's). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower end rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWT's driven by turbulent winds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Peiyuan; Brown, Timothy; Fullmer, William D.
Five benchmark problems are developed and simulated with the computational fluid dynamics and discrete element model code MFiX. The benchmark problems span dilute and dense regimes, consider statistically homogeneous and inhomogeneous (both clusters and bubbles) particle concentrations and a range of particle and fluid dynamic computational loads. Several variations of the benchmark problems are also discussed to extend the computational phase space to cover granular (particles only), bidisperse and heat transfer cases. A weak scaling analysis is performed for each benchmark problem and, in most cases, the scalability of the code appears reasonable up to approx. 103 cores. Profiling ofmore » the benchmark problems indicate that the most substantial computational time is being spent on particle-particle force calculations, drag force calculations and interpolating between discrete particle and continuum fields. Hardware performance analysis was also carried out showing significant Level 2 cache miss ratios and a rather low degree of vectorization. These results are intended to serve as a baseline for future developments to the code as well as a preliminary indicator of where to best focus performance optimizations.« less
High resolution flow field prediction for tail rotor aeroacoustics
NASA Technical Reports Server (NTRS)
Quackenbush, Todd R.; Bliss, Donald B.
1989-01-01
The prediction of tail rotor noise due to the impingement of the main rotor wake poses a significant challenge to current analysis methods in rotorcraft aeroacoustics. This paper describes the development of a new treatment of the tail rotor aerodynamic environment that permits highly accurate resolution of the incident flow field with modest computational effort relative to alternative models. The new approach incorporates an advanced full-span free wake model of the main rotor in a scheme which reconstructs high-resolution flow solutions from preliminary, computationally inexpensive simulations with coarse resolution. The heart of the approach is a novel method for using local velocity correction terms to capture the steep velocity gradients characteristic of the vortex-dominated incident flow. Sample calculations have been undertaken to examine the principal types of interactions between the tail rotor and the main rotor wake and to examine the performance of the new method. The results of these sample problems confirm the success of this approach in capturing the high-resolution flows necessary for analysis of rotor-wake/rotor interactions with dramatically reduced computational cost. Computations of radiated sound are also carried out that explore the role of various portions of the main rotor wake in generating tail rotor noise.
NASA Technical Reports Server (NTRS)
John, Bonnie E.; Remington, Roger W.; Steier, David M.
1991-01-01
Before all systems are go just prior to the launch of a space shuttle, thousands of operations and tests have been performed to ensure that all shuttle and support subsystems are operational and ready for launch. These steps, which range from activating the orbiter's flight computers to removing the launch pad from the itinerary of the NASA tour buses, are carried out by launch team members at various locations and with highly specialized fields of expertise. The liability for coordinating these diverse activities rests with the NASA Test Director (NTD) at NASA-Kennedy. The behavior is being studied of the NTD with the goal of building a detailed computational model of that behavior; the results of that analysis to date are given. The NTD's performance is described in detail, as a team member who must coordinate a complex task through efficient audio communication, as well as an individual taking notes and consulting manuals. A model of the routine cognitive skill used by the NTD to follow the launch countdown procedure manual was implemented using the Soar cognitive architecture. Several examples are given of how such a model could aid in evaluating proposed computer support systems.
Barker, Fiona; Court, Gemma
2011-01-01
Computers are used increasingly in patient-clinician consultations. There is the potential for PC use to have an effect on the communication process. The aim of this preliminary study was to investigate patient opinion regarding the use of PC-based note taking during diagnostic vestibular assessments. We gave a simple four-item questionnaire to 100 consecutive patients attending for vestibular assessment at a secondary referral level primary care trust audiology service. Written responses to two of the questionnaire items were subject to an inductive thematic analysis. The questionnaire was acceptable to patients, none refused to complete it. Dominant themes identified suggest that patients do perceive consistent positive benefits from the use of PC-based note taking. This pilot study's short survey instrument is usable and may provide insights into patients' perceptions of computer use in a clinical setting.
Aerodynamic Analysis of Morphing Blades
NASA Astrophysics Data System (ADS)
Harris, Caleb; Macphee, David; Carlisle, Madeline
2016-11-01
Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.
Structural efficiency study of composite wing rib structures
NASA Technical Reports Server (NTRS)
Swanson, Gary D.; Gurdal, Zafer; Starnes, James H., Jr.
1988-01-01
A series of short stiffened panel designs which may be applied to a preliminary design assessment of an aircraft wing rib is presented. The computer program PASCO is used as the primary design and analysis tool to assess the structural efficiency and geometry of a tailored corrugated panel, a corrugated panel with a continuous laminate, a hat stiffened panel, a blade stiffened panel, and an unstiffened flat plate. To correct some of the shortcomings in the PASCO analysis when shear is present, a two step iterative process using the computer program VICON is used. The loadings considered include combinations of axial compression, shear, and lateral pressure. The loading ranges considered are broad enough such that the designs presented may be applied to other stiffened panel applications. An assessment is made of laminate variations, increased spacing, and nonoptimum geometric variations, including a beaded panel, on the design of the panels.
11 Foot Unitary Plan Tunnel Facility Optical Improvement Large Window Analysis
NASA Technical Reports Server (NTRS)
Hawke, Veronica M.
2015-01-01
The test section of the 11 by 11-foot Unitary Plan Transonic Wind Tunnel (11-foot UPWT) may receive an upgrade of larger optical windows on both the North and South sides. These new larger windows will provide better access for optical imaging of test article flow phenomena including surface and off body flow characteristics. The installation of these new larger windows will likely produce a change to the aerodynamic characteristics of the flow in the Test Section. In an effort understand the effect of this change, a computational model was employed to predict the flows through the slotted walls, in the test section and around the model before and after the tunnel modification. This report documents the solid CAD model that was created and the inviscid computational analysis that was completed as a preliminary estimate of the effect of the changes.
Prosser, G; Carson, P; Gelson, A; Tucker, H; Neophytou, M; Phillips, R; Simpson, T
1978-03-01
During a study investigating physiological and other effects of an exercise programme for coronary patients, a questionnaire was administered. Preliminary analysis had suggested some improvement in the patients' morale, but in view of the possible relevance of a number of psychological variables it was decided to carry out further analysis on the available data. The coefficient of discrimination was computed for 32 patients. For 19 patients correlations were computed between scores on subjective fitness, symptoms, anxiety, interest in sex, if at work, age, weight, and workload achieved at a given heart rate. The questionnaire appeared to have satisfactorily high internal and external validity. Patients with a high 'morale' score tended to achieve a greater increase in workload over the course. Although cause and effect cannot be unequivocally assigned, the association is felt to be important, and research is continuing.
Nontangent, Developed Contour Bulkheads for a Single-Stage Launch Vehicle
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Lepsch, Roger A., Jr.
2000-01-01
Dry weights for single-stage launch vehicles that incorporate nontangent, developed contour bulkheads are estimated and compared to a baseline vehicle with 1.414 aspect ratio ellipsoidal bulkheads. Weights, volumes, and heights of optimized bulkhead designs are computed using a preliminary design bulkhead analysis code. The dry weights of vehicles that incorporate the optimized bulkheads are predicted using a vehicle weights and sizing code. Two optimization approaches are employed. A structural-level method, where the vehicle's three major bulkhead regions are optimized separately and then incorporated into a model for computation of the vehicle dry weight, predicts a reduction of4365 lb (2.2 %) from the 200,679-lb baseline vehicle dry weight. In the second, vehicle-level, approach, the vehicle dry weight is the objective function for the optimization. For the vehicle-level analysis, modified bulkhead designs are analyzed and incorporated into the weights model for computation of a dry weight. The optimizer simultaneously manipulates design variables for all three bulkheads to reduce the dry weight. The vehicle-level analysis predicts a dry weight reduction of 5129 lb, a 2.6% reduction from the baseline weight. Based on these results, nontangent, developed contour bulkheads may provide substantial weight savings for single stage vehicles.
A Computational Fluid Dynamics Study of Swirling Flow Reduction by Using Anti-Vortex Baffle
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff; Peugeot, John W.
2017-01-01
OBJECTIVES: To evaluate proposed anti-vortex design in suppressing swirling flow during US burn. APPROACH: Include two major body forces in the analysis a)Vehicle acceleration (all three components); b)Vehicle maneuvers (roll, pitch, and yaw). Perform two drainage analyses of Ares I LOX tank using 6 DOF body forces predicted by GN&C analysis (Guidance Navigation and Control) during vehicle ascent: one with baffle, one without baffle. MODEL: Use Ares I defined geometry. O-Grid for easy fitting of baffle. In this preliminary analysis the holes are sealed. Use whole 360 deg. model with no assumption of symmetry or cyclic boundary conditions. Read in 6DOF data vs time from a file.
Dedicated computer system AOTK for image processing and analysis of horse navicular bone
NASA Astrophysics Data System (ADS)
Zaborowicz, M.; Fojud, A.; Koszela, K.; Mueller, W.; Górna, K.; Okoń, P.; Piekarska-Boniecka, H.
2017-07-01
The aim of the research was made the dedicated application AOTK (pol. Analiza Obrazu Trzeszczki Kopytowej) for image processing and analysis of horse navicular bone. The application was produced by using specialized software like Visual Studio 2013 and the .NET platform. To implement algorithms of image processing and analysis were used libraries of Aforge.NET. Implemented algorithms enabling accurate extraction of the characteristics of navicular bones and saving data to external files. Implemented in AOTK modules allowing the calculations of distance selected by user, preliminary assessment of conservation of structure of the examined objects. The application interface is designed in a way that ensures user the best possible view of the analyzed images.
Mechanical System Analysis/Design Tool (MSAT) Quick Guide
NASA Technical Reports Server (NTRS)
Lee, HauHua; Kolb, Mark; Madelone, Jack
1998-01-01
MSAT is a unique multi-component multi-disciplinary tool that organizes design analysis tasks around object-oriented representations of configuration components, analysis programs and modules, and data transfer links between them. This creative modular architecture enables rapid generation of input stream for trade-off studies of various engine configurations. The data transfer links automatically transport output from one application as relevant input to the next application once the sequence is set up by the user. The computations are managed via constraint propagation - the constraints supplied by the user as part of any optimization module. The software can be used in the preliminary design stage as well as during the detail design of product development process.
PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1994-01-01
A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and DEC VAX series computers running VMS. Format statements in the code may need to be rewritten depending on your FORTRAN compiler. The source code and sample data are available on a 5.25 inch 360K MS-DOS format diskette. This program was developed in 1972 and was last updated in 1991. IBM and IBM PC are registered trademarks of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. DEC VAX, and VMS are trademarks of Digital Equipment Corporation.
Computational prediction of propellant reorientation
NASA Technical Reports Server (NTRS)
Hochstein, John I.
1987-01-01
Viewgraphs from a presentation on computational prediction of propellant reorientation are given. Information is given on code verification, test conditions, predictions for a one-quarter scale cryogenic tank, pulsed settling, and preliminary results.
Modeling and Analysis of Mixed Synchronous/Asynchronous Systems
NASA Technical Reports Server (NTRS)
Driscoll, Kevin R.; Madl. Gabor; Hall, Brendan
2012-01-01
Practical safety-critical distributed systems must integrate safety critical and non-critical data in a common platform. Safety critical systems almost always consist of isochronous components that have synchronous or asynchronous interface with other components. Many of these systems also support a mix of synchronous and asynchronous interfaces. This report presents a study on the modeling and analysis of asynchronous, synchronous, and mixed synchronous/asynchronous systems. We build on the SAE Architecture Analysis and Design Language (AADL) to capture architectures for analysis. We present preliminary work targeted to capture mixed low- and high-criticality data, as well as real-time properties in a common Model of Computation (MoC). An abstract, but representative, test specimen system was created as the system to be modeled.
Multidisciplinary Optimization Methods for Aircraft Preliminary Design
NASA Technical Reports Server (NTRS)
Kroo, Ilan; Altus, Steve; Braun, Robert; Gage, Peter; Sobieski, Ian
1994-01-01
This paper describes a research program aimed at improved methods for multidisciplinary design and optimization of large-scale aeronautical systems. The research involves new approaches to system decomposition, interdisciplinary communication, and methods of exploiting coarse-grained parallelism for analysis and optimization. A new architecture, that involves a tight coupling between optimization and analysis, is intended to improve efficiency while simplifying the structure of multidisciplinary, computation-intensive design problems involving many analysis disciplines and perhaps hundreds of design variables. Work in two areas is described here: system decomposition using compatibility constraints to simplify the analysis structure and take advantage of coarse-grained parallelism; and collaborative optimization, a decomposition of the optimization process to permit parallel design and to simplify interdisciplinary communication requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beauchamp, R.O. Jr.
A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.
1979-11-01
C-9 TRANSITION CONFIGURATION ........................... C-29 i r Fvii LIST OF TABLES Table Page 2.1-1 PARAMETERS DESCRIBING ATC OPERATION - BASELINE...buffer load from each sensor. Medium Storage (Buffer space for data in and out is largest factor .) II P=K +KR Processing. Where R is the number of... factors to the data from the next scan VII Provides support service Operational Role VIII Dependence Requires data from Preliminary Processing and Target
The ac propulsion system for an electric vehicle, phase 1
NASA Astrophysics Data System (ADS)
Geppert, S.
1981-08-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
Nonlinear grid error effects on numerical solution of partial differential equations
NASA Technical Reports Server (NTRS)
Dey, S. K.
1980-01-01
Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.
The ac propulsion system for an electric vehicle, phase 1
NASA Technical Reports Server (NTRS)
Geppert, S.
1981-01-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
1980-02-01
CHAPTER 1: PRELIMINARY MODELING OF THE LAKE PONTCHARTRAIN ECOSYSTEM BY COMPUTER SIMULATIONS Janes H. Stone and Linda A. Deegan ...related to the extent and productivity of intertidal wetlands ( Craig et al. 1979). The role of coastal wetlands in estuarine areas has been well documented...site arid a bottomland harlwood stt c ill I Iouisiana swamp. Amer. J. Bot. 63 (10):1354-1364. Craig , N. J., R. E. Turner, aird J. W. Day, Jr. 197
Consumer product safety: A systems problem
NASA Technical Reports Server (NTRS)
Clark, C. C.
1971-01-01
The manufacturer, tester, retailer, consumer, repairer disposer, trade and professional associations, national and international standards bodies, and governments in several roles are all involved in consumer product safety. A preliminary analysis, drawing on system safety techniques, is utilized to distinguish the inter-relations of these many groups and the responsibilities that they are or could take for product safety, including the slow accident hazards as well as the more commonly discussed fast accident hazards. The importance of interactive computer aided information flow among these groups is particularly stressed.
Analysis methods for Kevlar shield response to rotor fragments
NASA Technical Reports Server (NTRS)
Gerstle, J. H.
1977-01-01
Several empirical and analytical approaches to rotor burst shield sizing are compared and principal differences in metal and fabric dynamic behavior are discussed. The application of transient structural response computer programs to predict Kevlar containment limits is described. For preliminary shield sizing, present analytical methods are useful if insufficient test data for empirical modeling are available. To provide other information useful for engineering design, analytical methods require further developments in material characterization, failure criteria, loads definition, and post-impact fragment trajectory prediction.
Initial constructs for patient-centered outcome measures to evaluate brain-computer interfaces
Andresen, Elena M.; Fried-Oken, Melanie; Peters, Betts; Patrick, Donald L.
2016-01-01
Purpose The authors describe preliminary work toward the creation of patient-centered outcome (PCO) measures to evaluate brain-computer interface (BCI) as an assistive technology for individuals with severe speech and physical impairments (SSPI). Method In Phase 1, 591 items from 15 existing measures were mapped to the International Classification of Functioning, Disability and Health (ICF). In Phase 2, qualitative interviews were conducted with eight people with SSPI and seven caregivers. Resulting text data were coded in an iterative analysis. Results Most items (79%) mapped to the ICF environmental domain; over half (53%) mapped to more than one domain. The ICF framework was well suited for mapping items related to body functions and structures, but less so for items in other areas, including personal factors. Two constructs emerged from qualitative data: Quality of Life (QOL) and Assistive Technology. Component domains and themes were identified for each. Conclusions Preliminary constructs, domains, and themes were generated for future PCO measures relevant to BCI. Existing instruments are sufficient for initial items but do not adequately match the values of people with SSPI and their caregivers. Field methods for interviewing people with SSPI were successful, and support the inclusion of these individuals in PCO research. PMID:25806719
An Interactive Software for Conceptual Wing Flutter Analysis and Parametric Study
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1996-01-01
An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well-defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed for Macintosh or IBM compatible personal computers, on MathCad application software with integrated documentation, graphics, data base and symbolic mathematics. The analysis method was based on non-dimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The parametric plots were compiled in a Vought Corporation report from a vast data base of past experiments and wind-tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended-Wing-Body concept, proposed by McDonnell Douglas Corp. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.
Notification: Audit of EPA's Cloud Computer Initiative
Project #OA-FY13-0095, December 17, 2012. The U.S. Environmental Protection Agency (EPA) Office of Inspector General plans to begin preliminary research on the audit of EPA’s cloud computer initiative.
Texture classification of lung computed tomography images
NASA Astrophysics Data System (ADS)
Pheng, Hang See; Shamsuddin, Siti M.
2013-03-01
Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.
Phenology satellite experiment
NASA Technical Reports Server (NTRS)
Dethier, B. E. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The detection of a phenological event (the Brown Wave-vegetation sensescence) for specific forest and crop types using ERTS-1 imagery is described. Data handling techniques including computer analysis and photointerpretation procedures are explained. Computer analysis of multspectral scanner digital tapes in all bands was used to give the relative changes of spectral reflectance with time of forests and specified crops. These data were obtained for a number of the twenty-four sites located within four north-south corridors across the United States. Analysis of ground observation photography and ERTS-1 imagery for sites in the Appalachian Corridor and Mississippi Valley Corridor indicates that the recession of vegetation development can be detected very well. Tentative conclusions are that specific phenological events such as crop maturity or leaf fall can be mapped for specific sites and possible for different regions. Preliminary analysis based on a number of samples in mixed deciduous hardwood stands indicates that as senescence proceeds both the rate of change and differences in color among species can be detected. The results to data show the feasibility of the development and refinement of phenoclimatic models.
A preliminary analysis of quantifying computer security vulnerability data in "the wild"
NASA Astrophysics Data System (ADS)
Farris, Katheryn A.; McNamara, Sean R.; Goldstein, Adam; Cybenko, George
2016-05-01
A system of computers, networks and software has some level of vulnerability exposure that puts it at risk to criminal hackers. Presently, most vulnerability research uses data from software vendors, and the National Vulnerability Database (NVD). We propose an alternative path forward through grounding our analysis in data from the operational information security community, i.e. vulnerability data from "the wild". In this paper, we propose a vulnerability data parsing algorithm and an in-depth univariate and multivariate analysis of the vulnerability arrival and deletion process (also referred to as the vulnerability birth-death process). We find that vulnerability arrivals are best characterized by the log-normal distribution and vulnerability deletions are best characterized by the exponential distribution. These distributions can serve as prior probabilities for future Bayesian analysis. We also find that over 22% of the deleted vulnerability data have a rate of zero, and that the arrival vulnerability data is always greater than zero. Finally, we quantify and visualize the dependencies between vulnerability arrivals and deletions through a bivariate scatterplot and statistical observations.
A DNA network as an information processing system.
Santini, Cristina Costa; Bath, Jonathan; Turberfield, Andrew J; Tyrrell, Andy M
2012-01-01
Biomolecular systems that can process information are sought for computational applications, because of their potential for parallelism and miniaturization and because their biocompatibility also makes them suitable for future biomedical applications. DNA has been used to design machines, motors, finite automata, logic gates, reaction networks and logic programs, amongst many other structures and dynamic behaviours. Here we design and program a synthetic DNA network to implement computational paradigms abstracted from cellular regulatory networks. These show information processing properties that are desirable in artificial, engineered molecular systems, including robustness of the output in relation to different sources of variation. We show the results of numerical simulations of the dynamic behaviour of the network and preliminary experimental analysis of its main components.
Improving the quality of extracting dynamics from interspike intervals via a resampling approach
NASA Astrophysics Data System (ADS)
Pavlova, O. N.; Pavlov, A. N.
2018-04-01
We address the problem of improving the quality of characterizing chaotic dynamics based on point processes produced by different types of neuron models. Despite the presence of embedding theorems for non-uniformly sampled dynamical systems, the case of short data analysis requires additional attention because the selection of algorithmic parameters may have an essential influence on estimated measures. We consider how the preliminary processing of interspike intervals (ISIs) can increase the precision of computing the largest Lyapunov exponent (LE). We report general features of characterizing chaotic dynamics from point processes and show that independently of the selected mechanism for spike generation, the performed preprocessing reduces computation errors when dealing with a limited amount of data.
NASA Technical Reports Server (NTRS)
Sawyer, W. C.; Allen, J. M.; Hernandez, G.; Dillenius, M. F. E.; Hemsch, M. J.
1982-01-01
This paper presents a survey of engineering computational methods and experimental programs used for estimating the aerodynamic characteristics of missile configurations. Emphasis is placed on those methods which are suitable for preliminary design of conventional and advanced concepts. An analysis of the technical approaches of the various methods is made in order to assess their suitability to estimate longitudinal and/or lateral-directional characteristics for different classes of missile configurations. Some comparisons between the predicted characteristics and experimental data are presented. These comparisons are made for a large variation in flow conditions and model attitude parameters. The paper also presents known experimental research programs developed for the specific purpose of validating analytical methods and extending the capability of data-base programs.
NASA Astrophysics Data System (ADS)
Lespinats, S.; Meyer-Bäse, Anke; He, Huan; Marshall, Alan G.; Conrad, Charles A.; Emmett, Mark R.
2009-05-01
Partial Least Square Regression (PLSR) and Data-Driven High Dimensional Scaling (DD-HDS) are employed for the prediction and the visualization of changes in polar lipid expression induced by different combinations of wild-type (wt) p53 gene therapy and SN38 chemotherapy of U87 MG glioblastoma cells. A very detailed analysis of the gangliosides reveals that certain gangliosides of GM3 or GD1-type have unique properties not shared by the others. In summary, this preliminary work shows that data mining techniques are able to determine the modulation of gangliosides by different treatment combinations.
NASA Technical Reports Server (NTRS)
Hoffer, R. M. (Principal Investigator)
1980-01-01
Several possibilities were considered for defining the data set in which the same test areas could be used for each of the four different spatial resolutions being evaluated. The LARSYS CLUSTER was used to sort the vectors into spectral classes to reduce the within-spectral class variability in an effort to develop training statistics. A data quality test was written to determine the basic signal to noise characteristics within the data set being used. Because preliminary analysis of the LANDSAT MSS data revealed the presence of high cirrus clouds, other data sets are being sought.
NASA Technical Reports Server (NTRS)
Kuo, B. C.; Singh, G.
1974-01-01
The dynamics of the Large Space Telescope (LST) control system were studied in order to arrive at a simplified model for computer simulation without loss of accuracy. The frictional nonlinearity of the Control Moment Gyroscope (CMG) Control Loop was analyzed in a model to obtain data for the following: (1) a continuous describing function for the gimbal friction nonlinearity; (2) a describing function of the CMG nonlinearity using an analytical torque equation; and (3) the discrete describing function and function plots for CMG functional linearity. Preliminary computer simulations are shown for the simplified LST system, first without, and then with analytical torque expressions. Transfer functions of the sampled-data LST system are also described. A final computer simulation is presented which uses elements of the simplified sampled-data LST system with analytical CMG frictional torque expressions.
NASA Technical Reports Server (NTRS)
Huck, F. O.; Davis, R. E.; Fales, C. L.; Aherron, R. M.
1982-01-01
A computational model of the deterministic and stochastic processes involved in remote sensing is used to study spectral feature identification techniques for real-time onboard processing of data acquired with advanced earth-resources sensors. Preliminary results indicate that: Narrow spectral responses are advantageous; signal normalization improves mean-square distance (MSD) classification accuracy but tends to degrade maximum-likelihood (MLH) classification accuracy; and MSD classification of normalized signals performs better than the computationally more complex MLH classification when imaging conditions change appreciably from those conditions during which reference data were acquired. The results also indicate that autonomous categorization of TM signals into vegetation, bare land, water, snow and clouds can be accomplished with adequate reliability for many applications over a reasonably wide range of imaging conditions. However, further analysis is required to develop computationally efficient boundary approximation algorithms for such categorization.
Children's strategies to solving additive inverse problems: a preliminary analysis
NASA Astrophysics Data System (ADS)
Ding, Meixia; Auxter, Abbey E.
2017-03-01
Prior studies show that elementary school children generally "lack" formal understanding of inverse relations. This study goes beyond lack to explore what children might "have" in their existing conception. A total of 281 students, kindergarten to third grade, were recruited to respond to a questionnaire that involved both contextual and non-contextual tasks on inverse relations, requiring both computational and explanatory skills. Results showed that children demonstrated better performance in computation than explanation. However, many students' explanations indicated that they did not necessarily utilize inverse relations for computation. Rather, they appeared to possess partial understanding, as evidenced by their use of part-whole structure, which is a key to understanding inverse relations. A close inspection of children's solution strategies further revealed that the sophistication of children's conception of part-whole structure varied in representation use and unknown quantity recognition, which suggests rich opportunities to develop students' understanding of inverse relations in lower elementary classrooms.
2006-06-01
Polarisation measurement with a dual beam interferometer (CATSI) Exploratory results and preliminary phenomenological analysis H. Lavoie J.-M... Polarisation measurement with a dual beam interferometer (CATSI) Exploratory results and preliminary phenomenological analysis H. Lavoie J.-M. Thériault... Polarisation measurement with a dual beam interferometer (CATSI) - Exploratory results and preliminary phenomenological analysis. ECR 2004-372. DRDC Valcartier
Conceptual Design Oriented Wing Structural Analysis and Optimization
NASA Technical Reports Server (NTRS)
Lau, May Yuen
1996-01-01
Airplane optimization has always been the goal of airplane designers. In the conceptual design phase, a designer's goal could be tradeoffs between maximum structural integrity, minimum aerodynamic drag, or maximum stability and control, many times achieved separately. Bringing all of these factors into an iterative preliminary design procedure was time consuming, tedious, and not always accurate. For example, the final weight estimate would often be based upon statistical data from past airplanes. The new design would be classified based on gross characteristics, such as number of engines, wingspan, etc., to see which airplanes of the past most closely resembled the new design. This procedure works well for conventional airplane designs, but not very well for new innovative designs. With the computing power of today, new methods are emerging for the conceptual design phase of airplanes. Using finite element methods, computational fluid dynamics, and other computer techniques, designers can make very accurate disciplinary-analyses of an airplane design. These tools are computationally intensive, and when used repeatedly, they consume a great deal of computing time. In order to reduce the time required to analyze a design and still bring together all of the disciplines (such as structures, aerodynamics, and controls) into the analysis, simplified design computer analyses are linked together into one computer program. These design codes are very efficient for conceptual design. The work in this thesis is focused on a finite element based conceptual design oriented structural synthesis capability (CDOSS) tailored to be linked into ACSYNT.
Preliminary System Design of the SWRL Financial System.
ERIC Educational Resources Information Center
Ikeda, Masumi
The preliminary system design of the computer-based Southwest Regional Laboratory's (SWRL) Financial System is outlined. The system is designed to produce various management and accounting reports needed to maintain control of SWRL operational and financial activities. Included in the document are descriptions of the various types of system…
Preliminary weight and costs of sandwich panels to distribute concentrated loads
NASA Technical Reports Server (NTRS)
Belleman, G.; Mccarty, J. E.
1976-01-01
Minimum mass honeycomb sandwich panels were sized for transmitting a concentrated load to a uniform reaction through various distances. The form skin gages were fully stressed with a finite element computer code. The panel general stability was evaluated with a buckling computer code labeled STAGS-B. Two skin materials were considered; aluminum and graphite-epoxy. The core was constant thickness aluminum honeycomb. Various panel sizes and load levels were considered. The computer generated data were generalized to allow preliminary least mass panel designs for a wide range of panel sizes and load intensities. An assessment of panel fabrication cost was also conducted. Various comparisons between panel mass, panel size, panel loading, and panel cost are presented in both tabular and graphical form.
