Science.gov

Sample records for preliminary design volume

  1. Preliminary design specification for Department of Energy standardized spent nuclear fuel canisters. Volume 1: Design specification

    SciTech Connect

    1998-08-19

    This document (Volume 1) is the preliminary design specification for the canisters to be used during the handling, storage, transportation, and repository disposal of Department of Energy (DOE) spent nuclear fuel (SNF). This document contains no procurement information, such as the number of canisters to be fabricated, explicit timeframes for deliverables, etc. A companion document (Volume 2) provides background information and design philosophy in order to help engineers better understand the established design requirements for these DOE SNF canisters.

  2. TPX: Contractor preliminary design review. Volume 3, Design and analysis

    SciTech Connect

    1995-06-30

    Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presented as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors.

  3. Blade system design studies volume II : preliminary blade designs and recommended test matrix.

    SciTech Connect

    Griffin, Dayton A.

    2004-06-01

    As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts, LLC is performing a Blade System Design Study (BSDS) concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The BSDS Volume I project report addresses issues and constraints identified to scaling conventional blade designs to the megawatt size range, and evaluated candidate materials, manufacturing and design innovations for overcoming and improving large blade economics. The current report (Volume II), presents additional discussion of materials and manufacturing issues for large blades, including a summary of current trends in commercial blade manufacturing. Specifications are then developed to guide the preliminary design of MW-scale blades. Using preliminary design calculations for a 3.0 MW blade, parametric analyses are performed to quantify the potential benefits in stiffness and decreased gravity loading by replacement of a baseline fiberglass spar with carbon-fiberglass hybrid material. Complete preliminary designs are then presented for 3.0 MW and 5.0 MW blades that incorporate fiberglass-to-carbon transitions at mid-span. Based on analysis of these designs, technical issues are identified and discussed. Finally, recommendations are made for composites testing under Part I1 of the BSDS, and the initial planned test matrix for that program is presented.

  4. OTEC SKSS preliminary designs. Volume IV. Appendixes. Final report

    SciTech Connect

    ,

    1980-02-29

    This volume contains appendices to the Station Keeping Subsystem design study for the 40 MeW Modular Experiment OTEC platforms. Appendices presented include: detailed drag calculations; sample CALMS computer printouts for SPAR and BARGE static analyses; sample time domain computer printouts (Hydromechanics, Inc.) program; extreme value and fatigue load calculations; anchor design calculations; deployment calculations; bottom slope plots; time domain analysis report by Hydromechanics Inc.; detailed cost analysis; control systems study report by Sperry Systems Management; cost estimates for model basin tests; and hydrodynamic loading on the mooring cables. (WHK)

  5. Preliminary systems design study assessment report. Volume 7, Subsystem concepts

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each. This volume contains the descriptions and other relevant information of the four subsystems required for most of the ex situ processing systems. This volume covers the metal decontamination and sizing subsystem, soils processing subsystem, low-level waste subsystem, and retrieval subsystem.

  6. TPX: Contractor preliminary design review. Volume 4, PF manufacturing

    SciTech Connect

    1995-08-15

    This fourth volume of the five volume CPDR engineering drawings and flowcharts for the TPX components and their fabrication procedures. Coil winding machines and roll forming machines are described in detail.

  7. Preliminary Systems Design Study assessment report. Volume 8, Appendixes

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume of the Systems Design Study contain four Appendixes that were part of the study. Appendix A is an EG&G Idaho, Inc., report that represents a review and compilation of previous reports describing the wastes and quantities disposed in the Subsurface Disposal Area of the Idaho National Engineering Laboratory. Appendix B contains the process flowsheets considered in this study, but not selected for detailed analysis. Appendix C is a historical tabulation of radioactive waste incinerators. Appendix D lists Department of Energy facilities where cementation stabilization systems have been used.

  8. Large scale prop-fan structural design study. Volume 2: Preliminary design of SR-7

    NASA Technical Reports Server (NTRS)

    Billman, L. C.; Gruska, C. J.; Ladden, R. M.; Leishman, D. K.; Turnberg, J. E.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 2 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described.

  9. Preliminary design specification for Department of Energy standardized spent nuclear fuel canisters. Volume 2: Rationale document

    SciTech Connect

    1998-08-19

    This document (Volume 2) is a companion document to a preliminary design specification for the design of canisters to be used during the handling, storage, transportation, and repository disposal of Department of Energy (DOE) spent nuclear fuel (SNF). This document contains no procurement information, such as the number of canisters to be fabricated, explicit timeframes for deliverables, etc. However, this rationale document does provide background information and design philosophy in order to help engineers better understand the established design criteria (contained in Volume 1 respectively) necessary to correctly design and fabricate these DOE SNF canisters.

  10. TPX: Contractor preliminary design review. Volume 2, PF systems engineering

    SciTech Connect

    Calvin, H.A.

    1995-07-28

    This system development specification covers the Poloidal Field (PF) Magnet System, WBS 14 in the Princeton Plasma Physics Laboratory TPX Program to build a tokamak fusion reactor. This specification establishes the performance, design, development and test requirements of the PF Magnet System.

  11. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume II. Plant specifications

    SciTech Connect

    Price, R. E.

    1983-12-31

    The specifications and design criteria for all plant systems and subsystems used in developing the preliminary design of Carrisa Plains 30-MWe Solar Plant are contained in this volume. The specifications have been organized according to plant systems and levels. The levels are arranged in tiers. Starting at the top tier and proceeding down, the specification levels are the plant, system, subsystem, components, and fabrication. A tab number, listed in the index, has been assigned each document to facilitate document location.

  12. TPX: Contractor preliminary design review. Volume 1, Presentation and design description. Final report

    SciTech Connect

    Hartman, D.; Naumovich,; Walstrom, P.; Clarkson, I.; Schultheiss, J.; Burger, A.

    1995-09-22

    This first volume of the five volume set begins with a CPDR overview and then details the PF magnet system, manufacturing R&D, Westinghouse R&D, the central solenoid, the PF 5 ring coil, the PF 6/7 ring coil, quality assurance, and the system design description.

  13. Modular space station phase B extension, preliminary system design. Volume 4: Subsystems analyses

    NASA Technical Reports Server (NTRS)

    Antell, R. W.

    1972-01-01

    The subsystems tradeoffs, analyses, and preliminary design results are summarized. Analyses were made of the structural and mechanical, environmental control and life support, electrical power, guidance and control, reaction control, information, and crew habitability subsystems. For each subsystem a summary description is presented including subsystem requirements, subsystem description, and subsystem characteristics definition (physical, performance, and interface). The major preliminary design data and tradeoffs or analyses are described in detail at each of the assembly levels.

  14. Definition and preliminary design of the LAWS (Laser Atmospheric Wind Sounder), volume 2, phase 2

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Accurate knowledge of winds is critical to our understanding of the earth's climate and to our ability to predict climate change. Winds are a fundamental component of highly nonlinear interactions between oceans, land surfaces, and the atmosphere. Interactions at these interfaces are the focus of much climate change research. Although wind information is critical for advancing our understanding, currently most of our description of atmospheric motion is obtained indirectly - i.e., derived from observations of temperature and moisture through geostrophic relationships. Direct measurement of winds over the globe is limited to land-based rawinsonde surface stations and a few ship/aircraft reports. Cloud track winds using satellite imagery are calculated but must be used with great care. The LAWS mission objective, therefore, is to provide diurnal and global direct observations of winds - an observation that will incrementally enhance our knowledge of the earth's climate and physical processes responsible for its change. This document is Volume 2 of the LAWS Phase 2 Final Study Report and describes the definition and preliminary design of the LAWS instrument, together with details of the laser breadboard program conducted during the last 18 months of the program.

  15. Volume 1. Preliminary design study: AXAF x ray calibration spectrometers. Volume 2. Revised preliminary design study: AXAF x ray calibration spectrometers

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objective of this work was to provide a preliminary design concept for a Flux Monitor Spectrometer (FMS) for use at the X Ray Astrophysics Facility (XRAF) during High Resolution Mirror Assembly (HRMA) testing that met the requirements of SAO-AXAF-88-025 dated July 31, 1991. The calibration test team determined that the spectral resolution of the FMS had to be greater than or equal to twice that of all the AXAF spectrometers throughout the 0.1 to 10 KeV range of x-ray energies. Since this effectively doubled the resolution required by SAO-AXAF-88-025, a change order was approved by the Marshall Space Flight Center and given to Radiation Sciences to revise their study.

  16. Preliminary Design of a Modular Unmanned Research Vehicle. Volume 2. Subsystem Technical Development Design Study

    DTIC Science & Technology

    1988-12-01

    for real-time analysis, or post-test aaalvsis innaediate;y foliowing the tesi , in a form that was iure easily interpreted. Because the test site will...in the baseline MURV design is the Teledyne 320. 11.6.2.4 Fuel Loading Trade Study With the propulsion system characteristics de- cided , the optimal

  17. Preliminary systems design study assessment report. Volume 4, Leach resistant/high integrity structure concepts

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-10-01

    The System Design Study (SDS), part of the Waste Technology Development Department of the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. The SDS results are published in eight volumes. Volume I contains an executive summary. The SDS summary and analysis of results are presented in Volume II. Volumes III through VII contain descriptions of twelve system and four subsystem concepts. Volume VIII contains the appendixes.

  18. Mod-5A wind turbine generator program design report. Volume 2: Conceptual and preliminary design, book 2

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind tunnel generator is documented. There are four volumes. In Volume 2, book 2 the requirements and criteria for the design are presented. The development tests, which determined or characterized many of the materials and components of the wind turbine generator, are described.

  19. Modular space station detailed preliminary design. Volume 1: Sections 1 through 4.4

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Detailed configuration and subsystems preliminary design data are presented for the modular space station concept. Each module comprising the initial space station is described in terms of its external and internal configuration, its functional responsibilities to the initial cluster, and its orbital build up sequence. Descriptions of the subsequent build up to the growth space station are also presented. Analytical and design techniques, tradeoff considerations, and depth of design detail are discussed for each subsystem. The subsystems include the following: structural/mechanical; crew habitability and protection; experiment support; electrical power; environmental control/life support; guidance, navigation, and control; propulsion; communications; data management; and onboard checkout subsystems. The interfaces between the station and other major elements of the program are summarized. The rational for a zero-gravity station, in lieu of one with artificial-gravity capability, is also summarized.

  20. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  1. TPX: Contractor preliminary design review. Volume 5, Manufacturing R&D

    SciTech Connect

    Roach, J.F.; Urban, W.M.; Hartman, D.

    1995-08-04

    TPX Insulation & Impregnation R&D test results are reported for 1x2 samples designed for screening candidate conduit insulation systems for TPX PF and TF coils. The epoxy/glass insulation system and three proposed alternate insulation systems employing Kapton, was evaluated in as received sample condition and after 10 thermal cycles in liquid nitrogen. Two DGBA impregnation systems, Shell 826 and CTD101K were investigated. Square incoloy 908 and 316 LN stainless hollow conduits were used for 1x2 sample fabrication. Capacitance, dielectric loss, and insulation resistance dielectric characteristics were measured for all samples. Partial discharge performance was measured for samples either in air, under silicon oil, or under liquid nitrogen up to 10kVrms at 60 Hz. Hipot screening was performed at 10 kVdc. The samples were cross sectioned and evaluated for impregnation quality. The implications of the test results on the TPX preliminary design decision are discussed.

  2. Mod-5A Wind Turbine Generator Program Design Report. Volume 2: Conceptual and Preliminary Design, Book 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.

  3. Payload specialist station study. Volume 2, part 1: Preliminary design document

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The details of six tasks of the payload Specialist Station study are discussed: (1) derive payload control and display requirements; (2) perform functional analyses; (3) perform system synthesis; (4) perform trade studies; (5) perform preliminary design; and (6) provide data format. Functional analysis diagrams were developed for the study payloads. These diagrams presented the payload's functional activities flow based on the six mission phases established. These phases are: (1) launch, ascent, orbit insertion; (2) on-orbit checkout and activation; (3) on-orbit operation; (4) deployment/retrieval; (5) on-orbit deactivation; and (6) descent, landing, post-landing. To perform system synthesis the widest variety of available hardware and software, as individual pieces of equipment and as systems, was investigated. The intent was to synthesize a complete AFD system or systems which could accommodate the range of requirements identified for the study missions.

  4. Design and Evaluation of Potentiometric Principles for Bladder Volume Monitoring: A Preliminary Study

    PubMed Central

    Chen, Shih-Ching; Hsieh, Tsung-Hsun; Fan, Wen-Jia; Lai, Chien-Hung; Chen, Chun-Lung; Wei, Wei-Feng; Peng, Chih-Wei

    2015-01-01

    Recent advances in microelectronics and wireless transmission technology have led to the development of various implantable sensors for real-time monitoring of bladder conditions. Although various sensing approaches for monitoring bladder conditions were reported, most such sensors have remained at the laboratory stage due to the existence of vital drawbacks. In the present study, we explored a new concept for monitoring the bladder capacity on the basis of potentiometric principles. A prototype of a potentiometer module was designed and fabricated and integrated with a commercial wireless transmission module and power unit. A series of in vitro pig bladder experiments was conducted to determine the best design parameters for implementing the prototype potentiometric device and to prove its feasibility. We successfully implemented the potentiometric module in a pig bladder model in vitro, and the error of the accuracy of bladder volume detection was <±3%. Although the proposed potentiometric device was built using a commercial wireless module, the design principles and animal experience gathered from this research can serve as a basis for developing new implantable bladder sensors in the future. PMID:26039421

  5. Definition and preliminary design of the Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The steps and engineering trades and analyses used in establishing the initial requirements and in developing a concept and configuration for the laser atmospheric wind sounder (LAWS) instrument. A summary of the performance anticipated from the baseline configuration, and a bibliography are presented. LAWS, which is a facility instrument of the Earth observing system (EOS), is the culmination of over 20 years of effort in the field of laser Doppler wind sensing and will be the first instrument to fly in space capable of providing global-scale tropospheric wind profiles at high spatial resolutions. Global-scale wind profiles are necessary for: (1) more accurate diagnosis of large-scale circulation and climate dynamics; (2) improved numerical weather prediction; (3) improved understanding of mesoscale systems; and (4) improved understanding of global biogeochemical and hydrologic cycles. The objective of phase 1 was to define and perform a preliminary design for the LAWS instrument. The definition phase consisted of identifying realistic concepts for LAWS and analyzing them in sufficient detail to be able to choose the most promising one for the LAWS instrument. Systems and subsystems configurations were then developed for the chosen concept. The concept and subsequent configuration were to be compatible with two prospective platforms: the Japanese polar orbiting platform (JPOP) and as an attached payload on the Space Station Freedom. After a thorough and objective concept selection process, a heterodyne detection Doppler lidar using a CO2 laser transmitter operating a 9.1 micron over a 2.1 micron solid state system was chosen. A configuration for LAWS that meets the performance requirements was designed at the conclusion of phase 1.

  6. Quiet Clean Short-Haul Experimental Engine (QCSEE). Preliminary analyses and design report, volume 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The experimental and flight propulsion systems are presented. The following areas are discussed: engine core and low pressure turbine design; bearings and seals design; controls and accessories design; nacelle aerodynamic design; nacelle mechanical design; weight; and aircraft systems design.

  7. Systems design study of the Pioneer Venus spacecraft. Volume 2. Preliminary program development plan

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The preliminary development plan for the Pioneer Venus program is presented. This preliminary plan treats only developmental aspects that would have a significant effect on program cost. These significant development areas were: master program schedule planning; test planning - both unit and system testing for probes/orbiter/ probe bus; ground support equipment; performance assurance; and science integration Various test planning options and test method techniques were evaluated in terms of achieving a low-cost program without degrading mission performance or system reliability. The approaches studied and the methodology of the selected approach are defined.

  8. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches. UPH. Appendix E: Lower reservoir

    NASA Astrophysics Data System (ADS)

    1981-04-01

    Operational, construction, and geotechnical requirements were examined. Overriding considerations including operating range, volume, construction methods, cavern cross section and reservoir layout were studied within the context of minimizing facility costs and optimizing the plant layout. The study led to a preliminary arrangement of fourteen parallel caverns, each 60 ft wide by 85 ft high in cross section and 3610 ft in length. The requirements for and preliminary design of the intermediate reservoir in the case of a two step UPH facility is also described. The design and the cost estimates presented are based on the requirements for a 2000 MW plant providing 20,000 MWh of storage at a nominal head of 4600 ft.

  9. Quiet Clean Short-Haul Experimental Engine (QSCEE). Preliminary analyses and design report, volume 1

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The experimental propulsion systems to be built and tested in the 'quiet, clean, short-haul experimental engine' program are presented. The flight propulsion systems are also presented. The following areas are discussed: acoustic design; emissions control; engine cycle and performance; fan aerodynamic design; variable-pitch actuation systems; fan rotor mechanical design; fan frame mechanical design; and reduction gear design.

  10. The Preliminary Design of a Standardized Spacecraft Bus for Small Tactical Satellites (Volume 1)

    DTIC Science & Technology

    1996-11-01

    Cokuysal; Rebecca, Austin and Travis From; Donna Krueger; and Coleen Robinson. The Systems Engineering Team vi VOLUM tE i(,C..uI,/E SUMMARY PREFICE " IV...married to Lt Coleen Y. Robinson, USAF. 17 177 Form ApprovedREPORT DOCUMENTATION PAGE OMB No 0704-0188 Public reoorting burden for this collection of

  11. Preliminary design study of compressed-air energy storage in a salt dome. Volume 6: CAES plant design

    NASA Astrophysics Data System (ADS)

    1982-04-01

    The preliminary plant design for a compressed air energy storage (CAES) plant is presented. The design is based upon the facility criteria; the specific site; and the systems, subsystems. The compressed air is stored in two solution mined caverns in the salt dome. The details concerning the major equipment and the operation of the mechanical systems are described. The project schedule from start of licensing to commercial operation is estimated to be 70 months, with actual construction (including dewatering of the caverns) estimated for 39 months. Based on the cost estimate developed in this task and the modified financial data and fuel cost projections, the economic introduction of CAES into the MSS system was examined for the No. 2 oil-fired plant. The economic analysis did not extend beyond the year 1988. The economic introduction of CAES in the MSS system before 1990 is unlikely because the older oil fired units in the MSS system may be economically used for cycling and peaking, if required. For a system with a different composition of generating units, CAES may be economical at an earlier data.

  12. High Energy Astronomy Observatory, Mission C, Phase A. Volume 2: Preliminary analyses and conceptual design

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis and conceptual design of a baseline mission and spacecraft are presented. Aspects of the HEAO-C discussed include: baseline experiments with X-ray observations of space, analysis of mission requirements, observatory design, structural analysis, thermal control, attitude sensing and control system, communication and data handling, and space shuttle launch and retrieval of HEAO-C.

  13. Preliminary subsystem designs for the Assured Crew Return Vehicle (ACRV), volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A series of design studies is presented concerning the Assured Crew Return Vehicle (ACRV) for Space Station Freedom. Four alternate designs are presented for the ACRV braking and landing system. Options presented include: ballistic and lifting body reentries; the use of high-lift, high-payload aerodynamic decelerators, as well as conventional parachutes; landing systems designed for water landings, land landings, or both; and an aerial recovery system. All four design options presented combine some or all of the above attributes, and all meet performance requirements established by the ACRV Program Office. Two studies of ACRV growth options are also presented. Use of the ACRV or a similarly designed vehicle in several roles for possible future space missions is discussed, along with the required changes to a basic ACRV to allow it to perform these missions optimally. The outcome of these studies is a set of recommendations to the ACRV Program Office describing the vehicle characteristics of the basic ACRV which lend themselves most readily to be adapted for use in other missions. Finally, the impacts on the design of the ACRV due to its role as a medical emergency vehicle were studied and are presented. The use of the ACRV in this manner will impact its shape, internal configuration, and equipment.

  14. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1981-05-01

    A preliminary design study of water compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) plants for siting in geological conditions suitable for hard rock excavations was performed. The study was divided into five primary tasks as follows: establishment of design criteria and analysis of impact on power system; selection of site and establishment of site characteristics; formulation of design approaches; assessment of environmental and safety aspects; and preparation of preliminary design of plant. The salient aspects considered and the conclusions reached during the consideration of the five primary tasks for both CAES and UPH are presented.

  15. Preliminary near-field environment report; Volume 1, Technical bases for EBS design

    SciTech Connect

    Wilder, D.G.

    1993-04-01

    The United States Department of Energy (DOE) is investigating the suitability of Yucca Mountain as a potential site for the nation`s first high-level nuclear waste repository. The site is located about 120 km northwest of Las Vegas, Nevada, in an area of uninhabited desert (Fig. 1). Lawrence Livermore National Laboratory (LLNL) is a Yucca Mountain Site Characterization Project (YMP) participant and is responsible for the development of waste package (WP) and engineered barrier system (EBS) design concepts, including materials testing and selection, design criteria development, waste-form characterization, performance assessments, and near-field environment (NFE) characterization.

  16. Mod-2 wind turbine system concept and preliminary design report. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The configuration development of the MOD-2 wind turbine system is presented. The MOD-2 is design optimized for commercial production rates which, in multi-unit installations, will be integrated into a utility power grid and achieve a cost of electricity at less than 4 cents per kilowatt hour.

  17. Block 2 SRM conceptual design studies. Volume 1, Book 2: Preliminary development and verification plan

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Activities that will be conducted in support of the development and verification of the Block 2 Solid Rocket Motor (SRM) are described. Development includes design, fabrication, processing, and testing activities in which the results are fed back into the project. Verification includes analytical and test activities which demonstrate SRM component/subassembly/assembly capability to perform its intended function. The management organization responsible for formulating and implementing the verification program is introduced. It also identifies the controls which will monitor and track the verification program. Integral with the design and certification of the SRM are other pieces of equipment used in transportation, handling, and testing which influence the reliability and maintainability of the SRM configuration. The certification of this equipment is also discussed.

  18. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume I. Executive summary

    SciTech Connect

    Not Available

    1983-12-31

    The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard) solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report also discusses plant performance, operations and maintenance, development, and facility cost estimate and economic analysis.

  19. MOD-2 wind turbine system concept and preliminary design report. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The configuration development of the MOD-2 wind turbine system (WTS) is documented. The MOD-2 WTS project is a continuation of DOE programs to develop and achieve early commercialization of wind energy. The MOD-2 is design optimized for commercial production rates which, in multiunit installations, will be integrated into a utility power grid and achieve a cost of electricity at less than four cents per kilowatt hour.

  20. Preliminary Systems Design Study assessment report. Volume 5, Land disposal compliance and hydrogen generation restricted concepts

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-11-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  1. Space station definition and preliminary design, WP-01. Volume 2: Results

    NASA Technical Reports Server (NTRS)

    Lenda, J. A.

    1987-01-01

    The basis for the studies and analyses which led to the results and conclusions documented and summarized, was the Engineering Master Schedule (EMS) generated by NASA and used as the controlling set of milestones and associated activities required to produce in a timely manner those products needed by all program participants in the establishment of an approved program baseline. The EMS consisted of twenty themes grouped into categories covering requirements, configurations, and strategies. A number of studies and analyses that were coordinated with the MSFC program and technical personnel as being needed to provide the requisite back-up material to satify the EMS were identified. These studies and analyses provided the data sufficient to support the conclusions and recommendations given to the MSFC in response to their EMS activity and to support the system level and conceptual design level approaches developed and reflected in the detailed sections of this document.

  2. Preliminary design for a Zero Gravity Test Facility (ZGTF). Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    Germain, A.

    1981-01-01

    The functional requirements and best conceptual design of a test facility that simulates weightless operating conditions for a high gain antenna systems (HGAS), that will broadcast to the Tracking Data Relay Satellites were defined. The typical HGAS defined is mounted on a low Earth orbiting satellite, and consists of an antenna with a double gimbal pointing system mounted on a 13 foot long mast. Typically, the gimbals are driven by pulse modulated dc motors or stepper motors. These drivers produce torques on the mast, with jitter that excites the satellite and may cause disturbances to sensitive experiments. The dynamic properties of the antenna support structure (mast), including flexible mode characteristics were defined. The torque profile induced on the spacecraft by motion of the high gain antenna was estimated. Gain and phase margins of the servo control loop of the gimbal drive electronics was also verified.

  3. West Coast Ocean Construction Platform Preliminary Design Study. Volume 2. Appendices.

    DTIC Science & Technology

    1978-07-01

    Ilz c -0,.j 00 A, wlj F~~~~ 0.~ ~ -ccra. Roit 74oo N.J~F SLE ~kL ZSo 4P WeSe IIf-4ZAW~m 4 c *.)44 CTA -l57.-S TI F-~U LN L,* IL !7 o 0 I~mx I OC. ol...CRANES FLYSHEET AR11 WA’ 71A FSPECIFICATIONS FOR L ABS/ API Models 48A, 78A, 1081B, 138, 218r 238 A. Design as Approved and Accepted by American ...Certification: Safety System: 550 kW Prime American Sureau of Shipping Oil Pressure and Water Temperature 230°460 Volt Det norske Veritas Contactors

  4. Modular space station phase B extension preliminary system design. Volume 7: Ancillary studies

    NASA Technical Reports Server (NTRS)

    Jones, A. L.

    1972-01-01

    Sortie mission analysis and reduced payloads size impact studies are presented. In the sortie mission analysis, a modular space station oriented experiment program to be flown by the space shuttle during the period prior to space station IOC is discussed. Experiments are grouped into experiment packages. Mission payloads are derived by grouping experiment packages and by adding support subsystems and structure. The operational and subsystems analyses of these payloads are described. Requirements, concepts, and shuttle interfaces are integrated. The sortie module/station module commonality and a sortie laboratory concept are described. In the payloads size analysis, the effect on the modular space station concept of reduced diameter and reduced length of the shuttle cargo bay is discussed. Design concepts are presented for reduced sizes of 12 by 60 ft, 14 by 40 ft, and 12 by 40 ft. Comparisons of these concepts with the modular station (14 by 60 ft) are made to show the impact of payload size changes.

  5. Preliminary Subsystem Designs for the Assured Crew Return Vehicle (ACRV), volumes 1-3

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A long term manned facility in space must include provisions for the safety of the crew. The resolution of this need was the design of an Assured Crew Return Vehicle (ACRV). The main focus is on the braking and landing system of the ACRV. This subsystem of the ACRV was divided into three phases. The Phase 1 analysis showed that the use of a tether to aid in the reentry of the ACRV was infeasible due to cost and efficiency. Therefore, a standard rocket would be used for reentry. It was also found that the continental United States was an achievable landing site for the ACRV. The Phase 2 analysis determined the L/D of the vehicle to be 1.8, thus requiring the use of a lifting body for reentry. It was also determined that shuttle tiles would be used for the thermal protection system. In addition, a parachute sequence for further deceleration was included, namely a ringslot drogue chute, a pilot chute, and finally a ringsail main parachute. This sequence was found to be capable of slowing the vehicle to a descent velocity of 9 to 10 m/s, which is the required velocity for aerial recovery. The Phase 3 analysis proved that a Sikorsky CH-53E helicopter is capable of retrieving the ACRV at 5.5 km altitude with minimal g-forces induced on the ACRV and minimal induced moments on the helicopter upon hookup. The helicopter would be modified such that it could stabilize the ACRV close to the bottom of helicopter and carry it to the nearest designated trauma center.

  6. Preliminary design study of compressed-air energy storage in a salt dome. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1982-01-01

    The preliminary design and cost estimate of a compressed air energy storage (CAES) plant located in the Middle South Utilities (MSU) system are summarized. The 220 MWe CAES plant stores air in two solution mined salt caverns. The facility criteria, site selection and the turbomachinery and auxiliaries, and an outline of the proposed procedure for developing the caverns are described. The preliminary CAES plant design was prepared and the capital cost estimate, cash low and project schedule were developed. A CAES plant does not appear to be economic in the MSU system before the mid 1990s which is due to the unique features of the MSU system.

  7. Elmo Bumpy Torus proof of principle, Phase II: Title 1 report. Volume V. Vacuum-pumping system. Preliminary design report

    SciTech Connect

    Not Available

    1982-02-26

    This report summarizes Title I Preliminary Design of the EBT-P Vacuum Pumping System. The Vacuum Pumping System has been designed by the McDonnell Douglas Astronautics Co. - St. Louis (MDAC). It includes the necessary vacuum pumps and vacuum valves to evacuate the torus, the Mirror Coil Dewars (MC Dewars), and the Gyrotron Magnet Dewars. The pumping ducts, manifolds, and microwave protection system are also included. A summary of the function of each subsystem and a description of its principle components is provided below. The analyses performed during the system design are also identified.

  8. Phase 1 of the near team hybrid passenger vehicle development program. Appendix C: Preliminary design data package, volume 1

    NASA Technical Reports Server (NTRS)

    Piccolo, R.

    1979-01-01

    The methodology used for vehicle layout and component definition is described as well as techniques for system optimization and energy evaluation. The preliminary design is examined with particular attention given to body and structure; propulsion system; crash analysis and handling; internal combustion engine; DC motor separately excited; Ni-Zn battery; transmission; control system; vehicle auxiliarries; weight breakdown, and life cycle costs. Formulas are given for the quantification of energy consumption and results are compared with the reference vehicle.

  9. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 2. Design drawings

    SciTech Connect

    Not Available

    1983-12-31

    The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard) solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report consists of design drawings for this plant.

  10. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 1. Design description

    SciTech Connect

    Not Available

    1983-12-31

    The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report discusses in detail the design of the collector system, heat transport system, thermal storage subsystem, heat transport loop, steam generation subsystem, electrical, instrumentation, and control systems, power conversion system, master control system, and balance of plant. The performance, facility cost estimate and economic analysis, and development plan are also discussed.

  11. Compressed-air energy storage preliminary design and site development program in an aquifer. Volume 5, Part 1: Turbomachinery design

    NASA Astrophysics Data System (ADS)

    Berman, P. A.; Bonk, J. S.; Kobett, W. F.; Kosanovich, N. S.; Long, L. J.; Marinacci, D. J.

    1982-11-01

    The development of the design approach for a combustion turbine heat cycle and the major mechanical equipment for use by an electric utility at a selected aquifer air storage site is documented. A compressed air energy storage (CAES) system utilizes off peak electric power, available from base load power plants, to store compressed air underground in an aquifer. During subsequent periods, the stored air is extracted from the aquifer and used as an air supply for a generating combustion turbine expander. The aquifer has an initial discovery pressure of 840 psia. An initial air injection temperature of 1500 F was selected. The major mechanical equipment considered includes: the turbine motor/generator compressor train, intercooler and aftercooler system, and the exhaust gas regenerator. The cycle and machinery configuration and the specific mechanical equipment were selected for their Media site characteristics. These characteristics and the effect of component interdependency are considered when a conservative component design approach is established which satisfies the Media site CAES system requirements.

  12. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 3. Appendices, Part 1

    SciTech Connect

    Mouradian, E. M.

    1983-12-31

    Thermal analyses for the preliminary design phase of the Receiver of the Carrizo Plains Solar Power Plant are presented. The sodium reference operating conditions (T/sub in/ = 610/sup 0/F, T/sub out/ = 1050/sup 0/F) have been considered. Included are: Nominal flux distribution on receiver panal, Energy input to tubes, Axial temperature distribution; sodium and tubes, Sodium flow distribution, Sodium pressure drop, orifice calculations, Temperature distribution in tube cut (R-0), Backface structure, and Nonuniform sodium outlet temperature. Transient conditions and panel front face heat losses are not considered. These are to be addressed in a subsequent design phase. Also to be considered later are the design conditions as variations from the nominal reference (operating) condition. An addendum, designated Appendix C, has been included describing panel heat losses, panel temperature distribution, and tube-manifold joint thermal model.

  13. Viability Assessment of a Repository at Yucca Mountain. Volume 2: Preliminary Design Concept for the Repository and Waste Package

    SciTech Connect

    1998-12-01

    This volume describes the major design features of the Monitored Geologic Repository. This document is not intended to provide an exhaustive, detailed description of the repository design. Rather, this document summarizes the major systems and primary elements of the design that are radiologically significant, and references the specific technical documents and design analyses wherein the details can be found. Not all portions of the design are at the same level of completeness. Highest priority has been given to assigning resources to advance the design of the Monitored Geologic Repository features that are important to radiological safety and/or waste isolation and for which there is no NRC licensing precedent. Those features that are important to radiological safety and/or waste isolation, but for which there is an NRC precedent, receive second priority. Systems and features that have no impact on radiological safety or waste isolation receive the lowest priority. This prioritization process, referred to as binning, is discussed in more detail in Section 2.3. Not every subject discussed in this volume is given equal treatment with regard to the level of detail provided. For example, less detail is provided for the surface facility design than for the subsurface and waste package designs. This different level of detail is intentional. Greater detail is provided for those functions, structures, systems, and components that play key roles with regard to protecting radiological health and safety and that are not common to existing nuclear facilities already licensed by NRC. A number of radiological subjects are not addressed in the VA, (e.g., environmental qualification of equipment). Environmental qualification of equipment and other radiological safety considerations will be addressed in the LA. Non-radiological safety considerations such as silica dust control and other occupational safety considerations are considered equally important but are not addressed in

  14. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 9: Design approaches. CAES. Appendix E: Electrical systems

    NASA Astrophysics Data System (ADS)

    1981-04-01

    The design approaches provided the basis for development of the preliminary plant design. The electrical systems described include the plant power system, switchyard and electrical motor starting system. The design approaches presented are based on the design criteria presented in the Project Design criteria - CAES. Selection of the preferred approach reflect the Task 3 study results and conform to the greatest extent possible with PEPCO's standard practices.

  15. Preliminary design study of compressed-air energy storage in a salt dome. Volume 1: executive summary. Final report

    SciTech Connect

    Not Available

    1982-01-01

    The preliminary design and cost estimate of a compressed air energy storage (CAES) plant located in the Middle South Utilities (MSU) system are summarized in this report. The 220 MWe CAES plant which stores air in two solution mined salt caverns, is located at the Carmichael salt dome near Jackson, Mississippi. The facility criteria, site selection and the turbomachinery and auxiliaries, are briefly described together with an outline of the proposed procedure for developing the caverns. Using this information and data, the preliminary CAES plant design was prepared; also the capital cost estimate, cash flow and project schedule were developed. The Environmental Assessment did not reveal any major site impediments to the construction of the plant. However, it is believed that an EIS is required primarily because CAES is a new technology without precedent in the United States. Although a final system planning study was not completed because of lack of funds, from preliminary analysis a CAES plant does not appear to be economic in the MSU system before the mid 1990s. This is due to the unique features of the MSU system. For other systems under more favorable conditions, CAES may be economic at an earlier date. The construction of a CAES plant with salt cavern air storage may by considered ready for use as a commercial electric generating plant. The experience at the Huntorf plant in West Germany demonstrates the technical feasibility of the CAES concept. Certain details of the plant defined in this study are different from the Huntorf plant. Design verification by limited testing and analysis would provide added confidence to those considering a CAES plant.

  16. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 7. Science Applications, Incorporated field test facility preliminary design

    SciTech Connect

    Not Available

    1985-01-01

    This report contains the preliminary design of an SCEAS Engineering Test Facility (ETF). The ETF is a 3600 m/sup 2/ fluid roof greenhouse with an inflated plastic film roof to maintain a clean environment for the fluid roof and to protect the inner glazing from hail and other small missiles. The objective of the design was the faithful scaling of the commercial facility to ensure that the ETF results could be extrapolated to a commercial facility of any size. Therefore, all major features, including the photovoltaic power system, an integral water desalination system and even the basic structural module have been retained. The design is described in substantial detail in the body of this report, with appendices giving the drawings and specifications.

  17. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 1. Executive summary. Final report

    SciTech Connect

    Not Available

    1981-05-01

    Potomac Electric Power Company (PEPCO) and Acres American Incorporated (AAI) have carried out a preliminary design study of water-compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) plants for siting in geological conditions suitable for hard rock excavations. The work was carried out over a period of three years and was sponsored by the US Department of Energy (DOE), the Electric Power Research Institute (EPRI) and PEPCO. The study was divided into five primary tasks as follows: establishment of design criteria and analysis of impact on power system; selection of site and establishment of site characteristics; formulation of design approaches; assessment of environmental and safety aspects; and preparation of preliminary design of plant. The salient aspects considered and the conclusions reached during the consideration of the five primary tasks for both CAES and UPH are presented in this Executive Summary, which forms Volume 1 of the series of reports prepared during the study. The investigations and analyses carried out, together with the results and conclusions reached, are described in detail in Volumes 2 through 13 and ten appendices.

  18. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 12: Plant design, CAES

    NASA Astrophysics Data System (ADS)

    1981-04-01

    Detailed designs were developed for the major components and systems of the CAES plant. These designs were based upon the preliminary economic and technical evaluations and alternative designs developed in Task 3C. The detailed project design drawings for the major plant systems and structures are presented. The site development report, updated cost estimate, cost/schedule risk study, reliability/availability, analysis, and recommendations for additional research and development are included.

  19. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 1: Reference Design Document (RDD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.

  20. Preliminary Systems Design Study assessment report. Volume 6, Waste Isolation Pilot Plant and transportation package acceptable concepts

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques for the remediation of hazardous and transuranic waste stored at Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume contains introduction section containing a brief SDS background and lists the general assumptions and considerations used during the development of the system concepts. The introduction section is followed by sections describing two system concepts that produce a waste form in compliance with the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC) and transportation package (TRAMPAC) requirements. This system concept category is referred to as Waste Form 4, ``WIPP and TRAMPAC Acceptable.`` The following two system concepts are under this category: Sort, Treat, and Repackage System (4-BE-2); Volume Reduction and Packaging System (4-BE-4).

  1. Fuel Cell Power Plant Initiative. Volume 2; Preliminary Design of a Fixed-Base LFP/SOFC Power System

    NASA Technical Reports Server (NTRS)

    Veyo, S.E.

    1997-01-01

    This report documents the preliminary design for a military fixed-base power system of 3 MWe nominal capacity using Westinghouse's tubular Solid Oxide Fuel Cell [SOFC] and Haldor Topsoe's logistic fuels processor [LFP]. The LFP provides to the fuel cell a methane rich sulfur free fuel stream derived from either DF-2 diesel fuel, or JP-8 turbine fuel. Fuel cells are electrochemical devices that directly convert the chemical energy contained in fuels such as hydrogen, natural gas, or coal gas into electricity at high efficiency with no intermediate heat engine or dynamo. The SOFC is distinguished from other fuel cell types by its solid state ceramic structure and its high operating temperature, nominally 1000'C. The SOFC pioneered by Westinghouse has a tubular geometry closed at one end. A power generation stack is formed by aggregating many cells in an ordered array. The Westinghouse stack design is distinguished from other fuel cell stacks by the complete absence of high integrity seals between cell elements, cells, and between stack and manifolds. Further, the reformer for natural gas [predominantly methane] and the stack are thermally and hydraulically integrated with no requirement for process water. The technical viability of combining the tubular SOFC and a logistic fuels processor was demonstrated at 27 kWe scale in a test program sponsored by the Advanced Research Projects Agency [ARPA) and carried out at the Southern California Edison's [SCE] Highgrove generating station near San Bernardino, California in 1994/95. The LFP was a breadboard design supplied by Haldor Topsoe, Inc. under subcontract to Westinghouse. The test program was completely successful. The LFP fueled the SOFC for 766 hours on JP-8 and 1555 hours of DF-2. In addition, the fuel cell operated for 3261 hours on pipeline natural gas. Over the 5582 hours of operation, the SOFC generated 118 MVVH of electricity with no perceptible degradation in performance. The LFP processed military

  2. Definition and preliminary design of the LAWS (Laser Atmospheric Wind Sounder). Volume 1, phase 2: Executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objective of phase 1 of the LAWS study was to define and perform a preliminary design for the Laser Atmospheric Wind Sounder (LAWS) instrument. The definition phase consisted of identifying realistic concepts for LAWS and analyzing them in sufficient detail to be able to choose the most promising one for the LAWS application. System and subsystem configurations were then developed for the chosen concept. The concept and subsequent configurations were to be compatible with two prospective platforms--the Japanese Polar Orbiting Platform (JPOP) and as an attached payload on the Space Station Freedom. After a thorough and objective concept selection process, we chose a heterodyne detection Doppler lidar using a CO2 laser transmitter operating at 9.1 microns over a 2.1 micron solid state system. The choice of the CO2 approach over solid-state reflects the advanced state of development of CO2 lasers, its maturity in ground-based systems and the eased subsystem requirements associated with the longer wavelength. The CO2 lidar concept was then analyzed in detail to arrive at a configuration for the instrument and its major subsystems. Our approach throughout the configuration design was to take a systems perspective and trade requirements between subsystems, wherever possible, to arrive at configurations which made maximum use of existing, proven technology or relatively straightforward extensions to existing technology to reduce risk and cost. At the conclusion of Phase 1 we arrived at a configuration for LAWS which meets the performance requirements, yet which is less complex than previous designs of space-based wind sensors (e.g. Windsat), employs lightweight technologies to meet its weight goals (less than 800kg) and sufficiently flexible to offer various operational scenarios with power requirements from about 2 kW to 3 kW. The Phase 1 Final Report was released in March 1990. The 21-month Phase 2 began in October 1990. The requirement to accommodate LAWS as an

  3. Preliminary design and economic analysis report on the Port of Morrow Ethanol Refinery. Volume III. Supplementary studies

    SciTech Connect

    Not Available

    1980-10-01

    The results of a study performed to determine the feasibility of constructing and operating a 20,000,000 gallon-per-year ethanol plant in eastern Oregon are presented in 5 volumes. Certain project alternatives that were of interest to Morrow Ag were investigated by Ultrasystems during the course of this study, and are discussed in this volume. These alternatives include: Cogeneration of electric power, use of wood fuel, production and sale of excess steam, use of potato waste as a feedstock, production of carbon dioxide, construction of a barge port and grain terminal, and construction of a feedlot and methane production unit.

  4. Preliminary design studies of underground pumped hydro and compressed-air energy storage in hard rock. Volume 10: Environmental studies

    NASA Astrophysics Data System (ADS)

    1981-04-01

    Results of preliminary environmental assessments for a proposed UPH or CAES demonstration facility are presented. Included are characterizations of the existing environment of the sunshine site in Montgomery County, Maryland, and assessments of environmental impacts and public safety concerns. Elements of the existing environment which are considered sensitive are described. Environmental impacts are identified, rated, and described for both alternative demonstration facilities. Public safety concerns for both alternative demonstration facilities are also identified and discussed. These include, for both UPH and CAES, underground cavern collapse and surface subsidence, explosives, site security, icing, upper reservoir failure, and mechanical failure of plant equipment. In addition, fuel handling and the champagne effect are addressed for CAES.

  5. Definition and preliminary design of the Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 3: Program cost estimates

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Cost estimates for phase C/D of the laser atmospheric wind sounder (LAWS) program are presented. This information provides a framework for cost, budget, and program planning estimates for LAWS. Volume 3 is divided into three sections. Section 1 details the approach taken to produce the cost figures, including the assumptions regarding the schedule for phase C/D and the methodology and rationale for costing the various work breakdown structure (WBS) elements. Section 2 shows a breakdown of the cost by WBS element, with the cost divided in non-recurring and recurring expenditures. Note that throughout this volume the cost is given in 1990 dollars, with bottom line totals also expressed in 1988 dollars (1 dollar(88) = 0.93 1 dollar(90)). Section 3 shows a breakdown of the cost by year. The WBS and WBS dictionary are included as an attachment to this report.

  6. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches: UPH. Appendix A: Upper reservoir

    NASA Astrophysics Data System (ADS)

    1981-04-01

    Overriding considerations including operating range, volume and lining of reservoir, embankment design, intake/outlet arrangements and filling and make up water provisions were studied within the context of minimizing facility costs and optimizing the plant layout. The study led to the selection of a reservoir formed by embankment of compacted rockfill together with an intake/outlet structure located in the embankment. The reservoir floor and upstream slopes of the embankment will have an asphalt lining to prevent leakage. The material and cost estimates presented are based on the requirements for a 2000 MW plant providing 20,000 MWh of storage with a nominal head of 4600 ft.

  7. V/STOL tilt rotor aircraft study. Volume 6: Preliminary design of a composite wing for tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Soule, V. A.; Badri-Nath, Y.

