DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, G., E-mail: shawgc@ornl.gov; University of Tennessee, Knoxville, Tennessee 37996; Martin, M. Z.
2014-11-15
Laser-induced breakdown spectroscopy (LIBS) is a technique for measuring surface matter composition. LIBS is performed by focusing laser radiation onto a target surface, ablating the surface, forming a plasma, and analyzing the light produced. LIBS surface analysis is a possible diagnostic for characterizing plasma-facing materials in ITER. Oak Ridge National Laboratory has enabled the initial installation of a laser-induced breakdown spectroscopy diagnostic on the prototype Material-Plasma Exposure eXperiment (Proto-MPEX), which strives to mimic the conditions found at the surface of the ITER divertor. This paper will discuss the LIBS implementation on Proto-MPEX, preliminary design of the fiber optic LIBS collectionmore » probe, and the expected results.« less
Laser-induced breakdown spectroscopy (LIBS): applications in environmental issues
NASA Astrophysics Data System (ADS)
Couris, Stelios; Hatziapostolou, A.; Anglos, Dmitrios; Mavromanolakis, A.; Fotakis, Costas
1996-11-01
Results are presented from three different applications of laser induced breakdown spectroscopy (LIBS) in problems of environmental interest. In one case, LIBS is applied in the on-line control of the nickel recovery process, by monitoring the nickel content of molten ferronickel slabs, in a laboratory scale experiment. In a second case, LIBS is used in the identification of polymer materials, and on the basis of spectral features, criteria are proposed for the distinction among different types of plastic materials. Also, in preliminary experiments, the use of LIBS with respect to the detection of heavy and toxic metals in paints and the possibility of performing depth profile analysis of multiple paint layers is examined.
Double-pulse laser-induced breakdown spectroscopy analysis of scales from petroleum pipelines
NASA Astrophysics Data System (ADS)
Cavalcanti, G. H.; Rocha, A. A.; Damasceno, R. N.; Legnaioli, S.; Lorenzetti, G.; Pardini, L.; Palleschi, V.
2013-09-01
Pipeline scales from the Campos Bay Petroleum Field near Rio de Janeiro, Brazil have been analyzed by both Raman spectroscopy and by laser-induced breakdown spectroscopy (LIBS) using a double-pulse, calibration-free approach. Elements that are characteristic of petroleum (e.g. C, H, N, O, Mg, Na, Fe and V) were detected, in addition to the Ca, Al, and Si which form the matrix of the scale. The LIBS results were compared with the results of micro-Raman spectroscopy, which confirmed the nature of the incrustations inferred by the LIBS analysis. Results of this preliminary study suggest that diffusion of pipe material into the pipeline intake column plays an important role in the growth of scale. Thanks to the simplicity and relative low cost of equipment and to the fact that no special chemical pre-treatment of the samples is needed, LIBS can offer very fast acquisition of data and the possibility of in situ measurements. LIBS could thus represent an alternative or complementary method for the chemical characterization of the scales by comparison to conventional analytical techniques, such as X-ray diffraction or X-ray fluorescence.
Laer-induced Breakdown Spectroscopy Instrument for Element Analysis of Planetary Surfaces
NASA Technical Reports Server (NTRS)
Blacic, J.; Pettit, D.; Cremers, D.; Roessler, N.
1993-01-01
One of the most fundamental pieces of information about any planetary body is the elemental and mineralogical composition of its surface materials. We are developing an instrument to obtain such data at ranges of up to several hundreds of meters using the technique of Laser-Induced Breakdown Spectroscopy (LIBS). We envision our instrument being used from a spacecraft in close rendezvous with small bodies such as comets and asteroids, or deployed on surface-rover vehicles on large bodies such as Mars and the Moon. The elemental analysis is based on atomic emission spectroscopy of a laser-induced plasma or spark. A pulsed, diode pumped Nd:YAG laser of several hundred millijoules optical energy is used to vaporize and electronically excite the constituent elements of a rock surface remotely located from the laser. Light emitted from the excited plasma is collected and introduced to the entrance slit of a small grating spectrometer. The spectrally dispersed spark light is detected with either a linear photo diode array or area CCD array. When the latter detector is used, the optical and spectrometer components of the LIBS instrument can also be used in a passive imaging mode to collect and integrate reflected sunlight from the same rock surface. Absorption spectral analysis of this reflected light gives mineralogical information that provides a remote geochemical characterization of the rock surface. We performed laboratory calibrations in air and in vacuum on standard rock powders to quantify the LIBS analysis. We performed preliminary field tests using commercially available components to demonstrate remote LIBS analysis of terrestrial rock surfaces at ranges of over 25 m, and we have demonstrated compatibility with a six-wheeled Russian robotic rover vehicle. Based on these results, we believe that all major and most minor elements expected on planetary surfaces can be measured with absolute accuracy of 10-15 percent and much higher relative accuracy. We have performed preliminary systems analysis of a LIBS instrument to evaluate probable mass and power requirements; results of this analysis are summarized.
NASA Astrophysics Data System (ADS)
Wiggins, Brenden; Tupitsyn, Eugene; Bhattacharya, Pijush; Rowe, Emmanuel; Lukosi, Eric; Chvala, Ondrej; Burger, Arnold; Stowe, Ashley
2013-09-01
Impurity analysis and compositional distribution studies have been conducted on a crystal of LiInSe2, a compound semiconductor which recently has been shown to respond to ionizing radiation. IR microscopy and laser induced breakdown spectroscopy (LIBS) revealed the presence of inclusions within the crystal lattice. These precipitates were revealed to be alkali and alkaline earth elemental impurities with non-uniform spatial distribution in the crystal. LIBS compositional maps correlate the presence of these impurities with visual color differences in the crystal as well as a significant shift of the band gap. Further, LIBS revealed variation in the ratio of I-III-VI2 elemental constituents throughout the crystal. Analysis of compositional variation and impurities will aid in discerning optimal synthesis and crystal growth parameters to maximize the mobility-lifetime product and charge collection efficiency in the LiInSe2 crystal. Preliminary charge trapping calculations have also been conducted with the Monte Carlo N-particle eXtended (MCNPx) package indicating preferential trapping of holes during irradiation with thermal neutrons.
Manard, Benjamin T.; Wylie, E. Miller; Willson, Stephen P.
2018-05-22
In this paper, a portable handheld laser-induced breakdown spectroscopy (HH LIBS) instrument was evaluated as a rapid method to qualitatively analyze rare earth elements in a uranium oxide matrix. This research is motivated by the need for development of a method to perform rapid, at-line chemical analysis in a nuclear facility, particularly to provide a rapid first pass analysis to determine if additional actions or measurements are warranted. This will result in the minimization of handling and transport of radiological and nuclear material and subsequent exposure to their associated hazards. In this work, rare earth elements (Eu, Nd, and Yb)more » were quantitatively spiked into a uranium oxide powder and analyzed by the HH LIBS instrumentation. This method demonstrates the ability to rapidly identify elemental constituents in sub-percent levels in a uranium matrix. Preliminary limits of detection (LODs) were determined with values on the order of hundredths of a percent. Validity of this methodology was explored by employing a National Institute of Standards and Technology (NIST) standard reference materials (SRM) 610 and 612 (Trace Elements in Glass). Finally, it was determined that the HH LIBS method was able to clearly discern the rare earths elements of interest in the glass or uranium matrices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manard, Benjamin T.; Wylie, E. Miller; Willson, Stephen P.
In this paper, a portable handheld laser-induced breakdown spectroscopy (HH LIBS) instrument was evaluated as a rapid method to qualitatively analyze rare earth elements in a uranium oxide matrix. This research is motivated by the need for development of a method to perform rapid, at-line chemical analysis in a nuclear facility, particularly to provide a rapid first pass analysis to determine if additional actions or measurements are warranted. This will result in the minimization of handling and transport of radiological and nuclear material and subsequent exposure to their associated hazards. In this work, rare earth elements (Eu, Nd, and Yb)more » were quantitatively spiked into a uranium oxide powder and analyzed by the HH LIBS instrumentation. This method demonstrates the ability to rapidly identify elemental constituents in sub-percent levels in a uranium matrix. Preliminary limits of detection (LODs) were determined with values on the order of hundredths of a percent. Validity of this methodology was explored by employing a National Institute of Standards and Technology (NIST) standard reference materials (SRM) 610 and 612 (Trace Elements in Glass). Finally, it was determined that the HH LIBS method was able to clearly discern the rare earths elements of interest in the glass or uranium matrices.« less
Manard, Benjamin T; Wylie, E Miller; Willson, Stephen P
2018-01-01
A portable handheld laser-induced breakdown spectroscopy (HH LIBS) instrument was evaluated as a rapid method to qualitatively analyze rare earth elements in a uranium oxide matrix. This research is motivated by the need for development of a method to perform rapid, at-line chemical analysis in a nuclear facility, particularly to provide a rapid first pass analysis to determine if additional actions or measurements are warranted. This will result in the minimization of handling and transport of radiological and nuclear material and subsequent exposure to their associated hazards. In this work, rare earth elements (Eu, Nd, and Yb) were quantitatively spiked into a uranium oxide powder and analyzed by the HH LIBS instrumentation. This method demonstrates the ability to rapidly identify elemental constituents in sub-percent levels in a uranium matrix. Preliminary limits of detection (LODs) were determined with values on the order of hundredths of a percent. Validity of this methodology was explored by employing a National Institute of Standards and Technology (NIST) standard reference materials (SRM) 610 and 612 (Trace Elements in Glass). It was determined that the HH LIBS method was able to clearly discern the rare earths elements of interest in the glass or uranium matrices.
Guo, Jinjia; Lu, Yuan; Cheng, Kai; Song, Jiaojian; Ye, Wangquan; Li, Nan; Zheng, Ronger
2017-10-10
The exploitation and research of deep-sea hydrothermal vent has been an issue of great interest in ocean research in recent years. Laser-induced breakdown spectroscopy (LIBS) has great potential for ocean application due to the capabilities of stand-off, multiphase, and multielement analysis. In this work, a newly developed compact 4000 m rated LIBS system (LIBSea) is introduced with preliminary results of sea trials. The underwater system consists of an Nd:YAG single-pulsed laser operating at 1064 nm, an optical fiber spectrometer, an optics module, and an electronic controller module. The whole system is housed in an L800 mm×ϕ258 mm pressure housing with an optical window on the end cap. It was deployed on the remote operated vehicle Faxian on the research vessel Kexue, and in June 2015 was successfully applied for hydrothermal field measurements at the Manus area. The obtained results are shown that the LIBS system is capable of detecting elements Li, Na, K, Ca, and Mg in the hydrothermal area. Profiles of LIBS signals of elements K and Ca have also been obtained during the sea trial. The results show that the K emission line is gradually broadened with depth from sea surface to sea floor (1800 m or so); the K intensity shows a hump shape with maximum value at about 1050 m. The Ca emission line is rapidly broadened below 400 m and slowly narrowed to the sea floor; the Ca intensity shows no obvious change below 400 m and increases continuously to sea floor. A very interesting finding is that the small fluctuations of intensity profile curve of Ca show a degree of correlation with seawater temperature change. The sea trial results prove the performance of LIBSea. After further optimization, it is hoped to apply the LIBS system to the in situ mineral deposits and hydrothermal vent fluid detection in deep sea.
Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy.
Gottfried, Jennifer L; De Lucia, Frank C; Munson, Chase A; Miziolek, Andrzej W
2008-04-01
Laser-induced breakdown spectroscopy (LIBS) is a promising technique for real-time chemical and biological warfare agent detection in the field. We have demonstrated the detection and discrimination of the biological warfare agent surrogates Bacillus subtilis (BG) (2% false negatives, 0% false positives) and ovalbumin (0% false negatives, 1% false positives) at 20 meters using standoff laser-induced breakdown spectroscopy (ST-LIBS) and linear correlation. Unknown interferent samples (not included in the model), samples on different substrates, and mixtures of BG and Arizona road dust have been classified with reasonable success using partial least squares discriminant analysis (PLS-DA). A few of the samples tested such as the soot (not included in the model) and the 25% BG:75% dust mixture resulted in a significant number of false positives or false negatives, respectively. Our preliminary results indicate that while LIBS is able to discriminate biomaterials with similar elemental compositions at standoff distances based on differences in key intensity ratios, further work is needed to reduce the number of false positives/negatives by refining the PLS-DA model to include a sufficient range of material classes and carefully selecting a detection threshold. In addition, we have demonstrated that LIBS can distinguish five different organophosphate nerve agent simulants at 20 meters, despite their similar stoichiometric formulas. Finally, a combined PLS-DA model for chemical, biological, and explosives detection using a single ST-LIBS sensor has been developed in order to demonstrate the potential of standoff LIBS for universal hazardous materials detection.
NASA Astrophysics Data System (ADS)
Modzelewska, ElŻbieta; Pawlak, Agnieszka; Selerowicz, Anna; Skrzeczanowski, Wojciech; Marczak, Jan
2013-05-01
This paper describes the preliminary results of a study of the paint layers in 17th-century paintings belonging to the collection of the Wilanow Palace Museum. The works chosen for examination are of great importance to the Museum, as they might have been painted by court artists of King John III Sobieski. The aim of the study was therefore to determine the technological structure of the paintings, to determine the scope of conservation interventions and, above all, to gather comparative material that would serve to conduct further multidisciplinary attributive research. The presentation relates to studies in which laser-induced breakdown spectroscopy (LIBS) and optical microscopy were used as diagnostic tools. LIBS is based on the evaporation of a small amount of the material under investigation, and the generation of plasma which emits continuum and line radiation. The analysis of line radiation allows us to identify the elements appearing in the sample being investigated. The microscope pictures were taken using a Bresser Digital Hand Micro 1.3Mpx and the Hirox 8700 microscopes. The results obtained have confirmed the utility of the LIBS method in the study of artworks. They have also proven that it can be used as a method to complement microchemical analysis, as well as an method to identify and examine artworks from which samples cannot be taken, as it is micro-destructive and the analysis can be conducted directly on the object, without the need to take samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judge, Elizabeth J.; Berg, John M.; Le, Loan A.
2012-06-18
Laser-induced breakdown spectroscopy (LIBS) was used to analyze a mixed actinide fuel pellet containing 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2}. The preliminary data shown here is the first report of LIBS analysis of a mixed actinide fuel pellet, to the authors knowledge. The LIBS spectral data was acquired in a plutonium facility at Los Alamos National Laboratory where the sample was contained within a glove box. The initial installation of the glove box was not intended for complete ultraviolet (UV), visible (VIS) and near infrared (NIR) transmission, therefore the LIBS spectrum is truncated in the UV andmore » NIR regions due to the optical transmission of the window port and filters that were installed. The optical collection of the emission from the LIBS plasma will be optimized in the future. However, the preliminary LIBS data acquired is worth reporting due to the uniqueness of the sample and spectral data. The analysis of several actinides in the presence of each other is an important feature of this analysis since traditional methods must chemically separate uranium, plutonium, neptunium, and americium prior to analysis. Due to the historic nature of the sample fuel pellet analyzed, the provided sample composition of 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2} cannot be confirm without further analytical processing. Uranium, plutonium, and americium emission lines were abundant and easily assigned while neptunium was more difficult to identify. There may be several reasons for this observation, other than knowing the exact sample composition of the fuel pellet. First, the atomic emission wavelength resources for neptunium are limited and such techniques as hollow cathode discharge lamp have different dynamics than the plasma used in LIBS which results in different emission spectra. Secondly, due to the complex sample of four actinide elements, which all have very dense electronic energy levels, there may be reactions and interactions occurring within the plasma, such as collisional energy transfer, that might be a factor in the reduction in neptunium emission lines. Neptunium has to be analyzed alone using LIBS to further understand the dynamics that may be occurring in the plasma of the mixed actinide fuel pellet sample. The LIBS data suggests that the emission spectrum for the mixed actinide fuel pellet is not simply the sum of the emission spectra of the pure samples but is dependent on the species present in the plasma and the interactions and reactions that occur within the plasma. Finally, many of the neptunium lines are in the near infrared region which is drastically reduced in intensity by the current optical setup and possibly the sensitivity of the emission detector in the spectral region. Once the optics are replaced and the optical collection system is modified and optimized, the probability of observing emission lines for neptunium might be increased significantly. The mixed actinide fuel pellet was analyzed under the experimental conditions listed in Table 1. The LIBS spectra of the fuel pellet are shown in Figures 1-49. The spectra are labeled with the observed wavelength and atomic species (both neutral (I) and ionic (II)). Table 2 is a complete list of the observed and literature based emission wavelengths. The literature wavelengths have references including NIST Atomic Spectra Database (NIST), B.A. Palmer et al. 'An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge' taken at the Kitt Peak National Observatory (KPNO), R.L. Kurucz 1995 Atomic Line Data from the Smithsonian Astrophysical Observatory (SAO), J. Blaise et al. 'The Atomic Spectrum of Plutonium' from Argonne National Laboratory (BFG), and M. Fred and F.S. Tomkins, 'Preliminary Term Analysis of Am I and Am II Spectra' (FT). The dash (-) shown under Ionic State indicates that the ionic state of the transition was not available. In the spectra, the dash (-) is replaced with a question mark (?). Peaks that are not assigned are most likely real features and not noise but cannot be confidently assigned to a transition without further investigation. Several peaks have multiple assignments due to limited resolution of the spectrometer used (20,000, {lambda}/{Delta}{lambda}) and without the availability, at this point in time, of pure PuO{sub 2}, AmO{sub 2}, and NpO{sub 2} to confirm the identity of the peaks. A different spectrometer was used in the plutonium facility to collect the mixed actinide fuel pellet data (Echelle 3000) than the DUO{sub 2}, ThO{sub 2} and uranium ore previously reported [6-8] (Echelle 4000) which accounts for the slight shift in the observed wavelength of the uranium emission lines.« less
Calibration of the MSL/ChemCam/LIBS Remote Sensing Composition Instrument
NASA Technical Reports Server (NTRS)
Wiens, R. C.; Maurice S.; Bender, S.; Barraclough, B. L.; Cousin, A.; Forni, O.; Ollila, A.; Newsom, H.; Vaniman, D.; Clegg, S.;
2011-01-01
The ChemCam instrument suite on board the 2011 Mars Science Laboratory (MSL) Rover, Curiosity, will provide remote-sensing composition information for rock and soil samples within seven meters of the rover using a laser-induced breakdown spectroscopy (LIBS) system, and will provide context imaging with a resolution of 0.10 mradians using the remote micro-imager (RMI) camera. The high resolution is needed to image the small analysis footprint of the LIBS system, at 0.2-0.6 mm diameter. This fine scale analytical capability will enable remote probing of stratigraphic layers or other small features the size of "blueberries" or smaller. ChemCam is intended for rapid survey analyses within 7 m of the rover, with each measurement taking less than 6 minutes. Repeated laser pulses remove dust coatings and provide depth profiles through weathering layers, allowing detailed investigation of rock varnish features as well as analysis of the underlying pristine rock composition. The LIBS technique uses brief laser pulses greater than 10 MW/square mm to ablate and electrically excite material from the sample of interest. The plasma emits photons with wavelengths characteristic of the elements present in the material, permitting detection and quantification of nearly all elements, including the light elements H, Li, Be, B, C, N, O. ChemCam LIBS projects 14 mJ of 1067 nm photons on target and covers a spectral range of 240-850 nm with resolutions between 0.15 and 0.60 nm FWHM. The Nd:KGW laser is passively cooled and is tuned to provide maximum power output from -10 to 0 C, though it can operate at 20% degraded energy output at room temperature. Preliminary calibrations were carried out on the flight model (FM) in 2008. However, the detectors were replaced in 2009, and final calibrations occurred in April-June, 2010. This presentation describes the LIBS calibration and characterization procedures and results, and details plans for final analyses during rover system thermal testing, planned for early March.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idris, Nasrullah, E-mail: nasrullah.idris@unsyiah.ac.id; Ramli, Muliadi; Hedwig, Rinda
This work is intended to asses the capability of LIBS for the detection of the tsunami sediment contamination in soil. LIBS apparatus used in this work consist of a laser system and an optical multichannel analyzer (OMA) system. The soil sample was collected from in Banda Aceh City, Aceh, Indonesia, the most affected region by the giant Indian Ocean tsunami 2004. The laser beam was focused onto surface of the soil pellet using a focusing lens to produce luminous plasma. The experiment was conducted under air as surrounding gas at 1 atmosphere. The emission spectral lines from the plasma weremore » detected by the OMA system. It was found that metal including heavy metals can surely be detected, thus implying the potent of LIBS technique as a fast screening tools of tsunami sediment contamination.« less
Yang, Clayton S-C; Jin, Feng; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Tripathi, Ashish; Samuels, Alan C
2017-04-01
Thin solid films made of high nitro (NO 2 )/nitrate (NO 3 ) content explosives were deposited on sand-blasted aluminum substrates and then studied using a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR; ∼5.6-10 µm). Despite the similarities of their chemical compositions and structures, thin films of three commonly used explosives (RDX, HMX, and PETN) studied in this work can be rapidly identified in the ambient air by their molecular LIBS emission signatures in the LWIR region. A preliminary assessment of the detection limit for a thin film of RDX on aluminum appears to be much lower than 60 µg/cm 2 . This LWIR LIBS setup is capable of rapidly probing and charactering samples without the need for elaborate sample preparation and also offers the possibility of a simultaneous ultraviolet visible and LWIR LIBS measurement.
Senesi, G S; Dell'Aglio, M; Gaudiuso, R; De Giacomo, A; Zaccone, C; De Pascale, O; Miano, T M; Capitelli, M
2009-05-01
Soil is unanimously considered as one of the most important sink of heavy metals released by human activities. Heavy metal analysis of natural and polluted soils is generally conducted by the use of atomic absorption spectroscopy (AAS) or inductively coupled plasma optical emission spectroscopy (ICP-OES) on adequately obtained soil extracts. Although in recent years the emergent technique of laser-induced breakdown spectroscopy (LIBS) has been applied widely and with increasing success for the qualitative and quantitative analyses of a number of heavy metals in soil matrices with relevant simplification of the conventional methodologies, the technique still requires further confirmation before it can be applied fully successfully in soil analyses. The main objective of this work was to demonstrate that new developments in LIBS technique are able to provide reliable qualitative and quantitative analytical evaluation of several heavy metals in soils, with special focus on the element chromium (Cr), and with reference to the concentrations measured by conventional ICP spectroscopy. The preliminary qualitative LIBS analysis of five soil samples and one sewage sludge sample has allowed the detection of a number of elements including Al, Ca, Cr, Cu, Fe, Mg, Mn, Pb, Si, Ti, V and Zn. Of these, a quantitative analysis was also possible for the elements Cr, Cu, Pb, V and Zn based on the obtained linearity of the calibration curves constructed for each heavy metal, i.e., the proportionality between the intensity of the LIBS emission peaks and the concentration of each heavy metal in the sample measured by ICP. In particular, a triplet of emission lines for Cr could be used for its quantitative measurement. The consistency of experiments made on various samples was supported by the same characteristics of the laser-induced plasma (LIP), i.e., the typical linear distribution confirming the existence of local thermodynamic equilibrium (LTE) condition, and similar excitation temperatures and comparable electron number density measured for all samples. An index of the anthropogenic contribution of Cr in polluted soils was calculated in comparison to a non-polluted reference soil. Thus, the intensity ratios of the emission lines of heavy metal can be used to detect in few minutes the polluted areas for which a more detailed sampling and analysis can be useful.
Guirado, Salvador; Fortes, Francisco J; Laserna, J Javier
2016-04-01
In this work, the use of multi-pulse excitation has been evaluated as an effective solution to mitigate the preferential ablation of the most volatile elements, namely Sn, Pb, and Zn, observed during laser-induced breakdown spectroscopy (LIBS) analysis of copper-based alloys. The novel remote LIBS prototype used in this experiments featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS). The remote instrument is capable of performing chemical analysis of submersed materials up to a depth of 50 m. Laser-induced breakdown spectroscopy analysis was performed at air pressure settings simulating the conditions during a real subsea analysis. A set of five certified bronze standards with variable concentration of Cu, As, Sn, Pb, and Zn were used. In SP-LIBS, signal emission is strongly sensitive to ambient pressure. In this case, fractionation effect was observed. Multi-pulse excitation circumvents the effect of pressure over the quantitative analysis, thus avoiding the fractionation phenomena observed in single pulse LIBS. The use of copper as internal standard minimizes matrix effects and discrepancies due to variation in ablated mass. © The Author(s) 2016.
ERIC Educational Resources Information Center
Detlor, Brian; Ball, Kathryn
2015-01-01
This paper examines the merit of conducting a qualitative analysis of LibQUAL+® survey comments as a means of leveraging quantitative LibQUAL+ results, and using importance-satisfaction matrices to present and assess qualitative findings. Comments collected from the authors' institution's LibQUAL+ survey were analyzed using a codebook based on…
Study of archaeological coins of different dynasties using libs coupled with multivariate analysis
NASA Astrophysics Data System (ADS)
Awasthi, Shikha; Kumar, Rohit; Rai, G. K.; Rai, A. K.
2016-04-01
Laser Induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopic technique having unique capability of an in-situ monitoring tool for detection and quantification of elements present in different artifacts. Archaeological coins collected form G.R. Sharma Memorial Museum; University of Allahabad, India has been analyzed using LIBS technique. These coins were obtained from excavation of Kausambi, Uttar Pradesh, India. LIBS system assembled in the laboratory (laser Nd:YAG 532 nm, 4 ns pulse width FWHM with Ocean Optics LIBS 2000+ spectrometer) is employed for spectral acquisition. The spectral lines of Ag, Cu, Ca, Sn, Si, Fe and Mg are identified in the LIBS spectra of different coins. LIBS along with Multivariate Analysis play an effective role for classification and contribution of spectral lines in different coins. The discrimination between five coins with Archaeological interest has been carried out using Principal Component Analysis (PCA). The results show the potential relevancy of the methodology used in the elemental identification and classification of artifacts with high accuracy and robustness.
Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis
NASA Astrophysics Data System (ADS)
Hussain, T.; Gondal, M. A.
2013-06-01
Laser induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis based on laser-generated plasma. In this technique, laser pulses are applied for ablation of the sample, resulting in the vaporization and ionization of sample in hot plasma which is finally analyzed by the spectrometer. The elements are identified by their unique spectral signatures. LIBS system was developed for elemental analysis of solid and liquid samples. The developed system was applied for qualitative as well as quantitative measurement of elemental concentration present in iron slag and open pit ore samples. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064 nm on test samples to study the capabilities of LIBS as a rapid tool for material analysis. The concentrations of various elements of environmental significance such as cadmium, calcium, magnesium, chromium, manganese, titanium, barium, phosphorus, copper, iron, zinc etc., in these samples were determined. Optimal experimental conditions were evaluated for improving the sensitivity of developed LIBS system through parametric dependence study. The laser-induced breakdown spectroscopy (LIBS) results were compared with the results obtained using standard analytical technique such as inductively couple plasma emission spectroscopy (ICP). Limit of detection (LOD) of our LIBS system were also estimated for the above mentioned elements. This study demonstrates that LIBS could be highly appropriate for rapid online analysis of iron slag and open pit waste.