Workflow Management Systems for Molecular Dynamics on Leadership Computers
NASA Astrophysics Data System (ADS)
Wells, Jack; Panitkin, Sergey; Oleynik, Danila; Jha, Shantenu
Molecular Dynamics (MD) simulations play an important role in a range of disciplines from Material Science to Biophysical systems and account for a large fraction of cycles consumed on computing resources. Increasingly science problems require the successful execution of ''many'' MD simulations as opposed to a single MD simulation. There is a need to provide scalable and flexible approaches to the execution of the workload. We present preliminary results on the Titan computer at the Oak Ridge Leadership Computing Facility that demonstrate a general capability to manage workload execution agnostic of a specific MD simulation kernel or execution pattern, and in a manner that integrates disparate grid-based and supercomputing resources. Our results build upon our extensive experience of distributed workload management in the high-energy physics ATLAS project using PanDA (Production and Distributed Analysis System), coupled with recent conceptual advances in our understanding of workload management on heterogeneous resources. We will discuss how we will generalize these initial capabilities towards a more production level service on DOE leadership resources. This research is sponsored by US DOE/ASCR and used resources of the OLCF computing facility.
CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences
NASA Technical Reports Server (NTRS)
Slotnick, Jeffrey; Khodadoust, Abdollah; Alonso, Juan; Darmofal, David; Gropp, William; Lurie, Elizabeth; Mavriplis, Dimitri
2014-01-01
This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.
Preliminary topical report on comparison reactor disassembly calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, T.P.
1975-11-01
Preliminary results of comparison disassembly calculations for a representative LMFBR model (2100-l voided core) and arbitrary accident conditions are described. The analytical methods employed were the computer programs: FX2- POOL, PAD, and VENUS-II. The calculated fission energy depositions are in good agreement, as are measures of the destructive potential of the excursions, kinetic energy, and work. However, in some cases the resulting fuel temperatures are substantially divergent. Differences in the fission energy deposition appear to be attributable to residual inconsistencies in specifying the comparison cases. In contrast, temperature discrepancies probably stem from basic differences in the energy partition models inherentmore » in the codes. Although explanations of the discrepancies are being pursued, the preliminary results indicate that all three computational methods provide a consistent, global characterization of the contrived disassembly accident. (auth)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-03
... Response to Comments on Previous Analysis C. Summary of the Comparative Analysis 1. Quantitative Analysis 2... preliminary quantitative analysis are specific building designs, in most cases with specific spaces defined... preliminary determination. C. Summary of the Comparative Analysis DOE carried out both a broad quantitative...
Historical MOBLAS system characterization
NASA Technical Reports Server (NTRS)
Husson, Van S.
1993-01-01
This paper is written as a direct response to the published NASA Laser Geodynamic Satellite (LAGEOS) orbital solution SL7.1, in order to close the data information loop with an emphasis on the NASA Mobile Laser Ranging System's (MOBLAS) LAGEOS full rate data since November 1, 1983. A preliminary analysis of the supporting information (i.e. satellite laser ranging system eccentricities and system dependent range and time bias corrections) contained in SL7.1 indicated centimeter (cm) level discrepancies. In addition, a preliminary analysis of the computed monthly MOBLAS range biases from SL7.1 appear to show cm level systematic trends, some of which appear to be 'real', particularly in the 1984 to 1987 time period. This paper is intended to be a reference document for known MOBLAS systematic errors (magnitude and direction) and for supporting MOBLAS information (eccentricities, hardware configurations, and potential data problem periods). Therefore, this report is different than your typical system characterization report, but will be more valuable to the user. The MOBLAS error models and supporting information contained in this paper will be easily accessible from the Crustal Dynamics Data Information System (CDDIS).
NASA Technical Reports Server (NTRS)
Strahler, A. H.; Woodcock, C. E.; Avila, F. X.
1985-01-01
The experiences and results associated with a project entitled Preliminary Evaluation of the Airborne Imaging Spectrometer for Vegetation Analysis is documented. The primary goal of the project was to provide ground truth, manual interpretation, and computer processing of data from an experimental flight of the Airborne Infrared Spectrometer (AIS) to determine the extent to which high spectral resolution remote sensing could differentiate among plant species, and especially species of conifers, for a naturally vegetated test site. Through the course of the research, JPL acquired AIS imagery of the test areas in the Klamath National Forest, northeastern California, on two overflights of both the Dock Well and Grass Lake transects. Over the next year or so, three generations of data was also received: first overflight, second overflight, and reprocessed second overflight. Two field visits were made: one trip immediately following the first overflight to note snow conditions and temporally-related vegetation states at the time of the sensor overpass; and a second trip about six weeks later, following acquisition of prints of the images from the first AIS overpass.
ERIC Educational Resources Information Center
Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang
2015-01-01
This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of…
Laenen, Antonius
1985-01-01
A riverine-temperature model and associated data-collection system were developed to help the Corps of engineers determine cost benefits of selective-withdrawal structures for future use with dams on the Willamette River System. A U.S. Geological Survey Lagrangian reference frame, digital computer model was used to simulate stream temperatures on the North Santiam River downstream of the multipurpose Detroit dam and a reregulating dam (Big Cliff), from river mile 45.6 to 2.9. In simulation, only available air-temperature and windspeed information from a nearby National Weather Service station at Salem, Oregon were used. This preliminary investigation found that the model predicted mean daily temperatures to within 0.4 C standard deviation. Analysis of projected selective-withdrawal scenarios showed that the model has the sensitivity to indicate water-temperature changes 42.7 miles downstream on the North Santiam River. (USGS)
Structural analysis of wind turbine rotors for NSF-NASA Mod-0 wind power system
NASA Technical Reports Server (NTRS)
Spera, D. A.
1976-01-01
Preliminary estimates are presented of vibratory loads and stresses in hingeless and teetering rotors for the proposed NSF-NASA Mod-0 wind power system. Preliminary blade design utilizes a tapered tubular aluminum spar which supports nonstructural aluminum ribs and skin and is joined to the rotor hub by a steel shank tube. Stresses in the shank of the blade are calculated for static, rated, and overload operating conditions. Blade vibrations were limited to the fundamental flapping modes, which were elastic cantilever bending for hingeless rotor blades and rigid-body rotation for teetering rotor blades. The MOSTAB-C computer code was used to calculate aerodynamic and mechanical loads. The teetering rotor has substantial advantages over the hingeless rotor with respect to shank stresses, fatigue life, and tower loading. The hingeless rotor analyzed does not appear to be structurally stable during overloads.
The Computer Aided Aircraft-design Package (CAAP)
NASA Technical Reports Server (NTRS)
Yalif, Guy U.
1994-01-01
The preliminary design of an aircraft is a complex, labor-intensive, and creative process. Since the 1970's, many computer programs have been written to help automate preliminary airplane design. Time and resource analyses have identified, 'a substantial decrease in project duration with the introduction of an automated design capability'. Proof-of-concept studies have been completed which establish 'a foundation for a computer-based airframe design capability', Unfortunately, today's design codes exist in many different languages on many, often expensive, hardware platforms. Through the use of a module-based system architecture, the Computer aided Aircraft-design Package (CAAP) will eventually bring together many of the most useful features of existing programs. Through the use of an expert system, it will add an additional feature that could be described as indispensable to entry level engineers and students: the incorporation of 'expert' knowledge into the automated design process.
NASA Technical Reports Server (NTRS)
Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.
1982-01-01
Documentation of the preliminary software developed as a framework for a generalized integrated robotic system simulation is presented. The program structure is composed of three major functions controlled by a program executive. The three major functions are: system definition, analysis tools, and post processing. The system definition function handles user input of system parameters and definition of the manipulator configuration. The analysis tools function handles the computational requirements of the program. The post processing function allows for more detailed study of the results of analysis tool function executions. Also documented is the manipulator joint model software to be used as the basis of the manipulator simulation which will be part of the analysis tools capability.
Direct Numerical Simulation of an Airfoil with Sand Grain Roughness on the Leading Edge
NASA Technical Reports Server (NTRS)
Ribeiro, Andre F. P.; Casalino, Damiano; Fares, Ehab; Choudhari, Meelan
2016-01-01
As part of a computational study of acoustic radiation due to the passage of turbulent boundary layer eddies over the trailing edge of an airfoil, the Lattice-Boltzmann method is used to perform direct numerical simulations of compressible, low Mach number flow past an NACA 0012 airfoil at zero degrees angle of attack. The chord Reynolds number of approximately 0.657 million models one of the test conditions from a previous experiment by Brooks, Pope, and Marcolini at NASA Langley Research Center. A unique feature of these simulations involves direct modeling of the sand grain roughness on the leading edge, which was used in the abovementioned experiment to trip the boundary layer to fully turbulent flow. This report documents the findings of preliminary, proof-of-concept simulations based on a narrow spanwise domain and a limited time interval. The inclusion of fully-resolved leading edge roughness in this simulation leads to significantly earlier transition than that in the absence of any roughness. The simulation data is used in conjunction with both the Ffowcs Williams-Hawkings acoustic analogy and a semi-analytical model by Roger and Moreau to predict the farfield noise. The encouraging agreement between the computed noise spectrum and that measured in the experiment indicates the potential payoff from a full-fledged numerical investigation based on the current approach. Analysis of the computed data is used to identify the required improvements to the preliminary simulations described herein.
Initial constructs for patient-centered outcome measures to evaluate brain-computer interfaces.
Andresen, Elena M; Fried-Oken, Melanie; Peters, Betts; Patrick, Donald L
2016-10-01
The authors describe preliminary work toward the creation of patient-centered outcome (PCO) measures to evaluate brain-computer interface (BCI) as an assistive technology (AT) for individuals with severe speech and physical impairments (SSPI). In Phase 1, 591 items from 15 existing measures were mapped to the International Classification of Functioning, Disability and Health (ICF). In Phase 2, qualitative interviews were conducted with eight people with SSPI and seven caregivers. Resulting text data were coded in an iterative analysis. Most items (79%) were mapped to the ICF environmental domain; over half (53%) were mapped to more than one domain. The ICF framework was well suited for mapping items related to body functions and structures, but less so for items in other areas, including personal factors. Two constructs emerged from qualitative data: quality of life (QOL) and AT. Component domains and themes were identified for each. Preliminary constructs, domains and themes were generated for future PCO measures relevant to BCI. Existing instruments are sufficient for initial items but do not adequately match the values of people with SSPI and their caregivers. Field methods for interviewing people with SSPI were successful, and support the inclusion of these individuals in PCO research. Implications for Rehabilitation Adapted interview methods allow people with severe speech and physical impairments to participate in patient-centered outcomes research. Patient-centered outcome measures are needed to evaluate the clinical implementation of brain-computer interface as an assistive technology.
NASA Technical Reports Server (NTRS)
Jules, Kenol; Lin, Paul P.; Weiss, Daniel S.
2002-01-01
This paper presents the preliminary performance results of the artificial intelligence monitoring system in full operational mode using near real time acceleration data downlinked from the International Space Station. Preliminary microgravity environment characterization analysis result for the International Space Station (Increment-2), using the monitoring system is presented. Also, comparison between the system predicted performance based on ground test data for the US laboratory "Destiny" module and actual on-orbit performance, using measured acceleration data from the U.S. laboratory module of the International Space Station is presented. Finally, preliminary on-orbit disturbance magnitude levels are presented for the Experiment of Physics of Colloids in Space, which are compared with on ground test data. The ground test data for the Experiment of Physics of Colloids in Space were acquired from the Microgravity Emission Laboratory, located at the NASA Glenn Research Center, Cleveland, Ohio. The artificial intelligence was developed by the NASA Glenn Principal Investigator Microgravity Services Project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment of time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a dynamic graphical display, implemented in Java, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, structural modes, etc., and decide whether or not to run their experiments, whenever that is an option, based on the acceleration magnitude and frequency sensitivity associated with that experiment. This monitoring system detects primarily the vibratory disturbance sources. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.
Influence of preliminary damage on the load-bearing capacity of zirconia fixed dental prostheses.
Kohorst, Philipp; Butzheinen, Lutz Oliver; Dittmer, Marc Philipp; Heuer, Wieland; Borchers, Lothar; Stiesch, Meike
2010-12-01
The objective of this investigation was to evaluate the influence of differently shaped preliminary cuts in combination with artificial aging on the load-bearing capacity of four-unit zirconia fixed dental prostheses (FDPs). Forty frameworks were fabricated from white-stage zirconia blanks (InCeram YZ, Vita) by means of a computer-aided design/computer-aided manufacturing system (Cerec inLab, Sirona). Frameworks were divided into four homogeneous groups with ten specimens each. Prior to veneering, frameworks of two groups were "damaged" by defined saw cuts of different dimensions, to simulate accidental flaws generated during shape cutting. After the veneering process, FDPs, with the exception of a control group without preliminary damage, were subjected to thermal and mechanical cycling (TMC) during 200 days storage in distilled water at 36°C. Following the aging procedure, all specimens were loaded until fracture, and forces at fracture were recorded. The statistical analysis of force at fracture data was performed using two-way ANOVA, with the level of significance chosen at 0.05. Neither type of preliminary mechanical damage significantly affected the load-bearing capacity of FDPs. In contrast, artificial aging by TMC proved to have a significant influence on the load-bearing capacity of both the undamaged and the predamaged zirconia restorations (p < 0.001); however, even though load-bearing capacity decreased by about 20% due to simulated aging, the FDPs still showed mean load-bearing capacities of about 1600 N. The results of this study reveal that zirconia restorations have a high tolerance regarding mechanical damages. Irrespective of these findings, damage to zirconia ceramics during production or finishing should be avoided, as this may nevertheless lead to subcritical crack growth and, eventually, catastrophic failure. Furthermore, to ensure long-term clinical success, the design of zirconia restorations has to accommodate the decrease in load-bearing capacity due to TMC in the oral environment. © 2010 by The American College of Prosthodontists.
How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography
Jørgensen, J. S.; Sidky, E. Y.
2015-01-01
We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling. First, we demonstrate that there are cases where X-ray CT empirically performs comparably with a near-optimal CS strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization. PMID:25939620
How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography.
Jørgensen, J S; Sidky, E Y
2015-06-13
We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling. First, we demonstrate that there are cases where X-ray CT empirically performs comparably with a near-optimal CS strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-23
... Federal share) IMD and other mental health facility DSH expenditures applicable to the State's FY 1995 DSH... State's total computable DSH expenditures attributable to the FY 1995 DSH allotment for mental health... DSH expenditures (mental health facility plus inpatient hospital) applicable to the FY 1995 DSH...
CHINESE GRAMMARS AND THE COMPUTER AT THE OHIO STATE UNIVERSITY. PRELIMINARY REPORT.
ERIC Educational Resources Information Center
MEYERS, L.F.; YANG, J.
SAMPLE OUTPUT SENTENCES OF VARIOUS COMIT AND SNOBOL PROGRAMS FOR TESTING A CHINESE GENERATIVE GRAMMAR ARE PRESENTED. THE GRAMMAR CHOSEN FOR EXPERIMENTATION IS A PRELIMINARY VERSION OF A TRANSFORMATIONAL GRAMMAR. ALL OF THE COMIT PROGRAMS AND ONE OF THE SNOBOL PROGRAMS USE A LINEARIZED REPRESENTATION OF TREE STRUCTURES, WITH ADDITIONAL NUMERICAL…
Explanation production by expert planners
NASA Technical Reports Server (NTRS)
Bridges, Susan; Jhannes, James D.
1988-01-01
Although the explanation capability of expert systems is usually listed as one of the distinguishing characteristics of these systems, the explanation facilities of most existing systems are quite primitive. Computer generated explanations are typically produced from canned text or by direct translation of the knowledge structures. Explanations produced in this manner bear little resemblance to those produced by humans for similar tasks. The focus of our research in explanation is the production of justifications for decisions by expert planning systems. An analysis of justifications written by people for planning tasks has been taken as the starting point. The purpose of this analysis is two-fold. First, analysis of the information content of the justifications will provide a basis for deciding what knowledge must be represented if human-like justifications are to be produced. Second, an analysis of the textual organization of the justifications will be used in the development of a mechanism for selecting and organizing the knowledge to be included in a computer-produced explanation. This paper describes a preliminary analysis done of justifications written by people for a planning task. It is clear that these justifications differ significantly from those that would be produced by an expert system by tracing the firing of production rules. The results from the text analysis have been used to develop an augmented phrase structured grammar (APSG) describing the organization of the justifications. The grammar was designed to provide a computationally feasible method for determining textual organization that will allow the necessary information to be communicated in a cohesive manner.
Volume analysis of heat-induced cracks in human molars: A preliminary study
Sandholzer, Michael A.; Baron, Katharina; Heimel, Patrick; Metscher, Brian D.
2014-01-01
Context: Only a few methods have been published dealing with the visualization of heat-induced cracks inside bones and teeth. Aims: As a novel approach this study used nondestructive X-ray microtomography (micro-CT) for volume analysis of heat-induced cracks to observe the reaction of human molars to various levels of thermal stress. Materials and Methods: Eighteen clinically extracted third molars were rehydrated and burned under controlled temperatures (400, 650, and 800°C) using an electric furnace adjusted with a 25°C increase/min. The subsequent high-resolution scans (voxel-size 17.7 μm) were made with a compact micro-CT scanner (SkyScan 1174). In total, 14 scans were automatically segmented with Definiens XD Developer 1.2 and three-dimensional (3D) models were computed with Visage Imaging Amira 5.2.2. The results of the automated segmentation were analyzed with an analysis of variance (ANOVA) and uncorrected post hoc least significant difference (LSD) tests using Statistical Package for Social Sciences (SPSS) 17. A probability level of P < 0.05 was used as an index of statistical significance. Results: A temperature-dependent increase of heat-induced cracks was observed between the three temperature groups (P < 0.05, ANOVA post hoc LSD). In addition, the distributions and shape of the heat-induced changes could be classified using the computed 3D models. Conclusion: The macroscopic heat-induced changes observed in this preliminary study correspond with previous observations of unrestored human teeth, yet the current observations also take into account the entire microscopic 3D expansions of heat-induced cracks within the dental hard tissues. Using the same experimental conditions proposed in the literature, this study confirms previous results, adds new observations, and offers new perspectives in the investigation of forensic evidence. PMID:25125923
Brenn, T; Arnesen, E
1985-01-01
For comparative evaluation, discriminant analysis, logistic regression and Cox's model were used to select risk factors for total and coronary deaths among 6595 men aged 20-49 followed for 9 years. Groups with mortality between 5 and 93 per 1000 were considered. Discriminant analysis selected variable sets only marginally different from the logistic and Cox methods which always selected the same sets. A time-saving option, offered for both the logistic and Cox selection, showed no advantage compared with discriminant analysis. Analysing more than 3800 subjects, the logistic and Cox methods consumed, respectively, 80 and 10 times more computer time than discriminant analysis. When including the same set of variables in non-stepwise analyses, all methods estimated coefficients that in most cases were almost identical. In conclusion, discriminant analysis is advocated for preliminary or stepwise analysis, otherwise Cox's method should be used.
Structural Weight Estimation for Launch Vehicles
NASA Technical Reports Server (NTRS)
Cerro, Jeff; Martinovic, Zoran; Su, Philip; Eldred, Lloyd
2002-01-01
This paper describes some of the work in progress to develop automated structural weight estimation procedures within the Vehicle Analysis Branch (VAB) of the NASA Langley Research Center. One task of the VAB is to perform system studies at the conceptual and early preliminary design stages on launch vehicles and in-space transportation systems. Some examples of these studies for Earth to Orbit (ETO) systems are the Future Space Transportation System [1], Orbit On Demand Vehicle [2], Venture Star [3], and the Personnel Rescue Vehicle[4]. Structural weight calculation for launch vehicle studies can exist on several levels of fidelity. Typically historically based weight equations are used in a vehicle sizing program. Many of the studies in the vehicle analysis branch have been enhanced in terms of structural weight fraction prediction by utilizing some level of off-line structural analysis to incorporate material property, load intensity, and configuration effects which may not be captured by the historical weight equations. Modification of Mass Estimating Relationships (MER's) to assess design and technology impacts on vehicle performance are necessary to prioritize design and technology development decisions. Modern CAD/CAE software, ever increasing computational power and platform independent computer programming languages such as JAVA provide new means to create greater depth of analysis tools which can be included into the conceptual design phase of launch vehicle development. Commercial framework computing environments provide easy to program techniques which coordinate and implement the flow of data in a distributed heterogeneous computing environment. It is the intent of this paper to present a process in development at NASA LaRC for enhanced structural weight estimation using this state of the art computational power.
FY17 Status Report on the Computing Systems for the Yucca Mountain Project TSPA-LA Models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, Gordon John; Hadgu, Teklu; Appel, Gordon John
Sandia National Laboratories (SNL) continued evaluation of total system performance assessment (TSPA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014), Hadgu et al. (2015) and Hadgu and Appel (2016). The TSPA computing hardware (CL2014) and storage system described in Hadgu et al. (2015) weremore » used for the current analysis. One floating license of GoldSim with Versions 9.60.300, 10.5, 11.1 and 12.0 was installed on the cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software were tested and installed to support the TSPA- type analysis on the server cluster. The current tasks included preliminary upgrade of the TSPA-LA from Version 9.60.300 to the latest version 12.0 and address DLL-related issues observed in the FY16 work. The model upgrade task successfully converted the Nominal Modeling case to GoldSim Versions 11.1/12. Conversions of the rest of the TSPA models were also attempted but program and operational difficulties precluded this. Upgrade of the remaining of the modeling cases and distributed processing tasks is expected to continue. The 2014 server cluster and supporting software systems are fully operational to support TSPA-LA type analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emanuel, A.E.
1991-03-01
This article presents a preliminary analysis of the effect of randomly varying harmonic voltages on the temperature rise of squirrel-cage motors. The stochastic process of random variations of harmonic voltages is defined by means of simple statistics (mean, standard deviation, type of distribution). Computational models based on a first-order approximation of the motor losses and on the Monte Carlo method yield results which prove that equipment with large thermal time-constant is capable of withstanding for a short period of time larger distortions than THD = 5%.
Examination of a Rotorcraft Noise Prediction Method and Comparison to Flight Test Data
NASA Technical Reports Server (NTRS)
Boyd, D. Douglas, Jr.; Greenwood, Eric; Watts, Michael E.; Lopes, Leonard V.
2017-01-01
With a view that rotorcraft noise should be included in the preliminary design process, a relatively fast noise prediction method is examined in this paper. A comprehensive rotorcraft analysis is combined with a noise prediction method to compute several noise metrics of interest. These predictions are compared to flight test data. Results show that inclusion of only the main rotor noise will produce results that severely underpredict integrated metrics of interest. Inclusion of the tail rotor frequency content is essential for accurately predicting these integrated noise metrics.
Modeling 3-D objects with planar surfaces for prediction of electromagnetic scattering
NASA Technical Reports Server (NTRS)
Koch, M. B.; Beck, F. B.; Cockrell, C. R.
1992-01-01
Electromagnetic scattering analysis of objects at resonance is difficult because low frequency techniques are slow and computer intensive, and high frequency techniques may not be reliable. A new technique for predicting the electromagnetic backscatter from electrically conducting objects at resonance is studied. This technique is based on modeling three dimensional objects as a combination of flat plates where some of the plates are blocking the scattering from others. A cube is analyzed as a simple example. The preliminary results compare well with the Geometrical Theory of Diffraction and with measured data.
Constructing Nucleon Operators on a Lattice for Form Factors with High Momentum Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syritsyn, Sergey; Gambhir, Arjun S.; Musch, Bernhard U.
We present preliminary results of computing nucleon form factor at high momentum transfer using the 'boosted' or 'momentum' smearing. We use gauge configurations generated with N f = 2 + 1dynamical Wilson-clover fermions and study the connected as well as disconnected contributions to the nucleon form factors. Our initial results indicate that boosted smearing helps to improve the signal for nucleon correlators at high momentum. However, we also find evidence for large excited state contributions, which will likely require variational analysis to isolate the boosted nucleon ground state.
Validation of the Transient Structural Response of a Threaded Assembly: Phase I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebling, Scott W.; Hemez, Francois M.; Robertson, Amy N.
2004-04-01
This report explores the application of model validation techniques in structural dynamics. The problem of interest is the propagation of an explosive-driven mechanical shock through a complex threaded joint. The study serves the purpose of assessing whether validating a large-size computational model is feasible, which unit experiments are required, and where the main sources of uncertainty reside. The results documented here are preliminary, and the analyses are exploratory in nature. The results obtained to date reveal several deficiencies of the analysis, to be rectified in future work.
Crenshaw, Tanya L.; Chambers, Erin W.; Heeren, Cinda; Metcalf, Heather E.
2017-01-01
Just over 10 years ago, we conducted a culture study of the Computer Science Department at the flagship University of Illinois at Urbana-Champaign, one of the top five computing departments in the country. The study found that while the department placed an emphasis on research, it did so in a way that, in conjunction with a lack of communication and transparency, devalued teaching and mentoring, and negatively impacted the professional development, education, and sense of belonging of the students. As one part of a multi-phase case study spanning over a decade, this manuscript presents preliminary findings from our latest work at the university. We detail early comparisons between data gathered at the Department of Computer Science at the University of Illinois at Urbana-Champaign in 2005 and our most recent pilot case study, a follow-up research project completed in 2016. Though we have not yet completed the full data collection, we find it worthwhile to reflect on the pilot case study data we have collected thus far. Our data reveals improvements in the perceptions of undergraduate teaching quality and undergraduate peer mentoring networks. However, we also found evidence of continuing feelings of isolation, incidents of bias, policy opacity, and uneven policy implementation that are areas of concern, particularly with respect to historically underrepresented groups. We discuss these preliminary follow-up findings, offer research and methodological reflections, and share next steps for applied research that aims to create positive cultural change in computing. PMID:28579969
NASA Astrophysics Data System (ADS)
Li, J.; Zhang, T.; Huang, Q.; Liu, Q.
2014-12-01
Today's climate datasets are featured with large volume, high degree of spatiotemporal complexity and evolving fast overtime. As visualizing large volume distributed climate datasets is computationally intensive, traditional desktop based visualization applications fail to handle the computational intensity. Recently, scientists have developed remote visualization techniques to address the computational issue. Remote visualization techniques usually leverage server-side parallel computing capabilities to perform visualization tasks and deliver visualization results to clients through network. In this research, we aim to build a remote parallel visualization platform for visualizing and analyzing massive climate data. Our visualization platform was built based on Paraview, which is one of the most popular open source remote visualization and analysis applications. To further enhance the scalability and stability of the platform, we have employed cloud computing techniques to support the deployment of the platform. In this platform, all climate datasets are regular grid data which are stored in NetCDF format. Three types of data access methods are supported in the platform: accessing remote datasets provided by OpenDAP servers, accessing datasets hosted on the web visualization server and accessing local datasets. Despite different data access methods, all visualization tasks are completed at the server side to reduce the workload of clients. As a proof of concept, we have implemented a set of scientific visualization methods to show the feasibility of the platform. Preliminary results indicate that the framework can address the computation limitation of desktop based visualization applications.
Edwardson, S R; Pejsa, J
1993-01-01
A computer-based tutorial for teaching nursing financial management concepts was developed using the macro function of a commercially available spreadsheet program. The goals of the tutorial were to provide students with an experience with spreadsheets as a computer tool and to teach selected financial management concepts. Preliminary results show the tutorial was well received by students. Suggestions are made for overcoming the general lack of computer sophistication among students.
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Hou, Gene W.
1992-01-01
Fundamental equations of aerodynamic sensitivity analysis and approximate analysis for the two dimensional thin layer Navier-Stokes equations are reviewed, and special boundary condition considerations necessary to apply these equations to isolated lifting airfoils on 'C' and 'O' meshes are discussed in detail. An efficient strategy which is based on the finite element method and an elastic membrane representation of the computational domain is successfully tested, which circumvents the costly 'brute force' method of obtaining grid sensitivity derivatives, and is also useful in mesh regeneration. The issue of turbulence modeling is addressed in a preliminary study. Aerodynamic shape sensitivity derivatives are efficiently calculated, and their accuracy is validated on two viscous test problems, including: (1) internal flow through a double throat nozzle, and (2) external flow over a NACA 4-digit airfoil. An automated aerodynamic design optimization strategy is outlined which includes the use of a design optimization program, an aerodynamic flow analysis code, an aerodynamic sensitivity and approximate analysis code, and a mesh regeneration and grid sensitivity analysis code. Application of the optimization methodology to the two test problems in each case resulted in a new design having a significantly improved performance in the aerodynamic response of interest.
Local storage federation through XRootD architecture for interactive distributed analysis
NASA Astrophysics Data System (ADS)
Colamaria, F.; Colella, D.; Donvito, G.; Elia, D.; Franco, A.; Luparello, G.; Maggi, G.; Miniello, G.; Vallero, S.; Vino, G.