    1973-01-01

    The results of a study of the use of composite materials in the wing of a tilt rotor aircraft are presented. An all-metal tilt rotor aircraft was first defined to provide a basis for comparing composite with metal structure. A configuration study was then done in which the wing of the metal aircraft was replaced with composite wings of varying chord and thickness ratio. The results of this study defined the design and performance benefits obtainable with composite materials. Based on these results the aircraft was resized with a composite wing to extend the weight savings to other parts of the aircraft. A wing design was then selected for detailed structural analysis. A development plan including costs and schedules to develop this wing and incorporate it into a proposed flight research tilt rotor vehicle has been devised.

  8. Panel Optimization with Integrated Software (POIS). Volume I. PANDA--Interactive Program for Preliminary Minimum Weight Design.

    DTIC Science & Technology

    1981-07-01

    Sheinman (61], which are based on multi-term, two-dimensional trigonometric expansions. PANDA overestimates the shear buckling loads for curved panels...design of stiffened cylinders under axial compression," AIA J, Vol. 13, pp 750-755 (1975) [34] I. Sheinman and G. J. Simitses, "Buckling analysis of...1978) 136] G. J. Simitses and I. Sheinman , "Optimization of geometrically imperfect stiffened cylindrical shells under axial compression," Comp

  9. Elmo Bumpy Torus proof of principle. Phase II. Title 1 report. Volume III. Magnet system. Preliminary design report

    SciTech Connect

    Ackerman, S.

    1982-02-26

    During Title I, General Dynamics' principal role as a subcontractor to the McDonnell Douglas Astronautics Company (MDAC) is to assist in the further development of a low-cost superconducting magnet mirror coil system for the EBT-P program consistent with long life and dependable operation. The activity can best be defined as an extension of ORNL's previous development program with further joint ORNL/MDAC/GDC refining of the mirror coil components. MDAC/GDC participation for the entire program can be subdivided into four distinct elements as follows: (1) design, development, and fabrication of two dewar subassemblies to enclose the ORNL developed and fabricated cold mass assemblies; (2) design, development, and fabrication of a production prototype magnet system including conductor (procurement), cold mass components, dewar and x-ray shield. This prototype would form the basis for the production of 36 magnets for the torus and three spares. (3) design, development, and fabrication of an electrical/electronic system including quench protection, instrumentation and control, and power supply to power and protect the mirror coil system during its operation in the torus; (4) fabrication of the 39 production magnets.

  10. Phase 1 of the near team hybrid passenger vehicle development program. Appendix C: Preliminary design data package. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Piccolo, R.

    1979-01-01

    The design, development, efficiency, manufacturability, production costs, life cycle cost, and safety of sodium-sulfur, nickel-zinc, and lead-acid batteries for electric hybrid vehicles are discussed. Models are given for simulating the vehicle handling quality, and for finding the value of: (1) the various magnetic quantities in the different sections in which the magnetic circuit of the DC electric machine is divided; (2) flux distribution in the air gap and the magnetization curve under load conditions; and (3) the mechanical power curves versus motor speed at different values of armature current.

  11. Preliminary systems design study assessment report. Volume 3, Process in-place/leave in-place concepts

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-09-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  12. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 3. Appendices. Part 2

    SciTech Connect

    Lee, S. K.

    1983-12-31

    The auxiliary heat transport systems of the Carrisa Plains Solar Power Plant (CPSPP) comprise facilities which are used to support plant operation and provide plant safety and maintenance. The facilities are the sodium purification system, argon cover gas system, sodium receiving and filling system, sodium-water reaction product receiving system, and safety and maintenance equipment. The functions of the facilities of the auxiliary system are described. Design requirements are established based on plant operating parameters. Descriptions are given on the system which will be adequate to perform the function and satisfy the requirements. Valve and equipment lists are included in the appendix.

  13. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 5: Site selection

    NASA Astrophysics Data System (ADS)

    1981-04-01

    A six-step site selection process undertaken to identify and subsequently rank potential sites suitable for either an underground pumped hydroelectric (UPH) facility, or a water-compensated hard-rock cavern compressed air energy storage (CAES) facility is described. The region of study was confined to the service area of the Potomac Electric Power Company (PEPCO) and contiguous areas. Overriding considerations related to geology, environmental impact and transmission-line routing were studies within the context of minimizing plant costs. The selection process led to the identification of several sites suitable for the development of either a CAES or an UPH facility. Design development and site exploration at the selected site are described.

  14. Elmo Bumpy Torus proof of principle, Phase II: Title 1 report. Volume IV. Microwave system. Preliminary design report

    SciTech Connect

    Adams, R.N.

    1982-02-26

    The EBT-P Microwave System provides microwaves for electron cyclotron resonance heating (ECRH) to both stabilize and heat the EBT-P plasma. A 28 gigahertz (GHz) system is required to form the hot electron annulus plasma that provides MHD stabilization to the core plasma. A 60 GHz system is required to heat the core plasma and will provide some second harmonic heating of the hot electron annulus. The principal microwave system elements and their design characteristics are summarized. The microwave system includes 200 kilowatt (kW) gyrotrons at 60 GHz for core heating and 200 kW gyrotrons at 28 GHz for annulus heating. The basic operating complement will be six (6) 60 GHz tubes and two (2) 28 GHz tubes. PACE (Plant and Capital Equipment) procurement will include four (4) 60 GHz gyrotrons with two (2) GHz tubes procured under operations and the two (2) 28 GHz tubes will be provided, with mounts, from the EBT-S program. Each tube is rigidly mounted on an oil filled tank assembly which provides electrical isolation and cooling. All tubes and mounts will be located in the lower level of the torus enclosure. An extensive demineralized water flow system is required to provide gyrotron cooling.

  15. Definition and Preliminary Design of the Laser Atmospheric Wind Sounder (LAWS) Phase 1. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The laser atmospheric wind sounder (LAWS) is a facility instrument of the Earth Observing System (EOS) and is the culmination of over 20 years of effort in the field of laser Doppler wind sensing. LAWS will by the first instrument to fly in space with the capability of providing global-scale tropospheric wind profiles at high spatial resolutions. Global-scale wind profiles are necessary for: (1) more accurate diagnostics of large-scale circulation and climate dynamics; (2) improved numerical weather prediction; (3) improved understanding of mesoscale systems; (4) improved understanding of global biogeochemical and hydrologic cycles. The objective of phase 1 of the LAWS study was to evaluate competing concepts and develop a baseline configuration for the LAWS instrument. The first phase of the study consisted of identifying realistic concepts for LAWS and analyzing them in sufficient detail to be able to choose the most promising one for the LAWS application. System configurations were then developed for the chosen concept. The concept and subsequent configuration were to be compatible with two prospective platforms: the Japanese polar orbiting platform (JPOP) and the Space Station Freedom (as an attached payload). After an objective and comprehensive concept selection process, a heterodyne detection Doppler lidar using a CO2 laser transmitter operating at 9.1 microns over a 2.1 micron system with a solid state laser was chosen. The CO2 lidar concept was then analyzed in detail to arrive at a configuration for the instrument and its major subsystems. A configuration for LAWS was arrived at which meets the performance requirements, and this design is presented.

  16. Preliminary design study of compressed-air energy storage in a salt dome. Volume 5. System, subsystem, and component design approach. Final report

    SciTech Connect

    Not Available

    1982-04-01

    The approach to system, subsystem, and component design for a compressed-air energy storage (CAES) plant located in the Middle South Services, Inc., is presented in this final report. The design approach is based on the facility design criteria described in Volume 2 and the site conditions at the Carmichael salt dome located near Jackson, Mississippi. For the selected weekly cycle, Brown Boveri Corporation selected a single-casing design of fired-high-power and fired-low-power turbines. The high-power (HP) turbine operates at inlet conditions of 609.2 psia (42 bar) and 1021.4/sup 0/F (550/sup 0/C), while the low-power (LP) turbine operates at 159.5 psia (11 bar) and 1633.4/sup 0/F (890/sup 0/C). A tubular design of exhaust gas recuperator heats the incoming air from the storage cavern from 138.4/sup 0/F (60/sup 0/C) to 692/sup 0/F (367/sup 0/C). The compressor design is a single-shaft, tandem-compound arrangement with a 3600-rpm LP compressor and a 6850-rpm HP compressor. The LP compressor is a combination six-stage axial, three-stage radial compressor with an integral cooler and diffuser built into the casing. The HP compressor is a five-stage radial compressor with external intercooler provided after both the second and fourth stages. Fenix and Scisson, Inc., selected two half-size air storage caverns, each capable of delivering full-turbine air mass flow. A solutioning rate of 1750 gpm will allow completion of both caverns without prolonging construction schedule. Fuel is No. 2 distillate, which is delivered on a weekly basis. Rather than construct a rail siding to the plant, a trade-off study showed it more economical to pump the fuel oil to the CAES plant through a seven-mile buried pipeline from the nearest existing rail line. The exhaust gas recuperator, synchronous clutches, and gear case between the HP and LP compressors are key components which require special attention in design and fabrication to ensure reliable CAES plant operation.

  17. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 1: Engineering studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Smith, K. E.; Mcveigh, M. A.; Dixon, P. G.; Mcmanus, B. L.

    1979-01-01

    Composite structures technology is applied in a preliminary design study of advanced technology blades and hubs for the XV-15 tilt rotor research demonstrator aircraft. Significant improvements in XV-15 hover and cruise performance are available using blades designed for compatibility with the existing aircraft, i.e., blade installation would not require modification of the airframe, hub or upper controls. Provision of a low risk nonmechanical control system was also studied, and a development specification is given.

  18. Integral lift engine preliminary design

    NASA Technical Reports Server (NTRS)

    Pratt, W.; Leto, A.; Schaefer, R.

    1971-01-01

    A preliminary mechanical design of a complete lift fan engine system is reported. A description of the lift fan engine, layout drawings of the components and complete engine, and a discussion of the design analyses and results are presented. The design features and areas of analysis include fan and compressor rotor blades of composite construction, a combustor folded over the compressor, relatively high-temperature blades in the high-pressure turbine, the first stage of the low-pressure turbine used for bearing support and ducting of lubricant to the bearings, a complete lubrication system, critical speeds of the shafting, and vibration and flutter of the blading.

  19. Concentrating solar collector subsystem: Preliminary design package

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Preliminary design data are presented for a concentrating solar collector including an attitude controller. Provided are schedules, technical status, all documents required for preliminary design, and other program activities.

  20. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 9: Design approaches: CAES, appendix C. Major mechanical equipment

    NASA Astrophysics Data System (ADS)

    1981-04-01

    The major mechanical equipment includes the turbine-motor/generator, compressor train, intercooler/aftercooler system, and exhaust gas recuperator. The design criteria for each of these components is interrelated with, and dependent upon, each of the other components within the major mechanical equipment group. Careful consideration of this dependency has resulted in an overall design approach which satisfies the requirements of the CAES operational cycle while providing for a conservative component design.

  1. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 2: Project design criteria: UPH

    NASA Astrophysics Data System (ADS)

    1981-05-01

    The design criteria for an underground pumped hydroelectric (JPH) storage facility having a maximum generating capacity of 2000 MW and a storage capacity of 20,000 MWh at a nominal head of 5000 ft are documented. The UPH facility is a two step configuration with single stage reversible pump turbines, each step consisting of a 1000 MW plant at a nominal head of 2500 ft. Overall design criteria including operating requirements, civil/structural criteria, geotechnical criteria, mechanical criteria and electrical criteria are detailed. Specific requirements are given for the upper reservoir, intake/outlet structure, penstock and draft tubes, powerhouses, transformer galleries, intermediate reservoir, lower reservoir, shafts and hoists, switchyard and surface buildings. The requirements for the power plant electrical and mechanical equipment, including pump turbine and motor generator units, are referred to. Electrical design criteria are given to meet the requirements of two power houses located underground at different depths, but these criteria may not necessarily reflect PEPCO's current engineering practice. The criteria refer to a specific site and take into account the site investigation results. The design criteria given were used as the basis for the plant design.

  2. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches - UPH. Appendix B: Shafts

    NASA Astrophysics Data System (ADS)

    1981-04-01

    An assessment of shaft requirements for an underground pumped hydroelectric (UPH) facility is documented. Shaft requirements for both the construction and the permanent operation phases of the facility are outlined. Possible shaft arrangements are developed and the design of shaft linings is discussed. Methods of shaft sinking are reviewed. Alternative schedules for the sinking of the shafts are described and a preferred schedule selected. The material presented and also the cost estimates are based on the requirements for a 2000 MW plant providing 20,000 MWh of storage with a nominal head of 4600 ft. Studies subsequently carried out, including power plant design, head optimization analyses for the overall UPH surface and underground configuration, and further refinement of selected designs, have modified some of the material given.

  3. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches: UPH

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The development of the design approaches used to determine the plant and overall layout for a underground pumped hydroelectric (UPH) storage facility having a maximum generating capacity of 2000 MW and a storage capacity of 20,000 MWh is discussed. Key factors were the selection of the high head pump-turbine equipment and the geotechnical considerations relevant to the underground cavern designs. The comparison of pump-turbine alternatives is described leading to the selection for detailed study of both a single-step configurations, using multistage reversible pump-turbines, and a two-step configuration, with single-stage reversible pump-turbines.

  4. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 9: Design approaches. CAES. Appendix B: Champagne effect

    NASA Astrophysics Data System (ADS)

    1981-04-01

    The significance of the release of dissolved air from the water in the water shaft during air compression on the design and operation of a hydrolically compensated CAES plant was investigated. This air release phenomena was named the Champagne Effect. Included is a description of the work to investigate the rate of diffusion of air into water, the rate of the subsequent release of air from the water during passage up the water shaft, and an evaluation of the resulting behavior of the air bubbles in the shaft. Also included is a discussion of dynamic modeling. Simulation was based upon a two fluid model of the PEPCO system and includes an analysis of potential modifications to the design that might further mitigate any operation problems.

  5. Preliminary design study of compressed-air energy storage in a salt dome. Volume 3. Design of the air-storage cavern in salt. Final report

    SciTech Connect

    Not Available

    1982-04-01

    This report was prepared as a result of a contract between Middle South Services, Inc. and Fenix and Scisson, Inc. The conceptual design was prepared for two sites, Hazlehurst and Prothro as two known possible sites. It was later expanded to include a third site, Carmichael as the first two sites were not then available. This required the design and costing at various depths, 670 m (2200 ft), 488 m (1600 ft) and 1067 m (3500 ft) to the top of the cavern. It also involves variation in the size of the caverns for various weekly cycles of required air pressure to supply the turbine during peak load periods. The air is released from the caverns at 310 Kg/sec for eight hours per day, five days per week and the caverns replenished through compressors eight hours per day seven days per week. The pressure ranges from a maximum of 70 bars at the beginning of the week to 50 bars at the end of the generating period on Friday. The temperature of the input and outlet air is assumed to be 140/sup 0/C. This agrees with the estimated temperature of the cavern at Carmichael which allows for an isothermal operation. During preparation of the report no technical or environmental barriers were found.

  6. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 11: Plant design. UPH

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The plant design for an underground pumped hydroelectric (UPH) storage facility having maximum generating capacity of 2000 MW and energy storage capacity of 20,000 MWh at a nominal heat of 5000 ft. is presented. The UPH facility is a two step configuration with single-stage reversible pump-turbines, each step consisting of a 1000 MW plant at a nominal head of 2500 ft. The surface facilities and upper reservoir, shafts and hoists, penstocks and hydraulic tunnels, powerhouses, and intermediate and lower reservoirs are described. Details of the power plant electrical and mechanical equipment, including pump-turbine and motor-generator units, are given. The development of the site is outlined together with the construction methods and schedule. The cost estimates and a cost-risk analysis are presented. Plant operation, including unit operation, two-step operation, plant efficiency, and availability, is outlined.

  7. Measurement and mitigation of corrosion on self-contained fluid filled (SCFF) submarine circuits for New York Power Authority: Volume 2 -- Stray electrical current measurements and preliminary design of the cathodic protection system. Final report

    SciTech Connect

    1998-10-01

    In 1987, the New York Power Authority (NYPA) installed a 345-kV submarine cable circuit across Long Island Sound between substations at Davenport Neck and Hempstead Harbor. During design and installation of the cable circuit, utility and cable manufacturers engineers identified corrosion as a possible problem for the cable system. They considered such effects in the cable design and discussed preliminary requirements for a cathodic protection system on Long Island Sound circuit. EPRI cosponsored this review of the corrosion effects with NYPA and Empire State Electric Energy Research Corp. (ESEERCO). Volume 1 of this report discusses the results from an in-depth evaluation of the self-contained fluid-filled (SCFF) cable construction materials and their susceptibility to corrosion. Volume 2 provides extended stray current field measurements and a preliminary design for a cathodic protection system to ensure cable service reliability. This study provides a blueprint for East or West Coast utilities evaluating site-specific corrosion processes and cable circuit protection methods suitable for underwater environments.

  8. Preliminary LISA Telescope Spacer Design

    NASA Technical Reports Server (NTRS)

    Livas, J.; Arsenovic, P.; Catellucci, K.; Generie, J.; Howard, J.; Stebbins, R. T.

    2010-01-01

    The Laser Interferometric Space Antenna (LISA) mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of approximately 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. This poster describes the requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution,layout options for the telescope including an on- and off-axis design, and plans for fabrication and testing.

  9. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 4: System planning studies

    NASA Astrophysics Data System (ADS)

    1981-04-01

    Preliminary design and planning studies of water compensated compressed air energy storage (CAES) and underground pumped hydroelectric (UPH) power plants are presented. The costs of the CAES and UPH plant designs, and the results of economic evaluations performed for the PEPCO system are presented. The PEPCO system planning analysis was performed in parallel stages with plant design development. Analyses performed early in the project indicated a requirement for 1000 MW/10,000 MWH of energy storage on a daily operating schedule, with economic installation in two segments of 500 MW in 1990 and 1997. The analysis was updated eighteen months later near the end of the project to reflect the impact of new growth projections and revised plant costs. The revised results indicated economic installations for either UPH or CAES of approximately 675 MW/6750 MWH on a daily cycle, installed in blocks of approximately 225 MW in 1990, 1993 and 1995. Significant savings in revenue requirements and oil fuel over the combustion turbine alternative were identified for both CAES and UPH.

  10. Preliminary design of sedimentation ponds

    SciTech Connect

    Wilson, L.C.; Wayland, L.D.

    1982-12-01

    Almost one-hundred sedimentation ponds were conceptually designed for a large surface mining study are in northeast Texas. An approximate procedure was developed to economically estimate construction quantities in order to predict surface water control costs. This procedure utilized site-specific empirical relationships developed from detailed analyses on a representative number of proposed sedimentation ponds. Use of these equations provided earthwork volumes, and spillway pipe lengths. The procedure developed for this study is presented along with the results of a verification analysis.

  11. Advanced space engine preliminary design

    NASA Technical Reports Server (NTRS)

    Cuffe, J. P. B.; Bradie, R. E.

    1973-01-01

    A preliminary design was completed for an O2/H2, 89 kN (20,000 lb) thrust staged combustion rocket engine that has a single-bell nozzle with an overall expansion ratio of 400:1. The engine has a best estimate vacuum specific impulse of 4623.8 N-s/kg (471.5 sec) at full thrust and mixture ratio = 6.0. The engine employs gear-driven, low pressure pumps to provide low NPSH capability while individual turbine-driven, high-speed main pumps provide the system pressures required for high-chamber pressure operation. The engine design dry weight for the fixed-nozzle configuration is 206.9 kg (456.3 lb). Engine overall length is 234 cm (92.1 in.). The extendible nozzle version has a stowed length of 141.5 cm (55.7 in.). Critical technology items in the development of the engine were defined. Development program plans and their costs for development, production, operation, and flight support of the ASE were established for minimum cost and minimum time programs.

  12. Preliminary design of JEM ECLSS and TCS

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Otsuki, F.; Suzuki, K.; Shibutani, S.; Hattori, A.; Sasayama, H.; Inoue, M.; Sugai, W.

    1991-12-01

    Preliminary design of the Japanese Module (JEM), which will be attached to the U.S. Space Station Freedom (SSF), began in early 1991. The target of the design activities is the Preliminary Design Review (PDR) planned in the beginning of 1992. The pressurized module of the JEM is composed of several subsystems including the Environmental Control and Life Support System (ECLSS), the Thermal Control System (TCS), mechanical equipment (airlock), the data management system, the communications and tracking system, the electrical power system, and the experiment support system. The preliminary design of ECLSS and TCS including the baseline configurations and the design requirements are described.

  13. Space station preliminary design report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The results of a 3 month preliminary design and analysis effort is presented. The configuration that emerged consists of a very stiff deployable truss structure with an overall triangular cross section having universal modules attached at the apexes. Sufficient analysis was performed to show feasibility of the configuration. An evaluation of the structure shows that desirable attributes of the configuration are: (1) the solar cells, radiators, and antennas will be mounted to stiff structure to minimize control problems during orbit maintenance and correction, docking, and attitude control; (2) large flat areas are available for mounting and servicing of equipment; (3) Large mass items can be mounted near the center of gravity of the system to minimize gravity gradient torques; (4) the trusses are lightweight structures and can be transported into orbit in one Shuttle flight; (5) the trusses are expandable and will require a minimum of EVA; and (6) the modules are anticipated to be structurally identical except for internal equipment to minimize cost.

  14. A shuttle and space station manipulator system for assembly, docking, maintenance cargo handling and spacecraft retrieval (preliminary design). Volume 1: Management summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A preliminary design is established for a general purpose manipulator system which can be used interchangeably on the shuttle and station and can be transferred back and forth between them. Control of the manipulator is accomplished by hard wiring from internal control stations in the shuttle or station. A variety of shuttle and station manipulator operations are considered including servicing the Large Space Telescope; however, emphasis is placed on unloading modules from the shuttle and assembling the space station. Simulation studies on foveal stereoscopic viewing and manipulator supervisory computer control have been accomplished to investigate the feasibility of their use in the manipulator system. The basic manipulator system consists of a single 18.3 m long, 7 degree of freedom (DOF), electrically acutated main boom with an auxiliary 3 DOF electrically actuated, extendible 18.3 m maximum length, lighting, and viewing boom. A 3 DOF orientor assembly is located at the tip of the viewing boom to provide camera pan, tilt, and roll.

  15. ERIS: preliminary design phase overview

    NASA Astrophysics Data System (ADS)

    Kuntschner, Harald; Jochum, Lieselotte; Amico, Paola; Dekker, Johannes K.; Kerber, Florian; Marchetti, Enrico; Accardo, Matteo; Brast, Roland; Brinkmann, Martin; Conzelmann, Ralf D.; Delabre, Bernard A.; Duchateau, Michel; Fedrigo, Enrico; Finger, Gert; Frank, Christoph; Rodriguez, Fernando G.; Klein, Barbara; Knudstrup, Jens; Le Louarn, Miska; Lundin, Lars; Modigliani, Andrea; Müller, Michael; Neeser, Mark; Tordo, Sebastien; Valenti, Elena; Eisenhauer, Frank; Sturm, Eckhard; Feuchtgruber, Helmut; George, Elisabeth M.; Hartl, Michael; Hofmann, Reiner; Huber, Heinrich; Plattner, Markus P.; Schubert, Josef; Tarantik, Karl; Wiezorrek, Erich; Meyer, Michael R.; Quanz, Sascha P.; Glauser, Adrian M.; Weisz, Harald; Esposito, Simone; Xompero, Marco; Agapito, Guido; Antichi, Jacopo; Biliotti, Valdemaro; Bonaglia, Marco; Briguglio, Runa; Carbonaro, Luca; Cresci, Giovanni; Fini, Luca; Pinna, Enrico; Puglisi, Alfio T.; Quirós-Pacheco, Fernando; Riccardi, Armando; Di Rico, Gianluca; Arcidiacono, Carmelo; Dolci, Mauro

    2014-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation adaptive optics near-IR imager and spectrograph for the Cassegrain focus of the Very Large Telescope (VLT) Unit Telescope 4, which will soon make full use of the Adaptive Optics Facility (AOF). It is a high-Strehl AO-assisted instrument that will use the Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). The project has been approved for construction and has entered its preliminary design phase. ERIS will be constructed in a collaboration including the Max- Planck Institut für Extraterrestrische Physik, the Eidgenössische Technische Hochschule Zürich and the Osservatorio Astrofisico di Arcetri and will offer 1 - 5 μm imaging and 1 - 2.5 μm integral field spectroscopic capabilities with a high Strehl performance. Wavefront sensing can be carried out with an optical high-order NGS Pyramid wavefront sensor, or with a single laser in either an optical low-order NGS mode, or with a near-IR low-order mode sensor. Due to its highly sensitive visible wavefront sensor, and separate near-IR low-order mode, ERIS provides a large sky coverage with its 1' patrol field radius that can even include AO stars embedded in dust-enshrouded environments. As such it will replace, with a much improved single conjugated AO correction, the most scientifically important imaging modes offered by NACO (diffraction limited imaging in the J to M bands, Sparse Aperture Masking and Apodizing Phase Plate (APP) coronagraphy) and the integral field spectroscopy modes of SINFONI, whose instrumental module, SPIFFI, will be upgraded and re-used in ERIS. As part of the SPIFFI upgrade a new higher resolution grating and a science detector replacement are envisaged, as well as PLC driven motors. To accommodate ERIS at the Cassegrain focus, an extension of the telescope back focal length is required, with modifications of the guider arm assembly. In this paper we report on the status of the

  16. Multidisciplinary Optimization Methods for Preliminary Design

    NASA Technical Reports Server (NTRS)

    Korte, J. J.; Weston, R. P.; Zang, T. A.

    1997-01-01

    An overview of multidisciplinary optimization (MDO) methodology and two applications of this methodology to the preliminary design phase are presented. These applications are being undertaken to improve, develop, validate and demonstrate MDO methods. Each is presented to illustrate different aspects of this methodology. The first application is an MDO preliminary design problem for defining the geometry and structure of an aerospike nozzle of a linear aerospike rocket engine. The second application demonstrates the use of the Framework for Interdisciplinary Design Optimization (FIDO), which is a computational environment system, by solving a preliminary design problem for a High-Speed Civil Transport (HSCT). The two sample problems illustrate the advantages to performing preliminary design with an MDO process.

  17. Plutonium Immobilization Rack and Magazine Preliminary Design

    SciTech Connect

    Stokes, M.W.

    1998-12-11

    The purpose of this report is to document our current preliminary design for the Can-in-Canister rack and magazine. Since this is a developmental project with testing still ongoing, these designs will probably change as we become more knowledgeable of the functions, reliability, and cost of these designs.

  18. Preliminary design approach for large high precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.

    1990-01-01

    A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.

  19. The Career Intern Program: Preliminary Results of an Experiment in Career Education. Technical Appendix. Volume 2.

    ERIC Educational Resources Information Center

    Opportunities Industrialization Centers of America, Inc., Philadelphia, PA.

    The technical appendix to "The Career Intern Program: Preliminary Results of an Experiment in Career Education," Volume 1, reports on the research designs used for evaluating the Career Intern Program's (CIP) effectiveness in increasing the student's cognitive skills, academic achievement, vocational adjustment, future orientation, and…

  20. Science for Georgia Schools, Junior High Earth Science, Volume 3-B, Preliminary Edition.

    ERIC Educational Resources Information Center

    Georgia State Dept. of Education, Atlanta. Div. of Curriculum Development.

    This is a curriculum guide for the preliminary edition of Volume III-B of Science For Georgia Schools, Junior High Earth Science. The course of study is designed for the eighth grade and includes selected topics from astronomy, meteorology, geology, oceanography, physical geography, and space travel. Topics are grouped under five units called (1)…

  1. A shuttle and space station manipulator system for assembly, docking, maintenance, cargo handling and spacecraft retrieval (preliminary design). Volume 3: Concept analysis. Part 2: Development program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A preliminary estimate is presented of the resources required to develop the basic general purpose walking boom manipulator system. It is assumed that the necessary full scale zero g test facilities will be available on a no cost basis. A four year development effort is also assumed and it is phased with an estimated shuttle development program since the shuttle will be developed prior to the space station. Based on delivery of one qualification unit and one flight unit and without including any ground support equipment or flight test support it is estimated (within approximately + or - 25%) that a total of 3551 man months of effort and $17,387,000 are required.

  2. Preliminary CALS Phase II Architecture. Volume 19

    DTIC Science & Technology

    1989-07-03

    IDEF ICAM Definition Languages 5 IDEFO ICAM Definition Language: Activity Modeling IDEFIX ICAM Definition Language: Data Modeling 3 IDS Integrated Design...level. At the Conceptual Description level, data are defined by an integrated semantic data model, such as those produced using the IDEFIX modeling...Architecture with the dominate focus on the data dictionary for the IWSDB, represented by an IDEFIX semantic data model. It is at this level that CALS Phase II

  3. Preliminary Design Feature Alternatives and Discussion of Their Feasibility for a National Education Practice File. Products 1.4. and 1.5. [Volume II].

    ERIC Educational Resources Information Center

    Benson, Gregory, Jr.

    This discussion of the alternative design features being considered for the National Education Practice File presents three design configurations for each feature, demonstrating how they differ and suggesting which is the most likely candidate for the pilot test based on utility benefits, technical feasibility, adherence to Federal Information…

  4. Space telescope optical telescope assembly/scientific instruments. Phase B: -Preliminary design and program definition study; Volume 2A: Planetary camera report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Development of the F/48, F/96 Planetary Camera for the Large Space Telescope is discussed. Instrument characteristics, optical design, and CCD camera submodule thermal design are considered along with structural subsystem and thermal control subsystem. Weight, electrical subsystem, and support equipment requirements are also included.

  5. Configuration evaluation and criteria plan. Volume 1: System trades study and design methodology plan (preliminary). Space Transportation Main Engine (STME) configuration study

    NASA Technical Reports Server (NTRS)

    Bair, E. K.

    1986-01-01

    The System Trades Study and Design Methodology Plan is used to conduct trade studies to define the combination of Space Shuttle Main Engine features that will optimize candidate engine configurations. This is accomplished by using vehicle sensitivities and engine parametric data to establish engine chamber pressure and area ratio design points for candidate engine configurations. Engineering analyses are to be conducted to refine and optimize the candidate configurations at their design points. The optimized engine data and characteristics are then evaluated and compared against other candidates being considered. The Evaluation Criteria Plan is then used to compare and rank the optimized engine configurations on the basis of cost.

  6. Heliogyro Preliminary Design, Phase 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    There are 12 blades in the Heliogyro design, and each blade is envisioned to be 8 meters in width and 7,500 meters in length. The blades are expected to be composed primarily of a thin membrane constructed of material such as Kapton film with an aluminum reflective coating on one side and an infrared emissive coating on the other. The present Phase 2 Final Report covers work done on the following six topics: (1) Design and analysis of a stowable circular lattice batten for the Heliogyro blade. (2) Design and analysis of a biaxially tensioned blade panel. (3) Definition of a research program for micrometeoroid damage to tendons. (4) A conceptual design for a flight test model of the Heliogyro. (5) Definition of modifications to the NASTRAN computer program required to provide improved analysis of the Heliogyro. (6) A User's Manual covering applications of NASTRAN to the Heliogyro.

  7. Assessment of PUMA preliminary design

    SciTech Connect

    Rohatgi, U.; Jo, J.; Parlatan, Y.; Slovik, G.

    1994-10-01

    General Electric (GE) has submitted to the United States Nuclear Regulatory Commission (USNRC) an application for a design certification of their Simplified Boiling Water Reactor (SBWR). This reactor system is an advanced light water reactor (ALWR) concept that differs from previous GE BWR designs since the safety systems are based on passive systems. Some of the SBWR unique features include natural circulation during normal plant operation and a passive containment cooling system (PCCS) that condenses steam and returns the condensate back to the reactor pressure vessel (RPV) by gravity driven flows.

  8. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 2: Project planning data

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Project planning data for a rotor and control system procurement and testing program for modifications to the XV-15 tilt-rotor research demonstrator aircraft is presented. The design, fabrication, and installation of advanced composite blades compatible with the existing hub, an advanced composite hub, and a nonmechanical control system are required.

  9. A shuttle and space station manipulator system for assembly, docking, maintenance, cargo handling and spacecraft retrieval (preliminary design). Volume 2: Concept development and selection

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The overall program background, the various system concepts considered, and the rationale for the selected design are described. The concepts for each subsystem are also described and compared. Details are given for the requirements, boom configuration and dynamics, actuators, man/machine interface and control, visual system, control system, environmental control and life support, data processing, and materials.

  10. Preliminary design package for Sunair SEC-601 solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The preliminary design of the Owens-Illinois model Sunair SEC-601 tubular air solar collector is presented. Information in this package includes the subsystem design and development approaches, hazard analysis, and detailed drawings available as the preliminary design review.

  11. Preliminary aerothermodynamic design method for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.; Petrie, S. L.

    1987-01-01

    Preliminary design methods are presented for vehicle aerothermodynamics. Predictions are made for Shuttle orbiter, a Mach 6 transport vehicle and a high-speed missile configuration. Rapid and accurate methods are discussed for obtaining aerodynamic coefficients and heat transfer rates for laminar and turbulent flows for vehicles at high angles of attack and hypersonic Mach numbers.

  12. A shuttle and space station manipulator system for assembly, docking, maintenance, cargo handling and spacecraft retrieval (preliminary design). Volume 3: Concept analysis. Part 1: Technical

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information backing up the key features of the manipulator system concept and detailed technical information on the subsystems are presented. Space station assembly and shuttle cargo handling tasks are emphasized in the concept analysis because they involve shuttle berthing, transferring the manipulator boom between shuttle and station, station assembly, and cargo handling. Emphasis is also placed on maximizing commonality in the system areas of manipulator booms, general purpose end effectors, control and display, data processing, telemetry, dedicated computers, and control station design.

  13. Preliminary design study of lunar housing configurations

    NASA Technical Reports Server (NTRS)

    Reynolds, K. H.

    1992-01-01

    A preliminary design study assesses various configurations for habitation of the lunar surface. The study assumes an initial 4-man habitation module expandable to a 48-man concept. Through the numerous coupling combinations of identical modules, five basic configuration types are identified. A design model presents each configuration in light of certain issues. The issues include circulation, internal and external spatial characteristics, functional organizations, and future growth potential. The study discusses the attributes, potentials, and unique requirements of each configuration.

  14. Space telescope optical telescope assembly/scientific instruments. Phase B: Preliminary design and program definition study. Volume 2A(3): Astrometry

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Wide field measurements, namely, measurements of relative angular separations between stars over a relatively wide field for parallax and proper motion determinations, were made with the third fine guidance sensor. Narrow field measurements, i.e., double star measurements, are accomplished primarily with the area photometer or faint object camera at f/96. The wavelength range required can be met by the fine guidance sensor which has a spectral coverage from 3000 to 7500 A. The field of view of the fine guidance sensor also exceeds that required for the wide field astrometric instrument. Requirements require a filter wheel for the wide field astrometer, and so one was incorporated into the design of the fine guidance sensor. The filter wheel probably would contain two neutral density filters to extend the dynamic range of the sensor and three spectral filters for narrowing effective double star magnitude difference.

  15. Preliminary recommendations on the design of the characterization program for the Hanford Site single-shell tanks: A system analysis. Volume 2, Closure-related analyte priorities, concentration thresholds, and detection limit goals based on public health concerns

    SciTech Connect

    Buck, J.W.; Peffers, M.S.; Hwang, S.T.

    1991-11-01

    The work described in this volume was conducted by Pacific Northwest Laboratory to provide preliminary recommendations on data quality objectives (DQOs) to support the Waste Characterization Plan (WCP) and closure decisions for the Hanford Site single-shell tanks (SSTs). The WCP describes the first of a two-phase characterization program that will obtain information to assess and implement disposal options for SSTs. This work was performed for the Westinghouse Hanford Company (WHC), the current operating contractor on the Hanford Site. The preliminary DQOs contained in this volume deal with the analysis of SST wastes in support of the WCP and final closure decisions. These DQOs include information on significant contributors and detection limit goals (DLGs) for SST analytes based on public health risk.

  16. Preliminary Structural Design - Defining the Design Space

    DTIC Science & Technology

    1993-02-01

    York, 1949 7. Rosenblatt, R., Prnciples of Neurodynamics , New York, Spartan Books, 1959 8. Swift, R.,"Structural Design Using Neural Networks," Ph.D...Explorations in the Microstructure of Cognition . Vol. 1 Foundations D. E. Rumelhart and J.L. McClelland Editors, MIT Press, 1986 40. Parker, D. B...Processing: Explorations in the Microstructure of Cognition , MIT Press 1986 45. Schittkowski, K., Nonlinear o a gmi codes Lecture Notes in Economics and

  17. Preliminary Systems Design Study assessment report

    SciTech Connect

    Mayberry, J.L.; Quapp, W.J.; Feizollahi, F.; Del Signore, J.C.

    1991-07-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. The SDS results are published in eight volumes. Volume 1 contains an executive summary. The SDS summary and analysis of results are presented in Volume 2. Volumes 3 through 7 contain detailed descriptions of twelve system and four subsystem concepts. Volume 8 contains the appendixes. 23 refs., 23 figs., 16 tabs.

  18. Preliminary systems design study assessment report

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-10-01

    The System Design Study (SDS), part of the Waste Technology Development Department of the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. The SDS results are published in eight volumes. Volume I contains an executive summary. The SDS summary and analysis of results are presented in Volume II. Volumes III through VII contain descriptions of twelve system and four subsystem concepts. Volume VIII contains the appendixes.

  19. Preliminary designs: passive solar manufactured housing. Technical status report

    SciTech Connect

    Not Available

    1980-05-12

    The criteria established to guide the development of the preliminary designs are listed. Three preliminary designs incorporating direct gain and/or sunspace are presented. Costs, drawings, and supporting calculations are included. (MHR)

  20. Bunch compression for the TLC: Preliminary design

    SciTech Connect

    Kheifets, S.A.; Ruth, R.D.; Murray, J.J.; Fieguth, T.H.

    1988-12-01

    A preliminary design of a TLC bunch compressor as a two-stage device is described. The main parameters of the compressor, as well as results of some simulations, are presented. They show that the ideal system (no imperfections) does the job of transmitting transverse emittances without distortions (at least up to the second-order terms) producing at the same time the desired bunch length of 50 m. 9 refs., 6 figs., 4 tabs.

  1. International Linear Collider Technical Design Report (Volumes 1 through 4)

    SciTech Connect

    Harrison M.

    2013-03-27

    The design report consists of four volumes: Volume 1, Executive Summary; Volume 2, Physics; Volume 3, Accelerator (Part I, R and D in the Technical Design Phase, and Part II, Baseline Design); and Volume 4, Detectors.

  2. Automated CPX support system preliminary design phase

    NASA Technical Reports Server (NTRS)

    Bordeaux, T. A.; Carson, E. T.; Hepburn, C. D.; Shinnick, F. M.

    1984-01-01

    The development of the Distributed Command and Control System (DCCS) is discussed. The development of an automated C2 system stimulated the development of an automated command post exercise (CPX) support system to provide a more realistic stimulus to DCCS than could be achieved with the existing manual system. An automated CPX system to support corps-level exercise was designed. The effort comprised four tasks: (1) collecting and documenting user requirements; (2) developing a preliminary system design; (3) defining a program plan; and (4) evaluating the suitability of the TRASANA FOURCE computer model.

  3. Advanced solar concentrator: Preliminary and detailed design

    NASA Technical Reports Server (NTRS)

    Bell, D. M.; Maraschin, R. A.; Matsushita, M. T.; Erskine, D.; Carlton, R.; Jakovcevic, A.; Yasuda, A. K.

    1981-01-01

    A single reflection point focusing two-axis tracking paraboloidal dish with a reflector aperture diameter of approximately 11 m has a reflective surface made up of 64 independent, optical quality gores. Each gore is a composite of a thin backsilvered mirror glass face sheet continuously bonded to a contoured substrate of lightweight, rigid cellular glass. The use of largely self-supporting gores allows a significant reduction in the weight of the steel support structure as compared to alternate design concepts. Primary emphasis in the preliminary design package for the low-cost, low-weight, mass producible concentrator was placed on the design of the higher cost subsystems. The outer gore element was sufficiently designed to allow fabrication of prototype gores.

  4. Business System Planning Project, Preliminary System Design

    SciTech Connect

    EVOSEVICH, S.

    2000-10-30

    CH2M HILL Hanford Group, Inc. (CHG) is currently performing many core business functions including, but not limited to, work control, planning, scheduling, cost estimating, procurement, training, and human resources. Other core business functions are managed by or dependent on Project Hanford Management Contractors including, but not limited to, payroll, benefits and pension administration, inventory control, accounts payable, and records management. In addition, CHG has business relationships with its parent company CH2M HILL, U.S. Department of Energy, Office of River Protection and other River Protection Project contractors, government agencies, and vendors. The Business Systems Planning (BSP) Project, under the sponsorship of the CH2M HILL Hanford Group, Inc. Chief Information Officer (CIO), have recommended information system solutions that will support CHG business areas. The Preliminary System Design was developed using the recommendations from the Alternatives Analysis, RPP-6499, Rev 0 and will become the design base for any follow-on implementation projects. The Preliminary System Design will present a high-level system design, providing a high-level overview of the Commercial-Off-The-Shelf (COTS) modules and identify internal and external relationships. This document will not define data structures, user interface components (screens, reports, menus, etc.), business rules or processes. These in-depth activities will be accomplished at implementation planning time.

  5. A novel primary system for compressible flow calibration uncertainty analysis for the preliminary design

    SciTech Connect

    Kegel, T.

    1995-08-01

    The operation of a primary system for compressible flow calibration is typically based on either a gravimetric or volumetric method of mass determination. The gravimetric method provides direct determination of mass while the volumetric method utilizes measurements of density and volume. This paper describes the preliminary design of a primary system that features both gravimetric and volumetric mass determination. The emphasis is on the presentation of an uncertainty analysis procedure to be used for preliminary design decisions.

  6. Preliminary design of turbopumps and related machinery

    NASA Technical Reports Server (NTRS)

    Wislicenus, George F.

    1986-01-01

    Pumps used in large liquid-fuel rocket engines are examined. The term preliminary design denotes the initial, creative phases of design, where the general shape and characteristics of the machine are determined. This compendium is intended to provide the design engineer responsible for these initial phases with a physical understanding and background knowledge of the numerous special fields involved in the design process. Primary attention is directed to the pumping part of the turbopump and hence is concerned with essentially incompressible fluids. However, compressible flow principles are developed. As much as possible, the simplicity and reliability of incompressible flow considerations are retained by treating the mechanics of compressible fluids as a departure from the theory of incompressible fluids. Five areas are discussed: a survey of the field of turbomachinery in dimensionless form; the theoretical principles of the hydrodynamic design of turbomachinery; the hydrodynamic and gas dynamic design of axial flow turbomachinery; the hydrodynamic and gas dynamic design of radial and mixed flow turbomachinery; and some mechanical design considerations of turbomachinery. Theoretical considerations are presented with a relatively elementary mathematical treatment.

  7. PRELIMINARY SELECTION OF MGR DESIGN BASIS EVENTS

    SciTech Connect

    J.A. Kappes

    1999-09-16

    The purpose of this analysis is to identify the preliminary design basis events (DBEs) for consideration in the design of the Monitored Geologic Repository (MGR). For external events and natural phenomena (e.g., earthquake), the objective is to identify those initiating events that the MGR will be designed to withstand. Design criteria will ensure that radiological release scenarios resulting from these initiating events are beyond design basis (i.e., have a scenario frequency less than once per million years). For internal (i.e., human-induced and random equipment failures) events, the objective is to identify credible event sequences that result in bounding radiological releases. These sequences will be used to establish the design basis criteria for MGR structures, systems, and components (SSCs) design basis criteria in order to prevent or mitigate radiological releases. The safety strategy presented in this analysis for preventing or mitigating DBEs is based on the preclosure safety strategy outlined in ''Strategy to Mitigate Preclosure Offsite Exposure'' (CRWMS M&O 1998f). DBE analysis is necessary to provide feedback and requirements to the design process, and also to demonstrate compliance with proposed 10 CFR 63 (Dyer 1999b) requirements. DBE analysis is also required to identify and classify the SSCs that are important to safety (ITS).

  8. APEX 3D Propeller Test Preliminary Design

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    2002-01-01

    A low Reynolds number, high subsonic mach number flight regime is fairly uncommon in aeronautics. Most flight vehicles do not fly under these aerodynamic conditions. However, recently there have been a number of proposed aircraft applications (such as high altitude observation platforms and Mars aircraft) that require flight within this regime. One of the main obstacles to flight under these conditions is the ability to reliably generate sufficient thrust for the aircraft. For a conventional propulsion system, the operation and design of the propeller is the key aspect to its operation. Due to the difficulty in experimentally modeling the flight conditions in ground-based facilities, it has been proposed to conduct propeller experiments from a high altitude gliding platform (APEX). A preliminary design of a propeller experiment under the low Reynolds number, high mach number flight conditions has been devised. The details of the design are described as well as the potential data that will be collected.