Yu, Xiaodong; Li, Yang; Gu, Xiaofeng; Bao, Jiming; Yang, Huizhong; Sun, Li
2014-12-01
Water quality monitoring is a critical part of environmental management and protection, and to be able to qualitatively and quantitatively determine contamination and impurity levels in water is especially important. Compared to the currently available water quality monitoring methods and techniques, laser-induced breakdown spectroscopy (LIBS) has several advantages, including no need for sample pre-preparation, fast and easy operation, and chemical free during the process. Therefore, it is of great importance to understand the fundamentals of aqueous LIBS analysis and effectively apply this technique to environmental monitoring. This article reviews the research conducted on LIBS analysis for liquid samples, and the article content includes LIBS theory, history and applications, quantitative analysis of metallic species in liquids, LIBS signal enhancement methods and data processing, characteristics of plasma generated by laser in water, and the factors affecting accuracy of analysis results. Although there have been many research works focusing on aqueous LIBS analysis, detection limit and stability of this technique still need to be improved to satisfy the requirements of environmental monitoring standard. In addition, determination of nonmetallic species in liquid by LIBS is equally important and needs immediate attention from the community. This comprehensive review will assist the readers to better understand the aqueous LIBS technique and help to identify current research needs for environmental monitoring of water quality.
New applications of laser-induced breakdown and stand-off Raman spectroscopy
NASA Astrophysics Data System (ADS)
Snyder, Marion Lawrence
Two novel spectroscopic applications, with the common theme of remote spectroscopy are described. In one application, laser-induced breakdown spectroscopy (LIBS) is investigated for deep ocean measurements of hydrothermal vent chemistry. This technique is demonstrated for the first time for solution measurements at pressures corresponding to those found at hydrothermal vent sites, at ocean depths of one to three kilometers. In the other application, Raman spectroscopy is investigated for stand-off detection of high explosive (HE) materials. We demonstrate several HE materials in silica can be measured at 50-meter range under ambient light conditions, a new record for this application. Chapters one through three of this dissertation contain published and recently submitted articles describing LIBS for in situ multi-elemental detection in high-pressure aqueous environments such as the deep ocean. Initial work shows the potential of single-pulse LIBS (SP-LIBS) to measure dissolved elements (e.g., Na, Ca, Li, K, and Mn) at the part-per-million level in aqueous solutions at pressures exceeding 276 bar. Dual-pulse LIBS (DP-LIBS) of high-pressure aqueous solutions is also presented. We show significant DP-LIBS enhancements are achieved through excitation of a vapor bubble formed by laser-induced breakdown of the solution with a previous laser pulse, thereby increasing the sensitivity of LIBS and allowing additional elements to be measured. Preliminary findings show that increasing solution pressure has a detrimental effect on DP-LIBS emission intensities, such that little if any DP-LIBS emission was observed above approximately 100 bar. Recent results suggest a direct relationship exists between the size of the bubble and the resulting DP-LIBS emission, and that reduction in bubble size and lifetime at elevated pressure lead to the decreased DP-LIBS emission. Chapter four contains published work examining the potential of stand-off Raman spectroscopy for remote HE detection. A small, transportable, telescope-based standoff Raman system is demonstrated for detection of HE materials, including RDX, TNT, and PETN, and simulants at distances up to 50 meters in ambient light conditions. Possible detection limits on the hundreds of parts-per-million level and detection ranges of hundreds of meters are suggested. Merits of pulsed laser excitation sources and intensified charge-coupled devices (ICCD) for detection are discussed.
Pareja, Jhon; López, Sebastian; Jaramillo, Daniel; Hahn, David W; Molina, Alejandro
2013-04-10
The performances of traditional laser-induced breakdown spectroscopy (LIBS) and laser ablation-LIBS (LA-LIBS) were compared by quantifying the total elemental concentration of potassium in highly heterogeneous solid samples, namely soils. Calibration curves for a set of fifteen samples with a wide range of potassium concentrations were generated. The LA-LIBS approach produced a superior linear response different than the traditional LIBS scheme. The analytical response of LA-LIBS was tested with a large set of different soil samples for the quantification of the total concentration of Fe, Mn, Mg, Ca, Na, and K. Results showed an acceptable linear response for Ca, Fe, Mg, and K while poor signal responses were found for Na and Mn. Signs of remaining matrix effects for the LA-LIBS approach in the case of soil analysis were found and discussed. Finally, some improvements and possibilities for future studies toward quantitative soil analysis with the LA-LIBS technique are suggested.
Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data
NASA Astrophysics Data System (ADS)
Guo, Yang-Min; Guo, Lian-Bo; Li, Jia-Ming; Liu, Hong-Di; Zhu, Zhi-Hao; Li, Xiang-You; Lu, Yong-Feng; Zeng, Xiao-Yan
2016-10-01
Laser-induced breakdown spectroscopy (LIBS) has attracted much attention in terms of both scientific research and industrial application. An important branch of LIBS research in Asia, the development of data processing methods for LIBS, is reviewed. First, the basic principle of LIBS and the characteristics of spectral data are briefly introduced. Next, two aspects of research on and problems with data processing methods are described: i) the basic principles of data preprocessing methods are elaborated in detail on the basis of the characteristics of spectral data; ii) the performance of data analysis methods in qualitative and quantitative analysis of LIBS is described. Finally, a direction for future development of data processing methods for LIBS is also proposed.
Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.
Lednev, Vasily N; Pershin, Sergey M; Sdvizhenskii, Pavel A; Grishin, Mikhail Ya; Fedorov, Alexander N; Bukin, Vladimir V; Oshurko, Vadim B; Shchegolikhin, Alexander N
2018-01-01
A new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis. A short time delay between two successive pulses allows measuring LIBS and Raman spectra at different moments but within a single laser flash-lamp pumping. Principal advantages of the developed instrument include high quality Raman/LIBS spectra acquisition (due to optimal gating for Raman/LIBS independently) and absence of target thermal alteration during Raman measurements. A series of high quality Raman and LIBS spectra were acquired for inorganic salts (gypsum, anhydrite) as well as for pharmaceutical samples (acetylsalicylic acid). To the best of our knowledge, the quantitative analysis feasibility by combined Raman/LIBS instrument was demonstrated for the first time by calibration curves construction for acetylsalicylic acid (Raman) and copper (LIBS) in gypsum matrix. Combining ablation pulses and Raman measurements (LIBS/Raman measurements) within a single instrument makes it an efficient tool for identification of samples hidden by non-transparent covering or performing depth profiling analysis including remote sensing. Graphical abstract Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.
Laser-Induced Breakdown Spectroscopy for Qualitative Analysis of Metals in Simulated Martian Soils
ERIC Educational Resources Information Center
Mowry, Curtis; Milofsky, Rob; Collins, William; Pimentel, Adam S.
2017-01-01
This laboratory introduces students to laser-induced breakdown spectroscopy (LIBS) for the analysis of metals in soil and rock samples. LIBS employs a laser-initiated spark to induce electronic excitation of metal atoms. Ensuing atomic emission allows for qualitative and semiquantitative analysis. The students use LIBS to analyze a series of…
Lunar and Planetary Science XXXV: Missions and Instruments: Hopes and Hope Fulfilled
NASA Technical Reports Server (NTRS)
2004-01-01
The titles in this section include: 1) Mars Global Surveyor Mars Orbiter Camera in the Extended Mission: The MOC Toolkit; 2) Mars Odyssey THEMIS-VIS Calibration; 3) Early Science Operations and Results from the ESA Mars Express Mission: Focus on Imaging and Spectral Mapping; 4) The Mars Express/NASA Project at JPL; 5) Beagle 2: Mission to Mars - Current Status; 6) The Beagle 2 Microscope; 7) Mars Environmental Chamber for Dynamic Dust Deposition and Statics Analysis; 8) Locating Targets for CRISM Based on Surface Morphology and Interpretation of THEMIS Data; 9) The Phoenix Mission to Mars; 10) First Studies of Possible Landing Sites for the Phoenix Mars Scout Mission Using the BMST; 11) The 2009 Mars Telecommunications Orbiter; 12) The Aurora Exploration Program - The ExoMars Mission; 13) Electron-induced Luminescence and X-Ray Spectrometer (ELXS) System Development; 14) Remote-Raman and Micro-Raman Studies of Solid CO2, CH4, Gas Hydrates and Ice; 15) The Compact Microimaging Spectrometer (CMIS): A New Tool for In-Situ Planetary Science; 16) Preliminary Results of a New Type of Surface Property Measurement Ideal for a Future Mars Rover Mission; 17) Electrodynamic Dust Shield for Solar Panels on Mars; 18) Sensor Web for Spatio-Temporal Monitoring of a Hydrological Environment; 19) Field Testing of an In-Situ Neutron Spectrometer for Planetary Exploration: First Results; 20) A Miniature Solid-State Spectrometer for Space Applications - Field Tests; 21) Application of Laser Induced Breakdown Spectroscopy (LIBS) to Mars Polar Exploration: LIBS Analysis of Water Ice and Water Ice/Soil Mixtures; 22) LIBS Analysis of Geological Samples at Low Pressures: Application to Mars, the Moon, and Asteroids; 23) In-Situ 1-D and 2-D Mapping of Soil Core and Rock Samples Using the LIBS Long Spark; 24) Rocks Analysis at Stand Off Distance by LIBS in Martian Conditions; 25) Evaluation of a Compact Spectrograph/Detection System for a LIBS Instrument for In-Situ and Stand-Off Detection; 26) Analysis of Organic Compounds in Mars Analog Samples; 27) Report of the Organic Contamination Science Steering Group; 28) The Water-Wheel IR (WIR) - A Contact Survey Experiment for Water and Carbonates on Mars; 29) Mid-IR Fiber Optic Probe for In Situ Water Detection and Characterization; 30) Effects of Subsurface Sampling & Processing on Martian Simulant Containing Varying Quantities of Water; 31) The Subsurface Ice Probe (SIPR): A Low-Power Thermal Probe for the Martian Polar Layered Deposits; 32) Deploying Ground Penetrating Radar in Planetary Analog Sites to Evaluate Potential Instrument Capabilities on Future Mars Missions; 33) Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument; 34) Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation; 35) A New Celestial Navigation Method for Mars Landers; 36) Mars Mineral Spectroscopy Web Site: A Resource for Remote Planetary Spectroscopy.
Choi, Soojin; Kim, Dongyoung; Yang, Junho; Yoh, Jack J
2017-04-01
Quantitative Raman analysis was carried out with geologically mixed samples that have various matrices. In order to compensate the matrix effect in Raman shift, laser-induced breakdown spectroscopy (LIBS) analysis was performed. Raman spectroscopy revealed the geological materials contained in the mixed samples. However, the analysis of a mixture containing different matrices was inaccurate due to the weak signal of the Raman shift, interference, and the strong matrix effect. On the other hand, the LIBS quantitative analysis of atomic carbon and calcium in mixed samples showed high accuracy. In the case of the calcite and gypsum mixture, the coefficient of determination of atomic carbon using LIBS was 0.99, while the signal using Raman was less than 0.9. Therefore, the geological composition of the mixed samples is first obtained using Raman and the LIBS-based quantitative analysis is then applied to the Raman outcome in order to construct highly accurate univariate calibration curves. The study also focuses on a method to overcome matrix effects through the two complementary spectroscopic techniques of Raman spectroscopy and LIBS.
Biomedical applications of laser-induced breakdown spectroscopy (LIBS)
NASA Astrophysics Data System (ADS)
Unnikrishnan, V. K.; Nayak, Rajesh; Bhat, Sujatha; Mathew, Stanley; Kartha, V. B.; Santhosh, C.
2015-03-01
LIBS has been proven to be a robust elemental analysis tool attracting interest because of the wide applications. LIBS can be used for analysis of any type of samples i.e. environmental/physiological, regardless of its state of matter. Conventional spectroscopy techniques are good in analytical performance, but their sample preparation method is mostly destructive and time consuming. Also, almost all these methods are incapable of analysing multi elements simaltaneously. On the other hand, LIBS has many potential advantages such as simplicity in the experimental setup, less sample preparation, less destructive analysis of sample etc. In this paper, we report some of the biomedical applications of LIBS. From the experiments carried out on clinical samples (calcified tissues or teeth and gall stones) for trace elemental mapping and detection, it was found that LIBS is a robust tool for such applications. It is seen that the presence and relative concentrations of major elements (calcium, phosphorus and magnesium) in human calcified tissue (tooth) can be easily determined using LIBS technique. The importance of this study comes in anthropology where tooth and bone are main samples from which reliable data can be easily retrieved. Similarly, elemental composition of bile juice and gall stone collected from the same subject using LIBS was found to be similar. The results show interesting prospects for LIBS to study cholelithiasis (the presence of stones in the gall bladder, is a common disease of the gastrointestinal tract) better.
[Research on fast classification based on LIBS technology and principle component analyses].
Yu, Qi; Ma, Xiao-Hong; Wang, Rui; Zhao, Hua-Feng
2014-11-01
Laser-induced breakdown spectroscopy (LIBS) and the principle component analysis (PCA) were combined to study aluminum alloy classification in the present article. Classification experiments were done on thirteen different kinds of standard samples of aluminum alloy which belong to 4 different types, and the results suggested that the LIBS-PCA method can be used to aluminum alloy fast classification. PCA was used to analyze the spectrum data from LIBS experiments, three principle components were figured out that contribute the most, the principle component scores of the spectrums were calculated, and the scores of the spectrums data in three-dimensional coordinates were plotted. It was found that the spectrum sample points show clear convergence phenomenon according to the type of aluminum alloy they belong to. This result ensured the three principle components and the preliminary aluminum alloy type zoning. In order to verify its accuracy, 20 different aluminum alloy samples were used to do the same experiments to verify the aluminum alloy type zoning. The experimental result showed that the spectrum sample points all located in their corresponding area of the aluminum alloy type, and this proved the correctness of the earlier aluminum alloy standard sample type zoning method. Based on this, the identification of unknown type of aluminum alloy can be done. All the experimental results showed that the accuracy of principle component analyses method based on laser-induced breakdown spectroscopy is more than 97.14%, and it can classify the different type effectively. Compared to commonly used chemical methods, laser-induced breakdown spectroscopy can do the detection of the sample in situ and fast with little sample preparation, therefore, using the method of the combination of LIBS and PCA in the areas such as quality testing and on-line industrial controlling can save a lot of time and cost, and improve the efficiency of detection greatly.
Nicolodelli, Gustavo; Senesi, Giorgio Saverio; de Oliveira Perazzoli, Ivan Luiz; Marangoni, Bruno Spolon; De Melo Benites, Vinícius; Milori, Débora Marcondes Bastos Pereira
2016-09-15
Organic fertilizers are obtained from waste of plant or animal origin. One of the advantages of organic fertilizers is that, from the composting, it recycles waste-organic of urban and agriculture origin, whose disposal would cause environmental impacts. Fast and accurate analysis of both major and minor/trace elements contained in organic mineral and inorganic fertilizers of new generation have promoted the application of modern analytical techniques. In particular, laser induced breakdown spectroscopy (LIBS) is showing to be a very promising, quick and practical technique to detect and measure contaminants and nutrients in fertilizers. Although, this technique presents some limitations, such as a low sensitivity, if compared to other spectroscopic techniques, the use of double pulse (DP) LIBS is an alternative to the conventional LIBS in single pulse (SP). The macronutrients (Ca, Mg, K, P), micronutrients (Cu, Fe, Na, Mn, Zn) and contaminant (Cr) in fertilizer using LIBS in SP and DP configurations were evaluated. A comparative study for both configurations was performed using optimized key parameters for improving LIBS performance. The limit of detection (LOD) values obtained by DP LIBS increased up to seven times as compared to SP LIBS. In general, the marked improvement obtained when using DP system in the simultaneous LIBS quantitative determination for fertilizers analysis could be ascribed to the larger ablated mass of the sample. The results presented in this study show the promising potential of the DP LIBS technique for a qualitative analysis in fertilizers, without requiring sample preparation with chemical reagents. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zivkovic, Sanja; Momcilovic, Milos; Staicu, Angela; Mutic, Jelena; Trtica, Milan; Savovic, Jelena
2017-02-01
The aim of this study was to develop a simple laser induced breakdown spectroscopy (LIBS) method for quantitative elemental analysis of powdered biological materials based on laboratory prepared calibration samples. The analysis was done using ungated single pulse LIBS in ambient air at atmospheric pressure. Transversely-Excited Atmospheric pressure (TEA) CO2 laser was used as an energy source for plasma generation on samples. The material used for the analysis was a blue-green alga Spirulina, widely used in food and pharmaceutical industries and also in a few biotechnological applications. To demonstrate the analytical potential of this particular LIBS system the obtained spectra were compared to the spectra obtained using a commercial LIBS system based on pulsed Nd:YAG laser. A single sample of known concentration was used to estimate detection limits for Ba, Ca, Fe, Mg, Mn, Si and Sr and compare detection power of these two LIBS systems. TEA CO2 laser based LIBS was also applied for quantitative analysis of the elements in powder Spirulina samples. Analytical curves for Ba, Fe, Mg, Mn and Sr were constructed using laboratory produced matrix-matched calibration samples. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used as the reference technique for elemental quantification, and reasonably well agreement between ICP and LIBS data was obtained. Results confirm that, in respect to its sensitivity and precision, TEA CO2 laser based LIBS can be successfully applied for quantitative analysis of macro and micro-elements in algal samples. The fact that nearly all classes of materials can be prepared as powders implies that the proposed method could be easily extended to a quantitative analysis of different kinds of materials, organic, biological or inorganic.
Hahn, David W; Omenetto, Nicoló
2012-04-01
The first part of this two-part review focused on the fundamental and diagnostics aspects of laser-induced plasmas, only touching briefly upon concepts such as sensitivity and detection limits and largely omitting any discussion of the vast panorama of the practical applications of the technique. Clearly a true LIBS community has emerged, which promises to quicken the pace of LIBS developments, applications, and implementations. With this second part, a more applied flavor is taken, and its intended goal is summarizing the current state-of-the-art of analytical LIBS, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools. More specifically, we discuss instrumental and analytical approaches (e.g., double- and multi-pulse LIBS to improve the sensitivity), calibration-free approaches, hyphenated approaches in which techniques such as Raman and fluorescence are coupled with LIBS to increase sensitivity and information power, resonantly enhanced LIBS approaches, signal processing and optimization (e.g., signal-to-noise analysis), and finally applications. An attempt is made to provide an updated view of the role played by LIBS in the various fields, with emphasis on applications considered to be unique. We finally try to assess where LIBS is going as an analytical field, where in our opinion it should go, and what should still be done for consolidating the technique as a mature method of chemical analysis. © 2012 Society for Applied Spectroscopy
LIBS: a potential tool for industrial/agricultural waste water analysis
NASA Astrophysics Data System (ADS)
Karpate, Tanvi; K. M., Muhammed Shameem; Nayak, Rajesh; V. K., Unnikrishnan; Santhosh, C.
2016-04-01
Laser Induced Breakdown Spectroscopy (LIBS) is a multi-elemental analysis technique with various advantages and has the ability to detect any element in real time. This technique holds a potential for environmental monitoring and various such analysis has been done in soil, glass, paint, water, plastic etc confirms the robustness of this technique for such applications. Compared to the currently available water quality monitoring methods and techniques, LIBS has several advantages, viz. no need for sample preparation, fast and easy operation, and chemical free during the process. In LIBS, powerful pulsed laser generates plasma which is then analyzed to get quantitative and qualitative details of the elements present in the sample. Another main advantage of LIBS technique is that it can perform in standoff mode for real time analysis. Water samples from industries and agricultural strata tend to have a lot of pollutants making it harmful for consumption. The emphasis of this project is to determine such harmful pollutants present in trace amounts in industrial and agricultural wastewater. When high intensity laser is made incident on the sample, a plasma is generated which gives a multielemental emission spectra. LIBS analysis has shown outstanding success for solids samples. For liquid samples, the analysis is challenging as the liquid sample has the chances of splashing due to the high energy of laser and thus making it difficult to generate plasma. This project also deals with determining the most efficient method for testing of water sample for qualitative as well as quantitative analysis using LIBS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clegg, Samuel M; Barefield, James E; Wiens, Roger C
2008-01-01
Quantitative analysis with LIBS traditionally employs calibration curves that are complicated by the chemical matrix effects. These chemical matrix effects influence the LIBS plasma and the ratio of elemental composition to elemental emission line intensity. Consequently, LIBS calibration typically requires a priori knowledge of the unknown, in order for a series of calibration standards similar to the unknown to be employed. In this paper, three new Multivariate Analysis (MV A) techniques are employed to analyze the LIBS spectra of 18 disparate igneous and highly-metamorphosed rock samples. Partial Least Squares (PLS) analysis is used to generate a calibration model from whichmore » unknown samples can be analyzed. Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) are employed to generate a model and predict the rock type of the samples. These MV A techniques appear to exploit the matrix effects associated with the chemistries of these 18 samples.« less
Jaswal, Brij Bir S; Kumar, Vinay; Sharma, Jitendra; Rai, Pradeep K; Gondal, Mohammed A; Gondal, Bilal; Singh, Vivek K
2016-04-01
Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique with numerous advantages such as rapidity, multi-elemental analysis, no specific sample preparation requirements, non-destructiveness, and versatility. It has been proven to be a robust elemental analysis tool attracting interest because of being applied to a wide range of materials including biomaterials. In this paper, we have performed spectroscopic studies on gallstones which are heterogeneous in nature using LIBS and wavelength dispersive X-ray fluorescence (WD-XRF) techniques. It has been observed that the presence and relative concentrations of trace elements in different kind of gallstones (cholesterol and pigment gallstones) can easily be determined using LIBS technique. From the experiments carried out on gallstones for trace elemental mapping and detection, it was found that LIBS is a robust tool for such biomedical applications. The stone samples studied in the present paper were classified using the Fourier transform infrared (FTIR) spectroscopy. WD-XRF spectroscopy has been applied for the qualitative and quantitative analysis of major and trace elements present in the gallstone which was compared with the LIBS data. The results obtained in the present paper show interesting prospects for LIBS and WD-XRF to study cholelithiasis better.
Jantzi, Sarah C; Almirall, José R
2011-07-01
A method for the quantitative elemental analysis of surface soil samples using laser-induced breakdown spectroscopy (LIBS) was developed and applied to the analysis of bulk soil samples for discrimination between specimens. The use of a 266 nm laser for LIBS analysis is reported for the first time in forensic soil analysis. Optimization of the LIBS method is discussed, and the results compared favorably to a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method previously developed. Precision for both methods was <10% for most elements. LIBS limits of detection were <33 ppm and bias <40% for most elements. In a proof of principle study, the LIBS method successfully discriminated samples from two different sites in Dade County, FL. Analysis of variance, Tukey's post hoc test and Student's t test resulted in 100% discrimination with no type I or type II errors. Principal components analysis (PCA) resulted in clear groupings of the two sites. A correct classification rate of 99.4% was obtained with linear discriminant analysis using leave-one-out validation. Similar results were obtained when the same samples were analyzed by LA-ICP-MS, showing that LIBS can provide similar information to LA-ICP-MS. In a forensic sampling/spatial heterogeneity study, the variation between sites, between sub-plots, between samples and within samples was examined on three similar Dade sites. The closer the sampling locations, the closer the grouping on a PCA plot and the higher the misclassification rate. These results underscore the importance of careful sampling for geographic site characterization.
Kaszewska, Ewa A; Sylwestrzak, Marcin; Marczak, Jan; Skrzeczanowski, Wojciech; Iwanicka, Magdalena; Szmit-Naud, Elżbieta; Anglos, Demetrios; Targowski, Piotr
2013-08-01
A detailed feasibility study on the combined use of laser-induced breakdown spectroscopy with optical coherence tomography (LIBS/OCT), aiming at a realistic depth-resolved elemental analysis of multilayer stratigraphies in paintings, is presented. Merging a high spectral resolution LIBS system with a high spatial resolution spectral OCT instrument significantly enhances the quality and accuracy of stratigraphic analysis. First, OCT mapping is employed prior to LIBS analysis in order to assist the selection of specific areas of interest on the painting surface to be examined in detail. Then, intertwined with LIBS, the OCT instrument is used as a precise profilometer for the online determination of the depth of the ablation crater formed by individual laser pulses during LIBS depth-profile analysis. This approach is novel and enables (i) the precise in-depth scaling of elemental concentration profiles, and (ii) the recognition of layer boundaries by estimating the corresponding differences in material ablation rate. Additionally, the latter is supported, within the transparency of the object, by analysis of the OCT cross-sectional views. The potential of this method is illustrated by presenting results on the detailed analysis of the structure of an historic painting on canvas performed to aid planned restoration of the artwork.
Rehse, S J; Salimnia, H; Miziolek, A W
2012-02-01
The recent progress made in developing laser-induced breakdown spectroscopy (LIBS) has transformed LIBS from an elemental analysis technique to one that can be applied for the reagentless analysis of molecularly complex biological materials or clinical specimens. Rapid advances in the LIBS technology have spawned a growing number of recently published articles in peer-reviewed journals which have consistently demonstrated the capability of LIBS to rapidly detect, biochemically characterize and analyse, and/or accurately identify various biological, biomedical or clinical samples. These analyses are inherently real-time, require no sample preparation, and offer high sensitivity and specificity. This overview of the biomedical applications of LIBS is meant to summarize the research that has been performed to date, as well as to suggest to health care providers several possible specific future applications which, if successfully implemented, would be significantly beneficial to humankind.
Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review.
Singh, Vivek Kumar; Rai, Awadhesh Kumar
2011-09-01
We review the different spectroscopic techniques including the most recent laser-induced breakdown spectroscopy (LIBS) for the characterization of materials in any phase (solid, liquid or gas) including biological materials. A brief history of the laser and its application in bioscience is presented. The development of LIBS, its working principle and its instrumentation (different parts of the experimental set up) are briefly summarized. The generation of laser-induced plasma and detection of light emitted from this plasma are also discussed. The merit and demerits of LIBS are discussed in comparison with other conventional analytical techniques. The work done using the laser in the biomedical field is also summarized. The analysis of different tissues, mineral analysis in different organs of the human body, characterization of different types of stone formed in the human body, analysis of biological aerosols using the LIBS technique are also summarized. The unique abilities of LIBS including detection of molecular species and calibration-free LIBS are compared with those of other conventional techniques including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectroscopy, and X-ray fluorescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unnikrishnan, V. K.; Nayak, Rajesh; Kartha, V. B.
2014-09-15
Laser-induced breakdown spectroscopy (LIBS), an atomic emission spectroscopy method, has rapidly grown as one of the best elemental analysis techniques over the past two decades. Homogeneity testing and quantitative analysis of manganese (Mn) in manganese-doped glasses have been carried out using an optimized LIBS system employing a nanosecond ultraviolet Nd:YAG laser as the source of excitation. The glass samples have been prepared using conventional vitrification methods. The laser pulse irradiance on the surface of the glass samples placed in air at atmospheric pressure was about 1.7×10{sup 9} W/cm{sup 2}. The spatially integrated plasma emission was collected and imaged on tomore » the spectrograph slit using an optical-fiber-based collection system. Homogeneity was checked by recording LIBS spectra from different sites on the sample surface and analyzing the elemental emission intensities for concentration determination. Validation of the observed LIBS results was done by comparison with scanning electron microscope- energy dispersive X-ray spectroscopy (SEM-EDX) surface elemental mapping. The analytical performance of the LIBS system has been evaluated through the correlation of the LIBS determined concentrations of Mn with its certified values. The results are found to be in very good agreement with the certified concentrations.« less
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Clegg, S. M.; Graff, T.; Morris, R. V.; Laura, J.
2015-06-01
We describe plans to generate a database of LIBS spectra of planetary analog materials and develop free, open-source software to enable the planetary community to analyze LIBS (and other spectral) data.
Trace metal mapping by laser-induced breakdown spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaiser, Jozef; Novotny, Dr. Karel; Hrdlicka, A
2012-01-01
Abstract: Laser-Induced Breakdown Spectroscopy (LIBS) is a sensitive optical technique capable of fast multi-elemental analysis of solid, gaseous and liquid samples. The potential applications of lasers for spectrochemical analysis were developed shortly after its invention; however the massive development of LIBS is connected with the availability of powerful pulsed laser sources. Since the late 80s of 20th century LIBS dominated the analytical atomic spectroscopy scene and its application are developed continuously. Here we review the utilization of LIBS for trace elements mapping in different matrices. The main emphasis is on trace metal mapping in biological samples.