2015-12-01
A cloud-based Virtual Analysis Facility (VAF) for the ALICE experiment at the LHC has been deployed in Bari. Similar facilities are currently running in other Italian sites with the aim to create a federation of interoperating farms able to provide their computing resources for interactive distributed analysis. The use of cloud technology, along with elastic provisioning of computing resources as an alternative to the grid for running data intensive analyses, is the main challenge of these facilities. One of the crucial aspects of the user-driven analysis execution is the data access. A local storage facility has the disadvantage that the stored data can be accessed only locally, i.e. from within the single VAF. To overcome such a limitation a federated infrastructure, which provides full access to all the data belonging to the federation independently from the site where they are stored, has been set up. The federation architecture exploits both cloud computing and XRootD technologies, in order to provide a dynamic, easy-to-use and well performing solution for data handling. It should allow the users to store the files and efficiently retrieve the data, since it implements a dynamic distributed cache among many datacenters in Italy connected to one another through the high-bandwidth national network. Details on the preliminary architecture implementation and performance studies are discussed.
Modeling of Multi-Tube Pulse Detonation Engine Operation
NASA Technical Reports Server (NTRS)
Ebrahimi, Houshang B.; Mohanraj, Rajendran; Merkle, Charles L.
2001-01-01
The present paper explores some preliminary issues concerning the operational characteristics of multiple-tube pulsed detonation engines (PDEs). The study is based on a two-dimensional analysis of the first-pulse operation of two detonation tubes exhausting through a common nozzle. Computations are first performed to assess isolated tube behavior followed by results for multi-tube flow phenomena. The computations are based on an eight-species, finite-rate transient flow-field model. The results serve as an important precursor to understanding appropriate propellant fill procedures and shock wave propagation in multi-tube, multi-dimensional simulations. Differences in behavior between single and multi-tube PDE models are discussed, The influence of multi-tube geometry and the preferred times for injecting the fresh propellant mixture during multi-tube PDE operation are studied.
A Preliminary Analysis of the Costs and Benefits of Older Age Accessions.
1984-03-01
8217AD-A143 160 A PRELIMINARY ANALYSIS OF THE COSTS AND BENEFITS OF I/ OLDER AGE ACCESSIONS(U) NAVAL POSTGRADUATE SCHOOL N A MONTEREY CA S D BARCLAY MAR...ELECTE JUL 1884d THESIS A PRELIMINARY ANALYSIS CF THE COSTS AND BENEFITS OF OLDER AGE ACCESSIONS CL by Susan D. Barclay March 1984 Thesis Advisor...for public release; distribution unlimited. A Preliminary Analysis of the Costs and Benefits of Older Age Accessions by Susan D. Barclay Lieutenant
Zimmermann, Moritz; Koller, Christina; Mehl, Albert; Hickel, Reinhard
2017-01-01
No clinical data are available for the new computer-aided design/computer-assisted manufacture (CAD/CAM) material zirconia-reinforced lithium silicate (ZLS) ceramic. This study describes preliminary clinical results for indirect ZLS CAD/CAM restorations after 12 months. Indirect restorations were fabricated, using the CEREC method and intraoral scanning (CEREC Omnicam, CEREC MCXL). Sixty-seven restorations were seated adhesively (baseline). Sixty restorations were evaluated after 12 months (follow-up), using modified FDI criteria. Two groups were established, according to ZLS restorations' post-processing procedure prior to adhesive seating: group I (three-step polishing, n = 32) and group II (fire glazing, n = 28). Statistical analysis was performed with Mann-Whitney U test and Wilcoxon test (P < .05). The success rate of indirect ZLS CAD/CAM restorations after 12 months was 96.7%. Two restorations clinically failed as a result of bulk fracture (failure rate 3.3%). No statistically significant differences were found for baseline and follow-up criteria (Wilcoxon test, P > .05). Statistically significant differences were found for criteria surface gloss for group I and group II (Mann-Whitney U test, P < .05). This study demonstrates ZLS CAD/CAM restorations have a high clinical success rate after 12 months. A longer clinical evaluation period is necessary to draw further conclusions.
NASA Technical Reports Server (NTRS)
2001-01-01
This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information from January 1, 2001 through March 31, 2001 available on the NASA Aeronautics and Space Database. Contents include 1) Cognitive Task Analysis; 2) RTO Educational Notes; 3) The Capability of Virtual Reality to Meet Military Requirements; 4) Aging Engines, Avionics, Subsystems and Helicopters; 5) RTO Meeting Proceedings; 6) RTO Technical Reports; 7) Low Grazing Angle Clutter...; 8) Verification and Validation Data for Computational Unsteady Aerodynamics; 9) Space Observation Technology; 10) The Human Factor in System Reliability...; 11) Flight Control Design...; 12) Commercial Off-the-Shelf Products in Defense Applications.
Data acquisition instruments: Psychopharmacology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartley, D.S. III
This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended.more » In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.« less
Image analysis by integration of disparate information
NASA Technical Reports Server (NTRS)
Lemoigne, Jacqueline
1993-01-01
Image analysis often starts with some preliminary segmentation which provides a representation of the scene needed for further interpretation. Segmentation can be performed in several ways, which are categorized as pixel based, edge-based, and region-based. Each of these approaches are affected differently by various factors, and the final result may be improved by integrating several or all of these methods, thus taking advantage of their complementary nature. In this paper, we propose an approach that integrates pixel-based and edge-based results by utilizing an iterative relaxation technique. This approach has been implemented on a massively parallel computer and tested on some remotely sensed imagery from the Landsat-Thematic Mapper (TM) sensor.
Preliminary analysis of the span-distributed-load concept for cargo aircraft design
NASA Technical Reports Server (NTRS)
Whitehead, A. H., Jr.
1975-01-01
A simplified computer analysis of the span-distributed-load airplane (in which payload is placed within the wing structure) has shown that the span-distributed-load concept has high potential for application to future air cargo transport design. Significant increases in payload fraction over current wide-bodied freighters are shown for gross weights in excess of 0.5 Gg (1,000,000 lb). A cruise-matching calculation shows that the trend toward higher aspect ratio improves overall efficiency; that is, less thrust and fuel are required. The optimal aspect ratio probably is not determined by structural limitations. Terminal-area constraints and increasing design-payload density, however, tend to limit aspect ratio.
ERIC Educational Resources Information Center
Arnold, Nike
2007-01-01
Many studies (e.g., [Beauvois, M.H., 1998. "E-talk: Computer-assisted classroom discussion--attitudes and motivation." In: Swaffar, J., Romano, S., Markley, P., Arens, K. (Eds.), "Language learning online: Theory and practice in the ESL and L2 computer classroom." Labyrinth Publications, Austin, TX, pp. 99-120; Bump, J., 1990. "Radical changes in…
Computer-aided visual assessment in mine planning and design
Michael Hatfield; A. J. LeRoy Balzer; Roger E. Nelson
1979-01-01
A computer modeling technique is described for evaluating the visual impact of a proposed surface mine located within the viewshed of a national park. A computer algorithm analyzes digitized USGS baseline topography and identifies areas subject to surface disturbance visible from the park. Preliminary mine and reclamation plan information is used to describe how the...
ERIC Educational Resources Information Center
Marsch, Lisa A.; Bickel, Warren K.; Badger, Gary J.
2007-01-01
This manuscript reports on the development and evaluation of a computer-based substance abuse prevention program for middle school-aged adolescents, called "HeadOn: Substance Abuse Prevention for Grades 6-8TM". This self-guided program was designed to deliver effective drug abuse prevention science to youth via computer-based educational…
Crossbar Nanocomputer Development
2012-04-01
their utilization. Areas such as neuromorphic computing, signal processing, arithmetic processing, and crossbar computing are only some of the...due to its intrinsic, network-on- chip flexibility to re-route around defects. Preliminary efforts in crossbar computing have been demonstrated by...they approach their scaling limits [2]. Other applications that memristive devices are suited for include FPGA [3], encryption [4], and neuromorphic
40 CFR 158.345 - Preliminary analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Preliminary analysis. 158.345 Section 158.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.345 Preliminary analysis. (a) If the product is produced by...
40 CFR 158.345 - Preliminary analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Preliminary analysis. 158.345 Section 158.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.345 Preliminary analysis. (a) If the product is produced by...
40 CFR 158.345 - Preliminary analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Preliminary analysis. 158.345 Section 158.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.345 Preliminary analysis. (a) If the product is produced by...
40 CFR 158.345 - Preliminary analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Preliminary analysis. 158.345 Section 158.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.345 Preliminary analysis. (a) If the product is produced by...
40 CFR 158.345 - Preliminary analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Preliminary analysis. 158.345 Section 158.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.345 Preliminary analysis. (a) If the product is produced by...
10 CFR 830.206 - Preliminary documented safety analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Preliminary documented safety analysis. 830.206 Section 830.206 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.206 Preliminary documented safety analysis. If construction begins after December 11, 2000, the contractor...
Computer-based route-definition system for peripheral bronchoscopy.
Graham, Michael W; Gibbs, Jason D; Higgins, William E
2012-04-01
Multi-detector computed tomography (MDCT) scanners produce high-resolution images of the chest. Given a patient's MDCT scan, a physician can use an image-guided intervention system to first plan and later perform bronchoscopy to diagnostic sites situated deep in the lung periphery. An accurate definition of complete routes through the airway tree leading to the diagnostic sites, however, is vital for avoiding navigation errors during image-guided bronchoscopy. We present a system for the robust definition of complete airway routes suitable for image-guided bronchoscopy. The system incorporates both automatic and semiautomatic MDCT analysis methods for this purpose. Using an intuitive graphical user interface, the user invokes automatic analysis on a patient's MDCT scan to produce a series of preliminary routes. Next, the user visually inspects each route and quickly corrects the observed route defects using the built-in semiautomatic methods. Application of the system to a human study for the planning and guidance of peripheral bronchoscopy demonstrates the efficacy of the system.
NASA Astrophysics Data System (ADS)
Horsch, Alexander
The chapter deals with the diagnosis of the malignant melanoma of the skin. This aggressive type of cancer with steadily growing incidence in white populations can hundred percent be cured if it is detected in an early stage. Imaging techniques, in particular dermoscopy, have contributed significantly to improvement of diagnostic accuracy in clinical settings, achieving sensitivities for melanoma experts of beyond 95% at specificities of 90% and more. Automatic computer analysis of dermoscopy images has, in preliminary studies, achieved classification rates comparable to those of experts. However, the diagnosis of melanoma requires a lot of training and experience, and at the time being, average numbers of lesions excised per histology-proven melanoma are around 30, a number which clearly is too high. Further improvements in computer dermoscopy systems and their competent use in clinical settings certainly have the potential to support efforts of improving this situation. In the chapter, medical basics, current state of melanoma diagnosis, image analysis methods, commercial dermoscopy systems, evaluation of systems, and methods and future directions are presented.
ERIC Educational Resources Information Center
Huang, Wenhao; Huang, Wenyeh; Diefes-Dux, Heidi; Imbrie, Peter K.
2006-01-01
This paper describes a preliminary validation study of the Instructional Material Motivational Survey (IMMS) derived from the Attention, Relevance, Confidence and Satisfaction motivational design model. Previous studies related to the IMMS, however, suggest its practical application for motivational evaluation in various instructional settings…
ERIC Educational Resources Information Center
Rensselaer Research Corp., Troy, NY.
The purpose of this study was to develop the schema and methodology for the construction of a computerized mathematical model designed to project college and university enrollments in New York State and to meet the future increased demands of higher education planners. This preliminary report describes the main structure of the proposed computer…
26 CFR 1.810-3 - Adjustment for change in computing reserves.
Code of Federal Regulations, 2010 CFR
2010-04-01
... restatement under section 818(c) 60 75 Strengthened reserves at 2-percent assumed rate and net level premium... preliminary term basis on January 1, 1960 ($50) and the reserves restated on the net level premium basis on... life insurance reserves on a preliminary term basis elects to revalue such reserves on a net level...
NASA Technical Reports Server (NTRS)
Yang, Cheng I.; Guo, Yan-Hu; Liu, C.- H.
1996-01-01
The analysis and design of a submarine propulsor requires the ability to predict the characteristics of both laminar and turbulent flows to a higher degree of accuracy. This report presents results of certain benchmark computations based on an upwind, high-resolution, finite-differencing Navier-Stokes solver. The purpose of the computations is to evaluate the ability, the accuracy and the performance of the solver in the simulation of detailed features of viscous flows. Features of interest include flow separation and reattachment, surface pressure and skin friction distributions. Those features are particularly relevant to the propulsor analysis. Test cases with a wide range of Reynolds numbers are selected; therefore, the effects of the convective and the diffusive terms of the solver can be evaluated separately. Test cases include flows over bluff bodies, such as circular cylinders and spheres, at various low Reynolds numbers, flows over a flat plate with and without turbulence effects, and turbulent flows over axisymmetric bodies with and without propulsor effects. Finally, to enhance the iterative solution procedure, a full approximation scheme V-cycle multigrid method is implemented. Preliminary results indicate that the method significantly reduces the computational effort.
Development of a New Methodology for Computing Surface Sensible Heat Fluxes using Thermal Imagery
NASA Astrophysics Data System (ADS)
Morrison, T. J.; Calaf, M.; Fernando, H. J.; Price, T. A.; Pardyjak, E.
2017-12-01
Current numerical weather predication models utilize similarity to characterize momentum, moisture, and heat fluxes. Such formulations are only valid under the ideal assumptions of spatial homogeneity, statistical stationary, and zero subsidence. However, recent surface temperature measurements from the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program on the Salt Flats of Utah's West desert, show that even under the most a priori ideal conditions, heterogeneity of the aforementioned variables exists. We present a new method to extract spatially-distributed measurements of surface sensible heat flux from thermal imagery. The approach consists of using a surface energy budget, where the ground heat flux is easily computed from limited measurements using a force-restore-type methodology, the latent heat fluxes are neglected, and the energy storage is computed using a lumped capacitance model. Preliminary validation of the method is presented using experimental data acquired from a nearby sonic anemometer during the MATERHORN campaign. Additional evaluation is required to confirm the method's validity. Further decomposition analysis of on-site instrumentation (thermal camera, cold-hotwire probes, and sonic anemometers) using Proper Orthogonal Decomposition (POD), and wavelet analysis, reveals time scale similarity between the flow and surface fluctuations.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-03
...-preliminary analysis and released the results of the analysis on May 19, 2010. We gave the interested parties an opportunity to comment on the Preliminary Results and the post-preliminary analysis. Based on our analysis of the comments received, we have made changes to the margin calculation. The final weighted...
Modeling the complete Otto cycle: Preliminary version. [computer programming
NASA Technical Reports Server (NTRS)
Zeleznik, F. J.; Mcbride, B. J.
1977-01-01
A description is given of the equations and the computer program being developed to model the complete Otto cycle. The program incorporates such important features as: (1) heat transfer, (2) finite combustion rates, (3) complete chemical kinetics in the burned gas, (4) exhaust gas recirculation, and (5) manifold vacuum or supercharging. Changes in thermodynamic, kinetic and transport data as well as model parameters can be made without reprogramming. Preliminary calculations indicate that: (1) chemistry and heat transfer significantly affect composition and performance, (2) there seems to be a strong interaction among model parameters, and (3) a number of cycles must be calculated in order to obtain steady-state conditions.
Interactive flutter analysis and parametric study for conceptual wing design
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1995-01-01
An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed on MathCad (trademark) platform for Macintosh, with integrated documentation, graphics, database and symbolic mathematics. The analysis method was based on nondimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The plots were compiled in a Vaught Corporation report from a vast database of past experiments and wind tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended Wing Body concept, proposed by McDonnell Douglas Corporation. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.
Dawn: A Simulation Model for Evaluating Costs and Tradeoffs of Big Data Science Architectures
NASA Astrophysics Data System (ADS)
Cinquini, L.; Crichton, D. J.; Braverman, A. J.; Kyo, L.; Fuchs, T.; Turmon, M.
2014-12-01
In many scientific disciplines, scientists and data managers are bracing for an upcoming deluge of big data volumes, which will increase the size of current data archives by a factor of 10-100 times. For example, the next Climate Model Inter-comparison Project (CMIP6) will generate a global archive of model output of approximately 10-20 Peta-bytes, while the upcoming next generation of NASA decadal Earth Observing instruments are expected to collect tens of Giga-bytes/day. In radio-astronomy, the Square Kilometre Array (SKA) will collect data in the Exa-bytes/day range, of which (after reduction and processing) around 1.5 Exa-bytes/year will be stored. The effective and timely processing of these enormous data streams will require the design of new data reduction and processing algorithms, new system architectures, and new techniques for evaluating computation uncertainty. Yet at present no general software tool or framework exists that will allow system architects to model their expected data processing workflow, and determine the network, computational and storage resources needed to prepare their data for scientific analysis. In order to fill this gap, at NASA/JPL we have been developing a preliminary model named DAWN (Distributed Analytics, Workflows and Numerics) for simulating arbitrary complex workflows composed of any number of data processing and movement tasks. The model can be configured with a representation of the problem at hand (the data volumes, the processing algorithms, the available computing and network resources), and is able to evaluate tradeoffs between different possible workflows based on several estimators: overall elapsed time, separate computation and transfer times, resulting uncertainty, and others. So far, we have been applying DAWN to analyze architectural solutions for 4 different use cases from distinct science disciplines: climate science, astronomy, hydrology and a generic cloud computing use case. This talk will present preliminary results and discuss how DAWN can be evolved into a powerful tool for designing system architectures for data intensive science.
Incipient fault detection study for advanced spacecraft systems
NASA Technical Reports Server (NTRS)
Milner, G. Martin; Black, Michael C.; Hovenga, J. Mike; Mcclure, Paul F.
1986-01-01
A feasibility study to investigate the application of vibration monitoring to the rotating machinery of planned NASA advanced spacecraft components is described. Factors investigated include: (1) special problems associated with small, high RPM machines; (2) application across multiple component types; (3) microgravity; (4) multiple fault types; (5) eight different analysis techniques including signature analysis, high frequency demodulation, cepstrum, clustering, amplitude analysis, and pattern recognition are compared; and (6) small sample statistical analysis is used to compare performance by computation of probability of detection and false alarm for an ensemble of repeated baseline and faulted tests. Both detection and classification performance are quantified. Vibration monitoring is shown to be an effective means of detecting the most important problem types for small, high RPM fans and pumps typical of those planned for the advanced spacecraft. A preliminary monitoring system design and implementation plan is presented.
Malinowski, Maciej; Lock, Johan Friso; Seehofer, Daniel; Gebauer, Bernhard; Schulz, Antje; Demirel, Lina; Bednarsch, Jan; Stary, Victoria; Neuhaus, Peter; Stockmann, Martin
2016-09-01
Post-hepatectomy liver failure (PHLF) is the major risk factor for mortality after hepatectomy. Preoperative planning of the future liver remnant volume reduces PHLF rates; however, future liver remnant function (FLR-F) might have an even stronger predictive value. In this preliminary study, we used a new method to calculate FLR-F by the LiMAx test and computer tomography-assisted volumetric-analysis to visualize liver function changes after portal vein embolization (PVE) before extended hepatectomy. The subjects included patients undergoing extended right hepatectomy either directly (NO-PVE group) or after PVE (PVE group). Computed tomography (CT) scan and liver function tests (LiMAx) were done before PVE and preoperatively. FLR-F was calculated and correlated with the postoperative liver function. There were 12 patients in the NO-PVE group and 19 patients in the PVE group. FLR-F and postoperative liver function correlated significantly in both groups (p = 0.036, p = 0.011), although postoperative liver function was slightly overestimated, at 32 and 45 µg/kg/min, in the NO-PVE and PVE groups, respectively. LiMAx value did not change after PVE. Volume-function analysis using LiMAx and CT scan enables us to reliably predict early postoperative liver function. Global enzymatic liver function measured by the LiMAx test did not change after PVE, confirming that liver function distribution in the liver stays constant after PVE. An overestimation of FLR-F is needed to compensate for the intraoperative liver injury that occurs in patients undergoing extended hepatectomy.
Rotor/Wing Interactions in Hover
NASA Technical Reports Server (NTRS)
Young, Larry A.; Derby, Michael R.
2002-01-01
Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.
Artificial intelligence for multi-mission planetary operations
NASA Technical Reports Server (NTRS)
Atkinson, David J.; Lawson, Denise L.; James, Mark L.
1990-01-01
A brief introduction is given to an automated system called the Spacecraft Health Automated Reasoning Prototype (SHARP). SHARP is designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for evaluation of the prototype in a real-time operations setting during the Voyager spacecraft encounter with Neptune in August, 1989. The preliminary results of the SHARP project and plans for future application of the technology are discussed.
Cabasse, C; Marie-Cousin, A; Huet, A; Sixou, J L
2015-03-01
Anesthetizing MIH (Molar and Incisor Hypomineralisation) teeth is one of the major challenges in paediatric dentistry. Computer-assisted IO injection (CAIO) of 4% articaine with 1:200,000 epinephrine (Alphacaine, Septodont) has been shown to be an efficient way to anesthetize teeth in children. The aim of this study was to assess the efficacy of this method with MIH teeth. This preliminary study was performed using the Quick Sleeper system (Dental Hi Tec, Cholet, France) that allows computer-controlled rotation of the needle to penetrate the bone and computer-controlled injection of the anaesthetic solution. Patients (39) of the department of Paediatric Dentistry were included allowing 46 sessions (including 32 mandibular first permanent molars) to be assessed. CAIO showed efficacy in 93.5% (43/46) of cases. Failures (3) were due to impossibility to reach the spongy bone (1) and to achieve anaesthesia (2). This prospective study confirms that CAIO anaesthesia is a promising method to anesthetize teeth with MIH that could therefore be routinely used by trained practitioners.
ERIC Educational Resources Information Center
Kish, Gary; Cook, Samuel A.; Kis, Greta
2013-01-01
The University of Debrecen's Faculty of Medicine has an international, multilingual student population with anatomy courses taught in English to all but Hungarian students. An elective computer-assisted gross anatomy course, the Computer Human Anatomy (CHA), has been taught in English at the Anatomy Department since 2008. This course focuses on an…
Flight Operations Analysis Tool
NASA Technical Reports Server (NTRS)
Easter, Robert; Herrell, Linda; Pomphrey, Richard; Chase, James; Wertz Chen, Julie; Smith, Jeffrey; Carter, Rebecca
2006-01-01
Flight Operations Analysis Tool (FLOAT) is a computer program that partly automates the process of assessing the benefits of planning spacecraft missions to incorporate various combinations of launch vehicles and payloads. Designed primarily for use by an experienced systems engineer, FLOAT makes it possible to perform a preliminary analysis of trade-offs and costs of a proposed mission in days, whereas previously, such an analysis typically lasted months. FLOAT surveys a variety of prior missions by querying data from authoritative NASA sources pertaining to 20 to 30 mission and interface parameters that define space missions. FLOAT provides automated, flexible means for comparing the parameters to determine compatibility or the lack thereof among payloads, spacecraft, and launch vehicles, and for displaying the results of such comparisons. Sparseness, typical of the data available for analysis, does not confound this software. FLOAT effects an iterative process that identifies modifications of parameters that could render compatible an otherwise incompatible mission set.
NASA Astrophysics Data System (ADS)
Mazurowski, Maciej A.; Zhang, Jing; Lo, Joseph Y.; Kuzmiak, Cherie M.; Ghate, Sujata V.; Yoon, Sora
2014-03-01
Providing high quality mammography education to radiology trainees is essential, as good interpretation skills potentially ensure the highest benefit of screening mammography for patients. We have previously proposed a computer-aided education system that utilizes trainee models, which relate human-assessed image characteristics to interpretation error. We proposed that these models be used to identify the most difficult and therefore the most educationally useful cases for each trainee. In this study, as a next step in our research, we propose to build trainee models that utilize features that are automatically extracted from images using computer vision algorithms. To predict error, we used a logistic regression which accepts imaging features as input and returns error as output. Reader data from 3 experts and 3 trainees were used. Receiver operating characteristic analysis was applied to evaluate the proposed trainee models. Our experiments showed that, for three trainees, our models were able to predict error better than chance. This is an important step in the development of adaptive computer-aided education systems since computer-extracted features will allow for faster and more extensive search of imaging databases in order to identify the most educationally beneficial cases.
NASA Astrophysics Data System (ADS)
Hai, Pham Minh; Bonello, Philip
2008-12-01
The direct study of the vibration of real engine structures with nonlinear bearings, particularly aero-engines, has been severely limited by the fact that current nonlinear computational techniques are not well-suited for complex large-order systems. This paper introduces a novel implicit "impulsive receptance method" (IRM) for the time domain analysis of such structures. The IRM's computational efficiency is largely immune to the number of modes used and dependent only on the number of nonlinear elements. This means that, apart from retaining numerical accuracy, a much more physically accurate solution is achievable within a short timeframe. Simulation tests on a realistically sized representative twin-spool aero-engine showed that the new method was around 40 times faster than a conventional implicit integration scheme. Preliminary results for a given rotor unbalance distribution revealed the varying degree of journal lift, orbit size and shape at the example engine's squeeze-film damper bearings, and the effect of end-sealing at these bearings.
On the Application of Contour Bumps for Transonic Drag Reduction(Invited)
NASA Technical Reports Server (NTRS)
Milholen, William E., II; Owens, Lewis R.
2005-01-01
The effect of discrete contour bumps on reducing the transonic drag at off-design conditions on an airfoil have been examined. The research focused on fully-turbulent flow conditions, at a realistic flight chord Reynolds number of 30 million. State-of-the-art computational fluid dynamics methods were used to design a new baseline airfoil, and a family of fixed contour bumps. The new configurations were experimentally evaluated in the 0.3-m Transonic Cryogenic Tunnel at the NASA Langley Research center, which utilizes an adaptive wall test section to minimize wall interference. The computational study showed that transonic drag reduction, on the order of 12% - 15%, was possible using a surface contour bump to spread a normal shock wave. The computational study also indicated that the divergence drag Mach number was increased for the contour bump applications. Preliminary analysis of the experimental data showed a similar contour bump effect, but this data needed to be further analyzed for residual wall interference corrections.
Flowfield Analysis of a Small Entry Probe (SPRITE) Tested in an Arc Jet
NASA Technical Reports Server (NTRS)
Prabhu, Dinesh K.
2011-01-01
Results of simulations of flow of an arc-heated stream around a 14-inch diameter 45 sphere-cone configuration are presented. Computations are first benchmarked against pressure and heat flux measurements made using copper slug calorimeters of different shapes and sizes. The influence of catalycity of copper on computed results is investigated. Good agreements between predictions and measurements are obtained by assuming the copper slug to be partially catalytic to atomic recombination. With total enthalpy estimates obtained from these preliminary computations, calculations are then performed for the test article, with the nozzle and test article considered as an integrated whole the same procedure adopted for calorimeter simulations. The resulting heat fluxes at select points on the test article (points at which fully instrumented plugs were placed) are used in material thermal response code calculations. Predicted time histories of temperature are compared against thermocouple data from the instrumented plugs, and recession determined. Good agreement is obtained for in-depth thermocouples.
Preliminary analyses of space radiation protection for lunar base surface systems
NASA Technical Reports Server (NTRS)
Nealy, John E.; Wilson, John W.; Townsend, Lawrence W.
1989-01-01
Radiation shielding analyses are performed for candidate lunar base habitation modules. The study primarily addresses potential hazards due to contributions from the galactic cosmic rays. The NASA Langley Research Center's high energy nucleon and heavy ion transport codes are used to compute propagation of radiation through conventional and regolith shield materials. Computed values of linear energy transfer are converted to biological dose-equivalent using quality factors established by the International Commision of Radiological Protection. Special fluxes of heavy charged particles and corresponding dosimetric quantities are computed for a series of thicknesses in various shield media and are used as an input data base for algorithms pertaining to specific shielded geometries. Dosimetric results are presented as isodose contour maps of shielded configuration interiors. The dose predictions indicate that shielding requirements are substantial, and an abbreviated uncertainty analysis shows that better definition of the space radiation environment as well as improvement in nuclear interaction cross-section data can greatly increase the accuracy of shield requirement predictions.
Computer program to perform cost and weight analysis of transport aircraft. Volume 1: Summary
NASA Technical Reports Server (NTRS)
1973-01-01
A digital computer program for evaluating the weight and costs of advanced transport designs was developed. The resultant program, intended for use at the preliminary design level, incorporates both batch mode and interactive graphics run capability. The basis of the weight and cost estimation method developed is a unique way of predicting the physical design of each detail part of a vehicle structure at a time when only configuration concept drawings are available. In addition, the technique relies on methods to predict the precise manufacturing processes and the associated material required to produce each detail part. Weight data are generated in four areas of the program. Overall vehicle system weights are derived on a statistical basis as part of the vehicle sizing process. Theoretical weights, actual weights, and the weight of the raw material to be purchased are derived as part of the structural synthesis and part definition processes based on the computed part geometry.