  9. Preliminary design study. Shuttle modular scanning spectroradiometer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Fundamental concepts on which to base a detailed design for a Shuttle Modular Scanning Spectroradiometer were developed, and a preliminary design is presented. The recommended design features modularity and flexibility. It includes a 75-cm f/1.7-telescope assembly in an all-reflective Schmidt configuration, a solid state scan system (pushbroom) with high resolution over a 15 deg field of view, and ten detector channels covering the spectral range from 0.45 to 12.5 micrometers. It uses charge transfer device techniques to accommodate a large number of detector elements for earth observation measurements. Methods for in-flight radiometric calibration, for image motion compensation, and for data processing are described. Recommendations for ground support equipment are included, and interfaces with the shuttle orbiter vehicle are illustrated.

  10. Ultraviolet Free Electron Laser Facility preliminary design report

    SciTech Connect

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  11. Preliminary design for a maglev development facility

    SciTech Connect

    Coffey, H.T.; He, J.L.; Chang, S.L.; Bouillard, J.X.; Chen, S.S.; Cai, Y.; Hoppie, L.O.; Lottes, S.A.; Rote, D.M. ); Zhang, Z.Y. ); Myers, G.; Cvercko, A. ); Williams, J.R. )

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable of powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.

  12. ISSA/TSS power preliminary design

    NASA Technical Reports Server (NTRS)

    Main, John A.

    1996-01-01

    A projected power shortfall during the initial utilization flights of the International Space Station Alpha (ISSA) has prompted an inquiry into the use of the Tethered Satellite System (TSS) to provide station power. The preliminary design of the combined ISSA/TSS system is currently underway in the Preliminary Design Office at the Marshall Space Flight Center. This document focuses on the justification for using a tether system on space station, the physical principles behind such a system, and how it might be operated to best utilize its capabilities. The basic components of a simple DC generator are a magnet of some type and a conductive wire. Moving the wire through the magnetic field causes forces to be applied to the electric charges in the conductor, and thus current is induced to flow. This simple concept is the idea behind generating power with space-borne tether systems. The function of the magnet is performed by the earth's magnetic field, and orbiting a conductive tether about the earth effectively moves the tether through the field.

  13. NSLS-II Preliminary Design Report

    SciTech Connect

    Dierker, S.

    2007-11-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configuration to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES&H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility

  14. Preliminary conceptual design about the CEPC calorimeters

    NASA Astrophysics Data System (ADS)

    Yang, Haijun

    2016-11-01

    The Circular Electron Positron Collider (CEPC) as a Higgs factory was proposed in September 2013. The preliminary conceptual design report was completed in 2015.1 The CEPC detector design was using International Linear Collider Detector — ILD2 as an initial baseline. The CEPC calorimeters, including the high granularity electromagnetic calorimeter (ECAL) and the hadron calorimeter (HCAL), are designed for precise energy measurements of electrons, photons, taus and hadronic jets. The basic resolution requirements for the ECAL and HCAL are about 16%E (GeV) and 50%E (GeV), respectively. To fully exploit the physics potential of the Higgs, W, Z and related Standard Model processes, the jet energy resolution is required to reach 3%-4%, or 30%/E (GeV) at energies below about 100 GeV. To achieve the required performance, a Particle Flow Algorithm (PFA) — oriented calorimetry system is being considered as the baseline design. The CEPC ECAL detector options include silicon-tungsten or scintillator-tungsten structures with analog readout, while the HCAL detector options have scintillator or gaseous detector as the active sensor and iron as the absorber. Some latest R&D studies about ECAL and HCAL within the CEPC working group is also presented.

  15. Preliminary Conceptual Design About the CEPC Calorimeters

    NASA Astrophysics Data System (ADS)

    Yang, Haijun

    The Circular Electron Positron Collider (CEPC) as a Higgs factory was proposed in September 2013. The preliminary conceptual design report was completed in 2015. The CEPC detector design was using International Linear Collider Detector — ILD as an initial baseline. The CEPC calorimeters, including the high granularity electromagnetic calorimeter (ECAL) and the hadron calorimeter (HCAL), are designed for precise energy measurements of electrons, photons, taus and hadronic jets. The basic resolution requirements for the ECAL and HCAL are about 16%[√ E ] (GeV) and 50% [√ E] (GeV), respectively. To fully exploit the physics potential of the Higgs, W, Z and related Standard Model processes, the jet energy resolution is required to reach 3%-4%, or 30%/[√ E] (GeV) at energies below about 100 GeV. To achieve the required performance, a Particle Flow Algorithm (PFA) — oriented calorimetry system is being considered as the baseline design. The CEPC ECAL detector options include silicon-tungsten or scintillator-tungsten structures with analog readout, while the HCAL detector options have scintillator or gaseous detector as the active sensor and iron as the absorber. Some latest R&D studies about ECAL and HCAL within the CEPC working group is also presented.

  16. Preliminary Opto-Mechanical Design for the X2000 Transceiver

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Page, N. A.

    2000-01-01

    Preliminary optical design and mechanical conceptual design for a 30 cm aperture transceiver are described. A common aperture is used for both transmit and receive. Special attention was given to off-axis and scattered light rejection and isolation of the receive channel from the transmit channel. Requirements, details of the design and preliminary performance analysis of the transceiver are provided.

  17. IRIS: Proceeding Towards the Preliminary Design

    SciTech Connect

    Carelli, M.; Miller, K.; Lombardi, C.; Todreas, N.; Greenspan, E.; Ninokata, H.; Lopez, F.; Cinotti, L.; Collado, J.; Oriolo, F.; Alonso, G.; Morales, M.; Boroughs, R.; Barroso, A.; Ingersoll, D.; Cavlina, N.

    2002-07-01

    The IRIS (International Reactor Innovative and Secure) project has completed the conceptual design phase and is moving towards completion of the preliminary design, scheduled for the end of 2002. Several other papers presented in this conference provide details on major aspects of the IRIS design. The three most innovative features which uniquely characterize IRIS are, in descending order of impact: 1. Safety-by-design, which takes maximum advantage of the integral configuration to eliminate from consideration some accidents, greatly lessen the consequence of other accident scenarios and decrease their probability of occurring; 2. Optimized maintenance, where the interval between maintenance shutdowns is extended to 48 months; and 3. Long core life, of at least four years without shuffling or partial refueling. Regarding feature 1, design and analyses will be supplemented by an extensive testing campaign to verify and demonstrate the performance of the integral components, individually as well as interactive systems. Test planning is being initiated. Test results will be factored into PRA analyses under an overall risk informed regulation approach, which is planned to be used in the IRIS licensing. Pre-application activities with NRC are also scheduled to start in mid 2002. Regarding feature 2, effort is being focused on advanced online diagnostics for the integral components, first of all the steam generators, which are the most critical component; several techniques are being investigated. Finally, a four year long life core design is well underway and some of the IRIS team members are examining higher enrichment, eight to ten year life cores which could be considered for reloads. (authors)

  18. Solar cell array design handbook, volume 1

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1976-01-01

    Twelve chapters discuss the following: historical developments, the environment and its effects, solar cells, solar cell filters and covers, solar cell and other electrical interconnections, blocking and shunt diodes, substrates and deployment mechanisms, material properties, design synthesis and optimization, design analysis, procurement, production and cost aspects, evaluation and test, orbital performance, and illustrative design examples. A comprehensive index permits rapid locating of desired topics. The handbook consists of two volumes: Volume 1 is of an expository nature while Volume 2 contains detailed design data in an appendix-like fashion. Volume 2 includes solar cell performance data, applicable unit conversion factors and physical constants, and mechanical, electrical, thermal optical, magnetic, and outgassing material properties. Extensive references are provided.

  19. GSDO PDR (Preliminary Design Review) Morning Meeting

    NASA Image and Video Library

    2014-03-20

    CAPE CANAVERAL, Fla. – The Ground Systems Development and Operations, or GSDO, Program completed its preliminary design review which allows development of the ground systems to proceed to detailed design. Representatives from NASA, its contractor partners and experts from across the aerospace industry met in the Mission Briefing Room inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida to conclude the initial design and technology development phase. Completion of this review has validated that the baseline architecture is sound and aligns with the agency's exploration objectives. NASA is developing the Space Launch System and Orion spacecraft to provide an entirely new capability for human exploration beyond low-Earth orbit, with the flexibility to launch spacecraft for crew and cargo missions, including to an asteroid and Mars. Orion’s first unpiloted test flight is scheduled to launch later this year atop a Delta IV rocket. A second uncrewed flight test is scheduled for fiscal year 2018 on the Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  20. Preliminary design of a universal Martian lander

    NASA Astrophysics Data System (ADS)

    Norman, Timothy L.; Gaskin, David E.; Adkins, Sean; Gunawan, Mary; Johnson, Raquel; Macdonnell, David; Parlock, Andrew; Sarick, John; Bodwell, Charles; Hashimoto, Kouichi

    In the next 25 years, mankind will be undertaking yet another giant leap forward in the exploration of the solar system: a manned mission to Mars. This journey will provide important information on the composition and history of both Mars and the Solar System. A manned mission will also provide the opportunity to study how humans can adapt to long term space flight conditions and the Martian environment. As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The UML's design will provide a 'universal' platform, consisting of four modules for living and laboratory experiments and a liquid-fuel propelled Manned Ascent Return Vehicle (MARV). The distinguishing feature of the UML is the 'universal' design of the modules which can be connected to form a network of laboratories and living quarters for future missions thereby reducing development and production costs. The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules will be assembled to form a Martian base where scientific experiments will be performed. The mission will also incorporate hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psychological effects of living on Mars. In situ fuel production for the MARV will be produced from gases in the Martian atmosphere. Following surface operations, the eight member crew will use the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  1. Preliminary design of a universal Martian lander

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Gaskin, David E.; Adkins, Sean; Gunawan, Mary; Johnson, Raquel; Macdonnell, David; Parlock, Andrew; Sarick, John; Bodwell, Charles; Hashimoto, Kouichi

    1993-01-01

    In the next 25 years, mankind will be undertaking yet another giant leap forward in the exploration of the solar system: a manned mission to Mars. This journey will provide important information on the composition and history of both Mars and the Solar System. A manned mission will also provide the opportunity to study how humans can adapt to long term space flight conditions and the Martian environment. As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The UML's design will provide a 'universal' platform, consisting of four modules for living and laboratory experiments and a liquid-fuel propelled Manned Ascent Return Vehicle (MARV). The distinguishing feature of the UML is the 'universal' design of the modules which can be connected to form a network of laboratories and living quarters for future missions thereby reducing development and production costs. The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules will be assembled to form a Martian base where scientific experiments will be performed. The mission will also incorporate hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psychological effects of living on Mars. In situ fuel production for the MARV will be produced from gases in the Martian atmosphere. Following surface operations, the eight member crew will use the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  2. Preliminary decommissioning study reports. Volume 4, Gunite storage tanks

    SciTech Connect

    Horton, J.R.

    1984-09-01

    This six large gunite storage tanks considered as a group is one of approximately 76 facilities currently managed by the Oak Ridge National Laboratories (ORNL) Surplus Facilities Management Program (SFMP). This program, as part of the Department of Energy (DOE) national SFMP, is responsible for the maintenance and surveillance and the final decommissioning of radioactively contaminated surplus ORNL facilities. A long-range planning effort is being conducted that will outline the scope and objectives of the ORNL program and establish decommissioning priorities based on health and safety concerns, budget constraints, and other programmatic constraints. In support of this SFMP planning activity, preliminary engineering assessments are being conducted for each of the ORNL surplus facilities currently managed under the program. These efforts are designed to: (1) provide an initial assessment of the potential decommissioning alternatives, (2) choose a preferred alternative and provide a justification of the decommissioning plan, including cost and schedule estimates. This report presents the results of the preliminary decommission study for the six gunite storage tanks.

  3. Preliminary design studies of an advanced general aviation aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Preliminary design studies are presented for an advanced general aviation aircraft. Advanced guidance and display concepts, laminar flow, smart structures, fuselage and wing structural design and manufacturing, and preliminary configuration design are discussed. This project was conducted as a graduate level design class under the auspices of the KU/NASA/USRA Advanced Design Program in Aeronautics. The results obtained during the fall semester of 1990 (Phase 1) and the spring semester of 1991 (Phase 2) are presented.

  4. GSDO PDR (Preliminary Design Review) Morning Meeting

    NASA Image and Video Library

    2014-03-20

    CAPE CANAVERAL, Fla. – Mike Bolger, program manager for the Ground Systems Development and Operations, or GSDO, Program speaks to participants during completion of the preliminary design review in the Mission Briefing Room inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. Representatives from NASA, its contractor partners and experts from across the aerospace industry met in the Mission Briefing Room inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida to conclude the initial design and technology development phase. Completion of this review has validated that the baseline architecture is sound and aligns with the agency's exploration objectives. NASA is developing the Space Launch System and Orion spacecraft to provide an entirely new capability for human exploration beyond low-Earth orbit, with the flexibility to launch spacecraft for crew and cargo missions, including to an asteroid and Mars. Orion’s first unpiloted test flight is scheduled to launch later this year atop a Delta IV rocket. A second uncrewed flight test is scheduled for fiscal year 2018 on the Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  5. Space hardware designs, volume 1

    NASA Technical Reports Server (NTRS)

    Meyer, Rudolf X.; Cribbs, Richard; Honda, Mark; Ma, Christina; Robson, Christopher

    1994-01-01

    The design of a solar sail space vehicle with a novel sail deployment mechanism is described. The sail is triangular in shape and is deployed and stabilized by three miniature spacecraft, one at each corner of the triangle. A concept demonstrator for a spherical microrover for the exploration of a planetary surface is described. Lastly, laboratory experiments have been conducted to study the migration of thin oil films on metal surfaces in the presence of a thermal gradient.

  6. Preliminary design of pseudo satellites: Basic methods and feasibility criteria

    NASA Astrophysics Data System (ADS)

    Klimenko, N. N.

    2016-12-01

    Analytical models of weight and energy balances, aerodynamic models, and solar irradiance models to perform pseudo-satellite preliminary design are presented. Feasibility criteria are determined in accordance with the aim of preliminary design dependent on mission scenario and type of payload.

  7. Preliminary design study for an atomospheric science facility

    NASA Technical Reports Server (NTRS)

    Hutchison, R.

    1972-01-01

    The activities and results of the Atmospheric Science Facility preliminary design study are reported. The objectives of the study were to define the scientific goals, to determine the range of experiment types, and to develop the preliminary instrument design requirements for a reusable, general purpose, optical research facility for investigating the earth's atmosphere from a space shuttle orbital vehicle.

  8. Volume accumulator design analysis computer codes

    NASA Technical Reports Server (NTRS)

    Whitaker, W. D.; Shimazaki, T. T.

    1973-01-01

    The computer codes, VANEP and VANES, were written and used to aid in the design and performance calculation of the volume accumulator units (VAU) for the 5-kwe reactor thermoelectric system. VANEP computes the VAU design which meets the primary coolant loop VAU volume and pressure performance requirements. VANES computes the performance of the VAU design, determined from the VANEP code, at the conditions of the secondary coolant loop. The codes can also compute the performance characteristics of the VAU's under conditions of possible modes of failure which still permit continued system operation.

  9. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  10. Global precipitation measurement (GPM) preliminary design

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2008-10-01

    The overarching Earth science mission objective of the Global Precipitation Measurement (GPM) mission is to develop a scientific understanding of the Earth system and its response to natural and human-induced changes. This will enable improved prediction of climate, weather, and natural hazards for present and future generations. The specific scientific objectives of GPM are advancing: Precipitation Measurement through combined use of active and passive remote-sensing techniques, Water/Energy Cycle Variability through improved knowledge of the global water/energy cycle and fresh water availability, Climate Prediction through better understanding of surface water fluxes, soil moisture storage, cloud/precipitation microphysics and latent heat release, Weather Prediction through improved numerical weather prediction (NWP) skills from more accurate and frequent measurements of instantaneous rain rates with better error characterizations and improved assimilation methods, Hydrometeorological Prediction through better temporal sampling and spatial coverage of highresolution precipitation measurements and innovative hydro-meteorological modeling. GPM is a joint initiative with the Japan Aerospace Exploration Agency (JAXA) and other international partners and is the backbone of the Committee on Earth Observation Satellites (CEOS) Precipitation Constellation. It will unify and improve global precipitation measurements from a constellation of dedicated and operational active/passive microwave sensors. GPM is completing the Preliminary Design Phase and is advancing towards launch in 2013 and 2014.

  11. The deuteron accelerator preliminary design for BISOL

    NASA Astrophysics Data System (ADS)

    Peng, S. X.; Zhu, F.; Wang, Z.; Gao, Y.; Guo, Z. Y.

    2016-06-01

    BISOL, which was named as Beijing_ISOL before (Cui et al., 2013), is the abbreviation of Beijing Isotope-Separation-On-Line neutron beam facility. It is proposed jointly by Peking University (PKU) and China Institute of Atomic Energy (CIAE) for basic science study and application. It is a double driven facility that can be driven by a reactor or a deuteron accelerator. The deuteron driver accelerator should accelerate the deuteron beam up to 40 MeV with maximum beam current of 10 mA. Proton beams up to 33 MeV and He2+ beams up to 81.2 MeV can also be accelerated in this accelerator. The accelerator can be operated on either CW (continuous waveform) or pulsed mode, and the ion energy can be adjusted in a wide range. The accelerator will also allow independent operation of the RIB (Radioactive Ion Beams) system. It will be mainly charged by PKU group. Details of the deuteron accelerator preliminary design for BISOL will be given in this paper.

  12. Preliminary SP-100/Stirling heat exchanger designs

    SciTech Connect

    Schmitz, P.; Tower, L.; Dawson, R.; Blue, B.; Dunn, P.

    1994-09-01

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC`s are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems.

  13. Preliminary SP-100/Stirling heat exchanger designs

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul; Tower, Leonard; Dawson, Ronald; Blue, Brian; Dunn, Pat

    1993-01-01

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor primary lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC's are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems.

  14. Compass Preview Design Study. Volume 2. Specifications

    DTIC Science & Technology

    1975-04-01

    n RADC-TR-74-257, Volume II (of two) Final Technical Report April 1975 00 COMPASS PREVIEW DESIGN STUDY Specifications Northrop Corporation PQ...needs of the USAF. Primary RADC mission areas are communications, electro- magnetic guidance and control, surveillance of ground and aerospace...REPORT DOCUMENTATION PAGE 1. REPORT NUMBER RADC-TR-74-257, Volume II (of two) 2. GOVT ACCESSION NO 4. TITLE fand Subdlle) COMPASS

  15. Lighting design for globally illuminated volume rendering.

    PubMed

    Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    With the evolution of graphics hardware, high quality global illumination becomes available for real-time volume rendering. Compared to local illumination, global illumination can produce realistic shading effects which are closer to real world scenes, and has proven useful for enhancing volume data visualization to enable better depth and shape perception. However, setting up optimal lighting could be a nontrivial task for average users. There were lighting design works for volume visualization but they did not consider global light transportation. In this paper, we present a lighting design method for volume visualization employing global illumination. The resulting system takes into account view and transfer-function dependent content of the volume data to automatically generate an optimized three-point lighting environment. Our method fully exploits the back light which is not used by previous volume visualization systems. By also including global shadow and multiple scattering, our lighting system can effectively enhance the depth and shape perception of volumetric features of interest. In addition, we propose an automatic tone mapping operator which recovers visual details from overexposed areas while maintaining sufficient contrast in the dark areas. We show that our method is effective for visualizing volume datasets with complex structures. The structural information is more clearly and correctly presented under the automatically generated light sources.

  16. PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and

  17. Cast Aluminum Structures Technology (CAST). Phase I. Preliminary Design

    DTIC Science & Technology

    1977-05-01

    49 26 Assumed Crack Growth Rate -- A357 . . . . . . . . . .. 50 27 Flaw Growth at Hole of Gear Attachment Point .... .... 52 28 A357 S-N...wo TABLES Number ?Ile 1 Statistics on.16 Classes of A357 Aluminum Casting Data .. 14 2 "CAST" Preliminary Design Allowables .. .. .. ....... 20 3...damage tolerance criteria; development of preliminary design allowables data for A357 aluminum casting alloy to be used for design until completion

  18. Preliminary design package for prototype solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include system candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test.

  19. Preliminary Helicopter Design Decision Making Based on Flight Performance Factors.

    DTIC Science & Technology

    1984-09-01

    7 AD-Aib 488 PRELIMINRY HELICOPTER DESIGN DECISION MKING BSED ON i’.. FLIGHT PERFORMAiNCE FACTOR (U) NAiVAL POSTGRADUATE SCHOOLMONTEREY CA P Y ADAMCIK...California II 00 THESIS PRELIMINARY HELICOPTER DESIGN DECISION MAKING BASED ON FLIGHT PERFORMANCE FACTORS by liELECTE D Patrick V. Adamcik LJ September 1984...TITLE (end Subtite) 5. TYPE OF REPORT & PERIOD COVERED Preliminary Helicopter Design Decision Master’s Thesis Making Based on Flight Performance

  20. Methodology for Preliminary Design of Electrical Microgrids

    SciTech Connect

    Jensen, Richard P.; Stamp, Jason E.; Eddy, John P.; Henry, Jordan M; Munoz-Ramos, Karina; Abdallah, Tarek

    2015-09-30

    Many critical loads rely on simple backup generation to provide electricity in the event of a power outage. An Energy Surety Microgrid TM can protect against outages caused by single generator failures to improve reliability. An ESM will also provide a host of other benefits, including integration of renewable energy, fuel optimization, and maximizing the value of energy storage. The ESM concept includes a categorization for microgrid value proposi- tions, and quantifies how the investment can be justified during either grid-connected or utility outage conditions. In contrast with many approaches, the ESM approach explic- itly sets requirements based on unlikely extreme conditions, including the need to protect against determined cyber adversaries. During the United States (US) Department of Defense (DOD)/Department of Energy (DOE) Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) effort, the ESM methodology was successfully used to develop the preliminary designs, which direct supported the contracting, construction, and testing for three military bases. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military installations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Melanie Johnson and Harold Sanborn of the U.S. Army Corps of Engineers Construc- tion Engineering Research Laboratory * Experts from the National Renewable Energy Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory

  1. Mod-5A wind turbine generator program design report. Volume 3: Final design and system description, book 2

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3MW MOD-5A wind turbine generator is documented. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 3, book 2 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. The subsystem for power generation, control, and instrumentation subsystems is described in detail. The manufacturing and construction plans, and the preparation of a potential site on Oahu, Hawaii, are documented. The quality assurance and safety plan, and analyses of failure modes and effects, and reliability, availability and maintainability are presented.

  2. Astrometric telescope facility. Preliminary systems definition study. Volume 3: Cost estimate

    NASA Technical Reports Server (NTRS)

    Sobeck, Charlie (Editor)

    1987-01-01

    The results of the Astrometric Telescope Facility (ATF) Preliminary System Definition Study conducted in the period between March and September 1986 are described. The main body of the report consists primarily of the charts presented at the study final review which was held at NASA Ames Research Center on July 30 and 31, 1986. The charts have been revised to reflect the results of that review. Explanations for the charts are provided on the adjoining pages where required. Note that charts which have been changed or added since the review are dated 10/1/86; unchanged charts carry the review date 7/30/86. In addition, a narrative summary is presented of the study results and two appendices. The first appendix is a copy of the ATF Characteristics and Requirements Document generated as part of the study. The second appendix shows the inputs to the Space Station Mission Requirements Data Base submitted in May 1986. The report is issued in three volumes. Volume 1 contains an executive summary of the ATF mission, strawman design, and study results. Volume 2 contains the detailed study information. Volume 3 has the ATF cost estimate, and will have limited distribution.

  3. EURO-CARES Sample Curation Facility: Preliminary Design

    NASA Astrophysics Data System (ADS)

    Hutzler, A.; Ferrière, L.; Bennett, A.; Brucato, J. R.; Debaille, V.; Folco, L.; Longobardo, A.; Meneghin, A.; Palomba, E.; Pottage, T.; Smith, C. L.; Euro-Cares Consortium

    2016-08-01

    EURO-CARES is a multinational project, funded under the European Commission's Horizon2020 research programme to create a roadmap of a European Extra-terrestrial Sample Curation Facility. We present here a preliminary design of the facility.

  4. Preliminary design package for prototype solar heating system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A preliminary design review on the development of a prototype solar heating system for single family dwellings is presented. The collector, storage, transport, control, and site data acquisition subsystems are described.

  5. Preliminary safety information document for the standard MHTGR: Volume 3

    SciTech Connect

    1986-01-01

    This report presents preliminary safety information for the standard MHTGR. Topics discussed include: plant protection, instrumentation, and control; electrical systems; service systems; and steam and energy conversion systems. (JDB)

  6. Capital and operating cost estimates. Volume I. Preliminary design and assessment of a 12,500 BPD coal-to-methanol-to-gasoline plant. [Grace C-M-G Plant, Henderson County, Kentucky

    SciTech Connect

    Not Available

    1982-08-01

    This Deliverable No. 18b - Capital and Operating Cost Estimates includes a detailed presentation of the 12,500 BPD coal-to-methanol-to-gasoline plant from the standpoint of capital, preoperations, start-up and operations cost estimation. The base capital cost estimate in June 1982 dollars was prepared by the Ralph M. Parsons Company under the direction of Grace. The escalated capital cost estimate as well as separate estimates for preoperations, startup and operations activities were developed by Grace. The deliverable consists of four volumes. Volume I contains details of methodology used in developing the capital cost estimate, summary information on a base June 1982 capital cost, details of the escalated capital cost estimate and separate sections devoted to preoperations, start-up, and operations cost. The base estimate is supported by detailed information in Volumes II, III and IV. The degree of detail for some units was constrained due to proprietary data. Attempts have been made to exhibit the estimating methodology by including data on individual equipment pricing. Proprietary details are available for inspection upon execution of nondisclosure and/or secrecy agreements with the licensors to whom the data is proprietary. Details of factoring certain pieces of equipment and/or entire modules or units from the 50,000 BPD capital estimate are also included. In the case of the escalated capital estimate, Grace has chosen to include a sensitivity analysis which allows for ready assessment of impacts of escalation rates (inflation), contingency allowances and the construction interest financing rates on the escalated capital cost. Each of the estimates associated with bringing the plant to commercial production rates has as a basis the schedule and engineering documentation found in Deliverable No. 14b - Process Engineering and Mechanical Design Report, No. 28b - Staffing Plans, No. 31b - Construction Plan, and No. 33b - Startup and Operation Plan.

  7. Preliminary radiation shielding design for BOOMERANG

    SciTech Connect

    Donahue, Richard J.

    2002-10-23

    Preliminary radiation shielding specifications are presented here for the 3 GeV BOOMERANG Australian synchrotron light source project. At this time the bulk shield walls for the storage ring and injection system (100 MeV Linac and 3 GeV Booster) are considered for siting purposes.

  8. Preliminary design package for solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  9. Preliminary design studies of an advanced general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Barrett, Ron; Demoss, Shane; Dirkzwager, AB; Evans, Darryl; Gomer, Charles; Keiter, Jerry; Knipp, Darren; Seier, Glen; Smith, Steve; Wenninger, ED

    1991-01-01

    The preliminary design results are presented of the advanced aircraft design project. The goal was to take a revolutionary look into the design of a general aviation aircraft. Phase 1 of the project included the preliminary design of two configurations, a pusher, and a tractor. Phase 2 included the selection of only one configuration for further study. The pusher configuration was selected on the basis of performance characteristics, cabin noise, natural laminar flow, and system layouts. The design was then iterated to achieve higher levels of performance.

  10. Preliminary Design of Wings. Volume I. Design Philosophy.

    DTIC Science & Technology

    reasonable time . In segments where an analytical philosophy exists, assumptions are made to result in rapid and relatively accurate solutions. In segments where it is not possible to establish analytical solutions, semi-empirical statistical relationships are

  11. Plutonium Immobilization Canister Rack and Magazine Preliminary Design (000109)

    SciTech Connect

    Gould, T.; Maddux, P.

    1998-09-30

    The purpose of this report is to document our current preliminary design for the Can-in-Canister rack and magazine. Since this is a developmental project with testing still ongoing, these designs will probably change as we become more knowledgeable of the functions, reliability, and cost of these designs.

  12. Preliminary design considerations for 10 to 40 meter-diameter precision truss reflectors

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.

    1990-01-01

    A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.

  13. Preliminary design considerations for 10 to 40 meter-diameter precision truss reflectors

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.

    1990-01-01

    A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.

  14. Beam director design report: Volume 1

    SciTech Connect

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and a prototype vernier steering magnet were designed and built. In volume I, the design requirements are stated, the design is summarized and illustrated, and detailed analysis and computations are provided. Also, a summary of materials used, a description of the manufacturing process, and a summary of project funding are provided. (LEW)

  15. Drain Tank Information for Developing Design Basis of the Preliminary Design - R00

    SciTech Connect

    Ferrada, Juan J

    2011-01-01

    Tokamak Cooling Water System (TCWS) drain tanks (DTs) serve two functions: normal operation and safety operation. Normal DTs are used for regular maintenance operations when draining is necessary. Safety DTs are used to receive the water leaked into the Vacuum Vessel (VV) after an in-vessel loss of cooling accident (LOCA) event. The preliminary design of the DTs shall be based on the information provided by this document. The capacity of the normal DTs is estimated based on the internal volume of in-vessel components [e.g., First Wall/Blanket (FW/BLK) and Divertor (DIV)], Neutral Beam Injector (NBI) components, and TCWS piping, heat exchangers, electric heaters, pump casing, pressurizers, and valves. Water volumes have been updated based on 2004 design information, changes adopted because of approved Project Change Requests (PCRs), and data verification by U.S. ITER. Two tanks will store water from normal draining operations of the FW/BLK and DIV Primary Heat Transfer Systems (PHTSs). One tank will store water from normal draining operations of the NBI PHTS. The capacity of the safety DTs is based on analysis of a design-basis accident:1 a large leak from in-vessel components. There are two safety DTs that will receive water from a VV LOCA event and drainage from the VV, as needed. In addition, there is one sump tank for the DIV that will be used for collecting drain water from the draining and drying processes and specifically for draining the DIV system as the DIV cassettes lines are at a lower elevation than the DT connection point. Information documented in this report must be refined and verified during the preliminary design of the DTs, and there are several aspects to be considered to complete the preliminary design. Input to these design considerations is discussed in this report and includes, but is not limited to, water inventory; operating procedures/maintenance; Failure Modes and Effects Analysis (FMEA); tank layout anddimensions, including design

  16. Drain Tank Information for Developing Design Basis of the Preliminary Design

    SciTech Connect

    Ferrada, Juan J

    2012-02-01

    Tokamak Cooling Water System (TCWS) drain tanks (DTs) serve two functions: normal operation and safety operation. Normal DTs are used for regular maintenance operations when draining is necessary. Safety DTs are used to receive the water leaked into the Vacuum Vessel (VV) after an in-vessel loss of coolant accident (LOCA) event. The preliminary design of the DTs shall be based on the information provided by this document. The capacity of the normal DTs is estimated based on the internal volume of in-vessel components [e.g., First Wall/Blanket (FW/BLK) and Divertor (DIV)]; Neutral Beam Injector (NBI) components; and TCWS piping, heat exchangers, electric heaters, pump casing, pressurizers, and valves. Water volumes have been updated based on 2004-design information, changes adopted because of approved Project Change Requests (PCRs), and data verification by US ITER and AREVA Federal Services, the US ITER A and E Company. Two tanks will store water from normal draining operations of the FW/BLK and DIV Primary Heat Transfer Systems (PHTSs). One tank will store water from normal draining operations of the NBI PHTS. The capacity of the safety DTs is based on analysis of a design basis accident: a large leak from in-vessel components. There are two safety DTs that will receive water from a VV LOCA event and drainage from the VV, as needed. In addition, there is one sump tank for the DIV that will be used for collecting drain water from the draining and drying processes and specifically for draining the DIV system as the DIV cassette lines are at a lower elevation than the DT connection point. Information documented in this report must be refined and verified during the preliminary design of the DTs, and there are several aspects to be considered to complete the preliminary design. Input to these design considerations is discussed in this report and includes, but is not limited to, water inventory; operating procedures/maintenance; Failure Modes and Effects Analysis (FMEA

  17. Preliminary characterization of abandoned septic tank systems. Volume 1

    SciTech Connect

    1995-12-01

    This report documents the activities and findings of the Phase I Preliminary Characterization of Abandoned Septic Tank Systems. The purpose of the preliminary characterization activity was to investigate the Tiger Team abandoned septic systems (tanks and associated leachfields) for the purpose of identifying waste streams for closure at a later date. The work performed was not to fully characterize or remediate the sites. The abandoned systems potentially received wastes or effluent from buildings which could have discharged non-domestic, petroleum hydrocarbons, hazardous, radioactive and/or mixed wastes. A total of 20 sites were investigated for the preliminary characterization of identified abandoned septic systems. Of the 20 sites, 19 were located and characterized through samples collected from each tank(s) and, where applicable, associated leachfields. The abandoned septic tank systems are located in Areas 5, 12, 15, 25, and 26 on the Nevada Test Site.

  18. Yucca Mountain transportation routes: Preliminary characterization and risk analysis; Volume 2, Figures [and] Volume 3, Technical Appendices

    SciTech Connect

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-05-31

    This report presents appendices related to the preliminary assessment and risk analysis for high-level radioactive waste transportation routes to the proposed Yucca Mountain Project repository. Information includes data on population density, traffic volume, ecologically sensitive areas, and accident history.

  19. System 80+{trademark} Standard Design: CESSAR design certification. Volume 7

    SciTech Connect

    1997-12-31

    This report has been prepared in support of the industry effort to standardize nuclear plant designs. This document describes the Combustion Engineering, Inc. System 80+{trademark} Standard Design. This volume contains sections 4 thru 8 of Chapter 6 -- Engineered Safety Features. Topics covered include: habitability systems; containment spray systems; inservice inspection of class 2 and 3 components; safety depressurization system; and in-containment water storage system. Also included are Appendices 6A, 6B, and 6C.

  20. ROMPS critical design review. Volume 2: Robot module design documentation

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1992-01-01

    The robot module design documentation for the Remote Operated Materials Processing in Space (ROMPS) experiment is compiled. This volume presents the following information: robot module modifications; Easylab commands definitions and flowcharts; Easylab program definitions and flowcharts; robot module fault conditions and structure charts; and C-DOC flow structure and cross references.

  1. Preliminary design of a large tetrahedral truss/hexagonal panel aerobrake structural system

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Mikulas, Martin M., Jr.

    1990-01-01

    This paper introduces an aerobrake structural concept consisting of two primary components: (1) a lightweight erectable tetrahedral support truss, and (2) a heatshield composed of individual sandwich hexagonal panels which, when attached to the truss, function as a continuous aerobraking surface. A general preliminary analysis procedure to design the aerobrake components is developed, and values of the aerobrake design parameters which minimize the mass and packaging volume for a 120-foot-diameter aerobrake are determined. Sensitivity of the aerobrake design to variations in design parameters is also assessed.

  2. Preliminary design of a large tetrahedral truss/hexagonal panel aerobrake structural system

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Mikulas, Martin M., Jr.

    1990-01-01

    This paper introduces an aerobrake structural concept consisting of two primary components: (1) a lightweight erectable tetrahedral support truss, and (2) a heatshield composed of individual sandwich hexagonal panels which, when attached to the truss, function as a continuous aerobraking surface. A general preliminary analysis procedure to design the aerobrake components is developed, and values of the aerobrake design parameters which minimize the mass and packaging volume for a 120-foot-diameter aerobrake are determined. Sensitivity of the aerobrake design to variations in design parameters is also assessed.

  3. Preliminary design package for prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences, Multiple-family Residences and commercial applications.

  4. A robust optimization methodology for preliminary aircraft design

    NASA Astrophysics Data System (ADS)

    Prigent, S.; Maréchal, P.; Rondepierre, A.; Druot, T.; Belleville, M.

    2016-05-01

    This article focuses on a robust optimization of an aircraft preliminary design under operational constraints. According to engineers' know-how, the aircraft preliminary design problem can be modelled as an uncertain optimization problem whose objective (the cost or the fuel consumption) is almost affine, and whose constraints are convex. It is shown that this uncertain optimization problem can be approximated in a conservative manner by an uncertain linear optimization program, which enables the use of the techniques of robust linear programming of Ben-Tal, El Ghaoui, and Nemirovski [Robust Optimization, Princeton University Press, 2009]. This methodology is then applied to two real cases of aircraft design and numerical results are presented.

  5. Gemini Planet Imager: Preliminary Design Report

    SciTech Connect

    Macintosh, B

    2007-05-10

    For the first time in history, direct and indirect detection techniques have enabled the exploration of the environments of nearby stars on scales comparable to the size of our solar system. Precision Doppler measurements have led to the discovery of the first extrasolar planets, while high-contrast imaging has revealed new classes of objects including dusty circumstellar debris disks and brown dwarfs. The ability to recover spectrophotometry for a handful of transiting exoplanets through secondary-eclipse measurements has allowed us to begin to study exoplanets as individual entities rather than points on a mass/semi-major-axis diagram and led to new models of planetary atmospheres and interiors, even though such measurements are only available at low SNR and for a handful of planets that are automatically those most modified by their parent star. These discoveries have galvanized public interest in science and technology and have led to profound new insights into the formation and evolution of planetary systems, and they have set the stage for the next steps--direct detection and characterization of extrasolar Jovian planets with instruments such as the Gemini Planet Imager (GPI). As discussed in Volume 1, the ability to directly detect Jovian planets opens up new regions of extrasolar planet phase space that in turn will inform our understanding of the processes through which these systems form, while near-IR spectra will advance our understanding of planetary physics. Studies of circumstellar debris disks using GPI's polarimetric mode will trace the presence of otherwise-invisible low-mass planets and measure the build-up and destruction of planetesimals. To accomplish the science mission of GPI will require a dedicated instrument capable of achieving contrast of 10{sup -7} or more. This is vastly better than that delivered by existing astronomical AO systems. Currently achievable contrast, about 10{sup -5} at separations of 1 arc second or larger, is

  6. Preliminary design review report - sludge offload system

    SciTech Connect

    Mcwethy, L.M. Westinghouse Hanford

    1996-06-05

    This report documents the conceptual design review of the sludge offload system for the Spent Nuclear Fuel Project. The design description, drawings, available analysis, and safety analysis were reviewed by a peer group. The design review comments and resolutions are documented.

  7. Preliminary Quality Control System Design for the Pell Grant Program.

    ERIC Educational Resources Information Center

    Advanced Technology, Inc., Reston, VA.

    A preliminary design for a quality control (QC) system for the Pell Grant Program is proposed, based on the needs of the Office of Student Financial Assistance (OSFA). The applicability of the general design for other student aid programs administered by OSFA is also considered. The following steps included in a strategic approach to QC system…

  8. Preliminary System Design of the SWRL Financial System.

    ERIC Educational Resources Information Center

    Ikeda, Masumi

    The preliminary system design of the computer-based Southwest Regional Laboratory's (SWRL) Financial System is outlined. The system is designed to produce various management and accounting reports needed to maintain control of SWRL operational and financial activities. Included in the document are descriptions of the various types of system…

  9. Preliminary design package for solar collector and solar pump

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  10. Preliminary energy sector assessments of Jamaica. Volume I: executive summary

    SciTech Connect

    Not Available

    1980-01-01

    Because heavy dependence on costly imported fuel has greatly inhibited Jamaica's economic development, USAID/Jamaica and the Government of Jamaica (GOJ) sponsored a preliminary energy assessment to identify and develop viable alternative energy options. Specialized studies included solar energy (commercial/industrial and agricultural), biogas applications, energy conversion from waste, a coal prefeasibility study, and an electric utility rate analysis. The entire assessment is summarized at length.

  11. STORMWATER BEST MANAGEMENT PRACTICES DESIGN GUIDE VOLUME 1 - GENERAL CONSIDERATIONS

    EPA Science Inventory

    This document is Volume 1 of a three volume series that provides guidance on the selection and design of stormwater management Best Management Practices (BMPs). This first volume provides general considerations associated with the selection and design of BMPs.
    Volume I provi...

  12. STORMWATER BEST MANAGEMENT PRACTICES DESIGN GUIDE VOLUME 1 - GENERAL CONSIDERATIONS

    EPA Science Inventory

    This document is Volume 1 of a three volume series that provides guidance on the selection and design of stormwater management Best Management Practices (BMPs). This first volume provides general considerations associated with the selection and design of BMPs.
    Volume I provi...

  13. Manx: Close air support aircraft preliminary design

    NASA Technical Reports Server (NTRS)

    Amy, Annie; Crone, David; Hendrickson, Heidi; Willis, Randy; Silva, Vince

    1991-01-01

    The Manx is a twin engine, twin tailed, single seat close air support design proposal for the 1991 Team Student Design Competition. It blends advanced technologies into a lightweight, high performance design with the following features: High sensitivity (rugged, easily maintained, with night/adverse weather capability); Highly maneuverable (negative static margin, forward swept wing, canard, and advanced avionics result in enhanced aircraft agility); and Highly versatile (design flexibility allows the Manx to contribute to a truly integrated ground team capable of rapid deployment from forward sites).

  14. Volume of discrete brain structures in complex dissociative disorders: preliminary findings.

    PubMed

    Ehling, T; Nijenhuis, E R S; Krikke, A P

    2008-01-01

    Based on findings in traumatized animals and patients with posttraumatic stress disorder, and on traumatogenic models of complex dissociative disorders, it was hypothesized that (1) patients with complex dissociative disorders have smaller volumes of hippocampus, parahippocampal gyrus, and amygdala than normal controls, (2) these volumes are associated with severity of psychoform and somatoform dissociative symptoms, and (3) patients who recovered from dissociative identity disorder (DID) have more hippocampal volume that patients with florid DID. The preliminary findings of the study are supportive of these hypotheses. Psychotherapy for dissociative disorders may affect hippocampal volume, but longitudinal studies are required to document this potential causal relationship.

  15. Some experiences in aircraft aeroelastic design using Preliminary Aeroelastic Design of Structures (PAD)

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.

    1984-01-01

    The design experience associated with a benchmark aeroelastic design of an out of production transport aircraft is discussed. Current work being performed on a high aspect ratio wing design is reported. The Preliminary Aeroelastic Design of Structures (PADS) system is briefly summarized and some operational aspects of generating the design in an automated aeroelastic design environment are discussed.

  16. Space Station Freedom Program preliminary design review process

    NASA Technical Reports Server (NTRS)

    Carlise, R. F.; Adair, Billy

    1989-01-01

    To conduct the Program Requirements Review of the Space Station Freedom, a Preliminary Design Review Board (PDR) has been established. The PDR will assess the preliminary design of the assembled manned base including the assembly process, the launch, and on-orbit stage configuration, the design approach, the on-orbit verification plans, supportability, reliability, safety, interfaces with the NASA infrastructure (the NSTS, TDRSS, and Ground operations) and international partners. Issues such as the coordination of a common interpretation of design requirements, coordination of interfaces, and convergence of design perspectives vs. proper allocation of resources are discussed. The impact of the resolution of the secondary ripple effect of design decisions which may cause programmatic difficulties is also addressed.

  17. Design hourly volume from road users' perspective

    SciTech Connect

    Sharma, S.C.

    1986-07-01

    Highway designers have raised some serious questions in the past about the validity of the conventional DHV approach. One criticism is that it focuses on facility utilization rather than being roadway-user oriented. The purpose of this study is to reexamine the traditional 30th highest hourly approach from the road users' perspective. The road use type, or road users' perspective is characterized in this note by variables such as trip purpose and trip length distribution. More specifically, the objectives of the analysis presented in this note are: (1) To investigate the effect of road use type on the DHV considerations; and (2) to suggest a range of highest hourly volumes suitable for design purpose from the point of view of the total number of users experiencing traffic congestion rather than a number of hours of facility congestion, such as the 30th highest hour approach permitting a total of 30 hours of facility congestion for all types of road users.

  18. AOTV Low L/D Preliminary Aeroheating Design Environment

    NASA Technical Reports Server (NTRS)

    Engel, C. D.