Wan, Xiong; Wang, Peng
2014-01-01
Laser-induced breakdown spectroscopy (LIBS) is a feasible remote sensing technique used for mineral analysis in some unapproachable places where in situ probing is needed, such as analysis of radioactive elements in a nuclear leak or the detection of elemental compositions and contents of minerals on planetary and lunar surfaces. Here a compact custom 15 m focus optical component, combining a six times beam expander with a telescope, has been built, with which the laser beam of a 1064 nm Nd ; YAG laser is focused on remote minerals. The excited LIBS signals that reveal the elemental compositions of minerals are collected by another compact single lens-based signal acquisition system. In our remote LIBS investigations, the LIBS spectra of an unknown ore have been detected, from which the metal compositions are obtained. In addition, a multi-spectral line calibration (MSLC) method is proposed for the quantitative analysis of elements. The feasibility of the MSLC and its superiority over a single-wavelength determination have been confirmed by comparison with traditional chemical analysis of the copper content in the ore.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Bo-Young; Choi, Daewoong; Park, Se Hwan
Korea Atomic Energy Research Institute (KAERI) have been developing the design and deployment methodology of Laser- Induced Breakdown Spectroscopy (LIBS) instrument for safeguards application within the argon hot cell environment at Advanced spent fuel Conditioning Process Facility (ACPF), where ACPF is a facility being refurbished for the laboratory-scaled demonstration of advanced spent fuel conditioning process. LIBS is an analysis technology used to measure the emission spectra of excited elements in the local plasma of a target material induced by a laser. The spectra measured by LIBS are analyzed to verify the quality and quantity of the specific element in themore » target matrix. Recently LIBS has been recognized as a promising technology for safeguards purposes in terms of several advantages including a simple sample preparation and in-situ analysis capability. In particular, a feasibility study of LIBS to remotely monitor the nuclear material in a high radiation environment has been carried out for supporting the IAEA safeguards implementation. Fiber-Optic LIBS (FO-LIBS) deployment was proposed by Applied Photonics Ltd because the use of fiber optics had benefited applications of LIBS by delivering the laser energy to the target and by collecting the plasma light. The design of FO-LIBS instrument for the measurement of actinides in the spent fuel and high temperature molten salt at ACPF had been developed in cooperation with Applied Photonics Ltd. FO-LIBS has some advantages as followings: the detectable plasma light wavelength range is not limited by the optical properties of the thick lead-glass shield window and the potential risk of laser damage to the lead-glass shield window is not considered. The remote LIBS instrument had been installed at ACPF and then the feasibility study for monitoring actinide elements such as uranium, plutonium, and curium in process materials has been carried out. (authors)« less
Mehder, A O; Habibullah, Y B; Gondal, M A; Baig, Umair
2016-08-01
Laser Induced Breakdown Spectroscopy (LIBS) is demonstrated for the spectral analysis of nutritional and toxic elements present in several varieties of date fruit samples available in the Saudi Arabia market. The method analyzes the optical emission of a test sample when subjected to pulsed laser ablation. In this demonstration, our primary focus is on calcium (Ca) and magnesium (Mg), as nutritional elements, and on chromium (Cr), as a toxic element. The local thermodynamic equilibrium (LTE) condition was confirmed prior to the elemental characterization of date samples to ensure accuracy of the LIBS analysis. This was achieved by measuring parameters associated with the plasma, such as the electron temperature and the electron number density. These plasma parameters aid interpretation of processes such as ionization, dissociation, and excitation occurring in the plasma plume formed by ablating the date palm sample. The minimum detection limit was established from calibration curves that involved plotting the LIBS signal intensity as a function of standard date samples with known concentrations. The concentration of Ca and Mg detected in different varieties of date samples was between 187 and 515 and 35-196mgL(-1) respectively, while Cr concentration measured between 1.72 and 7.76mgL(-1). In order to optimize our LIBS system, we have studied how the LIBS signal intensity depends on the incident laser energy and the delay time. In order to validate our LIBS analysis results, standard techniques such as inductively coupled plasma mass spectrometry (ICP-MS) were also applied on an identical (duplicate) date samples as those used for the LIBS analysis. The LIBS results exhibit remarkable agreement with those obtained from the ICP-MS analysis. In addition, the finger print wavelengths of other elements present in date samples were also identified and are reported here, which has not been previously reported, to the best of our knowledge. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vítková, Gabriela; Prokeš, Lubomír; Novotný, Karel; Pořízka, Pavel; Novotný, Jan; Všianský, Dalibor; Čelko, Ladislav; Kaiser, Jozef
2014-11-01
Focusing on historical aspect, during archeological excavation or restoration works of buildings or different structures built from bricks it is important to determine, preferably in-situ and in real-time, the locality of bricks origin. Fast classification of bricks on the base of Laser-Induced Breakdown Spectroscopy (LIBS) spectra is possible using multivariate statistical methods. Combination of principal component analysis (PCA) and linear discriminant analysis (LDA) was applied in this case. LIBS was used to classify altogether the 29 brick samples from 7 different localities. Realizing comparative study using two different LIBS setups - stand-off and table-top it is shown that stand-off LIBS has a big potential for archeological in-field measurements.
NASA Astrophysics Data System (ADS)
Ivković, M.; Konjević, N.
2017-05-01
In this work we summarize, analyze and critically evaluate experimental procedures and results of LIBS electron number density plasma characterization using as examples Stark broadened Si I and Si II line profiles. Selected publications are covering the time period from very beginning of silicon LIBS studies until the end of the year 2015. To perform the analysis of experimental LIBS data, the testing of available semiclassical theoretical Stark broadening parameters for Si I and Si II lines was accomplished first. This is followed by the description of experimental setups, results and details of experimental procedure relevant for the line shape analysis of spectral lines used for plasma characterization. Although most of results and conclusions of this analysis are related to the application of silicon lines for LIBS characterization they are of general importance and may be applied to other elements and different low-temperature plasma sources. The analysis of experimental procedures used for LIBS diagnostics from emission profiles of non-hydrogenic spectral lines is carried out in the following order: the influence of laser ablation and crater formation, spatial and temporal plasma observation, line self-absorption and experimental profile deconvolution, the contribution of ion broadening in comparison with electron impacts contributions to the line width in case of neutral atom line and some other aspects of line shape analysis are considered. The application of Stark shift for LIBS diagnostics is demonstrated and discussed. Finally, the recommendations for an improvement of experimental procedures for LIBS electron number density plasma characterization are offered.
LIBS coupled with ICP/OES for the spectral analysis of betel leaves
NASA Astrophysics Data System (ADS)
Rehan, I.; Rehan, K.; Sultana, S.; Khan, M. Z.; Muhammad, R.
2018-05-01
Laser-induced breakdown spectroscopy (LIBS) system was optimized and was applied for the elemental analysis and exposure of the heavy metals in betel leaves in air. Pulsed Nd:YAG (1064 nm) in conjunction with a suitable detector (LIBS 2000+, Ocean Optics, Inc) having the optical resolution of 0.06 nm was used to record the emission spectra from 200 to 720 nm. Elements like Al, Ba, Ca, Cr, Cu, P, Fe, K, Mg, Mn, Na, P, S, Sr, and Zn were found to be present in the samples. The abundances of observed elements were calculated through normalized calibration curve method, integrated intensity ratio method, and calibration free-LIBS approach. Quantitative analyses were accomplished under the assumption of local thermodynamic equilibrium (LTE) and optically thin plasma. LIBS findings were validated by comparing its results with the results obtained using a typical analytical technique of inductively coupled plasma-optical emission spectroscopy (ICP/OES). Limit of detection (LOD) of the LIBS system was also estimated for heavy metals.
NASA Astrophysics Data System (ADS)
Syuhada Mangsor, Aneez; Haider Rizvi, Zuhaib; Chaudhary, Kashif; Safwan Aziz, Muhammad
2018-05-01
The study of atomic spectroscopy has contributed to a wide range of scientific applications. In principle, laser induced breakdown spectroscopy (LIBS) method has been used to analyse various types of matter regardless of its physical state, either it is solid, liquid or gas because all elements emit light of characteristic frequencies when it is excited to sufficiently high energy. The aim of this work was to analyse the signature spectrums of each element contained in three different types of samples. Metal alloys of Aluminium, Titanium and Brass with the purities of 75%, 80%, 85%, 90% and 95% were used as the manipulated variable and their LIBS spectra were recorded. The characteristic emission lines of main elements were identified from the spectra as well as its corresponding contents. Principal component analysis (PCA) was carried out using the data from LIBS spectra. Three obvious clusters were observed in 3-dimensional PCA plot which corresponding to the different group of alloys. Findings from this study showed that LIBS technology with the help of principle component analysis could conduct the variety discrimination of alloys demonstrating the capability of LIBS-PCA method in field of spectro-analysis. Thus, LIBS-PCA method is believed to be an effective method for classifying alloys with different percentage of purifications, which was high-cost and time-consuming before.
NASA Astrophysics Data System (ADS)
Oropeza, D.
2016-12-01
A highly innovative laser ablation sampling instrument (J200 Tandem LA - LIBS) that combines the capabilities and analytical benefits of LIBS, LA-ICP-MS and LA-ICP-OES was used for micrometer-scale, spatially-resolved, elemental analysis of a wide variety of samples of geological interest. Data collected using ablation systems consisted of nanosecond (Nd:YAG operated 266nm) and femtosecond lasers (1030 and 343nm). An ICCD LIBS detector and Quadrupole based mass spectrometer were selected for LIBS and ICP-MS detection, respectively. This tandem instrument allows simultaneous determination of major and minor elements (for example, Si, Ca, Na, and Al, and trace elements such as Li, Ce, Cr, Sr, Y, Zn, Zr among others). The research also focused on elemental mapping and calibration strategies, specifically the use of emission and mass spectra for multivariate data analysis. Partial Least Square Regression (PLSR) is shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The study provides a benchmark to evaluate analytical results for more complex geological sample matrices.
A compact LIBS system for industrial applications
NASA Astrophysics Data System (ADS)
Noharet, B.; Sterner, C.; Irebo, T.; Gurell, J.; Bengtson, A.; Vainik, R.; Karlsson, H.; Illy, E.
2015-03-01
In recent years, laser-induced breakdown spectroscopy (LIBS) has been established as a promising analytical tool for online chemical analysis. The emitted light spectrum is analyzed for instantaneous determination of the elemental composition of the sample, enabling on-line classification of materials. Two major strengths of the technique are the possibilities to perform both fast and remote chemical analysis to determine the elemental composition of the samples under test. In order to reduce the size of LIBS systems, the use of a compact Q-switched diode-pumped solid-state laser (DPSSL) in a LIBS system is evaluated for the industrial sorting of aluminium alloys. The DPSSL, which delivers 150μJ pulses of high beam quality at more than 7KHz repetition rate, provides irradiance on the target that is appropriate for LIBS measurements. The experimental results indicate that alloy classification and quantitative analysis are possible on scrap aluminium samples placed 50 cm apart from the focusing and collecting lenses, without sample preparation. Similar calibration curves and limits of detection are obtained for traditional high-energy low-frequency flashlamp-pumped and low-energy high-frequency diode-pumped lasers, showing the applicability of compact diode-pumped lasers for industrial LIBS applications.
Feasibility of laser-induced breakdown spectroscopy (LIBS) for classification of sea salts.
Tan, Man Minh; Cui, Sheng; Yoo, Jonghyun; Han, Song-Hee; Ham, Kyung-Sik; Nam, Sang-Ho; Lee, Yonghoon
2012-03-01
We have investigated the feasibility of laser-induced breakdown spectroscopy (LIBS) as a fast, reliable classification tool for sea salts. For 11 kinds of sea salts, potassium (K), magnesium (Mg), calcium (Ca), and aluminum (Al), concentrations were measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and the LIBS spectra were recorded in the narrow wavelength region between 760 and 800 nm where K (I), Mg (I), Ca (II), Al (I), and cyanide (CN) band emissions are observed. The ICP-AES measurements revealed that the K, Mg, Ca, and Al concentrations varied significantly with the provenance of each salt. The relative intensities of the K (I), Mg (I), Ca (II), and Al (I) peaks observed in the LIBS spectra are consistent with the results using ICP-AES. The principal component analysis of the LIBS spectra provided the score plot with quite a high degree of clustering. This indicates that classification of sea salts by chemometric analysis of LIBS spectra is very promising. Classification models were developed by partial least squares discriminant analysis (PLS-DA) and evaluated. In addition, the Al (I) peaks enabled us to discriminate between different production methods of the salts. © 2012 Society for Applied Spectroscopy
NASA Astrophysics Data System (ADS)
Zaitun; Prasetyo, S.; Suliyanti, M. M.; Isnaeni; Herbani, Y.
2018-03-01
Laser-induced breakdown spectroscopy (LIBS) can be used for quantitative and qualitative analysis. Calibration-free LIBS (CF-LIBS) is a method to quantitatively analyze concentration of elements in a sample in local thermodynamic equilibrium conditions without using available matrix-matched calibration. In this study, we apply CF-LIBS for quantitative analysis of Ti in TiO2 sample. TiO2 powder sample was mixed with polyvinyl alcohol and formed into pellets. An Nd:YAG pulsed laser at a wavelength of 1064 nm was focused onto the sample to generate plasma. The spectrum of plasma was recorded using spectrophotometer then compared to NIST spectral line to determine energy levels and other parameters. The value of plasma temperature obtained using Boltzmann plot is 8127.29 K and electron density from calculation is 2.49×1016 cm-3. Finally, the concentration of Ti in TiO2 sample from this study is 97% that is in proximity with the sample certificate.
NASA Astrophysics Data System (ADS)
Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.
2016-04-01
Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.
NASA Astrophysics Data System (ADS)
Choi, Soojin; Yoh, Jack J.
2017-08-01
The possibility verification of the first attempt to apply LIBS to arson investigation was performed. LIBS has capabilities for real time in-situ analysis and depth profiling. It can provide valuable information about the fire debris that are complementary to the classification of original sample components and combustion residues. In this study, fire debris was analyzed to determine the ignition source and existence of a fire accelerant using LIBS spectra and depth profiling analysis. Fire debris chemical composition and carbon layer thickness determines the possible ignition source while the carbon layer thickness of combusted samples represents the degree of sample carbonization. When a sample is combusted with fire accelerants, a thicker carbon layer is formed because the burning rate is increased. Therefore, depth profiling can confirm the existence of combustion accelerants, which is evidence of arson. Also investigation of fire debris by depth profiling is still possible when a fire is extinguished with water from fire hose. Such data analysis and in-situ detection of forensic signals via the LIBS may assist fire investigation at crime scenes.
Elemental analysis of cotton by laser-induced breakdown spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenk, Emily R.; Almirall, Jose R.
Laser-induced breakdown spectroscopy (LIBS) has been applied to the elemental characterization of unprocessed cotton. This research is important in forensic and fraud detection applications to establish an elemental fingerprint of U.S. cotton by region, which can be used to determine the source of the cotton. To the best of our knowledge, this is the first report of a LIBS method for the elemental analysis of cotton. The experimental setup consists of a Nd:YAG laser that operates at the fundamental wavelength as the LIBS excitation source and an echelle spectrometer equipped with an intensified CCD camera. The relative concentrations of elementsmore » Al, Ba, Ca, Cr, Cu, Fe, Mg, and Sr from both nutrients and environmental contributions were determined by LIBS. Principal component analysis was used to visualize the differences between cotton samples based on the elemental composition by region in the U.S. Linear discriminant analysis of the LIBS data resulted in the correct classification of >97% of the cotton samples by U.S. region and >81% correct classification by state of origin.« less
NASA Astrophysics Data System (ADS)
Safi, A.; Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Ripoll-Seguer, L.; Hidalgo, M.; Palleschi, V.
2018-06-01
The introduction of multivariate calibration curve approach in Laser-Induced Breakdown Spectroscopy (LIBS) quantitative analysis has led to a general improvement of the LIBS analytical performances, since a multivariate approach allows to exploit the redundancy of elemental information that are typically present in a LIBS spectrum. Software packages implementing multivariate methods are available in the most diffused commercial and open source analytical programs; in most of the cases, the multivariate algorithms are robust against noise and operate in unsupervised mode. The reverse of the coin of the availability and ease of use of such packages is the (perceived) difficulty in assessing the reliability of the results obtained which often leads to the consideration of the multivariate algorithms as 'black boxes' whose inner mechanism is supposed to remain hidden to the user. In this paper, we will discuss the dangers of a 'black box' approach in LIBS multivariate analysis, and will discuss how to overcome them using the chemical-physical knowledge that is at the base of any LIBS quantitative analysis.
Detection of Anomalies in Citrus Leaves Using Laser-Induced Breakdown Spectroscopy (LIBS).
Sankaran, Sindhuja; Ehsani, Reza; Morgan, Kelly T
2015-08-01
Nutrient assessment and management are important to maintain productivity in citrus orchards. In this study, laser-induced breakdown spectroscopy (LIBS) was applied for rapid and real-time detection of citrus anomalies. Laser-induced breakdown spectroscopy spectra were collected from citrus leaves with anomalies such as diseases (Huanglongbing, citrus canker) and nutrient deficiencies (iron, manganese, magnesium, zinc), and compared with those of healthy leaves. Baseline correction, wavelet multivariate denoising, and normalization techniques were applied to the LIBS spectra before analysis. After spectral pre-processing, features were extracted using principal component analysis and classified using two models, quadratic discriminant analysis and support vector machine (SVM). The SVM resulted in a high average classification accuracy of 97.5%, with high average canker classification accuracy (96.5%). LIBS peak analysis indicated that high intensities at 229.7, 247.9, 280.3, 393.5, 397.0, and 769.8 nm were observed of 11 peaks found in all the samples. Future studies using controlled experiments with variable nutrient applications are required for quantification of foliar nutrients by using LIBS-based sensing.
libRoadRunner: a high performance SBML simulation and analysis library
Somogyi, Endre T.; Bouteiller, Jean-Marie; Glazier, James A.; König, Matthias; Medley, J. Kyle; Swat, Maciej H.; Sauro, Herbert M.
2015-01-01
Motivation: This article presents libRoadRunner, an extensible, high-performance, cross-platform, open-source software library for the simulation and analysis of models expressed using Systems Biology Markup Language (SBML). SBML is the most widely used standard for representing dynamic networks, especially biochemical networks. libRoadRunner is fast enough to support large-scale problems such as tissue models, studies that require large numbers of repeated runs and interactive simulations. Results: libRoadRunner is a self-contained library, able to run both as a component inside other tools via its C++ and C bindings, and interactively through its Python interface. Its Python Application Programming Interface (API) is similar to the APIs of MATLAB (www.mathworks.com) and SciPy (http://www.scipy.org/), making it fast and easy to learn. libRoadRunner uses a custom Just-In-Time (JIT) compiler built on the widely used LLVM JIT compiler framework. It compiles SBML-specified models directly into native machine code for a variety of processors, making it appropriate for solving extremely large models or repeated runs. libRoadRunner is flexible, supporting the bulk of the SBML specification (except for delay and non-linear algebraic equations) including several SBML extensions (composition and distributions). It offers multiple deterministic and stochastic integrators, as well as tools for steady-state analysis, stability analysis and structural analysis of the stoichiometric matrix. Availability and implementation: libRoadRunner binary distributions are available for Mac OS X, Linux and Windows. The library is licensed under Apache License Version 2.0. libRoadRunner is also available for ARM-based computers such as the Raspberry Pi. http://www.libroadrunner.org provides online documentation, full build instructions, binaries and a git source repository. Contacts: hsauro@u.washington.edu or somogyie@indiana.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26085503
libRoadRunner: a high performance SBML simulation and analysis library.
Somogyi, Endre T; Bouteiller, Jean-Marie; Glazier, James A; König, Matthias; Medley, J Kyle; Swat, Maciej H; Sauro, Herbert M
2015-10-15
This article presents libRoadRunner, an extensible, high-performance, cross-platform, open-source software library for the simulation and analysis of models expressed using Systems Biology Markup Language (SBML). SBML is the most widely used standard for representing dynamic networks, especially biochemical networks. libRoadRunner is fast enough to support large-scale problems such as tissue models, studies that require large numbers of repeated runs and interactive simulations. libRoadRunner is a self-contained library, able to run both as a component inside other tools via its C++ and C bindings, and interactively through its Python interface. Its Python Application Programming Interface (API) is similar to the APIs of MATLAB ( WWWMATHWORKSCOM: ) and SciPy ( HTTP//WWWSCIPYORG/: ), making it fast and easy to learn. libRoadRunner uses a custom Just-In-Time (JIT) compiler built on the widely used LLVM JIT compiler framework. It compiles SBML-specified models directly into native machine code for a variety of processors, making it appropriate for solving extremely large models or repeated runs. libRoadRunner is flexible, supporting the bulk of the SBML specification (except for delay and non-linear algebraic equations) including several SBML extensions (composition and distributions). It offers multiple deterministic and stochastic integrators, as well as tools for steady-state analysis, stability analysis and structural analysis of the stoichiometric matrix. libRoadRunner binary distributions are available for Mac OS X, Linux and Windows. The library is licensed under Apache License Version 2.0. libRoadRunner is also available for ARM-based computers such as the Raspberry Pi. http://www.libroadrunner.org provides online documentation, full build instructions, binaries and a git source repository. hsauro@u.washington.edu or somogyie@indiana.edu Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US.
Inclusion Detection in Aluminum Alloys Via Laser-Induced Breakdown Spectroscopy
NASA Astrophysics Data System (ADS)
Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran
2018-04-01
Laser-induced breakdown spectroscopy (LIBS) has shown promise as a technique to quickly determine molten metal chemistry in real time. Because of its characteristics, LIBS could also be used as a technique to sense for unwanted inclusions and impurities. Simulated Al2O3 inclusions were added to molten aluminum via a metal-matrix composite. LIBS was performed in situ to determine whether particles could be detected. Outlier analysis on oxygen signal was performed on LIBS data and compared to oxide volume fraction measured through metallography. It was determined that LIBS could differentiate between melts with different amounts of inclusions by monitoring the fluctuations in signal for elements of interest. LIBS shows promise as an enabling tool for monitoring metal cleanliness.
Nowak, Sascha; Winter, Martin
2017-03-06
Quantitative electrolyte extraction from lithium ion batteries (LIB) is of great interest for recycling processes. Following the generally valid EU legal guidelines for the recycling of batteries, 50 wt % of a LIB cell has to be recovered, which cannot be achieved without the electrolyte; hence, the electrolyte represents a target component for the recycling of LIBs. Additionally, fluoride or fluorinated compounds, as inevitably present in LIB electrolytes, can hamper or even damage recycling processes in industry and have to be removed from the solid LIB parts, as well. Finally, extraction is a necessary tool for LIB electrolyte aging analysis as well as for post-mortem investigations in general, because a qualitative overview can already be achieved after a few minutes of extraction for well-aged, apparently "dry" LIB cells, where the electrolyte is deeply penetrated or even gellified in the solid battery materials.
An Analysis of Physician Assistant LibGuides: A Tool for Collection Development.
Johnson, Catherine V; Johnson, Scott Y
2017-01-01
The Physician Assistant (PA) specialty encompasses many subject areas and requires many types of library resources. An analysis of PA LibGuides was performed to determine most frequently recommended resources. A sample of LibGuides from U.S. institutions accredited by the Accreditation Review Commission on Education for the Physician Assistant (ARC-PA) was included in this study. Resources presented on guides were tabulated and organized by resource type. Databases and point-of-care tools were the types of resources listed by the most LibGuides. There were over 1,000 books listed on the 45 guides, including over 600 unique books listed. There were fewer journals listed, only 163. Overall, while the 45 LibGuides evaluated list many unique resources in each category, a librarian can create an accepted list of the most frequently listed resources from the data gathered.
Minimal invasive control of paintings cleaning by LIBS
NASA Astrophysics Data System (ADS)
Staicu, A.; Apostol, I.; Pascu, A.; Urzica, I.; Pascu, M. L.; Damian, V.
2016-03-01
In cultural heritage restoration and conservation, it has been proved that LIBS is an appropriate technique for pigments identification, analysis of multilayered paintings, and quantitative analysis of ancient materials. Generally, experiments involving the use of laser for paint cleaning and LIBS in order to identify the composition of the removed material are made. Here, we report LIBS studies on mastic and dammar varnishes removal using visible (532 nm) and UV (266 nm) laser pulses (5 ns) with fluences in the range 0.6-4.4 J/cm2. The studied varnish layers were on-purpose painted on glass supports or were part of several mock-up samples having dammar or mastic as final layer - gold foil, yellow ochre or cobalt blue egg tempera as painting layer - chalk or acrylic ground as link to an wooden support. LIBS was used to monitor the laser induced stepwise selective removal of the layers and to analyze their composition.
Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Peng, Jiyu; Song, Kunlin; Zhu, Hongyan; Kong, Wenwen; Liu, Fei; Shen, Tingting; He, Yong
2017-03-01
Tobacco mosaic virus (TMV) is one of the most devastating viruses to crops, which can cause severe production loss and affect the quality of products. In this study, we have proposed a novel approach to discriminate TMV-infected tobacco based on laser-induced breakdown spectroscopy (LIBS). Two different kinds of tobacco samples (fresh leaves and dried leaf pellets) were collected for spectral acquisition, and partial least squared discrimination analysis (PLS-DA) was used to establish classification models based on full spectrum and observed emission lines. The influences of moisture content on spectral profile, signal stability and plasma parameters (temperature and electron density) were also analysed. The results revealed that moisture content in fresh tobacco leaves would worsen the stability of analysis, and have a detrimental effect on the classification results. Good classification results were achieved based on the data from both full spectrum and observed emission lines of dried leaves, approaching 97.2% and 88.9% in the prediction set, respectively. In addition, support vector machine (SVM) could improve the classification results and eliminate influences of moisture content. The preliminary results indicate that LIBS coupled with chemometrics could provide a fast, efficient and low-cost approach for TMV-infected disease detection in tobacco leaves.
Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy
Peng, Jiyu; Song, Kunlin; Zhu, Hongyan; Kong, Wenwen; Liu, Fei; Shen, Tingting; He, Yong
2017-01-01
Tobacco mosaic virus (TMV) is one of the most devastating viruses to crops, which can cause severe production loss and affect the quality of products. In this study, we have proposed a novel approach to discriminate TMV-infected tobacco based on laser-induced breakdown spectroscopy (LIBS). Two different kinds of tobacco samples (fresh leaves and dried leaf pellets) were collected for spectral acquisition, and partial least squared discrimination analysis (PLS-DA) was used to establish classification models based on full spectrum and observed emission lines. The influences of moisture content on spectral profile, signal stability and plasma parameters (temperature and electron density) were also analysed. The results revealed that moisture content in fresh tobacco leaves would worsen the stability of analysis, and have a detrimental effect on the classification results. Good classification results were achieved based on the data from both full spectrum and observed emission lines of dried leaves, approaching 97.2% and 88.9% in the prediction set, respectively. In addition, support vector machine (SVM) could improve the classification results and eliminate influences of moisture content. The preliminary results indicate that LIBS coupled with chemometrics could provide a fast, efficient and low-cost approach for TMV-infected disease detection in tobacco leaves. PMID:28300144
Yang, Jianhong; Li, Xiaomeng; Xu, Jinwu; Ma, Xianghong
2018-01-01
The quantitative analysis accuracy of calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is severely affected by the self-absorption effect and estimation of plasma temperature. Herein, a CF-LIBS quantitative analysis method based on the auto-selection of internal reference line and the optimized estimation of plasma temperature is proposed. The internal reference line of each species is automatically selected from analytical lines by a programmable procedure through easily accessible parameters. Furthermore, the self-absorption effect of the internal reference line is considered during the correction procedure. To improve the analysis accuracy of CF-LIBS, the particle swarm optimization (PSO) algorithm is introduced to estimate the plasma temperature based on the calculation results from the Boltzmann plot. Thereafter, the species concentrations of a sample can be calculated according to the classical CF-LIBS method. A total of 15 certified alloy steel standard samples of known compositions and elemental weight percentages were used in the experiment. Using the proposed method, the average relative errors of Cr, Ni, and Fe calculated concentrations were 4.40%, 6.81%, and 2.29%, respectively. The quantitative results demonstrated an improvement compared with the classical CF-LIBS method and the promising potential of in situ and real-time application.