Analyzing high energy physics data using database computing: Preliminary report
NASA Technical Reports Server (NTRS)
Baden, Andrew; Day, Chris; Grossman, Robert; Lifka, Dave; Lusk, Ewing; May, Edward; Price, Larry
1991-01-01
A proof of concept system is described for analyzing high energy physics (HEP) data using data base computing. The system is designed to scale up to the size required for HEP experiments at the Superconducting SuperCollider (SSC) lab. These experiments will require collecting and analyzing approximately 10 to 100 million 'events' per year during proton colliding beam collisions. Each 'event' consists of a set of vectors with a total length of approx. one megabyte. This represents an increase of approx. 2 to 3 orders of magnitude in the amount of data accumulated by present HEP experiments. The system is called the HEPDBC System (High Energy Physics Database Computing System). At present, the Mark 0 HEPDBC System is completed, and can produce analysis of HEP experimental data approx. an order of magnitude faster than current production software on data sets of approx. 1 GB. The Mark 1 HEPDBC System is currently undergoing testing and is designed to analyze data sets 10 to 100 times larger.
Space Radiation Transport Methods Development
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.
2002-01-01
Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 milliseconds and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of reconfigurable computing and could be utilized in the final design as verification of the deterministic method optimized design.
NASA Astrophysics Data System (ADS)
Jin, Dakai; Lu, Jia; Zhang, Xiaoliu; Chen, Cheng; Bai, ErWei; Saha, Punam K.
2017-03-01
Osteoporosis is associated with increased fracture risk. Recent advancement in the area of in vivo imaging allows segmentation of trabecular bone (TB) microstructures, which is a known key determinant of bone strength and fracture risk. An accurate biomechanical modelling of TB micro-architecture provides a comprehensive summary measure of bone strength and fracture risk. In this paper, a new direct TB biomechanical modelling method using nonlinear manifold-based volumetric reconstruction of trabecular network is presented. It is accomplished in two sequential modules. The first module reconstructs a nonlinear manifold-based volumetric representation of TB networks from three-dimensional digital images. Specifically, it starts with the fuzzy digital segmentation of a TB network, and computes its surface and curve skeletons. An individual trabecula is identified as a topological segment in the curve skeleton. Using geometric analysis, smoothing and optimization techniques, the algorithm generates smooth, curved, and continuous representations of individual trabeculae glued at their junctions. Also, the method generates a geometrically consistent TB volume at junctions. In the second module, a direct computational biomechanical stress-strain analysis is applied on the reconstructed TB volume to predict mechanical measures. The accuracy of the method was examined using micro-CT imaging of cadaveric distal tibia specimens (N = 12). A high linear correlation (r = 0.95) between TB volume computed using the new manifold-modelling algorithm and that directly derived from the voxel-based micro-CT images was observed. Young's modulus (YM) was computed using direct mechanical analysis on the TB manifold-model over a cubical volume of interest (VOI), and its correlation with the YM, computed using micro-CT based conventional finite-element analysis over the same VOI, was examined. A moderate linear correlation (r = 0.77) was observed between the two YM measures. This preliminary results show the accuracy of the new nonlinear manifold modelling algorithm for TB, and demonstrate the feasibility of a new direct mechanical strain-strain analysis on a nonlinear manifold model of a highly complex biological structure.
Laganà, Luciana; Oliver, Taylor; Ainsworth, Andrew; Edwards, Marc
2014-01-01
Several studies have documented the health-related benefits of older adults' use of computer technology, but before they can be realised, older individuals must be positively inclined and confident in their ability to engage in computer-based environments. To facilitate the assessment of computer technology attitudes, one aim of the longitudinal study reported in this paper was to test and refine a new 22-item measure of computer technology attitudes designed specifically for older adults, as none such were available.1 Another aim was to replicate, on a much larger scale, the successful findings of a preliminary study that tested a computer technology training programme for older adults (Laganà 2008). Ninety-six older men and women, mainly from non-European-American backgrounds, were randomly assigned to the waitlist/control or the experimental group. The same six-week one-on-one training was administered to the control subjects at the completion of their post-test. The revised (17-item) version of the Older Adults' Computer Technology Attitudes Scale (OACTAS) showed strong reliability: the results of a factor analysis were robust, and two analyses of covariance demonstrated that the training programme induced significant changes in attitudes and self-efficacy. Such results encourage the recruitment of older persons into training programmes aimed at increasing computer technology attitudes and self-efficacy. PMID:25512679
NASA Aerodynamics Program Annual Report 1991
1992-04-01
results have been compared relation effort on an AH-1G Cobr : helicopter v- ,,odeI wind tunnel data at different has been completed. Computational...The computational studies cant discovery . Preliminary water-channel have shown the trapped vortex to be a viable and wind-tunnel tests have shown the
A computational method for comparing the behavior and possible failure of prosthetic implants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, C.; Hollerbach, K.; Perfect, S.
1995-05-01
Prosthetic joint implants currently in use exhibit high Realistic computer modeling of prosthetic implants provides an opportunity for orthopedic biomechanics researchers and physicians to understand possible in vivo failure modes, without having to resort to lengthy and costly clinical trials. The research presented here is part of a larger effort to develop realistic models of implanted joint prostheses. The example used here is the thumb carpo-metacarpal (cmc) joint. The work, however, can be applied to any other human joints for which prosthetic implants have been designed. Preliminary results of prosthetic joint loading, without surrounding human tissue (i.e., simulating conditions undermore » which the prosthetic joint has not yet been implanted into the human joint), are presented, based on a three-dimensional, nonlinear finite element analysis of three different joint implant designs.« less
NASA Astrophysics Data System (ADS)
da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.
2018-04-01
A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.
A square root ensemble Kalman filter application to a motor-imagery brain-computer interface.
Kamrunnahar, M; Schiff, S J
2011-01-01
We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%-90% for the hand movements and 70%-90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models.
Aero-Thermo-Structural Design Optimization of Internally Cooled Turbine Blades
NASA Technical Reports Server (NTRS)
Dulikravich, G. S.; Martin, T. J.; Dennis, B. H.; Lee, E.; Han, Z.-X.
1999-01-01
A set of robust and computationally affordable inverse shape design and automatic constrained optimization tools have been developed for the improved performance of internally cooled gas turbine blades. The design methods are applicable to the aerodynamics, heat transfer, and thermoelasticity aspects of the turbine blade. Maximum use of the existing proven disciplinary analysis codes is possible with this design approach. Preliminary computational results demonstrate possibilities to design blades with minimized total pressure loss and maximized aerodynamic loading. At the same time, these blades are capable of sustaining significantly higher inlet hot gas temperatures while requiring remarkably lower coolant mass flow rates. These results suggest that it is possible to design internally cooled turbine blades that will cost less to manufacture, will have longer life span, and will perform as good, if not better than, film cooled turbine blades.
NASA Astrophysics Data System (ADS)
Sathiyaraj, P.; Samuel, E. James jebaseelan
2018-01-01
The aim of this study is to evaluate the methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride gel (MAGAT) by cone beam computed tomography (CBCT) attached with modern linear accelerator. To compare the results of standard diagnostic computed tomography (CT) with CBCT, different parameters such as linearity, sensitivity and temporal stability were checked. MAGAT gel showed good linearity for both diagnostic CT and CBCT measurements. Sensitivity and temporal stability were also comparable with diagnostic CT measurements. In both the modalities, the sensitivity of the MAGAT increased to 4 days and decreased till the 10th day of post irradiation. Since all measurements (linearity, sensitivity and temporal stability) from diagnostic CT and CBCT were comparable, CBCT could be a potential tool for dose analysis study for polymer gel dosimeter.
Alkhateeb, Haitham M
2002-02-01
This study was designed to compare achievement, attitudes toward success in mathematics, and mathematics anxiety of college students taught brief calculus using a graphic calculator, with the achievement and attitudes and anxiety of students taught using the computer algebra system Maple, using a technology based text book. 50 men and 50 women, students in three classes at a large public university in the southwestern United States, participated. Students' achievement in brief calculus was measured by performance on a teacher-made achievement test given at the end of the study. Analysis of variance showed no significant difference in achievement between the groups. To measure change in attitudes and anxiety, responses to paper-and-pencil inventories indicated significant differences in favor of students using the computer.
Design study for LANDSAT-D attitude control system
NASA Technical Reports Server (NTRS)
Iwens, R. P.; Bernier, G. E.; Hofstadter, R. F.; Mayo, R. A.; Nakano, H.
1977-01-01
The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse.
Mobile Computing for Aerospace Applications
NASA Technical Reports Server (NTRS)
Alena, Richard; Swietek, Gregory E. (Technical Monitor)
1994-01-01
The use of commercial computer technology in specific aerospace mission applications can reduce the cost and project cycle time required for the development of special-purpose computer systems. Additionally, the pace of technological innovation in the commercial market has made new computer capabilities available for demonstrations and flight tests. Three areas of research and development being explored by the Portable Computer Technology Project at NASA Ames Research Center are the application of commercial client/server network computing solutions to crew support and payload operations, the analysis of requirements for portable computing devices, and testing of wireless data communication links as extensions to the wired network. This paper will present computer architectural solutions to portable workstation design including the use of standard interfaces, advanced flat-panel displays and network configurations incorporating both wired and wireless transmission media. It will describe the design tradeoffs used in selecting high-performance processors and memories, interfaces for communication and peripheral control, and high resolution displays. The packaging issues for safe and reliable operation aboard spacecraft and aircraft are presented. The current status of wireless data links for portable computers is discussed from a system design perspective. An end-to-end data flow model for payload science operations from the experiment flight rack to the principal investigator is analyzed using capabilities provided by the new generation of computer products. A future flight experiment on-board the Russian MIR space station will be described in detail including system configuration and function, the characteristics of the spacecraft operating environment, the flight qualification measures needed for safety review, and the specifications of the computing devices to be used in the experiment. The software architecture chosen shall be presented. An analysis of the performance characteristics of wireless data links in the spacecraft environment will be discussed. Network performance and operation will be modeled and preliminary test results presented. A crew support application will be demonstrated in conjunction with the network metrics experiment.
Chesser, Amy K; Keene Woods, Nikki; Wipperman, Jennifer; Wilson, Rachel; Dong, Frank
2014-02-01
Low health literacy is associated with poor health outcomes. Research is needed to understand the mechanisms and pathways of its effects. Computer-based assessment tools may improve efficiency and cost-effectiveness of health literacy research. The objective of this preliminary study was to assess if administration of the Short Test of Functional Health Literacy in Adults (STOFHLA) through a computer-based medium was comparable to the paper-based test in terms of accuracy and time to completion. A randomized, crossover design was used to compare computer versus paper format of the STOFHLA at a Midwestern family medicine residency program. Eighty participants were initially randomized to either computer (n = 42) or paper (n = 38) format of the STOFHLA. After a 30-day washout period, participants returned to complete the other version of the STOFHLA. Data analysis revealed no significant difference between paper- and computer-based surveys (p = .9401; N = 57). The majority of participants showed "adequate" health literacy via paper- and computer-based surveys (100% and 97% of participants, respectively). Electronic administration of STOFHLA results were equivalent to the paper administration results for evaluation of adult health literacy. Future investigations should focus on expanded populations in multiple health care settings and validation of other health literacy screening tools in a clinical setting.
An Aeroelastic Analysis of a Thin Flexible Membrane
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Bartels, Robert E.; Kandil, Osama A.
2007-01-01
Studies have shown that significant vehicle mass and cost savings are possible with the use of ballutes for aero-capture. Through NASA's In-Space Propulsion program, a preliminary examination of ballute sensitivity to geometry and Reynolds number was conducted, and a single-pass coupling between an aero code and a finite element solver was used to assess the static aeroelastic effects. There remain, however, a variety of open questions regarding the dynamic aeroelastic stability of membrane structures for aero-capture, with the primary challenge being the prediction of the membrane flutter onset. The purpose of this paper is to describe and begin addressing these issues. The paper includes a review of the literature associated with the structural analysis of membranes and membrane utter. Flow/structure analysis coupling and hypersonic flow solver options are also discussed. An approach is proposed for tackling this problem that starts with a relatively simple geometry and develops and evaluates analysis methods and procedures. This preliminary study considers a computationally manageable 2-dimensional problem. The membrane structural models used in the paper include a nonlinear finite-difference model for static and dynamic analysis and a NASTRAN finite element membrane model for nonlinear static and linear normal modes analysis. Both structural models are coupled with a structured compressible flow solver for static aeroelastic analysis. For dynamic aeroelastic analyses, the NASTRAN normal modes are used in the structured compressible flow solver and 3rd order piston theories were used with the finite difference membrane model to simulate utter onset. Results from the various static and dynamic aeroelastic analyses are compared.
Joy, J E; Poglod, R; Murphy, D L; Sims, K B; de la Chapelle, A; Sankila, E M; Norio, R; Merril, C R
1991-01-01
Norrie disease is an X-linked recessive disorder characterized by congenital blindness and, in many cases, mental retardation. Some Norrie disease cases have been shown to be associated with a submicroscopic deletion in chromosomal region Xp11.3. Cerebrospinal fluid (CSF) was collected from four male patients with an X-chromosomal deletion associated with Norrie disease. CSF proteins were resolved using two-dimensional gel electrophoresis and then analyzed by computer using the Elsie V program. Our analysis revealed a protein that appears to be altered in patients with Norrie disease deletion.
Additional extensions to the NASCAP computer code, volume 1
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Katz, I.; Stannard, P. R.
1981-01-01
Extensions and revisions to a computer code that comprehensively analyzes problems of spacecraft charging (NASCAP) are documented. Using a fully three dimensional approach, it can accurately predict spacecraft potentials under a variety of conditions. Among the extensions are a multiple electron/ion gun test tank capability, and the ability to model anisotropic and time dependent space environments. Also documented are a greatly extended MATCHG program and the preliminary version of NASCAP/LEO. The interactive MATCHG code was developed into an extremely powerful tool for the study of material-environment interactions. The NASCAP/LEO, a three dimensional code to study current collection under conditions of high voltages and short Debye lengths, was distributed for preliminary testing.
Study of solid rocket motor for space shuttle booster, volume 2, book 5, appendices E thru H
NASA Technical Reports Server (NTRS)
1972-01-01
Preliminary parametric studies were performed to establish size, weight and packaging arrangements for aerodynamic decelerator devices that could be used for recovery of the expended solid propellant rocket motors used in the launch phase of the Space Shuttle System. Computations were made using standard engineering analysis techniques. Terminal stage parachutes were sized to provide equilibrium descent velocities for water entry that are presently thought to be acceptable without developing loads that could exceed the boosters structural integrity. The performance characteristics of the aerodynamic parachute decelerator devices considered are based on analysis and prior test results for similar configurations and are assumed to be maintained at the scale requirements of the present problem.
Vector wind profile gust model
NASA Technical Reports Server (NTRS)
Adelfang, S. I.
1979-01-01
Work towards establishing a vector wind profile gust model for the Space Transportation System flight operations and trade studies is reported. To date, all the statistical and computational techniques required were established and partially implemented. An analysis of wind profile gust at Cape Kennedy within the theoretical framework is presented. The variability of theoretical and observed gust magnitude with filter type, altitude, and season is described. Various examples are presented which illustrate agreement between theoretical and observed gust percentiles. The preliminary analysis of the gust data indicates a strong variability with altitude, season, and wavelength regime. An extension of the analyses to include conditional distributions of gust magnitude given gust length, distributions of gust modulus, and phase differences between gust components has begun.
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.
1976-01-01
A FORTRAN program is presented for preliminary analysis and design of multilayered composite panels subjected to inplane loads. All plys are of the same material. The composite is assumed symmetric about the midplane, but need not be balanced. Failure criterion includes limit ply strains and lower bounds on composite inplane stiffnesses. Multiple load conditions are considered. The required input data is defined and examples are provided to aid the use in making the program operational. Average panel design times are two seconds on an IBM 360/67 computer. Results are compared with published literature. A complete FORTRAN listing of program COMAND is provided. In addition, the optimization program CONMIN is required for design.
NASA Technical Reports Server (NTRS)
Hale, P. L.
1982-01-01
The weight and major envelope dimensions of small aircraft propulsion gas turbine engines are estimated. The computerized method, called WATE-S (Weight Analysis of Turbine Engines-Small) is a derivative of the WATE-2 computer code. WATE-S determines the weight of each major component in the engine including compressors, burners, turbines, heat exchangers, nozzles, propellers, and accessories. A preliminary design approach is used where the stress levels, maximum pressures and temperatures, material properties, geometry, stage loading, hub/tip radius ratio, and mechanical overspeed are used to determine the component weights and dimensions. The accuracy of the method is generally better than + or - 10 percent as verified by analysis of four small aircraft propulsion gas turbine engines.
A preliminary design for flight testing the FINDS algorithm
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Godiwala, P. M.
1986-01-01
This report presents a preliminary design for flight testing the FINDS (Fault Inferring Nonlinear Detection System) algorithm on a target flight computer. The FINDS software was ported onto the target flight computer by reducing the code size by 65%. Several modifications were made to the computational algorithms resulting in a near real-time execution speed. Finally, a new failure detection strategy was developed resulting in a significant improvement in the detection time performance. In particular, low level MLS, IMU and IAS sensor failures are detected instantaneously with the new detection strategy, while accelerometer and the rate gyro failures are detected within the minimum time allowed by the information generated in the sensor residuals based on the point mass equations of motion. All of the results have been demonstrated by using five minutes of sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment.
Computational Electromagnetic Modeling of SansEC(Trade Mark) Sensors
NASA Technical Reports Server (NTRS)
Smith, Laura J.; Dudley, Kenneth L.; Szatkowski, George N.
2011-01-01
This paper describes the preliminary effort to apply computational design tools to aid in the development of an electromagnetic SansEC resonant sensor composite materials damage detection system. The computational methods and models employed on this research problem will evolve in complexity over time and will lead to the development of new computational methods and experimental sensor systems that demonstrate the capability to detect, diagnose, and monitor the damage of composite materials and structures on aerospace vehicles.
NASA Technical Reports Server (NTRS)
Alvarez, L. S.; Moore, M.; Veruttipong, W.; Andres, E.
1994-01-01
The design and implementation of an antenna beam-waveguide (BWG) mirror position control system at the DSS-13 34-m antenna is presented. While it has several potential applications, a positioner on the last flat-plate BWG mirror (M6) at DSS 13 is installed to demonstrate the conical scan (conscan) angle-tracking technique at the Ka-band (32-GHz) operating frequency. Radio frequency (RF) beam-scanning predictions for the M6 mirror, computed from a diffraction analysis, are presented. From these predictions, position control system requirements are then derived. The final mechanical positioner and servo system designs, as implemented at DSS 13, are illustrated with detailed design descriptions given in the appendices. Preliminary measurements of antenna Ka-band beam scan versus M6 mirror tilt made at DSS 13 in December 1993 are presented. After reduction, the initial measurements are shown to be in agreement with the RF predicts. Plans for preliminary conscan experimentation at DSS 13 are summarized.
Axisymmetric inlet minimum weight design method
NASA Technical Reports Server (NTRS)
Nadell, Shari-Beth
1995-01-01
An analytical method for determining the minimum weight design of an axisymmetric supersonic inlet has been developed. The goal of this method development project was to improve the ability to predict the weight of high-speed inlets in conceptual and preliminary design. The initial model was developed using information that was available from inlet conceptual design tools (e.g., the inlet internal and external geometries and pressure distributions). Stiffened shell construction was assumed. Mass properties were computed by analyzing a parametric cubic curve representation of the inlet geometry. Design loads and stresses were developed at analysis stations along the length of the inlet. The equivalent minimum structural thicknesses for both shell and frame structures required to support the maximum loads produced by various load conditions were then determined. Preliminary results indicated that inlet hammershock pressures produced the critical design load condition for a significant portion of the inlet. By improving the accuracy of inlet weight predictions, the method will improve the fidelity of propulsion and vehicle design studies and increase the accuracy of weight versus cost studies.
A preliminary study of containment concepts for aircraft landing on elevated STOL-ports
NASA Technical Reports Server (NTRS)
Haviland, J. K.
1971-01-01
A preliminary study of containment systems for aircraft landing on elevated STOL-ports was conducted as part of an overall study of human acceptance problems associated with STOL operations. The study included a survey and feasibility study of different concepts and a computer analysis of four arrestment systems. The principal conclusion was that a system referred to as the FAA system appears to offer the greatest promise. In this system, standard arresting gear cables are stretched across the roof-top, at roughly 100-foot intervals, but are shielded over the 100-foot-wide primary landing strip. Thus a pilot can land with an arresting hook down, but will not contact the cable unless he swerves off the landing strip, either because he has made a bad landing, or because his landing gear has failed. It was also noted that a suitable curb or guard rail should be developed. Presently available arresting gears and nylon net barriers were considered satisfactory for the overshoot problem.
NASA Technical Reports Server (NTRS)
1976-01-01
In the conceptual design task, several feasible wind generator systems (WGS) configurations were evaluated, and the concept offering the lowest energy cost potential and minimum technical risk for utility applications was selected. In the optimization task, the selected concept was optimized utilizing a parametric computer program prepared for this purpose. In the preliminary design task, the optimized selected concept was designed and analyzed in detail. The utility requirements evaluation task examined the economic, operational, and institutional factors affecting the WGS in a utility environment, and provided additional guidance for the preliminary design effort. Results of the conceptual design task indicated that a rotor operating at constant speed, driving an AC generator through a gear transmission is the most cost effective WGS configuration. The optimization task results led to the selection of a 500 kW rating for the low power WGS and a 1500 kW rating for the high power WGS.
Systems Engineering Metrics: Organizational Complexity and Product Quality Modeling
NASA Technical Reports Server (NTRS)
Mog, Robert A.
1997-01-01
Innovative organizational complexity and product quality models applicable to performance metrics for NASA-MSFC's Systems Analysis and Integration Laboratory (SAIL) missions and objectives are presented. An intensive research effort focuses on the synergistic combination of stochastic process modeling, nodal and spatial decomposition techniques, organizational and computational complexity, systems science and metrics, chaos, and proprietary statistical tools for accelerated risk assessment. This is followed by the development of a preliminary model, which is uniquely applicable and robust for quantitative purposes. Exercise of the preliminary model using a generic system hierarchy and the AXAF-I architectural hierarchy is provided. The Kendall test for positive dependence provides an initial verification and validation of the model. Finally, the research and development of the innovation is revisited, prior to peer review. This research and development effort results in near-term, measurable SAIL organizational and product quality methodologies, enhanced organizational risk assessment and evolutionary modeling results, and 91 improved statistical quantification of SAIL productivity interests.
NASA Astrophysics Data System (ADS)
Klyashtorny, V. G.; Fufina, T. Yu.; Vasilieva, L. G.; Shuvalov, V. A.; Gabdulkhakov, A. G.
2014-07-01
Pigment-protein interactions are responsible for the high efficiency of the light-energy transfer and conversion in photosynthesis. The reaction center (RC) from the purple bacterium Rhodobacter sphaeroides is the most convenient model for studying the mechanisms of primary processes of photosynthesis. Site-directed mutagenesis can be used to study the effect of the protein environment of electron-transfer cofactors on the optical properties, stability, pigment composition, and functional activity of RC. The preliminary analysis of RC was performed by computer simulation of the amino acid substitutions L(M196)H + H(M202)L at the pigment-protein interface and by estimating the stability of the threedimensional structure of the mutant RC by the molecular dynamics method. The doubly mutated reaction center was overexpressed, purified, and crystallized. The three-dimensional structure of this mutant was determined by X-ray crystallography and compared with the molecular dynamics model.
Working Together: Computers and People with Mobility Impairments.
ERIC Educational Resources Information Center
Washington Univ., Seattle.
This brief paper describes several computing tools that have been effectively used by individuals with mobility impairments. Emphasis is on tasks to be completed and how the individuals abilities (not disabilities), with possible assistance from technology, can be used to accomplish them. Preliminary information addresses the importance of…
The ALL-OUT Library; A Design for Computer-Powered, Multidimensional Services.
ERIC Educational Resources Information Center
Sleeth, Jim; LaRue, James
1983-01-01
Preliminary description of design of electronic library and home information delivery system highlights potentials of personal computer interface program (applying for service, assuring that users are valid, checking for measures, searching, locating titles) and incorporation of concepts used in other information systems (security checks,…
Visual Knowledge in Tactical Planning: Preliminary Knowledge Acquisition Phase 1 Technical Report
1990-04-05
MANAGEMENT INFORMATION , COMMUNICATIONS, AND COMPUTER SCIENCES Visual Knowledge in Tactical Planning: Preliminary Knowledge Acquisition Phase I Technical...perceived provides information in multiple modalities and, in fact, we may rely on a non-verbal mode for much of our understanding of the situation...some tasks, almost all the pertinent information is provided via diagrams, maps, znd other illustrations. Visual Knowledge Visual experience forms a
1984-01-01
Recent investigations suggest that dispersion in aquifers is scale dependent and a function of the heterogeneity of aquifer materials. Theoretical stochastic studies indicate that determining hydraulic-conductivity variability in three dimensions is important in analyzing the dispersion process. Even though field methods are available to approximate hydraulic conductivity in three dimensions, the methods are not generally used because of high cost of field equipment and because measurement and analysis techniques are cumbersome and time consuming. The hypothesis of this study is that field-determined values of dispersivity are scale dependent and that they may be described as a function of hydraulic conductivity in three dimensions. The objectives of the study at the Bemidji research site are to (1) determine hydraulic conductivity of the porous media in three dimensions, (2) determine field values of dispersivity and its scale dependence on hydraulic conductivity, and (3) develop and apply a computerized data-collection, storage, and analysis system for field use in comprehensive determination of hydraulic conductivity and dispersivity. Plans for this investigation involve a variety of methods of analysis. Hydraulic conductivity will be determined separately in the horizontal and vertical planes of the hydraulic-conductivity ellipsoid. Field values of dispersivity will be determined by single-well and doublet-well injection or withdrawal tests with tracers. A computerized data-collection, storage, and analysis system to measure pressure, flow rate, tracer concentrations, and temperature will be designed for field testing. Real-time computer programs will be used to analyze field data. The initial methods of analysis will be utilized to meet the objectives of the study. Preliminary field data indicate the aquifer underlying the Bemidji site is vertically heterogeneous, cross-bedded outwash. Preliminary analysis of the flow field around a hypothetical doublet-well tracer test indicates that the location of the wells can affect the field value of dispersivity. Preliminary analysis also indicates that different values of dispersivity may result from anisotropic conditions in tests in which observation wells are located at equal radial distances from either the injection or withdrawal well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadgu, Teklu; Appel, Gordon John
Sandia National Laboratories (SNL) continued evaluation of total system performance assessment (TSPA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014) and Hadgu et al. (2015). The TSPA computing hardware (CL2014) and storage system described in Hadgu et al. (2015) were used for the currentmore » analysis. One floating license of GoldSim with Versions 9.60.300, 10.5 and 11.1.6 was installed on the cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software were tested and installed to support the TSPA-type analysis on the server cluster. The current tasks included verification of the TSPA-LA uncertainty and sensitivity analyses, and preliminary upgrade of the TSPA-LA from Version 9.60.300 to the latest version 11.1. All the TSPA-LA uncertainty and sensitivity analyses modeling cases were successfully tested and verified for the model reproducibility on the upgraded 2014 server cluster (CL2014). The uncertainty and sensitivity analyses used TSPA-LA modeling cases output generated in FY15 based on GoldSim Version 9.60.300 documented in Hadgu et al. (2015). The model upgrade task successfully converted the Nominal Modeling case to GoldSim Version 11.1. Upgrade of the remaining of the modeling cases and distributed processing tasks will continue. The 2014 server cluster and supporting software systems are fully operational to support TSPA-LA type analysis.« less
Polynomial elimination theory and non-linear stability analysis for the Euler equations
NASA Technical Reports Server (NTRS)
Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.
1986-01-01
Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.
Comprehensive rotorcraft analysis methods
NASA Technical Reports Server (NTRS)
Stephens, Wendell B.; Austin, Edward E.
1988-01-01
The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS).
Preliminary results in large bone segmentation from 3D freehand ultrasound
NASA Astrophysics Data System (ADS)
Fanti, Zian; Torres, Fabian; Arámbula Cosío, Fernando
2013-11-01
Computer Assisted Orthopedic Surgery (CAOS) requires a correct registration between the patient in the operating room and the virtual models representing the patient in the computer. In order to increase the precision and accuracy of the registration a set of new techniques that eliminated the need to use fiducial markers have been developed. The majority of these newly developed registration systems are based on costly intraoperative imaging systems like Computed Tomography (CT scan) or Magnetic resonance imaging (MRI). An alternative to these methods is the use of an Ultrasound (US) imaging system for the implementation of a more cost efficient intraoperative registration solution. In order to develop the registration solution with the US imaging system, the bone surface is segmented in both preoperative and intraoperative images, and the registration is done using the acquire surface. In this paper, we present the a preliminary results of a new approach to segment bone surface from ultrasound volumes acquired by means 3D freehand ultrasound. The method is based on the enhancement of the voxels that belongs to surface and its posterior segmentation. The enhancement process is based on the information provided by eigenanalisis of the multiscale 3D Hessian matrix. The preliminary results shows that from the enhance volume the final bone surfaces can be extracted using a singular value thresholding.