    1983-01-01

    The aerothermal environment to a configuration with a brake face which exhibits a low lift to drag ratio (L/D) of below 0.75 is emphasized. The five times geosynchronous (5 x Geo) orbit entry was selected as the design trajectory. The available data base and math model is discussed. The resulting preliminary design environment is documented. Recommendations as to how the design environment may be improved through technological advances are given.

  19. Multidisciplinary Optimization Methods for Aircraft Preliminary Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Altus, Steve; Braun, Robert; Gage, Peter; Sobieski, Ian

    1994-01-01

    This paper describes a research program aimed at improved methods for multidisciplinary design and optimization of large-scale aeronautical systems. The research involves new approaches to system decomposition, interdisciplinary communication, and methods of exploiting coarse-grained parallelism for analysis and optimization. A new architecture, that involves a tight coupling between optimization and analysis, is intended to improve efficiency while simplifying the structure of multidisciplinary, computation-intensive design problems involving many analysis disciplines and perhaps hundreds of design variables. Work in two areas is described here: system decomposition using compatibility constraints to simplify the analysis structure and take advantage of coarse-grained parallelism; and collaborative optimization, a decomposition of the optimization process to permit parallel design and to simplify interdisciplinary communication requirements.

  20. Preliminary conceptual design of DEMO EC system

    SciTech Connect

    Garavaglia, S. Bin, W.; Bruschi, A.; Granucci, G.; Moro, A.; Rispoli, N.; Grossetti, G.; Strauss, D.; Jelonnek, J.; Tran, Q. M.; Franke, T.

    2015-12-10

    In the framework of EUROfusion Consortium the Work Package Heating and Current Drive addresses the engineering design and R&D for the electron cyclotron, ion cyclotron and neutral beam systems. This paper reports the activities performed in 2014, focusing on the work done regarding the input for the conceptual design of the EC system, particularly for the gyrotron, the transmission line and the launchers.

  1. Numerical aerodynamic simulation facility preliminary study, volume 2 and appendices

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data to support results obtained in technology assessment studies are presented. Objectives, starting points, and future study tasks are outlined. Key design issues discussed in appendices include: data allocation, transposition network design, fault tolerance and trustworthiness, logic design, processing element of existing components, number of processors, the host system, alternate data base memory designs, number representation, fast div 521 instruction, architectures, and lockstep array versus synchronizable array machine comparison.

  2. Preliminary design study of a baseline MIUS

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.; Shields, V. E.; Rippey, J. O.; Roberts, H. L.; Wadle, R. C.; Wallin, S. P.; Gill, W. L.; White, E. H.; Monzingo, R.

    1977-01-01

    Results of a conceptual design study to establish a baseline design for a modular integrated utility system (MIUS) are presented. The system concept developed a basis for evaluating possible projects to demonstrate an MIUS. For the baseline study, climate conditions for the Washington, D.C., area were used. The baseline design is for a high density apartment complex of 496 dwelling units with a planned full occupancy of approximately 1200 residents. Environmental considerations and regulations for the MIUS installation are discussed. Detailed cost data for the baseline MIUS are given together with those for design and operating variations under climate conditions typified by Las Vegas, Nevada, Houston, Texas, and Minneapolis, Minnesota. In addition, results of an investigation of size variation effects, for 300 and 1000 unit apartment complexes, are presented. Only conceptual aspects of the design are discussed. Results regarding energy savings and costs are intended only as trend information and for use in relative comparisons. Alternate heating, ventilation, and air conditioning concepts are considered in the appendix.

  3. NASA Aeroelasticity Handbook Volume 2: Design Guides Part 2

    NASA Technical Reports Server (NTRS)

    Ramsey, John K. (Editor)

    2006-01-01

    The NASA Aeroelasticity Handbook comprises a database (in three formats) of NACA and NASA aeroelasticity flutter data through 1998 and a collection of aeroelasticity design guides. The Microsoft Access format provides the capability to search for specific data, retrieve it, and present it in a tabular or graphical form unique to the application. The full-text NACA and NASA documents from which the data originated are provided in portable document format (PDF), and these are hyperlinked to their respective data records. This provides full access to all available information from the data source. Two other electronic formats, one delimited by commas and the other by spaces, are provided for use with other software capable of reading text files. To the best of the author s knowledge, this database represents the most extensive collection of NACA and NASA flutter data in electronic form compiled to date by NASA. Volume 2 of the handbook contains a convenient collection of aeroelastic design guides covering fixed wings, turbomachinery, propellers and rotors, panels, and model scaling. This handbook provides an interactive database and design guides for use in the preliminary aeroelastic design of aerospace systems and can also be used in validating or calibrating flutter-prediction software.

  4. Nevada potential repository preliminary transportation strategy Study 2. Volume 1

    SciTech Connect

    1996-02-01

    The objectives of this study were to build on the findings of the Nevada Potential Repository Preliminary Transportation Strategy Study 1 (CRWMS M&O 1995b), and to provide additional information for input to the repository environmental impact statement (EIS) process. In addition, this study supported the future selection of a preferred rail corridor and/or heavy haul route based on defensible data, methods, and analyses. Study research did not consider proposed legislation. Planning was conducted according to the Civilian Radioactive Waste Management Program Plan (DOE 1994a). The specific objectives of Study 2 were to: eliminate or reduce data gaps, inconsistencies, and uncertainties, and strengthen the analysis performed in Study 1; develop a preliminary list of rail route evaluation criteria that could be used to solicit input from stakeholders during scoping meetings. The evaluation criteria will be revised based on comments received during scoping; restrict and refine the width of the four rail corridors identified in Study 1 to five miles or less, based on land use constraints and engineering criteria identified and established in Study 2; evaluate national-level effects of routing spent nuclear fuel and high-level waste to the four identified branch lines, including the effects of routing through or avoiding Las Vegas; continue to gather published land use information and environmental data to support the repository EIS; continue to evaluate heavy haul truck transport over three existing routes as an alternative to rail and provide sufficient information to support the repository EIS process; and evaluate secondary uses for rail (passenger use, repository construction, shared use).

  5. Preliminary design specifications of a calcium model

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A list of objectives, requirements, and guidelines are given for a calcium model. Existing models are reviewed and evaluated in relation to the stated objectives and requirements. The reviewed models were either too abstract or apparently invalidated. A technical approach to the design of a desirable model is identified.

  6. Preliminary design of a terrain recognition system.

    PubMed

    Zhang, Fan; Fang, Zheng; Liu, Ming; Huang, He

    2011-01-01

    This paper aims to design a wearable terrain recognition system, which might assist the control of powered artificial prosthetic legs. A laser distance sensor and inertial measurement unit (TMU) sensors were mounted on human body. These sensors were used to identify the movement state of the user, reconstruct the geometry of the terrain in front of the user while walking, and recognize the type of terrain before the user stepped on it. Different sensor configurations were investigated and compared. The designed system was evaluated on one healthy human subject when walking on an obstacle course in the laboratory environment. The results showed that the reconstructed terrain height demonstrated clearer pattern difference among studied terrains when the laser was placed on the waist than that when the laser was mounted on the shank. The designed system with the laser on the waist accurately recognized 157 out of 160 tested terrain transitions, 300 ms-2870 ms before the user switched the negotiated terrains. These promising results demonstrated the potential application of the designed terrain recognition system to further improve the control of powered artificial legs.

  7. Preliminary Design of a Terrain Recognition System

    PubMed Central

    Zhang, Fan; Fang, Zheng; Liu, Ming; Huang, He

    2013-01-01

    This paper aims to design a wearable terrain recognition system, which might assist the control of powered artificial prosthetic legs. A laser distance sensor and inertial measurement unit (IMU) sensors were mounted on human body. These sensors were used to identify the movement state of the user, reconstruct the geometry of the terrain in front of the user while walking, and recognize the type of terrain before the user stepped on it. Different sensor configurations were investigated and compared. The designed system was evaluated on one healthy human subject when walking on an obstacle course in the laboratory environment. The results showed that the reconstructed terrain height demonstrated clearer pattern difference among studied terrains when the laser was placed on the waist than that when the laser was mounted on the shank. The designed system with the laser on the waist accurately recognized 157 out of 160 tested terrain transitions, 300ms–2870ms before the user switched the negotiated terrains. These promising results demonstrated the potential application of the designed terrain recognition system to further improve the control of powered artificial legs. PMID:22255571

  8. DSN energy data base preliminary design

    NASA Technical Reports Server (NTRS)

    Cole, E. R.; Herrera, L. O.; Lascu, D. M.

    1979-01-01

    The design and implementation of a computerized data base created to support the DSN Energy Conservation Project with data relating to energy use at Goldstone Deep Space Communications Complex are described. The results of development work to date, are presented along with work currently in progress or in the planning stage.

  9. Preliminary design of an asteroid hopping mission

    NASA Astrophysics Data System (ADS)

    Scheppa, Michael D.

    In 2010, NASA announced that its new vision is to support private space launch operations. It is anticipated that this new direction will create the need for new and innovative ideas that push the current boundaries of space exploration and contain the promise of substantial gain, both in research and capital. The purpose of the study is to plan and estimate the feasibility of a mission to visit a number of near Earth asteroids (NEAs). The mission would take place before the end of the 21st century, and would only use commercially available technology. Throughout the mission design process, while holding astronaut safety paramount, it was the goal to maximize the return while keeping the cost to a minimum. A mission of the nature would appeal to the private space industry because it could be easily adapted and set into motion. The mission design was divided into three main parts; mission timeline, vehicle design and power sources, with emphasis on nuclear and solar electric power, were investigated. The timeline and associated trajectories were initially selected using a numerical estimation and then optimized using Satellite Tool Kit (STK) 9.s's Design Explorer Optimizer [1]. Next, the spacecraft was design using commercially available parts that would support the mission requirements. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) was and instrumental piece in maximizing the number of NEAs visited. Once the spacecraft was designed, acceptable power supply options were investigated. The VASIMR VX-200 requires 200 kilowatts of power to maintain thrust. This creates the need for a substantial power supply that consists of either a nuclear reactor of massive solar arrays. STK 9.1's Design Explorer Optimizer was able to create a mission time line that allowed for the exploration of seven NEAs in under two years, while keeping the total mission DeltaV under 71 kilometers per second. Based on these initial findings, it is determined that a mission of this

  10. Preliminary design review report for K Basin Dose Reduction Project

    SciTech Connect

    Blackburn, L.D.

    1996-01-01

    The strategy for reducing radiation dose, originating from radionuclides absorbed in the K East Basin concrete, is to raise the pool water level to provide additional shielding. This report documents a preliminary design review conducted to ensure that design approaches for cleaning/coating basin walls and modifying other basin components were appropriate. The conclusion of this review was that design documents presently conclusion of this review was that design documents presently completed or in process of modification are and acceptable basis for proceeding to complete the design.

  11. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 2, Technical basis

    SciTech Connect

    Not Available

    1992-12-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume, Volume 2, contains the technical basis for the 1992 PA. Specifically, it describes the conceptual basis for consequence modeling and the PA methodology, including the selection of scenarios for analysis, the determination of scenario probabilities, and the estimation of scenario consequences using a Monte Carlo technique and a linked system of computational models. Additional information about the 1992 PA is provided in other volumes. Volume I contains an overview of WIPP PA and results of a preliminary comparison with the long-term requirements of the EPA`s Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses related to the preliminary comparison with 40 CFR 191B. Volume 5 contains uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance. Finally, guidance derived from the entire 1992 PA is presented in Volume 6.

  12. Preliminary design package for solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The preliminary design review on the development of a multi-family solar heating and domestic hot water prototype system is presented. The report contains the necessary information to evaluate the system. The system consists of the following subsystems: collector, storage, transport, control and Government-furnished site data acquisition.

  13. Preliminary design document: Ground based testbed for avionics systems

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design and interface requirements for an avionics Ground Based Test bed (GBT) to support Heavy Lift Cargo Vehicles (HLCV) is presented. It also contains data on the vehicle subsystem configurations that are to be supported during their early, pre-PDR developmental phases. Several emerging technologies are also identified for support. A Preliminary Specification Tree is also presented.

  14. The ASTRO-1 preliminary design review coupled load analysis

    NASA Technical Reports Server (NTRS)

    Mcghee, D. S.

    1984-01-01

    Results of the ASTRO-1 preliminary design review coupled loads analysis are presented. The M6.0Y Generic Shuttle mathematical models were used. Internal accelerations, interface forces, relative displacements, and net e.g., accelerations were recovered for two ASTRO-1 payloads in a tandem configuration. Twenty-seven load cases were computed and summarized. Load exceedences were found and recommendations made.

  15. Individualization for Education at Scale: MIIC Design and Preliminary Evaluation

    ERIC Educational Resources Information Center

    Brinton, Christopher G.; Rill, Ruediger; Ha, Sangtae; Chiang, Mung; Smith, Robert; Ju, William

    2015-01-01

    We present the design, implementation, and preliminary evaluation of our Adaptive Educational System (AES): the Mobile Integrated and Individualized Course (MIIC). MIIC is a platform for personalized course delivery which integrates lecture videos, text, assessments, and social learning into a mobile native app, and collects clickstream-level…

  16. Preliminary Design, Vertical Stores Handling Conveyor

    DTIC Science & Technology

    1977-05-01

    requirements will be included in the applicable specification. Components with repetitive quality, test or failure history will be monitored and...a design life expectancy exceeding all test, checkout, and operational requirements? 26) What is the failure history of the item? Is this a critical...Criteria Report DD 1423 Item B001A ( partial fulfillment of line item 004 re Contract No. N00024-72-C-5300) Copies: 6 Reproducibles: 0 Submitted

  17. Preliminary Design Guide for Arctic Equipment

    DTIC Science & Technology

    1989-05-01

    during the span of a zinc , titanium and beryllium. At low tempera- few days, and 24-hour temperature variations of tures, the yield strength of many...Mazda (1983, p. 20/19). Zinc -air Energy output Falls to 20% or les. of nominal. Capacitors Capacitance 10 ppm/C to 2000 ppm/C. Maintain at constant...grades have a lower transition temperature concern to the designer. Loss of flexibility, in- than ferritic grades. Processing and alloying of creased

  18. Preliminary shuttle structural dynamics modeling design study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and development of a structural dynamics model of the space shuttle are discussed. The model provides for early study of structural dynamics problems, permits evaluation of the accuracy of the structural and hydroelastic analysis methods used on test vehicles, and provides for efficiently evaluating potential cost savings in structural dynamic testing techniques. The discussion is developed around the modes in which major input forces and responses occur and the significant structural details in these modes.

  19. Preliminary Tritium Management Design Activities at ORNL

    SciTech Connect

    Harrison, Thomas J.; Felde, David K.; Logsdon, Randall J.; McFarlane, Joanna; Qualls, A. L.

    2016-09-01

    Interest in salt-cooled and salt-fueled reactors has increased over the last decade (Forsberg et al. 2016). Several private companies and universities in the United States, as well as governments in other countries, are developing salt reactor designs and/or technology. Two primary issues for the development and deployment of many salt reactor concepts are (1) the prevention of tritium generation and (2) the management of tritium to prevent release to the environment (Holcomb 2013). In 2016, the US Department of Energy (DOE) initiated a research project under the Advanced Reactor Technology Program to (1) experimentally assess the feasibility of proposed methods for tritium mitigation and (2) to perform an engineering demonstration of the most promising methods. This document describes results from the first year’s efforts to define, design, and build an experimental apparatus to test potential methods for tritium management. These efforts are focused on producing a final design document as the basis for the apparatus and its scheduled completion consistent with available budget and approvals for facility use.

  20. Preliminary 2D design study for A&PCT

    SciTech Connect

    Keto, E.; Azevedo, S.; Roberson, P.

    1995-03-01

    Lawrence Livermore National Laboratory is currently designing and constructing a tomographic scanner to obtain the most accurate possible assays of radioactivity in barrels of nuclear waste in a limited amount of time. This study demonstrates a method to explore different designs using laboratory experiments and numerical simulations. In particular, we examine the trade-off between spatial resolution and signal-to-noise. The simulations are conducted in two dimensions as a preliminary study for three dimensional imaging. We find that the optimal design is entirely dependent on the expected source sizes and activities. For nuclear waste barrels, preliminary results indicate that collimators with widths of 1 to 3 inch and aspect ratios of 5:1 to 10:1 should perform well. This type of study will be repeated in 3D in more detail to optimize the final design.

  1. An integrated computer system for preliminary design of advanced aircraft.

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Sobieszczanski, J.; Landrum, E. J.

    1972-01-01

    A progress report is given on the first phase of a research project to develop a system of Integrated Programs for Aerospace-Vehicle Design (IPAD) which is intended to automate to the largest extent possible the preliminary and detailed design of advanced aircraft. The approach used is to build a pilot system and simultaneously to carry out two major contractual studies to define a practical IPAD system preparatory to programing. The paper summarizes the specifications and goals of the IPAD system, the progress to date, and any conclusion reached regarding its feasibility and scope. Sample calculations obtained with the pilot system are given for aircraft preliminary designs optimized with respect to discipline parameters, such as weight or L/D, and these results are compared with designs optimized with respect to overall performance parameters, such as range or payload.

  2. Preliminary design of a shuttle docking and cargo handling system

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Work performed prior to concept selection, concept evaluation, and the preliminary design are summarized. The initial work included selection of the requirements and guidelines used to formulate concepts; analysis to determine detailed requirements for reach, velocity, torque, etc.; formulation of the alternative concepts; the evaluation and ranking of the concepts; and the selection of a concept. The man-in-the-loop simulation performed with a six degree of freedom moving base simulator and a three degree of freedom manipulator arm are described. The analysis and tradeoffs of those design parameters which are the key to the preliminary design are described. Estimates for a future development program are presented, including a schedule and manpower breakdown and cost estimate. The system design parameters, with a weight and power breakdown are summarized.

  3. Comprehensive missile aerodynamics programs for preliminary design

    NASA Technical Reports Server (NTRS)

    Dillenius, M. F. E.; Hemsch, M. J.; Sawyer, W. C.; Allen, J. M.; Blair, A. B., Jr.

    1982-01-01

    Two different classes of missile aeroprediction programs have been recently developed. The first class of programs provides rapid engineering predictions and includes MISSILE1 and MISSILE2 applicable to missile configurations with axisymmetric bodies. The second class of programs consists of the DEMON series, including a simplified version NSWCDM, designed to calculate detailed loadings acting on supersonic missiles which may have non-circular body cross sections. Both classes account for high angles of attack and track vortices from canard or wing section to the tail section. Extensive comparisons with experimental data are presented including nonlinear effects of canard control.

  4. Preliminary design package for solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The preliminary design review on the development of two prototype solar heating and hot water systems is presented. The information contained in this report includes system certification, system functional description, system configuration, system specification, system performance and other documents pertaining to the progress and the design of the system. This system, which is intended for use in the normal single-family residence, consists of the following subsystems: collector, storage, control, transport, and Government-furnished Site Data Acquisition.

  5. Design and Preliminary Characterization of the USNO Rubidium Fountain

    DTIC Science & Technology

    2005-08-01

    Design and Preliminary Characterization of the USNO Rubidium Fountain Steven Peil, Scott Crane, Thomas B. Swanson, and Christopher R. Ekstrom Time ...and power servos are among the user-configurable electronics modules that we designed. Data acquisition and timing are executed with compact PCI...burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching

  6. Preliminary design data package, appendix C. [hybrid electric vehicles

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The data and documentation required to define the preliminary design of a near term hybrid vehicle and to quantify its operational characteristics are presented together with the assumptions and rationale behind the design decisions. Aspects discussed include development requirements for the propulsion system, the chassis system, the body, and the vehicle systems. Particular emphasis is given to the controls, the heat engine, and the batteries.

  7. Preliminary Thermal Design of Cryogenic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin

    2015-01-01

    Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.

  8. MOD-5A wind turbine generator program design report: Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator covering work performed between July 1980 and June 1984 is discussed. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 1, the Executive Summary, summarizes all phases of the MOD-5A program. The performance and cost of energy generated by the MOD-5A are presented. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation, power generation, and control and instrumentation subsystems - is described briefly. The early phases of the MOD-5A program, during which the design was analyzed and optimized, and new technologies and materials were developed, are discussed. Manufacturing, quality assurance, and safety plans are presented. The volume concludes with an index of volumes 2 and 3.

  9. MOD-5A wind turbine generator program design report: Volume 1: Executive Summary

    NASA Astrophysics Data System (ADS)

    1984-08-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator covering work performed between July 1980 and June 1984 is discussed. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 1, the Executive Summary, summarizes all phases of the MOD-5A program. The performance and cost of energy generated by the MOD-5A are presented. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation, power generation, and control and instrumentation subsystems - is described briefly. The early phases of the MOD-5A program, during which the design was analyzed and optimized, and new technologies and materials were developed, are discussed. Manufacturing, quality assurance, and safety plans are presented. The volume concludes with an index of volumes 2 and 3.

  10. Preliminary design method for deployable spacecraft beams

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Cassapakis, Costas

    1995-01-01

    There is currently considerable interest in low-cost, lightweight, compactly packageable deployable elements for various future missions involving small spacecraft. These elements must also have a simple and reliable deployment scheme and possess zero or very small free-play. Although most small spacecraft do not experience large disturbances, very low stiffness appendages or free-play can couple with even small disturbances and lead to unacceptably large attitude errors which may involve the introduction of a flexible-body control system. A class of structures referred to as 'rigidized structures' offers significant promise in providing deployable elements that will meet these needs for small spacecraft. The purpose of this paper is to introduce several rigidizable concepts and to develop a design methodology which permits a rational comparison of these elements to be made with alternate concepts.

  11. STORMWATER BEST MANAGEMENT PRACTICES DESIGN GUIDE VOLUME 2 - VEGETATIVE BIOFILTERS

    EPA Science Inventory

    This document is Volume 2 of a three volume document that provides guidance on the selection and design of stormwater management Best Management Practices (BMPs). This second volume provides specific design guidance for a group of onsite BMP control practices that are referred t...

  12. STORMWATER BEST MANAGEMENT PRACTICES DESIGN GUIDE VOLUME 2 - VEGETATIVE BIOFILTERS

    EPA Science Inventory

    This document is Volume 2 of a three volume document that provides guidance on the selection and design of stormwater management Best Management Practices (BMPs). This second volume provides specific design guidance for a group of onsite BMP control practices that are referred t...

  13. Preliminary design of the redundant software experiment

    NASA Technical Reports Server (NTRS)

    Campbell, Roy; Deimel, Lionel; Eckhardt, Dave, Jr.; Kelly, John; Knight, John; Lauterbach, Linda; Lee, Larry; Mcallister, Dave; Mchugh, John

    1985-01-01

    The goal of the present experiment is to characterize the fault distributions of highly reliable software replicates, constructed using techniques and environments which are similar to those used in comtemporary industrial software facilities. The fault distributions and their effect on the reliability of fault tolerant configurations of the software will be determined through extensive life testing of the replicates against carefully constructed randomly generated test data. Each detected error will be carefully analyzed to provide insight in to their nature and cause. A direct objective is to develop techniques for reducing the intensity of coincident errors, thus increasing the reliability gain which can be achieved with fault tolerance. Data on the reliability gains realized, and the cost of the fault tolerant configurations can be used to design a companion experiment to determine the cost effectiveness of the fault tolerant strategy. Finally, the data and analysis produced by this experiment will be valuable to the software engineering community as a whole because it will provide a useful insight into the nature and cause of hard to find, subtle faults which escape standard software engineering validation techniques and thus persist far into the software life cycle.

  14. A preliminary design of a knot undulator.

    PubMed

    Xi, Fuchun; Shi, Tan; Fan, Qingyan; Prestemon, Soren; Wan, Weishi; An, Zhenghua; Qiao, S

    2013-01-01

    The magnetic field configuration of the previously proposed knot undulator [Qiao et al. (2009). Rev. Sci. Instrum. 80, 085108] is realised in the design of a hybridized elliptically polarized undulator, which is presented. Although the details of the field distribution are not the same as those in the theoretical proposal, it is demonstrated that the practical knot undulator could work perfectly. In order to understand the minor discrepancies of the two, mathematical formulae of the synchrotron radiation are derived based on the Fourier transform of the magnetic field. From the results of calculations by simulation program, the discrepancies could be well interpreted by the corresponding formulae. The results show the importance of optimization of the end sections of the knot undulator to suppress the on-axis heat load. Furthermore, a study of the impact of the undulator on beam dynamics of the storage ring was conducted using the Shanghai Synchrotron Radiation Facility as an example and the results show that the knot undulator has little effect on the beam.

  15. A preliminary design for the E-ELT enclosure

    NASA Astrophysics Data System (ADS)

    Cross, James; Lyle, John; Schneermann, Michael

    2008-07-01

    This paper describes a preliminary engineering design for the European Extremely Large Telescope (E-ELT) enclosure. The sheer size of the E-ELT enclosure has provoked an engineering led design approach to re-assess and resolve some conventional telescope enclosure design issues. By drawing on other large scale movable structure design experience, the proposed engineering solution fulfils the design requirements both technically and economically. Throughout the study the design approach has attempted to minimise development risks and maximise reliability of the movable systems wherever possible. All the key elements of the enclosure design are discussed. Emphasis is, however, placed on describing the unusual aspects of the design, which include: a unique system of nested panels for opening the viewing slot; and a curved gantry crane giving extensive coverage of the telescope and enclosure. The paper also proposes a possible construction method, and addresses the specific requirements associated with fabricating and maintaining a large movable structure located at high altitude.

  16. Preliminary design studies for the DESCARTES and CIDER codes

    SciTech Connect

    Eslinger, P.W.; Miley, T.B.; Ouderkirk, S.J.; Nichols, W.E.

    1992-12-01

    The Hanford Environmental Dose Reconstruction (HEDR) project is developing several computer codes to model the release and transport of radionuclides into the environment. This preliminary design addresses two of these codes: Dynamic Estimates of Concentrations and Radionuclides in Terrestrial Environments (DESCARTES) and Calculation of Individual Doses from Environmental Radionuclides (CIDER). The DESCARTES code will be used to estimate the concentration of radionuclides in environmental pathways, given the output of the air transport code HATCHET. The CIDER code will use information provided by DESCARTES to estimate the dose received by an individual. This document reports on preliminary design work performed by the code development team to determine if the requirements could be met for Descartes and CIDER. The document contains three major sections: (i) a data flow diagram and discussion for DESCARTES, (ii) a data flow diagram and discussion for CIDER, and (iii) a series of brief statements regarding the design approach required to address each code requirement.

  17. Preliminary design of the Space Station internal thermal control system

    NASA Technical Reports Server (NTRS)

    Herrin, Mark T.; Patterson, David W.; Turner, Larry D.

    1987-01-01

    The baseline preliminary design configuration of the Internal Thermal Control system (ITCS) of the U.S. Space Station pressurized elements (i.e., the Habitation and U.S. Laboratory modules, pressurized logistics carrier, and resources nodes) is defined. The ITCS is composed of both active and passive components. The subsystems which comprise the ITCS are identified and their functional descriptions are provided. The significant trades and analyses, which were performed during Phase B (i.e., the preliminary design phase) that resulted in the design described herein, are discussed. The ITCS interfaces with the station's central Heat Rejection and Transport System (HRTS), other systems, and externally attached pressurized payloads are described. Requirements on the ITCS with regard to redundancy and experiment support are also addressed.

  18. Advanced Technology Display House. Volume 2: Energy system design concepts

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  19. Buffalo Harbor Study. Preliminary Feasibility Report. Volume II. Appendices.

    DTIC Science & Technology

    1983-04-01

    designed for the lowest height that provides the protection required and thereby keeps the construction and maintenance costs at a minimum (see paragraph...Growth Scenario B-74 B7 ADVANCE REPLACEMENT B-83 a. Overview B-83 b. Derivation of Average Annual Advance Replacement Costs B-84 B8 MAINTENANCE DREDGING...B-86 a. Overview B-86 b. Shoaling at Buffalo Harbor B-86 c. History of Authorized Depth Changes B-87 d. Maintenance Dredging B-87 e. Historical

  20. Preliminary Design Report for the Yakima/Klickitat Production Project.

    SciTech Connect

    US Bonneville Power Administration

    1990-04-01

    A master plan for the Yakima/Klickitat Production Project (YKPP) was developed by the Northwest Power Planning Council (Council) on October 15, 1987, as a reasonable basis upon which the Bonneville Power Administration (BPA) could proceed to fund predesign work on the project. The Council approved the predesign work on the condition that eight preliminary tasks were completed. These tasks are: Task 1. Agreement on a refined statement of project goals. Task 2. Completion of a technical analysis of water supplies. Task 3. Completion of an experimental design plan. Task 4. Development of a harvest management plan. Task 5. Assessment of potential genetic risks. Task 6. Project coordination with all other affected parties. Task 7. Submission of a preliminary design report to the Council. Task 8. Develop a project management structure. The preliminary design report summarizes the work completed on these tasks. It provides a description of the preliminary design, engineering, and construction phases of project development, and gives an estimate of project costs. Also included is a description of other studies that were conducted to support YKPP planning. The results of studies conducted during the last 30 months indicate that hatchery facilities can be built in the Yakima and Klickitat subbasins to provide harvest benefits and to supplement natural production. Planning for the Yakima subbasin is at a more advanced stage of development than for the Klickitat subbasin because of greater availability of basic resource information. The information needed to proceed with final design and construction for the Klickitat subbasin will be available by 1992, as ongoing predesign work continues. This schedule is consistent with the anticipated phased completion of the YKPP by 1997.

  1. Energy efficient engine: Preliminary design and integration studies

    NASA Technical Reports Server (NTRS)

    Johnston, R. P.; Hirschkron, R.; Koch, C. C.; Neitzel, R. E.; Vinson, P. W.

    1978-01-01

    Parametric design and mission evaluations of advanced turbofan configurations were conducted for future transport aircraft application. Economics, environmental suitability and fuel efficiency were investigated and compared with goals set by NASA. Of the candidate engines which included mixed- and separate-flow, direct-drive and geared configurations, an advanced mixed-flow direct-drive configuration was selected for further design and evaluation. All goals were judged to have been met except the acoustic goal. Also conducted was a performance risk analysis and a preliminary aerodynamic design of the 10 stage 23:1 pressure ratio compressor used in the study engines.

  2. NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review

    SciTech Connect

    Ennis, Brandon Lee; Paquette, Joshua A.

    2015-10-01

    This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.

  3. Preliminary design study of the TMT Telescope structure system: overview

    NASA Astrophysics Data System (ADS)

    Usuda, Tomonori; Ezaki, Yutaka; Kawaguchi, Noboru; Nagae, Kazuhiro; Kato, Atsushi; Takaki, Junji; Hirano, Masaki; Hattori, Tomoya; Tabata, Masaki; Horiuchi, Yasushi; Saruta, Yusuke; Sofuku, Satoru; Itoh, Noboru; Oshima, Takeharu; Takanezawa, Takashi; Endo, Makoto; Inatani, Junji; Iye, Masanori; Sadjadpour, Amir; Sirota, Mark; Roberts, Scott; Stepp, Larry

    2014-07-01

    We present an overview of the preliminary design of the Telescope Structure System (STR) of Thirty Meter Telescope (TMT). NAOJ was given responsibility for the TMT STR in early 2012 and engaged Mitsubishi Electric Corporation (MELCO) to take over the preliminary design work. MELCO performed a comprehensive preliminary design study in 2012 and 2013 and the design successfully passed its Preliminary Design Review (PDR) in November 2013 and April 2014. Design optimizations were pursued to better meet the design requirements and improvements were made in the designs of many of the telescope subsystems as follows: 1. 6-legged Top End configuration to support secondary mirror (M2) in order to reduce deformation of the Top End and to keep the same 4% blockage of the full aperture as the previous STR design. 2. "Double Lower Tube" of the elevation (EL) structure to reduce the required stroke of the primary mirror (M1) actuators to compensate the primary mirror cell (M1 Cell) deformation caused during the EL angle change in accordance with the requirements. 3. M1 Segment Handling System (SHS) to be able to make removing and installing 10 Mirror Segment Assemblies per day safely and with ease over M1 area where access of personnel is extremely difficult. This requires semi-automatic sequence operation and a robotic Segment Lifting Fixture (SLF) designed based on the Compliance Control System, developed for controlling industrial robots, with a mechanism to enable precise control within the six degrees of freedom of position control. 4. CO2 snow cleaning system to clean M1 every few weeks that is similar to the mechanical system that has been used at Subaru Telescope. 5. Seismic isolation and restraint systems with respect to safety; the maximum acceleration allowed for M1, M2, tertiary mirror (M3), LGSF, and science instruments in 1,000 year return period earthquakes are defined in the requirements. The Seismic requirements apply to any EL angle, regardless of the

  4. Numerical aerodynamic simulation facility preliminary study, volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A technology forecast was established for the 1980-1985 time frame and the appropriateness of various logic and memory technologies for the design of the numerical aerodynamic simulation facility was assessed. Flow models and their characteristics were analyzed and matched against candidate processor architecture. Metrics were established for the total facility, and housing and support requirements of the facility were identified. An overview of the system is presented, with emphasis on the hardware of the Navier-Stokes solver, which is the key element of the system. Software elements of the system are also discussed.

  5. Preliminary Validation of the Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Concept

    NASA Technical Reports Server (NTRS)

    Williams, Daniel; Consiglio, Maria; Murdoch, Jennifer; Adams, Catherine

    2004-01-01

    This document provides a preliminary validation of the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept for normal conditions. Initial results reveal that the concept provides reduced air traffic delays when compared to current operations without increasing pilot workload. Characteristic to the SATS HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA) which would be activated by air traffic control (ATC) around designated non-towered, non-radar airports. During periods of poor visibility, SATS pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft in the SCA. Using onboard equipment and simple instrument flight procedures, they would then be better able to approach and land at the airport or depart from it. This concept would also require a new, ground-based automation system, typically located at the airport that would provide appropriate sequencing information to the arriving aircraft. Further validation of the SATS HVO concept is required and is the subject of ongoing research and subsequent publications.

  6. Electrical Capacitance Volume Tomography: Design and Applications

    PubMed Central

    Wang, Fei; Marashdeh, Qussai; Fan, Liang-Shih; Warsito, Warsito

    2010-01-01

    This article reports recent advances and progress in the field of electrical capacitance volume tomography (ECVT). ECVT, developed from the two-dimensional electrical capacitance tomography (ECT), is a promising non-intrusive imaging technology that can provide real-time three-dimensional images of the sensing domain. Images are reconstructed from capacitance measurements acquired by electrodes placed on the outside boundary of the testing vessel. In this article, a review of progress on capacitance sensor design and applications to multi-phase flows is presented. The sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of three-dimensional capacitance sensors are illustrated. The article also highlights applications of ECVT sensors on vessels of various sizes from 1 to 60 inches with complex geometries. Case studies are used to show the capability and validity of ECVT. The studies provide qualitative and quantitative real-time three-dimensional information of the measuring domain under study. Advantages of ECVT render it a favorable tool to be utilized for industrial applications and fundamental multi-phase flow research. PMID:22294905

  7. Preliminary design of a supercritical CO2 wind tunnel

    NASA Astrophysics Data System (ADS)

    Re, B.; Rurale, A.; Spinelli, A.; Guardone, A.

    2017-03-01

    The preliminary design of a test-rig for non-ideal compressible-fluid flows of carbon dioxide is presented. The test-rig is conceived to investigate supersonic flows that are relevant to the study of non-ideal compressible-fluid flows in the close proximity of the critical point and of the liquid-vapor saturation curve, to the investigation of drop nucleation in compressors operating with supercritical carbon dioxide and and to the study of flow conditions similar to those encountered in turbines for Organic Rankine Cycle applications. Three different configurations are presented and examined: a batch-operating test-rig, a closed-loop Brayton cycle and a closed-loop Rankine cycle. The latter is preferred for its versatility and for economic reasons. A preliminary design of the main components is reported, including the heat exchangers, the chiller, the pumps and the test section.

  8. Multi-Criterion Preliminary Design of a Tetrahedral Truss Platform

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    1995-01-01

    An efficient method is presented for multi-criterion preliminary design and demonstrated for a tetrahedral truss platform. The present method requires minimal analysis effort and permits rapid estimation of optimized truss behavior for preliminary design. A 14-m-diameter, 3-ring truss platform represents a candidate reflector support structure for space-based science spacecraft. The truss members are divided into 9 groups by truss ring and position. Design variables are the cross-sectional area of all members in a group, and are either 1, 3 or 5 times the minimum member area. Non-structural mass represents the node and joint hardware used to assemble the truss structure. Taguchi methods are used to efficiently identify key points in the set of Pareto-optimal truss designs. Key points identified using Taguchi methods are the maximum frequency, minimum mass, and maximum frequency-to-mass ratio truss designs. Low-order polynomial curve fits through these points are used to approximate the behavior of the full set of Pareto-optimal designs. The resulting Pareto-optimal design curve is used to predict frequency and mass for optimized trusses. Performance improvements are plotted in frequency-mass (criterion) space and compared to results for uniform trusses. Application of constraints to frequency and mass and sensitivity to constraint variation are demonstrated.

  9. Preliminary Design of JLAB Clas12 Large Superconducting Torus Magnet

    SciTech Connect

    Wang, B; Taylor, C; Zbasnik, J; Dell'Orco, D; Ross, J; Chen, J; Xu, L; Chen, H; Wagner, B; McMullin, J; Pong, R; Juang, T; Wang, M; Carter, C; Quettier, L; Burkert, V; Elouadrhiri, L; Kashy, D; Leung, E; Schneider, W

    2011-06-01

    Hall B at Jefferson Laboratory (JLAB) will need a 6-coil Torus producing a required integral of B-dl for an upgrade 12 GeV beam. In Sept. 2009, Wang NMR was awarded a contract to design, fabricate, assemble, deliver, and test at JLAB this ex citing magnet. The preliminary design review was completed by Dec. 2009 and intermediate design review will be completed by July 2010. Proto type coil construction, production of soldered conductor with SSC cable and final design review will be completed in 2010. We shall describe preliminary design and intermediate design for coil/cryostat, Torus central cylinder (hub), 48 cold mass suspensions, two intercoil support rings, cryocontrol tower, and adapter to Torus coil, magnet quench protection, and charge/ discharge con trol, and the two parallel path cooling design using supercritical helium. Because of coil in-plane and out-of-plane EM forces over these huge thin coils in addition to vacuum load, gravity load, and cool down thermal stress, we shall present the finite element analyses (FEA) on coil structure, 48 cold mass supports, intercoil cold rings, coil/ cryostat vacuum vessel, cryotower cryostat, and Torus hub. Finally, we shall shows that all pressure/ vacuum vessels and its weldment has satisfied ASME code.

  10. The Mixed Waste Management Facility. Preliminary design review

    SciTech Connect

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  11. Biomechanics of injury prediction for anthropomorphic manikins - preliminary design considerations

    SciTech Connect

    Engin, A.E.

    1996-12-31

    The anthropomorphic manikins are used in automobile safety research as well as in aerospace related applications. There is now a strong need to advance the biomechanics knowledge to determine appropriate criteria for injury likelihood prediction as functions of manikin-measured responses. In this paper, three regions of a manikin, namely, the head, knee joint, and lumbar spine are taken as examples to introduce preliminary design considerations for injury prediction by means of responses of theoretical models and strategically placed sensing devices.

  12. OSU TOMF Program Site Selection and Preliminary Concept Design Report

    SciTech Connect

    Spadling, Steve

    2012-05-10

    The purpose of this report is to confirm the programmatic requirements for the new facilities, identify the most appropriate project site, and develop preliminary site and building concepts that successfully address the overall project goals and site issues. These new facilities will be designed to accommodate the staff, drivers and maintenance requirements for the future mixed fleet of passenger vehicles, Transit Style Buses and School Buses.

  13. Preliminary Design of the PANSAT Electrical Power Subsystem

    DTIC Science & Technology

    1990-06-01

    materials such as silicon, gallium arsenide (GaAs), and more recently indium phosphide. Currently, silicon is the predominant solar cell used in space ...connection space , is not required for the preliminary calculations because the solar array’s panel size is designed to accommodate 32 2x4 cm2 cells . However...9-11.2]. Radiation enters the solar cell through two directions, the coverglass and the substrate. Radiation affects both the current and voltage

  14. New Generation Nuclear Plant (NGNP) Project, Preliminary Point Design

    SciTech Connect

    F. H. Southworth; P. E. MacDonald; A. M. Baxter; P. D. Bayless; J. M. Bolin; H. D. Gougar; R. L. Moore; A. M. Ougouag; M. B. Richards; R. L. Sant; J. W. Sterbentz; W. K. Terry

    2004-03-01

    This paper provides a preliminary assessment of two possible versions of the Next Generation Nuclear Plant (NGNP), a prismatic fuel type helium gas-cooled reactor and a pebblebed fuel helium gas reactor. Both designs will meet the three basic requirements that have been set for the NGNP: a coolant outlet temperature of 1000 C, passive safety, and a total power output consistent with that expected for commercial high-temperature gas-cooled reactors.

  15. Hand-Held Computer Programs for Preliminary Helicopter Design.

    DTIC Science & Technology

    1982-10-01

    programmable calculator a series of programs that give acceptable results during the preliminary phases of the helicopter design process. The project consists of three parts. The first part consists of several short programs and their subroutine form. These programs and subroutines compute density altitude, density, disc area, solidity, tip velocity, induced velocity, coefficient of thrust, tip loss factor, equivalent chord, and ground effect. The second part consists of major subroutines. These subroutines compute profile power, induced power, climb power, parasite power,

  16. Development of volume equations using data obtained by upper stem dendrometry with Monte Carlo integration: preliminary results for eastern redcedar

    Treesearch

    Thomas B. Lynch; Rodney E. Will; Rider Reynolds

    2013-01-01

    Preliminary results are given for development of an eastern redcedar (Juniperus virginiana) cubic-volume equation based on measurements of redcedar sample tree stem volume using dendrometry with Monte Carlo integration. Monte Carlo integration techniques can be used to provide unbiased estimates of stem cubic-foot volume based on upper stem diameter...

  17. Photopolymer-Based Volume Holographic Optical Elements: Design and Possible Applications

    NASA Astrophysics Data System (ADS)

    Bianco, G.; Ferrara, M. A.; Borbone, F.; Roviello, A.; Striano, V.; Coppola, G.

    2015-12-01

    In this paper, Volume Holographic Optical Elements (V-HOEs), such as holographic gratings and spherical lenses, are designed and fabricated by using a prototype of photopolymer. The recording process of V-HOEs and their appropriate characterization are described. Moreover, V-HOEs possible applications as solar concentrator are investigated and results are discussed. Finally, a system that allows passive solar tracking is proposed and preliminary results are reported.

  18. NASA/Navy life/cruise fan preliminary design report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Preliminary design studies were performed to define a turbotip lift/cruise fan propulsion system for a Navy multimission aircraft. The fan is driven by the exhausts of the YJ97-GE-100 turbojet or a 20 percent Growth J97 configuration as defined during the studies. The LCF459 fan configuration defined has a tip diameter of 1.50 meters (59.0 inches) and develops a design point thrust of 75,130 N (16,890 lbs) at a fan pressure ratio of 1.319. The fan has an estimated weight of 386 kg (850 lbs). Trade studies performed to define the selected configuration are described.

  19. Design and preliminary testing of the RIC hybrid knee prosthesis.

    PubMed

    Lenzi, T; Sensinger, J; Lipsey, J; Hargrove, L; Kuiken, T

    2015-08-01

    We present a novel hybrid knee prosthesis that uses a motor, transmission and control system only for active dynamics tasks, while relying on a spring/damper system for passive dynamics activities. Active dynamics tasks require higher torque, lower speed, and occur less frequently than passive dynamic activities. By designing the actuation system around active tasks alone, we achieved a lightweight design (1.7 Kg w/o battery) without sacrificing peak torque (85Nm repetitive). Preliminary tests performed by an able-bodied person using a bypass orthosis show that the hybrid knee can support reciprocal stairs ambulation with low electrical energy consumption.

  20. Preliminary Design Program: Vapor Compression Distillation Flight Experiment Program

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Boyda, R. B.

    1995-01-01

    This document provides a description of the results of a program to prepare a preliminary design of a flight experiment to demonstrate the function of a Vapor Compression Distillation (VCD) Wastewater Processor (WWP) in microgravity. This report describes the test sequence to be performed and the hardware, control/monitor instrumentation and software designs prepared to perform the defined tests. the purpose of the flight experiment is to significantly reduce the technical and programmatic risks associated with implementing a VCD-based WWP on board the International Space Station Alpha.

  1. A preliminary shield design for a SNAP-8 power system

    NASA Technical Reports Server (NTRS)

    Karp, I. M.; Soffer, L.; Clark, M. R.