Yang, Jun-Ho; Yoh, Jack J
2018-01-01
A novel technique is reported for separating overlapping latent fingerprints using chemometric approaches that combine laser-induced breakdown spectroscopy (LIBS) and multivariate analysis. The LIBS technique provides the capability of real time analysis and high frequency scanning as well as the data regarding the chemical composition of overlapping latent fingerprints. These spectra offer valuable information for the classification and reconstruction of overlapping latent fingerprints by implementing appropriate statistical multivariate analysis. The current study employs principal component analysis and partial least square methods for the classification of latent fingerprints from the LIBS spectra. This technique was successfully demonstrated through a classification study of four distinct latent fingerprints using classification methods such as soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA). The novel method yielded an accuracy of more than 85% and was proven to be sufficiently robust. Furthermore, through laser scanning analysis at a spatial interval of 125 µm, the overlapping fingerprints were reconstructed as separate two-dimensional forms.
[Quantitative Analysis of Heavy Metals in Water with LIBS Based on Signal-to-Background Ratio].
Hu, Li; Zhao, Nan-jing; Liu, Wen-qing; Fang, Li; Zhang, Da-hai; Wang, Yin; Meng, De Shuo; Yu, Yang; Ma, Ming-jun
2015-07-01
There are many influence factors in the precision and accuracy of the quantitative analysis with LIBS technology. According to approximately the same characteristics trend of background spectrum and characteristic spectrum along with the change of temperature through in-depth analysis, signal-to-background ratio (S/B) measurement and regression analysis could compensate the spectral line intensity changes caused by system parameters such as laser power, spectral efficiency of receiving. Because the measurement dates were limited and nonlinear, we used support vector machine (SVM) for regression algorithm. The experimental results showed that the method could improve the stability and the accuracy of quantitative analysis of LIBS, and the relative standard deviation and average relative error of test set respectively were 4.7% and 9.5%. Data fitting method based on signal-to-background ratio(S/B) is Less susceptible to matrix elements and background spectrum etc, and provides data processing reference for real-time online LIBS quantitative analysis technology.
Fink, Herbert; Panne, Ulrich; Niessner, Reinhard
2002-09-01
An experimental setup for direct elemental analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy (LIPS, or laser-induced breakdown spectroscopy, LIBS) was realized. The combination of a echelle spectrograph, featuring a high resolution with a broad spectral coverage, with multivariate methods, such as PLS, PCR, and variable subset selection via a genetic algorithm, resulted in considerable improvements in selectivity and sensitivity for this complex matrix. With a normalization to carbon as internal standard, the limits of detection were in the ppm range. A preliminary pattern recognition study points to the possibility of polymer recognition via the line-rich echelle spectra. Several experiments at an extruder within a recycling plant demonstrated successfully the capability of LIPS for different kinds of routine on-line process analysis.
SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly
Wala, Jeremiah; Beroukhim, Rameen
2017-01-01
Abstract We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. Availability and Implementation: SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. Contact: jwala@broadinstitue.org; rameen@broadinstitute.org PMID:28011768
SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly.
Wala, Jeremiah; Beroukhim, Rameen
2017-03-01
We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. jwala@broadinstitue.org ; rameen@broadinstitute.org. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Zhang, Qian; Xiong, Wei; Chen, Yu-Qi; Li, Run-Hua
2011-02-01
A wood slice was used as absorber to transfer liquid sample to solid sample in order to solve the problems existing in directly analyzing aqueous solutions with laser-induced breakdown spectroscopy (LIBS). An optical-electrical dual pulse LIBS (OEDP-LIBS) technique was first used to enhance atomic emission of mercury in laser-induced plasma. The calibration curves of mercury were obtained by typical single pulse LIBS and OEDP-LIBS techniques. The limit of detection (LOD) of mercury in these two techniques reaches 2.4 and 0.3 mg x L(-1), respectively. Under current experimental conditions, the time-integrated a tomic emission of mercury at 253.65 nm was enhanced 50 times and the LOD of mercury was improved by one order, if comparing OEDP-LIBS to single pulse LIBS. The required time for a whole analysis process is less than 5 minutes. As the atomic emission of mercury decays slowly while increasing the delay time between electrical pulse and laser pulse, increasing the electrical pulse width can further enhance the time integrated intensity of mercury emission and improve the detection sensitivity of mercury by OEDP-LIBS technique.
[Rapid multi-elemental analysis on four precious Tibetan medicines based on LIBS technique].
Liu, Xiao-na; Shi, Xin-yuan; Jia, Shuai-yun; Zhao, Na; Wu, Zhi-sheng; Qiao, Yan-jiang
2015-06-01
The laser-induced breakdown spectroscopy (LIBS) was applied to perform a qualitative elementary analysis on four precious Tibetan medicines, i. e. Renqing Mangjue, Renqing Changjue, 25-herb coral pills and 25-herb pearl pills. The specific spectra of the four Tibetan medicines were established. In the experiment, Nd: YAG and 1 064 nm-baseband pulse laser were adopted to collect the spectra. A laser beam focused on the surface of the samples to generate plasma. Its spectral signal was detected by using spectrograph. Based on the National Institute of Standard and Technology (NIST) database, LIBS spectral lines were indentified. The four Tibetan medicines mainly included Ca, Na, K, Mg and other elements and C-N molecular band. Specifically, Fe was detected in Renqing Changjue and 25-herb pearl pills; heavy mental elements Hg and Cu were shown in Renqing Mangjue and Renqing Changjue; Ag was found in Renqing Changjue. The results demonstrated that LIBS is a reliable and rapid multi-element analysis on the four Tibetan medicines. With Real-time, rapid and nondestructive advantages, LIBS has a wide application prospect in the element analysis on ethnic medicines.
Davari, Seyyed Ali; Masjedi, Shirin; Ferdous, Zannatul; Mukherjee, Dibyendu
2018-01-01
Calcific aortic valve disease (CAVD) is a major cardiovascular disorder caused by osteogenic differentiation of valvular interstitial cells (VICs) within aortic valves. Conventional methods like colorimetric assays and histology fail to detect small calcium depositions during in-vitro VIC cultures. Laser-induced breakdown spectroscopy (LIBS) is a robust analytical tool used for inorganic materials characterizations, but relatively new to biomedical applications. We employ LIBS, for the first time, for quantitative in-vitro detection of calcium depositions in VICs at various osteogenic differentiation stages. VICs isolated from porcine aortic valves were cultured in osteogenic media over various days. Colorimetric calcium assays based on arsenazo dye and Von Kossa staining measured the calcium depositions within VICs. Simultaneously, LIBS signatures for Ca I (422.67 nm) atomic emission lines were collected for estimating calcium depositions in lyophilized VIC samples. Our results indicate excellent linear correlation between the calcium assay and our LIBS measurements. Furthermore, unlike the assay results, the LIBS results could resolve calcium signals from cell samples with as early as 2 days of osteogenic culture. Quantitatively, the LIBS measurements establish the limit of detection for calcium content in VICs to be ∼0.17±0.04 μg which indicates a 5-fold improvement over calcium assay. Picture: Quantitative LIBS enables in-vitro analysis for early stage detection of calcium deposition within aortic valvular interstitial cells (VICs). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Madhavi Z; Labbe, Nicole; Wagner, Rebekah J.
2013-01-01
This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before andmore » after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.« less
ChariDingari, Narahara; Barman, Ishan; Myakalwar, Ashwin Kumar; Tewari, Surya P.; Kumar, G. Manoj
2012-01-01
Despite the intrinsic elemental analysis capability and lack of sample preparation requirements, laser-induced breakdown spectroscopy (LIBS) has not been extensively used for real world applications, e.g. quality assurance and process monitoring. Specifically, variability in sample, system and experimental parameters in LIBS studies present a substantive hurdle for robust classification, even when standard multivariate chemometric techniques are used for analysis. Considering pharmaceutical sample investigation as an example, we propose the use of support vector machines (SVM) as a non-linear classification method over conventional linear techniques such as soft independent modeling of class analogy (SIMCA) and partial least-squares discriminant analysis (PLS-DA) for discrimination based on LIBS measurements. Using over-the-counter pharmaceutical samples, we demonstrate that application of SVM enables statistically significant improvements in prospective classification accuracy (sensitivity), due to its ability to address variability in LIBS sample ablation and plasma self-absorption behavior. Furthermore, our results reveal that SVM provides nearly 10% improvement in correct allocation rate and a concomitant reduction in misclassification rates of 75% (cf. PLS-DA) and 80% (cf. SIMCA)-when measurements from samples not included in the training set are incorporated in the test data – highlighting its robustness. While further studies on a wider matrix of sample types performed using different LIBS systems is needed to fully characterize the capability of SVM to provide superior predictions, we anticipate that the improved sensitivity and robustness observed here will facilitate application of the proposed LIBS-SVM toolbox for screening drugs and detecting counterfeit samples as well as in related areas of forensic and biological sample analysis. PMID:22292496
Dingari, Narahara Chari; Barman, Ishan; Myakalwar, Ashwin Kumar; Tewari, Surya P; Kumar Gundawar, Manoj
2012-03-20
Despite the intrinsic elemental analysis capability and lack of sample preparation requirements, laser-induced breakdown spectroscopy (LIBS) has not been extensively used for real-world applications, e.g., quality assurance and process monitoring. Specifically, variability in sample, system, and experimental parameters in LIBS studies present a substantive hurdle for robust classification, even when standard multivariate chemometric techniques are used for analysis. Considering pharmaceutical sample investigation as an example, we propose the use of support vector machines (SVM) as a nonlinear classification method over conventional linear techniques such as soft independent modeling of class analogy (SIMCA) and partial least-squares discriminant analysis (PLS-DA) for discrimination based on LIBS measurements. Using over-the-counter pharmaceutical samples, we demonstrate that the application of SVM enables statistically significant improvements in prospective classification accuracy (sensitivity), because of its ability to address variability in LIBS sample ablation and plasma self-absorption behavior. Furthermore, our results reveal that SVM provides nearly 10% improvement in correct allocation rate and a concomitant reduction in misclassification rates of 75% (cf. PLS-DA) and 80% (cf. SIMCA)-when measurements from samples not included in the training set are incorporated in the test data-highlighting its robustness. While further studies on a wider matrix of sample types performed using different LIBS systems is needed to fully characterize the capability of SVM to provide superior predictions, we anticipate that the improved sensitivity and robustness observed here will facilitate application of the proposed LIBS-SVM toolbox for screening drugs and detecting counterfeit samples, as well as in related areas of forensic and biological sample analysis.
Structure of Perceptions of Service Quality in Libraries: A LibQUAL+ Study.
ERIC Educational Resources Information Center
Thompson, Bruce; Cook, Colleen; Heath, Fred
2003-01-01
Used confirmatory factor analysis to evaluate the score integrity of LibQUALl+, an instrument to measure perceptions of library service quality. Results for 60,027 graduate and undergraduate students suggest that the model implied by LibQUAL is reasonable and invariant across independent samples and fits all three major subgroups of library users.…
In situ visualization and data analysis for turbidity currents simulation
NASA Astrophysics Data System (ADS)
Camata, Jose J.; Silva, Vítor; Valduriez, Patrick; Mattoso, Marta; Coutinho, Alvaro L. G. A.
2018-01-01
Turbidity currents are underflows responsible for sediment deposits that generate geological formations of interest for the oil and gas industry. LibMesh-sedimentation is an application built upon the libMesh library to simulate turbidity currents. In this work, we present the integration of libMesh-sedimentation with in situ visualization and in transit data analysis tools. DfAnalyzer is a solution based on provenance data to extract and relate strategic simulation data in transit from multiple data for online queries. We integrate libMesh-sedimentation and ParaView Catalyst to perform in situ data analysis and visualization. We present a parallel performance analysis for two turbidity currents simulations showing that the overhead for both in situ visualization and in transit data analysis is negligible. We show that our tools enable monitoring the sediments appearance at runtime and steer the simulation based on the solver convergence and visual information on the sediment deposits, thus enhancing the analytical power of turbidity currents simulations.
Identification of offal adulteration in beef by laser induced breakdown spectroscopy (LIBS).
Velioglu, Hasan Murat; Sezer, Banu; Bilge, Gonca; Baytur, Süleyman Efe; Boyaci, Ismail Hakki
2018-04-01
Minced meat is the major ingredient in sausages, beef burgers, and similar products; and thus it is the main product subjected to adulteration with meat offal. Determination of this kind of meat adulteration is crucial due to religious, economic and ethical concerns. The aim of the present study is to discriminate the beef meat and offal samples by using laser induced breakdown spectroscopy (LIBS). To this end, LIBS and multivariate data analysis were used to discriminate pure beef and offal samples qualitatively and to determine the offal mixture adulteration quantitatively. In this analysis, meat samples were frozen and LIBS analysis were performed. The results indicate that by using principal component analysis (PCA), discrimination of pure offal and offal mixture adulterated beef samples can be achieved successfully. Besides, adulteration ratio can be determined using partial least square analysis method (PLS) with 0.947 coefficient of determination (R 2 ) and 3.8% of limit of detection (LOD) values for offal mixture adulterated beef samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moncayo, S; Manzoor, S; Rosales, J D; Anzano, J; Caceres, J O
2017-10-01
The present work focuses on the development of a fast and cost effective method based on Laser Induced Breakdown Spectroscopy (LIBS) to the quality control, traceability and detection of adulteration in milk. Two adulteration cases have been studied; a qualitative analysis for the discrimination between different milk blends and quantification of melamine in adulterated toddler milk powder. Principal Component Analysis (PCA) and neural networks (NN) have been used to analyze LIBS spectra obtaining a correct classification rate of 98% with a 100% of robustness. For the quantification of melamine, two methodologies have been developed; univariate analysis using CN emission band and multivariate calibration NN model obtaining correlation coefficient (R 2 ) values of 0.982 and 0.999 respectively. The results of the use of LIBS technique coupled with chemometric analysis are discussed in terms of its potential use in the food industry to perform the quality control of this dairy product. Copyright © 2017 Elsevier Ltd. All rights reserved.
El-Deftar, Moteaa M; Speers, Naomi; Eggins, Stephen; Foster, Simon; Robertson, James; Lennard, Chris
2014-08-01
A commercially available laser-induced breakdown spectroscopy (LIBS) instrument was evaluated for the determination of elemental composition of twenty Australian window glass samples, consisting of 14 laminated samples and 6 non-laminated samples (or not otherwise specified) collected from broken windows at crime scenes. In this study, the LIBS figures of merit were assessed in terms of accuracy, limits of detection and precision using three standard reference materials (NIST 610, 612, and 1831). The discrimination potential of LIBS was compared to that obtained using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray microfluorescence spectroscopy (μXRF) and scanning electron microscopy energy dispersive X-ray spectrometry (SEM-EDX) for the analysis of architectural window glass samples collected from crime scenes in the Canberra region, Australia. Pairwise comparisons were performed using a three-sigma rule, two-way ANOVA and Tukey's HSD test at 95% confidence limit in order to investigate the discrimination power for window glass analysis. The results show that the elemental analysis of glass by LIBS provides a discrimination power greater than 97% (>98% when combined with refractive index data), which was comparable to the discrimination powers obtained by LA-ICP-MS and μXRF. These results indicate that LIBS is a feasible alternative to the more expensive LA-ICP-MS and μXRF options for the routine forensic analysis of window glass samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
[Quantitative analysis of Cu in water by collinear DP-LIBS].
Zheng, Mei-Lan; Yao, Ming-Yin; Chen, Tian-Bing; Lin, Yong-Zeng; Li, Wen-Bing; Liu, Mu-Hua
2014-07-01
The purpose of this research is to study the influence of double pulse laser induced breakdown spectroscopy (DP-LIBS) on the sensitivity of Cu in water. The water solution of Cu was tested by collinear DP-LIBS in this article. The results show that spectral intensity of Cu can be enhanced obviously by DP-LIBS, compared with single pulse laser induced breakdown spectroscopy (SP-LIBS). Besides, the experimental results were significantly impacted by delay time between laser pulse and spectrometer acquisition, delay time of double laser pulse and energy of laser pulse and so on. The paper determined the best conditions for DP-LIBS detecting Cu in water. The optimal acquisition delay time was 1 380 ns. The best laser pulse delay time was 25 ns. The most appropriate energy of double laser pulse was 100 mJ. Characteristic analysis of spectra of Cu at 324.7 and 327.4 nm was done for quantitative analysis. The detection limit was 3.5 microg x mL(-1) at 324.7 nm, and the detection limit was 4.84 microg x mL(-1) at 327.4 nm. The relative standard deviation of the two characteristic spectral lines was within 10%. The calibration curve of characteristic spectral line, established by 327.4 nm, was verified with 500 microg x mL(-1) sample. Concentration of the sample was 446 microg x mL(-1) calculated by the calibration curve. This research shows that the detection sensitivity of Cu in water can be improved by DP-LIBS. At the same time, it had high stability.
Bassel, Léna; Motto-Ros, Vincent; Trichard, Florian; Pelascini, Frédéric; Ammari, Faten; Chapoulie, Rémy; Ferrier, Catherine; Lacanette, Delphine; Bousquet, Bruno
2017-01-01
Cave walls are affected by different kinds of alterations involving preservative issues in the case of ornate caves, in particular regarding the rock art covering the walls. In this context, coralloids correspond to a facies with popcorn-like aspect belonging to the speleothem family, mostly composed of calcium carbonate. The elemental characterization indicates the presence of elements that might be linked to the diagenesis and the expansion of the alterations as demonstrated by prior analyses on stalagmites. In this study, we report the use of laser-induced breakdown spectroscopy (LIBS) to characterize the elemental composition of one coralloid sample with a portable instrument allowing punctual measurements and a laboratory mapping setup delivering elemental images with spatial resolution at the micrometric scale, being particularly attentive to Mg, Sr, and Si identified as elements of interest. The complementarity of both instruments allows the determination of the internal structure of the coralloid. Although a validation based on a reference technique is necessary, LIBS data reveal that the external layer of the coralloid is composed of laminations correlated to variations of the LIBS signal of Si. In addition, an interstitial layer showing high LIBS signals for Fe, Al, and Si is interpreted to be a detrital clay interface between the external and the internal part of the coralloid. These preliminary results sustain a possible formation scenario of the coralloid by migration of the elements from the bedrock.
NASA Astrophysics Data System (ADS)
Hu, Zhenhua; Li, Cong; Xiao, Qingmei; Liu, Ping; Fang, Ding; Mao, Hongmin; Wu, Jing; Zhao, Dongye; Ding, Hongbin; Luo, Guang-Nan; EAST Team
2017-02-01
Post-mortem methods cannot fulfill the requirement of monitoring the lifetime of the plasma facing components (PFC) and measuring the tritium inventory for the safety evaluation. Laser-induced breakdown spectroscopy (LIBS) is proposed as a promising method for the in situ study of fuel retention and impurity deposition in a tokamak. In this study, an in situ LIBS system was successfully established on EAST to investigate fuel retention and impurity deposition on the first wall without the need of removal tiles between plasma discharges. Spectral lines of D, H and impurities (Mo, Li, Si, … ) in laser-induced plasma were observed and identified within the wavelength range of 500-700 nm. Qualitative measurements such as thickness of the deposition layers, element depth profile and fuel retention on the wall are obtained by means of in situ LIBS. The results demonstrated the potential applications of LIBS for in situ characterization of fuel retention and co-deposition on the first wall of EAST. Supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB105002, 2015GB109001, and 2013GB109005), National Natural Science Foundation of China (Nos. 11575243, 11605238, 11605023), Chinesisch-Deutsches Forschungs Project (GZ765), and Korea Research Council of Fundamental Science and Technology (KRCF) under the international collaboration & research in Asian countries (PG1314).
Yang, Clayton S C; Jin, Feng; Swaminathan, Siva R; Patel, Sita; Ramer, Evan D; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Samuels, Alan C
2017-10-30
This is the first report of a simultaneous ultraviolet/visible/NIR and longwave infrared laser-induced breakdown spectroscopy (UVN + LWIR LIBS) measurement. In our attempt to study the feasibility of combining the newly developed rapid LWIR LIBS linear array detection system to existing rapid analytical techniques for a wide range of chemical analysis applications, two different solid pharmaceutical tablets, Tylenol arthritis pain and Bufferin, were studied using both a recently designed simultaneous UVN + LWIR LIBS detection system and a fast AOTF NIR (1200 to 2200 nm) spectrometer. Every simultaneous UVN + LWIR LIBS emission spectrum in this work was initiated by one single laser pulse-induced micro-plasma in the ambient air atmosphere. Distinct atomic and molecular LIBS emission signatures of the target compounds measured simultaneously in UVN (200 to 1100 nm) and LWIR (5.6 to 10 µm) spectral regions are readily detected and identified without the need to employ complex data processing. In depth profiling studies of these two pharmaceutical tablets without any sample preparation, one can easily monitor the transition of the dominant LWIR emission signatures from coating ingredients gradually to the pharmaceutical ingredients underneath the coating. The observed LWIR LIBS emission signatures provide complementary molecular information to the UVN LIBS signatures, thus adding robustness to identification procedures. LIBS techniques are more surface specific while NIR spectroscopy has the capability to probe more bulk materials with its greater penetration depth. Both UVN + LWIR LIBS and NIR absorption spectroscopy have shown the capabilities of acquiring useful target analyte spectral signatures in comparable short time scales. The addition of a rapid LWIR spectroscopic probe to these widely used optical analytical methods, such as NIR spectroscopy and UVN LIBS, may greatly enhance the capability and accuracy of the combined system for a comprehensive analysis.
Sharma, Shiv K; Misra, Anupam K; Lucey, Paul G; Lentz, Rachel C F
2009-08-01
The authors have developed an integrated remote Raman and laser-induced breakdown spectroscopy (LIBS) system for measuring both the Raman and LIBS spectra of minerals with a single 532 nm laser line of 35 mJ/pulse and 20 Hz. The instrument has been used for analyzing both Raman and LIBS spectra of carbonates, sulfates, hydrous and anhydrous silicates, and iron oxide minerals in air. These experiments demonstrate that by focusing a frequency-doubled 532 nm Nd:YAG pulsed laser beam with a 10x beam expander to a 529-microm diameter spot on a mineral surface located at 9 m, it is possible to measure simultaneously both the remote Raman and LIBS spectra of calcite, gypsum and olivine by adjusting the laser power electronically. The spectra of calcite, gypsum, and olivine contain fingerprint Raman lines; however, it was not possible to measure the remote Raman spectra of magnetite and hematite at 9 m because of strong absorption of 532 nm laser radiation and low intensities of Raman lines from these minerals. The remote LIBS spectra of both magnetite and hematite contain common iron emission lines but show difference in the minor amount of Li present in these two minerals. Remote Raman and LIBS spectra of a number of carbonates, sulfates, feldspars and phyllosilicates at a distance of 9 m were measured with a 532-nm laser operating at 35 mJ/pulse and by changing photon flux density at the sample by varying the spot diameter from 10 mm for Raman to 530 microm for LIBS measurements. The complementary nature of these spectra is highlighted and discussed. The combined Raman and LIBS system can also be re-configured to perform micro-Raman and micro-LIBS analyses, which have applications in trace/residue analysis and analysis of very small samples in the nano-gram range.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Zhang, Lei; Zhao, Shu-Xia; Li, Yu-Fang; Gong, Yao; Dong, Lei; Ma, Wei-Guang; Yin, Wang-Bao; Yao, Shun-Chun; Lu, Ji-Dong; Xiao, Lian-Tuan; Jia, Suo-Tang
2016-12-01
Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical spectroscopy technique. This review presents the main recent developments in China regarding the implementation of LIBS for coal analysis. The paper mainly focuses on the progress of the past few years in the fundamentals, data pretreatment, calibration model, and experimental issues of LIBS and its application to coal analysis. Many important domestic studies focusing on coal quality analysis have been conducted. For example, a proposed novel hybrid quantification model can provide more reproducible quantitative analytical results; the model obtained the average absolute errors (AREs) of 0.42%, 0.05%, 0.07%, and 0.17% for carbon, hydrogen, volatiles, and ash, respectively, and a heat value of 0.07 MJ/kg. Atomic/ionic emission lines and molecular bands, such as CN and C2, have been employed to generate more accurate analysis results, achieving an ARE of 0.26% and a 0.16% limit of detection (LOD) for the prediction of unburned carbon in fly ashes. Both laboratory and on-line LIBS apparatuses have been developed for field application in coal-fired power plants. We consider that both the accuracy and the repeatability of the elemental and proximate analysis of coal have increased significantly and further efforts will be devoted to realizing large-scale commercialization of coal quality analyzer in China.
Zhang, Wenxuan; Xu, Chengjian; He, Wenzhi; Li, Guangming; Huang, Juwen
2018-02-01
The wide use of lithium ion batteries (LIBs) has brought great numbers of discarded LIBs, which has become a common problem facing the world. In view of the deleterious effects of spent LIBs on the environment and the contained valuable materials that can be reused, much effort in many countries has been made to manage waste LIBs, and many technologies have been developed to recycle waste LIBs and eliminate environmental risks. As a review article, this paper introduces the situation of waste LIB management in some developed countries and in China, and reviews separation technologies of electrode components and refining technologies of LiCoO 2 and graphite. Based on the analysis of these recycling technologies and the structure and components characteristics of the whole LIB, this paper presents a recycling strategy for all components from obsolete LIBs, including discharge, dismantling, and classification, separation of electrode components and refining of LiCoO 2 /graphite. This paper is intended to provide a valuable reference for the management, scientific research, and industrial implementation on spent LIBs recycling, to recycle all valuable components and reduce the environmental pollution, so as to realize the win-win situation of economic and environmental benefits.
NASA Astrophysics Data System (ADS)
Senesi, Giorgio S.; Campanella, Beatrice; Grifoni, Emanuela; Legnaioli, Stefano; Lorenzetti, Giulia; Pagnotta, Stefano; Poggialini, Francesco; Palleschi, Vincenzo; De Pascale, Olga
2018-05-01
The present work aims to evaluate the alteration conditions of historical limestone rocks exposed to urban environment using the Laser-Induced Breakdown Spectroscopy (LIBS) technique. The approach proposed is based on the microscale three dimensional (3D) compositional imaging of the sample through double-pulse micro-Laser-Induced Breakdown Spectroscopy (DP-μLIBS) in conjunction with optical microscopy. DP-μLIBS allows to perform a quick and detailed in-depth analysis of the composition of the weathered artifact by creating a 'virtual thin section' (VTS) of the sample which can estimate the extent of the alteration processes occurred at the limestone surface. The DP-μLIBS analysis of these thin sections showed a reduction with depth of the elements (mainly Fe, Si and Na) originating from atmospheric dust, particulate deposition and the surrounding environment (due to the proximity of the sea), whereas, the LIBS signal of Ca increased in intensity from the black crust to the limestone underneath.