NASA Technical Reports Server (NTRS)
Finley, Dennis B.
1995-01-01
This report documents results from the Euler Technology Assessment program. The objective was to evaluate the efficacy of Euler computational fluid dynamics (CFD) codes for use in preliminary aircraft design. Both the accuracy of the predictions and the rapidity of calculations were to be assessed. This portion of the study was conducted by Lockheed Fort Worth Company, using a recently developed in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages for this study, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaptation of the volume grid during the solution convergence to resolve high-gradient flow regions. This proved beneficial in resolving the large vortical structures in the flow for several configurations examined in the present study. The SPLITFLOW code predictions of the configuration forces and moments are shown to be adequate for preliminary design analysis, including predictions of sideslip effects and the effects of geometry variations at low and high angles of attack. The time required to generate the results from initial surface definition is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.
Probabilistic Micromechanics and Macromechanics for Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.; Shah, Ashwin R.
1997-01-01
The properties of ceramic matrix composites (CMC's) are known to display a considerable amount of scatter due to variations in fiber/matrix properties, interphase properties, interphase bonding, amount of matrix voids, and many geometry- or fabrication-related parameters, such as ply thickness and ply orientation. This paper summarizes preliminary studies in which formal probabilistic descriptions of the material-behavior- and fabrication-related parameters were incorporated into micromechanics and macromechanics for CMC'S. In this process two existing methodologies, namely CMC micromechanics and macromechanics analysis and a fast probability integration (FPI) technique are synergistically coupled to obtain the probabilistic composite behavior or response. Preliminary results in the form of cumulative probability distributions and information on the probability sensitivities of the response to primitive variables for a unidirectional silicon carbide/reaction-bonded silicon nitride (SiC/RBSN) CMC are presented. The cumulative distribution functions are computed for composite moduli, thermal expansion coefficients, thermal conductivities, and longitudinal tensile strength at room temperature. The variations in the constituent properties that directly affect these composite properties are accounted for via assumed probabilistic distributions. Collectively, the results show that the present technique provides valuable information about the composite properties and sensitivity factors, which is useful to design or test engineers. Furthermore, the present methodology is computationally more efficient than a standard Monte-Carlo simulation technique; and the agreement between the two solutions is excellent, as shown via select examples.
NOAA/DOE CWP structural analysis package. [CWPFLY, CWPEXT, COTEC, and XOTEC codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pompa, J.A.; Lunz, D.F.
1979-09-01
The theoretical development and computer code user's manual for analysis of the Ocean Thermal Energy Conversion (OTEC) plant cold water pipe (CWP) are presented. The analysis of the CWP includes coupled platform/CWP loadngs and dynamic responses. This report with the exception of the Introduction and Appendix F was orginally published as Hydronautics, Inc., Technical Report No. 7825-2 (by Barr, Chang, and Thasanatorn) in November 1978. A detailed theoretical development of the equations describing the coupled platform/CWP system and preliminary validation efforts are described. The appendices encompass a complete user's manual, describing the inputs, outputs and operation of the four componentmore » programs, and detail changes and updates implemented since the original release of the code by Hydronautics. The code itself is available through NOAA's Office of Ocean Technology and Engineering Services.« less
Calculation of flow about posts and powerhead model
NASA Technical Reports Server (NTRS)
1988-01-01
A large number of computational fluid mechanics (CFD) problems were investigated. The primary studies include: the analysis of the turnaround duct/hot gas manifold/transfer tubes (fuel side) of the Space Shuttle Main Engine (SSME); the analysis of the LOX-T manifold (oxidizer side) of the SSME; the analysis of hydrogen accumulation in the Vandeburg flame trench; and modification of the Intel/VT241 systems to accommodate the EADS and PLOT 3D. Some of the analyses were exploratory in nature, using the CONTINUSYS code to provide preliminary information to enhance understanding of the problem, while in other the primary thrust was to acquire design information. In all cases the ability to predict information rapidly in these very complex analyses is seen to be an important demonstration of the power and utility of this mature predictive capability.
Gomes-Fonseca, João; Vilaça, João L; Henriques-Coelho, Tiago; Direito-Santos, Bruno; Pinho, António C M; Fonseca, Jaime C; Correia-Pinto, Jorge
2017-07-01
The objective is to present a new methodology to assess quantitatively the impact of bar removal on the anterior chest wall, among patients with pectus excavatum who have undergone the Nuss procedure, and present a preliminary study using this methodology. We propose to acquire, for each patient, the surface of the anterior chest wall using a three-dimensional laser scanner at subsequent time points (short term: before and after surgery; long term: follow-up visit, 6months, and 12months after surgery). After surfaces postprocessing, the changes are assessed by overlapping and measuring the distances between surfaces. In this preliminary study, three time points were acquired and two assessments were performed: before vs after bar removal (early) and before vs 2-8weeks after bar removal (interim). In 21 patients, the signed distances and volumes between surfaces were computed and the data analysis was performed. This methodology revealed useful for monitoring changes in the anterior chest wall. On average, the mean, maximum, and volume variations, in the early assessment, were -0.1±0.1cm, -0.6±0.2cm, and 47.8±22.2cm 3 , respectively; and, in the interim assessment, were -0.5±0.2cm, -1.3±0.4cm, and 122.1±47.3cm 3 , respectively (p<0.05). Data analysis revealed that the time the bar was in situ was inversely and significantly correlated with postretraction and was a relevant predictor of its decrease following surgery (p<0.05). Additionally, gender and age suggested influencing the outcome. This methodology is novel, objective and safe, helping on follow-up of pectus excavatum patients. Moreover, the preliminary study suggests that the time the bar was in situ may be the main determinant of the anterior chest wall retraction following bar removal. Further studies should continue to corroborate and reinforce the preliminary findings, by increasing the sample size and performing long-term assessments. III. Copyright © 2017 Elsevier Inc. All rights reserved.
Computer-aided personal interviewing. A new technique for data collection in epidemiologic surveys.
Birkett, N J
1988-03-01
Most epidemiologic studies involve the collection of data directly from selected respondents. Traditionally, interviewers are provided with the interview in booklet form on paper and answers are recorded therein. On receipt at the study office, the interview results are coded, transcribed, and keypunched for analysis. The author's team has developed a method of personal interviewing which uses a structured interview stored on a lap-sized computer. Responses are entered into the computer and are subject to immediate error-checking and correction. All skip-patterns are automatic. Data entry to the final data-base involves no manual data transcription. A pilot evaluation with a preliminary version of the system using tape-recorded interviews in a test/re-test methodology revealed a slightly higher error rate, probably related to weaknesses in the pilot system and the training process. Computer interviews tended to be longer but other features of the interview process were not affected by computer. The author's team has now completed 2,505 interviews using this system in a community-based blood pressure survey. It has been well accepted by both interviewers and respondents. Failure to complete an interview on the computer was uncommon (5 per cent) and well-handled by paper back-up questionnaires. The results show that computer-aided personal interviewing in the home is feasible but that further evaluation is needed to establish the impact of this methodology on overall data quality.
SU-E-J-128: Two-Stage Atlas Selection in Multi-Atlas-Based Image Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, T; Ruan, D
2015-06-15
Purpose: In the new era of big data, multi-atlas-based image segmentation is challenged by heterogeneous atlas quality and high computation burden from extensive atlas collection, demanding efficient identification of the most relevant atlases. This study aims to develop a two-stage atlas selection scheme to achieve computational economy with performance guarantee. Methods: We develop a low-cost fusion set selection scheme by introducing a preliminary selection to trim full atlas collection into an augmented subset, alleviating the need for extensive full-fledged registrations. More specifically, fusion set selection is performed in two successive steps: preliminary selection and refinement. An augmented subset is firstmore » roughly selected from the whole atlas collection with a simple registration scheme and the corresponding preliminary relevance metric; the augmented subset is further refined into the desired fusion set size, using full-fledged registration and the associated relevance metric. The main novelty of this work is the introduction of an inference model to relate the preliminary and refined relevance metrics, based on which the augmented subset size is rigorously derived to ensure the desired atlases survive the preliminary selection with high probability. Results: The performance and complexity of the proposed two-stage atlas selection method were assessed using a collection of 30 prostate MR images. It achieved comparable segmentation accuracy as the conventional one-stage method with full-fledged registration, but significantly reduced computation time to 1/3 (from 30.82 to 11.04 min per segmentation). Compared with alternative one-stage cost-saving approach, the proposed scheme yielded superior performance with mean and medium DSC of (0.83, 0.85) compared to (0.74, 0.78). Conclusion: This work has developed a model-guided two-stage atlas selection scheme to achieve significant cost reduction while guaranteeing high segmentation accuracy. The benefit in both complexity and performance is expected to be most pronounced with large-scale heterogeneous data.« less
Rai, Arpita; Acharya, Ashith B.; Naikmasur, Venkatesh G.
2016-01-01
Background: Age estimation of living or deceased individuals is an important aspect of forensic sciences. Conventionally, pulp-to-tooth area ratio (PTR) measured from periapical radiographs have been utilized as a nondestructive method of age estimation. Cone-beam computed tomography (CBCT) is a new method to acquire three-dimensional images of the teeth in living individuals. Aims: The present study investigated age estimation based on PTR of the maxillary canines measured in three planes obtained from CBCT image data. Settings and Design: Sixty subjects aged 20–85 years were included in the study. Materials and Methods: For each tooth, mid-sagittal, mid-coronal, and three axial sections—cementoenamel junction (CEJ), one-fourth root level from CEJ, and mid-root—were assessed. PTR was calculated using AutoCAD software after outlining the pulp and tooth. Statistical Analysis Used: All statistical analyses were performed using an SPSS 17.0 software program. Results and Conclusions: Linear regression analysis showed that only PTR in axial plane at CEJ had significant age correlation (r = 0.32; P < 0.05). This is probably because of clearer demarcation of pulp and tooth outline at this level. PMID:28123269
Simulation of Transcritical CO2 Refrigeration System with Booster Hot Gas Bypass in Tropical Climate
NASA Astrophysics Data System (ADS)
Santosa, I. D. M. C.; Sudirman; Waisnawa, IGNS; Sunu, PW; Temaja, IW
2018-01-01
A Simulation computer becomes significant important for performance analysis since there is high cost and time allocation to build an experimental rig, especially for CO2 refrigeration system. Besides, to modify the rig also need additional cos and time. One of computer program simulation that is very eligible to refrigeration system is Engineering Equation System (EES). In term of CO2 refrigeration system, environmental issues becomes priority on the refrigeration system development since the Carbon dioxide (CO2) is natural and clean refrigerant. This study aims is to analysis the EES simulation effectiveness to perform CO2 transcritical refrigeration system with booster hot gas bypass in high outdoor temperature. The research was carried out by theoretical study and numerical analysis of the refrigeration system using the EES program. Data input and simulation validation were obtained from experimental and secondary data. The result showed that the coefficient of performance (COP) decreased gradually with the outdoor temperature variation increasing. The results show the program can calculate the performance of the refrigeration system with quick running time and accurate. So, it will be significant important for the preliminary reference to improve the CO2 refrigeration system design for the hot climate temperature.
Kish, Gary; Cook, Samuel A; Kis, Gréta
2013-01-01
The University of Debrecen's Faculty of Medicine has an international, multilingual student population with anatomy courses taught in English to all but Hungarian students. An elective computer-assisted gross anatomy course, the Computer Human Anatomy (CHA), has been taught in English at the Anatomy Department since 2008. This course focuses on an introduction to anatomical digital images along with clinical cases. This low-budget course has a large visual component using images from magnetic resonance imaging and computer axial tomogram scans, ultrasound clinical studies, and readily available anatomy software that presents topics which run in parallel to the university's core anatomy curriculum. From the combined computer images and CHA lecture information, students are asked to solve computer-based clinical anatomy problems in the CHA computer laboratory. A statistical comparison was undertaken of core anatomy oral examination performances of English program first-year medical students who took the elective CHA course and those who did not in the three academic years 2007-2008, 2008-2009, and 2009-2010. The results of this study indicate that the CHA-enrolled students improved their performance on required anatomy core curriculum oral examinations (P < 0.001), suggesting that computer-assisted learning may play an active role in anatomy curriculum improvement. These preliminary results have prompted ongoing evaluation of what specific aspects of CHA are valuable and which students benefit from computer-assisted learning in a multilingual and diverse cultural environment. Copyright © 2012 American Association of Anatomists.
Dynamic Load Balancing for Grid Partitioning on a SP-2 Multiprocessor: A Framework
NASA Technical Reports Server (NTRS)
Sohn, Andrew; Simon, Horst; Lasinski, T. A. (Technical Monitor)
1994-01-01
Computational requirements of full scale computational fluid dynamics change as computation progresses on a parallel machine. The change in computational intensity causes workload imbalance of processors, which in turn requires a large amount of data movement at runtime. If parallel CFD is to be successful on a parallel or massively parallel machine, balancing of the runtime load is indispensable. Here a framework is presented for dynamic load balancing for CFD applications, called Jove. One processor is designated as a decision maker Jove while others are assigned to computational fluid dynamics. Processors running CFD send flags to Jove in a predetermined number of iterations to initiate load balancing. Jove starts working on load balancing while other processors continue working with the current data and load distribution. Jove goes through several steps to decide if the new data should be taken, including preliminary evaluate, partition, processor reassignment, cost evaluation, and decision. Jove running on a single EBM SP2 node has been completely implemented. Preliminary experimental results show that the Jove approach to dynamic load balancing can be effective for full scale grid partitioning on the target machine IBM SP2.
Dynamic Load Balancing For Grid Partitioning on a SP-2 Multiprocessor: A Framework
NASA Technical Reports Server (NTRS)
Sohn, Andrew; Simon, Horst; Lasinski, T. A. (Technical Monitor)
1994-01-01
Computational requirements of full scale computational fluid dynamics change as computation progresses on a parallel machine. The change in computational intensity causes workload imbalance of processors, which in turn requires a large amount of data movement at runtime. If parallel CFD is to be successful on a parallel or massively parallel machine, balancing of the runtime load is indispensable. Here a framework is presented for dynamic load balancing for CFD applications, called Jove. One processor is designated as a decision maker Jove while others are assigned to computational fluid dynamics. Processors running CFD send flags to Jove in a predetermined number of iterations to initiate load balancing. Jove starts working on load balancing while other processors continue working with the current data and load distribution. Jove goes through several steps to decide if the new data should be taken, including preliminary evaluate, partition, processor reassignment, cost evaluation, and decision. Jove running on a single IBM SP2 node has been completely implemented. Preliminary experimental results show that the Jove approach to dynamic load balancing can be effective for full scale grid partitioning on the target machine IBM SP2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, J. J.; van Rooyen, I. J.; Craft, A. E.
In this study, 3-D image analysis when combined with a non-destructive examination technique such as X-ray computed tomography (CT) provides a highly quantitative tool for the investigation of a material’s structure. In this investigation 3-D image analysis and X-ray CT were combined to analyze the microstructure of a preliminary subsized fuel compact for the Transient Reactor Test Facility’s low enriched uranium conversion program to assess the feasibility of the combined techniques for use in the optimization of the fuel compact fabrication process. The quantitative image analysis focused on determining the size and spatial distribution of the surrogate fuel particles andmore » the size, shape, and orientation of voids within the compact. Additionally, the maximum effect of microstructural features on heat transfer through the carbonaceous matrix of the preliminary compact was estimated. The surrogate fuel particles occupied 0.8% of the compact by volume with a log-normal distribution of particle sizes with a mean diameter of 39 μm and a standard deviation of 16 μm. Roughly 39% of the particles had a diameter greater than the specified maximum particle size of 44 μm suggesting that the particles agglomerate during fabrication. The local volume fraction of particles also varies significantly within the compact although uniformities appear to be evenly dispersed throughout the analysed volume. The voids produced during fabrication were on average plate-like in nature with their major axis oriented perpendicular to the compaction direction of the compact. Finally, the microstructure, mainly the large preferentially oriented voids, may cause a small degree of anisotropy in the thermal diffusivity within the compact. α∥/α⊥, the ratio of thermal diffusivities parallel to and perpendicular to the compaction direction are expected to be no less than 0.95 with an upper bound of 1.« less
Kane, J. J.; van Rooyen, I. J.; Craft, A. E.; ...
2016-02-05
In this study, 3-D image analysis when combined with a non-destructive examination technique such as X-ray computed tomography (CT) provides a highly quantitative tool for the investigation of a material’s structure. In this investigation 3-D image analysis and X-ray CT were combined to analyze the microstructure of a preliminary subsized fuel compact for the Transient Reactor Test Facility’s low enriched uranium conversion program to assess the feasibility of the combined techniques for use in the optimization of the fuel compact fabrication process. The quantitative image analysis focused on determining the size and spatial distribution of the surrogate fuel particles andmore » the size, shape, and orientation of voids within the compact. Additionally, the maximum effect of microstructural features on heat transfer through the carbonaceous matrix of the preliminary compact was estimated. The surrogate fuel particles occupied 0.8% of the compact by volume with a log-normal distribution of particle sizes with a mean diameter of 39 μm and a standard deviation of 16 μm. Roughly 39% of the particles had a diameter greater than the specified maximum particle size of 44 μm suggesting that the particles agglomerate during fabrication. The local volume fraction of particles also varies significantly within the compact although uniformities appear to be evenly dispersed throughout the analysed volume. The voids produced during fabrication were on average plate-like in nature with their major axis oriented perpendicular to the compaction direction of the compact. Finally, the microstructure, mainly the large preferentially oriented voids, may cause a small degree of anisotropy in the thermal diffusivity within the compact. α∥/α⊥, the ratio of thermal diffusivities parallel to and perpendicular to the compaction direction are expected to be no less than 0.95 with an upper bound of 1.« less
Issa, Ghada; Taslakian, Bedros; Itani, Malak; Hitti, Eveline; Batley, Nicholas; Saliba, Miriam; El-Merhi, Fadi
2015-05-01
At teaching hospitals, radiology residents give preliminary reports for imaging studies requested from the Emergency Department (ED). Discrepancy rates between preliminary and final reports represent an important performance indicator. To present a system for feedback and follow-up of discrepancies, identify the variables associated with the rate and severity of such discrepancies, target the weaknesses, and suggest the need of a standard reference value for comparison among institutions. A monitoring and communication system between the Department of Diagnostic Radiology and Emergency Department was initiated to mark and follow all studies from the ED for which the official reading was different than the preliminary interpretation. Data analysis was performed on all studies from 1 June 2011 to 31 May 2012, based on the severity of the discrepancy, imaging modality, resident training level, and organ system. The distribution of the number of discrepancies among the different resident levels and imaging modalities was determined, as well as the distribution of three severity scores in correlation with other variables. The overall discrepancy rate was 1.62%. The discrepancy rate was higher for first and second year residents (1.62% and 1.96%) than for third and fourth year residents (1.35% and 1.24%). It was higher for computed tomography (2.13%) than for radiographs (1.29%) and ultrasound (0.8%) (P value < 0.01), and higher for musculoskeletal (1.61%) than non-musculoskeletal (0.99%) radiographs (P value = 0.0003). Discrepancies with severity score one constituted 35.5% of the total discrepancies, those with severity scores two and three constituted 22.9% and 41.6%, respectively. We have demonstrated a system for follow-up of discrepancy in interpreting emergency radiology studies, and recorded the discrepancy rate, with further analysis based on different variables. In terms of quality assurance, a periodical analysis might help to reduce the number of discrepant reports by targeted intervention. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
A Preliminary Tsunami vulnerability analysis for Bakirkoy district in Istanbul
NASA Astrophysics Data System (ADS)
Tufekci, Duygu; Lutfi Suzen, M.; Cevdet Yalciner, Ahmet; Zaytsev, Andrey
2016-04-01
Resilience of coastal utilities after earthquakes and tsunamis has major importance for efficient and proper rescue and recovery operations soon after the disasters. Vulnerability assessment of coastal areas under extreme events has major importance for preparedness and development of mitigation strategies. The Sea of Marmara has experienced numerous earthquakes as well as associated tsunamis. There are variety of coastal facilities such as ports, small craft harbors, and terminals for maritime transportation, water front roads and business centers mainly at North Coast of Marmara Sea in megacity Istanbul. A detailed vulnerability analysis for Yenikapi region and a detailed resilience analysis for Haydarpasa port in Istanbul have been studied in previously by Cankaya et al., (2015) and Aytore et al., (2015) in SATREPS project. In this study, the methodology of vulnerability analysis under tsunami attack given in Cankaya et al., (2015) is modified and applied to Bakirkoy district of Istanbul. Bakirkoy district is located at western part of Istanbul and faces to the North Coast of Marmara Sea from 28.77oE to 28.89oE. High resolution spatial dataset of Istanbul Metropolitan Municipality (IMM) is used and analyzed. The bathymetry and topography database and the spatial dataset containing all buildings/structures/infrastructures in the district are collated and utilized for tsunami numerical modeling and following vulnerability analysis. The tsunami parameters from deterministically defined worst case scenarios are computed from the simulations using tsunami numerical model NAMI DANCE. The vulnerability assessment parameters in the district according to vulnerability and resilience are defined; and scored by implementation of a GIS based TVA with appropriate MCDA methods. The risk level is computed using tsunami intensity (level of flow depth from simulations) and TVA results at every location in Bakirkoy district. The preliminary results are presented and discussed. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region in (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD, Turkey, 108Y227, 113M556, 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT-Japan Joint Call and Istanbul Metropolitan Municipality are acknowledged.
NASA Technical Reports Server (NTRS)
1976-01-01
This redundant strapdown INS preliminary design study demonstrates the practicality of a skewed sensor system configuration by means of: (1) devising a practical system mechanization utilizing proven strapdown instruments, (2) thoroughly analyzing the skewed sensor redundancy management concept to determine optimum geometry, data processing requirements, and realistic reliability estimates, and (3) implementing the redundant computers into a low-cost, maintainable configuration.
Distance education through the Internet: the GNA-VSNS biocomputing course.
de la Vega, F M; Giegerich, R; Fuellen, G
1996-01-01
A prototype course on biocomputing was delivered via international computer networks in early summer 1995. The course lasted 11 weeks, and was offered free of charge. It was organized by the BioComputing Division of the Virtual School of Natural Sciences, which is a member school of the Globewide Network Academy. It brought together 34 students and 7 instructors from all over the world, and covered the basics of sequence analysis. Five authors from Germany and USA prepared a hypertext book which was discussed in weekly study sessions that took place in a virtual classroom at the BioMOO electronic conferencing system. The course aimed at students with backgrounds in molecular biology, biomedicine or computer science, complementing and extending their skills with an interdisciplinary curriculum. Special emphasis was placed on the use of Internet resources, and the development of new teaching tools. The hypertext book includes direct links to sequence analysis and databank search services on the Internet. A tool for the interactive visualization of unit-cost pairwise sequence alignment was developed for the course. All course material will stay accessible at the World Wide Web address (Uniform Resource Locator) http://+www.techfak.uni-bielefeld.de/bcd/welcome .html. This paper describes the aims and organization of the course, and gives a preliminary account of this novel experience in distance education.
Characterization of microgravity effects on bone structure and strength using fractal analysis
NASA Technical Reports Server (NTRS)
Acharya, Raj S.; Shackelford, Linda
1995-01-01
The effect of micro-gravity on the musculoskeletal system has been well studied. Significant changes in bone and muscle have been shown after long term space flight. Similar changes have been demonstrated due to bed rest. Bone demineralization is particularly profound in weight bearing bones. Much of the current techniques to monitor bone condition use bone mass measurements. However, bone mass measurements are not reliable to distinguish Osteoporotic and Normal subjects. It has been shown that the overlap between normals and osteoporosis is found for all of the bone mass measurement technologies: single and dual photon absorptiometry, quantitative computed tomography and direct measurement of bone area/volume on biopsy as well as radiogrammetry. A similar discordance is noted in the fact that it has not been regularly possible to find the expected correlation between severity of osteoporosis and degree of bone loss. Structural parameters such as trabecular connectivity have been proposed as features for assessing bone conditions. In this report, we use fractal analysis to characterize bone structure. We show that the fractal dimension computed with MRI images and X-Ray images of the patella are the same. Preliminary experimental results show that the fractal dimension computed from MRI images of vertebrae of human subjects before bedrest is higher than during bedrest.
EPA announced the availability of the final report,Climate Change Effects on Stream and River Biological Indicators: A Preliminary Analysis. This report is a preliminary assessment that describes how biological indicators are likely to respond to climate change, how wel...
Preliminary design of a superconducting coil array for NASA prototype magnetic balance. M.S. Thesis
NASA Technical Reports Server (NTRS)
Alishahi, M. M.
1980-01-01
Using a computer program a partly optimized configuration for a supeconducting version of side and lift coil system of NASA-MIT prototype is presented. Cable size for the mentioned coils and also for superconducting drag and magnetizing coils regarding the overall computed field was determined.
Inventing Motivates and Prepares Student Teachers for Computer-Based Learning
ERIC Educational Resources Information Center
Glogger-Frey, I.; Kappich, J.; Schwonke, R.; Holzäpfel, L.; Nückles, M.; Renkl, A.
2015-01-01
A brief, problem-oriented phase such as an inventing activity is one potential instructional method for preparing learners not only cognitively but also motivationally for learning. Student teachers often need to overcome motivational barriers in order to use computer-based learning opportunities. In a preliminary experiment, we found that student…
Computer-Mediated Communication and the Gallaudet University Community: A Preliminary Report
ERIC Educational Resources Information Center
Hogg, Nanette M.; Lomicky, Carol S.; Weiner, Stephen F.
2008-01-01
The study examined the use of computer-mediated communication (CMC) among individuals involved in a conflict sparked by the appointment of an administrator as president-designate of Gallaudet University in 2006. CMC was defined to comprise forms of communication used for transmitting (sharing) information through networks with digital devices.…
ERIC Educational Resources Information Center
McNinch, George H., Ed.; And Others
Conference presentations of research on reading comprehension, reading instruction, computer applications in reading instruction, and reading theory are compiled in this yearbook. Titles and authors of some of the articles are as follows: "A Rationale for Teaching Children with Limited English Proficiency" (M. Zintz); "Preliminary Development of a…
ERIC Educational Resources Information Center
Bennett, Jessica G.; Gardner, Ralph, III; Cartledge, Gwendolyn; Ramnath, Rajiv; Council, Morris R., III
2017-01-01
This study investigated the effects of a multicomponent, supplemental intervention on the reading fluency of second-grade African-American urban students who showed reading and special education risk. The packaged intervention combined repeated readings and culturally relevant stories, delivered through a novel computer software program to enhance…
A Computer-Based Program to Teach Braille Reading to Sighted Individuals
ERIC Educational Resources Information Center
Scheithauer, Mindy C.; Tiger, Jeffrey H.
2012-01-01
Instructors of the visually impaired need efficient braille-training methods. This study conducted a preliminary evaluation of a computer-based program intended to teach the relation between braille characters and English letters using a matching-to-sample format with 4 sighted college students. Each participant mastered matching visual depictions…
Steiner, Naomi J; Sheldrick, Radley Christopher; Gotthelf, David; Perrin, Ellen C
2011-07-01
Objective. This study examined the efficacy of 2 computer-based training systems to teach children with attention deficit/hyperactivity disorder (ADHD) to attend more effectively. Design/methods. A total of 41 children with ADHD from 2 middle schools were randomly assigned to receive 2 sessions a week at school of either neurofeedback (NF) or attention training through a standard computer format (SCF), either immediately or after a 6-month wait (waitlist control group). Parents, children, and teachers completed questionnaires pre- and postintervention. Results. Primary parents in the NF condition reported significant (P < .05) change on Conners's Rating Scales-Revised (CRS-R) and Behavior Assessment Scales for Children (BASC) subscales; and in the SCF condition, they reported significant (P < .05) change on the CRS-R Inattention scale and ADHD index, the BASC Attention Problems Scale, and on the Behavioral Rating Inventory of Executive Functioning (BRIEF). Conclusion. This randomized control trial provides preliminary evidence of the effectiveness of computer-based interventions for ADHD and supports the feasibility of offering them in a school setting.
Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application
Cantor, Rita M.; Lange, Kenneth; Sinsheimer, Janet S.
2010-01-01
Genome-wide association studies (GWAS) have rapidly become a standard method for disease gene discovery. A substantial number of recent GWAS indicate that for most disorders, only a few common variants are implicated and the associated SNPs explain only a small fraction of the genetic risk. This review is written from the viewpoint that findings from the GWAS provide preliminary genetic information that is available for additional analysis by statistical procedures that accumulate evidence, and that these secondary analyses are very likely to provide valuable information that will help prioritize the strongest constellations of results. We review and discuss three analytic methods to combine preliminary GWAS statistics to identify genes, alleles, and pathways for deeper investigations. Meta-analysis seeks to pool information from multiple GWAS to increase the chances of finding true positives among the false positives and provides a way to combine associations across GWAS, even when the original data are unavailable. Testing for epistasis within a single GWAS study can identify the stronger results that are revealed when genes interact. Pathway analysis of GWAS results is used to prioritize genes and pathways within a biological context. Following a GWAS, association results can be assigned to pathways and tested in aggregate with computational tools and pathway databases. Reviews of published methods with recommendations for their application are provided within the framework for each approach. PMID:20074509
Staged Inference using Conditional Deep Learning for energy efficient real-time smart diagnosis.
Parsa, Maryam; Panda, Priyadarshini; Sen, Shreyas; Roy, Kaushik
2017-07-01
Recent progress in biosensor technology and wearable devices has created a formidable opportunity for remote healthcare monitoring systems as well as real-time diagnosis and disease prevention. The use of data mining techniques is indispensable for analysis of the large pool of data generated by the wearable devices. Deep learning is among the promising methods for analyzing such data for healthcare applications and disease diagnosis. However, the conventional deep neural networks are computationally intensive and it is impractical to use them in real-time diagnosis with low-powered on-body devices. We propose Staged Inference using Conditional Deep Learning (SICDL), as an energy efficient approach for creating healthcare monitoring systems. For smart diagnostics, we observe that all diagnoses are not equally challenging. The proposed approach thus decomposes the diagnoses into preliminary analysis (such as healthy vs unhealthy) and detailed analysis (such as identifying the specific type of cardio disease). The preliminary diagnosis is conducted real-time with a low complexity neural network realized on the resource-constrained on-body device. The detailed diagnosis requires a larger network that is implemented remotely in cloud and is conditionally activated only for detailed diagnosis (unhealthy individuals). We evaluated the proposed approach using available physiological sensor data from Physionet databases, and achieved 38% energy reduction in comparison to the conventional deep learning approach.
SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications
Kalinin, Alexandr A.; Palanimalai, Selvam; Dinov, Ivo D.
2018-01-01
The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis. PMID:29630069
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
1994-01-01
The design of coolant passages in regeneratively cooled thrust chambers is critical to the operation and safety of a rocket engine system. Designing a coolant passage is a complex thermal and hydraulic problem requiring an accurate understanding of the heat transfer between the combustion gas and the coolant. Every major rocket engine company has invested in the development of thrust chamber computer design and analysis tools; two examples are Rocketdyne's REGEN code and Aerojet's ELES program. In an effort to augment current design capabilities for government and industry, the NASA Lewis Research Center is developing a computer model to design coolant passages for advanced regeneratively cooled thrust chambers. The RECOP code incorporates state-of-the-art correlations, numerical techniques and design methods, certainly minimum requirements for generating optimum designs of future space chemical engines. A preliminary version of the RECOP model was recently completed and code validation work is in progress. This paper introduces major features of RECOP and compares the analysis to design points for the first test case engine; the Pratt & Whitney RL10A-3-3A thrust chamber.
SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications.
Kalinin, Alexandr A; Palanimalai, Selvam; Dinov, Ivo D
2017-04-01
The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis.
Rai, Arpita; Acharya, Ashith B; Naikmasur, Venkatesh G
2016-01-01
Age estimation of living or deceased individuals is an important aspect of forensic sciences. Conventionally, pulp-to-tooth area ratio (PTR) measured from periapical radiographs have been utilized as a nondestructive method of age estimation. Cone-beam computed tomography (CBCT) is a new method to acquire three-dimensional images of the teeth in living individuals. The present study investigated age estimation based on PTR of the maxillary canines measured in three planes obtained from CBCT image data. Sixty subjects aged 20-85 years were included in the study. For each tooth, mid-sagittal, mid-coronal, and three axial sections-cementoenamel junction (CEJ), one-fourth root level from CEJ, and mid-root-were assessed. PTR was calculated using AutoCAD software after outlining the pulp and tooth. All statistical analyses were performed using an SPSS 17.0 software program. Linear regression analysis showed that only PTR in axial plane at CEJ had significant age correlation ( r = 0.32; P < 0.05). This is probably because of clearer demarcation of pulp and tooth outline at this level.
Using Gender Schema Theory to Examine Gender Equity in Computing: a Preliminary Study
NASA Astrophysics Data System (ADS)
Agosto, Denise E.
Women continue to constitute a minority of computer science majors in the United States and Canada. One possible contributing factor is that most Web sites, CD-ROMs, and other digital resources do not reflect girls' design and content preferences. This article describes a pilot study that considered whether gender schema theory can serve as a framework for investigating girls' Web site design and content preferences. Eleven 14- and 15-year-old girls participated in the study. The methodology included the administration of the Children's Sex-Role Inventory (CSRI), Web-surfing sessions, interviews, and data analysis using iterative pattern coding. On the basis of their CSRI scores, the participants were divided into feminine-high (FH) and masculine-high (MH) groups. Data analysis uncovered significant differences in the criteria the groups used to evaluate Web sites. The FH group favored evaluation criteria relating to graphic and multimedia design, whereas the MH group favored evaluation criteria relating to subject content. Models of the two groups' evaluation criteria are presented, and the implications of the findings are discussed.
Cloud-based processing of multi-spectral imaging data
NASA Astrophysics Data System (ADS)
Bernat, Amir S.; Bolton, Frank J.; Weiser, Reuven; Levitz, David
2017-03-01
Multispectral imaging holds great promise as a non-contact tool for the assessment of tissue composition. Performing multi - spectral imaging on a hand held mobile device would allow to bring this technology and with it knowledge to low resource settings to provide a state of the art classification of tissue health. This modality however produces considerably larger data sets than white light imaging and requires preliminary image analysis for it to be used. The data then needs to be analyzed and logged, while not requiring too much of the system resource or a long computation time and battery use by the end point device. Cloud environments were designed to allow offloading of those problems by allowing end point devices (smartphones) to offload computationally hard tasks. For this end we present a method where the a hand held device based around a smartphone captures a multi - spectral dataset in a movie file format (mp4) and compare it to other image format in size, noise and correctness. We present the cloud configuration used for segmenting images to frames where they can later be used for further analysis.
NASA Technical Reports Server (NTRS)
1981-01-01
The process development continued, with a total of nine crystal growth runs. One of these was a 150 kg run of 5 crystals of approximately 30 kg each. Several machine and process problems were corrected and the 150 kg run was as successful as previous long runs on CG2000 RC's. The accelerated recharge and growth will be attempted when the development program resumes at full capacity in FY '82. The automation controls (Automatic Grower Light Computer System) were integrated to the seed dip temperature, shoulder, and diameter sensors on the CG2000 RC development grower. Test growths included four crystals, which were grown by the computer/sensor system from seed dip through tail off. This system will be integrated on the Mod CG2000 grower during the next quarter. The analytical task included the completion and preliminary testing of the gas chromatograph portion of the Furnace Atmosphere Analysis System. The system can detect CO concentrations and will be expanded to oxygen and water analysis in FY '82.
NASA Technical Reports Server (NTRS)
Reveley, Mary S.
2003-01-01
The goal of the NASA Aviation Safety Program (AvSP) is to develop and demonstrate technologies that contribute to a reduction in the aviation fatal accident rate by a factor of 5 by the year 2007 and by a factor of 10 by the year 2022. Integrated safety analysis of day-to-day operations and risks within those operations will provide an understanding of the Aviation Safety Program portfolio. Safety benefits analyses are currently being conducted. Preliminary results for the Synthetic Vision Systems (SVS) and Weather Accident Prevention (WxAP) projects of the AvSP have been completed by the Logistics Management Institute under a contract with the NASA Glenn Research Center. These analyses include both a reliability analysis and a computer simulation model. The integrated safety analysis method comprises two principal components: a reliability model and a simulation model. In the reliability model, the results indicate how different technologies and systems will perform in normal, degraded, and failed modes of operation. In the simulation, an operational scenario is modeled. The primary purpose of the SVS project is to improve safety by providing visual-flightlike situation awareness during instrument conditions. The current analyses are an estimate of the benefits of SVS in avoiding controlled flight into terrain. The scenario modeled has an aircraft flying directly toward a terrain feature. When the flight crew determines that the aircraft is headed toward an obstruction, the aircraft executes a level turn at speed. The simulation is ended when the aircraft completes the turn.
A multi-fidelity framework for physics based rotor blade simulation and optimization
NASA Astrophysics Data System (ADS)
Collins, Kyle Brian
New helicopter rotor designs are desired that offer increased efficiency, reduced vibration, and reduced noise. Rotor Designers in industry need methods that allow them to use the most accurate simulation tools available to search for these optimal designs. Computer based rotor analysis and optimization have been advanced by the development of industry standard codes known as "comprehensive" rotorcraft analysis tools. These tools typically use table look-up aerodynamics, simplified inflow models and perform aeroelastic analysis using Computational Structural Dynamics (CSD). Due to the simplified aerodynamics, most design studies are performed varying structural related design variables like sectional mass and stiffness. The optimization of shape related variables in forward flight using these tools is complicated and results are viewed with skepticism because rotor blade loads are not accurately predicted. The most accurate methods of rotor simulation utilize Computational Fluid Dynamics (CFD) but have historically been considered too computationally intensive to be used in computer based optimization, where numerous simulations are required. An approach is needed where high fidelity CFD rotor analysis can be utilized in a shape variable optimization problem with multiple objectives. Any approach should be capable of working in forward flight in addition to hover. An alternative is proposed and founded on the idea that efficient hybrid CFD methods of rotor analysis are ready to be used in preliminary design. In addition, the proposed approach recognizes the usefulness of lower fidelity physics based analysis and surrogate modeling. Together, they are used with high fidelity analysis in an intelligent process of surrogate model building of parameters in the high fidelity domain. Closing the loop between high and low fidelity analysis is a key aspect of the proposed approach. This is done by using information from higher fidelity analysis to improve predictions made with lower fidelity models. This thesis documents the development of automated low and high fidelity physics based rotor simulation frameworks. The low fidelity framework uses a comprehensive code with simplified aerodynamics. The high fidelity model uses a parallel processor capable CFD/CSD methodology. Both low and high fidelity frameworks include an aeroacoustic simulation for prediction of noise. A synergistic process is developed that uses both the low and high fidelity frameworks together to build approximate models of important high fidelity metrics as functions of certain design variables. To test the process, a 4-bladed hingeless rotor model is used as a baseline. The design variables investigated include tip geometry and spanwise twist distribution. Approximation models are built for metrics related to rotor efficiency and vibration using the results from 60+ high fidelity (CFD/CSD) experiments and 400+ low fidelity experiments. Optimization using the approximation models found the Pareto Frontier anchor points, or the design having maximum rotor efficiency and the design having minimum vibration. Various Pareto generation methods are used to find designs on the frontier between these two anchor designs. When tested in the high fidelity framework, the Pareto anchor designs are shown to be very good designs when compared with other designs from the high fidelity database. This provides evidence that the process proposed has merit. Ultimately, this process can be utilized by industry rotor designers with their existing tools to bring high fidelity analysis into the preliminary design stage of rotors. In conclusion, the methods developed and documented in this thesis have made several novel contributions. First, an automated high fidelity CFD based forward flight simulation framework has been built for use in preliminary design optimization. The framework was built around an integrated, parallel processor capable CFD/CSD/AA process. Second, a novel method of building approximate models of high fidelity parameters has been developed. The method uses a combination of low and high fidelity results and combines Design of Experiments, statistical effects analysis, and aspects of approximation model management. And third, the determination of rotor blade shape variables through optimization using CFD based analysis in forward flight has been performed. This was done using the high fidelity CFD/CSD/AA framework and method mentioned above. While the low and high fidelity predictions methods used in the work still have inaccuracies that can affect the absolute levels of the results, a framework has been successfully developed and demonstrated that allows for an efficient process to improve rotor blade designs in terms of a selected choice of objective function(s). Using engineering judgment, this methodology could be applied today to investigate opportunities to improve existing designs. With improvements in the low and high fidelity prediction components that will certainly occur, this framework could become a powerful tool for future rotorcraft design work. (Abstract shortened by UMI.)
Preliminary Computational Study for Future Tests in the NASA Ames 9 foot' x 7 foot Wind Tunnel
NASA Technical Reports Server (NTRS)
Pearl, Jason M.; Carter, Melissa B.; Elmiligui, Alaa A.; WInski, Courtney S.; Nayani, Sudheer N.
2016-01-01
The NASA Advanced Air Vehicles Program, Commercial Supersonics Technology Project seeks to advance tools and techniques to make over-land supersonic flight feasible. In this study, preliminary computational results are presented for future tests in the NASA Ames 9 foot x 7 foot supersonic wind tunnel to be conducted in early 2016. Shock-plume interactions and their effect on pressure signature are examined for six model geometries. Near- field pressure signatures are assessed using the CFD code USM3D to model the proposed test geometries in free-air. Additionally, results obtained using the commercial grid generation software Pointwise Reigistered Trademark are compared to results using VGRID, the NASA Langley Research Center in-house mesh generation program.
NASA Technical Reports Server (NTRS)
Petruzzo, Charles; Guzman, Jose
2004-01-01
This paper considers the preliminary development of a general optimization procedure for tetrahedron formation control. The maneuvers are assumed to be impulsive and a multi-stage optimization method is employed. The stages include (1) targeting to a fixed tetrahedron location and orientation, and (2) rotating and translating the tetrahedron. The number of impulsive maneuvers can also be varied. As the impulse locations and times change, new arcs are computed using a differential corrections scheme that varies the impulse magnitudes and directions. The result is a continuous trajectory with velocity discontinuities. The velocity discontinuities are then used to formulate the cost function. Direct optimization techniques are employed. The procedure is applied to the NASA Goddard Magnetospheric Multi-Scale (MMS) mission to compute preliminary formation control fuel requirements.
Hardening surveillance illumination using aircraft antennas
NASA Astrophysics Data System (ADS)
Donohoe, J. P.; Taylor, C. D.
1990-06-01
Aircraft maintenance depots and main operating bases need to be able to perform quick checks of the electromagnetic pulse (EMP) hardness of their systems without removing them from service for any length of time. Preliminary tests have shown that the onboard HF antennas of the EMP Test-Bed Aircraft (EMPTAC) may be capable of providing the HF excitation required to effectively monitor the EMP hardness of aircraft systems. The surface current and charge distributions on the EMPTAC which result from swept frequency excitation of the HF radio antennas are computed over a range of 0.5 to 100 MHz using various antenna drive configurations. The computational analysis is performed by using two separate frequency-dependent techniques: the method-of-moments technique and the physical optics approximation. These calculations are then compared with the excitation provided from an overhead plane wave and with measured data from EMPTAC tests.
NASA Technical Reports Server (NTRS)
Bauer, Brent
1993-01-01
This paper discusses the development of a FORTRAN computer code to perform agility analysis on aircraft configurations. This code is to be part of the NASA-Ames ACSYNT (AirCraft SYNThesis) design code. This paper begins with a discussion of contemporary agility research in the aircraft industry and a survey of a few agility metrics. The methodology, techniques and models developed for the code are then presented. Finally, example trade studies using the agility module along with ACSYNT are illustrated. These trade studies were conducted using a Northrop F-20 Tigershark aircraft model. The studies show that the agility module is effective in analyzing the influence of common parameters such as thrust-to-weight ratio and wing loading on agility criteria. The module can compare the agility potential between different configurations. In addition, one study illustrates the module's ability to optimize a configuration's agility performance.
An Optimization Framework for Dynamic Hybrid Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenbo Du; Humberto E Garcia; Christiaan J.J. Paredis
A computational framework for the efficient analysis and optimization of dynamic hybrid energy systems (HES) is developed. A microgrid system with multiple inputs and multiple outputs (MIMO) is modeled using the Modelica language in the Dymola environment. The optimization loop is implemented in MATLAB, with the FMI Toolbox serving as the interface between the computational platforms. Two characteristic optimization problems are selected to demonstrate the methodology and gain insight into the system performance. The first is an unconstrained optimization problem that optimizes the dynamic properties of the battery, reactor and generator to minimize variability in the HES. The second problemmore » takes operating and capital costs into consideration by imposing linear and nonlinear constraints on the design variables. The preliminary optimization results obtained in this study provide an essential step towards the development of a comprehensive framework for designing HES.« less
Computational Analysis of Dynamic SPK(S8)-JP8 Fueled Combustor-Sector Performance
NASA Technical Reports Server (NTRS)
Ryder, R.; Hendricks, Roberts C.; Huber, M. L.; Shouse, D. T.
2010-01-01
Civil and military flight tests using blends of synthetic and biomass fueling with jet fuel up to 50:50 are currently considered as "drop-in" fuels. They are fully compatible with aircraft performance, emissions and fueling systems, yet the design and operations of such fueling systems and combustors must be capable of running fuels from a range of feedstock sources. This paper provides Smart Combustor or Fuel Flexible Combustor designers with computational tools, preliminary performance, emissions and particulates combustor sector data. The baseline fuel is kerosene-JP-8+100 (military) or Jet A (civil). Results for synthetic paraffinic kerosene (SPK) fuel blends show little change with respect to baseline performance, yet do show lower emissions. The evolution of a validated combustor design procedure is fundamental to the development of dynamic fueling of combustor systems for gas turbine engines that comply with multiple feedstock sources satisfying both new and legacy systems.
Lee, Kyung-Eun; Park, Hyun-Seok
2015-01-01
Epigenetic computational analyses based on Markov chains can integrate dependencies between regions in the genome that are directly adjacent. In this paper, the BED files of fifteen chromatin states of the Broad Histone Track of the ENCODE project are parsed, and comparative nucleotide frequencies of regional chromatin blocks are thoroughly analyzed to detect the Markov property in them. We perform various tests to examine the Markov property embedded in a frequency domain by checking for the presence of the Markov property in the various chromatin states. We apply these tests to each region of the fifteen chromatin states. The results of our simulation indicate that some of the chromatin states possess a stronger Markov property than others. We discuss the significance of our findings in statistical models of nucleotide sequences that are necessary for the computational analysis of functional units in noncoding DNA.
A square root ensemble Kalman filter application to a motor-imagery brain-computer interface
Kamrunnahar, M.; Schiff, S. J.
2017-01-01
We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%–90% for the hand movements and 70%–90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models. PMID:22255799
POSTOP: Postbuckled open-stiffener optimum panels, user's manual
NASA Technical Reports Server (NTRS)
Biggers, S. B.; Dickson, J. N.
1984-01-01
The computer program POSTOP developed to serve as an aid in the analysis and sizing of stiffened composite panels that may be loaded in the postbuckling regime, is intended for the preliminary design of metal or composite panels with open-section stiffeners, subjected to multiple combined biaxial compression (or tension), shear and normal pressure load cases. Longitudinal compression, however, is assumed to be the dominant loading. Temperature, initial bow eccentricity and load eccentricity effects are included. The panel geometry is assumed to be repetitive over several bays in the longitudinal (stiffener) direction as well as in the transverse direction. Analytical routines are included to compute panel stiffnesses, strains, local and panel buckling loads, and skin/stiffener interface stresses. The resulting program is applicable to stiffened panels as commonly used in fuselage, wing, or empennage structures. The capabilities and limitations of the code are described. Instructions required to use the program and several example problems are included.
Impact of airway morphological changes on pulmonary flows in scoliosis
NASA Astrophysics Data System (ADS)
Farrell, James; Garrido, Enrique; Valluri, Prashant
2016-11-01
The relationship between thoracic deformity in scoliosis and lung function is poorly understood. In a pilot study, we reviewed computed tomography (CT) routine scans of patients undergoing scoliosis surgery. The CT scans were processed to segment the anatomy of the airways, lung and spine. A three-dimensional model was created to study the anatomical relationship. Preliminary analysis showed significant airway morphological differences depending on the anterior position of the spine. A computational fluid dynamics (CFD) study was also conducted on the airway geometry using the inspiratory scans. The CFD model assuming non-compliant airway walls was capable of showing pressure drops in areas of high airway resistance, but was unable to predict regional ventilation differences. Our results indicate a dependence between the dynamic deformation of the airway during breathing and lung function. Dynamic structural deformation must therefore be incorporated within any modelling approaches to guide clinicians on the decision to perform surgical correction of the scoliosis.
Computational analysis of human and mouse CREB3L4 Protein
Velpula, Kiran Kumar; Rehman, Azeem Abdul; Chigurupati, Soumya; Sanam, Ramadevi; Inampudi, Krishna Kishore; Akila, Chandra Sekhar
2012-01-01
CREB3L4 is a member of the CREB/ATF transcription factor family, characterized by their regulation of gene expression through the cAMP-responsive element. Previous studies identified this protein in mice and humans. Whereas CREB3L4 in mice (referred to as Tisp40) is found in the testes and functions in spermatogenesis, human CREB3L4 is primarily detected in the prostate and has been implicated in cancer. We conducted computational analyses to compare the structural homology between murine Tisp40α human CREB3L4. Our results reveal that the primary and secondary structures of the two proteins contain high similarity. Additionally, predicted helical transmembrane structure reveals that the proteins likely have similar structure and function. This study offers preliminary findings that support the translation of mouse Tisp40α findings into human models, based on structural homology. PMID:22829733
Adaptive DIT-Based Fringe Tracking and Prediction at IOTA
NASA Technical Reports Server (NTRS)
Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.
2004-01-01
An automatic fringe tracking system has been developed and implemented at the Infrared Optical Telescope Array (IOTA). In testing during May 2002, the system successfully minimized the optical path differences (OPDs) for all three baselines at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on off-line data. Implemented in ANSI C on the 266 MHZ PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. Preliminary analysis on an extension of this algorithm indicates a potential for predictive tracking, although at present, real-time implementation of this extension would require significantly more computational capacity.
NASA Astrophysics Data System (ADS)
Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.
2016-04-01
Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roper, J; Ghavidel, B; Godette, K
Purpose: To validate a knowledge-based algorithm for prostate LDR brachytherapy treatment planning. Methods: A dataset of 100 cases was compiled from an active prostate seed implant service. Cases were randomized into 10 subsets. For each subset, the 90 remaining library cases were registered to a common reference frame and then characterized on a point by point basis using principle component analysis (PCA). Each test case was converted to PCA vectors using the same process and compared with each library case using a Mahalanobis distance to evaluate similarity. Rank order PCA scores were used to select the best-matched library case. Themore » seed arrangement was extracted from the best-matched case and used as a starting point for planning the test case. Any subsequent modifications were recorded that required input from a treatment planner to achieve V100>95%, V150<60%, V200<20%. To simulate operating-room planning constraints, seed activity was held constant, and the seed count could not increase. Results: The computational time required to register test-case contours and evaluate PCA similarity across the library was 10s. Preliminary analysis of 2 subsets shows that 9 of 20 test cases did not require any seed modifications to obtain an acceptable plan. Five test cases required fewer than 10 seed modifications or a grid shift. Another 5 test cases required approximately 20 seed modifications. An acceptable plan was not achieved for 1 outlier, which was substantially larger than its best match. Modifications took between 5s and 6min. Conclusion: A knowledge-based treatment planning algorithm for prostate LDR brachytherapy is being cross validated using 100 prior cases. Preliminary results suggest that for this size library, acceptable plans can be achieved without planner input in about half of the cases while varying amounts of planner input are needed in remaining cases. Computational time and planning time are compatible with clinical practice.« less
Two-stage atlas subset selection in multi-atlas based image segmentation.
Zhao, Tingting; Ruan, Dan
2015-06-01
Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. The authors have developed a novel two-stage atlas subset selection scheme for multi-atlas based segmentation. It achieves good segmentation accuracy with significantly reduced computation cost, making it a suitable configuration in the presence of extensive heterogeneous atlases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J. D.; Oberkampf, William Louis; Helton, Jon Craig
2006-10-01
Evidence theory provides an alternative to probability theory for the representation of epistemic uncertainty in model predictions that derives from epistemic uncertainty in model inputs, where the descriptor epistemic is used to indicate uncertainty that derives from a lack of knowledge with respect to the appropriate values to use for various inputs to the model. The potential benefit, and hence appeal, of evidence theory is that it allows a less restrictive specification of uncertainty than is possible within the axiomatic structure on which probability theory is based. Unfortunately, the propagation of an evidence theory representation for uncertainty through a modelmore » is more computationally demanding than the propagation of a probabilistic representation for uncertainty, with this difficulty constituting a serious obstacle to the use of evidence theory in the representation of uncertainty in predictions obtained from computationally intensive models. This presentation describes and illustrates a sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory. Preliminary trials indicate that the presented strategy can be used to propagate uncertainty representations based on evidence theory in analysis situations where naive sampling-based (i.e., unsophisticated Monte Carlo) procedures are impracticable due to computational cost.« less
Optimizing R with SparkR on a commodity cluster for biomedical research.
Sedlmayr, Martin; Würfl, Tobias; Maier, Christian; Häberle, Lothar; Fasching, Peter; Prokosch, Hans-Ulrich; Christoph, Jan
2016-12-01
Medical researchers are challenged today by the enormous amount of data collected in healthcare. Analysis methods such as genome-wide association studies (GWAS) are often computationally intensive and thus require enormous resources to be performed in a reasonable amount of time. While dedicated clusters and public clouds may deliver the desired performance, their use requires upfront financial efforts or anonymous data, which is often not possible for preliminary or occasional tasks. We explored the possibilities to build a private, flexible cluster for processing scripts in R based on commodity, non-dedicated hardware of our department. For this, a GWAS-calculation in R on a single desktop computer, a Message Passing Interface (MPI)-cluster, and a SparkR-cluster were compared with regards to the performance, scalability, quality, and simplicity. The original script had a projected runtime of three years on a single desktop computer. Optimizing the script in R already yielded a significant reduction in computing time (2 weeks). By using R-MPI and SparkR, we were able to parallelize the computation and reduce the time to less than three hours (2.6 h) on already available, standard office computers. While MPI is a proven approach in high-performance clusters, it requires rather static, dedicated nodes. SparkR and its Hadoop siblings allow for a dynamic, elastic environment with automated failure handling. SparkR also scales better with the number of nodes in the cluster than MPI due to optimized data communication. R is a popular environment for clinical data analysis. The new SparkR solution offers elastic resources and allows supporting big data analysis using R even on non-dedicated resources with minimal change to the original code. To unleash the full potential, additional efforts should be invested to customize and improve the algorithms, especially with regards to data distribution. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Jamieson, Andrew R; Giger, Maryellen L; Drukker, Karen; Li, Hui; Yuan, Yading; Bhooshan, Neha
2010-01-01
In this preliminary study, recently developed unsupervised nonlinear dimension reduction (DR) and data representation techniques were applied to computer-extracted breast lesion feature spaces across three separate imaging modalities: Ultrasound (U.S.) with 1126 cases, dynamic contrast enhanced magnetic resonance imaging with 356 cases, and full-field digital mammography with 245 cases. Two methods for nonlinear DR were explored: Laplacian eigenmaps [M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput. 15, 1373-1396 (2003)] and t-distributed stochastic neighbor embedding (t-SNE) [L. van der Maaten and G. Hinton, "Visualizing data using t-SNE," J. Mach. Learn. Res. 9, 2579-2605 (2008)]. These methods attempt to map originally high dimensional feature spaces to more human interpretable lower dimensional spaces while preserving both local and global information. The properties of these methods as applied to breast computer-aided diagnosis (CADx) were evaluated in the context of malignancy classification performance as well as in the visual inspection of the sparseness within the two-dimensional and three-dimensional mappings. Classification performance was estimated by using the reduced dimension mapped feature output as input into both linear and nonlinear classifiers: Markov chain Monte Carlo based Bayesian artificial neural network (MCMC-BANN) and linear discriminant analysis. The new techniques were compared to previously developed breast CADx methodologies, including automatic relevance determination and linear stepwise (LSW) feature selection, as well as a linear DR method based on principal component analysis. Using ROC analysis and 0.632+bootstrap validation, 95% empirical confidence intervals were computed for the each classifier's AUC performance. In the large U.S. data set, sample high performance results include, AUC0.632+ = 0.88 with 95% empirical bootstrap interval [0.787;0.895] for 13 ARD selected features and AUC0.632+ = 0.87 with interval [0.817;0.906] for four LSW selected features compared to 4D t-SNE mapping (from the original 81D feature space) giving AUC0.632+ = 0.90 with interval [0.847;0.919], all using the MCMC-BANN. Preliminary results appear to indicate capability for the new methods to match or exceed classification performance of current advanced breast lesion CADx algorithms. While not appropriate as a complete replacement of feature selection in CADx problems, DR techniques offer a complementary approach, which can aid elucidation of additional properties associated with the data. Specifically, the new techniques were shown to possess the added benefit of delivering sparse lower dimensional representations for visual interpretation, revealing intricate data structure of the feature space.