    1972-01-01

    A preliminary shield design for a nuclear power system utilizing a SNAP-8 reactor for space base application is presented. A representative space base configuration was selected to set the geometry constraints imposed on the design. The base utilizes two independent power packages each with a reactor operating at 600 kwt and each producing about 50 kwe. The crew compartment is located about 200 feet from each reactor and is large enough in extent to intercept a total shadow angle of 60 deg measured about the center line of each reactor.

  2. AGC-1 Experiment and Final Preliminary Design Report

    SciTech Connect

    Robert L. Bratton; Tim Burchell

    2006-08-01

    This report details the experimental plan and design as of the preliminary design review for the Advanced Test Reactor Graphite Creep-1 graphite compressive creep capsule. The capsule will contain five graphite grades that will be irradiated in the Advanced Test Reactor at the Idaho National Laboratory to determine the irradiation induced creep constants. Seven other grades of graphite will be irradiated to determine irradiated physical properties. The capsule will have an irradiation temperature of 900 C and a peak irradiation dose of 5.8 x 10{sup 21} n/cm{sup 2} [E > 0.1 MeV], or 4.2 displacements per atom.

  3. Preliminary thermal design of the COLD-SAT spacecraft

    NASA Technical Reports Server (NTRS)

    Arif, Hugh

    1991-01-01

    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  4. Bates solar industrial process-steam application: preliminary design review

    SciTech Connect

    Not Available

    1980-01-07

    The design is analyzed for a parabolic trough solar process heat system for a cardboard corrugation fabrication facility in Texas. The program is briefly reviewed, including an analysis of the plant and process. The performance modeling for the system is discussed, and the solar system structural design, collector subsystem, heat transport and distribution subsystem are analyzed. The selection of the heat transfer fluid, and ullage and fluid maintenance are discussed, and the master control system and data acquisition system are described. Testing of environmental degradation of materials is briefly discussed. A brief preliminary cost analysis is included. (LEW)

  5. A dispersion model approach to the preliminary design of adsorber beds for trace contaminants

    NASA Technical Reports Server (NTRS)

    Madey, R.; Czayka, M.; Forsythe, R.; Povlis, J.; Yin, K.

    1976-01-01

    It is shown that a dispersion model for the transport of a gas through a porous medium can be useful in the preliminary design of adsorber beds for the control of trace contaminants. The transmission function is considered, taking into account the transmission of 102-ppm acetaldehyde in helium flowing at various flow rates through an absorber bed. The experiments were conducted at a temperature of 25.0 C. Attention is given to a representation of the experimental breakthrough curve, the volume adsorption capacity, temperature studies, and correlations.

  6. Preliminary design of a future integrated design system

    NASA Technical Reports Server (NTRS)

    Diggins, R. M.

    1980-01-01

    IPAD is a system of computer programs and data supporting the aerospace-vehicle design process by providing a set of services to aid in the management of a design project, project technical work, and project support work. Its purpose is to integrate people, programs, and data into a unified aerospace-vehicle design system. All project-management and technical data, together with certain standard data, are stored in a data base. The IPAD functions allow project personnel to query the data base and to perform operations on the data. This permits the orderly sequencing of the task elements of a complex operation and provides common access to a single data base by various participating groups who otherwise would require many separate files. These capabilities will be provided on a single host computer or across multiple heterogeneous computers on a distributed progress basis.

  7. Computing and information sciences preliminary engineering design study

    SciTech Connect

    Schroeder, J O; Pearson, E W; Thomas, J J; Brothers, J W; Campbell, W K; DeVaney, D M; Jones, D R; Littlefield, R J; Peterson, M J

    1991-04-01

    This document presents the preliminary design concept for the integrated computing and information system to be included in the Environmental and Molecular Sciences Laboratory (EMSL) at the Pacific Northwest Laboratory, Richland, Washington, for the US Department of Energy (DOE). The EMSL is scheduled for completion and occupancy in 1994 or 1995 and will support the DOE environmental mission, in particular hazardous waste remediation. The focus of the report is on the Computing and Information Sciences engineering task of providing a fully integrated state-of-the-art computing environment for simulation, experimentation and analysis in support of molecular research. The EMSL will house two major research organizations, the Molecular Sciences Research Center (MSRC) and part of the Environmental Sciences Research Center (ESRC). Included in the report is a preliminary description of the computing and information system to be included. The proposed system architecture is based on a preliminary understanding of the EMSL users' needs for computational resources. As users understand more about the scientific challenges they face, the definition of the functional requirements will change. At the same time, the engineering team will be gaining experience with new computing technologies. Accordingly, the design architecture must evolve to reflect this new understanding of functional requirements and enabling technologies. 3 figs., 2 tabs.

  8. Parametric test for the preliminary design of suspension bridges

    NASA Astrophysics Data System (ADS)

    Arruda, M. R. T.; Serafim, J. P. M.

    2017-06-01

    The preliminary design of suspension bridges is a very important step in the design of a structure, since this stage is the one that will lead to an efficient and economic structure. The models that are used nowadays are complex and sometimes hard to apply, leading to a lack of comprehension from the designing team. This work proposes a new simplified method for the preliminary design of cable suspension bridges that relate the stiffness of the deck truss with the stiffness of the cable, in which stresses are calculated. This relation is intended to know how much of the live load is absorbed by each of these elements and finally obtaining the pre-design values of each substructure. First simple parametric tests are executed using the proposed method and finite element method with geometrical non-linear analysis, in order to study its accuracy. Finally, a real case study is analysed using a known Portuguese suspension bridge, in which the proposed method is applied and compared with numerical solutions.

  9. Preliminary Design Development of ITER X-ray Survey Spectrometer

    NASA Astrophysics Data System (ADS)

    Varshney, Sanjeev; Kumar, Siddharth; Mishra, Sapna; Yadav, Namita; Subhush, P. V.; Chaitanya, T. S.; Jha, Shivakant; Kumar, Vinay; Barnsley, Robin; Bernascolle, Philippe; Casal, Natalia; Bertschinger, Gunter; Simrock, Stefan; Drevon, Jean-Marc; Walsh, Michael

    2017-04-01

    The preliminary design of XRCS Survey spectrometer for ITER has been developed addressing many challenges snch as designing a ∼ 8.0 m long, vacuum extending sight-tube that interfaces crystal spectrometer, placed in the port-cell, with equatorial port-plug (EPP-11) while allowing ∼ 50 mm machine movements, and optimizing neutron shield design so that systems can fit into the available space and still the shutdown dose rates (SDDR) remains within the safe limits. The design detailing has been done for the sight-tube and its components addressing the ITER specific requirements. Engineering and neutronic analysis are performed tor estimating the thermal displacement, stresses in the front-end components, neutron flux on the sight-tube components, SDDRs in the interspace region etc.

  10. A bootstrap lunar base: Preliminary design review 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A bootstrap lunar base is the gateway to manned solar system exploration and requires new ideas and new designs on the cutting edge of technology. A preliminary design for a Bootstrap Lunar Base, the second provided by this contractor, is presented. An overview of the work completed is discussed as well as the technical, management, and cost strategies to complete the program requirements. The lunar base design stresses the transforming capabilities of its lander vehicles to aid in base construction. The design also emphasizes modularity and expandability in the base configuration to support the long-term goals of scientific research and profitable lunar resource exploitation. To successfully construct, develop, and inhabit a permanent lunar base, however, several technological advancements must first be realized. Some of these technological advancements are also discussed.

  11. Preliminary design study of advanced multistage axial flow core compressors

    NASA Technical Reports Server (NTRS)

    Wisler, D. C.; Koch, C. C.; Smith, L. H., Jr.

    1977-01-01

    A preliminary design study was conducted to identify an advanced core compressor for use in new high-bypass-ratio turbofan engines to be introduced into commercial service in the 1980's. An evaluation of anticipated compressor and related component 1985 state-of-the-art technology was conducted. A parametric screening study covering a large number of compressor designs was conducted to determine the influence of the major compressor design features on efficiency, weight, cost, blade life, aircraft direct operating cost, and fuel usage. The trends observed in the parametric screening study were used to develop three high-efficiency, high-economic-payoff compressor designs. These three compressors were studied in greater detail to better evaluate their aerodynamic and mechanical feasibility.

  12. Modification of ACSYNT aircraft computer program for preliminary design

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.; Rojos-Oviedo, Ruben

    1994-01-01

    This paper presents the development of a computer simulation of agility flight test techniques. Its purpose is to evaluate the agility of aircraft configurations early in the preliminary design phase. The simulation module is integrated into the NASA Ames aircraft synthesis design code. Trade studies using the agility module embedded within the design code to simulate the combat cycle time agility metric are illustrated using a Northrop F-20 aircraft model. Results show that the agility module is effective in analyzing the influence of common parameters such as thrust-to-weight ratio and wing loading on agility criteria. The module can also compare the agility potential between different configurations and has the capability to optimize agility performance early in the design process.

  13. Euler Technology Assessment program for preliminary aircraft design employing SPLITFLOW code with Cartesian unstructured grid method

    NASA Technical Reports Server (NTRS)

    Finley, Dennis B.

    1995-01-01

    This report documents results from the Euler Technology Assessment program. The objective was to evaluate the efficacy of Euler computational fluid dynamics (CFD) codes for use in preliminary aircraft design. Both the accuracy of the predictions and the rapidity of calculations were to be assessed. This portion of the study was conducted by Lockheed Fort Worth Company, using a recently developed in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages for this study, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaptation of the volume grid during the solution convergence to resolve high-gradient flow regions. This proved beneficial in resolving the large vortical structures in the flow for several configurations examined in the present study. The SPLITFLOW code predictions of the configuration forces and moments are shown to be adequate for preliminary design analysis, including predictions of sideslip effects and the effects of geometry variations at low and high angles of attack. The time required to generate the results from initial surface definition is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.

  14. 4MOST systems engineering: from conceptual design to preliminary design review

    NASA Astrophysics Data System (ADS)

    Bellido-Tirado, Olga; Frey, Steffen; Barden, Samuel C.; Brynnel, Joar; Giannone, Domenico; Haynes, Roger; de Jong, Roelof S.; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob; Winkler, Roland

    2016-08-01

    The 4MOST Facility is a high-multiplex, wide-field, brief-fed spectrograph system for the ESO VISTA telescope. It aims to create a world-class spectroscopic survey facility unique in its combination of wide-field multiplex, spectral resolution, spectral coverage, and sensitivity. At the end of 2014, after a successful concept optimization design phase, 4MOST entered into its Preliminary Design Phase. Here we present the process and tools adopted during the Preliminary Design Phase to define the subsystems specifications, coordinate the interface control documents and draft the system verification procedures.

  15. Design of H2-O2 space shuttle APU. Volume 1: APU design

    NASA Technical Reports Server (NTRS)

    Harris, E.

    1974-01-01

    The H2-O2 space shuttle auxiliary power unit (APU) program is a NASA-Lewis effort aimed at hardware demonstration of the technology required for potential use on the space shuttle. It has been shown that a hydrogen-oxygen power unit (APU) system is an attractive alternate to the space shuttle baseline hydrazine APU system for minimum weight. It has the capability for meeting many of the heat sink requirements for the space shuttle vehicle, thereby reducing the amount of expendable evaporants required for cooling in the baseline APU. Volume 1 of this report covers preliminary design and analysis of the current reference system and detail design of the test version of this reference system. Combustor test results are also included. Volume 2 contains the results of the analysis of an initial version of the reference system and the computer printouts of system performance. The APU consists of subsystems for propellant feed and conditioning, turbopower, and control. Propellant feed and conditioning contains all heat exchangers, valves, and the combustor. The turbopower subsystem contains a two-stage partial-admission pressure-modulated, 400-hp, 63,000-rpm turbine, a 0-to 4-g lubrication system, and a gearbox with output pads for two hydraulic pumps and an alternator (alternator not included on test unit). The electronic control functions include regulation of speed and system temperatures; and start-and-stop sequences, overspeed (rpm) and temperature limits, failsafe provisions, and automatic shutdown provisions.

  16. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Preliminary Design

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargusingh, Miriam J.

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.

  17. Preliminary Surface Thermal Design of the Mars 2020 Rover

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Jason G.; Redmond, Matthew J.; Bhandari, Pradeep

    2015-01-01

    The Mars 2020 rover, scheduled for launch in July 2020, is currently being designed at NASA's Jet Propulsion Laboratory. The Mars 2020 rover design is derived from the Mars Science Laboratory (MSL) rover, Curiosity, which has been exploring the surface of Mars in Gale Crater for over 2.5 years. The Mars 2020 rover will carry a new science payload made up of 7 instruments. In addition, the Mars 2020 rover is responsible for collecting a sample cache of Mars regolith and rock core samples that could be returned to Earth in a future mission. Accommodation of the new payload and the Sampling Caching System (SCS) has driven significant thermal design changes from the original MSL rover design. This paper describes the similarities and differences between the heritage MSL rover thermal design and the new Mars 2020 thermal design. Modifications to the MSL rover thermal design that were made to accommodate the new payload and SCS are discussed. Conclusions about thermal design flexibility are derived from the Mars 2020 preliminary thermal design experience.

  18. Preliminary design of nine high speed civil transports

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral; Vantriet, Robert; Soban, Dani; Hoang, TY

    1992-01-01

    Sixty senior design students at Cal Poly, SLO have completed a year-long project to design the next generation of High Speed Civil Transports (HSCT). The design process was divided up into three distinct phases. The first third of the project was devoted entirely to research into the special problems associated with an HSCT. These included economic viability, airport compatibility, high speed aerodynamics, sonic boom minimization, environmental impact, and structures and materials. The result of this research was the development of nine separate Requests for Proposal (RFP) that outlined reasonable yet challenging design criteria for the aircraft. All were designed to be technically feasible in the year 2015. The next phase of the project divided the sixty students into nine design groups. Each group, with its own RFP, completed a Class 1 preliminary design of an HSCT. The nine configurations varied from conventional double deltas to variable geometry wings to a pivoting oblique wing design. The final phase of the project included a more detailed Class 2 sizing as well as performance and stability and control analysis. Cal Poly, San Luis Obispo presents nine unique solutions to the same problem: that of designing an economically viable, environmentally acceptable, safe and comfortable supersonic transport.

  19. Hippocampal Brain Volume Is Associated with Faster Facial Emotion Identification in Older Adults: Preliminary Results

    PubMed Central

    Szymkowicz, Sarah M.; Persson, Jonas; Lin, Tian; Fischer, Håkan; Ebner, Natalie C.

    2016-01-01

    Quick correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging (MRI), this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analysis of covariances (ANCOVAs) models with response time (RT) as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume (ICV). Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging. PMID:27610082

  20. Preliminary optical design for the common fore optics of METIS

    NASA Astrophysics Data System (ADS)

    Agócs, Tibor; Brandl, Bernhard R.; Jager, Rieks; Bettonvil, Felix; Aitink-Kroes, Gabby; Venema, Lars; Kenworthy, Matthew; Absil, Olivier; Bertram, Thomas

    2016-08-01

    METIS is the Mid-infrared E-ELT Imager and Spectrograph, which will provide outstanding observing capabilities, focusing on high angular and spectral resolution. It consists of two diffraction-limited imagers operating in the LM and NQ bands respectively and an IFU fed diffraction-limited high-resolution (R=100,000) LM band spectrograph. These science subsystems are preceded by the common fore optics (CFO), which provides the following essential functionalities: calibration, chopping, image de-rotation, thermal background and stray light reduction. We show the evolution of the CFO optical design from the conceptual design to the preliminary optical design, detail the optimization steps and discuss the necessary trade-offs.

  1. The Preliminary Design of a Universal Martian Lander

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Gaskin, David; Adkins, Sean; MacDonnell, David; Ross, Enoch; Hashimoto, Kouichi; Miller, Loran; Sarick, John; Hicks, Jonathan; Parlock, Andrew; hide

    1993-01-01

    As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules are assembled to form a Martian base where scientific experiments are performed. The mission also incorporates hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psycho-logical effects of living on Mars. In situ fuel production for the Martian Ascent and Rendezvous Vehicle (MARV) is produced From gases in the Martian atmosphere. Following surface operations, the eight member crew uses the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  2. The Preliminary Design of a Universal Martian Lander

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Gaskin, David; Adkins, Sean; MacDonnell, David; Ross, Enoch; Hashimoto, Kouichi; Miller, Loran; Sarick, John; Hicks, Jonathan; Parlock, Andrew; Swalley, Frank (Technical Monitor)

    1993-01-01

    As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules are assembled to form a Martian base where scientific experiments are performed. The mission also incorporates hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psycho-logical effects of living on Mars. In situ fuel production for the Martian Ascent and Rendezvous Vehicle (MARV) is produced From gases in the Martian atmosphere. Following surface operations, the eight member crew uses the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  3. Preliminary seal design evaluation for the Waste Isolation Pilot Plant

    SciTech Connect

    Stormont, J C

    1988-03-01

    This report presents a preliminary evaluation of design concepts for the eventual sealing of the shafts, drifts, and boreholes at the Waste Isolation Pilot Plant Facility. The purpose of the seal systems is to limit the flow of water into, through, and out of the repository. The principal design strategy involves the consolidation of crushed or granular salt in response to the closure of the excavations in salt. Other candidate seal materials are bentonite, cementitious mixtures, and possibly asphalt. Results from in situ experiments and modeling studies, as well as laboratory materials testing and related industrial experience, are used to develop seal designs for shafts, waste storage panel entryways, non-waste containing drifts, and boreholes. Key elements of the ongoing experimental program are identified. 112 refs., 25 figs., 1 tab.

  4. 4MOST fiber feed preliminary design: prototype testing and performance

    NASA Astrophysics Data System (ADS)

    Haynes, Dionne M.; Kelz, Andreas; Barden, Samuel C.; Bauer, Svend-Marian; Ehrlich, Katjana; Haynes, Roger; Jahn, Thomas; Saviauk, Allar; de Jong, Roelof S.

    2016-08-01

    The 4MOST instrument is a multi-object-spectrograph for the ESO-VISTA telescope. The 4MOST fiber feed subsystem is composed of a fiber positioner (AESOP) holding 2436 science fibers based on the Echidna tilting spine concept, and the fiber cable, which feeds two low-resolution spectrographs (1624 fibers) and one high-resolution spectrograph (812 fibers). In order to optimize the fiber feed subsystem design and provide essential information required for the spectrograph design, prototyping and testing has been undertaken. In this paper we give an overview of the current fiber feed subsystem design and present the preliminary FRD, scrambling, throughput and system performance impact results for: maximum and minimum spine tilt, fiber connectors, cable de-rotator simulator for fiber cable lifetime tests.

  5. Preliminary design of a mobile lunar power supply

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Kenny, Barbara H.; Fulmer, Christopher R.

    1991-01-01

    A preliminary design for a Stirling isotope power system for use as a mobile lunar power supply is presented. Performance and mass of the components required for the system are estimated. These estimates are based on power requirements and the operating environment. Optimizations routines are used to determine minimum mass operational points. Shielding for the isotope system are given as a function of the allowed dose, distance from the source, and the time spent near the source. The technologies used in the power conversion and radiator systems are taken from ongoing research in the Civil Space Technology Initiative (CSTI) program.

  6. Preliminary design package for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.

  7. Preliminary design of a 15 m diameter mechanically scanned deployable offset antenna

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The preliminary design of a 15 meter diameter mechanically scanned, offset rotating, fed parabolic reflector antenna system is reported and the results of preliminary performance, structural and thermal analyses are presented.

  8. Winged cargo return vehicle. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Advanced Design Project (ADP) allows an opportunity for students to work in conjunction with NASA and other aerospace companies on NASA Advanced Design Projects. The following volumes represent the design report: Volume 1 Conceptual Design; Volume 2 Wind Tunnel Tests; Volume 3 Structural Analysis; and Volume 4 Water Tunnel Tests. The project chosen by the University of Minnesota in conjunction with NASA Marshall Space Flight Center for this year is a Cargo Return Vehicle (CRV) to support the Space Station Freedom. The vehicle is the third generation of vehicles to be built by NASA, the first two being the Apollo program, and the Space Shuttle program. The CRV is to work in conjunction with a personnel launch system (PLS) to further subdivide and specialize the vehicles that NASA will operate in the year 2000. The cargo return vehicle will carry payload to and from the Space Station Freedom (SSF).

  9. Turbine Design and Application, Volume 3

    NASA Technical Reports Server (NTRS)

    Glassman, A. J. (Editor)

    1975-01-01

    Turbine technology concepts for thermodynamic and fluid dynamics are presented along with velocity diagrams, losses, mechanical design, operation and performance. Designs discussed include: supersonic turbines, radial-inflow turbines, and turbine cooling.

  10. HIBAL Program. Preliminary Warhead-Design. Volume II. Appendices.

    DTIC Science & Technology

    1980-09-15

    60.000 25 s0 212 - Annealed . ... 80.000 56.000 28 57 149 53 orineUl 461 [41~ [4i; [j9 4 05 2~J~ !~ 1 f[r1 Rock..ll C 49 44i JL3i 02 LBL ~ ~ f..!? 25000 t...McArdle) ADTC/SD7ED (P. Buckley) Commander Naval Postgradua’~c School Monterey, CA McDonnell Douglas P.O. Box 516 St. Louis, MO 63166 Attn: J. Riley Dept

  11. Interplanetary mission design handbook. Volume 1, part 1: Earth to Venus ballistic mission opportunities, 1991-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Yin, N. H.

    1983-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Venus is presented. Contours of launch energy requirements, as well as many other launch and arrival parameters, are presented in launch data/arrival date space for all launch opportunities from 1991 through 2005. An extensive text is included which explains mission design methods, from launch window development to Venus probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations relating various parameters.

  12. Preliminary Process Design of ITER ELM Coil Bracket Brazing

    NASA Astrophysics Data System (ADS)

    LI, Xiangbin; SHI, Yi

    2015-03-01

    With the technical requirement of the International Thermonuclear Experimental Reactor (ITER) project, the manufacture and assembly technology of the mid Edge Localized Modes (ELM) coil was developed by the Institute of Plasma Physics, Chinese Academy of Science (ASIPP). As the gap between the bracket and the Stainless Steel jacketed and Mineral Insulated Conductor (SSMIC) can be larger than 0.5 mm instead of 0.01 mm to 0.1 mm as in normal industrial cases, the process of mid ELM coil bracket brazing to the SSMICT becomes quiet challenging, from a technical viewpoint. This paper described the preliminary design of ELM coil bracket brazing to the SSMIC process, the optimal bracket brazing curve and the thermal simulation of the bracket furnace brazing method developed by ANSYS. BAg-6 foil (Bag50Cu34Zn16) plus BAg-1a paste (Bag45CuZnCd) solders were chosen as the brazing filler. By testing an SSMICT prototype, it is shown that the average gap between the bracket and the SSMIC could be controlled to 0.2-0.3 mm, and that there were few voids in the brazing surface. The results also verified that the preliminary design had a favorable heat conducting performance in the bracket.

  13. A preliminary design for a satellite power system

    NASA Technical Reports Server (NTRS)

    Enriquez, Clara V.; Kokaly, Ray; Nandi, Saumya; Timmons, Mike; Garrard, Mark; Mercado, Rommel; Rogers, Brian; Ugaz, Victor

    1991-01-01

    Outlined here is a preliminary design for a Solar Power Satellite (SPS) system. The SPS will provide a clean, reliable source of energy for mass consumption. The system will use satellites in geostationary orbits around the Earth to capture the sun's energy. The intercepted sunlight will be converted to laser beam energy which can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting to one ground station. The SPs technology uses multi-layer solar cell technology arranged on a 20 sq km planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Construction will take place in low Earth orbit and array sections, 20 in total, will be sailed on the solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing panels (SSAPs). The primary truss elements used to support the arrays are composed on composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  14. System Synthesis in Preliminary Aircraft Design using Statistical Methods

    NASA Technical Reports Server (NTRS)

    DeLaurentis, Daniel; Mavris, Dimitri N.; Schrage, Daniel P.

    1996-01-01

    This paper documents an approach to conceptual and preliminary aircraft design in which system synthesis is achieved using statistical methods, specifically design of experiments (DOE) and response surface methodology (RSM). These methods are employed in order to more efficiently search the design space for optimum configurations. In particular, a methodology incorporating three uses of these techniques is presented. First, response surface equations are formed which represent aerodynamic analyses, in the form of regression polynomials, which are more sophisticated than generally available in early design stages. Next, a regression equation for an overall evaluation criterion is constructed for the purpose of constrained optimization at the system level. This optimization, though achieved in a innovative way, is still traditional in that it is a point design solution. The methodology put forward here remedies this by introducing uncertainty into the problem, resulting a solutions which are probabilistic in nature. DOE/RSM is used for the third time in this setting. The process is demonstrated through a detailed aero-propulsion optimization of a high speed civil transport. Fundamental goals of the methodology, then, are to introduce higher fidelity disciplinary analyses to the conceptual aircraft synthesis and provide a roadmap for transitioning from point solutions to probabalistic designs (and eventually robust ones).

  15. Designing for Small Volume Assembly of Advanced Electronics Packages

    NASA Technical Reports Server (NTRS)

    Galbraith, L.; Bonner, J. K.

    1995-01-01

    We describe a general methodology to Design for Producibility and Reliability (DFPAR) for very small volume production runs. In cases where the entire volume for fabrication is less than five products, traditional Statistical Process Control (SPC) is inadequate due to reliance on statistics of much larger volumes and the Central Limit Theorem. Data acquisition for process parameter estimation from such a small sample size is difficult; however, it is critical to producing high reliability product.

  16. Design of a dual port volume measuring system

    SciTech Connect

    Klevgard, P.A.

    1990-09-01

    A volume measuring system is described which uses the ideal gas law and pressure measurements to determine an unknown vessel's volume when a gas expands into that vessel from a known volume. The design, the engineering principles, the calibration, and the accuracy of this computer-controlled system are all discussed. A set of electrical and mechanical drawings of the system is included. 3 refs., 6 figs.

  17. OPTIMUM MECHANICAL DESIGN SYNTHESIS. VOLUME I.

    DTIC Science & Technology

    MECHANICAL ENGINEERING, EXPERIMENTAL DESIGN, SYNTHESIS , MECHANICAL DRAWING, OPTIMIZATION, STATE OF THE ART, REPORTS, DYNAMIC PROGRAMMING, CALCULUS OF VARIATIONS, SHOCK ABSORBERS, VIBRATION ISOLATORS.

  18. Intelligent redundant actuation system requirements and preliminary system design

    NASA Technical Reports Server (NTRS)

    Defeo, P.; Geiger, L. J.; Harris, J.

    1985-01-01

    Several redundant actuation system configurations were designed and demonstrated to satisfy the stringent operational requirements of advanced flight control systems. However, this has been accomplished largely through brute force hardware redundancy, resulting in significantly increased computational requirements on the flight control computers which perform the failure analysis and reconfiguration management. Modern technology now provides powerful, low-cost microprocessors which are effective in performing failure isolation and configuration management at the local actuator level. One such concept, called an Intelligent Redundant Actuation System (IRAS), significantly reduces the flight control computer requirements and performs the local tasks more comprehensively than previously feasible. The requirements and preliminary design of an experimental laboratory system capable of demonstrating the concept and sufficiently flexible to explore a variety of configurations are discussed.

  19. Preliminary aerodynamic design considerations for advanced laminar flow aircraft configurations

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph L., Jr.; Yip, Long P.; Jordan, Frank L., Jr.

    1986-01-01

    Modern composite manufacturing methods have provided the opportunity for smooth surfaces that can sustain large regions of natural laminar flow (NLF) boundary layer behavior and have stimulated interest in developing advanced NLF airfoils and improved aircraft designs. Some of the preliminary results obtained in exploratory research investigations on advanced aircraft configurations at the NASA Langley Research Center are discussed. Results of the initial studies have shown that the aerodynamic effects of configuration variables such as canard/wing arrangements, airfoils, and pusher-type and tractor-type propeller installations can be particularly significant at high angles of attack. Flow field interactions between aircraft components were shown to produce undesirable aerodynamic effects on a wing behind a heavily loaded canard, and the use of properly designed wing leading-edge modifications, such as a leading-edge droop, offset the undesirable aerodynamic effects by delaying wing stall and providing increased stall/spin resistance with minimum degradation of laminar flow behavior.

  20. Demo III processing architecture trades and preliminary design

    NASA Astrophysics Data System (ADS)

    Gothard, Benny M.; Cory, Phil; Peterman, Pete

    1999-01-01

    This paper will provide a summary of the methodology, metrics, analysis, and trade study efforts for the preliminary design o the Vetronics Processing Architecture (PA) system based on the Demo III Experimental Unmanned Ground Vehicle (XUV) program requirements. We will document and describe both the provided and analytically derived system requirements expressed by the proposal. Our experience based on previous mobility and Reconnaissance, Surveillance, Targeting, Acquisition systems designed and implemented for Demo II Semi-Autonomous Surrogate Vehicle and Mobile Detection, Assessment and Response System will be used to describe lessons learned as applied to the XUV in PA architecture, Single Board Computers, Card Cage Buses, Real-Time and Non Real-Time processor and Card Cage to Card Cage Communications, and Imaging and Radar pre-processors selection and choices. We have selected an initial architecture methodology.

  1. Design Criteria for Microbiological Facilities at Fort Detrick. Volume II: Design Criteria

    ERIC Educational Resources Information Center

    Army Biological Labs., Fort Detrick, MD. Industrial Health and Safety Div.

    Volume II of a two-volume manual of design criteria, based primarily on biological safety considerations. It is prepared for the use of architect-engineers in designing new or modified microbiological facilities for Fort Detrick, Maryland. Volume II is divided into the following sections: (1) architectural, (2) heating, ventilating, and air…

  2. Design Criteria for Microbiological Facilities at Fort Detrick. Volume II: Design Criteria

    ERIC Educational Resources Information Center

    Army Biological Labs., Fort Detrick, MD. Industrial Health and Safety Div.

    Volume II of a two-volume manual of design criteria, based primarily on biological safety considerations. It is prepared for the use of architect-engineers in designing new or modified microbiological facilities for Fort Detrick, Maryland. Volume II is divided into the following sections: (1) architectural, (2) heating, ventilating, and air…

  3. System 80+{trademark} Standard Design: CESSAR design certification. Volume 3: Amendment I

    SciTech Connect

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report - Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These documents describe the Combustion Engineering, Inc. System 80+{sup TM} Standard Design. This report, Volume 3, in conjunction with Volume 2, provides the design of structures, components, equipment and systems.

  4. System 80+{trademark} Standard Design: CESSAR design certification. Volume 2: Amendment I

    SciTech Connect

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report - Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These documents describe the Combustion Engineering, Inc. System 80+{sup TM} Standard Design. This report, Volume 2, in conjunction with Volume 3, provides the design of structures, components, equipment and systems.

  5. System 80+{trademark} Standard Design: CESSAR design certification. Volume 16: Amendment I

    SciTech Connect

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report - Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These volumes describe the Combustion Engineering, Inc. System 80+{trademark} Standard Design. This Volume 16 details the application of Human Factors Engineering in the design process.

  6. MINIMARS conceptual design: Report I. Volume 2

    SciTech Connect

    Lee, J.D.

    1985-12-01

    This report contains separate articles of seven aspects of the MINIMARS programs. The areas discussed are Fusion Engineering Design Center, Halo Model and Computer Code, safety design, the University of Wisconsin blankets, activation product transport in a FLiBe-VANADIUM alloy HT-9 system, a halo scraper/direct converter system, and heat transport power conversion. The individual articles are cataloged separately. (WRF)

  7. Oceanographic scanner system design study, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design is reported of a dual mode multispectral scanner, capable of satisfying both overland and oceanographic requirements. A complete system description and performance summary of the scanner are given. In addition, subsystem and component descriptions and performance analyses are treated in individual sections. The design of the scanner, with minimum modifications, interfaces to the ERTS spacecraft and the ground data handling system.

  8. Analysis of an initial lunar outpost life support system preliminary design

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Likens, William C.; Finn, Cory K.; Bilardo, Vincent J., Jr.; Ng, Yat S.

    1991-01-01

    A preliminary design of a life-support system (LSS) was developed as part of an ongoing comprehensive trade study of advanced processor technologies and system architectures for an initial lunar outpost. The design is based on a mission scenario requiring intermittent occupation of a lunar-surface habitat by a crew of four. It incorporates physiochemical process technologies that were considered for Space Station Freedom. A system-level simulation model of the design was developed to obtain steady-state material balances for each LSS processor. The mass-flow rate predictions were used to obtain estimates of the LSS mass, volume, and power consumption by means of processor-sizing correlations that were extrapolated from Space Station Freedom processor designs. The results were used to analyze the impacts of varying crew size, mission duration, processor-operation strategy, and crew-cabin loads on the LSS mass, average power consumption, volume, periodic resupply mass, and waste-accumulation rates. The merits of the design were quantified relative to an open-loop LSS, and the implications of this assessment for future LSS research and technology development were identified.

  9. Preliminary Design Optimization For A Supersonic Turbine For Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Papila, Nilay; Shyy, Wei; Griffin, Lisa; Huber, Frank; Tran, Ken; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    In this study, we present a method for optimizing, at the preliminary design level, a supersonic turbine for rocket propulsion system application. Single-, two- and three-stage turbines are considered with the number of design variables increasing from 6 to 11 then to 15, in accordance with the number of stages. Due to its global nature and flexibility in handling different types of information, the response surface methodology (RSM) is applied in the present study. A major goal of the present Optimization effort is to balance the desire of maximizing aerodynamic performance and minimizing weight. To ascertain required predictive capability of the RSM, a two-level domain refinement approach has been adopted. The accuracy of the predicted optimal design points based on this strategy is shown to he satisfactory. Our investigation indicates that the efficiency rises quickly from single stage to 2 stages but that the increase is much less pronounced with 3 stages. A 1-stage turbine performs poorly under the engine balance boundary condition. A portion of fluid kinetic energy is lost at the turbine discharge of the 1-stage design due to high stage pressure ratio and high-energy content, mostly hydrogen, of the working fluid. Regarding the optimization technique, issues related to the design of experiments (DOE) has also been investigated. It is demonstrated that the criteria for selecting the data base exhibit significant impact on the efficiency and effectiveness of the construction of the response surface.

  10. Astrionics system designers handbook, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Hardware elements in new and advanced astrionics system designs are discussed. This cost effective approach has as its goal the reduction of R&D and testing costs through the application of proven and tested astrionics components. The ready availability to the designer of data facts for applicable system components is highly desirable. The astrionics System Designers Handbook has as its objective this documenting of data facts to serve the anticipated requirements of the astrionics system designer. Eleven NASA programs were selected as the reference base for the document. These programs are: ATS-F, ERTS-B, HEAO-A, OSO-I, Viking Orbiter, OAO-C, Skylab AM/MDA, Skylab ATM, Apollo 17 CSM, Apollo 17 LM and Mariner Mars 71. Four subsystems were chosen for documentation: communications, data management, electrical power and guidance, navigation and control.

  11. Sustaining Design and Production Resources. Volume 1

    DTIC Science & Technology

    2005-01-01

    1950 V 22 1941 1958 Midget 20 1939 1952 The Porpoise and Oberon classes (Tables A. 2 and A.3) followed the same cycle of design improvement as the...1. Nuclear submarines-Great Britain-Design and construction. 2 . Shipbuilding industry-Great Britain. 3. Military-industrial complex-Great Britain. 4...Industrial Base, Vol- ume 2 .: MOD Roles and Required Technical Resources, MG- 326/ 2 -MOD (forthcoming) " The United Kingdom ’s Nuclear Submarine Industrial

  12. Preliminary design and implementation for HSOS data archive system

    NASA Astrophysics Data System (ADS)

    Lin, Ganghua

    2002-12-01

    Video Vector Magnetograph at Huairou Solar Observing Station, in Beijing of China is the primary instrument designed to simultaneously measure the solar 2-dimension magnetic field and velocity field with different spectral lines in the world. In order to satisfy needs from various users, raw data, received from the observations system is processed into CD-ROMs for archive and distribution to the Co-Investigators, and summary data is generated for viewing at the HSOS Web site (http://sun.bao.ac.cn) The data archive is designed to store in two parts for the sake of safe, one part is located at the local, the other is at headquarter of National Astronomical Center of Observatories. The data archive system is setup here. This paper presents a preliminary design and preliminary implement of the data archive system. The goal of this project is to provide a high efficient, fast speed and extensible software that is characterized by lower cost and high performance and a desire to create high quality software system. The article will encompass a wide variety of experiments associated with the inception and prototype stages to its current state of maturity of the database system, its relative integrality of the means and tools employed on a series of implement steps on operating system, database management system, and server end scripting language, etc. The solution offers significant performance improvements over some existing methods in similar system. The gained experiments all are in Linux system of PC. Everyone, who follows along with the steps described herein, must build a good online database server in a short time.

  13. Preliminary Review of Psychophysiological Technologies to Support Multimodal UAV Interface Design

    DTIC Science & Technology

    2010-05-01

    Preliminary Review of Psychophysiological Technologies to Support Multimodal UAV Interface Design Plinio Morita Fiona Chui...DRDC Toronto CR 2010-050 May 2010 Preliminary Review of Psychophysiological Technologies to Support Multimodal UAV Interface...This page intentionally left blank. DRDC Toronto CR 2010-050 iii Executive summary Preliminary Review of Psychophysiological

  14. Aerospace vehicle design, spacecraft section. Volume 1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The objective was to create a manned Martian aircraft which can perform: scientific surveys of particular sites distant from the base; a deployment of scientific instrument packages by air drop that land rovers cannot accomplish; and rescue operations. Designing the airfoil requires a wing which can operate within the low Reynolds numbers apparent on Mars. The airfoil, NASA NLF(1)-1015 was chosen. The design of the aircraft is comparable to a P-38 military aircraft. The aircraft uses fuel cells to power the two propellers. A rocket-assisted takeoff is necessary to enable Romulus to liftoff. Although the design and creation of Romulus would be an expensive adventure, such a vehicle could be most useful in evaluating the Mars surface and in creating a habitat for mankind.

  15. High voltage design guide. Volume 4: Aircraft

    NASA Astrophysics Data System (ADS)

    Dunbar, W. G.

    1983-01-01

    This report supplies the theoretical background and design techniques needed by an engineer who is designing electrical insulation for high-voltage, high-power components, equipment, and systems for aircraft. A literature survey and abundant bibliography identify references that provide further data on the subjects of partial discharges, corona, field theory and plotting, voids and processes for applying insulation. Both gaseous and solid insulations are treated. Cryogenic and liquid design notes are included. Tests and test equipment for high voltage insulation and equipment are defined. Requirements of test plans and procedures for high-voltage, high-power equipment are identified and illustrated by examples. Suggestions for high-voltage specifications are provided. Very few of the Military and Government specifications deal with system voltages above 10kV, thus most aircraft high-voltage specifications will have to be derived from the power industry specifications and standards produced by ASTM, IEEE, and NEMA.

  16. Energy efficient engine preliminary design and integration study

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1978-01-01

    The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.

  17. Preliminary designs for modular OTEC platform station-keeping subsystems. Final report. MR and S Report No. 6042-6

    SciTech Connect

    1980-02-29

    This volume of the report presents the results of the third through the sixth tasks of the Station Keeping Subsystem (SKSS) design studies for 10/40 MW/sub e/ capacity OTEC Modular Experiment platforms (MEP). Tasks 3 through 6 are: (3) complete preliminary designs for one SKSS for each of the two platforms (SPAR and BARGE); (4) development and testing recommendations for the MEP SKSS; (5) cost-time analysis; and (6) commercial plant recommendations. The overall conclusions and recommendations for the modular, as well as the commercial, OTEC platform station keeping subsystems are delineated. The basic design assumptions made during the process, the technical approach followed, and the results of design iterations, reliability and performance analyses are given. A complete description of the preliminary design SKSS concept is presented. The summary cost estimates for each of the alternative SKSS concepts considered are presented and a time schedule for the recommended concept is provided. The effects of varying some of the important parameters used in SKSS design on the performance and cost of the mooring system are investigated and results presented. The tests required and other developmental recommendations in order to verify and confirm the basic design assumptions are discussed. Finally, the experience gained in the MEP preliminary designs are extended to future commercial OTEC plants' SKSS designs. (WHK)

  18. Development and implementation of rotorcraft preliminary design methodology using multidisciplinary design optimization

    NASA Astrophysics Data System (ADS)

    Khalid, Adeel Syed

    Rotorcraft's evolution has lagged behind that of fixed-wing aircraft. One of the reasons for this gap is the absence of a formal methodology to accomplish a complete conceptual and preliminary design. Traditional rotorcraft methodologies are not only time consuming and expensive but also yield sub-optimal designs. Rotorcraft design is an excellent example of a multidisciplinary complex environment where several interdependent disciplines are involved. A formal framework is developed and implemented in this research for preliminary rotorcraft design using IPPD methodology. The design methodology consists of the product and process development cycles. In the product development loop, all the technical aspects of design are considered including the vehicle engineering, dynamic analysis, stability and control, aerodynamic performance, propulsion, transmission design, weight and balance, noise analysis and economic analysis. The design loop starts with a detailed analysis of requirements. A baseline is selected and upgrade targets are identified depending on the mission requirements. An Overall Evaluation Criterion (OEC) is developed that is used to measure the goodness of the design or to compare the design with competitors. The requirements analysis and baseline upgrade targets lead to the initial sizing and performance estimation of the new design. The digital information is then passed to disciplinary experts. This is where the detailed disciplinary analyses are performed. Information is transferred from one discipline to another as the design loop is iterated. To coordinate all the disciplines in the product development cycle, Multidisciplinary Design Optimization (MDO) techniques e.g. All At Once (AAO) and Collaborative Optimization (CO) are suggested. The methodology is implemented on a Light Turbine Training Helicopter (LTTH) design. Detailed disciplinary analyses are integrated through a common platform for efficient and centralized transfer of design

  19. Amygdala volume reductions in pediatric patients with obsessive-compulsive disorder treated with paroxetine: preliminary findings.

    PubMed

    Szeszko, Philip R; MacMillan, Shauna; McMeniman, Marjorie; Lorch, Elisa; Madden, Rachel; Ivey, Jennifer; Banerjee, S Preeya; Moore, Gregory J; Rosenberg, David R

    2004-04-01

    The amygdala is believed to be highly relevant to the pathophysiology of obsessive-compulsive disorder (OCD) given its prominent role in fear conditioning and because it is an important target of the serotonin reuptake inhibitors (SRIs), the pharmacotherapy of choice for OCD. In the present study, we measured in vivo volumetric changes in the amygdala in pediatric patients with OCD following 16 weeks of monotherapy with the selective SRI, paroxetine hydrochloride. Amygdala volumes were computed from contiguous 1.5 mm magnetic resonance (MR) images in 11 psychotropic drug-naive patients with OCD prior to and then following treatment. Eleven healthy pediatric comparison subjects also had baseline and follow-up scans, but none of these subjects received medication. Patients demonstrated significant asymmetry of the amygdala (L>R) prior to pharmacologic intervention in contrast to healthy comparison subjects who showed no asymmetry at the time of their baseline scan. Mixed model analyses using age and total brain volume as time varying covariates indicated that left amygdala volume decreased significantly in patients following treatment. The reduction in left amygdala volume in patients correlated significantly with higher paroxetine dosage at the time of the follow-up scan and total cumulative paroxetine exposure between the scans. No significant changes in either right or left amygdala volume were evident among healthy comparison subjects from the baseline to the follow-up scan. These preliminary findings suggest that abnormal asymmetry of the amygdala may play a role in the pathogenesis of OCD and that paroxetine treatment may be associated with a reduction in amygdala volume.

  20. MINIMARS conceptual design: Report I. Volume 1

    SciTech Connect

    Lee, J.D.

    1985-12-01

    Engineering parameters and by features of MINIMARS are presented. Topics discussed are startup, halo physics, drift pumping, magnet design, shielding, injector systems, electrical systems, fueling systems, free electric laser, blankets, heat tansport, tritium systems, configuration, assembly and maintainence, and cost. 115 refs., 112 figs., 44 tabs. (WRF)

  1. Preliminary design for a pierce wiggler beamstick and addendum

    SciTech Connect

    Pirkle, D.

    1988-05-01

    Lawrence Livermore National Laboratory is developing a fast tunable microwave source for operation at 250 GHz and 10kW peak output power. This report presents the preliminary design of a Pierce gun and solenoid magnet that will be compatible with a Pierce-wiggler electron beam formation system (beamstick). The beamstick will be an appropriate power source for a tunable gyro-BWO at 250 GHz. Figure 1 presents the major components of the Pierce-wiggler beamstick: the electron gun, solenoid, beam tunnel, wiggler, and vacuum valve. Figure 2 shows an artistic conception of how the beamstick will interface with the interaction magnet, modulator and gyro-BWO circuit at MIT. 15 figs.