Determination of elemental composition of shale rocks by laser induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Sanghapi, Hervé K.; Jain, Jinesh; Bol'shakov, Alexander; Lopano, Christina; McIntyre, Dustin; Russo, Richard
2016-08-01
In this study laser induced breakdown spectroscopy (LIBS) is used for elemental characterization of outcrop samples from the Marcellus Shale. Powdered samples were pressed to form pellets and used for LIBS analysis. Partial least squares regression (PLS-R) and univariate calibration curves were used for quantification of analytes. The matrix effect is substantially reduced using the partial least squares calibration method. Predicted results with LIBS are compared to ICP-OES results for Si, Al, Ti, Mg, and Ca. As for C, its results are compared to those obtained by a carbon analyzer. Relative errors of the LIBS measurements are in the range of 1.7 to 12.6%. The limits of detection (LODs) obtained for Si, Al, Ti, Mg and Ca are 60.9, 33.0, 15.6, 4.2 and 0.03 ppm, respectively. An LOD of 0.4 wt.% was obtained for carbon. This study shows that the LIBS method can provide a rapid analysis of shale samples and can potentially benefit depleted gas shale carbon storage research.
NASA Astrophysics Data System (ADS)
Cabalín, L. M.; González, A.; Ruiz, J.; Laserna, J. J.
2010-08-01
Statistical uncertainty in the quantitative analysis of solid samples in motion by laser-induced breakdown spectroscopy (LIBS) has been assessed. For this purpose, a LIBS demonstrator was designed and constructed in our laboratory. The LIBS system consisted of a laboratory-scale conveyor belt, a compact optical module and a Nd:YAG laser operating at 532 nm. The speed of the conveyor belt was variable and could be adjusted up to a maximum speed of 2 m s - 1 . Statistical uncertainty in the analytical measurements was estimated in terms of precision (reproducibility and repeatability) and accuracy. The results obtained by LIBS on shredded scrap samples under real conditions have demonstrated that the analytical precision and accuracy of LIBS is dependent on the sample geometry, position on the conveyor belt and surface cleanliness. Flat, relatively clean scrap samples exhibited acceptable reproducibility and repeatability; by contrast, samples with an irregular shape or a dirty surface exhibited a poor relative standard deviation.
NASA Astrophysics Data System (ADS)
Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.
2017-09-01
Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.
Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials.
Yang, Clayton S-C; Brown, Ei E; Hommerich, Uwe; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter
2012-12-01
Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives sensing and has significant potential for real-time standoff detection and analysis. In this study, LIBS emissions were obtained in the mid-infrared (MIR) and long-wave infrared (LWIR) spectral regions for potential applications in explosive material sensing. The IR spectroscopy region revealed vibrational and rotational signatures of functional groups in molecules and fragments thereof. The silicon-based detector for conventional ultraviolet-visible LIBS operations was replaced with a mercury-cadmium-telluride detector for MIR-LWIR spectral detection. The IR spectral signature region between 4 and 12 μm was mined for the appearance of MIR and LWIR-LIBS emissions directly indicative of oxygenated breakdown products as well as dissociated, and/or recombined sample molecular fragments. Distinct LWIR-LIBS emission signatures from dissociated-recombination sample molecular fragments between 4 and 12 μm are observed for the first time.
NASA Technical Reports Server (NTRS)
Devismes, Damien; Cohen, Barbara
2016-01-01
Since these techniques are very new and as they have never been used or this purpose. they will need to be replicated by several independent studies. These techniques may be very important if the optical imaging encounters difficulties, for example, if a sample is made of very dark or monochromatic material and in the case of very deep pits (>500 microns) Based on the preliminary results, the LIBS continuum technique is more appropriate to the large pits produced by long ablations The relationship may work best homogeneous samples, but the continuum is collected with every LIBS analysis so does not require any addition to the experimental suite of techniques. The integration of a QCMB in the ablation chamber may be a very interesting solution to determine the ablated mass. Even if it only measures a fraction of the total mass, its sensitivity should be able to weigh hundreds of nanograms accumulated on the crystal during ablation and relate it to the actual ablated mass. In the future. these options may help in situ K-Ar dating to give the age of the rock with the best accuracy and precision.
Markiewicz-Keszycka, Maria; Casado-Gavalda, Maria P; Cama-Moncunill, Xavier; Cama-Moncunill, Raquel; Dixit, Yash; Cullen, Patrick J; Sullivan, Carl
2018-04-01
Gluten free (GF) diets are prone to mineral deficiency, thus effective monitoring of the elemental composition of GF products is important to ensure a balanced micronutrient diet. The objective of this study was to test the potential of laser-induced breakdown spectroscopy (LIBS) analysis combined with chemometrics for at-line monitoring of ash, potassium and magnesium content of GF flours: tapioca, potato, maize, buckwheat, brown rice and a GF flour mixture. Concentrations of ash, potassium and magnesium were determined with reference methods and LIBS. PCA analysis was performed and presented the potential for discrimination of the six GF flours. For the quantification analysis PLSR models were developed; R 2 cal were 0.99 for magnesium and potassium and 0.97 for ash. The study revealed that LIBS combined with chemometrics is a convenient method to quantify concentrations of ash, potassium and magnesium and present the potential to classify different types of flours. Copyright © 2017 Elsevier Ltd. All rights reserved.
Novel high-density packaging of solid state diode pumped eye-safe laser for LIBS
NASA Astrophysics Data System (ADS)
Bares, Kim; Torgerson, Justin; McNeil, Laine; Maine, Patrick; Patterson, Steve
2018-02-01
Laser-Induced Breakdown Spectroscopy (LIBS) has proven to be a useful research tool for material analysis for decades. However, because of the amount of energy required in a few nanosecond pulse to generate a stable and reliable LIBS signal, the lasers are often large and inefficient, relegating their implementation to research facilities, factory floors, and assembly lines. Small portable LIBS systems are now possible without having to compromise on energy needs by leveraging off of advances in high-density packaging of electronics, opto-mechanics, and highly efficient laser resonator architecture. This paper explores the integration of these techniques to achieve a mJ class eye-safe LIBS laser source, while retaining a small, light-weight package suitable for handheld systems.
On-line/on-site analysis of heavy metals in water and soils by laser induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Meng, Deshuo; Zhao, Nanjing; Wang, Yuanyuan; Ma, Mingjun; Fang, Li; Gu, Yanhong; Jia, Yao; Liu, Jianguo
2017-11-01
The enrichment method of heavy metal in water with graphite and aluminum electrode was studied, and combined with plasma restraint device for improving the sensitivity of detection and reducing the limit of detection (LOD) of elements. For aluminum electrode enrichment, the LODs of Cd, Pb and Ni can be as low as several ppb. For graphite enrichment, the measurement time can be less than 3 min. The results showed that the graphite enrichment and aluminum electrode enrichment method can effectively improve the LIBS detection ability. The graphite enrichment method combined with plasma spatial confinement is more suitable for on-line monitoring of industrial waste water, the aluminum electrode enrichment method can be used for trace heavy metal detection in water. A LIBS method and device for soil heavy metals analysis was also developed, and a mobile LIBS system was tested in outfield. The measurement results deduced from LIBS and ICP-MS had a good consistency. The results provided an important application support for rapid and on-site monitoring of heavy metals in soil. (Left: the mobile LIBS system for analysis of heavy metals in soils. Top right: the spatial confinement device. Bottom right: automatic graphite enrichment device for on0line analysis of heavy metals in water).
Multari, Rosalie A.; Cremers, David A.; Bostian, Melissa L.; Dupre, Joanne M.
2013-01-01
Laser-Induced Breakdown Spectroscopy (LIBS) is a rapid, in situ, diagnostic technique in which light emissions from a laser plasma formed on the sample are used for analysis allowing automated analysis results to be available in seconds to minutes. This speed of analysis coupled with little or no sample preparation makes LIBS an attractive detection tool. In this study, it is demonstrated that LIBS can be utilized to discriminate both the bacterial species and strains of bacterial colonies grown on blood agar. A discrimination algorithm was created based on multivariate regression analysis of spectral data. The algorithm was deployed on a simulated LIBS instrument system to demonstrate discrimination capability using 6 species. Genetically altered Staphylococcus aureus strains grown on BA, including isogenic sets that differed only by the acquisition of mutations that increase fusidic acid or vancomycin resistance, were also discriminated. The algorithm successfully identified all thirteen cultures used in this study in a time period of 2 minutes. This work provides proof of principle for a LIBS instrumentation system that could be developed for the rapid discrimination of bacterial species and strains demonstrating relatively minor genomic alterations using data collected directly from pathogen isolation media. PMID:24109513
GammaLib and ctools. A software framework for the analysis of astronomical gamma-ray data
NASA Astrophysics Data System (ADS)
Knödlseder, J.; Mayer, M.; Deil, C.; Cayrou, J.-B.; Owen, E.; Kelley-Hoskins, N.; Lu, C.-C.; Buehler, R.; Forest, F.; Louge, T.; Siejkowski, H.; Kosack, K.; Gerard, L.; Schulz, A.; Martin, P.; Sanchez, D.; Ohm, S.; Hassan, T.; Brau-Nogué, S.
2016-08-01
The field of gamma-ray astronomy has seen important progress during the last decade, yet to date no common software framework has been developed for the scientific analysis of gamma-ray telescope data. We propose to fill this gap by means of the GammaLib software, a generic library that we have developed to support the analysis of gamma-ray event data. GammaLib was written in C++ and all functionality is available in Python through an extension module. Based on this framework we have developed the ctools software package, a suite of software tools that enables flexible workflows to be built for the analysis of Imaging Air Cherenkov Telescope event data. The ctools are inspired by science analysis software available for existing high-energy astronomy instruments, and they follow the modular ftools model developed by the High Energy Astrophysics Science Archive Research Center. The ctools were written in Python and C++, and can be either used from the command line via shell scripts or directly from Python. In this paper we present the GammaLib and ctools software versions 1.0 that were released at the end of 2015. GammaLib and ctools are ready for the science analysis of Imaging Air Cherenkov Telescope event data, and also support the analysis of Fermi-LAT data and the exploitation of the COMPTEL legacy data archive. We propose using ctools as the science tools software for the Cherenkov Telescope Array Observatory.
Does LibQUAL+[TM] Account for Student Loyalty to a University College Library?
ERIC Educational Resources Information Center
Helgesen, Oyvind; Nesset, Erik
2011-01-01
Purpose: The purpose of this paper is to find out whether LibQUAL+[TM]can account for student loyalty to the library of an institution of higher education. LibQUAL+[TM] is a marketing tool that is used to measure perceived service quality of libraries, and the present analysis aims at validating this service quality instrument within a more…
ERIC Educational Resources Information Center
Greenwood, Judy T.; Watson, Alex P.; Dennis, Melissa
2011-01-01
This article analyzes quantitative adequacy gap scores and coded qualitative comments from LibQual surveys at the University of Mississippi from 2001 to 2010, looking for relationships between library policy changes and LibQual results and any other trends that emerged. Analysis found no relationship between changes in policy and survey results…
NASA Technical Reports Server (NTRS)
Anderson, R. B.; Morris, Richard V.; Clegg, S. M.; Humphries, S. D.; Wiens, R. C.; Bell, J. F., III; Mertzman, S. A.
2010-01-01
The ChemCam instrument [1] on the Mars Science Laboratory (MSL) rover will be used to obtain the chemical composition of surface targets within 7 m of the rover using Laser Induced Breakdown Spectroscopy (LIBS). ChemCam analyzes atomic emission spectra (240-800 nm) from a plasma created by a pulsed Nd:KGW 1067 nm laser. The LIBS spectra can be used in a semiquantitative way to rapidly classify targets (e.g., basalt, andesite, carbonate, sulfate, etc.) and in a quantitative way to estimate their major and minor element chemical compositions. Quantitative chemical analysis from LIBS spectra is complicated by a number of factors, including chemical matrix effects [2]. Recent work has shown promising results using multivariate techniques such as partial least squares (PLS) regression and artificial neural networks (ANN) to predict elemental abundances in samples [e.g. 2-6]. To develop, refine, and evaluate analysis schemes for LIBS spectra of geologic materials, we collected spectra of a diverse set of well-characterized natural geologic samples and are comparing the predictive abilities of PLS, cascade correlation ANN (CC-ANN) and multilayer perceptron ANN (MLP-ANN) analysis procedures.
Quantification of rare earth elements using laser-induced breakdown spectroscopy
Martin, Madhavi; Martin, Rodger C.; Allman, Steve; ...
2015-10-21
In this paper, a study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages rangingmore » from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. Finally, these studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.« less
Testing a laser-induced breakdown spectroscopy technique on the Arctic sediments
NASA Astrophysics Data System (ADS)
Han, D.; Nam, S. I.
2017-12-01
Physical and geochemical investigations coupled with the Laser-induced Breakdown Spectroscopy (LIBS) were performed on three surface sediment cores (ARA03B/24BOX, ARA02B/01(A)MUC, ARA02B/02MUC and ARA02B/03(A)MUC) recovered from the western Arctic Ocean (Chukchi Sea) during IBRV ARON expeditions in 2012. The LIBS technique was applied to carry out elemental chemical analysis of the Arctic sediments and compared with that measured by ITRAX X-ray fuorescence (XRF) core scanning. LIBS and XRF have shown similar elemental composition within each sediment core. In this study, mineral composition (XRD), grain size distribution and organic carbon content as well as elemental composition (LIBS) were all considered to understand paleoenvironmental changes (ocean circulation, sea-ice drift, iceberg discharge, and etc.) recorded in the Arctic Holocene sediment. Quantitative LIBS analysis shows a gradually varying distribution of the elements along the sampled core and clear separation between the cores. The cores are geochemically characterized by elevated Mn profile. The gradient of mineral composition and grain sizes among the cores shows regional distribution and variation in sedimentary condition due to geological distance between East Siberian and North America. The present study reveals that a LIBS technique can be employed for in-situ sediment analyses for the Arctic Ocean. Furthermore, LIBS does not require costly equipment, trained operators, and complicated sample pre-treatment processes compared to Atomic absorption spectroscopy (AAS) and inductively coupled plasma emission spectroscopy (ICP), and also known to show relatively high levels of sensitivity, precision, and distinction than XRF analysis, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and electron probe X-ray microanalysis (EPMA).
Novel Laser-Based Technique is Ideal for Real-Time Environmental Analysis
ERIC Educational Resources Information Center
Journal of Chemical Education, 2005
2005-01-01
Ocean Optics offers laser-induced breakdown spectrometer systems (LIBS) that can be used to identify light to heavy metals in a variety of sample types and geometries in environmental analysis applications. LIBS are versatile, real-time, high-resolution analyzers for qualitative analysis, in less than one second, of every element in solids,…
NASA Astrophysics Data System (ADS)
Rai, Awadhesh K.; Zhang, Hansheng; Yueh, Fang Yu; Singh, Jagdish P.; Weisberg, Arel
2001-12-01
In the present work we demonstrate a fiber-optic laser-induced breakdown spectroscopy (FO LIBS) system for delivering laser energy to a sample surface to produce a spark as well as to collect the resulting radiation from the laser-induced spark. In order to improve the signal/background (S/B) ratio, various experimental parameters, such as laser energy, gate delay and width, detector gain, lenses of different focal lengths and sample surface, were tested. In order to provide high reliability and repeatability in the analysis, we also measured plasma parameters, such as electron density and plasma temperature, and determined their influence on the measurement results. The performance of FO LIBS was also compared with that of a LIBS system that does not use a fiber to transmit the laser beam. LIBS spectra with a good S/B were recorded at 2-μs gate delay and width. LIBS spectra of six different Al alloy samples were recorded to obtain calibration data. We were able to obtain linear calibration data for numerous elements (Cr, Zn, Fe, Ni, Mn, Mg and Cu). A linear calibration curve for LIBS intensity ratio vs. concentration ratio reduces the effect of physical variables (i.e. shot-to-shot power fluctuation, sample-to-surface distance, and physical properties of the samples). Our results reveal that this system may be useful in designing a high-temperature LIBS probe for measuring the elemental composition of Al melt.
Quantitative LIBS analysis of vanadium in samples of hexagonal mesoporous silica catalysts.
Pouzar, Miloslav; Kratochvíl, Tomás; Capek, Libor; Smoláková, Lucie; Cernohorský, Tomás; Krejcová, Anna; Hromádko, Ludek
2011-02-15
The method for the analysis of vanadium in hexagonal mesoporous silica (V-HMS) catalysts using Laser Induced Breakdown Spectrometry (LIBS) was suggested. Commercially available LIBS spectrometer was calibrated with the aid of authentic V-HMS samples previously analyzed by ICP OES after microwave digestion. Deposition of the sample on the surface of adhesive tape was adopted as a sample preparation method. Strong matrix effect connected with the catalyst preparation technique (1st vanadium added in the process of HMS synthesis, 2nd already synthesised silica matrix was impregnated by vanadium) was observed. The concentration range of V in the set of nine calibration standards was 1.3-4.5% (w/w). Limit of detection was 0.13% (w/w) and it was calculated as a triple standard deviation from five replicated determinations of vanadium in the real sample with a very low vanadium concentration. Comparable results of LIBS and ED XRF were obtained if the same set of standards was used for calibration of both methods and vanadium was measured in the same type of real samples. LIBS calibration constructed using V-HMS-impregnated samples failed for measuring of V-HMS-synthesized samples. LIBS measurements seem to be strongly influenced with different chemical forms of vanadium in impregnated and synthesised samples. The combination of LIBS and ED XRF is able to provide new information about measured samples (in our case for example about procedure of catalyst preparation). Copyright © 2010 Elsevier B.V. All rights reserved.
Laser-induced breakdown spectroscopy is a reliable method for urinary stone analysis
Mutlu, Nazım; Çiftçi, Seyfettin; Gülecen, Turgay; Öztoprak, Belgin Genç; Demir, Arif
2016-01-01
Objective We compared laser-induced breakdown spectroscopy (LIBS) with the traditionally used and recommended X-ray diffraction technique (XRD) for urinary stone analysis. Material and methods In total, 65 patients with urinary calculi were enrolled in this prospective study. Stones were obtained after surgical or extracorporeal shockwave lithotripsy procedures. All stones were divided into two equal pieces. One sample was analyzed by XRD and the other by LIBS. The results were compared by the kappa (κ) and Spearman’s correlation coefficient (rho) tests. Results Using LIBS, 95 components were identified from 65 stones, while XRD identified 88 components. LIBS identified 40 stones with a single pure component, 20 stones with two different components, and 5 stones with three components. XRD demonstrated 42 stones with a single component, 22 stones with two different components, and only 1 stone with three different components. There was a strong relationship in the detection of stone types between LIBS and XRD for stones components (Spearman rho, 0.866; p<0.001). There was excellent agreement between the two techniques among 38 patients with pure stones (κ index, 0.910; Spearman rho, 0.916; p<0.001). Conclusion Our study indicates that LIBS is a valid and reliable technique for determining urinary stone composition. Moreover, it is a simple, low-cost, and nondestructive technique. LIBS can be safely used in routine daily practice if our results are supported by studies with larger numbers of patients. PMID:27011877
NASA Astrophysics Data System (ADS)
Walker, W.; Ardebili, H.
2014-12-01
Lithium-ion batteries (LIBs) are replacing the Nickel-Hydrogen batteries used on the International Space Station (ISS). Knowing that LIB efficiency and survivability are greatly influenced by temperature, this study focuses on the thermo-electrochemical analysis of LIBs in space orbit. Current finite element modeling software allows for advanced simulation of the thermo-electrochemical processes; however the heat transfer simulation capabilities of said software suites do not allow for the extreme complexities of orbital-space environments like those experienced by the ISS. In this study, we have coupled the existing thermo-electrochemical models representing heat generation in LIBs during discharge cycles with specialized orbital-thermal software, Thermal Desktop (TD). Our model's parameters were obtained from a previous thermo-electrochemical model of a 185 Amp-Hour (Ah) LIB with 1-3 C (C) discharge cycles for both forced and natural convection environments at 300 K. Our TD model successfully simulates the temperature vs. depth-of-discharge (DOD) profiles and temperature ranges for all discharge and convection variations with minimal deviation through the programming of FORTRAN logic representing each variable as a function of relationship to DOD. Multiple parametrics were considered in a second and third set of cases whose results display vital data in advancing our understanding of accurate thermal modeling of LIBs.
Yu, Ke-Qiang; Zhao, Yan-Ru; Liu, Fei; He, Yong
2016-01-01
The aim of this work was to analyze the variety of soil by laser-induced breakdown spectroscopy (LIBS) coupled with chemometrics methods. 6 certified reference materials (CRMs) of soil samples were selected and their LIBS spectra were captured. Characteristic emission lines of main elements were identified based on the LIBS curves and corresponding contents. From the identified emission lines, LIBS spectra in 7 lines with high signal-to-noise ratio (SNR) were chosen for further analysis. Principal component analysis (PCA) was carried out using the LIBS spectra at 7 selected lines and an obvious cluster of 6 soils was observed. Soft independent modeling of class analogy (SIMCA) and least-squares support vector machine (LS-SVM) were introduced to establish discriminant models for classifying the 6 types of soils, and they offered the correct discrimination rates of 90% and 100%, respectively. Receiver operating characteristic (ROC) curve was used to evaluate the performance of models and the results demonstrated that the LS-SVM model was promising. Lastly, 8 types of soils from different places were gathered to conduct the same experiments for verifying the selected 7 emission lines and LS-SVM model. The research revealed that LIBS technology coupled with chemometrics could conduct the variety discrimination of soil. PMID:27279284
Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS).
Dell'Aglio, Marcella; Gaudiuso, Rosalba; Senesi, Giorgio S; De Giacomo, Alessandro; Zaccone, Claudio; Miano, Teodoro M; De Pascale, Olga
2011-05-01
Laser Induced Breakdown Spectroscopy (LIBS) is a fast and multi-elemental analytical technique particularly suitable for the qualitative and quantitative analysis of heavy metals in solid samples, including environmental ones. Although LIBS is often recognised in the literature as a well-established analytical technique, results about quantitative analysis of elements in chemically complex matrices such as soils are quite contrasting. In this work, soil samples of various origins have been analyzed by LIBS and data compared to those obtained by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). The emission intensities of one selected line for each of the five analytes (i.e., Cr, Cu, Pb, V, and Zn) were normalized to the background signal, and plotted as a function of the concentration values previously determined by ICP-OES. Data showed a good linearity for all calibration lines drawn, and the correlation between ICP-OES and LIBS was confirmed by the satisfactory agreement obtained between the corresponding values. Consequently, LIBS method can be used at least for metal monitoring in soils. In this respect, a simple method for the estimation of the soil pollution degree by heavy metals, based on the determination of an anthropogenic index, was proposed and determined for Cr and Zn.
Laser-induced breakdown spectroscopy (LIBS): An innovative tool for studying bacteria
NASA Astrophysics Data System (ADS)
Mohaidat, Qassem I.
Laser-induced breakdown spectroscopy (LIBS) has gained a reputation as a flexible and convenient technique for rapidly determining the elemental composition of samples with minimal or no sample preparation. In this dissertation, I will describe the benefits of using LIBS for the rapid discrimination and identification of bacteria (both pathogenic and non-pathogenic) based on the relative concentration of trace inorganic elements such as Mg, P, Ca, and Na. The speed, portability, and robustness of the technique suggest that LIBS may be applicable as a rapid point-of-care medical diagnostic technology. LIBS spectra of multiple genera of bacteria such as Escherichia, Streptococcus, Mycobacterium, and Staphylococcus were acquired and successfully analyzed using a computerized discriminant function analysis (DFA). It was shown that a LIBS-based bacterial identification might be insensitive to a wide range of biological changes that could occur in the bacterial cell due to a variety of environmental stresses that the cell may encounter. The effect of reducing the number of bacterial cells on the LIBS-based classification was also studied. These results showed that with 2500 bacteria, the identification of bacterial specimens was still possible. Importantly, it was shown that bacteria in mixed samples (more than one type of bacteria being present) were identifiable. The dominant or majority component of a two-component mixture was reliably identified as long as it comprised 70% of the mixture or more. Finally, to simulate a clinical specimen in a precursor to actual clinical tests, Staphylococcus epidermidis bacteria were collected from urine samples (to simulate a urinary tract infection specimen) and were tested via LIBS without washing. The analysis showed that these bacteria possessed exactly the same spectral fingerprint as control bacteria obtained from sterile deionized water, resulting in a 100% correct classification. This indicates that the presence of other trace background biochemicals from clinical fluids will not adversely disrupt a LIBS-based identification of bacteria.
Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang
2015-01-01
A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS. PMID:25557721
Bhatt, Chet R; Jain, Jinesh C; Goueguel, Christian L; McIntyre, Dustin L; Singh, Jagdish P
2018-01-01
Laser-induced breakdown spectroscopy (LIBS) was used to detect rare earth elements (REEs) in natural geological samples. Low and high intensity emission lines of Ce, La, Nd, Y, Pr, Sm, Eu, Gd, and Dy were identified in the spectra recorded from the samples to claim the presence of these REEs. Multivariate analysis was executed by developing partial least squares regression (PLS-R) models for the quantification of Ce, La, and Nd. Analysis of unknown samples indicated that the prediction results of these samples were found comparable to those obtained by inductively coupled plasma mass spectrometry analysis. Data support that LIBS has potential to quantify REEs in geological minerals/ores.
Combined LIBS-Raman for remote detection and characterization of biological samples
Anderson, Aaron S.; Mukundan, Harshini; Mcinroy, Rhonda E.; ...
2015-02-07
Laser-Induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy have rich histories in the analysis of a wide variety of samples in both in situ and remote configurations. Our team is working on building a deployable, integrated Raman and LIBS spectrometer (RLS) for the parallel elucidation of elemental and molecular signatures under Earth and Martian surface conditions. Herein, results from remote LIBS and Raman analysis of biological samples such as amino acids, small peptides, mono- and disaccharides, and nucleic acids acquired under terrestrial and Mars conditions are reported, giving rise to some interesting differences. A library of spectra and peaks of interestmore » were compiled, and will be used to inform the analysis of more complex systems, such as large peptides, dried bacterial spores, and biofilms. Lastly, these results will be presented and future applications will be discussed, including the assembly of a combined RLS spectroscopic system and stand-off detection in a variety of environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galiova, Michaela; Kaiser, Jozef; Fortes, Francisco J.
2010-05-01
Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for themore » fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.« less
Choi, Soo Jin; Yoh, Jack J
2011-08-01
A short laser pulse is irradiated on a sample to create a highly energetic plasma that emits light of a specific peak wavelength according to the material. By identifying different peaks for the analyzed samples, their chemical composition can be rapidly determined. The characteristics of the laser-induced breakdown spectroscopy (LIBS) plasma are strongly dependent on the ambient conditions. Research aimed at enhancing LIBS intensity is of great benefit in advancing LIBS for the exploration of harsh environments. By using double-pulse LIBS, the signal intensity of Al and Ca lines was enhanced by five times compared to the single-pulse signal. Also, the angles of the target and detector are adjusted to simulate samples of arbitrary shape. We verified that there exists an optimal angle at which specific elements of a test sample may be detected with stronger signal intensity. We provide several optimum configurations for the LIBS system for maximizing the signal intensity for the analysis of a nonstandard aluminum sample.
Lunar and Planetary Science XXXV: Venus
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Venus" included the following reports:Preliminary Study of Laser-induced Breakdown Spectroscopy (LIBS) for a Venus Mission; Venus Surface Investigation Using VIRTIS Onboard the ESA/Venus Express Mission; Use of Magellan Images for Venus Landing Safety Assessment; Volatile Element Geochemistry in the Lower Atmosphere of Venus; Resurfacing Styles and Rates on Venus: Assessment of 18 Venusian Quadrangles; Stereo Imaging of Impact Craters in the Beta-Atla-Themis (BAT) Region, Venus; Depths of Extended Crater-related Deposits on Venus ; Potential Pyroclastic Deposit in the Nemesis Tessera (V14) Quadrangle of Venus; Relationship Between Coronae, Regional Plains and Rift Zones on Venus, Preliminary Results; Coronae of Parga Chasma, Venus; The Evolution of Four Volcano/Corona Hybrids on Venus; Calderas on Venus and Earth: Comparison and Models of Formation; Venus Festoon Deposits: Analysis of Characteristics and Modes of Emplacement; Topographic and Structural Analysis of Devana Chasma, Venus: A Propagating Rift System; Anomalous Radial Structures at Irnini Mons, Venus: A Parametric Study of Stresses on a Pressurized Hole; Analysis of Gravity and Topography Signals in Atalanta-Vinmara and Lavinia Planitiae Canali are Lava, Not River, Channels; and Formation of Venusian Channels in a Shield Paint Substrate.