1989-02-01
which capture the knowledge of such experts. These Expert Systems, or Knowledge-Based Systems’, differ from the usual computer programming techniques...their applications in the fields of structural design and welding is reviewed. 5.1 Introduction Expert Systems, or KBES, are computer programs using Al...procedurally constructed as conventional computer programs usually are; * The knowledge base of such systems is executable, unlike databases 3 "Ill
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-20
... Methodology II. Summary of the Comparative Analysis A. Qualitative Analysis 1. Discussion of Detailed Textual... used for this preliminary determination. II. Summary of the Comparative Analysis DOE carried out both a...
NASA Astrophysics Data System (ADS)
Peng, Yahui; Ma, Xiao; Gao, Xinyu; Zhou, Fangxu
2015-12-01
Computer vision is an important tool for sports video processing. However, its application in badminton match analysis is very limited. In this study, we proposed a straightforward but robust histogram-based background estimation and player detection methods for badminton video clips, and compared the results with the naive averaging method and the mixture of Gaussians methods, respectively. The proposed method yielded better background estimation results than the naive averaging method and more accurate player detection results than the mixture of Gaussians player detection method. The preliminary results indicated that the proposed histogram-based method could estimate the background and extract the players accurately. We conclude that the proposed method can be used for badminton player tracking and further studies are warranted for automated match analysis.
An expert system for spectroscopic analysis of rocket engine plumes
NASA Technical Reports Server (NTRS)
Reese, Greg; Valenti, Elizabeth; Alphonso, Keith; Holladay, Wendy
1991-01-01
The expert system described in this paper analyzes spectral emissions of rocket engine exhaust plumes and shows major promise for use in engine health diagnostics. Plume emission spectroscopy is an important tool for diagnosing engine anomalies, but it is time-consuming and requires highly skilled personnel. The expert system was created to alleviate such problems. The system accepts a spectral plot in the form of wavelength vs intensity pairs and finds the emission peaks in the spectrum, lists the elemental emitters present in the data and deduces the emitter that produced each peak. The system consists of a conventional language component and a commercially available inference engine that runs on an Apple Macintosh computer. The expert system has undergone limited preliminary testing. It detects elements well and significantly decreases analysis time.
Automated site characterization for robotic sample acquisition systems
NASA Astrophysics Data System (ADS)
Scholl, Marija S.; Eberlein, Susan J.
1993-04-01
A mobile, semiautonomous vehicle with multiple sensors and on-board intelligence is proposed for performing preliminary scientific investigations on extraterrestrial bodies prior to human exploration. Two technologies, a hybrid optical-digital computer system based on optical correlator technology and an image and instrument data analysis system, provide complementary capabilities that might be part of an instrument package for an intelligent robotic vehicle. The hybrid digital-optical vision system could perform real-time image classification tasks using an optical correlator with programmable matched filters under control of a digital microcomputer. The data analysis system would analyze visible and multiband imagery to extract mineral composition and textural information for geologic characterization. Together these technologies would support the site characterization needs of a robotic vehicle for both navigational and scientific purposes.
Self-organization in neural networks - Applications in structural optimization
NASA Technical Reports Server (NTRS)
Hajela, Prabhat; Fu, B.; Berke, Laszlo
1993-01-01
The present paper discusses the applicability of ART (Adaptive Resonance Theory) networks, and the Hopfield and Elastic networks, in problems of structural analysis and design. A characteristic of these network architectures is the ability to classify patterns presented as inputs into specific categories. The categories may themselves represent distinct procedural solution strategies. The paper shows how this property can be adapted in the structural analysis and design problem. A second application is the use of Hopfield and Elastic networks in optimization problems. Of particular interest are problems characterized by the presence of discrete and integer design variables. The parallel computing architecture that is typical of neural networks is shown to be effective in such problems. Results of preliminary implementations in structural design problems are also included in the paper.
NASA Technical Reports Server (NTRS)
Hamilton, M. L.; Burriss, W. L.
1972-01-01
Selected system supporting analyses in conjunction with the preliminary design of an auxiliary power unit (APU) for the space shuttle are presented. Both steady state and transient auxiliary power unit performance, based on digital computer programs, were examined. The selected APU provides up to 400 horsepower out of the gearbox, weighs 227 pounds, and requires 2 pounds per shaft horsepower hour of propellants.
Shallow Water Acoustic Experiments and Preliminary Planning for FY06 Fieldwork
2011-03-21
To) 5/1/2005-12/31/2010 4. TITLE AND SUBTITLE Shallow Water Acoustic Experiments and Preliminary Planning for FY06 Fieldwork 5a. CONTRACT NUMBERS...numerical computations show horizontal interference patterns within the duct. Richly de - tailed sound radiation fields are predicted at locations far...4) for the vertical modal amplitude Tm at x^L is now de - scribed in detail. First, the assumption of total transmission at the open-ended
Virtual reality neurosurgery: a simulator blueprint.
Spicer, Mark A; van Velsen, Martin; Caffrey, John P; Apuzzo, Michael L J
2004-04-01
This article details preliminary studies undertaken to integrate the most relevant advancements across multiple disciplines in an effort to construct a highly realistic neurosurgical simulator based on a distributed computer architecture. Techniques based on modified computational modeling paradigms incorporating finite element analysis are presented, as are current and projected efforts directed toward the implementation of a novel bidirectional haptic device. Patient-specific data derived from noninvasive magnetic resonance imaging sequences are used to construct a computational model of the surgical region of interest. Magnetic resonance images of the brain may be coregistered with those obtained from magnetic resonance angiography, magnetic resonance venography, and diffusion tensor imaging to formulate models of varying anatomic complexity. The majority of the computational burden is encountered in the presimulation reduction of the computational model and allows realization of the required threshold rates for the accurate and realistic representation of real-time visual animations. Intracranial neurosurgical procedures offer an ideal testing site for the development of a totally immersive virtual reality surgical simulator when compared with the simulations required in other surgical subspecialties. The material properties of the brain as well as the typically small volumes of tissue exposed in the surgical field, coupled with techniques and strategies to minimize computational demands, provide unique opportunities for the development of such a simulator. Incorporation of real-time haptic and visual feedback is approached here and likely will be accomplished soon.
CFD Simulations in Support of Shuttle Orbiter Contingency Abort Aerodynamic Database Enhancement
NASA Technical Reports Server (NTRS)
Papadopoulos, Periklis E.; Prabhu, Dinesh; Wright, Michael; Davies, Carol; McDaniel, Ryan; Venkatapathy, E.; Wercinski, Paul; Gomez, R. J.
2001-01-01
Modern Computational Fluid Dynamics (CFD) techniques were used to compute aerodynamic forces and moments of the Space Shuttle Orbiter in specific portions of contingency abort trajectory space. The trajectory space covers a Mach number range of 3.5-15, an angle-of-attack range of 20deg-60deg, an altitude range of 100-190 kft, and several different settings of the control surfaces (elevons, body flap, and speed brake). Presented here are details of the methodology and comparisons of computed aerodynamic coefficients against the values in the current Orbiter Operational Aerodynamic Data Book (OADB). While approximately 40 cases have been computed, only a sampling of the results is provided here. The computed results, in general, are in good agreement with the OADB data (i.e., within the uncertainty bands) for almost all the cases. However, in a limited number of high angle-of-attack cases (at Mach 15), there are significant differences between the computed results, especially the vehicle pitching moment, and the OADB data. A preliminary analysis of the data from the CFD simulations at Mach 15 shows that these differences can be attributed to real-gas/Mach number effects. The aerodynamic coefficients and detailed surface pressure distributions of the present simulations are being used by the Shuttle Program in the evaluation of the capabilities of the Orbiter in contingency abort scenarios.
Further Development of Rotating Rake Mode Measurement Data Analysis
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Hixon, Ray; Sutliff, Daniel L.
2013-01-01
The Rotating Rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode amplitudes and phases were quantified. For low-speed fans within axisymmetric ducts, mode power levels computed from rotating rake measured data would agree with the far-field power levels on a tone by tone basis. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection at the exit and previous studies suggested conditions could exist where significant reflections could occur. To directly measure the modes propagating in both directions within a duct, a second rake was mounted to the rotating system with an offset in both the axial and the azimuthal directions. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode levels at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode amplitudes for the modes propagating in both directions within the duct. The fit equations were also modified to allow evanescent mode amplitudes to be computed. This extension of the rotating rake data analysis technique was tested using simulated data, numerical code produced data, and preliminary in-duct measured data.
Performance of the all-digital data-transition tracking loop in the advanced receiver
NASA Astrophysics Data System (ADS)
Cheng, U.; Hinedi, S.
1989-11-01
The performance of the all-digital data-transition tracking loop (DTTL) with coherent or noncoherent sampling is described. The effects of few samples per symbol and of noncommensurate sampling rates and symbol rates are addressed and analyzed. Their impacts on the loop phase-error variance and the mean time to lose lock (MTLL) are quantified through computer simulations. The analysis and preliminary simulations indicate that with three to four samples per symbol, the DTTL can track with negligible jitter because of the presence of earth Doppler rate. Furthermore, the MTLL is also expected to be large engough to maintain lock over a Deep Space Network track.
Quantitation of heavy ion damage to the mammalian brain - Some preliminary findings
NASA Technical Reports Server (NTRS)
Cox, A. B.; Kraft, L. M.
1984-01-01
For several years, studies have been conducted regarding late effects of particulate radiations in mammalian tissues, taking into account the brains of rodents and lagomorphs. Recently, it has become feasible to quantify pathological damage and morpho-physiologic alterations accurately in large numbers of histological specimens. New investigative procedures make use of computer-assisted automated image analysis systems. Details regarding the employed methodology are discussed along with the results of the information. The radiations of high linear energy transfer (LET) cause apparently earlier and more dramatic shrinkage of olfactory glomeruli in exposed rabbit brains than comparable doses of Co-60 gamma photons.
NASA Astrophysics Data System (ADS)
Rao, K. H. S.; Shah, A. v.; Ruedi, B.
1982-11-01
The importance of ovulation time detection in the Practice of Natural Birth Control (NBC) as a contraceptive tool, and for natural/artificial insemination among women having the problem of in-fertility, is well known. The simple Basal Body Temperature (BBT) method of ovulation detection is so far unreliable. A newly proposed Differential Skin Temperature (DST) method may help minimize disturbing physiological effects and improve reliability. This paper explains preliminary results of a detailed correlative study on the DST method, using Infra-Red Thermography (IRT) imaging, and computer analysis techniques. Results obtained with five healthy, normally menstruating women volunteers will be given.
Mapping ocean tides with satellites - A computer simulation
NASA Technical Reports Server (NTRS)
Won, I. J.; Kuo, J. T.; Jachens, R. C.
1978-01-01
As a preliminary study for the future worldwide direct mapping of the open ocean tide with satellites equipped with precision altimeters we conducted a simulated study using sets of artificially generated altimeter data constructed from a realistic geoid and four pairs of major tides in the northeastern Pacific Ocean. Recovery of the original geoid and eight tidal maps is accomplished by a space-time, least squares harmonic analysis scheme. The resultant maps appear fairly satisfactory even when random noises up to + or - 100 cm are added to the altimeter data of sufficient space-time density. The method also produces a refined geoid which is rigorously corrected for the dynamic tides.
NASA Technical Reports Server (NTRS)
Morey, W. W.
1983-01-01
The objective of the hot section viewing program is to develop a prototype optical system for viewing the interior of a gas turbine combustor during high temperature, high pressure operation in order to produce a visual record of some causes of premature hot section failures. The program began by identifying and analyzing system designs that would provide clearest images while being able to survive the hostile environment inside the combustion chamber. Different illumination methods and computer techniques for image enhancement and analysis were examined during a preliminary test phase. In the final phase of the program the prototype system was designed and fabricated and is currently being tested on a high pressure combustor rig.
NASA Technical Reports Server (NTRS)
Garai, Anirban; Diosady, Laslo T.; Murman, Scott M.; Madavan, Nateri K.
2016-01-01
The perfectly matched layer (PML) technique is developed in the context of a high- order spectral-element Discontinuous-Galerkin (DG) method. The technique is applied to a range of test cases and is shown to be superior compared to other approaches, such as those based on using characteristic boundary conditions and sponge layers, for treating the inflow and outflow boundaries of computational domains. In general, the PML technique improves the quality of the numerical results for simulations of practical flow configurations, but it also exhibits some instabilities for large perturbations. A preliminary analysis that attempts to understand the source of these instabilities is discussed.
NASA Technical Reports Server (NTRS)
Daly, J. K.; Torian, J. G.
1979-01-01
Software design specifications for developing environmental control and life support system (ECLSS) and electrical power system (EPS) programs into interactive computer programs are presented. Specifications for the ECLSS program are at the detail design level with respect to modification of an existing batch mode program. The FORTRAN environmental analysis routines (FEAR) are the subject batch mode program. The characteristics of the FEAR program are included for use in modifying batch mode programs to form interactive programs. The EPS program specifications are at the preliminary design level. Emphasis is on top-down structuring in the development of an interactive program.
Physician/Computer Interaction
Dlugacz, Yosef D.; Siegel, Carole; Fischer, Susan
1981-01-01
Despite the fact that the physician's involvement with computer operations has dramatically increased with automation in the health care industry, few studies have focused on the physician's experiences with and reactions to computers. This paper reports on these dimensions for physicians and their medical supervisors who have begun to use a computerized drug review system. Their attitudes and opinions are assessed towards this system and more generally towards the use of computers in medicine. Clinicians' attitudes towards computers are related to their clinical role and feelings about the working milieu. This report presents preliminary data of the study in terms of the frequency distribution of responses.
General aviation design synthesis utilizing interactive computer graphics
NASA Technical Reports Server (NTRS)
Galloway, T. L.; Smith, M. R.
1976-01-01
Interactive computer graphics is a fast growing area of computer application, due to such factors as substantial cost reductions in hardware, general availability of software, and expanded data communication networks. In addition to allowing faster and more meaningful input/output, computer graphics permits the use of data in graphic form to carry out parametric studies for configuration selection and for assessing the impact of advanced technologies on general aviation designs. The incorporation of interactive computer graphics into a NASA developed general aviation synthesis program is described, and the potential uses of the synthesis program in preliminary design are demonstrated.
Commercial Off-The-Shelf (COTS) Graphics Processing Board (GPB) Radiation Test Evaluation Report
NASA Technical Reports Server (NTRS)
Salazar, George A.; Steele, Glen F.
2013-01-01
Large round trip communications latency for deep space missions will require more onboard computational capabilities to enable the space vehicle to undertake many tasks that have traditionally been ground-based, mission control responsibilities. As a result, visual display graphics will be required to provide simpler vehicle situational awareness through graphical representations, as well as provide capabilities never before done in a space mission, such as augmented reality for in-flight maintenance or Telepresence activities. These capabilities will require graphics processors and associated support electronic components for high computational graphics processing. In an effort to understand the performance of commercial graphics card electronics operating in the expected radiation environment, a preliminary test was performed on five commercial offthe- shelf (COTS) graphics cards. This paper discusses the preliminary evaluation test results of five COTS graphics processing cards tested to the International Space Station (ISS) low earth orbit radiation environment. Three of the five graphics cards were tested to a total dose of 6000 rads (Si). The test articles, test configuration, preliminary results, and recommendations are discussed.
Preliminary design of a high speed civil transport: The Opus 0-001
NASA Technical Reports Server (NTRS)
1992-01-01
Based on research into the technology and issues surrounding the design, development, and operation of a second generation High Speed Civil Transport, HSCT, the Opus 0-001 team completed the preliminary design of a sixty passenger, three engine aircraft. The design of this aircraft was performed using a computer program which the team wrote. This program automatically computed the geometric, aerodynamic, and performance characteristic of an aircraft whose preliminary geometry was specified. The Opus 0-001 aircraft was designed for a cruise Mach number of 2.2, a range of 4,700 nautical miles and its design was based in current or very near term technology. Its small size was a consequence of an emphasis on a profitable, low cost program, capable of delivering tomorrow's passengers in style and comfort at prices that make it an attractive competitor to both current and future subsonic transport aircraft. Several hundred thousand cases of Cruise Mach number, aircraft size and cost breakdown were investigated to obtain costs and revenues for which profit was calculated. The projected unit flyaway cost was $92.0 million per aircraft.
Monitor Tone Generates Stress in Computer and VDT Operators: A Preliminary Study.
ERIC Educational Resources Information Center
Dow, Caroline; Covert, Douglas C.
A near-ultrasonic pure tone of 15,570 Herz generated by flyback transformers in computer and video display terminal (VDT) monitors may cause severe non-specific irritation or stress disease in operators. Women hear higher frequency sounds than men and are twice as sensitive to "too loud" noise. Pure tones at high frequencies are more…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
... Federal share) IMD and other mental health facility DSH expenditures applicable to the State's FY 1995 DSH... State's total computable DSH expenditures attributable to the FY 1995 DSH allotment for mental health... health DSH expenditures applicable to the State's FY 1995 DSH allotment by the total computable amount of...
ERIC Educational Resources Information Center
Swan, Karen; Van 'T Hooft, Mark; Kratcoski, Annette; Schenker, Jason
2007-01-01
This article reports on preliminary findings from an ongoing study of teaching and learning in a ubiquitous computing classroom. The research employed mixed methods and multiple measures to document changes in teaching and learning that result when teachers and students have access to a variety of digital devices wherever and whenever they need…
ERIC Educational Resources Information Center
Davison, Mark L.; Biancarosa, Gina; Carlson, Sarah E.; Seipel, Ben; Liu, Bowen
2018-01-01
The computer-administered Multiple-Choice Online Causal Comprehension Assessment (MOCCA) for Grades 3 to 5 has an innovative, 40-item multiple-choice structure in which each distractor corresponds to a comprehension process upon which poor comprehenders have been shown to rely. This structure requires revised thinking about measurement issues…
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark D.; Mausolff, Zander; Weems, Zach
2016-08-01
One goal of the MAMMOTH M&S project is to validate the analysis capabilities within MAMMOTH. Historical data has shown limited value for validation of full three-dimensional (3D) multi-physics methods. Initial analysis considered the TREAT startup minimum critical core and one of the startup transient tests. At present, validation is focusing on measurements taken during the M8CAL test calibration series. These exercises will valuable in preliminary assessment of the ability of MAMMOTH to perform coupled multi-physics calculations; calculations performed to date are being used to validate the neutron transport solver Rattlesnake\\cite{Rattlesnake} and the fuels performance code BISON. Other validation projects outsidemore » of TREAT are available for single-physics benchmarking. Because the transient solution capability of Rattlesnake is one of the key attributes that makes it unique for TREAT transient simulations, validation of the transient solution of Rattlesnake using other time dependent kinetics benchmarks has considerable value. The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has recently developed a computational benchmark for transient simulations. This benchmark considered both two-dimensional (2D) and 3D configurations for a total number of 26 different transients. All are negative reactivity insertions, typically returning to the critical state after some time.« less
Internal Dynamics and Crustal Evolution of Mars
NASA Technical Reports Server (NTRS)
Zuber, Maria
2005-01-01
The objective of this work is to improve understanding of the internal structure, crustal evolution, and thermal history of Mars by combining geophysical data analysis of topography, gravity and magnetics with results from analytical and computational modeling. Accomplishments thus far in this investigation include: (1) development of a new crustal thickness model that incorporates constraints from Mars meteorites, corrections for polar cap masses and other surface loads, Pratt isostasy, and core flattening; (2) determination of a refined estimate of crustal thickness of Mars from geoid/topography ratios (GTRs); (3) derivation of a preliminary estimate of the k(sub 2) gravitational Love number and a preliminary estimate of possible dissipation within Mars consistent with this value; and (4) an integrative analysis of the sequence of evolution of early Mars. During the remainder of this investigation we will: (1) extend models of degree-1 mantle convection from 2-D to 3-D; (2) investigate potential causal relationships and effects of major impacts on mantle plume formation, with primary application to Mars; (3) develop exploratory models to assess the convective stability of various Martian core states as relevant to the history of dynamo action; and (4) develop models of long-wavelength relaxation of crustal thickness anomalies to potentially explain the degree-1 structure of the Martian crust.
Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography
NASA Astrophysics Data System (ADS)
Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.
2014-11-01
Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.
A space radiation transport method development
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.
2004-01-01
Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design. Published by Elsevier Ltd on behalf of COSPAR.
Kuniansky, E.L.
1990-01-01
A computer program based on the Galerkin finite-element method was developed to simulate two-dimensional steady-state ground-water flow in either isotropic or anisotropic confined aquifers. The program may also be used for unconfined aquifers of constant saturated thickness. Constant head, constant flux, and head-dependent flux boundary conditions can be specified in order to approximate a variety of natural conditions, such as a river or lake boundary, and pumping well. The computer program was developed for the preliminary simulation of ground-water flow in the Edwards-Trinity Regional aquifer system as part of the Regional Aquifer-Systems Analysis Program. Results of the program compare well to analytical solutions and simulations .from published finite-difference models. A concise discussion of the Galerkin method is presented along with a description of the program. Provided in the Supplemental Data section are a listing of the computer program, definitions of selected program variables, and several examples of data input and output used in verifying the accuracy of the program.
Interior Noise Predictions in the Preliminary Design of the Large Civil Tiltrotor (LCTR2)
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Cabell, Randolph H.; Boyd, David D.
2013-01-01
A prediction scheme was established to compute sound pressure levels in the interior of a simplified cabin model of the second generation Large Civil Tiltrotor (LCTR2) during cruise conditions, while being excited by turbulent boundary layer flow over the fuselage, or by tiltrotor blade loading and thickness noise. Finite element models of the cabin structure, interior acoustic space, and acoustically absorbent (poro-elastic) materials in the fuselage were generated and combined into a coupled structural-acoustic model. Fluctuating power spectral densities were computed according to the Efimtsov turbulent boundary layer excitation model. Noise associated with the tiltrotor blades was predicted in the time domain as fluctuating surface pressures and converted to power spectral densities at the fuselage skin finite element nodes. A hybrid finite element (FE) approach was used to compute the low frequency acoustic cabin response over the frequency range 6-141 Hz with a 1 Hz bandwidth, and the Statistical Energy Analysis (SEA) approach was used to predict the interior noise for the 125-8000 Hz one-third octave bands.
Ledbetter, Alexander K; Sohlberg, McKay Moore; Fickas, Stephen F; Horney, Mark A; McIntosh, Kent
2017-11-06
This study evaluated a computer-based prompting intervention for improving expository essay writing after acquired brain injury (ABI). Four undergraduate participants aged 18-21 with mild-moderate ABI and impaired fluid cognition at least 6 months post-injury reported difficulty with the writing process after injury. The study employed a non-concurrent multiple probe across participants, in a single-case design. Outcome measures included essay quality scores and number of revisions to writing counted then coded by type using a revision taxonomy. An inter-scorer agreement procedure was completed for quality scores for 50% of essays, with data indicating that agreement exceeded a goal of 85%. Visual analysis of results showed increased essay quality for all participants in intervention phase compared with baseline, maintained 1 week after. Statistical analyses showed statistically significant results for two of the four participants. The authors discuss external cuing for self-monitoring and tapping of existing writing knowledge as possible explanations for improvement. The study provides preliminary evidence that computer-based prompting has potential to improve writing quality for undergraduates with ABI.
NASA Technical Reports Server (NTRS)
Kirschner, S. M.; Samii, M. V.; Broaddus, S. R.; Doll, C. E.
1988-01-01
The Preliminary Orbit Determination System (PODS) provides early orbit determination capability in the Trajectory Computation and Orbital Products System (TCOPS) for a Tracking and Data Relay Satellite System (TDRSS)-tracked spacecraft. PODS computes a set of orbit states from an a priori estimate and six tracking measurements, consisting of any combination of TDRSS range and Doppler tracking measurements. PODS uses the homotopy continuation method to solve a set of nonlinear equations, and it is particularly effective for the case when the a priori estimate is not well known. Since range and Doppler measurements produce multiple states in PODS, a screening technique selects the desired state. PODS is executed in the TCOPS environment and can directly access all operational data sets. At the completion of the preliminary orbit determination, the PODS-generated state, along with additional tracking measurements, can be directly input to the differential correction (DC) process to generate an improved state. To validate the computational and operational capabilities of PODS, tests were performed using simulated TDRSS tracking measurements for the Cosmic Background Explorer (COBE) satellite and using real TDRSS measurements for the Earth Radiation Budget Satellite (ERBS) and the Solar Mesosphere Explorer (SME) spacecraft. The effects of various measurement combinations, varying arc lengths, and levels of degradation of the a priori state vector on the PODS solutions were considered.
Wildlife management by habitat units: A preliminary plan of action
NASA Technical Reports Server (NTRS)
Frentress, C. D.; Frye, R. G.
1975-01-01
Procedures for yielding vegetation type maps were developed using LANDSAT data and a computer assisted classification analysis (LARSYS) to assist in managing populations of wildlife species by defined area units. Ground cover in Travis County, Texas was classified on two occasions using a modified version of the unsupervised approach to classification. The first classification produced a total of 17 classes. Examination revealed that further grouping was justified. A second analysis produced 10 classes which were displayed on printouts which were later color-coded. The final classification was 82 percent accurate. While the classification map appeared to satisfactorily depict the existing vegetation, two classes were determined to contain significant error. The major sources of error could have been eliminated by stratifying cluster sites more closely among previously mapped soil associations that are identified with particular plant associations and by precisely defining class nomenclature using established criteria early in the analysis.
Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.
2009-01-01
We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall‐runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error‐based weighting of observation and prior information data, local sensitivity analysis, and single‐objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.
Heliogyro Preliminary Design, Phase 2
NASA Technical Reports Server (NTRS)
1978-01-01
There are 12 blades in the Heliogyro design, and each blade is envisioned to be 8 meters in width and 7,500 meters in length. The blades are expected to be composed primarily of a thin membrane constructed of material such as Kapton film with an aluminum reflective coating on one side and an infrared emissive coating on the other. The present Phase 2 Final Report covers work done on the following six topics: (1) Design and analysis of a stowable circular lattice batten for the Heliogyro blade. (2) Design and analysis of a biaxially tensioned blade panel. (3) Definition of a research program for micrometeoroid damage to tendons. (4) A conceptual design for a flight test model of the Heliogyro. (5) Definition of modifications to the NASTRAN computer program required to provide improved analysis of the Heliogyro. (6) A User's Manual covering applications of NASTRAN to the Heliogyro.
Computer Mediated Social Network Approach to Software Support and Maintenance
2010-06-01
Page 1 Computer Mediated Social Network Approach to Software Support and Maintenance LTC J. Carlos Vega *Student Paper* Point...DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Computer Mediated Social Network Approach to Software Support and Maintenance...This research highlights the preliminary findings on the potential of computer mediated social networks . This research focused on social networks as
Preliminary study of the use of the STAR-100 computer for transonic flow calculations
NASA Technical Reports Server (NTRS)
Keller, J. D.; Jameson, A.
1977-01-01
An explicit method for solving the transonic small-disturbance potential equation is presented. This algorithm, which is suitable for the new vector-processor computers such as the CDC STAR-100, is compared to successive line over-relaxation (SLOR) on a simple test problem. The convergence rate of the explicit scheme is slower than that of SLOR, however, the efficiency of the explicit scheme on the STAR-100 computer is sufficient to overcome the slower convergence rate and allow an overall speedup compared to SLOR on the CYBER 175 computer.
Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowry, Peter P.; Wagner, Katie A.
A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affectingmore » the public.« less
Project WISH: The Emerald City
NASA Technical Reports Server (NTRS)
Oz, Hayrani; Slonksnes, Linda (Editor); Rogers, James W. (Editor); Sherer, Scott E. (Editor); Strosky, Michelle A. (Editor); Szmerekovsky, Andrew G. (Editor); Klupar, G. Joseph (Editor)
1990-01-01
The preliminary design of a permanently manned autonomous space oasis (PEMASO), including its pertinent subsystems, was performed during the 1990 Winter and Spring quarters. The purpose for the space oasis was defined and the preliminary design work was started with emphasis placed on the study of orbital mechanics, power systems and propulsion systems. A rotating torus was selected as the preliminary configuration, and overall size, mass and location of some subsystems within the station were addressed. Computer software packages were utilized to determine station transfer parameters and thus the preliminary propulsion requirements. Power and propulsion systems were researched to determine feasible configurations and many conventional schemes were ruled out. Vehicle dynamics and control, mechanical and life support systems were also studied. For each subsystem studied, the next step in the design process to be performed during the continuation of the project was also addressed.