  2. A preliminary design of the collinear dielectric wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J. G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I.; Jing, C.; Kanareykin, A.; Li, Y.; Gao, Q.; Shchegolkov, D. Y.; Simakov, E. I.

    2016-09-01

    A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from 0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.

  3. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    SciTech Connect

    Aab, Alexander

    2016-04-12

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.

  4. A preliminary design for flight testing the FINDS algorithm

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Godiwala, P. M.

    1986-01-01

    This report presents a preliminary design for flight testing the FINDS (Fault Inferring Nonlinear Detection System) algorithm on a target flight computer. The FINDS software was ported onto the target flight computer by reducing the code size by 65%. Several modifications were made to the computational algorithms resulting in a near real-time execution speed. Finally, a new failure detection strategy was developed resulting in a significant improvement in the detection time performance. In particular, low level MLS, IMU and IAS sensor failures are detected instantaneously with the new detection strategy, while accelerometer and the rate gyro failures are detected within the minimum time allowed by the information generated in the sensor residuals based on the point mass equations of motion. All of the results have been demonstrated by using five minutes of sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment.

  5. System 80+{trademark} Standard Design: CESSAR design certification. Volume 7: Amendment I

    SciTech Connect

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report - Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These documents describe the Combustion Engineering, Inc. System 80+{sup TM} Standard Design. This report, Volume 7, in conjunction with Volume 6, provides a description of engineered safety features.

  6. System 80+{trademark} Standard Design: CESSAR design certification. Volume 18: Amendment I

    SciTech Connect

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report -- Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These volumes describe the Combustion Engineering, Inc. System 80+{trademark} Standard Design. This Volume 18 provides Appendix B, Probabilistic Risk Assessment.

  7. System 80+{trademark} Standard Design: CESSAR design certification. Volume 11: Amendment I

    SciTech Connect

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report -- Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These volumes describe the Combustion Engineering, Inc. System 80{sup +}{trademark} Standard Design. This volume 11 discusses Radiation Protection, Conduct of Operations, and the Initial Test Program.

  8. System 80+{trademark} Standard Design: CESSAR design certification. Volume 9: Amendment I

    SciTech Connect

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report -- Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These volumes describe the Combustion Engineering, Inc. System 80{sup +}{trademark} Standard Design. This volume 9 discusses Electric Power and Auxiliary Systems.

  9. System 80+{trademark} Standard Design: CESSAR design certification. Volume 10: Amendment I

    SciTech Connect

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report -- Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These volumes describe the Combustion Engineering, Inc. System 80{sup +}{trademark} Standard Design. This volume 10 discusses the Steam and Power Conversion System and Radioactive Waste Management.

  10. System 80+{trademark} Standard Design: CESSAR design certification. Volume 6: Amendment I

    SciTech Connect

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report - Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These documents describe the Combustion Engineering, Inc. System 80+{sup TM} Standard Design. This report, Volume 6, in conjunction with Volume 7, provides a description of engineered safety features.

  11. System 80+{trademark} Standard Design: CESSAR design certification. Volume 1: Amendment I

    SciTech Connect

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report - Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These Volumes, describe the Combustion Engineering, Inc. System 80+{sup TM} Standard Design. This document, Volume 1, provides an introduction and general description of plant and site envelope characteristics.

  12. System 80+{trademark} Standard Design: CESSAR design certification. Volume 8: Amendment I

    SciTech Connect

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report -- Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These volumes describe the Combustion Engineering, Inc. System 80{sup +}{trademark} Standard Design. This volume 8 provides a description of instrumentation and controls.

  13. Preliminary design of a lunar construction utility vehicle

    NASA Technical Reports Server (NTRS)

    Bryant, C. A.; Alcorn, D.; Bentley, R.; Campbell, B.; Coulson, T.; Jacobs, J.; Stiles, P.

    1989-01-01

    Construction of a lunar base, prior to manned occupancy, is one of the most demanding technological challenges facing space system designers today. A flexible lunar construction machine is needed that can be operated remotely and that can perform a variety of construction tasks over a wide range of lunar conditions. A preliminary lunar construction utility vehicle (LCUV) design has been developed as part of a capstone design course at Old Dominion University and is described in this summary report. The design requirements are taken from a 1988 USRA Summer Design Report entitled The Lunar Split Mission: A Robotic Constructed Lunar Base Scenario, and from the proceedings of a workshop hosted by United Technologies Corporation entitled Report of the In Situ Resources Utilization Workshop. The first report describes a bootstrap base concept in which a minimum of essential surface elements are delivered and configured such that minimum EVA is required to bring the initial base on-line. The base is to be built in three phases, the first of which will be unmanned, while the second and third will be manned. The key to these concepts is the development of a semiautonomous, telerobotic lunar construction utility vehicle (LCUV). The tasks required of this robotic vehicle during the phase 1 build-up are as follows: (1) surface element transportation, handling, and assembly; (2) soil excavation and movement for site preparation; (3) radiation protection and materials processing; and (4) repair and maintenance of surface elements. In order to meet the stated requirements, the LCUV must be: (1) transformable to perform a wide variety of tasks; (2) self supporting; (3) designed to allow for telerobotic control as well as autonomous operation; (4) able to transport one fully configured space station common module (SSCM); (5) upgradable to allow for future growth; and (6) easy to maintain.

  14. Preliminary design of a lunar construction utility vehicle

    NASA Technical Reports Server (NTRS)

    Bryant, C. A.; Alcorn, D.; Bentley, R.; Campbell, B.; Coulson, T.; Jacobs, J.; Stiles, P.

    1989-01-01

    Construction of a lunar base, prior to manned occupancy, is one of the most demanding technological challenges facing space system designers today. A flexible lunar construction machine is needed that can be operated remotely and that can perform a variety of construction tasks over a wide range of lunar conditions. A preliminary lunar construction utility vehicle (LCUV) design has been developed as part of a capstone design course at Old Dominion University and is described in this summary report. The design requirements are taken from a 1988 USRA Summer Design Report entitled The Lunar Split Mission: A Robotic Constructed Lunar Base Scenario, and from the proceedings of a workshop hosted by United Technologies Corporation entitled Report of the In Situ Resources Utilization Workshop. The first report describes a bootstrap base concept in which a minimum of essential surface elements are delivered and configured such that minimum EVA is required to bring the initial base on-line. The base is to be built in three phases, the first of which will be unmanned, while the second and third will be manned. The key to these concepts is the development of a semiautonomous, telerobotic lunar construction utility vehicle (LCUV). The tasks required of this robotic vehicle during the phase 1 build-up are as follows: (1) surface element transportation, handling, and assembly; (2) soil excavation and movement for site preparation; (3) radiation protection and materials processing; and (4) repair and maintenance of surface elements. In order to meet the stated requirements, the LCUV must be: (1) transformable to perform a wide variety of tasks; (2) self supporting; (3) designed to allow for telerobotic control as well as autonomous operation; (4) able to transport one fully configured space station common module (SSCM); (5) upgradable to allow for future growth; and (6) easy to maintain.

  15. Aerospace vehicle design, spacecraft section. Volume 2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The next major step in the evolution of the space program is the exploration of the planet Mars. In preparation for this, much research is needed on the problem of surveying the planet surface. An aircraft appears to be a viable solution because it can carry men and equipment large distances in a short period of time as compared with ground transportation. The problems and design of an aircraft which would be able to survey the planet Mars are examined.

  16. Reliability Programs for Nonelectronic Designs. Volume 1

    DTIC Science & Technology

    1983-04-01

    DOCUMENTATION PAGE 3lCOR COERUPL.WIONP0 READ INSTRUCTIONSREPOR DOCMENTAION AGE ORE COMPLETING ,FORM T-07,0 0 1%RT A 1 AIa • 12, POVT ACCESSION NO 3...results, testing data and field performane Comments from respondeen of the survey reflect considerable .Xperience and knowledge on reliability programs and...assemblies. Design practices , analytical techniques and testing procedures contained in current documents may be more effective if tailored or modified

  17. DOS Design/Application Tools. Volume 1

    DTIC Science & Technology

    1990-09-01

    a distributed program must be partitioned into a number of program units (objects and clients ) and subsequently allocated to the various processors...initiates the appropriate processes (objects and clients ) on the designated nodes. Payoff for Developers Performance: The allocation tool directly addresses...the relationship between a particular Unit of Distribution and the Processor to which it has been assigned for execution. Finally, note that Client (a

  18. Distributed Operating System Design Study. Volume II.

    DTIC Science & Technology

    1982-01-01

    RADC-TR-81-384, Vol II (of two) has been reviewed and is approved for publication. APPROVED: THOMAS F. LAWRENCE Project Engineer APPROVED: JO J...distribution unlimited 17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20. If diierent from Report) Same 18. SUPPLEMENTARY NOTES RADC Project ...of the study were reported in BBN Report No. 4455, titled "Distributed Operating System Design Study: Phase 1." The goal of this project is to advance

  19. Foreign Object Impact Design Criteria. Volume 3

    DTIC Science & Technology

    1982-02-01

    Times. 70 14. Some Task VI Impact Tests Conducted on Real Blades. 99 15. Matrix of Error-Band Properties and Associated Damage Modes. 104 16. Planned...design criteria to provide direct assessment of blade impact - damage tolerance and identify areas for improvement. This program consists of 11 tasks...local impact damage as well as gross structural damage . NNSAP is a very general and accurate package for nonlinear, finite-element analyses and employs

  20. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    SciTech Connect

    Connell, Daniel P

    2009-01-12

    commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.

  1. Development of an agility assessment module for preliminary fighter design

    NASA Technical Reports Server (NTRS)

    Ngan, Angelen; Bauer, Brent; Biezad, Daniel; Hahn, Andrew

    1996-01-01

    A FORTRAN computer program is presented to perform agility analysis on fighter aircraft configurations. This code is one of the modules of the NASA Ames ACSYNT (AirCraft SYNThesis) design code. The background of the agility research in the aircraft industry and a survey of a few agility metrics are discussed. The methodology, techniques, and models developed for the code are presented. FORTRAN programs were developed for two specific metrics, CCT (Combat Cycle Time) and PM (Pointing Margin), as part of the agility module. The validity of the code was evaluated by comparing with existing flight test data. Example trade studies using the agility module along with ACSYNT were conducted using Northrop F-20 Tigershark and McDonnell Douglas F/A-18 Hornet aircraft models. The sensitivity of thrust loading and wing loading on agility criteria were investigated. The module can compare the agility potential between different configurations and has the capability to optimize agility performance in the preliminary design process. This research provides a new and useful design tool for analyzing fighter performance during air combat engagements.

  2. Elliptic Volume Grid Generation for Viscous CFD Parametric Design Studies

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Cheatwood, F. McNeil

    1996-01-01

    This paper presents a robust method for the generation of zonal volume grids of design parametrics for aerodynamic configurations. The process utilizes simple algebraic techniques with parametric splines coupled with elliptic volume grid generation to generate isolated zonal grids for changes in body configuration needed to perform parametric design studies. Speed of the algorithm is maximized through the algebraic methods and reduced number of grid points to be regenerated for each design parametric without sacrificing grid quality and continuity within the volume domain. The method is directly applicable to grid reusability, because it modifies existing ow adapted volume grids and enables the user to restart the CFD solution process with an established flow field. Use of this zonal approach reduces computer usage time to create new volume grids for design parametric studies by an order of magnitude, as compared to current methods which require the regeneration of an entire volume grid. A sample configuration of a proposed Single Stage-to-Orbit Vehicle is used to illustrate an application of this method.

  3. Dose-Volume Analysis of Radiation Nephropathy in Children: Preliminary Report of the Risk Consortium

    SciTech Connect

    Boelling, Tobias; Ernst, Iris; Pape, Hildegard; Martini, Carmen; Ruebe, Christian; Fischedick, Karin; Kortmann, Rolf-Dieter; Willich, Normann

    2011-07-01

    Purpose: To characterize kidney function in children and adolescents who had undergone radiation treatment that included parts of the kidney. Methods and Materials: Patients receiving radiotherapy during childhood or adolescence were prospectively registered in Germany's Registry for the Evaluation of Side Effects after Radiation in Childhood and Adolescence (RiSK). Detailed information was recorded regarding radiation doses at the organs at risk since 2001 all over Germany. Toxicity evaluation was performed according to standardized Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. Results: Up to May 2009, 1086 patients from 62 centers were recruited, including 126 patients (median age, 10.2 years) who underwent radiotherapy to parts of the kidneys. Maximal late toxicity (median follow-up 28.5 months in 74 patients) was characterized as Grade 0 (n = 65), 1 (n = 7) or 2 (n = 2). All patients with late effects had received potentially nephrotoxic chemotherapy. A statistically significant difference between patients with and without Grade 1 toxicity, revealing higher exposed kidney volumes in patients with toxicity, was seen for the kidney volume exposed to 20 Gy (V20; p = 0.031) and 30 Gy (V30; p = 0.003). Conclusions: Preliminary data indicate that radiation-induced kidney function impairment is rare in current pediatric multimodal treatment approaches. In the future, RiSK will be able to provide further detailed data regarding dose-volume effect relationships of radiation-associated side effects in pediatric oncology patients.

  4. Glutamate System Genes and Brain Volume Alterations in Pediatric Obsessive-Compulsive Disorder: A Preliminary Study

    PubMed Central

    Wu, Ke; Hanna, Gregory L.; Easter, Philip; Kennedy, James L.; Rosenberg, David R.; Arnold, Paul D

    2012-01-01

    Obsessive-compulsive disorder (OCD) has been associated with regional volumetric brain abnormalities, which provide promising intermediate phenotypes of the disorder. In this study, volumes of brain regions selected for a priori evidence of association with OCD (orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), thalamus, caudate, putamen, globus pallidus and pituitary) were measured using structural magnetic resonance imaging (MRI) in 20 psychotropic-naïve pediatric OCD patients. We examined the association between these regional brain volumes and a total of 519 single nucleotide polymorphisms (SNPs) from nine glutamatergic candidate genes (DLGAP1, DLGAP2, DLGAP3, GRIN2B, SLC1A1, GRIK2, GRIK3, SLITRK1 and SLITRK5). These genes were selected based on either previous reported association with OCD in humans or evidence from animal models of OCD. After correcting for multiple comparisons by permutation testing, no SNP remained significantly associated with volumetric changes. The strongest trend toward association was identified between two SNPs in DLGAP2 (rs6558484 and rs7014992) and OFC white matter volume (P = 0.000565, Padjusted= 0.3071). Our other top ranked association findings were with ACC, OFC and thalamus. These preliminary results suggest that sequence variants in glutamate candidate genes may be associated with structural neuroimaging phenotypes of OCD. PMID:23154099

  5. Design for Production Manual. Volume 2. Design/Production Integration

    DTIC Science & Technology

    1985-12-01

    assist you and your organization in a re-thinking process concerning shipbuilding design and production. To this end , the writers want to emphasize that... break the design process into a number of stages, which reflect the realities of the overall ship design and production scheme. For each stage a set...consistent with steel unit breaks . At the same time system diagrams will have been developed which indicate the links between system elements and the

  6. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Kolb, M. A.

    1987-01-01

    A nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been formulated. A multifaceted decomposition of the optimization problem has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  7. Preliminary design of the CIT (Compact Ignition Tokamak) cryostat

    SciTech Connect

    Goins, M.L.

    1989-01-01

    For the Compact Ignition Tokamak (CIT) to achieve the performance goals set forth, the toroidal field (TF) and poloidal field (PF) coil systems must operate in a cryogenic temperature regime. The cryostat has been designed to provide and maintain this environment. The preliminary design activity is addressing the design issues and interfaces necessary to provide a cryogenic vessel that will maintain a maximum temperature differential of 8{degree}C between the outer vessel wall and the ambient test cell conditions; operate in a pressure range of +5 psig to {minus}2 psig; accommodate numerous penetrations, including cooling, diagnostic, and gravity support items; and maintain a maximum leak rate of gaseous nitrogen at 1 l/s at 1 atm. Conceptually, the cryostat consists of thermal insulation sandwiched between an inner primary stainless steel pressure vessel and a thin outer stainless steel wall. Design activities have concentrated on determining the size and shape of the primary vessel wall and selecting the best candidate thermal insulation materials for future irradiation testing. The following shapes of the upper and lower cryostat structure were analyzed: a standard ASME torispherical domed top and bottom; a nonstandard domed top and bottom; and a 2{degree} sloped conical top and bottom contour. Screening of candidate insulation materials was based on lowest thermal conductivity over the range of temperatures anticipated in the CIT environment; low material cost and apparent ease of assembly; and survivability of material in the CIT irradiation environment. This paper presents the configuration development of the cryostat used to maintain the cryogenic temperature environment for CIT. 3 refs., 3 figs., 3 tabs.

  8. Preliminary Design of the Gas Cherenkov Muon Monitors for LBNE

    NASA Astrophysics Data System (ADS)

    Pitcher, Craig

    2011-10-01

    I am performing preliminary research for a future neutrino experiment at Fermilab called the Long Baseline Neutrino Experiment (LBNE). More specifically, I am determining the best geometry for the gas Cherenkov muon monitors. The purpose of the monitors is to measure, at least indirectly, the energy spectrum of the muons in the beam. I use computer software to simulate a realistic muon beam going through the monitors. Muons in the particle beam that go through the monitors emit Cherenkov radiation, and this light is detected by PMTs. I then plot the number of photons detected as a function of the muon's energy that emitted the detected photons. My goal is to have a very narrow peak on this plot. This peak shifts depending on the simulated index of refraction. The best design for the monitors is an L-shaped pipe filled with Freon gas of adjustable density. It is the simplest and cheapest to build of all the designs I tried, and it can accurately recover the muon energy spectrum based solely on the total number of photons detected in each pulse: using simulation data from 5 indices of refraction, I can recover the muon energy spectrum (within the uncertainties) of a beam that has 5 discrete muon energies.

  9. Preliminary drift design analyses for nuclear waste repository in tuff

    SciTech Connect

    Hardy, M.P.; Brechtel, C.E.; Goodrich, R.R.; Bauer, S.J.

    1990-01-30

    The Yucca Mountain Project (YMP) is examining the feasibility of siting a repository for high-level nuclear waste at Yucca Mountain, on and adjacent to the Nevada Test Site (NTS). The proposed repository will be excavated in the Topopah Spring Member, which is a moderately fractured, unsaturated, welded tuff. Excavation stability will be required during construction, waste emplacement, retrieval (if required), and closure to ensure worker safety. The subsurface excavations will be subject to stress changes resulting from thermal expansion of the rock mass and seismic events associated with regional tectonic activity and underground nuclear explosions (UNEs). Analyses of drift stability are required to assess the acceptable waste emplacement density, to design the drift shapes and ground support systems, and to establish schedules and cost of construction. This paper outlines the proposed methodology to assess drift stability and then focuses on an example of its application to the YMP repository drifts based on preliminary site data. Because site characterization activities have not begun, the database currently lacks the extensive site-specific field and laboratory data needed to form conclusions as to the final ground support requirements. This drift design methodology will be applied and refined as more site-specific data are generated and as analytical techniques and methodologies are verified during the site characterization process.

  10. Preliminary design studies on a nuclear seawater desalination system

    SciTech Connect

    Wibisono, A. F.; Jung, Y. H.; Choi, J.; Kim, H. S.; Lee, J. I.; Jeong, Y. H.; No, H. C.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclear heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)

  11. Preliminary design studies on the Broad Application Test Reactor

    SciTech Connect

    Terry, W.J.; Terry, W.K.; Ryskamp, J.M.; Jahshan, S.N.; Fletcher, C.D.; Moore, R.L.; Leyse, C.F.; Ottewitte, E.H.; Motloch, C.G.; Lacy, J.M.

    1992-08-01

    This report describes progress made at the Idaho National Engineering Laboratory during the first three quarters of Fiscal Year (FY) 1992 on the Laboratory-Directed Research and Development (LDRD) project to perform preliminary design studies on the Broad Application Test Reactor (BATR). This work builds on the FY-92 BATR studies, which identified anticipated mission and safety requirements for BATR and assessed a variety of reactor concepts for their potential capability to meet those requirements. The main accomplishment of the FY-92 BATR program is the development of baseline reactor configurations for the two conventional conceptual test reactors recommended in the FY-91 report. Much of the present report consists of descriptions and neutronics and thermohydraulics analyses of these baseline configurations. In addition, we considered reactor safety issues, compared the consequences of steam explosions for alternative conventional fuel types, explored a Molten Chloride Fast Reactor concept as an alternate BATR design, and examined strategies for the reduction of operating costs. Work planned for the last quarter of FY-92 is discussed, and recommendations for future work are also presented.

  12. Photovoltaic module encapsulation design and materials selection. Volume II

    SciTech Connect

    Cuddihy, E.

    1984-06-01

    This is Volume II of Photovoltaic Module Encapsulation Design and Materials Selection: a periodically updated handbook of encapsulation technology, developed with the support of the Flat-Plate Solar Array Project (FSA), managed for the Department of Energy (DOE) by the Jet Propulsion Laboratory. Volume II describes FSA encapsulation technology developed between June 1, 1982, and January 1, 1984. Emphasis during this period shifted from materials development to demonstration of reliability and durability in an outdoor environment; the updated information in this volume reflects the developing technology base related to both reliability and encapsulation process improvements.

  13. The System 80+ Standard Plant design control document. Volume 20

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains 2 technical specifications bases as part of Appendix 16 A Tech Spec Bases. They are TS B3.8 Electrical Power Technical Systems Bases and TS B3.9 Refueling Operations Bases. All 3 parts of section 17 (QA) and all 10 parts of section 18 (Human Factors) of the ADM Design and Analysis are contained in this volume. Topics covered in section 17 are: design phase QA; operations phase QA; and design phase reliability assurance. Topics covered by section 18 are: design team organization; design goals; design process; functional task analysis; control room configuration; information presentation; control and monitoring; verification and validation; and review documents.

  14. Analysis of wing-body interaction flutter for a preliminary space shuttle design

    NASA Technical Reports Server (NTRS)

    Chipman, R. R.; Shyprykevich, P.

    1974-01-01

    Subsonic flutter analyses for a preliminary space shuttle design were performed to determine the effect of wing-body aerodynamic interaction on the vehicle flutter speed. It was found that the proximity of the large bodies of the shuttle to the wing reduces critical flutter speed by 11%. Aerodynamic reflection off the bodies is the dominant interaction effect while aerodynamic forces caused by body motion are of secondary importance in most cases. The analyses employed a doublet-lattice representation of the space shuttle, where in the wing and body surfaces were modeled by a lattice of nonplanar lifting surface elements. Axial singularities were introduced to account for body incidence, volume, and camber (slender body) effects. A series of studies on the placement and number of these elements was performed to ensure convergence of the results.

  15. Large scale prop-fan structural design study. Volume 1: Initial concepts

    NASA Technical Reports Server (NTRS)

    Billman, L. C.; Gruska, C. J.; Ladden, R. M.; Leishman, D. K.; Turnberg, J. E.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 1 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described in Volume 2.

  16. Optimum design of the constant-volume gas pycnometer for determining the volume of solid particles

    NASA Astrophysics Data System (ADS)

    Tamari, S.

    2004-03-01

    Gas pycnometry is based on Boyle-Mariotte's law of volume-pressure relationships. This method has been widely used to determine the volume (and thus the density) of rock fragments, soluble powders, light objects and even living beings. Surprisingly, little is known about the optimum design of gas pycnometers. The purpose of this study was to investigate the optimum design of a gas pycnometer, so that it can determine the volume of solid particles with the greatest accuracy. The 'constant-volume' gas pycnometer was considered because of its widespread use. The law of propagation of uncertainty was used to derive a theoretical formula that relates the pycnometer's accuracy to the main sources of random error (gas-pressure measurements, pycnometer temperature and sample-chamber volume). The consequences of this formula in terms of optimizing the geometry and working conditions of the pycnometer are discussed. It was found that some gas pycnometers described in the literature may have not been used under the best conditions. Guidelines are given to design a gas pycnometer that can theoretically determine the volume of solid particles with a relative standard uncertainty smaller than 0.2%.

  17. The System 80+ Standard Plant design control document. Volume 5

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers the following information of the ADM Design and Analysis: parts 8 and 9 of section 3 (Design of Systems, Structures and Components); App 3.8A Structural design; and App 3.8B Structure design details.

  18. Summary of the Preliminary Optical ICHMI Design Study: A Preliminary Engineering Design Study for a Standpipe Viewport

    SciTech Connect

    Anheier, Norman C.; Qiao, Hong; Berglin, Eric J.; Hatchell, Brian K.

    2013-12-26

    This summary report examines an in-vessel optical access concept intended to support standoff optical instrumentation, control and human-machine interface (ICHMI) systems for future advanced small modular reactor (AdvSMR) applications. Optical-based measurement and sensing systems for AdvSMR applications have several key benefits over traditional instrumentation and control systems used to monitor reactor process parameters, such as temperature, flow rate, pressure, and coolant chemistry (Anheier et al. 2013). Direct and continuous visualization of the in-vessel components can be maintained using external cameras. Many optical sensing techniques can be performed remotely using open optical beam path configurations. Not only are in-vessel cables eliminated by these configurations, but also sensitive optical monitoring components (e.g., electronics, lasers, detectors, and cameras) can be placed outside the reactor vessel in the instrument vault, containment building, or other locations where temperatures and radiation levels are much lower. However, the extreme AdvSMR environment present challenges for optical access designs and optical materials. Optical access is not provided in any commercial nuclear power plant or featured in any reactor design, although successful implementation of optical access has been demonstrated in test reactors (Arkani and Gharib 2009). This report outlines the key engineering considerations for an AdvSMR optical access concept. Strict American Society of Mechanical Engineers (ASME) construction codes must be followed for any U.S. nuclear facility component (ASME 2013); however, the scope of this study is to evaluate the preliminary engineering issues for this concept, rather than developing a nuclear-qualified design. In addition, this study does not consider accident design requirements. In-vessel optical access using a standpipe viewport concept serves as a test case to explore the engineering challenges and performance requirements

  19. Design and preliminary experiment of China imaging altimeter

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhua; Jiang, Jingshan; Zhang, Xiangkun; Xu, Ke; Yan, Jingye; Jiang, Changhong; Lei, Liqing

    2003-04-01

    The design of the China Imaging ALTimeter (CIALT) and the flight experiment of its airborne model are presented in this paper. The system is aimed for providing observation measure for both oceanic applications and continental topographic mapping in the future. The motivation of this project is to develop a three dimensional imager fitted for small satellites with small volume, mass and power consumption. An experimental airborne model of the CIALT has been developed for verifying the design concept. The CIALT integrates three techniques together, i.e. the height measurement and tracking technique of traditional radar altimeter used for ocean applications, the synthetic aperture technique and the interferometric technique. A robust height tracker has been designed for meeting the requirements of both oceanic surfaces and continental surfaces (including surfaces of ice continent). The synthetic aperture technique is used for achieving a higher azimuthal resolution along the cross range direction compared with that of a traditional altimeter. The interferometric technique is used for retrieving the height information corresponding to each image pixel and for boresight angle correction of the antennas, which is crucial for accurate height measurement. The CIALT is different from other proposed imaging altimeters, such as SAR altimeter and scanning altimeter, in which no height tracker is involved. Some key technologies regarding the development of imaging altimeter are addressed, such as the antenna design, the transmitter, the receiver and the robust tracking algorithm.

  20. Preliminary environmental assessment for the Satellite Power System (SPS). Volume 2: Detailed assessment

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Volume 2 provides a preliminary assessment of the impact of the Satellite Power System (SPS) on the environment in a technically detailed format more suitable for peer review than the executive summary of Vol. 1. It serves to integrate and assimilate information that has appeared in documents referenced herein and to focus on issues that are purely environmental. It discloses the state-of-knowledge as perceived from recently completed DOE-sponsored studies and defines prospective research and study programs that can advance the state-of-knowledge and provide an expanded data base for use in an assessment planned for 1980. Alternatives for research that may be implemented in order to achieve this advancement are also discussed.

  1. Overview of the Preliminary Design of the Optical Communication Demonstration and High-Rate Link Facility

    NASA Technical Reports Server (NTRS)

    Sandusky, John V.; Jeganathan, M.; Ortiz, G.; Biswas, A.; Lee, S.; Parker, G.; Liu, B.; Johnson, D.; DePew, J.; Lesh, J. R.

    2000-01-01

    Tlis paper presents an overview of the preliminary design of both the flight and ground systems of the Optical Communication Demonstration and High-Rate Link Facility which will demonstrate optical communication from the International Space Station to ground after its deployment in October 2002. The overview of the preliminary design of the Flight System proceeds by contrasting it with the design of the laboratory-model unit, emphasizing key changes and the rationale behind the design choices. After presenting the preliminary design of the Ground System, the timetable for the construction and deployment of the flight and ground systems is outlined.

  2. Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.

  3. Advanced Free Flight Planner and Dispatcher's Workstation: Preliminary Design Specification

    NASA Technical Reports Server (NTRS)

    Wilson, J.; Wright, C.; Couluris, G. J.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) has implemented the Advanced Air Transportation Technology (AATT) program to investigate future improvements to the national and international air traffic management systems. This research, as part of the AATT program, developed preliminary design requirements for an advanced Airline Operations Control (AOC) dispatcher's workstation, with emphasis on flight planning. This design will support the implementation of an experimental workstation in NASA laboratories that would emulate AOC dispatch operations. The work developed an airline flight plan data base and specified requirements for: a computer tool for generation and evaluation of free flight, user preferred trajectories (UPT); the kernel of an advanced flight planning system to be incorporated into the UPT-generation tool; and an AOC workstation to house the UPT-generation tool and to provide a real-time testing environment. A prototype for the advanced flight plan optimization kernel was developed and demonstrated. The flight planner uses dynamic programming to search a four-dimensional wind and temperature grid to identify the optimal route, altitude and speed for successive segments of a flight. An iterative process is employed in which a series of trajectories are successively refined until the LTPT is identified. The flight planner is designed to function in the current operational environment as well as in free flight. The free flight environment would enable greater flexibility in UPT selection based on alleviation of current procedural constraints. The prototype also takes advantage of advanced computer processing capabilities to implement more powerful optimization routines than would be possible with older computer systems.

  4. Preliminary design of atlas pulsed power machine. Final report

    SciTech Connect

    Gribble, R.F.

    1996-04-03

    During the contract period from March 95 to March 96 I participated in the preliminary design of the Atlas pulsed power machine. As part of this task I performed of the order of 1000 circuit simulations for many different bank configurations, opening switches, and loads, and about 100 electrostatic field calculations. Results of the calculations were provided at regular Atlas design meetings or in the form of memorandums. I have almost completed the development of a 2D disk transmission line code to more accurately calculate asymmetric transient current and voltage caused by azimuthal variations, including switch timing jitter and local arc faults. This code is attached as a subroutine to the circuit simulation program. The purpose for most of the simulations was to provide information on bank damping requirements and load energy ranges for the different circuit configurations. A minimum transmission line insulation depth was determined from calculating the maximum expected dynamic load back voltage (I{times}{sup dL}/{sub dt}). Other simulations included fault effects, transmission line heating effects (including diffusion, melting, vaporization, ionization), and transmission line transients under various conditions. The line fault simulations using a lumped constant approximation to the 2D disk line provided useful information but even with about 600 elements, it has an upper limit on mode frequencies and tends to exaggerate some modes. Electrostatic (2D) field calculations were used to estimate fields of the transmission lines, insulators, and rail gap switches. Design of conductor surface contours to minimize the field near an insulator stack was one result of these calculations. Effects of biasing and insulator modifications of the rail gap switch was determined.

  5. Participatory design of a preliminary safety checklist for general practice

    PubMed Central

    Bowie, Paul; Ferguson, Julie; MacLeod, Marion; Kennedy, Susan; de Wet, Carl; McNab, Duncan; Kelly, Moya; McKay, John; Atkinson, Sarah

    2015-01-01

    Background The use of checklists to minimise errors is well established in high reliability, safety-critical industries. In health care there is growing interest in checklists to standardise checking processes and ensure task completion, and so provide further systemic defences against error and patient harm. However, in UK general practice there is limited experience of safety checklist use. Aim To identify workplace hazards that impact on safety, health and wellbeing, and performance, and codesign a standardised checklist process. Design and setting Application of mixed methods to identify system hazards in Scottish general practices and develop a safety checklist based on human factors design principles. Method A multiprofessional ‘expert’ group (n = 7) and experienced front-line GPs, nurses, and practice managers (n = 18) identified system hazards and developed and validated a preliminary checklist using a combination of literature review, documentation review, consensus building workshops using a mini-Delphi process, and completion of content validity index exercise. Results A prototype safety checklist was developed and validated consisting of six safety domains (for example, medicines management), 22 sub-categories (for example, emergency drug supplies) and 78 related items (for example, stock balancing, secure drug storage, and cold chain temperature recording). Conclusion Hazards in the general practice work system were prioritised that can potentially impact on the safety, health and wellbeing of patients, GP team members, and practice performance, and a necessary safety checklist prototype was designed. However, checklist efficacy in improving safety processes and outcomes is dependent on user commitment, and support from leaders and promotional champions. Although further usability development and testing is necessary, the concept should be of interest in the UK and internationally. PMID:25918338

  6. Preliminary Safety Information Document for the Standard MHTGR. Volume 1, (includes latest Amendments)

    SciTech Connect

    1986-01-01

    With NRC concurrence, the Licensing Plan for the Standard HTGR describes an application program consistent with 10CFR50, Appendix O to support a US Nuclear Regulatory Commission (NRC) review and design certification of an advanced Standard modular High Temperature Gas-Cooled Reactor (MHTGR) design. Consistent with the NRC's Advanced Reactor Policy, the Plan also outlines a series of preapplication activities which have as an objective the early issuance of an NRC Licensability Statement on the Standard MHTGR conceptual design. This Preliminary Safety Information Document (PSID) has been prepared as one of the submittals to the NRC by the US Department of Energy in support of preapplication activities on the Standard MHTGR. Other submittals to be provided include a Probabilistic Risk Assessment, a Regulatory Technology Development Plan, and an Emergency Planning Bases Report.

  7. The System 80+ Standard Plant design control document. Volume 23

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains part 16 References and Appendix 19 A Design Alternatives for section 19 (Probabilistic Risk Assessment) of the ADM Design and Analysis. Also covered is section 20 Unresolved Safety Issues of the ADM Design and Analysis. Finally sections 1--6 of the ADM Emergency Operations Guidelines are contained in this volume. Information covered in these sections include: standard post-trip actions; diagnostic actions; reactor trip recovery guideline; LOCA recovery; SG tube rupture recovery.

  8. The System 80+ Standard Plant design control document. Volume 8

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains Appendix 5F Steam generator tube rupture for section 5 (Reactor Design) of the ADM Design and Analysis. Also contained in this volume are parts 1 and 2 of section 6 (Engineered Safety Features) of the ADM Design and Analysis. Topics for these two parts are ESF materials and containment systems.

  9. The System 80+ Standard Plant design control document. Volume 16

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains all 3 parts of section 14 (Initial Test Program) of the ADM Design and Analysis. Topics covered are: PSAR information; FSAR information; certified design material. Also part 1 of section 15 (Accident Analysis) of the ADM Design and Analysis is included in this volume. The topic of part 1 is increase in heat removal.

  10. Passive solar design handbook. Volume 3: Passive solar design analysis

    NASA Astrophysics Data System (ADS)

    Jones, R. W.; Bascomb, J. D.; Kosiewicz, C. E.; Lazarus, G. S.; McFarland, R. D.; Wray, W. O.

    1982-07-01

    Simple analytical methods concerning the design of passive solar heating systems are presented with an emphasis on the average annual heating energy consumption. Key terminology and methods are reviewed. The solar load ratio (SLR) is defined, and its relationship to analysis methods is reviewed. The annual calculation, or Load Collector Ratio (LCR) method, is outlined. Sensitivity data are discussed. Information is presented on balancing conservation and passive solar strategies in building design. Detailed analysis data are presented for direct gain and sunspace systems, and details of the systems are described. Key design parameters are discussed in terms of their impact on annual heating performance of the building. These are the sensitivity data. The SLR correlations for the respective system types are described. The monthly calculation, or SLR method, based on the SLR correlations, is reviewed. Performance data are given for 9 direct gain systems and 15 water wall and 42 Trombe wall systems.

  11. Preliminary design of the INPE's Solar Vector Magnetograph

    NASA Astrophysics Data System (ADS)

    Vieira, L. E. A.; de Gonzalez, A. L. Clúa; Lago, A. Dal; Wrasse, C.; Echer, E.; Guarnieri, F. L.; Cardoso, F. Reis; Guerrero, G.; Costa, J. Rezende; Palacios, J.; Balmaceda, L.; Alves, L. Ribeiro; da Silva, L.; Costa, L. L.; Sampaio, M.; Soares, M. C. Rabello; Barbosa, M.; Domingues, M.; Rigozo, N.; Mendes, O.; Jauer, P.; Dallaqua, R.; Branco, R. H.; Stekel, T.; Gonzalez, W.; Kabata, W.

    2015-10-01

    We describe the preliminary design of a magnetograph and visible-light imager instrument to study the solar dynamo processes through observations of the solar surface magnetic field distribution. The instrument will provide measurements of the vector magnetic field and of the line-of-sight velocity in the solar photosphere. As the magnetic field anchored at the solar surface produces most of the structures and energetic events in the upper solar atmosphere and significantly influences the heliosphere, the development of this instrument plays an important role in reaching the scientific goals of The Atmospheric and Space Science Coordination (CEA) at the Brazilian National Institute for Space Research (INPE). In particular, the CEA's space weather program will benefit most from the development of this technology. We expect that this project will be the starting point to establish a strong research program on Solar Physics in Brazil. Our main aim is acquiring progressively the know-how to build state-of-the-art solar vector magnetograph and visible-light imagers for space-based platforms to contribute to the efforts of the solar-terrestrial physics community to address the main unanswered questions on how our nearby Star works.

  12. Design, integration and preliminary results of the IXV Catalysis experiment

    NASA Astrophysics Data System (ADS)

    Viladegut, Alan; Panerai, F.; Chazot, O.; Pichon, T.; Bertrand, P.; Verdy, C.; Coddet, C.

    2017-06-01

    The CATalytic Experiment (CATE) is an in-flight demonstration of catalysis effects at the surface of thermal protection materials. A high-catalytic coating was applied over the baseline ceramic material on the windward side of the intermediate experimental vehicle (IXV). The temperature jump due to different catalytic activities was detected during re-entry through measurements made with near-surface thermocouples on the windward side of the vehicle. The experiment aimed at contributing to the development and validation of gas/surface interaction models for re-entry applications. The present paper summarizes the design of CATE and its integration on the windward side of the IXV. Results of a qualification campaign at the Plasmatron facility of the von Karman Institute for Fluid Dynamics are presented. They provided an experimental evidence of the temperature jump at the low-to-high catalytic interface of the heat shield under aerothermal conditions relevant to the actual IXV flight. These tests also gave confidence so that the high-catalytic patch would not endanger the integrity of the vehicle and the safety of the mission. A preliminary assessment of flight data from the thermocouple measurements shows consistency with results of the qualification tests.

  13. Preliminary Design and Evaluation of Portable Electronic Flight Progress Strips

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Hansman, R. John

    2002-01-01

    There has been growing interest in using electronic alternatives to the paper Flight Progress Strip (FPS) for air traffic control. However, most research has been centered on radar-based control environments, and has not considered the unique operational needs of the airport air traffic control tower. Based on an analysis of the human factors issues for control tower Decision Support Tool (DST) interfaces, a requirement has been identified for an interaction mechanism which replicates the advantages of the paper FPS (e.g., head-up operation, portability) but also enables input and output with DSTs. An approach has been developed which uses a Portable Electronic FPS that has attributes of both a paper strip and an electronic strip. The prototype flight strip system uses Personal Digital Assistants (PDAs) to replace individual paper strips in addition to a central management interface which is displayed on a desktop computer. Each PDA is connected to the management interface via a wireless local area network. The Portable Electronic FPSs replicate the core functionality of paper flight strips and have additional features which provide a heads-up interface to a DST. A departure DST is used as a motivating example. The central management interface is used for aircraft scheduling and sequencing and provides an overview of airport departure operations. This paper will present the design of the Portable Electronic FPS system as well as preliminary evaluation results.

  14. Design, integration and preliminary results of the IXV Catalysis experiment

    NASA Astrophysics Data System (ADS)

    Viladegut, Alan; Panerai, F.; Chazot, O.; Pichon, T.; Bertrand, P.; Verdy, C.; Coddet, C.

    2016-08-01

    The CATalytic Experiment (CATE) is an in-flight demonstration of catalysis effects at the surface of thermal protection materials. A high-catalytic coating was applied over the baseline ceramic material on the windward side of the intermediate experimental vehicle (IXV). The temperature jump due to different catalytic activities was detected during re-entry through measurements made with near-surface thermocouples on the windward side of the vehicle. The experiment aimed at contributing to the development and validation of gas/surface interaction models for re-entry applications. The present paper summarizes the design of CATE and its integration on the windward side of the IXV. Results of a qualification campaign at the Plasmatron facility of the von Karman Institute for Fluid Dynamics are presented. They provided an experimental evidence of the temperature jump at the low-to-high catalytic interface of the heat shield under aerothermal conditions relevant to the actual IXV flight. These tests also gave confidence so that the high-catalytic patch would not endanger the integrity of the vehicle and the safety of the mission. A preliminary assessment of flight data from the thermocouple measurements shows consistency with results of the qualification tests.

  15. The System 80+ Standard Plant design control document. Volume 15

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains all five parts of section 12 (Radiation Protection) of the ADM Design and Analysis. Topics covered are: ALARA exposures; radiation sources; radiation protection; dose assessment; and health physics program. All six parts and appendices A and B for section 13 (Conduct of Operations) of the ADM Design and Analysis are also contained in this volume. Topics covered are: organizational structure; training program; emergency planning; review and audit; plant procedures; industrial security; sabotage protection (App 13A); and vital equipment list (App 13B).

  16. The System 80+ Standard Plant design control document. Volume 9

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers parts 3--8 of section 6 (Engineered Safety Features) of the ADM Design and Analysis. The topics covered by these parts are: safety injection systems; habitability systems; containment systems; ISI of Class 2 and 3; safety depressurization system; and in-containment water storage system.

  17. The System 80+ Standard Plant design control document. Volume 13

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains parts 3, 4, and 5 of section 9 (Auxiliary Systems) of the ADM Design and Analysis. Topics covered by these parts are: process auxiliaries; HVAC systems; and other auxiliary systems.

  18. The System 80+ Standard Plant design control document. Volume 12

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers parts 1 and 2 of section 9 (Auxiliary Systems) of the ADM Design and Analysis. The topics covered by these two parts are: (1) fuel storage and handling and (2) water systems.

  19. Preliminary design for a reverse Brayton cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Swift, Walter L.

    1993-12-01

    A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.

  20. Preliminary design for a reverse Brayton cycle cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Swift, Walter L.

    1993-01-01

    A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.

  1. Participatory design of a preliminary safety checklist for general practice.

    PubMed

    Bowie, Paul; Ferguson, Julie; MacLeod, Marion; Kennedy, Susan; de Wet, Carl; McNab, Duncan; Kelly, Moya; McKay, John; Atkinson, Sarah

    2015-05-01

    The use of checklists to minimise errors is well established in high reliability, safety-critical industries. In health care there is growing interest in checklists to standardise checking processes and ensure task completion, and so provide further systemic defences against error and patient harm. However, in UK general practice there is limited experience of safety checklist use. To identify workplace hazards that impact on safety, health and wellbeing, and performance, and codesign a standardised checklist process. Application of mixed methods to identify system hazards in Scottish general practices and develop a safety checklist based on human factors design principles. A multiprofessional 'expert' group (n = 7) and experienced front-line GPs, nurses, and practice managers (n = 18) identified system hazards and developed and validated a preliminary checklist using a combination of literature review, documentation review, consensus building workshops using a mini-Delphi process, and completion of content validity index exercise. A prototype safety checklist was developed and validated consisting of six safety domains (for example, medicines management), 22 sub-categories (for example, emergency drug supplies) and 78 related items (for example, stock balancing, secure drug storage, and cold chain temperature recording). Hazards in the general practice work system were prioritised that can potentially impact on the safety, health and wellbeing of patients, GP team members, and practice performance, and a necessary safety checklist prototype was designed. However, checklist efficacy in improving safety processes and outcomes is dependent on user commitment, and support from leaders and promotional champions. Although further usability development and testing is necessary, the concept should be of interest in the UK and internationally. © British Journal of General Practice 2015.