McKee, Sherry A; Weinberger, Andrea H; Harrison, Emily L R; Coppola, Sabrina; George, Tony P
2009-12-01
Individuals with schizophrenia have higher plasma nicotine levels in comparison to non-psychiatric smokers, even when differences in smoking are equated. This difference may be related to how intensely cigarettes are smoked but this has not been well studied. Mecamylamine (MEC), a non-competitive nicotinic acetylcholine receptor (nAChR) antagonist, which has been shown to increase ad-lib smoking and to affect smoking topography, was used in the current study as a pharmacological probe to increase our understanding of smoking behavior, smoking topography, and resulting nicotine levels in smokers with schizophrenia. This preliminary study used a within-subject, placebo-controlled design in smokers with schizophrenia (n=6) and healthy control smokers (n=8) to examine the effects of MEC (10mg/day) on ad-lib smoking behavior, topography, nicotine levels, and tobacco craving across two smoking deprivation conditions (no deprivation and 12-h deprivation). MEC, compared to placebo, increased the number of cigarettes smoked and plasma nicotine levels. MEC increased smoking intensity and resulted in greater plasma nicotine levels in smokers with schizophrenia compared to controls, although these results were not consistent across deprivation conditions. MEC also increased tobacco craving in smokers with schizophrenia but not in control smokers. Our results suggest that antagonism of high-affinity nAChRs in smokers with schizophrenia may prompt compensatory smoking, increasing the intensity of smoking and nicotine exposure without alleviating craving. Further work is needed to assess whether nicotine levels are directly mediated by how intensely the cigarettes are smoked, and to confirm whether this effect is more pronounced in smokers with schizophrenia.
Ammari, Faten; Bassel, Léna; Ferrier, Catherine; Lacanette, Delphine; Chapoulie, Rémy; Bousquet, Bruno
2016-10-01
In this study, multi-block analysis was applied for the first time to LIBS spectra provided by a portable LIBS system (IVEA Solution, France) equipped with three compact Czerny-Turner spectrometers covering the spectral ranges 200-397nm, 398-571nm and 572-1000nm. 41 geological samples taken from a laboratory-cave situated in the "Vézère valley", an area rich with prehistoric sites and decorated caves listed as a UNESCO world heritage in the south west of France, were analyzed. They were composed of limestone and clay considered as underlying supports and of two types of alterations referred as moonmilk and coralloid. Common Components and Specific Weights Analysis (CCSWA) allowed sorting moonmilk and coralloid samples. The loadings revealed higher amounts of magnesium, silicon, aluminum and strontium in coralloids and the saliences emphasized that among the three spectrometers installed in the LIBS instrument used in this work; that covering the range 572-1000nm was less contributive. This new approach for processing LIBS data not only provides good results for sorting geological materials but also clearly reveals which spectral range contains most of the information. This specific advantage of multi-block analysis could lead for some applications to simplify the design and to reduce the size of LIBS instruments. Copyright © 2016 Elsevier B.V. All rights reserved.
Laser-induced breakdown spectroscopy in industrial and security applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bol'shakov, Alexander A.; Yoo, Jong H.; Liu Chunyi
2010-05-01
Laser-induced breakdown spectroscopy (LIBS) offers rapid, localized chemical analysis of solid or liquid materials with high spatial resolution in lateral and depth profiling, without the need for sample preparation. Principal component analysis and partial least squares algorithms were applied to identify a variety of complex organic and inorganic samples. This work illustrates how LIBS analyzers can answer a multitude of real-world needs for rapid analysis, such as determination of lead in paint and children's toys, analysis of electronic and solder materials, quality control of fiberglass panels, discrimination of coffee beans from different vendors, and identification of generic versus brand-name drugs.more » Lateral and depth profiling was performed on children's toys and paint layers. Traditional one-element calibration or multivariate chemometric procedures were applied for elemental quantification, from single laser shot determination of metal traces at {approx}10 {mu}g/g to determination of halogens at 90 {mu}g/g using 50-shot spectral accumulation. The effectiveness of LIBS for security applications was demonstrated in the field by testing the 50-m standoff LIBS rasterizing detector.« less
Rapid test for the detection of hazardous microbiological material
NASA Astrophysics Data System (ADS)
Mordmueller, Mario; Bohling, Christian; John, Andreas; Schade, Wolfgang
2009-09-01
After attacks with anthrax pathogens have been committed since 2001 all over the world the fast detection and determination of biological samples has attracted interest. A very promising method for a rapid test is Laser Induced Breakdown Spectroscopy (LIBS). LIBS is an optical method which uses time-resolved or time-integrated spectral analysis of optical plasma emission after pulsed laser excitation. Even though LIBS is well established for the determination of metals and other inorganic materials the analysis of microbiological organisms is difficult due to their very similar stoichiometric composition. To analyze similar LIBS-spectra computer assisted chemometrics is a very useful approach. In this paper we report on first results of developing a compact and fully automated rapid test for the detection of hazardous microbiological material. Experiments have been carried out with two setups: A bulky one which is composed of standard laboratory components and a compact one consisting of miniaturized industrial components. Both setups work at an excitation wavelength of λ=1064nm (Nd:YAG). Data analysis is done by Principal Component Analysis (PCA) with an adjacent neural network for fully automated sample identification.
Boxall, N J; Adamek, N; Cheng, K Y; Haque, N; Bruckard, W; Kaksonen, A H
2018-04-01
Lithium ion battery (LIB) waste contains significant valuable resources that could be recovered and reused to manufacture new products. This study aimed to develop an alternative process for extracting metals from LIB waste using acidic solutions generated by electrolysis for leaching. Results showed that solutions generated by electrolysis of 0.5 M NaCl at 8 V with graphite or mixed metal oxide (MMO) electrodes were weakly acidic and leach yields obtained under single stage (batch) leaching were poor (<10%). This was due to the highly acid-consuming nature of the battery waste. Multistage leaching with the graphite electrolyte solution improved leach yields overall, but the electrodes corroded over time. Though yields obtained with both electrolyte leach solutions were low when compared to the 4 M HCl control, there still remains potential to optimise the conditions for the generation of the acidic anolyte solution and the solubilisation of valuable metals from the LIB waste. A preliminary value proposition indicated that the process has the potential to be economically feasible if leach yields can be improved, especially based on the value of recoverable cobalt and lithium. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mehari, F.; Rohde, M.; Knipfer, C.; Kanawade, R.; Klämpfl, F.; W., Adler; Oetter, N.; Stelzle, F.; Schmidt, M.
2016-06-01
Laser surgery provides clean, fast and accurate modeling of tissue. However, the inability to determine what kind of tissue is being ablated at the bottom of the cut may lead to the iatrogenic damage of structures that were meant to be preserved. In this context, nerve preservation is one of the key challenges in any surgical procedure. One example is the treatment of parotid gland pathologies, where the facial nerve (N. VII) and its main branches run through and fan out inside the glands parenchyma. A feedback system that automatically stops the ablation to prevent nerve-tissue damage could greatly increase the applicability and safety of surgical laser systems. In the present study, Laser Induced Breakdown Spectroscopy (LIBS) is used to differentiate between nerve and gland tissue of an ex-vivo pig animal model. The LIBS results obtained in this preliminary experiment suggest that the measured spectra, containing atomic and molecular emissions, can be used to differentiate between the two tissue types. The measurements and differentiation were performed in open air and under normal stray light conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Madhavi Z.; Glasgow, David C.; Tschaplinski, Timothy J.
The black cottonwood poplar (Populus trichocarpa) leaf ionome (inorganic trace elements and mineral nutrients) is an important aspect for determining the physiological and developmental processes contributing to biomass production. A number of techniques are used to measure the ionome, yet characterizing the leaf spatial heterogeneity remains a challenge, especially in solid samples. Laser-induced breakdown spectroscopy (LIBS) has been used to determine the elemental composition of leaves and is able to raster across solid matrixes at 10 μm resolution. Here, we evaluate the use of LIBS for solid sample leaf elemental characterization in relation to neutron activation. In fact, neutron activationmore » analysis is a laboratory-based technique which is used by the National Institute of Standards and Technology (NIST) to certify trace elements in candidate reference materials including plant leaf matrices. Introduction to the techniques used in this research has been presented in this manuscript. Neutron activation analysis (NAA) data has been correlated to the LIBS spectra to achieve quantification of the elements or ions present within poplar leaves. The regression coefficients of calibration and validation using multivariate analysis (MVA) methodology for six out of seven elements have been determined and vary between 0.810 and 0.998. LIBS and NAA data has been presented for the elements such as, calcium, magnesium, manganese, aluminum, copper, and potassium. Chlorine was also detected but it did not show good correlation between the LIBS and NAA techniques. This research shows that LIBS can be used as a fast, high-spatial resolution technique to quantify elements as part of large-scale field phenotyping projects.« less
NASA Astrophysics Data System (ADS)
Martin, Madhavi Z.; Glasgow, David C.; Tschaplinski, Timothy J.; Tuskan, Gerald A.; Gunter, Lee E.; Engle, Nancy L.; Wymore, Ann M.; Weston, David J.
2017-12-01
The black cottonwood poplar (Populus trichocarpa) leaf ionome (inorganic trace elements and mineral nutrients) is an important aspect for determining the physiological and developmental processes contributing to biomass production. A number of techniques are used to measure the ionome, yet characterizing the leaf spatial heterogeneity remains a challenge, especially in solid samples. Laser-induced breakdown spectroscopy (LIBS) has been used to determine the elemental composition of leaves and is able to raster across solid matrixes at 10 μm resolution. Here, we evaluate the use of LIBS for solid sample leaf elemental characterization in relation to neutron activation. In fact, neutron activation analysis is a laboratory-based technique which is used by the National Institute of Standards and Technology (NIST) to certify trace elements in candidate reference materials including plant leaf matrices. Introduction to the techniques used in this research has been presented in this manuscript. Neutron activation analysis (NAA) data has been correlated to the LIBS spectra to achieve quantification of the elements or ions present within poplar leaves. The regression coefficients of calibration and validation using multivariate analysis (MVA) methodology for six out of seven elements have been determined and vary between 0.810 and 0.998. LIBS and NAA data has been presented for the elements such as, calcium, magnesium, manganese, aluminum, copper, and potassium. Chlorine was also detected but it did not show good correlation between the LIBS and NAA techniques. This research shows that LIBS can be used as a fast, high-spatial resolution technique to quantify elements as part of large-scale field phenotyping projects.
Martin, Madhavi Z.; Glasgow, David C.; Tschaplinski, Timothy J.; ...
2017-10-17
The black cottonwood poplar (Populus trichocarpa) leaf ionome (inorganic trace elements and mineral nutrients) is an important aspect for determining the physiological and developmental processes contributing to biomass production. A number of techniques are used to measure the ionome, yet characterizing the leaf spatial heterogeneity remains a challenge, especially in solid samples. Laser-induced breakdown spectroscopy (LIBS) has been used to determine the elemental composition of leaves and is able to raster across solid matrixes at 10 μm resolution. Here, we evaluate the use of LIBS for solid sample leaf elemental characterization in relation to neutron activation. In fact, neutron activationmore » analysis is a laboratory-based technique which is used by the National Institute of Standards and Technology (NIST) to certify trace elements in candidate reference materials including plant leaf matrices. Introduction to the techniques used in this research has been presented in this manuscript. Neutron activation analysis (NAA) data has been correlated to the LIBS spectra to achieve quantification of the elements or ions present within poplar leaves. The regression coefficients of calibration and validation using multivariate analysis (MVA) methodology for six out of seven elements have been determined and vary between 0.810 and 0.998. LIBS and NAA data has been presented for the elements such as, calcium, magnesium, manganese, aluminum, copper, and potassium. Chlorine was also detected but it did not show good correlation between the LIBS and NAA techniques. This research shows that LIBS can be used as a fast, high-spatial resolution technique to quantify elements as part of large-scale field phenotyping projects.« less
NASA Astrophysics Data System (ADS)
Ctvrtnickova, T.; Mateo, M. P.; Yañez, A.; Nicolas, G.
2011-04-01
Presented work brings results of Laser-Induced Breakdown Spectroscopy (LIBS) and Thermo-Mechanical Analysis (TMA) of coals and coal blends used in coal fired power plants all over Spain. Several coal specimens, its blends and corresponding laboratory ash were analyzed by mentioned techniques and results were compared to standard laboratory methods. The indices of slagging, which predict the tendency of coal ash deposition on the boiler walls, were determined by means of standard chemical analysis, LIBS and TMA. The optimal coal suitable to be blended with the problematic national lignite coal was suggested in order to diminish the slagging problems. Used techniques were evaluated based on the precision, acquisition time, extension and quality of information they could provide. Finally, the applicability of LIBS and TMA to the successful calculation of slagging indices is discussed and their substitution of time-consuming and instrumentally difficult standard methods is considered.
Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).
Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P
2015-12-01
Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.
Investigations of calcium spectral lines in laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Ching, Sim Yit; Tariq, Usman; Haider, Zuhaib; Tufail, Kashif; Sabri, Salwanie; Imran, Muhammad; Ali, Jalil
2017-03-01
Laser-induced breakdown spectroscopy (LIBS) is a direct and versatile analytical technique that performs the elemental composition analysis based on optical emission produced by laser induced-plasma, with a little or no sample preparation. The performance of the LIBS technique relies on the choice of experimental conditions which must be thoroughly explored and optimized for each application. The main parameters affecting the LIBS performance are the laser energy, laser wavelength, pulse duration, gate delay, geometrical set-up of the focusing and collecting optics. In LIBS quantitative analysis, the gate delay and laser energy are very important parameters that have pronounced impact on the accuracy of the elemental composition information of the materials. The determination of calcium elements in the pelletized samples was investigated and served for the purpose of optimizing the gate delay and laser energy by studying and analyzing the results from emission intensities collected and signal to background ratio (S/B) for the specified wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurya, Gulab Singh; Kumar, Rohit; Rai, Awadhesh Kumar, E-mail: awadheshkrai@rediffmail.com
2015-12-15
In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known asmore » “back collection method” to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.« less
Liu, Xiaona; Zhang, Qiao; Wu, Zhisheng; Shi, Xinyuan; Zhao, Na; Qiao, Yanjiang
2015-01-01
Laser-induced breakdown spectroscopy (LIBS) was applied to perform a rapid elemental analysis and provenance study of Blumea balsamifera DC. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were implemented to exploit the multivariate nature of the LIBS data. Scores and loadings of computed principal components visually illustrated the differing spectral data. The PLS-DA algorithm showed good classification performance. The PLS-DA model using complete spectra as input variables had similar discrimination performance to using selected spectral lines as input variables. The down-selection of spectral lines was specifically focused on the major elements of B. balsamifera samples. Results indicated that LIBS could be used to rapidly analyze elements and to perform provenance study of B. balsamifera. PMID:25558999
Application of Laser Induced Breakdown Spectroscopy under Polar Conditions
NASA Astrophysics Data System (ADS)
Clausen, J. L.; Hark, R.; Bol'shakov, A.; Plumer, J.
2015-12-01
Over the past decade our research team has evaluated the use of commercial-off-the-shelf laser-induced breakdown spectroscopy (LIBS) for chemical analysis of snow and ice samples under polar conditions. One avenue of research explored LIBS suitability as a detector of paleo-climate proxy indicators (Ca, K, Mg, and Na) in ice as it relates to atmospheric circulation. LIBS results revealed detection of peaks for C and N, consistent with the presence of organic material, as well as major ions (Ca, K, Mg, and Na) and trace metals (Al, Cu, Fe, Mn, Ti). The detection of Ca, K, Mg, and Na confirmed that LIBS has sufficient sensitivity to be used as a tool for characterization of paleo-climate proxy indicators in ice-core samples. Techniques were developed for direct analysis of ice as well as indirect measurements of ice via melting and filtering. Pitfalls and issues of direct ice analysis using several cooling techniques to maintain ice integrity will be discussed. In addition, a new technique, laser ablation molecular isotopic spectroscopy (LAMIS) was applied to detection of hydrogen and oxygen isotopes in ice as isotopic analysis of ice is the main tool in paleoclimatology and glaciology studies. Our results demonstrated that spectra of hydroxyl isotopologues 16OH, 18OH, and 16OD can be recorded with a compact spectrograph to determine hydrogen and oxygen isotopes simultaneously. Quantitative isotopic calibration for ice analysis can be accomplished using multivariate chemometric regression as previously realized for water vapor. Analysis with LIBS and LAMIS required no special sample preparation and was about ten times faster than analysis using ICP-MS. Combination of the two techniques in one portable instrument for in-field analysis appears possible and would eliminate the logistical and cost issues associated with ice core management.
Elemental misinterpretation in automated analysis of LIBS spectra.
Hübert, Waldemar; Ankerhold, Georg
2011-07-01
In this work, the Stark effect is shown to be mainly responsible for wrong elemental allocation by automated laser-induced breakdown spectroscopy (LIBS) software solutions. Due to broadening and shift of an elemental emission line affected by the Stark effect, its measured spectral position might interfere with the line position of several other elements. The micro-plasma is generated by focusing a frequency-doubled 200 mJ pulsed Nd/YAG laser on an aluminum target and furthermore on a brass sample in air at atmospheric pressure. After laser pulse excitation, we have measured the temporal evolution of the Al(II) ion line at 281.6 nm (4s(1)S-3p(1)P) during the decay of the laser-induced plasma. Depending on laser pulse power, the center of the measured line is red-shifted by 130 pm (490 GHz) with respect to the exact line position. In this case, the well-known spectral line positions of two moderate and strong lines of other elements coincide with the actual shifted position of the Al(II) line. Consequently, a time-resolving software analysis can lead to an elemental misinterpretation. To avoid a wrong interpretation of LIBS spectra in automated analysis software for a given LIBS system, we recommend using larger gate delays incorporating Stark broadening parameters and using a range of tolerance, which is non-symmetric around the measured line center. These suggestions may help to improve time-resolving LIBS software promising a smaller probability of wrong elemental identification and making LIBS more attractive for industrial applications.
Inverse Calibration Free fs-LIBS of Copper-Based Alloys
NASA Astrophysics Data System (ADS)
Smaldone, Antonella; De Bonis, Angela; Galasso, Agostino; Guarnaccio, Ambra; Santagata, Antonio; Teghil, Roberto
2016-09-01
In this work the analysis by Laser Induced Breakdown Spectroscopy (LIBS) technique of copper-based alloys having different composition and performed with fs laser pulses is presented. A Nd:Glass laser (Twinkle Light Conversion, λ = 527 nm at 250 fs) and a set of bronze and brass certified standards were used. The inverse Calibration-Free method (inverse CF-LIBS) was applied for estimating the temperature of the fs laser induced plasma in order to achieve quantitative elemental analysis of such materials. This approach strengthens the hypothesis that, through the assessment of the plasma temperature occurring in fs-LIBS, straightforward and reliable analytical data can be provided. With this aim the capability of the here adopted inverse CF-LIBS method, which is based on the fulfilment of the Local Thermodynamic Equilibrium (LTE) condition, for an indirect determination of the species excitation temperature, is shown. It is reported that the estimated temperatures occurring during the process provide a good figure of merit between the certified and the experimentally determined composition of the bronze and brass materials, here employed, although further correction procedure, like the use of calibration curves, can be demanded. The reported results demonstrate that the inverse CF-LIBS method can be applied when fs laser pulses are used even though the plasma properties could be affected by the matrix effects restricting its full employment to unknown samples provided that a certified standard having similar composition is available.
Khalil, Ahmed Asaad I; Gondal, Mohammed A; Shemis, Mohamed; Khan, Irfan S
2015-03-10
The UV single-pulsed (SP) laser-induced breakdown spectroscopy (LIBS) system was developed to detect the carcinogenic metals in human kidney stones extracted through the surgical operation. A neodymium yttrium aluminium garnet laser operating at 266 nm wavelength and 20 Hz repetition rate along with a spectrometer interfaced with an intensified CCD (ICCD) was applied for spectral analysis of kidney stones. The ICCD camera shutter was synchronized with the laser-trigger pulse and the effect of laser energy and delay time on LIBS signal intensity was investigated. The experimental parameters were optimized to obtain the LIBS plasma in local thermodynamic equilibrium. Laser energy was varied from 25 to 50 mJ in order to enhance the LIBS signal intensity and attain the best signal to noise ratio. The parametric dependence studies were important to improve the limit of detection of trace amounts of toxic elements present inside stones. The carcinogenic metals detected in kidney stones were chromium, cadmium, lead, zinc, phosphate, and vanadium. The results achieved from LIBS system were also compared with the inductively coupled plasma-mass spectrometry analysis and the concentration detected with both techniques was in very good agreement. The plasma parameters (electron temperature and density) for SP-LIBS system were also studied and their dependence on incident laser energy and delay time was investigated as well.
Laser-induced breakdown spectroscopy of dental lesions: diagnostic and therapeutic monitoring tool
NASA Astrophysics Data System (ADS)
Borisova, Ekaterina; Uzunov, Tzonko; Penev, Dimitar; Genova, Tsanislava; Avramov, Latchezar
2016-01-01
The carious decay develops a tiny area of demineralization on the enamel, which could be detected by element analytic techniques such as laser-induced breakdown spectroscopy (LIBS). That demineralization can quickly turn into a large lesion inside the tooth, it is often discovered too late to prevent the kind of decay that leads to cavities. The same optical LIBS detection approach could be used for monitoring of the caries removal using laser ablation or drilling techniques. For LIBS measurements we applied LIBS 2500Plus (Ocean Optics Inc., Dunedin, USA) system, which consists of seven spectrometric channels, covering spectral region from 200 to 980 nm, which optical resolution 0,05 nm, the spectrometers are connected with sample fiber bundle for 7-channels spectral system to the chamber for solid and liquid samples, Q-switched Nd:YAG laser, at 1 064 nm, with energy per pulse - 40 mJ, which is applied to induce plasma in the samples. LIBS spectra were obtained after single shot of the laser in the region of pathology. Samples investigated by LIBS are extracted teeth from patients, with periodontal problems on different stage of carious lesions, and their LIBS spectra are compared with the LIBS signals obtained from normal enamel and dentine tissues to receive complete picture of the carious lesion development. The major line of our investigations is related to the development of a methodology for real-time optical feedback control during selective ablation of tooth tissues using LIBS. Tooth structures, with and without pathological changes, are compared and their LIBS element analysis is used to differentiate major changes, which occur during tooth carious process and growth.
NASA Astrophysics Data System (ADS)
Bousquet, B.; Travaillé, G.; Ismaël, A.; Canioni, L.; Michel-Le Pierrès, K.; Brasseur, E.; Roy, S.; le Hecho, I.; Larregieu, M.; Tellier, S.; Potin-Gautier, M.; Boriachon, T.; Wazen, P.; Diard, A.; Belbèze, S.
2008-10-01
Principal Components Analysis (PCA) is successfully applied to the full laser-induced breakdown spectroscopy (LIBS) spectra of soil samples, defining classes according to the concentrations of the major elements. The large variability of the LIBS data is related to the heterogeneity of the samples and the representativeness of the data is finally discussed. Then, the development of a mobile LIBS system dedicated to the in-situ analysis of soils polluted by heavy metals is described. Based on the use of ten-meter long optical fibers, the mobile system allows deported measurements. Finally, the laser-assisted drying process studied by the use of a customized laser has not been retained to overcome the problem of moisture.
Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J
2011-07-01
Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.
Cortez, Juliana; Farias Filho, Benedito B; Fontes, Laiane M; Pasquini, Celio; Raimundo, Ivo M; Pimentel, Maria Fernanda; de Souza Lins Borba, Flávia
2017-04-01
A simple device based on two commercial laser pointers is described to assist in the analysis of samples that present uneven surfaces and/or irregular shapes using laser-induced breakdown spectroscopy (LIBS). The device allows for easy positioning of the sample surface at a reproducible distance from the focusing lens that conveys the laser pulse to generate the micro-plasma in a LIBS system, with reproducibility better than ±0.2 mm. In this way, fluctuations in the fluence (J cm -2 ) are minimized and the LIBS analytical signals can be obtained with a better precision even when samples with irregular surfaces are probed.
NASA Astrophysics Data System (ADS)
Shahin, Mohamed
2014-05-01
The oil and gas industry has attempted for many years to find new ways to analyze and determine the type of rocks drilled on a real time basis. Mud analysis logging is a direct method of detecting oil and gas in formations drilled, it depends on the "feel" of the bit to decide formation type, as well as, geochemical analysis which was introduced 30 years ago, starting with a pulsed-neutron generator (PNG) based wireline tool upon which LWD technology was based. In this paper, we are studying the feasibility of introducing a new technology for real-time geochemical analysis. Laser-induced breakdown spectroscopy (LIBS) is a type of atomic emission spectroscopy, It is a cutting-edge technology that is used for many applications such as determination of alloy composition, origin of manufacture (by monitoring trace components), and molecular analysis (unknown identification). LIBS can analyze any material regardless of its state (solid, liquid or gas), based upon that fact, we can analyze rocks, formation fluids' types and contacts between them. In cooperation with the National Institute of Laser Enhanced Science, Cairo University in Egypt, we've done tests on sandstone, limestone and coal samples acquired from different places using Nd: YAG Laser with in addition to other components that are explained in details through this paper to understand the ability of Laser to analyze rock samples and provide their elemental composition using LIBS technique. We've got promising results from the sample analysis via LIBS and discussed the possibility of deploying this technology in oilfields suggesting many applications and giving a base for achieving a quantitative elemental analysis method in view of its shortcomings and solutions.
NASA Astrophysics Data System (ADS)
Takahashi, Tomoko; Thornton, Blair
2017-12-01
This paper reviews methods to compensate for matrix effects and self-absorption during quantitative analysis of compositions of solids measured using Laser Induced Breakdown Spectroscopy (LIBS) and their applications to in-situ analysis. Methods to reduce matrix and self-absorption effects on calibration curves are first introduced. The conditions where calibration curves are applicable to quantification of compositions of solid samples and their limitations are discussed. While calibration-free LIBS (CF-LIBS), which corrects matrix effects theoretically based on the Boltzmann distribution law and Saha equation, has been applied in a number of studies, requirements need to be satisfied for the calculation of chemical compositions to be valid. Also, peaks of all elements contained in the target need to be detected, which is a bottleneck for in-situ analysis of unknown materials. Multivariate analysis techniques are gaining momentum in LIBS analysis. Among the available techniques, principal component regression (PCR) analysis and partial least squares (PLS) regression analysis, which can extract related information to compositions from all spectral data, are widely established methods and have been applied to various fields including in-situ applications in air and for planetary explorations. Artificial neural networks (ANNs), where non-linear effects can be modelled, have also been investigated as a quantitative method and their applications are introduced. The ability to make quantitative estimates based on LIBS signals is seen as a key element for the technique to gain wider acceptance as an analytical method, especially in in-situ applications. In order to accelerate this process, it is recommended that the accuracy should be described using common figures of merit which express the overall normalised accuracy, such as the normalised root mean square errors (NRMSEs), when comparing the accuracy obtained from different setups and analytical methods.