Preliminary design package for prototype solar heating system
NASA Technical Reports Server (NTRS)
1978-01-01
A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include system candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test.
Weighted triangulation adjustment
Anderson, Walter L.
1969-01-01
The variation of coordinates method is employed to perform a weighted least squares adjustment of horizontal survey networks. Geodetic coordinates are required for each fixed and adjustable station. A preliminary inverse geodetic position computation is made for each observed line. Weights associated with each observed equation for direction, azimuth, and distance are applied in the formation of the normal equations in-the least squares adjustment. The number of normal equations that may be solved is twice the number of new stations and less than 150. When the normal equations are solved, shifts are produced at adjustable stations. Previously computed correction factors are applied to the shifts and a most probable geodetic position is found for each adjustable station. Pinal azimuths and distances are computed. These may be written onto magnetic tape for subsequent computation of state plane or grid coordinates. Input consists of punch cards containing project identification, program options, and position and observation information. Results listed include preliminary and final positions, residuals, observation equations, solution of the normal equations showing magnitudes of shifts, and a plot of each adjusted and fixed station. During processing, data sets containing irrecoverable errors are rejected and the type of error is listed. The computer resumes processing of additional data sets.. Other conditions cause warning-errors to be issued, and processing continues with the current data set.
78 FR 50404 - Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... for the exascale challenges charge. Tentative Agenda: Agenda will include discussion of the following: Exascale Challenges Workshop and preliminary list of most critical challenges, and technical approaches to...
Integration of a CAD System Into an MDO Framework
NASA Technical Reports Server (NTRS)
Townsend, J. C.; Samareh, J. A.; Weston, R. P.; Zorumski, W. E.
1998-01-01
NASA Langley has developed a heterogeneous distributed computing environment, called the Framework for Inter-disciplinary Design Optimization, or FIDO. Its purpose has been to demonstrate framework technical feasibility and usefulness for optimizing the preliminary design of complex systems and to provide a working environment for testing optimization schemes. Its initial implementation has been for a simplified model of preliminary design of a high-speed civil transport. Upgrades being considered for the FIDO system include a more complete geometry description, required by high-fidelity aerodynamics and structures codes and based on a commercial Computer Aided Design (CAD) system. This report presents the philosophy behind some of the decisions that have shaped the FIDO system and gives a brief case study of the problems and successes encountered in integrating a CAD system into the FEDO framework.
Knowledge based systems: A preliminary survey of selected issues and techniques
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Kavi, Srinu
1984-01-01
It is only recently that research in Artificial Intelligence (AI) is accomplishing practical results. Most of these results can be attributed to the design and use of expert systems (or Knowledge-Based Systems, KBS) - problem-solving computer programs that can reach a level of performance comparable to that of a human expert in some specialized problem domain. But many computer systems designed to see images, hear sounds, and recognize speech are still in a fairly early stage of development. In this report, a preliminary survey of recent work in the KBS is reported, explaining KBS concepts and issues and techniques used to construct them. Application considerations to construct the KBS and potential KBS research areas are identified. A case study (MYCIN) of a KBS is also provided.
Many-body calculations with deuteron based single-particle bases and their associated natural orbits
NASA Astrophysics Data System (ADS)
Puddu, G.
2018-06-01
We use the recently introduced single-particle states obtained from localized deuteron wave-functions as a basis for nuclear many-body calculations. We show that energies can be substantially lowered if the natural orbits (NOs) obtained from this basis are used. We use this modified basis for {}10{{B}}, {}16{{O}} and {}24{{Mg}} employing the bare NNLOopt nucleon–nucleon interaction. The lowering of the energies increases with the mass. Although in principle NOs require a full scale preliminary many-body calculation, we found that an approximate preliminary many-body calculation, with a marginal increase in the computational cost, is sufficient. The use of natural orbits based on an harmonic oscillator basis leads to a much smaller lowering of the energies for a comparable computational cost.
RAVEN: a GUI and an Artificial Intelligence Engine in a Dynamic PRA Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Rabiti; D. Mandelli; A. Alfonsi
Increases in computational power and pressure for more accurate simulations and estimations of accident scenario consequences are driving the need for Dynamic Probabilistic Risk Assessment (PRA) [1] of very complex models. While more sophisticated algorithms and computational power address the back end of this challenge, the front end is still handled by engineers that need to extract meaningful information from the large amount of data and build these complex models. Compounding this problem is the difficulty in knowledge transfer and retention, and the increasing speed of software development. The above-described issues would have negatively impacted deployment of the new highmore » fidelity plant simulator RELAP-7 (Reactor Excursion and Leak Analysis Program) at Idaho National Laboratory. Therefore, RAVEN that was initially focused to be the plant controller for RELAP-7 will help mitigate future RELAP-7 software engineering risks. In order to accomplish this task, Reactor Analysis and Virtual Control Environment (RAVEN) has been designed to provide an easy to use Graphical User Interface (GUI) for building plant models and to leverage artificial intelligence algorithms in order to reduce computational time, improve results, and help the user to identify the behavioral pattern of the Nuclear Power Plants (NPPs). In this paper we will present the GUI implementation and its current capability status. We will also introduce the support vector machine algorithms and show our evaluation of their potentiality in increasing the accuracy and reducing the computational costs of PRA analysis. In this evaluation we will refer to preliminary studies performed under the Risk Informed Safety Margins Characterization (RISMC) project of the Light Water Reactors Sustainability (LWRS) campaign [3]. RISMC simulation needs and algorithm testing are currently used as a guidance to prioritize RAVEN developments relevant to PRA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Shujia; Duffy, Daniel; Clune, Thomas
The call for ever-increasing model resolutions and physical processes in climate and weather models demands a continual increase in computing power. The IBM Cell processor's order-of-magnitude peak performance increase over conventional processors makes it very attractive to fulfill this requirement. However, the Cell's characteristics, 256KB local memory per SPE and the new low-level communication mechanism, make it very challenging to port an application. As a trial, we selected the solar radiation component of the NASA GEOS-5 climate model, which: (1) is representative of column physics components (half the total computational time), (2) has an extremely high computational intensity: the ratiomore » of computational load to main memory transfers, and (3) exhibits embarrassingly parallel column computations. In this paper, we converted the baseline code (single-precision Fortran) to C and ported it to an IBM BladeCenter QS20. For performance, we manually SIMDize four independent columns and include several unrolling optimizations. Our results show that when compared with the baseline implementation running on one core of Intel's Xeon Woodcrest, Dempsey, and Itanium2, the Cell is approximately 8.8x, 11.6x, and 12.8x faster, respectively. Our preliminary analysis shows that the Cell can also accelerate the dynamics component (~;;25percent total computational time). We believe these dramatic performance improvements make the Cell processor very competitive as an accelerator.« less
Novel, Post-Stall, Thrust-Vectored F-15 RPVs: Laboratory and Flight Tests
1990-04-24
Flight Tests Program Manager : Douglas Bowers 1ST-Year Report Principal Investigator: Benjamin 6al-Or April 24, 1990 DTIC.LECTE AUG201990 i/ E...constructed. The geometry, dimensions and preliminary wind-tunnel test data for such a design are provided In Appendix A. If funded, such a 3rd...Preliminary Calibration Flight Test Data Obtained from the Onboard Computer ........ 33 Talless, PST-RaNPAS, Roll-Yaw-Pitch, Thrust-Vectored, PST F-15 (Cf. ADp
Development of an agility assessment module for preliminary fighter design
NASA Technical Reports Server (NTRS)
Ngan, Angelen; Bauer, Brent; Biezad, Daniel; Hahn, Andrew
1996-01-01
A FORTRAN computer program is presented to perform agility analysis on fighter aircraft configurations. This code is one of the modules of the NASA Ames ACSYNT (AirCraft SYNThesis) design code. The background of the agility research in the aircraft industry and a survey of a few agility metrics are discussed. The methodology, techniques, and models developed for the code are presented. FORTRAN programs were developed for two specific metrics, CCT (Combat Cycle Time) and PM (Pointing Margin), as part of the agility module. The validity of the code was evaluated by comparing with existing flight test data. Example trade studies using the agility module along with ACSYNT were conducted using Northrop F-20 Tigershark and McDonnell Douglas F/A-18 Hornet aircraft models. The sensitivity of thrust loading and wing loading on agility criteria were investigated. The module can compare the agility potential between different configurations and has the capability to optimize agility performance in the preliminary design process. This research provides a new and useful design tool for analyzing fighter performance during air combat engagements.
C3I system modification and EMC (electromagnetic compatibility) methodology, volume 1
NASA Astrophysics Data System (ADS)
Wilson, J. L.; Jolly, M. B.
1984-01-01
A methodology (i.e., consistent set of procedures) for assessing the electromagnetic compatibility (EMC) of RF subsystem modifications on C3I aircraft was generated during this study (Volume 1). An IEMCAP (Intrasystem Electromagnetic Compatibility Analysis Program) database for the E-3A (AWACS) C3I aircraft RF subsystem was extracted to support the design of the EMC assessment methodology (Volume 2). Mock modifications were performed on the E-3A database to assess, using a preliminary form of the methodology, the resulting EMC impact. Application of the preliminary assessment methodology to modifications in the E-3A database served to fine tune the form of a final assessment methodology. The resulting final assessment methodology is documented in this report in conjunction with the overall study goals, procedures, and database. It is recommended that a similar EMC assessment methodology be developed for the power subsystem within C3I aircraft. It is further recommended that future EMC assessment methodologies be developed around expert systems (i.e., computer intelligent agents) to control both the excruciating detail and user requirement for transparency.
Preliminary Full-Scale Tests of the Center for Automated Processing of Hardwoods' Auto-Image
Philip A. Araman; Janice K. Wiedenbeck
1995-01-01
Automated lumber grading and yield optimization using computer controlled saws will be plausible for hardwoods if and when lumber scanning systems can reliably identify all defects by type. Existing computer programs could then be used to grade the lumber, identify the best cut-up solution, and control the sawing machines. The potential value of a scanning grading...
ERIC Educational Resources Information Center
Dagnino, Francesca Maria; Ballauri, Margherita; Benigno, Vincenza; Caponetto, Ilaria; Pesenti, Elia
2013-01-01
This paper presents the results of preliminary research on the assessment of reasoning abilities in primary school poor achievers vs. normal achievers using computer game tasks. Subjects were evaluated by means of cognitive assessment on logical abilities and academic skills. The aim of this study is to better understand the relationship between…
ERIC Educational Resources Information Center
Wolter, Heidi; And Others
A project was conducted to improve and expand academic upgrading, job readiness, and special skill training for adults in the Keewatin Region through the implementation of computer-assisted learning (CAL). It was intended as a response to the special needs of unemployed Inuit who were not reached in the past by traditional training programs and…
ERIC Educational Resources Information Center
Knapp, Deirdre J.; Pliske, Rebecca M.
A study was conducted to validate the Army's Computerized Adaptive Screening Test (CAST), using data from 2,240 applicants from 60 army recruiting stations across the nation. CAST is a computer-assisted adaptive test used to predict performance on the Armed Forces Qualification Test (AFQT). AFQT scores are computed by adding four subtest scores of…
A Conceptual Review of Research on the Pathological Use of Computers, Video Games, and the Internet
ERIC Educational Resources Information Center
Sim, Timothy; Gentile, Douglas A.; Bricolo, Francesco; Serpelloni, Giovanni; Gulamoydeen, Farah
2012-01-01
Preliminary research studies suggest that some people who use computer, video games, and the Internet heavily develop dysfunctional symptoms, often referred to in the popular press as an "addiction." Although several studies have measured various facets of this issue, there has been no common framework within which to view these studies. This…
The genetic and economic effect of preliminary culling in the seedling orchard
Don E. Riemenschneider
1977-01-01
The genetic and economic effects of two stages of truncation selection in a white spruce seedling orchard were investigated by computer simulation. Genetic effects were computed by assuming a bivariate distribution of juvenile and mature traits and volume was used as the selection criterion. Seed production was assumed to rise in a linear fashion to maturity and then...
The Computer as Coach: An Athletic Paradigm for Intellectual Education. AI Memo 389.
ERIC Educational Resources Information Center
Goldstein, Ira
This paper is a preliminary proposal to develop the theory and design for "coaches" for computer games, to implement prototypes, and to experiment with their ability to convey important intellectual skills. The focus of this project will be restricted to developing a coach for a single example of an intellectual game called Wumpus. It is…
ERIC Educational Resources Information Center
Sivropoulou, Irene; Tsapakidou, Aggeliki; Kiridis, Argyris
2009-01-01
Computers were introduced in Greek kindergartens of our country with the new curricula for kindergarten, "Inter-disciplinary Integrated Framework of Study Programs," ("Official Journal of the Hellenic Republic," 376 t.B/18-10-2001, article 6), in order to contribute to the spherical growth of children and to extend their…
Hadoop for High-Performance Climate Analytics: Use Cases and Lessons Learned
NASA Technical Reports Server (NTRS)
Tamkin, Glenn
2013-01-01
Scientific data services are a critical aspect of the NASA Center for Climate Simulations mission (NCCS). Hadoop, via MapReduce, provides an approach to high-performance analytics that is proving to be useful to data intensive problems in climate research. It offers an analysis paradigm that uses clusters of computers and combines distributed storage of large data sets with parallel computation. The NCCS is particularly interested in the potential of Hadoop to speed up basic operations common to a wide range of analyses. In order to evaluate this potential, we prototyped a series of canonical MapReduce operations over a test suite of observational and climate simulation datasets. The initial focus was on averaging operations over arbitrary spatial and temporal extents within Modern Era Retrospective- Analysis for Research and Applications (MERRA) data. After preliminary results suggested that this approach improves efficiencies within data intensive analytic workflows, we invested in building a cyber infrastructure resource for developing a new generation of climate data analysis capabilities using Hadoop. This resource is focused on reducing the time spent in the preparation of reanalysis data used in data-model inter-comparison, a long sought goal of the climate community. This paper summarizes the related use cases and lessons learned.
Modeling Improvements and Users Manual for Axial-flow Turbine Off-design Computer Code AXOD
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.
1994-01-01
An axial-flow turbine off-design performance computer code used for preliminary studies of gas turbine systems was modified and calibrated based on the experimental performance of large aircraft-type turbines. The flow- and loss-model modifications and calibrations are presented in this report. Comparisons are made between computed performances and experimental data for seven turbines over wide ranges of speed and pressure ratio. This report also serves as the users manual for the revised code, which is named AXOD.
NASA Technical Reports Server (NTRS)
Guruswamy, Guru
2004-01-01
A procedure to accurately generate AIC using the Navier-Stokes solver including grid deformation is presented. Preliminary results show good comparisons between experiment and computed flutter boundaries for a rectangular wing. A full wing body configuration of an orbital space plane is selected for demonstration on a large number of processors. In the final paper the AIC of full wing body configuration will be computed. The scalability of the procedure on supercomputer will be demonstrated.
Computational fluid mechanics utilizing the variational principle of modeling damping seals
NASA Technical Reports Server (NTRS)
Abernathy, J. M.
1986-01-01
A computational fluid dynamics code for application to traditional incompressible flow problems has been developed. The method is actually a slight compressibility approach which takes advantage of the bulk modulus and finite sound speed of all real fluids. The finite element numerical analog uses a dynamic differencing scheme based, in part, on a variational principle for computational fluid dynamics. The code was developed in order to study the feasibility of damping seals for high speed turbomachinery. Preliminary seal analyses have been performed.
Research in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Murman, Earll M.
1987-01-01
The numerical integration of quasi-one-dimensional unsteady flow problems which involve finite rate chemistry are discussed, and are expressed in terms of conservative form Euler and species conservation equations. Hypersonic viscous calculations for delta wing geometries is also examined. The conical Navier-Stokes equations model was selected in order to investigate the effects of viscous-inviscid interations. The more complete three-dimensional model is beyond the available computing resources. The flux vector splitting method with van Leer's MUSCL differencing is being used. Preliminary results were computed for several conditions.
The investigation of tethered satellite system dynamics
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1985-01-01
The tether control law to retrieve the satellite was modified in order to have a smooth retrieval trajectory of the satellite that minimizes the thruster activation. The satellite thrusters were added to the rotational dynamics computer code and a preliminary control logic was implemented to simulate them during the retrieval maneuver. The high resolution computer code for modelling the three dimensional dynamics of untensioned tether, SLACK3, was made fully operative and a set of computer simulations of possible tether breakages was run. The distribution of the electric field around an electrodynamic tether in vacuo severed at some length from the shuttle was computed with a three dimensional electrodynamic computer code.
Elvevåg, Brita; Foltz, Peter W.; Rosenstein, Mark; DeLisi, Lynn E.
2009-01-01
Communication disturbances are prevalent in schizophrenia, and since it is a heritable illness these are likely present - albeit in a muted form - in the relatives of patients. Given the time-consuming, and often subjective nature of discourse analysis, these deviances are frequently not assayed in large scale studies. Recent work in computational linguistics and statistical-based semantic analysis has shown the potential and power of automated analysis of communication. We present an automated and objective approach to modeling discourse that detects very subtle deviations between probands, their first-degree relatives and unrelated healthy controls. Although these findings should be regarded as preliminary due to the limitations of the data at our disposal, we present a brief analysis of the models that best differentiate these groups in order to illustrate the utility of the method for future explorations of how language components are differentially affected by familial and illness related issues. PMID:20383310
Kontos, Despina; Bakic, Predrag R.; Carton, Ann-Katherine; Troxel, Andrea B.; Conant, Emily F.; Maidment, Andrew D.A.
2009-01-01
Rationale and Objectives Studies have demonstrated a relationship between mammographic parenchymal texture and breast cancer risk. Although promising, texture analysis in mammograms is limited by tissue superimposition. Digital breast tomosynthesis (DBT) is a novel tomographic x-ray breast imaging modality that alleviates the effect of tissue superimposition, offering superior parenchymal texture visualization compared to mammography. Our study investigates the potential advantages of DBT parenchymal texture analysis for breast cancer risk estimation. Materials and Methods DBT and digital mammography (DM) images of 39 women were analyzed. Texture features, shown in studies with mammograms to correlate with cancer risk, were computed from the retroareolar breast region. We compared the relative performance of DBT and DM texture features in correlating with two measures of breast cancer risk: (i) the Gail and Claus risk estimates, and (ii) mammographic breast density. Linear regression was performed to model the association between texture features and increasing levels of risk. Results No significant correlation was detected between parenchymal texture and the Gail and Claus risk estimates. Significant correlations were observed between texture features and breast density. Overall, the DBT texture features demonstrated stronger correlations with breast percent density (PD) than DM (p ≤0.05). When dividing our study population in groups of increasing breast PD, the DBT texture features appeared to be more discriminative, having regression lines with overall lower p-values, steeper slopes, and higher R2 estimates. Conclusion Although preliminary, our results suggest that DBT parenchymal texture analysis could provide more accurate characterization of breast density patterns, which could ultimately improve breast cancer risk estimation. PMID:19201357
Laplace Transform Based Radiative Transfer Studies
NASA Astrophysics Data System (ADS)
Hu, Y.; Lin, B.; Ng, T.; Yang, P.; Wiscombe, W.; Herath, J.; Duffy, D.
2006-12-01
Multiple scattering is the major uncertainty for data analysis of space-based lidar measurements. Until now, accurate quantitative lidar data analysis has been limited to very thin objects that are dominated by single scattering, where photons from the laser beam only scatter a single time with particles in the atmosphere before reaching the receiver, and simple linear relationship between physical property and lidar signal exists. In reality, multiple scattering is always a factor in space-based lidar measurement and it dominates space- based lidar returns from clouds, dust aerosols, vegetation canopy and phytoplankton. While multiple scattering are clear signals, the lack of a fast-enough lidar multiple scattering computation tool forces us to treat the signal as unwanted "noise" and use simple multiple scattering correction scheme to remove them. Such multiple scattering treatments waste the multiple scattering signals and may cause orders of magnitude errors in retrieved physical properties. Thus the lack of fast and accurate time-dependent radiative transfer tools significantly limits lidar remote sensing capabilities. Analyzing lidar multiple scattering signals requires fast and accurate time-dependent radiative transfer computations. Currently, multiple scattering is done with Monte Carlo simulations. Monte Carlo simulations take minutes to hours and are too slow for interactive satellite data analysis processes and can only be used to help system / algorithm design and error assessment. We present an innovative physics approach to solve the time-dependent radiative transfer problem. The technique utilizes FPGA based reconfigurable computing hardware. The approach is as following, 1. Physics solution: Perform Laplace transform on the time and spatial dimensions and Fourier transform on the viewing azimuth dimension, and convert the radiative transfer differential equation solving into a fast matrix inversion problem. The majority of the radiative transfer computation goes to matrix inversion processes, FFT and inverse Laplace transforms. 2. Hardware solutions: Perform the well-defined matrix inversion, FFT and Laplace transforms on highly parallel, reconfigurable computing hardware. This physics-based computational tool leads to accurate quantitative analysis of space-based lidar signals and improves data quality of current lidar mission such as CALIPSO. This presentation will introduce the basic idea of this approach, preliminary results based on SRC's FPGA-based Mapstation, and how we may apply it to CALIPSO data analysis.
Constitutive formulations for the mechanical investigation of colonic tissues.
Carniel, Emanuele Luigi; Gramigna, Vera; Fontanella, Chiara Giulia; Stefanini, Cesare; Natali, Arturo N
2014-05-01
A constitutive framework is provided for the characterization of the mechanical behavior of colonic tissues, as a fundamental tool for the development of numerical models of the colonic structures. The constitutive analysis is performed by a multidisciplinary approach that requires the cooperation between experimental and computational competences. The preliminary investigation pertains to the review of the tissues histology. The complex structural configuration of the tissues and the specific distributions of fibrous elements entail the nonlinear mechanical behavior and the anisotropic response. The identification of the mechanical properties requires to perform mechanical tests according to different loading situations, as different loading directions. Because of the typical functionality of colon structures, the tissues mechanics is investigated by tensile tests, which are performed on taenia coli and haustra specimens from fresh pig colons. Accounting for the histological investigation and the results from the mechanical tests, a specific hyperelastic framework is provided within the theory of fiber-reinforced composite materials. Preliminary analytical formulations are defined to identify the constitutive parameters by the inverse analysis of the experimental tests. Finite element models of the specimens are developed accounting for the actual configuration of the colon structures to verify the quality of the results. The good agreement between experimental and numerical model results suggests the reliability of the constitutive formulations and parameters. Finally, the developed constitutive analysis makes it possible to identify the mechanical behavior and properties of the different colonic tissues. Copyright © 2013 Wiley Periodicals, Inc.
Seçkin, Gül
2011-12-01
This article presents initial psychometric validation of an instrument developed to measure cyber informational and decisional empowerment. The article provides preliminary insights into the extent to which cyber patients view the digital environment of peer-based information and support as a resource for informed and empowered participation in self health care management. Data come from cancer patients (N = 350) who participated in the Study of Virtual Health Networks for Cancer Patients of the 21st Century. Data were first analyzed using exploratory factor analysis with principle component extraction and Varimax rotation. Age-based split-sample analysis (≥ 51 and ≤ 50) was performed on a subsample, which consisted of only women (N = 255), in order to cross-validate psychometric data obtained from the full sample. A confirmatory factor analysis was conducted using AMOS 19.0. to further validate the scale. The composite scale is unidimensional with excellent internal consistency reliability. The highest average scores were obtained for informational empowerment items. The lowest average was for the item that measured empowerment to seek second opinion from additional health care professionals. The ability of this composite measure to provide information about the extent to which computer-connected patients view digital peer support as an empowerment tool makes it a valuable addition to the literature in health informatics, supportive cancer care, and health quality of life research.
NASA Technical Reports Server (NTRS)
Muss, J. A.; Nguyen, T. V.; Johnson, C. W.
1991-01-01
The user's manual for the rocket combustor interactive design (ROCCID) computer program is presented. The program, written in Fortran 77, provides a standardized methodology using state of the art codes and procedures for the analysis of a liquid rocket engine combustor's steady state combustion performance and combustion stability. The ROCCID is currently capable of analyzing mixed element injector patterns containing impinging like doublet or unlike triplet, showerhead, shear coaxial, and swirl coaxial elements as long as only one element type exists in each injector core, baffle, or barrier zone. Real propellant properties of oxygen, hydrogen, methane, propane, and RP-1 are included in ROCCID. The properties of other propellants can easily be added. The analysis model in ROCCID can account for the influence of acoustic cavities, helmholtz resonators, and radial thrust chamber baffles on combustion stability. ROCCID also contains the logic to interactively create a combustor design which meets input performance and stability goals. A preliminary design results from the application of historical correlations to the input design requirements. The steady state performance and combustion stability of this design is evaluated using the analysis models, and ROCCID guides the user as to the design changes required to satisfy the user's performance and stability goals, including the design of stability aids. Output from ROCCID includes a formatted input file for the standardized JANNAF engine performance prediction procedure.
2001-08-01
This report presents the results of a preliminary Cognitive Task Analysis (CTA) of the deployed Network Operations Support Center (NOSC-D), and the...conducted Cognitive Task Analysis interviews with four (4) NOSC-D personnel. Because of the preliminary nature of the finding, the analysis is
A new method for gravity field recovery based on frequency analysis of spherical harmonics
NASA Astrophysics Data System (ADS)
Cai, Lin; Zhou, Zebing
2017-04-01
All existing methods for gravity field recovery are mostly based on the space-wise and time-wise approach, whose core processes are constructing the observation equations and solving them by the least square method. It's should be pointed that the least square method means the approximation. On the other hand, we can directly and precisely obtain the coefficients of harmonics by computing the Fast Fourier Transform (FFT) when we do 1-D data (time series) analysis. So the question whether we directly and precisely obtain the coefficients of spherical harmonic by computing 2-D FFT of measurements of satellite gravity mission is of great significance, since this may guide us to a new understanding of the signal components of gravity field and make us determine it quickly by taking advantage of FFT. Like the 1-D data analysis, the 2-D FFT of measurements of satellite can be computed rapidly. If we can determine the relationship between spherical harmonics and 2-D Fourier frequencies and the transfer function from measurements to spherical coefficients, the question mentioned above can be solved. So the objective of this research project is to establish a new method based on frequency analysis of spherical harmonic, which directly compute the confidents of spherical harmonic of gravity field, which is differ from recovery by least squares. There is a one to one correspondence between frequency spectrum and the time series in 1-D FFT. The 2-D FFT has a similar relationship to 1-D FFT. Owing to the fact that any degree or order (higher than one) of spherical function has multi frequencies and these frequencies may be aliased. Fortunately, the elements and ratio of these frequencies of spherical function can be determined, and we can compute the coefficients of spherical function from 2-D FFT. This relationship can be written as equations and equivalent to a matrix, which is solid and can be derived in advance. Until now the relationship has be determined. Some preliminary results, which only compute lower degree spherical harmonics, indicates that the difference between the input (EGM2008) and output (coefficients from recovery) is smaller than 5E-17, while the minimal precision of computer software (Matlab) is 2.2204E-16.
NASA Technical Reports Server (NTRS)
Kraft, R. E.
1996-01-01
A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.
Nursing acceptance of a speech-input interface: a preliminary investigation.
Dillon, T W; McDowell, D; Norcio, A F; DeHaemer, M J
1994-01-01
Many new technologies are being developed to improve the efficiency and productivity of nursing staffs. User acceptance is a key to the success of these technologies. In this article, the authors present a discussion of nursing acceptance of computer systems, review the basic design issues for creating a speech-input interface, and report preliminary findings of a study of nursing acceptance of a prototype speech-input interface. Results of the study showed that the 19 nursing subjects expressed acceptance of the prototype speech-input interface.
Bacterial Identification Using Light Scattering Measurements: a Preliminary Report
NASA Technical Reports Server (NTRS)
Wilkins, J. R.
1971-01-01
The light scattering properties of single bacterial cells were examined as a possible means of identification. Three species were studied with streptococcus faecalis exhibiting a unique pattern; the light-scattering traces for staphylococcus aureus and escherichia coli were quite similar although differences existed. Based on preliminary investigations, the light scattering approach appeared promising with additional research needed to include a wide variety of bacterial species, computer capability to handle and analyze data, and expansion of light scattering theory to include bacterial cells.