  2. Preliminary environmental assessment for the Satellite Power System (SPS). Revision 1. Volume 2. Detailed assessment

    SciTech Connect

    Not Available

    1980-01-01

    The Department of Energy (DOE) is considering several options for generating electrical power to meet future energy needs. The satellite power system (SPS), one of these options, would collect solar energy through a system of satellites in space and transfer this energy to earth. A reference system has been described that would convert the energy to microwaves and transmit the microwave energy via directive antennas to large receiving/rectifying antennas (rectennas) located on the earth. At the rectennas, the microwave energy would be converted into electricity. The potential environmental impacts of constructing and operating the satellite power system are being assessed as a part of the Department of Energy's SPS Concept Development and Evaluation Program. This report is Revision I of the Preliminary Environmental Assessment for the Satellite Power System published in October 1978. It refines and extends the 1978 assessment and provides a basis for a 1980 revision that will guide and support DOE recommendations regarding future SPS development. This is Volume 2 of two volumes. It contains the technical detail suitable for peer review and integrates information appearing in documents referenced herein. The key environmental issues associated with the SPS concern human health and safety, ecosystems, climate, and electromagnetic systems interactions. In order to address these issues in an organized manner, five tasks are reported: (I) microwave-radiation health and ecological effects; (II) nonmicrowave health and ecological effectss; (III) atmospheric effects; (IV) effects on communication systems due to ionospheric disturbance; and (V) electromagnetic compatibility. (WHK)

  3. The System 80+ Standard Plant design control document. Volume 14

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains all four parts of section 10 (Steam and Power Conversion) of the ADM. Topics included: a general description; turbine generator; main steam supply system; and other system features. Appendix 10A EFW system reliability is included. Parts 1--5 of section 11 (Radioactive Waste Management) of the ADM Design and Analysis are also contained in this volume. Topics covered by these parts are: source terms; liquid waste management systems; gaseous waste management systems; solid waste management systems; and process and effluents monitoring.

  4. The System 80+ Standard Plant design control document. Volume 11

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers parts 6 and 7 and appendix 7A for section 7 (Instrumentation and Control) of the ADM Design and Analysis. The topics covered by these are: other systems required for safety; control systems not required by safety; and CMF evaluation of limiting faults. Parts 1--3 of section 8 (Electric Power) of the ADM are also included in this volume. Topics covered by these parts are: introduction; offsite power system; and onsite power system.

  5. The System 80+ Standard Plant design control document. Volume 2

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers the following information of the CDM: (2.8) Steam and power conversion; (2.9) Radioactive waste management; (2.10) Tech Support Center; (2.11) Initial test program; (2.12) Human factors; and sections 3, 4, and 5. Also covered in this volume are parts 1--6 of section 1 (General Plant Description) of the ADM Design and Analysis.

  6. The System 80+ Standard Plant design control document. Volume 21

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains parts 1--10 of section 19 (Probabilistic Risk Assessment) of the ADM Design and Analysis. Topics covered are: methodology; initiating event evaluation; accident sequence determination; data analysis; systems analysis; external events analysis; shutdown risk assessment; accident sequence quantification; and sensitivity analysis. Also included in this volume are Appendix 19.8A Shutdown Risk Assessment and Appendix A to Appendix 19.8A Request for Information.

  7. Interplanetary mission design handbook. Volume 1, part 4: Earth to Saturn ballistic mission opportunities, 1985-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Snyder, G. C.

    1981-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Saturn are provided. Contours of launch energy requirements as well as many other launch and Saturn arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1985 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Saturn probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations elating various parameters. This is the first of a planned series of mission design documents which will apply to all planets and some other bodies in the solar system.

  8. System 80+{trademark} Standard Design: CESSAR design certification. Volume 4: Amendment I

    SciTech Connect

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report - Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These documents describe the Combustion Engineering, Inc. System 80+{sup TM} Standard Design. This report, Volume 4, provides a description of the reactor, reactor internals, fuel assemblies, and associated design requirements.

  9. Designing an Advanced Instructional Design Advisor: Conceptual Frameworks. Volume 5

    DTIC Science & Technology

    1991-12-01

    STATING THE FUNCTION OF A TRANSFORMER COGNITIVE STRATEGY USING SPLIT-HALF TO CHECK ( CONTORL PROCESS MALFUNCTION IN ELECTRIC CIRCUIT MOTOR SKILL MAKING A...Directorate and is aimed at producing automated instructional design guidance for developers of computer-based instructional materials. The process of...producing effective computer-based instructional materials is complex and time-consuming. Few experts exist to insure the effectiveness of the process

  10. Design Criteria for Elastomeric Bearings. Volume 2. Design Manual

    DTIC Science & Technology

    1976-03-01

    geometries proportional to that re- quired for rotor head application. The program effort was planned to have a work scope consisting of the...the use of a nonlinear theory . However, a large number of experimental and analytical studies of the be- havior of rubber sheets bonded to rigid...plates (References 3-6 through 3-8) have shown that the classical linear theory of elasticity is generally applicable to bear- ing design. A

  11. The System 80+ Standard Plant design control document. Volume 6

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers the following information for the ADM Design and Analysis: parts 10 and 11 of section 3 (Design of Systems, Structure and Components); App 3.9A Piping system criteria and analysis; App 3.11A Environmental design data; App 311.B Qualified equipment. It also includes the parts 1--4 of section 4 (Reactor Design). These parts include a general description of the reactor, fuel system design, nuclear design, and thermal-hydraulic design.

  12. MANUAL: BIOVENTING PRINCIPLES AND PRACTICE VOLUME II. BIOVENTING DESIGN

    EPA Science Inventory

    The results from bioventing research and development efforts and from the pilot-scale bioventing systems have been used to produce this two-volume manual. Although this design manual has been written based on extensive experience with petroleum hydrocarbons (and thus, many exampl...

  13. MANUAL: BIOVENTING PRINCIPLES AND PRACTICE VOLUME II. BIOVENTING DESIGN

    EPA Science Inventory

    The results from bioventing research and development efforts and from the pilot-scale bioventing systems have been used to produce this two-volume manual. Although this design manual has been written based on extensive experience with petroleum hydrocarbons (and thus, many exampl...

  14. Environmental Design Research. Volume One: Selected Papers. Community Development Series.

    ERIC Educational Resources Information Center

    Preiser, Wolfgang F. E., Ed.

    The items contained in this volume are summaries and critiques of 43 research papers grouped within a framework of nine general topics which represents an attempt to delineate the basic concepts and structure of environmental design research. The papers are grouped under the following headings: (1) Theoretical issues in man-environment relations,…

  15. Preliminary Study on Kano Model in the Conceptual Design Activities for Product Lifecycle Improvement

    NASA Astrophysics Data System (ADS)

    Fahrul Hassan, Mohd; Rahman, M. R. A.; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.; Fauzi Ahmad, Md

    2017-08-01

    Product manufactured with short life cycle had only one major issue, it can lead to increasing volume of waste. Day by day, this untreated waste had consumed many landfill spaces, waiting for any possible alternatives. Lack of product recovery knowledge and recyclability features imprinted into product design are one of the main reason behind all this. Sustainable awareness aspect should not just be implied into people’s mind, but also onto product design. This paper presents a preliminary study on Kano model method in the conceptual design activities to improve product lifecycle. Kano model is a survey-type method, used to analyze and distinguished product qualities or features, also how the customers may have perceived them. Three important attributes of Kano model are performance, attractive and must-be. The proposed approach enables better understanding of customer requirements while providing a way for Kano model to be integrated into engineering design to improve product’s end-of-life. Further works will be continued to provide a better lifecycle option (increase percentage of reuse, remanufacture or recycle, whereby decrease percentage of waste) of a product using Kano model approach.

  16. Design of a Regenerative Life Support System for a Moon Base. Preliminary Results.

    NASA Astrophysics Data System (ADS)

    Duatis Juarez, Jordi; Guirado, Víctor; Lasseur, Christophe

    NTE-SENER has finalised a study under an ESA contract, to define a preliminary system design of an European Module to provide Environmental Control and Life Support to a potential Moon base. The design is based on current Life Support System technologies under development in Europe (MELiSSA, GWRU, Sabatier Reactor and UTU) along with contamination and microbial detection technologies (ANITA, MIDASS). The ECLSS is sized to provide water, air and up to the 40 As a support to the study a simulator has been developed to analyse the energy, volume and mass and the flow rates and efficiencies of the different components. The study applied the basics of the ALISSE criteria to evaluate the technologies taking as a source the results of the simulations. Detailed models of the different technologies have been developed including feedback from the pilot designs. The results of the study have showed up opportunities of improvement and many points that need to be further investigated. The technologies used in the study are based on the MELiSSA Pilot Plant reactors implementation and the results could affect their design in the near fu-ture in aspects such as carbon recycling, irrigation methods, energy consumption, technologies involved, etc.

  17. Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I

    SciTech Connect

    1990-09-19

    This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

  18. Study and design of cryogenic propellant acquisition systems. Volume 1: Design studies

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    An in-depth study and selection of practical propellant surface tension acquisition system designs for two specific future cryogenic space vehicles, an advanced cryogenic space shuttle auxiliary propulsion system and an advanced space propulsion module is reported. A supporting laboratory scale experimental program was also conducted to provide design information critical to concept finalization and selection. Designs using localized pressure isolated surface tension screen devices were selected for each application and preliminary designs were generated. Based on these designs, large scale acquisition prototype hardware was designed and fabricated to be compatible with available NASA-MSFC feed system hardware.

  19. Estimating Basic Preliminary Design Performances of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.; Alexander, Reginald

    2004-01-01

    Aerodynamics and Performance Estimation Toolset is a collection of four software programs for rapidly estimating the preliminary design performance of aerospace vehicles represented by doing simplified calculations based on ballistic trajectories, the ideal rocket equation, and supersonic wedges through standard atmosphere. The program consists of a set of Microsoft Excel worksheet subprograms. The input and output data are presented in a user-friendly format, and calculations are performed rapidly enough that the user can iterate among different trajectories and/or shapes to perform "what-if" studies. Estimates that can be computed by these programs include: 1. Ballistic trajectories as a function of departure angles, initial velocities, initial positions, and target altitudes; assuming point masses and no atmosphere. The program plots the trajectory in two-dimensions and outputs the position, pitch, and velocity along the trajectory. 2. The "Rocket Equation" program calculates and plots the trade space for a vehicle s propellant mass fraction over a range of specific impulse and mission velocity values, propellant mass fractions as functions of specific impulses and velocities. 3. "Standard Atmosphere" will estimate the temperature, speed of sound, pressure, and air density as a function of altitude in a standard atmosphere, properties of a standard atmosphere as functions of altitude. 4. "Supersonic Wedges" will calculate the free-stream, normal-shock, oblique-shock, and isentropic flow properties for a wedge-shaped body flying supersonically through a standard atmosphere. It will also calculate the maximum angle for which a shock remains attached, and the minimum Mach number for which a shock becomes attached, all as functions of the wedge angle, altitude, and Mach number.

  20. Column flotation monitoring based on electrical capacitance volume tomography: A preliminary study

    NASA Astrophysics Data System (ADS)

    Haryono, Didied; Harjanto, Sri; Nugraha, Harisma; Huda, Mahfudz Al; Taruno, Warsito Purwo

    2017-01-01

    A preliminary study of column flotation monitoring process using electrical capacitance volume tomography (ECVT) was conducted. ECVT was one of the monitoring systems which based on the capacitance measurement. It was used to understand the phenomenon that occurs inside the column in a three-dimensional (3-D) image. A linear back projection (LBP) algorithm technique was used to reconstruct the 3-D ECVT images from all measurement data obtained in this study. As a preliminary study, the effect of gas injection in the two-phase (liquid and gas) system was conducted. This study is conducted to assess the possibility of ECVT system in the monitoring of column flotation process. The experiments were conducted by using column flotation with 5 cm diameter and 150 cm height in which a sparger was installed at the bottom of column to inject air inside the column. 32-CH rectangular ECVT sensor was installed at 13 cm above the sparger and placed around the column. The gas injection variations used were 2-7 l/min with interval 1 l/min and all experiments were conducted at room temperature. Based on the signal and image analysis, the signals and 3-D ECVT images showed differences when the gas injection was varied. An increase in gas injection will decrease the fluctuation of signal intensity which correlates to the 3-D ECVT images. Average signals obtained by ECVT when given gas injection variations were in the range of 440.09 to 453.62 mV from high to low gas injection. Based on these results, ECVT has a prospect as an imaging tool to monitor the column flotation process. And also, hopefully, based on the analysis of 3-D images generated by ECVT system, the metallurgical performance would be analyzed in the further researches.

  1. Structure-Aware Lighting Design for Volume Visualization.

    PubMed

    Tao, Yubo; Lin, Hai; Dong, Feng; Wang, Chao; Clapworthy, G; Bao, Hujun

    2012-12-01

    Lighting design is a complex, but fundamental, problem in many fields. In volume visualization, direct volume rendering generates an informative image without external lighting, as each voxel itself emits radiance. However, external lighting further improves the shape and detail perception of features, and it also determines the effectiveness of the communication of feature information. The human visual system is highly effective in extracting structural information from images, and to assist it further, this paper presents an approach to structure-aware automatic lighting design by measuring the structural changes between the images with and without external lighting. Given a transfer function and a viewpoint, the optimal lighting parameters are those that provide the greatest enhancement to structural information - the shape and detail information of features are conveyed most clearly by the optimal lighting parameters. Besides lighting goodness, the proposed metric can also be used to evaluate lighting similarity and stability between two sets of lighting parameters. Lighting similarity can be used to optimize the selection of multiple light sources so that different light sources can reveal distinct structural information. Our experiments with several volume data sets demonstrate the effectiveness of the structure-aware lighting design approach. It is well suited to use by novices as it requires little technical understanding of the rendering parameters associated with direct volume rendering.

  2. SRB ascent aerodynamic heating design criteria reduction study, volume 1

    NASA Technical Reports Server (NTRS)

    Crain, W. K.; Frost, C. L.; Engel, C. D.

    1989-01-01

    An independent set of solid rocket booster (SRB) convective ascent design environments were produced which would serve as a check on the Rockwell IVBC-3 environments used to design the ascent phase of flight. In addition, support was provided for lowering the design environments such that Thermal Protection System (TPS), based on conservative estimates, could be removed leading to a reduction in SRB refurbishment time and cost. Ascent convective heating rates and loads were generated at locations in the SRB where lowering the thermal environment would impact the TPS design. The ascent thermal environments are documented along with the wind tunnel/flight test data base used as well as the trajectory and environment generation methodology. Methodology, as well as, environment summaries compared to the 1980 Design and Rockwell IVBC-3 Design Environment are presented in this volume, 1.

  3. The System 80+ Standard Plant design control document. Volume 3

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers the following parts of section 1 (General Plant Description) of the ADM Design and Analysis: 1.7 Drawings and diagrams (electrical, instrumentation, and control drawings and piping and instrumentation diagrams); 1.8 Regulatory compliance, industry codes and standards; 1.9 Design interfaces; 1.10 COL information. It also contains parts 1--5 of section 2 Site Characteristics; App 2A Generic soil characteristics; App 2B Control motion characteristics; App 2C Strain-compatible modulus and damping valves; and parts 1--4 of section 3 (Design of Systems, Structures and Components).

  4. The System 80+ Standard Plant design control document. Volume 4

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers the following information of the ADM Design and Analysis: parts 5--7 of section 3 (Design of Systems, Structures and Components); App 3.6A Design and analysis of pipe whip; App 3.7A RCS seismic results; App 3.7B SSI analysis methodology; App 3.7C Soil-structure interactions; and App 3.7D In-structure response spectra.

  5. The System 80+ Standard Plant design control document. Volume 10

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains Appendices 6A, 6B, and 6C for section 6 (Engineered Safety Features) of the ADM Design and Analysis. Also, parts 1--5 of section 7 (Instrumentation and Control) of the ADM Design and Analysis are covered. The following information is covered in these parts: introduction; reactor protection system; ESF actuation system; system required for safe shutdown; and safety-related display instrumentation.

  6. The System 80+ Standard Plant design control document. Volume 18

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains the following technical specifications of section 16 (Technical Specifications) of the ADM Design and Analysis: TS 3.3 Instrumentation; TS 3.4 Reactor Coolant System; TS 3.5 Emergency Core Cooling System; TS 3.6 Containment Systems; TS 3.7 Plant Systems; TS 3.8 Electrical Power Systems; TS 3.9 Refueling Operations; TS 4.0 Design Features; TS 5.0 Administrative Controls. Appendix 16 A Tech Spec Bases is also included. It contains the following: TS B2.0 Safety Limits Bases; TS B3.0 LCO Applicability Bases; TS B3.1 Reactivity Control Bases; TS B3.2 Power Distribution Bases.

  7. The System 80+ Standard Plant design control document. Volume 17

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains parts 2-7 and appendix 15A for section 15 (Accident Analysis) of the ADM Design and Analysis. Topics covered in these parts are: decrease in heat removal; decrease in RCS flow rate; power distribution anomalies; increase in RCS inventory; decrease in RCS inventory; release of radioactive materials. The appendix covers radiological release models. Also contained here are five technical specifications for section 16 (Technical Specifications) of the ADM Design and Analysis. They are: TS 1.0 Use and Applications; TS 2.0 Safety Limits; TS 3.0 LCO Availability; TS 3.1 Reactivity Control; and TS 3.2 Power Distribution.

  8. The System 80+ Standard Plant design control document. Volume 7

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers the following information of the ADM Design and Analysis: parts 5 (Materials) and 6 (Reactivity control system) of section 4 (Reactor Design); App 4A Flow model test program; App 4B Fuel and CEA testing; parts 1--4 of section 5 (RCS and Connected Systems); App 5A Overpressure protection; App 5B Steam line break evaluation; App 5C Feedwater line break evaluation; App 5D Natural convection cooldown; and App 5E Interfacing system LOCA.

  9. System 80+{trademark} standard design: CESSAR design certification. Volume 13: Amendment I

    SciTech Connect

    Not Available

    1990-08-31

    This report, entitled Combustion Engineering Standard Safety Analysis Report--Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These documents describe the Combustion Engineering, Inc. System 80+{trademark} Standard Design. This report, Volume 13, documents increase and decrease of reactor cooling system inventory and radioactive material release from a subsystem or component.

  10. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 3, Model parameters: Sandia WIPP Project

    SciTech Connect

    Not Available

    1992-12-29

    This volume documents model parameters chosen as of July 1992 that were used by the Performance Assessment Department of Sandia National Laboratories in its 1992 preliminary performance assessment of the Waste Isolation Pilot Plant (WIPP). Ranges and distributions for about 300 modeling parameters in the current secondary data base are presented in tables for the geologic and engineered barriers, global materials (e.g., fluid properties), and agents that act upon the WIPP disposal system such as climate variability and human-intrusion boreholes. The 49 parameters sampled in the 1992 Preliminary Performance Assessment are given special emphasis with tables and graphics that provide insight and sources of data for each parameter.

  11. Large-volume liposuction and prevention of type 2 diabetes: a preliminary report.

    PubMed

    Narsete, Thomas; Narsete, Michele; Buckspan, Randy; Ersek, Robert

    2012-04-01

    This report presents a preliminary study investigating the effects of large-volume liposuction on the parameters that determine type 2 diabetes. The study enrolled 31 patients with a body mass index (BMI) exceeding 30 kg/m(2) over a 1-year period. All the liposuction procedures were performed with the patient under local anesthesia using ketamine/valium sedation. Pre- and postoperative blood pressure, fasting glucose, glycosylated hemoglobin (HbA1C), weight, and BMI were evaluated for 16 of the 30 patients who returned for a follow-up visit 3 to 12 months postoperatively. The average aspirate was 8,455 ml without dermolipectomy and 5,795 ml with dermolipectomy. The data reveal a trend of improvement in blood sugar levels associated with weight loss that helps the patients. The average blood sugar level dropped 18% in our return patients, and the average weight loss was 9.2%. The average drop in BMI was 6.2%, and HbA1C showed a decrease of 2.3%. The patients with the best weight loss had the best reduction in blood sugar level and blood pressure. No transfers to the hospital and no thromboebolism occurred for any of the 31 patients. One dehiscence, two wound infections, and three seromas were reported. The authors hypothesize that large-volume liposuction in their series may have motivated some to diet, which could be explored in a larger series with control groups. Liposuction alone did not improve obesity but helped to motivate some of the patients to lose weight. These patients had the best results.

  12. Preliminary design of an intermittent smoke flow visualization system

    NASA Technical Reports Server (NTRS)

    Ward, Donald T.; Myatt, James H.

    1993-01-01

    A prototype intermittent flow visualization system that was designed to study vortex flow field dynamics has been constructed and tested through its ground test phase. It produces discrete pulses of dense white smoke consisting of particles of terephthalic acid by the pulsing action of a fast-acting three-way valve. The trajectories of the smoke pulses can be tracked by a video imaging system without intruding in the flow around in flight. Two methods of pulsing the smoke were examined. The simplest and safest approach is to simply divert the smoke between the two outlet ports on the valve; this approach should be particularly effective if it were desired to inject smoke at two locations during the same test event. The second approach involves closing off one of the outlet ports to momentarily block the flow. The second approach requires careful control of valve dwell times to avoid excessive pressure buildup within the cartridge container. This method also increases the velocity of the smoke injected into the flow. The flow of the smoke has been blocked for periods ranging from 30 to 80 milliseconds, depending on the system volume and the length of time the valve is allowed to remain open between valve closings.

  13. Preliminary design of two Space Shuttle fluid physics experiments

    NASA Technical Reports Server (NTRS)

    Gat, N.; Kropp, J. L.

    1984-01-01

    The mid-deck lockers of the STS and the requirements for operating an experiment in this region are described. The design of the surface tension induced convection and the free surface phenomenon experiments use a two locker volume with an experiment unique structure as a housing. A manual mode is developed for the Surface Tension Induced Convection experiment. The fluid is maintained in an accumulator pre-flight. To begin the experiment, a pressurized gas drives the fluid into the experiment container. The fluid is an inert silicone oil and the container material is selected to be comparable. A wound wire heater, located axisymmetrically above the fluid can deliver three wattages to a spot on the fluid surface. These wattages vary from 1-15 watts. Fluid flow is observed through the motion of particles in the fluid. A 5 mw He/Ne laser illuminates the container. Scattered light is recorded by a 35mm camera. The free surface phenomena experiment consists of a trapezoidal cell which is filled from the bottom. The fluid is photographed at high speed using a 35mm camera which incorporated the entire cell length in the field of view. The assembly can incorporate four cells in one flight. For each experiment, an electronics block diagram is provided. A control panel concept is given for the surface induced convection. Both experiments are within the mid-deck locker weight and c-g limits.

  14. Interplanetary mission design handbook. Volume 1, part 3: Earth to Jupiter ballistic mission opportunities, 1985-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Snyder, G. C.

    1982-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Jupiter are provided. Contours of launch energy requirements, as well as many other launch and Jupiter arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1985 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Jupiter probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations relating various parameters.

  15. The System 80+ Standard Plant design control document. Volume 22

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains parts 11--15 of section 19 (Probabilistic Risk Assessment) of the ADM Design and Analysis. Topics covered are: severe accident phenomenology; containment response analysis; containment consequence analysis; containment sensitivity analysis; conclusions and summary. Also included are Appendices 19.11A--19.11L Severe accident analysis.

  16. The System 80+ Standard Plant design control document. Volume 1

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers the DCD introduction and contains sections 1 and parts 1--7 of section 2 of the CDM. Parts 1--7 included the following: (2.1) Design of SSC; (2.2) Reactor; (2.3) RCS and connected systems; (2.4) Engineered Safety Features; (2.5) Instrumentation and Control; (2.6) Electric Power; and (2.7) Auxiliary Systems.

  17. The System 80+ Standard Plant design control document. Volume 19

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains five technical specification bases that are part of Appendix 16 A of the ADM Design and Analysis. They are: TS B3.3 Instrumentation Bases; TS B3.4 RCS Bases; TS B3.5 ECCS Bases; TS B3.6 Containment Systems Bases; and TS B3.7 Plant Systems Bases.

  18. The System 80+ Standard Plant design control document. Volume 24

    SciTech Connect

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains sections 7--11 of the ADM Emergency Operations Guidelines. Topics covered are: excess steam demand recovery; loss of all feedwater; loss of offsite power; station blackout recovery; and functional recovery guideline. Appendix A Severe Accident Management Guidelines and Appendix B Lower Mode Operational Guidelines are also included.

  19. Transonic Fan/Compressor Rotor Design Study. Volume 3

    DTIC Science & Technology

    1982-02-01

    KEY WORDS (Continue on revere. old. $1 nocoeoary and identify by block nuvb.,) Fan Aircraft Engines Compressor Blade Thickne)s Rotor Camber...COMPRESSOR ’Q ROTOR DESIGN STUDY Volume III D.E. Parker and M.R. Simonson CZ) General Electric Company Aircraft Engine Business Group Advanced...Compressor Research Group Chief, Technology Branch FOR THE COMMANDER H. WAN BI Director, Turbine Engine Division ŕ *If your address has changed, if you wish

  20. Transonic Fan/Compressor Rotor Design Study. Volume 4

    DTIC Science & Technology

    1982-02-01

    amd Identify by block number) Fan Aircraft Engines Compressor Blade Thickness Rotor Camber Distribution Aerodesign Throat Margin Aerodynamics 20...COMPRESSOR ROTOR DESIGN STUDY Volume IV D.E. Parker and M.R. Simonson General Electric Company Aircraft Engine Business Group Advanced Technology...Compressor Research Group Chief, Technology Branch FOR THE COMMANDER H. IVAN BUS Director, Turbine Engine Division If your address has changed, if you

  1. Transonic Fan/Compressor Rotor Design Study. Volume 2

    DTIC Science & Technology

    1982-02-01

    Identity by block number) Fan Aircraft Engines Compressor Blade Thickness Rotor Camber Distribution Aerodesign Throat Margin Aerodynamics 20. 1ABSRACT...COMPRESSOR ROTOR DESIGN STUDY Volume II D.E. Parker and M.R. Simonson General Electric Company / Aircraft Engine Business Group Advanced Technology...Research Group Chief, Technology Branch FOR THE COMMANDER H. IVAN BUSH Director, Turbine Engine Division . If your address has changed, if you wish to be

  2. Prediction Power Propulsion of the Ship at the Stage of Preliminary Design. Part I: Forecasting Method for Power Propulsion of Ship at the Stage of Preliminary Design

    NASA Astrophysics Data System (ADS)

    Szelangiewicz, Tadeusz; Żelazny, Katarzyna

    2017-06-01

    During the design of the ship the most important decisions are made at the stage of preliminary design. One of the most important design parameters assumed by the shipowner is its service speed in real weather conditions occurring in the shipping line. For this speed, at the stage of preliminary design, when are known only to the basic geometric parameters of the ship and its motor power should be determined. In practice, design, power propulsion is determined with a very approximate formulas but for the speed in calm water. Only after the project contract and the signing of the contract are carried out by means of resistance and self-propulsion of model test. The article presents the concept of the method for determining the power propulsion for the assumed service speed, which depends only on the basic geometric parameters of the ship's hull.

  3. Nearshore Wind-Stress Measurements: Background Preliminary Field Work and Experiment Design

    DTIC Science & Technology

    1988-09-01

    platforms (such as ships and offshore oil platforms) give cause why little direct wind- stress data have been obtained in the open ocean. These problems are...1 ,LE COP MISCELLANEOUS PAPER CERC.14U NEARSHORE WIND- STRESS MEASUREMENTS: BACKGROUND PRELIMINARY FIELD WORK AND EXPERIMENT DESIGN 0by N. Charles E...Secunty Classification) Nearshore Wind- Stress Measurements: Background, Preliminary Field Work, and Experiment Design 12. PERSONAL AUTHOR(S) Long

  4. Preliminary Design Study of a Hybrid Airship for Flight Research

    NASA Technical Reports Server (NTRS)

    Browning, R. G. E.

    1981-01-01

    The feasibility of using components from four small helicopters and an airship envelope as the basis for a quad-rotor research aircraft was studied. Preliminary investigations included a review of candidate hardware and various combinations of rotor craft/airship configurations. A selected vehicle was analyzed to assess its structural and performance characteristics.

  5. A Preliminary Rubric Design to Evaluate Mixed Methods Research

    ERIC Educational Resources Information Center

    Burrows, Timothy J.

    2013-01-01

    With the increase in frequency of the use of mixed methods, both in research publications and in externally funded grants there are increasing calls for a set of standards to assess the quality of mixed methods research. The purpose of this mixed methods study was to conduct a multi-phase analysis to create a preliminary rubric to evaluate mixed…

  6. A Preliminary Rubric Design to Evaluate Mixed Methods Research

    ERIC Educational Resources Information Center

    Burrows, Timothy J.

    2013-01-01

    With the increase in frequency of the use of mixed methods, both in research publications and in externally funded grants there are increasing calls for a set of standards to assess the quality of mixed methods research. The purpose of this mixed methods study was to conduct a multi-phase analysis to create a preliminary rubric to evaluate mixed…

  7. Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design

    NASA Technical Reports Server (NTRS)

    Harmon, T. J.; Roschak, E.

    1993-01-01

    A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.

  8. Trade-off results and preliminary designs of Near-Term Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Sandberg, J. J.

    1980-01-01

    Phase I of the Near-Term Hybrid Vehicle Program involved the development of preliminary designs of electric/heat engine hybrid passenger vehicles. The preliminary designs were developed on the basis of mission analysis, performance specification, and design trade-off studies conducted independently by four contractors. THe resulting designs involve parallel hybrid (heat engine/electric) propulsion systems with significant variation in component selection, power train layout, and control strategy. Each of the four designs is projected by its developer as having the potential to substitute electrical energy for 40% to 70% of the petroleum fuel consumed annually by its conventional counterpart.

  9. A knowledge-based design framework for airplane conceptual and preliminary design

    NASA Astrophysics Data System (ADS)

    Anemaat, Wilhelmus A. J.

    The goal of work described herein is to develop the second generation of Advanced Aircraft Analysis (AAA) into an object-oriented structure which can be used in different environments. One such environment is the third generation of AAA with its own user interface, the other environment with the same AAA methods (i.e. the knowledge) is the AAA-AML program. AAA-AML automates the initial airplane design process using current AAA methods in combination with AMRaven methodologies for dependency tracking and knowledge management, using the TechnoSoft Adaptive Modeling Language (AML). This will lead to the following benefits: (1) Reduced design time: computer aided design methods can reduce design and development time and replace tedious hand calculations. (2) Better product through improved design: more alternative designs can be evaluated in the same time span, which can lead to improved quality. (3) Reduced design cost: due to less training and less calculation errors substantial savings in design time and related cost can be obtained. (4) Improved Efficiency: the design engineer can avoid technically correct but irrelevant calculations on incomplete or out of sync information, particularly if the process enables robust geometry earlier. Although numerous advancements in knowledge based design have been developed for detailed design, currently no such integrated knowledge based conceptual and preliminary airplane design system exists. The third generation AAA methods are tested over a ten year period on many different airplane designs. Using AAA methods will demonstrate significant time savings. The AAA-AML system will be exercised and tested using 27 existing airplanes ranging from single engine propeller, business jets, airliners, UAV's to fighters. Data for the varied sizing methods will be compared with AAA results, to validate these methods. One new design, a Light Sport Aircraft (LSA), will be developed as an exercise to use the tool for designing a new airplane

  10. Design report small-scale fuel alcohol palnt. Volume III. Drawings

    SciTech Connect

    Not Available

    1980-12-01

    The objectives of the report are to (a) provide potential alcohol producers with a reference design and (b) provide a complete, demonstrated design of small-scale fuel alcohol plant. This report describes a small-scale fuel alcohol plant designed and constructed for the DOE by EG and G Idaho, Inc., an operating contractor at the Idaho National Engineering Laboratory. The plant is reasonably complete, having the capability for feedstock preparation, cooking, saccharification, fermentation, distillation, by-product dewatering, and process steam generation. An interesting feature is an instrumentation and control system designed to allow the plant to run 24 hours per day with only four hours of operator attention. Where possible, this document follows the design requirements established in the DOE publication Fuel From Farms, which was published in February 1980. For instance, critical requirements such as using corn as the primary feedstock, production of 25 gallons of 190 proof ethanol per hour, and using batch fermentation were taken from Fuel From Farms. One significant deviation is alcohol dehydration. Fuel From Farms recommends the use of a molecular sieve for dehydration, but a preliminary design raised significant questions about the cost effectiveness of this approach. A cost trade-off study is currently under way to establish the best alcohol dehydration method and will be the subject of a later report. This volume contains the equipment and construction drawings used to build the small-scale ethanol plant. The design in this volume represents the design at completion of construction and before continuous production began.

  11. Design and evaluation of a new bladder volume monitor.

    PubMed

    Wang, Jianhuo; Hou, Chunlin; Zheng, Xianyou; Zhang, Wei; Chen, Aimin; Xu, Zhen

    2009-11-01

    To introduce and evaluate a new implantable bladder volume monitor. Experimental study. Animal laboratory. Eight dogs. A coin-shaped permanent magnet was stitched onto the anterior bladder wall and a magnetic field sensor was fixed onto the lower abdominal external wall in 8 male dogs. The bladder was filled with sterile normal saline in consecutive steps of 25 mL each from 0 to 200 mL by a transurethral catheter. Sensor readings were recorded after each step of bladder filling. The sensor baseline was set at 70 degrees when the bladder was empty. After filling the bladders with 25, 50, 75, 100, 125, 150, 175, and 200 mL saline water, the sensor readings were 74.6+/-0.9 degrees , 79.6+/-1.2 degrees , 84.5+/-0.9 degrees , 90.1+/-0.8 degrees , 95.5+/-1.1 degrees , 101.8+/-2.1 degrees , 110.5+/-2.9 degrees , and 121.9+/-3.5 degrees , respectively. Sensor readings were positively correlated with bladder volume (r=1; P<.01). The design of a new bladder volume monitor that is made up of an external magnetic field sensor and an internal permanent magnet is reasonable and feasible. The new bladder volume monitor is simple in structure.

  12. Sediment Export from Forest Road Turn-outs: A Study Design and Preliminary Results

    Treesearch

    Johnny M. Grace

    1998-01-01

    This paper reports the design and preliminary results of a study that evaluates the effects of commonly prescribed forest road runoff control treatments. A study design which utilizes runoff samplers, runoff diversion walls, sediment filter bags, and erosion stakes to evaluate sediment transport through runoff control treatments is documented. The study design will...

  13. Maintainability design of underground mining equipment. Volume 2. Maintainability design guidelines. Research report (Final)

    SciTech Connect

    Conway, E.J.; Unger, R.

    1989-09-01

    The objectives of the project were to: (1) determine the extent to which maintainability design concepts and principles have been applied to the design of underground coal mining equipment, (2) try to assess its impact on productivity and personnel safety, and (3) develop maintainability guidelines to enhance the design of new or rebuilt equipment. An equipment design review was completed at ten operational coal mines. The purpose was to identify design approaches and features that enhanced and degraded the maintenance process. Mine management, safety, and maintenance personnel were also interviewed to identify machine specific design problems. Six original equipment manufacturers were visited and the procedures used to enhance the maintainability of their equipment discussed. Volume I of the Final Technical Report presents an overview of procedures and protocol used and a summary of the findings. Volume II includes the maintainability design guide for mobile underground mining equipment.

  14. Design report small-scale fuel alcohol plant. Volume II. Detailed construction information

    SciTech Connect

    Not Available

    1980-12-01

    The objectives of the report are to (a) provide potential alcohol producers with a reference design and (b) provide a complete, demonstrated design of a small-scale fuel alcohol plant. This report describes a small-scale fuel alcohol plant designed and constructed for the DOE by EG and G Idaho, Inc., an operating contractor at the Idaho National Engineering Laboratory. The plant is reasonably complete, having the capability for feedstock preparation, cooking, saccharification, fermentation, distillation, by-product dewatering, and process steam generation. An interesting feature is an instrumentation and control system designed to allow the plant to run 24 hours per day with only four hours of operator attention. Where possible, this document follows the design requirements established in the DOE publication Fuel From Farms, which was published in February 1980. For instance, critical requirements such as using corn as the primary feedstock, production of 25 gallons of 190 proof ethanol per hour, and using batch fermentation were taken from Fuel From Farms. One significant deviation is alcohol dehydration. Fuel From Farms recommends the use of a molecular sieve for dehydration, but a preliminary design raised significant questions about the cost effectiveness of this approach. A cost trade-off study is currently under way to establish the best alcohol dehydration method and will be the subject of a later report. Volume two includes equipment and instrumentation data sheets, instrument loop wiring diagrams, and vendor lists.

  15. Volume analysis of heat-induced cracks in human molars: A preliminary study

    PubMed Central

    Sandholzer, Michael A.; Baron, Katharina; Heimel, Patrick; Metscher, Brian D.

    2014-01-01

    Context: Only a few methods have been published dealing with the visualization of heat-induced cracks inside bones and teeth. Aims: As a novel approach this study used nondestructive X-ray microtomography (micro-CT) for volume analysis of heat-induced cracks to observe the reaction of human molars to various levels of thermal stress. Materials and Methods: Eighteen clinically extracted third molars were rehydrated and burned under controlled temperatures (400, 650, and 800°C) using an electric furnace adjusted with a 25°C increase/min. The subsequent high-resolution scans (voxel-size 17.7 μm) were made with a compact micro-CT scanner (SkyScan 1174). In total, 14 scans were automatically segmented with Definiens XD Developer 1.2 and three-dimensional (3D) models were computed with Visage Imaging Amira 5.2.2. The results of the automated segmentation were analyzed with an analysis of variance (ANOVA) and uncorrected post hoc least significant difference (LSD) tests using Statistical Package for Social Sciences (SPSS) 17. A probability level of P < 0.05 was used as an index of statistical significance. Results: A temperature-dependent increase of heat-induced cracks was observed between the three temperature groups (P < 0.05, ANOVA post hoc LSD). In addition, the distributions and shape of the heat-induced changes could be classified using the computed 3D models. Conclusion: The macroscopic heat-induced changes observed in this preliminary study correspond with previous observations of unrestored human teeth, yet the current observations also take into account the entire microscopic 3D expansions of heat-induced cracks within the dental hard tissues. Using the same experimental conditions proposed in the literature, this study confirms previous results, adds new observations, and offers new perspectives in the investigation of forensic evidence. PMID:25125923

  16. Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.

  17. Development of ADOCS controllers and control laws. Volume 2: Literature review and preliminary analysis

    NASA Technical Reports Server (NTRS)

    Landis, Kenneth H.; Glusman, Steven I.

    1985-01-01

    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of ACAS characteristics; display mode switching logic. Findings from the literature review and the analysis and synthesis of desired control laws are reported in Volume 2. Conclusions drawn from pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

  18. Final safety analysis report for the Galileo Mission: Volume 1, Reference design document

    SciTech Connect

    Not Available

    1988-05-01

    The Galileo mission uses nuclear power sources called Radioisotope Thermoelectric Generators (RTGs) to provide the spacecraft's primary electrical power. Because these generators contain nuclear material, a Safety Analysis Report (SAR) is required. A preliminary SAR and an updated SAR were previously issued that provided an evolving status report on the safety analysis. As a result of the Challenger accident, the launch dates for both Galileo and Ulysses missions were later rescheduled for November 1989 and October 1990, respectively. The decision was made by agreement between the DOE and the NASA to have a revised safety evaluation and report (FSAR) prepared on the basis of these revised vehicle accidents and environments. The results of this latest revised safety evaluation are presented in this document (Galileo FSAR). Volume I, this document, provides the background design information required to understand the analyses presented in Volumes II and III. It contains descriptions of the RTGs, the Galileo spacecraft, the Space Shuttle, the Inertial Upper Stage (IUS), the trajectory and flight characteristics including flight contingency modes, and the launch site. There are two appendices in Volume I which provide detailed material properties for the RTG.

  19. Process engineering and mechanical design reports. Volume III. Preliminary design and assessment of a 12,500 BPD coal-to-methanol-to-gasoline plant. [Grace C-M-G Plant, Henderson County, Kentucky; Units 26, 27, 31 through 34, 36 through 39

    SciTech Connect

    Stewart, R. M.

    1982-08-01

    Various unit processes are considered as follows: a brief description, basis of design; process selection rationale, a brief description of the process chosen and a risk assessment evaluation (for some cases). (LTN)

  20. Preliminary Design and Fabrication Assessment for Two Solar Sail Candidates

    NASA Technical Reports Server (NTRS)

    Weis, R.

    1977-01-01

    Primary emphasis is directed to the spinning sail design and fabrication assessment. Several methods of fabricating the spinning sail blades are presented and compared. Evaluations are made of each proposed design, as well as the baseline design. These efforts resulted in the recommendation of an apparent optimum design and fabrication plan with an assessment of the major advantages/disadvantages of each concept considered.

  1. Design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range. Volume 2. Program plan

    SciTech Connect

    Not Available,

    1980-09-15

    A plan for implementing the proposed state-of-the-art design described in Volume I has been developed. The main objective of the project is to demonstrate a large coal-fired Stirling engine and thus shorten the lead time to commercialization. The demonstration engine will be based on the concepts developed in the first phase of this program, as detailed in Volume I of this report. Thus the proposed program plan is based on the U-4 engine concept fired by a fluidized bed combustor with a two-stage gravity-assisted heat pipe. The plan is divided into five phases and an ongoing supporting technology program. Phase I, Conceptual Design, has been completed. The remaining phases are: Preliminary Design; Final Design; Fabrication; and Testing and Demonstration. The primary target is to begin testing the large coal-fired engine by the fifth year (1985) after the start of Preliminary Design.

  2. CleanFleet. Volume 2, Project Design and Implementation

    SciTech Connect

    1995-12-01

    The CleanFleet alternative fuels demonstration project evaluated five alternative motorfuels in commercial fleet service over a two-year period. The five fuels were compressed natural gas, propane gas, California Phase 2 reformulated gasoline (RFG), M-85 (85 percent methanol and 15 percent RFG), and electric vans. Eight-four vans were operated on the alternative fuels and 27 vans were operated on gasoline as baseline controls. Throughout the demonstration information was collected on fleet operations, vehicle emissions, and fleet economics. In this volume of the CleanFleet findings, the design and implementation of the project are summarized.

  3. A Preliminary study on the seismic conceptual design

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Xie, Lili

    2014-08-01

    The seismic conceptual design is an essential part of seismic design codes. It points out that the term "seismic conceptual design" should imply three aspects, i.e., the given concept itself, the specific provisions related to the given concept and the designing following the provisions. Seismic conceptual design can be classified into two categories: the strict or traditional seismic conceptual design and the generalized seismic conceptual design. The authors are trying to define for both conceptual designs their connotations and study their characteristics, in particular, the differences between them. Authors emphasize that both conceptual designs sound very close, however, their differences are apparent. The strict conceptual designs are usually worked out directly from engineering practice and/or lessons learnt from earthquake damage, while the generalized conceptual designs are resulted in a series of visions aiming to realize the general objectives of the seismic codes. The strict conceptual designs, (traditional conceptual designs) are indispensable elements of seismic codes in assuring designed structures safer and the generalized conceptual designs are playing key roles in directing to a more advanced and effective seismic codes.

  4. Ultrasound and Histologic Examination after Subcutaneous Injection of Two Volumizing Hyaluronic Acid Fillers: A Preliminary Study.