Multari, Rosalie A; Cremers, David A; Scott, Thomas; Kendrick, Peter
2013-03-13
In laser-induced breakdown spectroscopy (LIBS), a series of powerful laser pulses are directed at a surface to form microplasmas from which light is collected and spectrally analyzed to identify the surface material. In most cases, no sample preparation is needed, and results can be automated and made available within seconds to minutes. Advances in LIBS spectral data analysis using multivariate regression techniques have led to the ability to detect organic chemicals in complex matrices such as foods. Here, the use of LIBS to differentiate samples contaminated with aldrin, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, chlorpyrifos, and dieldrin in the complex matrices of tissue fats and rendering oils is described. The pesticide concentrations in the samples ranged from 0.005 to 0.1 μg/g. All samples were successfully differentiated from each other and from control samples. Sample concentrations could also be differentiated for all of the pesticides and the dioxin included in this study. The results presented here provide first proof-of-principle data for the ability to create LIBS-based instrumentation for the rapid analysis of pesticide and dioxin contamination in tissue fat and rendered oils.
Niu, Guanghui; Shi, Qi; Xu, Mingjun; Lai, Hongjun; Lin, Qingyu; Liu, Kunping; Duan, Yixiang
2015-10-01
In this article, a novel and alternative method of laser-induced breakdown spectroscopy (LIBS) analysis for liquid sample is proposed, which involves the removal of metal ions from a liquid to a solid substrate using a cost-efficient adsorbent, dehydrated carbon, obtained using a dehydration reaction. Using this new technique, researchers can detect trace metal ions in solutions qualitatively and quantitatively, and the drawbacks of performing liquid analysis using LIBS can be avoided because the analysis is performed on a solid surface. To achieve better performance using this technique, we considered parameters potentially influencing both adsorption performance and LIBS analysis. The calibration curves were evaluated, and the limits of detection obtained for Cu(2+), Pb(2+), and Cr(3+) were 0.77, 0.065, and 0.46 mg/L, respectively, which are better than those in the previous studies. In addition, compared to other absorbents, the adsorbent used in this technique is much cheaper in cost, easier to obtain, and has fewer or no other elements other than C, H, and O that could result in spectral interference during analysis. We also used the recommended method to analyze spiked samples, obtaining satisfactory results. Thus, this new technique is helpful and promising for use in wastewater analysis and management.
Alfarraj, Bader A; Bhatt, Chet R; Yueh, Fang Yu; Singh, Jagdish P
2017-04-01
Laser-induced breakdown spectroscopy (LIBS) is a widely used laser spectroscopic technique in various fields, such as material science, forensic science, biological science, and the chemical and pharmaceutical industries. In most LIBS work, the analysis is performed using radiative transitions from atomic emissions. In this study, the plasma temperature and the product [Formula: see text] (the number density N and the absorption path length [Formula: see text]) were determined to evaluate the optical depths and the self-absorption of Sr and Al lines. A binary mixture of strontium nitrate and aluminum oxide was used as a sample, consisting of variety of different concentrations in powder form. Laser-induced breakdown spectroscopy spectra were collected by varying various parameters, such as laser energy, gate delay time, and gate width time to optimize the LIBS signals. Atomic emission from Sr and Al lines, as observed in the LIBS spectra of different sample compositions, was used to characterize the laser induced plasma and evaluate the optical depths and self-absorption of LIBS.
Anomaly Monitoring Method for Key Components of Satellite
Fan, Linjun; Xiao, Weidong; Tang, Jun
2014-01-01
This paper presented a fault diagnosis method for key components of satellite, called Anomaly Monitoring Method (AMM), which is made up of state estimation based on Multivariate State Estimation Techniques (MSET) and anomaly detection based on Sequential Probability Ratio Test (SPRT). On the basis of analysis failure of lithium-ion batteries (LIBs), we divided the failure of LIBs into internal failure, external failure, and thermal runaway and selected electrolyte resistance (R e) and the charge transfer resistance (R ct) as the key parameters of state estimation. Then, through the actual in-orbit telemetry data of the key parameters of LIBs, we obtained the actual residual value (R X) and healthy residual value (R L) of LIBs based on the state estimation of MSET, and then, through the residual values (R X and R L) of LIBs, we detected the anomaly states based on the anomaly detection of SPRT. Lastly, we conducted an example of AMM for LIBs, and, according to the results of AMM, we validated the feasibility and effectiveness of AMM by comparing it with the results of threshold detective method (TDM). PMID:24587703
Choi, Daewoong; Gong, Yongdeuk; Nam, Sang-Ho; Han, Song-Hee; Yoo, Jonghyun; Lee, Yonghoon
2014-01-01
We report an approach for selecting an internal standard to improve the precision of laser-induced breakdown spectroscopy (LIBS) analysis for determining calcium (Ca) concentration in water. The dissolved Ca(2+) ions were pre-concentrated on filter paper by evaporating water. The filter paper was dried and analyzed using LIBS. By adding strontium chloride to sample solutions and using a Sr II line at 407.771 nm for the intensity normalization of Ca II lines at 393.366 or 396.847 nm, the analysis precision could be significantly improved. The Ca II and Sr II line intensities were mapped across the filter paper, and they showed a strong positive shot-to-shot correlation with the same spatial distribution on the filter paper surface. We applied this analysis approach for the measurement of Ca(2+) in tap, bottled, and ground water samples. The Ca(2+) concentrations determined using LIBS are in good agreement with those obtained from flame atomic absorption spectrometry. Finally, we suggest a homologous relation of the strongest emission lines of period 4 and 5 elements in groups IA and IIA based on their similar electronic structures. Our results indicate that the LIBS can be effectively applied for liquid analysis at the sub-parts per million level with high precision using a simple drying of liquid solutions on filter paper and the use of the correct internal standard elements with the similar valence electronic structure with respect to the analytes of interest.
Analysis of the silicone polymer surface aging profile with laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Xilin; Hong, Xiao; Wang, Han; Chen, Can; Zhao, Chenlong; Jia, Zhidong; Wang, Liming; Zou, Lin
2017-10-01
Silicone rubber composite materials have been widely used in high voltage transmission lines for anti-pollution flashover. The aging surface of silicone rubber materials decreases service properties, causing loss of the anti-pollution ability. In this paper, as an analysis method requiring no sample preparation that is able to be conducted on site and suitable for nearly all types of materials, laser-induced breakdown spectroscopy (LIBS) was used for the analysis of newly prepared and aging (out of service) silicone rubber composites. With scanning electron microscopy (SEM) and hydrophobicity test, LIBS was proven to be nearly non-destructive for silicone rubber. Under the same LIBS testing parameters, a linear relationship was observed between ablation depth and laser pulses number. With the emission spectra, all types of elements and their distribution in samples along the depth direction from the surface to the inner part were acquired and verified with EDS results. This research showed that LIBS was suitable to detect the aging layer depth and element distribution of the silicone rubber surface.
In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy (LIBS).
Ismaël, Amina; Bousquet, Bruno; Michel-Le Pierrès, Karine; Travaillé, Grégoire; Canioni, Lionel; Roy, Stéphane
2011-05-01
Time-saving, low-cost analyses of soil contamination are required to ensure fast and efficient pollution removal and remedial operations. In this work, laser-induced breakdown spectroscopy (LIBS) has been successfully applied to in situ analyses of polluted soils, providing direct semi-quantitative information about the extent of pollution. A field campaign has been carried out in Brittany (France) on a site presenting high levels of heavy metal concentrations. Results on iron as a major component as well as on lead and copper as minor components are reported. Soil samples were dried and prepared as pressed pellets to minimize the effects of moisture and density on the results. LIBS analyses were performed with a Nd:YAG laser operating at 1064 nm, 60 mJ per 10 ns pulse, at a repetition rate of 10 Hz with a diameter of 500 μm on the sample surface. Good correlations were obtained between the LIBS signals and the values of concentrations deduced from inductively coupled plasma atomic emission spectroscopy (ICP-AES). This result proves that LIBS is an efficient method for optimizing sampling operations. Indeed, "LIBS maps" were established directly on-site, providing valuable assistance in optimizing the selection of the most relevant samples for future expensive and time-consuming laboratory analysis and avoiding useless analyses of very similar samples. Finally, it is emphasized that in situ LIBS is not described here as an alternative quantitative analytical method to the usual laboratory measurements but simply as an efficient time-saving tool to optimize sampling operations and to drastically reduce the number of soil samples to be analyzed, thus reducing costs. The detection limits of 200 ppm for lead and 80 ppm for copper reported here are compatible with the thresholds of toxicity; thus, this in situ LIBS campaign was fully validated for these two elements. Consequently, further experiments are planned to extend this study to other chemical elements and other matrices of soils.
Pan, Cong-Yuan; Du, Xue-Wei; An, Ning; Han, Zhen-Yu; Wang, Sheng-Bo; Wei, Wei; Wang, Qiu-Ping
2013-12-01
Laser-induced breakdown spectroscopy (LIBS) is one of the most promising technologies to be applied to metallurgical composition online monitoring in these days. In order to study the spectral characters of LIBS spectrum and to investigate the quantitative analysis method of material composition under vacuum and high temperature environment, a LIBS measurement system was designed and set up which can be used for conducting experiments with high-temperature or molten samples in different vacuum environment. The system consists of a Q-switched Nd : YAG laser used as the light source, lens with different focus lengths used for laser focusing and spectrum signal collecting, a spectrometer used for detecting the signal of LIBS spectrums, and a vacuum system for holding and heating the samples while supplying a vacuum environment. The vacuum was achieved and maintained by a vacuum pump and an electric induction furnace was used for heating the system. The induction coil was integrated to the vacuum system by attaching to a ceramic sealing flange. The system was installed and testified, and the results indicate that the vacuum of the system can reach 1X 10(-4) Pa without heating, while the heating temperature could be about 1 600 degreeC, the system can be used for melting metal samples such as steel and aluminum and get the LIBS spectrum of the samples at the same time. Utilizing this system, LIBS experiments were conducted using standard steel samples under different vacuum or high-temperature conditions. Results of comparison between LIBS spectrums of solid steel samples under different vacuum were achieved, and so are the spectrums of molten and solid steel samples under vacuum environment. Through data processing and theoretical analyzing of these spectrums, the initial results of those experiments are in good agreement with the results that are presently reported, which indicates that the whole system functions well and is available for molten metal LIBS experiment under vacuum environment.
Investigation of archaeological metal artefacts by laser-induced breakdown spectroscopy (LIBS)
NASA Astrophysics Data System (ADS)
Tankova, V.; Malcheva, G.; Blagoev, K.; Leshtakov, L.
2018-03-01
In this work, laser-induced breakdown spectroscopy was applied to determining the elemental composition of a set of ancient bronze artefacts dated from the Late Bronze Age and Early Iron Age (14th – 10th century BC). We used a Nd:YAG laser at 1064 nm with pulse duration of 10 ns and energy of 10 mJ and determined the elemental composition of the bronze alloy that was used in manufacturing the samples under study. The concentrations of tin and lead in the bulk of the examined materials was estimated after generating calibration curves for a set of four standard samples. The preliminary results of the analysis will provide information on the artefacts provenance and on the production process.
Rapid analysis of pharmaceutical drugs using LIBS coupled with multivariate analysis.
Tiwari, P K; Awasthi, S; Kumar, R; Anand, R K; Rai, P K; Rai, A K
2018-02-01
Type 2 diabetes drug tablets containing voglibose having dose strengths of 0.2 and 0.3 mg of various brands have been examined, using laser-induced breakdown spectroscopy (LIBS) technique. The statistical methods such as the principal component analysis (PCA) and the partial least square regression analysis (PLSR) have been employed on LIBS spectral data for classifying and developing the calibration models of drug samples. We have developed the ratio-based calibration model applying PLSR in which relative spectral intensity ratios H/C, H/N and O/N are used. Further, the developed model has been employed to predict the relative concentration of element in unknown drug samples. The experiment has been performed in air and argon atmosphere, respectively, and the obtained results have been compared. The present model provides rapid spectroscopic method for drug analysis with high statistical significance for online control and measurement process in a wide variety of pharmaceutical industrial applications.
NASA Astrophysics Data System (ADS)
Poggialini, F.; Campanella, B.; Giannarelli, S.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Safi, A.; Palleschi, V.
2018-03-01
When compared to other analytical techniques, LIBS shows relatively low precision and, generally, high Limits of Detection (LODs). Until recently, the attempts in improving the LIBS performances have been based on the use of more stable/powerful lasers, high sensitivity detectors or controlled environmental parameters. This can hinder the competitiveness of LIBS by increasing the instrumental setup cost and the difficulty of operation. Sample treatment has proved to be a viable and simple way to increase the LIBS signal; in particular, the Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) methodology uses a deposition of metal nanoparticles on the sample to greatly increase the emission of the LIBS plasma. In this work, we used a simple, fast, "green" and low-cost method to synthetize silver nanoparticles by using coffee extract as reducing agents for a silver nitrate solution. This allowed us to obtain nanoparticles of about 25 nm in diameter. We then explored the application of such nanoparticles to the NELIBS analysis of metallic samples with a mobile LIBS instrument. By adjusting the laser parameters and optimizing the sample preparation procedure, we obtained a NELIBS signal that is 4 times the LIBS one. This showed the potential of green-synthetized nanoparticle for NELIBS applications and suggests the possibility of an in-situ application of the technique.
Kim, Gibaek; Kwak, Jihyun; Kim, Ki-Rak; Lee, Heesung; Kim, Kyoung-Woong; Yang, Hyeon; Park, Kihong
2013-12-15
A laser induced breakdown spectroscopy (LIBS) coupled with the chemometric method was applied to rapidly discriminate between soils contaminated with heavy metals or oils and clean soils. The effects of the water contents and grain sizes of soil samples on LIBS emissions were also investigated. The LIBS emission lines decreased by 59-75% when the water content increased from 1.2% to 7.8%, and soil samples with a grain size of 75 μm displayed higher LIBS emission lines with lower relative standard deviations than those with a 2mm grain size. The water content was found to have a more pronounced effect on the LIBS emission lines than the grain size. Pelletizing and sieving were conducted for all samples collected from abandoned mining areas and military camp to have similar water contents and grain sizes before being analyzed by the LIBS with the chemometric analysis. The data show that three types of soil samples were clearly discerned by using the first three principal components from the spectral data of soil samples. A blind test was conducted with a 100% correction rate for soil samples contaminated with heavy metals and oil residues. Copyright © 2013 Elsevier B.V. All rights reserved.
Jantzi, Sarah C; Almirall, José R
2014-01-01
Elemental analysis of soil is a useful application of both laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) in geological, agricultural, environmental, archeological, planetary, and forensic sciences. In forensic science, the question to be answered is often whether soil specimens found on objects (e.g., shoes, tires, or tools) originated from the crime scene or other location of interest. Elemental analysis of the soil from the object and the locations of interest results in a characteristic elemental profile of each specimen, consisting of the amount of each element present. Because multiple elements are measured, multivariate statistics can be used to compare the elemental profiles in order to determine whether the specimen from the object is similar to one of the locations of interest. Previous work involved milling and pressing 0.5 g of soil into pellets before analysis using LA-ICP-MS and LIBS. However, forensic examiners prefer techniques that require smaller samples, are less time consuming, and are less destructive, allowing for future analysis by other techniques. An alternative sample introduction method was developed to meet these needs while still providing quantitative results suitable for multivariate comparisons. The tape-mounting method involved deposition of a thin layer of soil onto double-sided adhesive tape. A comparison of tape-mounting and pellet method performance is reported for both LA-ICP-MS and LIBS. Calibration standards and reference materials, prepared using the tape method, were analyzed by LA-ICP-MS and LIBS. As with the pellet method, linear calibration curves were achieved with the tape method, as well as good precision and low bias. Soil specimens from Miami-Dade County were prepared by both the pellet and tape methods and analyzed by LA-ICP-MS and LIBS. Principal components analysis and linear discriminant analysis were applied to the multivariate data. Results from both the tape method and the pellet method were nearly identical, with clear groupings and correct classification rates of >94%.
[Element distribution analysis of welded fusion zone by laser-induced breakdown spectroscopy].
Yang, Chun; Zhang, Yong; Jia, Yun-Hai; Wang, Hai-Zhou
2014-04-01
Over the past decade there has been intense activity in the study and development of laser-induced breakdown spectroscopy (LIBS). As a new tool for surface microanalysis, it caused widespread in materials science because of the advantage of rapid and high sensitivity. In the present paper, the distribution of Ni, Mn, C and Si near weld fusion line was analyzed on two kinds of weld sample. Line scanning mode analysis was carried out by three different kinds of methods, namely laser-induced breakdown spectroscopy (LIBS), scanning electron microscope/energy dispersive spectrometer (SEM/EDS) and electron probe X-ray microanalyser (EPMA). The concentration variation trend of Ni and Mn acquired by LIBS is coincident with SEM/EDS and EPMA. The result shows that the content of Ni and Mn was significantly different between weld seam and base metal on both the samples. The content of Ni and Mn was much higher in weld seam than in base metal, and a sharp concentration gradient was analyzed in the fusion zone. According to the distribution of Ni and Mn, all the three methods got a similar value of welded fusion zone width. The concentration variation trend of C and Si acquired by LIBS is not coincident with SEM/EDS and EPMA. The concentration difference between weld seam and base metal was analyzed by LIBS, but had not by SEM/EDS and EPMA, because of the low concentration and slight difference. The concentration gradient of C and Si in fusion zone was shows clearly by LIBS. For higher sensitivity performance, LIBS is much more adapted to analyze low content element than SEM/EDS and EPMA.
Almessiere, M A; Altuwiriqi, R; Gondal, M A; AlDakheel, R K; Alotaibi, H F
2018-08-01
In this work, we analysed human fingernails of people who suffer from vitamin D deficiency using the laser-induced breakdown spectroscopy(LIBS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES)techniques. The measurements have been conducted on 71 nail samples collected randomly from volunteers of different genders and ages ranged between 20 and 50 years. The main aim of this study is to find the correlation between vitamin D deficiency and the intensity of some dominated lines in the LIBS spectra. A LIBS spectrum consists of dominant lines of fifteen elements including calcium, magnesium, sodium, potassium, titanium, iron, chloride, sulphur, copper, chromium, zinc, nitrogen, phosphor, and oxygen. By recording the spectrum in specific ranges and focusing on calcium, magnesium, sodium, and potassium, we found a correlation between the intensity of the potassium (K) lines at (766.5 and 769.9 nm)and vitamin D level in both age groups (20 and 25 years old), with weak correlation for the calcium (Ca), magnesium (Mg), and sodium (Na) lines. To verify the validity of the LIBS results, we analysed the nail samples with ICP, a standard analytical technique. The elements detected with our LIBS technique are in a good agreement with those identified by ICP-AES. From the health and physiological perspectives, the LIBS system, which is used for spectral analysis in this work, is appropriate for diagnostic purposes such as to find the correlation between vitamin D deficiency and potassium content, especially for hypertensive patients who simultaneously take potassium-based medication and vitamin D supplement. Copyright © 2018 Elsevier B.V. All rights reserved.
Quantification of trace metals in infant formula premixes using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Cama-Moncunill, Raquel; Casado-Gavalda, Maria P.; Cama-Moncunill, Xavier; Markiewicz-Keszycka, Maria; Dixit, Yash; Cullen, Patrick J.; Sullivan, Carl
2017-09-01
Infant formula is a human milk substitute generally based upon fortified cow milk components. In order to mimic the composition of breast milk, trace elements such as copper, iron and zinc are usually added in a single operation using a premix. The correct addition of premixes must be verified to ensure that the target levels in infant formulae are achieved. In this study, a laser-induced breakdown spectroscopy (LIBS) system was assessed as a fast validation tool for trace element premixes. LIBS is a promising emission spectroscopic technique for elemental analysis, which offers real-time analyses, little to no sample preparation and ease of use. LIBS was employed for copper and iron determinations of premix samples ranging approximately from 0 to 120 mg/kg Cu/1640 mg/kg Fe. LIBS spectra are affected by several parameters, hindering subsequent quantitative analyses. This work aimed at testing three matrix-matched calibration approaches (simple-linear regression, multi-linear regression and partial least squares regression (PLS)) as means for precision and accuracy enhancement of LIBS quantitative analysis. All calibration models were first developed using a training set and then validated with an independent test set. PLS yielded the best results. For instance, the PLS model for copper provided a coefficient of determination (R2) of 0.995 and a root mean square error of prediction (RMSEP) of 14 mg/kg. Furthermore, LIBS was employed to penetrate through the samples by repetitively measuring the same spot. Consequently, LIBS spectra can be obtained as a function of sample layers. This information was used to explore whether measuring deeper into the sample could reduce possible surface-contaminant effects and provide better quantifications.
Application of Handheld Laser-Induced Breakdown Spectroscopy (LIBS) to Geochemical Analysis.
Connors, Brendan; Somers, Andrew; Day, David
2016-05-01
While laser-induced breakdown spectroscopy (LIBS) has been in use for decades, only within the last two years has technology progressed to the point of enabling true handheld, self-contained instruments. Several instruments are now commercially available with a range of capabilities and features. In this paper, the SciAps Z-500 handheld LIBS instrument functionality and sub-systems are reviewed. Several assayed geochemical sample sets, including igneous rocks and soils, are investigated. Calibration data are presented for multiple elements of interest along with examples of elemental mapping in heterogeneous samples. Sample preparation and the data collection method from multiple locations and data analysis are discussed. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Syvilay, D.; Bai, X. S.; Wilkie-Chancellier, N.; Texier, A.; Martinez, L.; Serfaty, S.; Detalle, V.
2018-02-01
The aim of this research project was the development of a hybrid system in laboratory coupling together three analytical techniques, namely laser-induced breakdown spectroscopy (LIBS), laser-induced fluorescence (LIF) and Raman spectroscopy in a single instrument. The rationale for combining these three spectroscopies was to identify a material (molecular and elemental analysis) without any preliminary preparation, regardless of its organic or inorganic nature, on the surface and in depth, without any surrounding light interference thanks to time resolution. Such instrumentation would allow characterizing different materials from cultural heritage. A complete study on LIBS-LIF-Raman hybrid was carried out, from its conception to instrumental achievement, in order to elaborate a strategy of analysis according to the material and to be able to address conservation issues. From an instrumental point of view, condensing the three spectroscopies was achieved by using a single laser for excitation and two spectrometers (time-integrated and not time-integrated) for light collection. A parabolic mirror was used as collecting system, while three excitation sources directed through this optical system ensured the examination of a similar probe area. Two categories of materials were chosen to test the hybrid instrumentation on cultural heritage applications (copper corrosion products and wall paintings). Some examples are reported to illustrate the wealth of information provided by the hybrid, thus demonstrating its great potential to be used for cultural heritage issues. Finally, several considerations are outlined aimed at further improving the hybrid.
Obscuration Due to Dust of a Laser Beam in a Gun Firing Environment - Preliminary Survey
1975-10-01
34 APG- MT-4371, Nov 1973, Aberdeen Proving Ground , MD (AD Number: 915796L). 13. Engineering Design Handbook, Ballistic Series, "Interior Ballistics of...Technical Library Watervliet, NY 12189 Director Ballistic Research Laboratories Aberdeen Proving Ground , MD 21005 Commander US Army Electronics...RHFL Warren, MI 48090 Commander Aberdeen Proving Ground ATTN: Tech Lib., Bldg 313 Aberdeen Proving Ground , MD 22005 Chief of Naval Research
NASA Astrophysics Data System (ADS)
Markushin, Y.; Sivakumar, P.; Melikechi, N.; Boukari, H.
2018-02-01
We report femtosecond Laser-induced Breakdown Spectroscopy (fs-LIBS) measurements on several amino acids (Serine, Glutamine, and Cysteine) and Albumin protein solutions mixed with Ficoll polysaccharide at different proportions. The goal is to assess the effects of a host matrix on the identification and spectral characterization of amino acids by fs-LIBS. fs-LIBS utilizes an intense short laser pulse to obliterate a sample into basic constituents and to record the emission spectrum of atoms, ions, and molecules in the cooling down of the plasma plume. Several spectral peaks associated primarily with elemental composition of a sample were observed in the fs-LIBS spectra in a range from 200 to 950 nm. In addition, some molecular information associated with diatomic vibrational modes in certain molecules such as C-C and C-N were also obtained. The presence of Ficoll affects the relative intensity and broadening of the CN band, which could be considered as signatures of the amino acids. The fs-LIBS data and their analysis compare favorably with those derived from Fourier Transform Infrared Spectroscopy (FTIR). Interpretation of the spectral information enclosed in the emission of the diatomic molecules during laser ablation may lead to a better understanding of plume chemistry with a direct consequence on chemical analysis of complex samples such as amino acids. Altogether, the results demonstrate the potential of fs-LIBS technique as a detection method of biomolecules and for probing interactions of these biomolecules with a host matrix.
Quantitative analysis of gallstones using laser-induced breakdown spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Vivek K.; Singh, Vinita; Rai, Awadhesh K.
2008-11-01
The utility of laser-induced breakdown spectroscopy (LIBS) for categorizing different types of gallbladder stone has been demonstrated by analyzing their major and minor constituents. LIBS spectra of three types of gallstone have been recorded in the 200-900 nm spectral region. Calcium is found to be the major element in all types of gallbladder stone. The spectrophotometric method has been used to classify the stones. A calibration-free LIBS method has been used for the quantitative analysis of metal elements, and the results have been compared with those obtained from inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements. The single-shot LIBS spectramore » from different points on the cross section (in steps of 0.5 mm from one end to the other) of gallstones have also been recorded to study the variation of constituents from the center to the surface. The presence of different metal elements and their possible role in gallstone formation is discussed.« less
Laser-Induced Breakdown Spectroscopy of Cinematographic Film
NASA Astrophysics Data System (ADS)
Oujja, M.; Abrusci, C.; Gaspard, S.; Rebollar, E.; Amo, A. del; Catalina, F.; Castillejo, M.
Laser-induced breakdown spectroscopy (LIBS) was used to characterize the composition of black-and-white, silver-gelatine photographic films. LIB spectra of samples and reference gelatine (of various gel strengths, Bloom values 225 and 75 and crosslinking degrees) were acquired in vacuum by excitation at 266 nm. The elemental composition of the gelatine used in the upper protective layer and in the underlying emulsion is revealed by the stratigraphic analysis carried out by delivering successive pulses on the same spot of the sample. Silver (Ag) lines from the light-sensitive silver halide salts are accompanied by iron, lead and chrome lines. Fe and Pb are constituents of film developers and Cr is included in the hardening agent. The results demonstrate the analytical capacity of LIBS for study and classification of different gelatine types and the sensitivity of the technique to minor changes in gelatine composition. In addition LIBS analysis allows extracting important information on the chemicals used as developers and hardeners of archival cinematographic films.
An in Situ Technique for Elemental Analysis of Lunar Surfaces
NASA Technical Reports Server (NTRS)
Kane, K. Y.; Cremers, D. A.
1992-01-01
An in situ analytical technique that can remotely determine the elemental constituents of solids has been demonstrated. Laser-Induced Breakdown Spectroscopy (LIBS) is a form of atomic emission spectroscopy in which a powerful laser pulse is focused on a solid to generate a laser spark, or microplasma. Material in the plasma is vaporized, and the resulting atoms are excited to emit light. The light is spectrally resolved to identify the emitting species. LIBS is a simple technique that can be automated for inclusion aboard a remotely operated vehicle. Since only optical access to a sample is required, areas inaccessible to a rover can be analyzed remotely. A single laser spark both vaporizes and excites the sample so that near real-time analysis (a few minutes) is possible. This technique provides simultaneous multielement detection and has good sensitivity for many elements. LIBS also eliminates the need for sample retrieval and preparation preventing possible sample contamination. These qualities make the LIBS technique uniquely suited for use in the lunar environment.