    PubMed

    Micheels, Patrick; Besse, Stéphanie; Sarazin, Didier; Quinodoz, Pierre; Elias, Badwi; Safa, Marva; Vandeputte, Joan

    2017-02-01

    This study examined the influence of hyaluronic acid (HA) crosslinking technology on the ultrasound and histologic behavior of HA fillers designed for subcutaneous injection. One subject received subcutaneous injections of 0.25 ml Cohesive Polydensified Matrix (CPM) and Vycross volumizing HA in tissue scheduled for abdominoplasty by bolus and retrograde fanning techniques. Ultrasound analyses were performed on days 0 and 8 and histologic analyses on days 0 and 21 after injection. A series of simple rheologic tests was also performed. Day 0 ultrasound images after bolus injection showed CPM and Vycross as hypoechogenic papules in the hypodermis. CPM appeared little changed after gentle massage, whereas Vycross appeared more hyperechogenic and diminished in size. Ultrasound images at day 8 were similar. On day 0, both gels appeared less hypoechogenic after retrograde fanning than after bolus injection. Vycross was interspersed with hyperechogenic areas (fibrous septa from the fat network structure) and unlike CPM became almost completely invisible after gentle massage. On day 8, CPM appeared as a hypoechogenic pool and Vycross as a long, thin rod. Day 0 histologic findings confirmed ultrasound results. Day 21 CPM histologic findings showed a discrete inflammatory reaction along the injection row after retrograde fanning. Vycross had a more pronounced inflammatory reaction, particularly after retrograde fanning, with macrophages and giant cells surrounding the implant. Rheologic tests showed CPM to have greater cohesivity and resistance to traction forces than Vycross. CPM HA volumizer appears to maintain greater tissue integrity than Vycross after subcutaneous injection with less inflammatory activity.

  5. Preliminary evaluation of crisis-relocation fallout-shelter options. Volume 2. Detailed analysis

    SciTech Connect

    Santini, D.J.; Clinch, J.M.; Davis, F.H.; Hill, L.G.; Lynch, E.P.; Tanzman, E.A.; Wernette, D.R.

    1982-12-01

    This report presents a preliminary, detailed evaluation of various shelter options for use if the President orders crisis relocation of the US urban population because of strong expectation of a nuclear war. The availability of livable shelter space at 40 ft/sup 2/ per person (congregate-care space) by state is evaluated. Options are evaluated for construction of fallout shelters allowing 10 ft/sup 2/ per person - such shelters are designed to provide 100% survival at projected levels of radioactive fallout. The FEMA concept of upgrading existing buildings to act as fallout shelters can, in principle, provide adequate shelter throughout most of the US. Exceptions are noted and remedies proposed. In terms of upgrading existing buildings to fallout shelter status, great benefits are possible by turning away from a standard national approach and adopting a more site-specific approach. Existing FEMA research provides a solid foundation for successful crisis relocation planning, but the program can be refined by making suitable modifications in its locational, engineering, and institutionally specific elements.

  6. Preliminary decommissioning study reports. Volume 3: Low-Level Liquid Waste (LLW) collection and storage tanks

    SciTech Connect

    Horton, J.R.

    1984-09-01

    Twenty-one low-level liquid radioactive waste collection and storage tanks are part of approximately 76 facilities currently managed by the ORNL Surplus Facilities Management Program (SFMP). This program, as part of the DOE national SFMP, is responsible for the maintenance and surveillance and the final decommissioning of radioactively contaminated surplus ORNL facilities. A long range planning effort is being conducted that will outline the scope and objectives of the ORNL program and establish decommissioning priorities based on health and safety concerns, budget constraints, and other programmatic constraints. In support of this SFMP planning activity, preliminary engineering assessments are being conducted for each of the ORNL surplus facilities currently managed under the program. These efforts are designed to: (1) provide an initial assessment of the potential decommissioning alternatives; (2) choose a preferred alternative and provide a justification of the decommissioning plan, including cost and schedule estimates. D&D of eight of the nine groups of surplus tanks are considered in this report.

  7. HASA: Hypersonic Aerospace Sizing Analysis for the Preliminary Design of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Harloff, Gary J.; Berkowitz, Brian M.

    1988-01-01

    A review of the hypersonic literature indicated that a general weight and sizing analysis was not available for hypersonic orbital, transport, and fighter vehicles. The objective here is to develop such a method for the preliminary design of aerospace vehicles. This report describes the developed methodology and provides examples to illustrate the model, entitled the Hypersonic Aerospace Sizing Analysis (HASA). It can be used to predict the size and weight of hypersonic single-stage and two-stage-to-orbit vehicles and transports, and is also relevant for supersonic transports. HASA is a sizing analysis that determines vehicle length and volume, consistent with body, fuel, structural, and payload weights. The vehicle component weights are obtained from statistical equations for the body, wing, tail, thermal protection system, landing gear, thrust structure, engine, fuel tank, hydraulic system, avionics, electral system, equipment payload, and propellant. Sample size and weight predictions are given for the Space Shuttle orbiter and other proposed vehicles, including four hypersonic transports, a Mach 6 fighter, a supersonic transport (SST), a single-stage-to-orbit (SSTO) vehicle, a two-stage Space Shuttle with a booster and an orbiter, and two methane-fueled vehicles.

  8. Block 2 Solid Rocket Motor (SRM) conceptual design study. Volume 1: Appendices

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The design studies task implements the primary objective of developing a Block II Solid Rocket Motor (SRM) design offering improved flight safety and reliability. The SRM literature was reviewed. The Preliminary Development and Validation Plan is presented.

  9. Preliminary design of a satellite observation system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Cabe, Greg (Editor); Gallagher, Chris; Wilson, Brian; Rehfeld, James; Maurer, Alexa; Stern, Dan; Nualart, Jaime; Le, Xuan-Trang

    1992-01-01

    Degobah Satellite Systems (DSS), in cooperation with the University Space Research Association (USRA), NASA - Johnson Space Center (JSC), and the University of Texas, has completed the preliminary design of a satellite system to provide inexpensive on-demand video images of all or any portion of Space Station Freedom (SSF). DSS has narrowed the scope of the project to complement the work done by Mr. Dennis Wells at Johnson Space Center. This three month project has resulted in completion of the preliminary design of AERCAM, the Autonomous Extravehicular Robotic Camera, detailed in this design report. This report begins by providing information on the project background, describing the mission objectives, constraints, and assumptions. Preliminary designs for the primary concept and satellite subsystems are then discussed in detail. Included in the technical portion of the report are detailed descriptions of an advanced imaging system and docking and safing systems that ensure compatibility with the SSF. The report concludes by describing management procedures and project costs.

  10. Preliminary design and development of a reflectance spectrometer instrument

    NASA Technical Reports Server (NTRS)

    Mccord, T. B.

    1979-01-01

    An improved design for the reflectance spectrometer is described to be used on various terrestrial body missions. These improvements were made on the original Lunar Polar Orbiter design. These include a larger entrance mirror, rectangular aperture, multiple optical beams, spatial resolution, and a bandwidth extension to 5 microns. In addition, detailed electronic designs were produced for a charge amplifier and an amplifier/demodulator/integrator. Design of a microprocessor driven test system was begun. Laboratory tests were performed on a tuning fork chopper.

  11. Preliminary design report for the K basins integrated water treatment system

    SciTech Connect

    Pauly, T.R., Westinghouse Hanford

    1996-08-12

    This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

  12. A Preliminary Study on Gender Differences in Studying Systems Analysis and Design

    ERIC Educational Resources Information Center

    Lee, Fion S. L.; Wong, Kelvin C. K.

    2017-01-01

    Systems analysis and design is a crucial task in system development and is included in a typical information systems programme as a core course. This paper presented a preliminary study on gender differences in studying a systems analysis and design course of an undergraduate programme. Results indicated that male students outperformed female…

  13. Preliminary weight and cost estimates for transport aircraft composite structural design concepts

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Preliminary weight and cost estimates have been prepared for design concepts utilized for a transonic long range transport airframe with extensive applications of advanced composite materials. The design concepts, manufacturing approach, and anticipated details of manufacturing cost reflected in the composite airframe are substantially different from those found in conventional metal structure and offer further evidence of the advantages of advanced composite materials.

  14. ICT and UD: Preliminary Study for Recommendations to Design Accessible University Courses.

    PubMed

    Pagliara, Silvio Marcello; Sánchez Utgé, Marta; De Anna, Lucia

    2017-01-01

    Starting from the Universal Design in the educational context principles, the experiences gained during the FIRB project "Net@ccessibility" and the high-education courses for teachers' specialization on special education, this research will focus on preliminary studies in order to define the recommendations for designing accessible university courses.

  15. Preliminary report on the design of the Superconducting Super Collider

    SciTech Connect

    1986-01-01

    While a rather detailed Conceptual Design Report will be available in April, an Superconducting Super Collider (SSC) it is appropriate to give a preview, now that the primary parameters for the Conceptual Design Report have been put down. In this preview the leading two chapters give the historical and scientific-technical background for the SSC and deal at somelength with the physics issues to be explored by the SSC. A third chapter reviews briefly the engineering and accelerator physics foundations for the developing SSC design, while the fourth lists the primary design parameters and describes the overall design. The fifth chapter describes briefly the principal engineering systems that will appear in the Conceptual Design Report, including the rather extensive injector system required. A sixth and final chapter outlines the beginnings of a ``construction plan`` put together for the purposes of exploring practical schedules and defining the critical design, development and planning paths for the overall facility and its major sub-systems.

  16. Seismic design technology for Breeder Reactor structures. Volume 3: special topics in reactor structures

    SciTech Connect

    Reddy, D.P.

    1983-04-01

    This volume is divided into six chapters: analysis techniques, equivalent damping values, probabilistic design factors, design verifications, equivalent response cycles for fatigue analysis, and seismic isolation. (JDB)

  17. Preliminary risk assessment for nuclear waste disposal in space, volume 1

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.

    1982-01-01

    The feasibility, desirability and preferred approaches for disposal of selected high-level nuclear wastes in space were analyzed. Preliminary space disposal risk estimates and estimates of risk uncertainty are provided.

  18. Block 2 SRM conceptual design studies. Volume 1, Book 1: Conceptual design package

    NASA Technical Reports Server (NTRS)

    Smith, Brad; Williams, Neal; Miller, John; Ralston, Joe; Richardson, Jennifer; Moore, Walt; Doll, Dan; Maughan, Jeff; Hayes, Fred

    1986-01-01

    The conceptual design studies of a Block 2 Solid Rocket Motor (SRM) require the elimination of asbestos-filled insulation and was open to alternate designs, such as case changes, different propellants, modified burn rate - to improve reliability and performance. Limitations were placed on SRM changes such that the outside geometry should not impact the physical interfaces with other Space Shuttle elements and should have minimum changes to the aerodynamic and dynamic characteristics of the Space Shuttle vehicle. Previous Space Shuttle SRM experience was assessed and new design concepts combined to define a valid approach to assured flight success and economic operation of the STS. Trade studies, preliminary designs, analyses, plans, and cost estimates are documented.

  19. Ultrasound and Histologic Examination after Subcutaneous Injection of Two Volumizing Hyaluronic Acid Fillers: A Preliminary Study

    PubMed Central

    Besse, Stéphanie; Sarazin, Didier; Quinodoz, Pierre; Elias, Badwi; Safa, Marva; Vandeputte, Joan

    2017-01-01

    Background: This study examined the influence of hyaluronic acid (HA) crosslinking technology on the ultrasound and histologic behavior of HA fillers designed for subcutaneous injection. Methods: One subject received subcutaneous injections of 0.25 ml Cohesive Polydensified Matrix (CPM) and Vycross volumizing HA in tissue scheduled for abdominoplasty by bolus and retrograde fanning techniques. Ultrasound analyses were performed on days 0 and 8 and histologic analyses on days 0 and 21 after injection. A series of simple rheologic tests was also performed. Results: Day 0 ultrasound images after bolus injection showed CPM and Vycross as hypoechogenic papules in the hypodermis. CPM appeared little changed after gentle massage, whereas Vycross appeared more hyperechogenic and diminished in size. Ultrasound images at day 8 were similar. On day 0, both gels appeared less hypoechogenic after retrograde fanning than after bolus injection. Vycross was interspersed with hyperechogenic areas (fibrous septa from the fat network structure) and unlike CPM became almost completely invisible after gentle massage. On day 8, CPM appeared as a hypoechogenic pool and Vycross as a long, thin rod. Day 0 histologic findings confirmed ultrasound results. Day 21 CPM histologic findings showed a discrete inflammatory reaction along the injection row after retrograde fanning. Vycross had a more pronounced inflammatory reaction, particularly after retrograde fanning, with macrophages and giant cells surrounding the implant. Rheologic tests showed CPM to have greater cohesivity and resistance to traction forces than Vycross. Conclusions: CPM HA volumizer appears to maintain greater tissue integrity than Vycross after subcutaneous injection with less inflammatory activity. PMID:28280664

  20. A new semi-automated method for fetal volume measurements with three-dimensional ultrasound: preliminary results.

    PubMed

    Smeets, Nicol A C; Dvinskikh, Natallia A; Winkens, Bjorn; Oei, S Guid

    2012-08-01

    Complications in pregnancy are suggested to be the result of intrauterine conditions in the first trimester of pregnancy. Three-dimensional ultrasound volume measurements might give more information, compared with two-dimensional measurements. Commonly available methods for volume measurements are not suited for daily practice. This is a report of preliminary results of a promising, more practical semi-automated method for volume calculations with three-dimensional ultrasound. Volume datasets of 16 objects (10.2-41.5 cm(3) ) were obtained. Euclidean shortening flow and Perona and Malik were used as image enhancement techniques. The image gradient was calculated. The points of interest were detected by the iso-intensity and the edge-detection technique. Volume measurements with Volume Computer-aided AnaLysis (VOCAL) are used as a reference. A volume dataset of a first trimester fetus was acquired to test this method in vivo. The mathematical calculations with iso-intensity (Perona and Malik: average= -1.57 cm(3) , SD=4.05; and Euclidean shortening flow: average= -1.38 cm(3) , SD=2.47) showed results comparable with the VOCAL method (average= +1.28 cm(3) , SD=2.07). We also succeeded in detecting all voxels in the whole contour of a 12-week fetus. Mathematical volume calculations are possible with the semi-automated method. We were able to apply this new method on a first trimester fetus. This new method is promising for future use in the daily practice. © 2012 John Wiley & Sons, Ltd.

  1. Preliminary design of optics for nano-satellite monitor

    NASA Astrophysics Data System (ADS)

    Tichý, Vladimír.; Hudec, René; Šimon, Vojtěch

    2015-05-01

    Schmidt lobster eye multi-foil optics allows high field of view and it can have small mass and dimensions. It makes the optic usable on small low-cost satellite mission that would permanently monitor selected sky area(s). In the paper, possible optical designs are presented. Presented designs are derived of existing optics specimen, therefore they should be technically feasible.

  2. Factors controlling volume errors through 2D gully erosion assessment: guidelines for optimal survey design

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Pérez, Rafael

    2017-04-01

    The assessment of gully erosion volumes is essential for the quantification of soil losses derived from this relevant degradation process. Traditionally, 2D and 3D approaches has been applied for this purpose (Casalí et al., 2006). Although innovative 3D approaches have recently been proposed for gully volume quantification, a renewed interest can be found in literature regarding the useful information that cross-section analysis still provides in gully erosion research. Moreover, the application of methods based on 2D approaches can be the most cost-effective approach in many situations such as preliminary studies with low accuracy requirements or surveys under time or budget constraints. The main aim of this work is to examine the key factors controlling volume error variability in 2D gully assessment by means of a stochastic experiment involving a Monte Carlo analysis over synthetic gully profiles in order to 1) contribute to a better understanding of the drivers and magnitude of gully erosion 2D-surveys uncertainty and 2) provide guidelines for optimal survey designs. Owing to the stochastic properties of error generation in 2D volume assessment, a statistical approach was followed to generate a large and significant set of gully reach configurations to evaluate quantitatively the influence of the main factors controlling the uncertainty of the volume assessment. For this purpose, a simulation algorithm in Matlab® code was written, involving the following stages: - Generation of synthetic gully area profiles with different degrees of complexity (characterized by the cross-section variability) - Simulation of field measurements characterised by a survey intensity and the precision of the measurement method - Quantification of the volume error uncertainty as a function of the key factors In this communication we will present the relationships between volume error and the studied factors and propose guidelines for 2D field surveys based on the minimal survey

  3. Towards a Probabilistic Criterion for Preliminary Shell Design

    NASA Technical Reports Server (NTRS)

    Arbocz, Johann; Starnes, James H.; Nemeth, Mike P.

    1998-01-01

    Thin-walled stiffened or unstiffened, metallic or composite shells are widely used structural elements in aeronautical and space applications. Buckling strength, which is a major concern in all these areas, is affected by the uncertainties in the definition of loads, material properties, geometric variables, engineering models and the accuracy of the analysis tools used in the design phase. The NASA design criteria monographs from the late sixties account for these design uncertainties by the use of a lump sum safety factor or the so-called "knockdown" factor gamma, which usually results in an overly conservative design. In the present paper a new, reliability based, probabilistic design procedure for buckling critical imperfect isotropic shells is proposed. It essentially consists of a stochastic approach based on a new, improved "knockdown" factor lambda(sub a) that is not as conservative as the traditional one. It is felt that by quantifying and understanding the "problem uncertainties" such as initial imperfections and their influence on the design variables, one can develop a better engineered, better designed and safer system.

  4. Is there any correlation between chronic noise-induced hearing loss and mastoid pneumatization volume? A preliminary study.

    PubMed

    Cirpar, O; Arikan, O K; Kendi, T; Gorgulu, O

    2012-01-01

    To investigate the possible association between chronic noise-induced hearing loss and the volume of mastoid pneumatization. The study involved 46 subjects employed in the press and montage department of a gun factory: 28 in the study group with noise-induced hearing loss and 18 in the control group with no hearing loss. The volume of mastoid pneumatization was measured with computed tomography. Student's t test was used in the comparison of the mastoid volumes of the study and the control groups. The intergroup evaluations showed no significant difference between the study and control group with regards to age, use of substances or ototoxic drugs, systemic diseases, use of personal hearing protectors, duration of occupational and non-occupational noise exposure was observed (P > 0.05). The mean values of mastoid pneumatization in the study and the control groups were 9717.6 mm3 and 11005.8 mm3, respectively. Although the volume of mastoid pneumatization was smaller in the study group than in the control group, this difference was not statistically significant (P > 0.05). This preliminary study showed that there was no significant correlation between mastoid pneumatization volume and chronic noise-induced hearing loss. However, this correlation could be significant in further studies with a larger number of subjects.

  5. Preliminary design of a 1 gigajoule homopolar generator

    NASA Astrophysics Data System (ADS)

    Headifen, G. R.; Pappas, J. A.; Weldon, J. M.; Wright, J. C.; Price, J. H.; Gully, J. H.; Brunson, G.

    1993-01-01

    A high-energy, high-voltage homopolar generator has been designed. The HPG will have composite flywheels to maximize energy storage density and a multi-pass armature to achieve high output voltage. The homopolar generator is designed to discharge a constant 895 kA into a 460 V load for several seconds and recharge in less than a minute. The designed energy density is in excess of 15 J/g. Output current control will be achieved by increasing the field coil current proportionally to the decrease in rotational speed.

  6. Preliminary design of a mini-Brayton Compressor-Alternator-Turbine (CAT)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The preliminary design of a mini-Brayton compressor-alternator-turbine system is discussed. The program design goals are listed. The optimum system characteristics over the entire range of power output were determined by performing a wide-range parametric study. The ability to develop the required components to the degree necessary within the limitations of present technology is evaluated. The sensitivity of the system to various individual design parameters was analyzed.

  7. Quiet Clean Short-haul Experimental Engine (QCSEE) UTW fan preliminary design

    NASA Technical Reports Server (NTRS)

    1975-01-01

    High bypass geared turbofan engines and propulsion systems designed for short-haul passenger aircraft are described. The propulsion technology required for future externally blown flap aircraft with engines located both under the wing and over the wing is emphasized. The aerodynamic and mechanical preliminary design of the QCSEE under the wing 1.34 pressure ratio fan with variable blade pitch is presented. Design information is given for two pitch change actuation systems which will provide reverse thrust.

  8. Brayton cycle heat exchanger and duct assembly (HXDA, preliminary design and technology tests

    NASA Technical Reports Server (NTRS)

    Coombs, M. G.; Morse, C. J.; Graves, R. F.; Gibson, J. C.

    1972-01-01

    A preliminary design of the heat exchanger and duct assembly (HXDA) for a 60 kwe, closed loop, Brayton cycle space power system is presented. This system is weight optimized within the constraints imposed by the defined structural and operational requirements. Also presented are the results of several small scale tests, directed to obtaining specific design data and/or the resolution of a design approach for long life Brayton cycle heat exchanger systems.

  9. A preliminary 6 DOF attitude and translation control system design for Starprobe

    NASA Technical Reports Server (NTRS)

    Mak, P.; Mettler, E.; Vijayarahgavan, A.

    1981-01-01

    The extreme thermal environment near perihelion and the high-accuracy gravitational science experiments impose unique design requirements on various subsystems of Starprobe. This paper examines some of these requirements and their impact on the preliminary design of a six-degree-of-freedom attitude and translational control system. Attention is given to design considerations, the baseline attitude/translational control system, system modeling, and simulation studies.

  10. Preliminary design of an energy storing orthosis for providing gait to people with spinal cord injury.

    PubMed

    Boughner, Kyle J; Durfee, William K

    2014-01-01

    A new design is proposed for an energy storing orthosis (ESO) that restores walking to people with spinal cord injury by combining functional electrical stimulation of the quadriceps muscle with a mechanical brace that uses elastic elements to store and transfer energy between hip and knee joints. The new ESO is a variation of a previous design and uses constant force springs for energy storage. Based on the detailed design and on dynamic simulations, the concept has demonstrated preliminary technical feasibility.

  11. Phoenix: Preliminary design of a high speed civil transport

    NASA Technical Reports Server (NTRS)

    Aguilar, Joseph; Davis, Steven; Jett, Brian; Ringo, Leslie; Stob, John; Wood, Bill

    1992-01-01

    The goal of the Phoenix Design Project was to develop a second generation high speed civil transport (HSCT) that will meet the needs of the traveler and airline industry beginning in the 21st century. The primary emphasis of the HSCT is to take advantage of the growing needs of the Pacific Basin and the passengers who are involved in that growth. A passenger load of 150 persons, a mission range of 5150 nautical miles, and a cruise speed of Mach 2.5 constitutes the primary design points of this HSCT. The design concept is made possible with the use of a well designed double delta wing and four mixed flow engines. Passenger comfort, compatibility with existing airport infrastructure, and cost competitive with current subsonic aircraft make the Phoenix a viable aircraft for the future.

  12. Preliminary of Optical Lens Design for Micro-Satellite

    NASA Astrophysics Data System (ADS)

    Rachim, Elvira; Mukhtar Tahir, Andi; Herawan, Agus

    2017-01-01

    The development of micro satellites for the last two decades is emerging rapidly as the need of satellite communication usage is increasing. Earth observation is one of the example of how satellites are on demand. Most observation satellites consist of sensors and imaging system on-board. One of the key element to have a good imaging system is a special optical lens system design. Such lens is designed specifically by calculating every parameter such as refractive, reflective indexes, type of surface, distance and many more. Manufactured lenses sometimes do not match the requirement of an imager system hence the special lens design is needed. This paper will first briefly describe the history of optic, theory related to lens system, then the design and the analysis of lens system for micro-satellites generally and LAPAN A4 particularly.

  13. Preliminary engineering design of sodium-cooled CANDLE core

    NASA Astrophysics Data System (ADS)

    Takaki, Naoyuki; Namekawa, Azuma; Yoda, Tomoyuki; Mizutani, Akihiko; Sekimoto, Hiroshi

    2012-06-01

    The CANDLE burning process is characterized by the autonomous shifting of burning region with constant reactivity and constant spacial power distribution. Evaluations of such critical burning process by using widely used neutron diffusion and burning codes under some realistic engineering constraints are valuable to confirm the technical feasibility of the CANDLE concept and to put the idea into concrete core design. In the first part of this paper, it is discussed that whether the sustainable and stable CANDLE burning process can be reproduced even by using conventional core analysis tools such as SLAROM and CITATION-FBR. As a result, it is certainly possible to demonstrate it if the proper core configuration and initial fuel composition required as CANDLE core are applied to the analysis. In the latter part, an example of a concrete image of sodium cooled, metal fuel, 2000MWt rating CANDLE core has been presented by assuming an emerging inevitable technology of recladding. The core satisfies engineering design criteria including cladding temperature, pressure drop, linear heat rate, and cumulative damage fraction (CDF) of cladding, fast neutron fluence and sodium void reactivity which are defined in the Japanese FBR design project. It can be concluded that it is feasible to design CADLE core by using conventional codes while satisfying some realistic engineering design constraints assuming that recladding at certain time interval is technically feasible.

  14. Preliminary A{ampersand}PCT multiple detector design

    SciTech Connect

    Roberson, G. P.; Martz, H. E.; Camp, D. C.; Decman, D. J.; Johansson, E. M.

    1997-06-30

    The next generation, multi-detector active and passive computed tomography (A&PCT) scanner will be optimized for speed and accuracy. At the Lawrence Livermore National Lab (LLNL) we have demonstrated the trade-offs between different A&PCT design parameters that affect the speed and quality of the assay results. These fundamental parameters govern the optimum system design. Although the multi-detector scanner design has priority put on speed to increase waste drum throughput, higher speed should not compromise assay accuracy. One way to increase the speed of the A&PCT technology is to use multiple detectors. This yields a linear speedup by a factor approximately equal to the number of detectors used without a compromise in system accuracy. There are many different design scenarios that can be developed using multiple detectors. Here we describe four different scenarios and discuss the trade-offs between them. Also, some considerations are given in this design description for the implementation of a multiple detector technology in a field- deployable mobile trailer system.

  15. Preliminary engineering design of sodium-cooled CANDLE core

    SciTech Connect

    Takaki, Naoyuki; Namekawa, Azuma; Yoda, Tomoyuki; Mizutani, Akihiko; Sekimoto, Hiroshi

    2012-06-06

    The CANDLE burning process is characterized by the autonomous shifting of burning region with constant reactivity and constant spacial power distribution. Evaluations of such critical burning process by using widely used neutron diffusion and burning codes under some realistic engineering constraints are valuable to confirm the technical feasibility of the CANDLE concept and to put the idea into concrete core design. In the first part of this paper, it is discussed that whether the sustainable and stable CANDLE burning process can be reproduced even by using conventional core analysis tools such as SLAROM and CITATION-FBR. As a result, it is certainly possible to demonstrate it if the proper core configuration and initial fuel composition required as CANDLE core are applied to the analysis. In the latter part, an example of a concrete image of sodium cooled, metal fuel, 2000MWt rating CANDLE core has been presented by assuming an emerging inevitable technology of recladding. The core satisfies engineering design criteria including cladding temperature, pressure drop, linear heat rate, and cumulative damage fraction (CDF) of cladding, fast neutron fluence and sodium void reactivity which are defined in the Japanese FBR design project. It can be concluded that it is feasible to design CANDLE core by using conventional codes while satisfying some realistic engineering design constraints assuming that recladding at certain time interval is technically feasible.

  16. Preliminary design polymeric materials experiment. [for space shuttles and Spacelab missions

    NASA Technical Reports Server (NTRS)

    Mattingly, S. G.; Rude, E. T.; Marshner, R. L.

    1975-01-01

    A typical Advanced Technology Laboratory mission flight plan was developed and used as a guideline for the identification of a number of experiment considerations. The experiment logistics beginning with sample preparation and ending with sample analysis are then overlaid on the mission in order to have a complete picture of the design requirements. The results of this preliminary design study fall into two categories. First specific preliminary designs of experiment hardware which is adaptable to a variety of mission requirements. Second, identification of those mission considerations which affect hardware design and will require further definition prior to final design. Finally, a program plan is presented which will provide the necessary experiment hardware in a realistic time period to match the planned shuttle flights. A bibliography of all material reviewed and consulted but not specifically referenced is provided.

  17. City of Hoboken Energy Surety Analysis: Preliminary Design Summary

    SciTech Connect

    Stamp, Jason Edwin; Baca, Michael J.; Munoz-Ramos, Karina; Schenkman, Benjamin L.; Eddy, John P.; Smith, Mark A.; Guttromson, Ross; Henry, Jordan M.; Jensen, Richard Pearson

    2014-09-01

    In 2012, Hurricane Sandy devastated much of the U.S. northeast coastal areas. Among those hardest hit was the small community of Hoboken, New Jersey, located on the banks of the Hudson River across from Manhattan. This report describes a city-wide electrical infrastructure design that uses microgrids and other infrastructure to ensure the city retains functionality should such an event occur in the future. The designs ensure that up to 55 critical buildings will retain power during blackout or flooded conditions and include analysis for microgrid architectures, performance parameters, system control, renewable energy integration, and financial opportunities (while grid connected). The results presented here are not binding and are subject to change based on input from the Hoboken stakeholders, the integrator selected to manage and implement the microgrid, or other subject matter experts during the detailed (final) phase of the design effort.

  18. Preliminary design implications of SSC fixed-target operation

    SciTech Connect

    Zisman, M.S.

    1984-06-01

    This paper covers some of the accelerator physics issues relevant to a possible fixed-target operating mode for the Superconducting Super Collider (SSC). In the brief time available, no attempt has been made to design this capability into the SSC. Rather, I have tried to evaluate what the performance of such a machine might be, and to indicate the hardware implications and extraction considerations that would be part of an actual design study. Where appropriate, parameters and properties of the present LBL design for the SSC have been used; these should be taken as being representative of the general class of small-aperture, high-field colliders being considered by the accelerator physics community. Thus, the numerical examples given here must ultimately be reexamined in light of the actual parameters of the particular accelerator being considered.

  19. Preliminary design procedure for insulated structures subjected to transient heating

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.

    1979-01-01

    Minimum-mass designs were obtained for insulated structural panels loaded by a general set of inplane forces and a time dependent temperature. Temperature and stress histories in the structure are given by closed-form solutions, and optimization of the insulation and structural thicknesses is performed by nonlinear mathematical programming techniques. Design calculations are described to evaluate the structural efficiency of eight materials under combined heating and mechanical loads: graphite/polyimide, graphite/epoxy, boron/aluminum, titanium, aluminum, Rene 41, carbon/carbon, and Lockalloy. The effect on design mass of intensity and duration of heating were assessed. Results indicate that an optimum structure may have a temperature response well below the recommended allowable temperature for the material.

  20. Commercial building design and energy conservation: a preliminary assessment

    SciTech Connect

    Nieves, A.; Rosoff, D.

    1982-02-01

    The purpose of the research was to determine the degree of change in commercial building design practice relating to energy conservation since the enactment of the Energy Conservation Standard for New Buildings Act of 1976. Data on current design practices consisted of information from 400 buildings advertised for bids or under construction in 1979 to 1980 on glass in windows and doors, exterior wall systems, roof system, heating plants, and lighting systems. In addition to these building design components, energy conservation measures used included: natural lighting; deadband thermostat; greenhouse-effect atrium collector, heat recovery from the top of the atrium, greenhouse passive heating panels; natural ventilation; insulating shutters, closable skylights, thermal shutters, Trombe wall, corridor trombe; attic ventilation; wind shielding, concrete wall; titlted windows; night flushing cycle; and cooling coils using cooling tower water. A brief explanation of these measures is given. (MCW)

  1. Commercial building design and energy conservation: A preliminary assessment

    NASA Astrophysics Data System (ADS)

    Nieves, A. L.; Rosoff, D.

    1982-02-01

    The purpose of the research was to determine the degree of change in commercial building design practice relating to energy conservation since the enactment of the Energy Conservation Standard for New Buildings Act of 1976. Data on current design practices consisted of information from 400 buildings advertised for bids or under construction in 1979 to 1980 on glass in windows and doors, exterior wall systems, roof system, heating plants, and lighting systems. In addition to these building design components, energy conservation measures used included: natural lighting; deadband thermostat; greenhouse-effect atrium collector, heat recovery from the top of the atrium, greenhouse passive heating panels; natural ventilation; insulating shutters, closable skylights, thermal shutters, Trombe wall, corridor trombe; attic ventilation; wind shielding, concrete wall; titled windows; night flushing cycle; and cooling coils using cooling tower water. A brief explanation of these measures is given.

  2. Preliminary design study of a central solar heating plant with seasonal storage at the University of Massachusetts, Amherst

    NASA Astrophysics Data System (ADS)

    Breger, D. S.; Sunderland, J. E.

    1991-04-01

    This report documents the design development and selection of the final preliminary design of a Central Solar Heating Plant with Seasonal Storage (CSHPSS) for the University of Massachusetts in Amherst (UMass). The effort has been performed by the Department of Mechanical Engineering at UMass under contract with the U.S. Department of Energy. Phase 1 of this project was directed at site selection for the CSHPSS project and was reported earlier. This report focuses on the Phase 2 development of the site conditions and analytical study of project design, performance, and cost. The UMass site presents an excellent opportunity of a CSHPSS project in terms of land availability for a large collector array, a 100 foot deep deposit of soft, saturated clay for seasonal thermal energy storage, and appropriate low temperature heating loads. The project under study represents the first implementation of this solar technology in the United States and results from the International Energy Agency collaboration on CSHPSS since 1979. The preliminary design calls for a large 10,000 m(exp 2) parabolic trough collector array, 70,000 m(exp 3) storage volume in clay with heat transfer through 900 boreholes. Design optimization is based on computer simulations using MINSUN and TRNSYS. The design is expected to provide 95 percent of the 3500 MWh heating and hot water load. A project cost of $3.12 million (plus $240,000 for HVAC load retrofit) is estimated, which provides an annualized cost of $66.2/MWh per unit solar energy delivered. The project will proceed into an engineering phase in Spring 1991.

  3. Preliminary design package for Sunspot Domestic Hot Water Heating System

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design review includes a drawing list, auto-control logic, measurement definitions, and other document pertaining to the solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control transport, auxiliary energy, and site data acquisition.

  4. QCSEE task 2: Engine and installation preliminary design

    NASA Technical Reports Server (NTRS)

    Neitzel, R. E.; Lee, R.; Chamay, A. J.

    1973-01-01

    High-bypass turbofan engines with features required for commercial short haul powered lift transports were designed. Two engines were configured for each of the externally blown flap installations, under-the-wing and over-the-wing. Estimates of installed and uninstalled performance, noise, and weight were defined for each propulsion system.

  5. Micro-turbo-generator design and fabrication: A preliminary study

    SciTech Connect

    Wiegele, T.G.

    1996-12-31

    The size and weight of portable electronic products are often dictated by the physical characteristics of the power supply system. The design of energy storage systems is therefore critical to market competitiveness. An alternative to energy storage is proposed in this paper which relies on a very small power generation system which converts a pressure difference in a gas into electrical power: a micro-turbo-generator. The design of the micro-turbo-generator involved combining two very different machines, a micro-generator and a micro-turbine, into a single device which could be fabricated within the constraints of current microelectronic processing techniques. Research into power generation on the micro-scale has begun to take place in the form of electromagnetic micro-motor design and fabrication. These variable reluctance machines can be transformed into power generation devices by implementing accurate rotor position sensing, high-speed current switching and a means for inducing rotor motion. This leads to the implementation of a switched reluctance generator, which is well-understood on the macro-scale but has not been attempted on the micro-scale. The most significant hurdle facing researchers is the task of coupling a prime mover, such as a micro-turbine, to the rotor of a power generation device efficiently and effectively while maintaining relative simplicity in the fabrication procedures. The design presented here offers a potential solution to this problem.

  6. Soft Drink Design. USMES Teacher's Resource Book, Preliminary Edition.

    ERIC Educational Resources Information Center

    Education Development Center, Inc., Newton, MA.

    This USMES unit challenges students to invent a new soft drink that would be popular and produced at a low cost. The teacher resource book for the Soft Drink Design unit contains five sections. The first section describes the USMES approach to student-initiated investigations of real problems, including a discussion of the nature of the USMES…

  7. Lowering the Age of Identification: Oregon's Design and Preliminary Results.

    ERIC Educational Resources Information Center

    Josephson, Jean Attridge; Moore, William

    1993-01-01

    This newsletter article describes early identification of children who have hearing impairments in Oregon. Oregon was selected to demonstrate a model system for early identification that had been developed in Utah. A new birth certificate was designed, which enabled the Oregon Health Division to screen for risk factors for hearing loss. A…

  8. The preliminary design of an orbiting observatory - The Space Telescope

    NASA Technical Reports Server (NTRS)

    Timmons, K. P.

    1976-01-01

    The systems and subsystems of the Space Telescope proposed for an orbiting observatory to be launched by the Space Shuttle in the 1980s are described. The structural design is simple and based on existing technologies for high reliability. Provisions are made for on-orbit servicing and maintenance. All deployable appendages are designed for manual override to insure retrieval and return of the Space Telescope to earth for major refurbishing, which should occur at intervals of not less than six years. Low performance risk, passive techniques are used in the thermal control subsystem to provide a cold-biased design with thermostatically controlled heaters to adjust temperature. The electrical power system utilizes NASA Standard Hardware - 50 ampere hour nickel-cadmium battery cells, a standard power regulator unit, and a flight-proven flexible rollup solar array with high-efficiency (12.5 per cent) silicon solar cells. The communication subsystem is designed for compatibility with the Tracking and Data Relay Satellite System. The pointing control system will have a maximum line of sight variation of 0.007 arc seconds. The telescope optics are a Ritchey-Chretien version of the Cassegrain configuration.

  9. Preliminary design concept of a subcritical reactor using available resources

    SciTech Connect

    Churnetski, E.L.; Hoyny, V.; Chaudhuri, B.R.; Taprantzis, A.; Yavas, A.

    1993-12-31

    During the Fall 1993 semester, a project was initiated within the Nuclear Engineering Department of the University of Tennessee with the objective of developing a design for a subcritical reactor with maximized multiplication factor using materials currently available. Such a device, if constructed, would serve as a teaching tool for the Department of Nuclear Engineering. Design work was conducted as a large number of computer calculations, with trial pile configurations based on fundamental nuclear engineering principles, in an effort to maximize multiplication factor through fuel element geometry, moderator type, fissile/moderator ratio, and reflector character. The principal objective of the design group for the early phase of this project was to present several possible ``baseline`` reactor designs and identify directions for improvements. For the sake of calculational ease, the cores analyzes to date have been of nearly cubic shape. The SCALE CSAS25 software which runs KENO.Va, a Monte Carlo code, was used for all neutronics calculations. The baseline reactors resulting from work to date are cuboidal in shape and graphite reflected. Two types of fuel element geometries are proposed, a typical triangular pitch rod lattice and an arrangement of discrete fuel slugs placed in a lattice corresponding to body centered cubic packing. The latter arrangement provides slightly higher multiplication factors than the former. Calculations were performed for both graphite and heavy water moderation with heavy water moderation producing considerably higher multiplication factors, as expected. In general, the maximum k{sub eff} for the reactors are in the range of 0.5 to 0.9, well subcritical, except in the cases of the extreme possible values of fuel assay where critical configurations are possible. In these cases, designs with reduced fuel loading are recommended to assure a subcritical multiplication factor.

  10. The International Linear Collider Technical Design Report - Volume 4: Detectors

    SciTech Connect

    Behnke, Ties

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  11. The International Linear Collider Technical Design Report - Volume 2: Physics

    SciTech Connect

    Baer, Howard; Barklow, Tim; Fujii, Keisuke; Gao, Yuanning; Hoang, Andre; Kanemura, Shinya; List, Jenny; Logan, Heather E.; Nomerotski, Andrei; Perelstein, Maxim; Peskin, Michael E.; Pöschl, Roman; Reuter, Jürgen; Riemann, Sabine; Savoy-Navarro, Aurore; Tait, Tim P.; Yu, Jaehoon

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  12. Volume holographic imaging endoscopic design and construction techniques

    NASA Astrophysics Data System (ADS)

    Howlett, Isela D.; Han, Wanglei; Gordon, Michael; Rice, Photini; Barton, Jennifer K.; Kostuk, Raymond K.

    2017-05-01

    A reflectance volume holographic imaging (VHI) endoscope has been designed for simultaneous in vivo imaging of surface and subsurface tissue structures. Prior utilization of VHI systems has been limited to ex vivo tissue imaging. The VHI system presented in this work is designed for laparoscopic use. It consists of a probe section that relays light from the tissue sample to a handheld unit that contains the VHI microscope. The probe section is constructed from gradient index (GRIN) lenses that form a 1:1 relay for image collection. The probe has an outer diameter of 3.8 mm and is capable of achieving 228.1 lp/mm resolution with 660-nm Kohler illumination. The handheld optical section operates with a magnification of 13.9 and a field of view of 390 μm×244 μm. System performance is assessed through imaging of 1951 USAF resolution targets and soft tissue samples. The system has also passed sterilization procedures required for surgical use and has been used in two laparoscopic surgical procedures.

  13. Depression and Anxiety Scores Are Associated with Amygdala Volume in Cushing's Syndrome: Preliminary Study

    PubMed Central

    Granell, Esther; Gómez-Ansón, Beatriz; Crespo, Iris; Pires, Patricia; Vives-Gilabert, Yolanda; Valassi, Elena; Webb, Susan M.

    2017-01-01

    Introduction Cushing's syndrome (CS) has repeatedly been associated with hippocampal volume reductions, while little information is available on the amygdala, another structure rich in glucocorticoid receptors. The aim of the study was to analyze amygdala volume in patients with CS and its relationship with anxiety, depression, and hormone levels. Material and Methods 39 CS patients (16 active and 23 patients in remission) and 39 healthy controls matched for age, sex, and education level completed anxiety (STAI) and depression tests (BDI-II) and underwent a 3 Tesla brain MRI and endocrine testing. Amygdala volumes were analysed with FreeSurfer software. Results Active CS patients had smaller right (but not left) amygdala volumes when compared to controls (P = 0.045). Left amygdala volumes negatively correlated with depression scores (r = −0.692, P = 0.003) and current anxiety state scores (r = −0.617, P = 0.011) in active CS patients and with anxiety trait scores (r = −0.440, P = 0.036) in patients in remission. No correlations were found between current ACTH, urinary free cortisol or blood cortisol levels, and amygdala volumes in either patient group. Conclusion Patients with active CS have a smaller right amygdala volume in comparison to controls, while left amygdala volumes are associated with mood state in both patient groups. PMID:28607927

  14. 77 FR 58988 - Shearwater Design, Inc.; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... the Federal Power Act (FPA), proposing to study the feasibility of the Homeowner Tidal Power Electric... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Shearwater Design, Inc.; Notice of Preliminary Permit Application...

  15. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2016-01-01

    This set of tutorial slides is an introduction to the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard Space Flight Center's autonomous tool for preliminary design of interplanetary missions. This slide set covers the basics of creating and post-processing simple interplanetary missions in EMTG using both high-thrust chemical and low-thrust electric propulsion along with a variety of operational constraints.

  16. Methodology for the Preliminary Design of High Performance Schools in Hot and Humid Climates

    ERIC Educational Resources Information Center

    Im, Piljae

    2009-01-01

    A methodology to develop an easy-to-use toolkit for the preliminary design of high performance schools in hot and humid climates was presented. The toolkit proposed in this research will allow decision makers without simulation knowledge easily to evaluate accurately energy efficient measures for K-5 schools, which would contribute to the…

  17. Preliminary design analysis of the ALT-II limiter for TEXTOR

    SciTech Connect

    Koski, J.A.; Boyd, R.D.; Kempka, S.M.; Romig, A.D. Jr.; Smith, M.F.; Watson, R.D.; Whitley, J.B.; Conn, R.W.; Grotz, S.P.

    1983-01-01

    Installation of a large toroidal belt pump limiter, Advanced Limiter Test II (ALT-II), on the TEXTOR tokamak at Juelich, FRG is anticipated for early 1986. This paper discusses the preliminary mechanical design and materials considerations undertaken as part of the feasibility study phase for ALT-II.

  18. Analysis and Preliminary Design of a Suppressive Structure for a Melt Loading Operation

    DTIC Science & Technology

    1976-05-01

    PRELIMINARY DESIGN OF A SUPPRESSIVE STRUCTURE FOR A MELT LOADING OPERATION by W. E. Baker P. S. Westine P. A. Cox E. D. Espa rza TECHNICAL...overlap is OL = (3.5 + 0.5)(.707) — 2.41 5 OL = 0.413 in. *As noted earlier, this value should be multiplied by 1.630 to be correct. All succeeding

  19. SUMS preliminary design and data analysis development. [shuttle upper atmosphere mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Hinson, E. W.

    1981-01-01

    The preliminary analysis and data analysis system development for the shuttle upper atmosphere mass spectrometer (SUMS) experiment are discussed. The SUMS experiment is designed to provide free stream atmospheric density, pressure, temperature, and mean molecular weight for the high altitude, high Mach number region.

  20. Preliminary Design Study of a National Program for Training Skilled Aviation Personnel.

    ERIC Educational Resources Information Center

    Arizona State Univ., Tempe.

    This study supplementing a 1967 study of Arizona State University, recommends preliminary plans for the design of a national training center capable of accommodating 2,200 fliers and aviation technicians and the steps that should be taken to complete the facility by September 1972. Specific recommendations are: (1) negotiations between the…