Cremers, David A; Beddingfield, Alan; Smithwick, Robert; Chinni, Rosemarie C; Jones, C Randy; Beardsley, Burt; Karch, Larry
2012-03-01
The development of field-deployable instruments to monitor radiological, nuclear, and explosive (RNE) threats is of current interest for a number of assessment needs such as the on-site screening of suspect facilities and nuclear forensics. The presence of uranium and plutonium and radiological materials can be determined through monitoring the elemental emission spectrum using relatively low-resolution spectrometers. In addition, uranium compounds, explosives, and chemicals used in nuclear fuel processing (e.g., tributyl-phosphate) can be identified by applying chemometric analysis to the laser-induced breakdown (LIBS) spectrum recorded by these spectrometers. For nuclear forensic applications, however, isotopes of U and Pu and other elements (e.g., H and Li) must also be determined, requiring higher resolution spectrometers given the small magnitude of the isotope shifts for some of these elements (e.g., 25 pm for U and 13 pm for Pu). High-resolution spectrometers will be preferred for several reasons but these must fit into realistic field-based analysis scenarios. To address the need for field instrumentation, we evaluated a previously developed field-deployable hand-held LIBS interrogation probe combined with two relatively new high-resolution spectrometers (λ/Δλ ~75,000 and ~44,000) that have the potential to meet field-based analysis needs. These spectrometers are significantly smaller and lighter in weight than those previously used for isotopic analysis and one unit can provide simultaneous wide spectral coverage and high resolution in a relatively small package. The LIBS interrogation probe was developed initially for use with low resolution compact spectrometers in a person-portable backpack LIBS instrument. Here we present the results of an evaluation of the LIBS probe combined with a high-resolution spectrometer and demonstrate rapid detection of isotopes of uranium and hydrogen and highly enriched samples of (6)Li and (7)Li. © 2012 Society for Applied Spectroscopy
Gamble, Gary R; Park, Bosoon; Yoon, Seung-Chul; Lawrence, Kurt C
2016-03-01
Laser-induced breakdown spectroscopy (LIBS) is used as the basis for discrimination between two genera of gram-negative bacteria and two genera of gram-positive bacteria representing pathogenic threats commonly found in poultry processing rinse waters. Because LIBS-based discrimination relies primarily upon the relative proportions of inorganic cell components including Na, K, Mg, and Ca, this study aims to determine the effects of trace mineral content and pH found in the water source used to isolate the bacteria upon the reliability of the resulting discriminant analysis. All four genera were cultured using tryptic soy agar (TSA) as the nutrient medium, and were grown under identical environmental conditions. The only variable introduced is the source water used to isolate the cultured bacteria. Cultures of each bacterium were produced using deionized (DI) water under two atmosphere conditions, reverse osmosis (RO) water, tap water, phosphate buffered saline (PBS) water, and TRIS buffered water. After 3 days of culture growth, the bacteria were centrifuged and washed three times in the same water source. Bacteria were then freeze dried, mixed with microcrystalline cellulose, and a pellet was made for LIBS analysis. Principal component analysis (PCA) was used to extract related variations in LIBS spectral data among the four bacteria genera and six water types used to isolate the bacteria, and Mahalanobis discriminant analysis (MDA) was used for classification. Results indicate not only that the four genera can be discriminated from each other in each water type, but that each genus can be discriminated by water type used for isolation. It is concluded that in order for LIBS to be a reliable and repeatable method for discrimination of bacteria grown in liquid nutrient media, care must be taken to insure that the water source used in purification of the culture be precisely controlled regarding pH, ionic strength, and proportionate amounts of mineral cations present. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Shuxia, ZHAO; Lei, ZHANG; Jiajia, HOU; Yang, ZHAO; Wangbao, YIN; Weiguang, MA; Lei, DONG; Liantuan, XIAO; Suotang, JIA
2018-03-01
The chemical composition of alloys directly determines their mechanical behaviors and application fields. Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality control and material classification processes. A quantitative calibration-free laser-induced breakdown spectroscopy (CF-LIBS) analysis method, which carries out combined correction of plasma temperature and spectral intensity by using a second-order iterative algorithm and two boundary standard samples, is proposed to realize accurate composition measurements. Experimental results show that, compared to conventional CF-LIBS analysis, the relative errors for major elements Cu and Zn and minor element Pb in the copper-lead alloys has been reduced from 12%, 26% and 32% to 1.8%, 2.7% and 13.4%, respectively. The measurement accuracy for all elements has been improved substantially.
A Combined Remote LIBS and Raman Spectroscopic Study of Minerals
NASA Technical Reports Server (NTRS)
Hubble, H. W.; Ghosh, M.; Sharma, S. K.; Horton, K. A.; Lucey, P. G.; Angel, S. M.; Wiens, R. C.
2002-01-01
In this paper, we explore the use of remote LIBS combined with pulsed-laser Raman spectroscopy for mineral analysis at a distance of 10 meters. Samples analyzed include: carbonates (both biogenic and abiogenic), silicates, and sulfates. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Subedi, Kiran; Trejos, Tatiana; Almirall, José
2015-01-01
Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample.
NASA Astrophysics Data System (ADS)
Braga, Jez Willian Batista; Trevizan, Lilian Cristina; Nunes, Lidiane Cristina; Rufini, Iolanda Aparecida; Santos, Dário, Jr.; Krug, Francisco José
2010-01-01
The application of laser induced breakdown spectrometry (LIBS) aiming the direct analysis of plant materials is a great challenge that still needs efforts for its development and validation. In this way, a series of experimental approaches has been carried out in order to show that LIBS can be used as an alternative method to wet acid digestions based methods for analysis of agricultural and environmental samples. The large amount of information provided by LIBS spectra for these complex samples increases the difficulties for selecting the most appropriated wavelengths for each analyte. Some applications have suggested that improvements in both accuracy and precision can be achieved by the application of multivariate calibration in LIBS data when compared to the univariate regression developed with line emission intensities. In the present work, the performance of univariate and multivariate calibration, based on partial least squares regression (PLSR), was compared for analysis of pellets of plant materials made from an appropriate mixture of cryogenically ground samples with cellulose as the binding agent. The development of a specific PLSR model for each analyte and the selection of spectral regions containing only lines of the analyte of interest were the best conditions for the analysis. In this particular application, these models showed a similar performance, but PLSR seemed to be more robust due to a lower occurrence of outliers in comparison to the univariate method. Data suggests that efforts dealing with sample presentation and fitness of standards for LIBS analysis must be done in order to fulfill the boundary conditions for matrix independent development and validation.
LIBS analysis of artificial calcified tissues matrices.
Kasem, M A; Gonzalez, J J; Russo, R E; Harith, M A
2013-04-15
In most laser-based analytical methods, the reproducibility of quantitative measurements strongly depends on maintaining uniform and stable experimental conditions. For LIBS analysis this means that for accurate estimation of elemental concentration, using the calibration curves obtained from reference samples, the plasma parameters have to be kept as constant as possible. In addition, calcified tissues such as bone are normally less "tough" in their texture than many samples, especially metals. Thus, the ablation process could change the sample morphological features rapidly, and result in poor reproducibility statistics. In the present work, three artificial reference sample sets have been fabricated. These samples represent three different calcium based matrices, CaCO3 matrix, bone ash matrix and Ca hydroxyapatite matrix. A comparative study of UV (266 nm) and IR (1064 nm) LIBS for these three sets of samples has been performed under similar experimental conditions for the two systems (laser energy, spot size, repetition rate, irradiance, etc.) to examine the wavelength effect. The analytical results demonstrated that UV-LIBS has improved reproducibility, precision, stable plasma conditions, better linear fitting, and the reduction of matrix effects. Bone ash could be used as a suitable standard reference material for calcified tissue calibration using LIBS with a 266 nm excitation wavelength. Copyright © 2013 Elsevier B.V. All rights reserved.
Laser spectrum detection methods for substance of Mars surface
NASA Astrophysics Data System (ADS)
Zhang, Dan; Xue, Bin; Zhao, Yi-yi
2014-11-01
The chemical element and mineral rock's abundance and distribution are the basic material of planetary geology evolution research [1], hence preterit detection for composition of Mars surface substance contains both elements sorts and mineral ingredients. This article introduced new ways to detect Mars elements and mineral components, Laser Induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy (RS) which have distinct advantages, such as work over a long distance, detect rapidly, accuratly and nondestructively. LIBS and RS both use laser excitation to shoot the substance of Mars exciting new wavelengths. The techniques of LIBS and RS in laboratory are mature, besides the technique of LIBS is being used in MSL (Chemcam) now and RS will be used in ExoMars. Comparing LIBS and RS's detection results with XRF and APXS, Mossbauer spectrometer, these existed Mars surface material detection instruments,and the Infrared spectrometer, Mid-IR, they have more accurate detection results. So LIBS and RS are competent for Mars surface substance detection instead of X-ray spectrometer and Mossbauer spectrometer which were already used in 'Viking 1' and 'Opportunity'. Only accurate detection results about Mars surface substance can lead to scientist's right analysis in inversing geological evolution of the planet.
Monitoring of toxic elements present in sludge of industrial waste using CF-LIBS.
Kumar, Rohit; Rai, Awadhesh K; Alamelu, Devanathan; Aggarwal, Suresh K
2013-01-01
Industrial waste is one of the main causes of environmental pollution. Laser-induced breakdown spectroscopy (LIBS) was applied to detect the toxic metals in the sludge of industrial waste water. Sludge on filter paper was obtained after filtering the collected waste water samples from different sections of a water treatment plant situated in an industrial area of Kanpur City. The LIBS spectra of the sludge samples were recorded in the spectral range of 200 to 500 nm by focusing the laser light on sludge. Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technique was used for the quantitative measurement of toxic elements such as Cr and Pb present in the sample. We also used the traditional calibration curve approach to quantify these elements. The results obtained from CF-LIBS are in good agreement with the results from the calibration curve approach. Thus, our results demonstrate that CF-LIBS is an appropriate technique for quantitative analysis where reference/standard samples are not available to make the calibration curve. The results of the present experiment are alarming to the people living nearby areas of industrial activities, as the concentrations of toxic elements are quite high compared to the admissible limits of these substances.
NASA Astrophysics Data System (ADS)
Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard
2017-12-01
Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, H.; Ahmed, Doaa; Eldakrouri, Ashraf
2013-06-21
The elemental content of the superficial and inner enamel as well as that of dentin was analyzed using laser-induced breakdown spectroscopy (LIBS) and x-ray photoelectron spectroscopy (XPS) of bleached and unbleached tooth specimens. It is thus clear from the spectral analysis using both the LIBS and XPS technique that elemental changes (though insignificant within the scopes of this study) of variable intensities do occur on the surface of the enamel and extend deeper to reach dentin. The results of the LIBS revealed a slight reduction in the calcium levels in the bleached compared to the control specimens in all themore » different bleaching groups and in both enamel and dentin. The good correlation found between the LIBS and XPS results demonstrates the possibility of LIBS technique for detection of minor loss in calcium and phosphorus in enamel and dentin.« less
NASA Astrophysics Data System (ADS)
Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.
2017-10-01
We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.
Diagenetic Features Analyzed by ChemCam/Curiosity at Pahrump Hills, Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Nachon, M.; Mangold, N.; Cousin, A.; Forni, O.; Anderson, R. B.; Blank, J. G.; Calef, F.; Clegg, S.; Fabre, C.; Fisk, M.;
2015-01-01
Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of : (1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of targets and (2) a Remote Micro Imager (RMI), which provides imaging context for the LIBS. The LIBS/ChemCam performs analysis typically of spot sizes 350-550 micrometers in diameter, up to 7 meters from the rover. Within Gale crater, Curiosity traveled from Bradbury Landing toward the base of Mount Sharp, reaching Pahrump Hills outcrop circa sol 750. This region, as seen from orbit, represents the first exposures of lower Mount Sharp. In this abstract we focus on two types of features present within the Pahrump Hills outcrop: concretion features and light-toned veins.
NASA Astrophysics Data System (ADS)
Mohamed, Walid Tawfik Y.
2008-02-01
Laser-induced breakdown spectroscopy (LIBS) is a laser-based technique that can provide non-intrusive, qualitative and quantitative measurement of metals in various environments. LIBS uses the plasma generated by a high-energy laser beam to prepare and excite the sample in one step. In the present work, LIBS has been applied to perform elemental analysis of six trace elements simultaneously in aluminum alloy targets. The plasma is generated by focusing a pulsed Nd:YAG laser on the target in air at atmospheric pressure. LIBS limit of detection (LOD) is affected by many experimental parameters such as interferences, self-absorption, spectral overlap and matrix effect. We aimed to improve the LIBS LOD by optimizing these experimental parameters as possible. In doing so, a portable Echelle spectrometer with intensified CCD camera was used to detect the LIBS plasma emission. This advanced Echelle spectrometer provides a constant spectral resolution (CSR) of 7500 corresponding to 4 pixels FWHM over a wavelength range 200-1000 nm displayable in a single spectrum. Then, the calibration curves for iron, beryllium, magnesium, silicon, manganese and copper as minor elements were achieved with linear regression coefficients between 98-99% on average in aluminum standard sample alloys. New LOD values were achieved in the ppm range with high precision (RSD 3-8%). From the application view point, improving LIBS LOD is very important in the on-line industrial process control to follow-up multi-elements for the correct alloying in metals.
Mohaidat, Qassem; Palchaudhuri, Sunil; Rehse, Steven J
2011-04-01
In this paper we investigate the effect that adverse environmental and metabolic stresses have on the laser-induced breakdown spectroscopy (LIBS) identification of bacterial specimens. Single-pulse LIBS spectra were acquired from a non-pathogenic strain of Escherichia coli cultured in two different nutrient media: a trypticase soy agar and a MacConkey agar with a 0.01% concentration of deoxycholate. A chemometric discriminant function analysis showed that the LIBS spectra acquired from bacteria grown in these two media were indistinguishable and easily discriminated from spectra acquired from two other non-pathogenic E. coli strains. LIBS spectra were obtained from specimens of a nonpathogenic E. coli strain and an avirulent derivative of the pathogen Streptococcus viridans in three different metabolic situations: live bacteria reproducing in the log-phase, bacteria inactivated on an abiotic surface by exposure to bactericidal ultraviolet irradiation, and bacteria killed via autoclaving. All bacteria were correctly identified regardless of their metabolic state. This successful identification suggests the possibility of testing specimens that have been rendered safe for handling prior to LIBS identification. This would greatly enhance personnel safety and lower the cost of a LIBS-based diagnostic test. LIBS spectra were obtained from pathogenic and non-pathogenic bacteria that were deprived of nutrition for a period of time ranging from one day to nine days by deposition on an abiotic surface at room temperature. All specimens were successfully classified by species regardless of the duration of nutrient deprivation. © 2011 Society for Applied Spectroscopy
NASA Astrophysics Data System (ADS)
Rehse, Steven J.; Jeyasingham, Narmatha; Diedrich, Jonathan; Palchaudhuri, Sunil
2009-05-01
Nanosecond single-pulse laser-induced breakdown spectroscopy (LIBS) has been used to discriminate between two different genera of Gram-negative bacteria and between several strains of the Escherichia coli bacterium based on the relative concentration of trace inorganic elements in the bacteria. Of particular importance in all such studies to date has been the role of divalent cations, specifically Ca2+ and Mg2+, which are present in the membranes of Gram-negative bacteria and act to aggregate the highly polar lipopolysaccharide molecules. We have demonstrated that the source of emission from Ca and Mg atoms observed in LIBS plasmas from bacteria is at least partially located at the outer membrane by intentionally altering membrane biochemistry and correlating these changes with the observed changes in the LIBS spectra. The definitive assignment of some fraction of the LIBS emission to the outer membrane composition establishes a potential serological, or surface-antigen, basis for the laser-based identification. E. coli and Pseudomonas aeruginosa were cultured in three nutrient media: trypticase soy agar as a control, a MacConkey agar with a 0.01% concentration of bile salts including sodium deoxycholate, and a trypticase soy agar with a 0.4% deoxycholate concentration. The higher concentration of deoxycholate is known to disrupt bacterial outer membrane integrity and was expected to induce changes in the observed LIBS spectra. Altered LIBS emission was observed for bacteria cultured in this 0.4% medium and laser ablated in an all-argon environment. These spectra evidenced a reduced calcium emission and in the case of one species, a reduced magnesium emission. Culturing on the lower (0.01%) concentration of bile salts altered the LIBS spectra for both the P. aeruginosa and two strains of E. coli in a highly reproducible way, although not nearly as significantly as culturing in the higher concentration of deoxycholate did. This was possibly due to the accumulation of divalent cations around the bacteria by the formation of an extracellular polysaccharide capsule. Lastly, a discriminant function analysis demonstrated that in spite of alterations in the LIBS spectrum induced by growth in the three different media, the analysis could correctly identify all samples better than 90% of the time. This encouraging result illustrates the potential utility of LIBS as a rapid bacteriological identification technology.
Davari, Seyyed Ali; Hu, Sheng; Mukherjee, Dibyendu
2017-03-01
Intermetallic nanoalloys (NAs) and nanocomposites (NCs) have increasingly gained prominence as efficient catalytic materials in electrochemical energy conversion and storage systems. But their morphology and chemical compositions play critical role in tuning their catalytic activities, and precious metal contents. While advanced microscopy techniques facilitate morphological characterizations, traditional chemical characterizations are either qualitative or extremely involved. In this study, we apply Laser Induced Breakdown Spectroscopy (LIBS) for quantitative compositional analysis of NAs and NCs synthesized with varied elemental ratios by our in-house built pulsed laser ablation technique. Specifically, elemental ratios of binary PtNi, PdCo (NAs) and PtCo (NCs) of different compositions are determined from LIBS measurements employing an internal calibration scheme using the bulk matrix species as internal standards. Morphology and qualitative elemental compositions of the aforesaid NAs and NCs are confirmed from Transmission Electron Microscopy (TEM) images and Energy Dispersive X-ray Spectroscopy (EDX) measurements. LIBS experiments are carried out in ambient conditions with the NA and NC samples drop cast on silicon wafers after centrifugation to increase their concentrations. The technique does not call for cumbersome sample preparations including acid digestions and external calibration standards commonly required in Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) techniques. Yet the quantitative LIBS results are in good agreement with the results from ICP-OES measurements. Our results indicate the feasibility of using LIBS in future for rapid and in-situ quantitative chemical characterizations of wide classes of synthesized NAs and NCs. Copyright © 2016 Elsevier B.V. All rights reserved.
The application of LIBS for the analysis of archaeological ceramic and metal artifacts
NASA Astrophysics Data System (ADS)
Melessanaki, Kristalia; Mateo, Maripaz; Ferrence, Susan C.; Betancourt, Philip P.; Anglos, Demetrios
2002-09-01
A bench-top laser-induced breakdown spectroscopy (LIBS) system has been used in the examination of pottery, jewelry and metal artifacts found in archaeological excavations in central and eastern Crete, Greece. The objects date from the Middle and Late Minoan periods (ca. 20th-13th century B. C.) through Byzantine and Venetian to Ottoman times (ca. 5th-19th century A.D.). The spectral data indicates the qualitative and often the semi-quantitative elemental composition of the examined materials. In the case of colored glazed ceramics, the identity of pigments was established while in the case of metal and jewelry analysis, the type of metal or metal alloy used was determined. The analyses demonstrate the potential of the LIBS technique for performing routine, rapid, on-site analysis of archaeological objects, which leads to the quick characterization or screening of different types of objects.
Nd:YAG-CO(2) double-pulse laser induced breakdown spectroscopy of organic films.
Weidman, Matthew; Baudelet, Matthieu; Palanco, Santiago; Sigman, Michael; Dagdigian, Paul J; Richardson, Martin
2010-01-04
Laser-induced breakdown spectroscopy (LIBS) using double-pulse irradiation with Nd:YAG and CO(2) lasers was applied to the analysis of a polystyrene film on a silicon substrate. An enhanced emission signal, compared to single-pulse LIBS using a Nd:YAG laser, was observed from atomic carbon, as well as enhanced molecular emission from C(2) and CN. This double-pulse technique was further applied to 2,4,6-trinitrotoluene residues, and enhanced LIBS signals for both atomic carbon and molecular CN emission were observed; however, no molecular C(2) emission was detected.
Gaudiuso, Rosalba; Dell’Aglio, Marcella; De Pascale, Olga; Senesi, Giorgio S.; De Giacomo, Alessandro
2010-01-01
Analytical applications of Laser Induced Breakdown Spectroscopy (LIBS), namely optical emission spectroscopy of laser-induced plasmas, have been constantly growing thanks to its intrinsic conceptual simplicity and versatility. Qualitative and quantitative analysis can be performed by LIBS both by drawing calibration lines and by using calibration-free methods and some of its features, so as fast multi-elemental response, micro-destructiveness, instrumentation portability, have rendered it particularly suitable for analytical applications in the field of environmental science, space exploration and cultural heritage. This review reports and discusses LIBS achievements in these areas and results obtained for soils and aqueous samples, meteorites and terrestrial samples simulating extraterrestrial planets, and cultural heritage samples, including buildings and objects of various kinds. PMID:22163611
Gaudiuso, Rosalba; Dell'Aglio, Marcella; De Pascale, Olga; Senesi, Giorgio S; De Giacomo, Alessandro
2010-01-01
Analytical applications of Laser Induced Breakdown Spectroscopy (LIBS), namely optical emission spectroscopy of laser-induced plasmas, have been constantly growing thanks to its intrinsic conceptual simplicity and versatility. Qualitative and quantitative analysis can be performed by LIBS both by drawing calibration lines and by using calibration-free methods and some of its features, so as fast multi-elemental response, micro-destructiveness, instrumentation portability, have rendered it particularly suitable for analytical applications in the field of environmental science, space exploration and cultural heritage. This review reports and discusses LIBS achievements in these areas and results obtained for soils and aqueous samples, meteorites and terrestrial samples simulating extraterrestrial planets, and cultural heritage samples, including buildings and objects of various kinds.
Gottfried, Jennifer L
2011-07-01
The potential of laser-induced breakdown spectroscopy (LIBS) to discriminate biological and chemical threat simulant residues prepared on multiple substrates and in the presence of interferents has been explored. The simulant samples tested include Bacillus atrophaeus spores, Escherichia coli, MS-2 bacteriophage, α-hemolysin from Staphylococcus aureus, 2-chloroethyl ethyl sulfide, and dimethyl methylphosphonate. The residue samples were prepared on polycarbonate, stainless steel and aluminum foil substrates by Battelle Eastern Science and Technology Center. LIBS spectra were collected by Battelle on a portable LIBS instrument developed by A3 Technologies. This paper presents the chemometric analysis of the LIBS spectra using partial least-squares discriminant analysis (PLS-DA). The performance of PLS-DA models developed based on the full LIBS spectra, and selected emission intensities and ratios have been compared. The full-spectra models generally provided better classification results based on the inclusion of substrate emission features; however, the intensity/ratio models were able to correctly identify more types of simulant residues in the presence of interferents. The fusion of the two types of PLS-DA models resulted in a significant improvement in classification performance for models built using multiple substrates. In addition to identifying the major components of residue mixtures, minor components such as growth media and solvents can be identified with an appropriately designed PLS-DA model.
Tarifa, Anamary; Almirall, José R
2015-05-01
A rapid method for the characterization of both organic and inorganic components of gunshot residues (GSR) is proposed as an alternative tool to facilitate the identification of a suspected shooter. In this study, two fast screening methods were developed and optimized for the detection of organic compounds and inorganic components indicative of GSR presence on the hands of shooters and non-shooters. The proposed methods consist of headspace extraction of volatile organic compounds using a capillary microextraction of volatiles (CMV) device previously reported as a high-efficiency sampler followed by detection by GC-MS. This novel sampling technique has the potential to yield fast results (<2min sampling) and high sensitivity capable of detecting 3ng of diphenylamine (DPA) and 8ng of nitroglycerine (NG). Direct analysis of the headspace of over 50 swabs collected from the hands of suspected shooters (and non-shooters) provides information regarding VOCs present on their hands. In addition, a fast laser induced breakdown spectroscopy (LIBS) screening method for the detection of the inorganic components indicative of the presence of GSR (Sb, Pb and Ba) is described. The sampling method for the inorganics consists of liquid extraction of the target elements from the same cotton swabs (previously analyzed for VOCs) and an additional 30 swab samples followed by spiking 1μL of the extract solution onto a Teflon disk and then analyzed by LIBS. Advantages of LIBS include fast analysis (~12s per sample) and high selectivity and sensitivity, with expected LODs 0.1-18ng for each of the target elements after sampling. The analytical performance of the LIBS method is also compared to previously reported methods (inductively coupled plasma-optical emission spectroscopy). The combination of fast CMV sampling, unambiguous organic compound identification with GC-MS and fast LIBS analysis provides the basis for a new comprehensive screening method for GSR. Copyright © 2015 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Emerson, Rachel M.
2015-01-01
Abstract Inorganic compounds in biomass, often referred to as ash, are known to be problematic in the thermochemical conversion of biomass to bio-oil or syngas and, ultimately, hydrocarbon fuels because they negatively influence reaction pathways, contribute to fouling and corrosion, poison catalysts, and impact waste streams. The most common ash-analysis methods, such as inductively coupled plasma-optical emission spectrometry/mass spectrometry (ICP-OES/MS), require considerable time and expensive reagents. Laser-induced breakdown spectroscopy (LIBS) is emerging as a technique for rapid analysis of the inorganic constituents in a wide range of biomass materials. This study compares analytical results using LIBS data to results obtained from three separate ICP-OES/MS methods for 12 samples, including six standard reference materials. Analyzed elements include aluminum, calcium, iron, magnesium, manganese, phosphorus, potassium, sodium, and silicon, and results show that concentrations can be measured with an uncertainty of approximately 100 parts per million using univariate calibration models and relatively few calibration samples. These results indicate that the accuracy of LIBS is comparable to that of ICP-OES methods and indicate that some acid-digestion methods for ICP-OES may not be reliable for Na and Al. These results also demonstrate that germanium can be used as an internal standard to improve the reliability and accuracy of measuring many elements of interest, and that LIBS can be used for rapid determination of total ash in biomass samples. Key benefits of LIBS include little sample preparation, no reagent consumption, and the generation of meaningful analytical data instantaneously. PMID:26733765
StrBioLib: a Java library for development of custom computationalstructural biology applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandonia, John-Marc
2007-05-14
Summary: StrBioLib is a library of Java classes useful fordeveloping software for computational structural biology research.StrBioLib contains classes to represent and manipulate proteinstructures, biopolymer sequences, sets of biopolymer sequences, andalignments between biopolymers based on either sequence or structure.Interfaces are provided to interact with commonly used bioinformaticsapplications, including (PSI)-BLAST, MODELLER, MUSCLE, and Primer3, andtools are provided to read and write many file formats used to representbioinformatic data. The library includes a general-purpose neural networkobject with multiple training algorithms, the Hooke and Jeeves nonlinearoptimization algorithm, and tools for efficient C-style string parsingand formatting. StrBioLib is the basis for the Pred2ary secondarystructure predictionmore » program, is used to build the ASTRAL compendium forsequence and structure analysis, and has been extensively tested throughuse in many smaller projects. Examples and documentation are available atthe site below.Availability: StrBioLib may be obtained under the terms ofthe GNU LGPL license from http://strbio.sourceforge.net/Contact:JMChandonia@lbl.gov« less
StrBioLib: a Java library for development of custom computational structural biology applications.
Chandonia, John-Marc
2007-08-01
StrBioLib is a library of Java classes useful for developing software for computational structural biology research. StrBioLib contains classes to represent and manipulate protein structures, biopolymer sequences, sets of biopolymer sequences, and alignments between biopolymers based on either sequence or structure. Interfaces are provided to interact with commonly used bioinformatics applications, including (psi)-blast, modeller, muscle and Primer3, and tools are provided to read and write many file formats used to represent bioinformatic data. The library includes a general-purpose neural network object with multiple training algorithms, the Hooke and Jeeves non-linear optimization algorithm, and tools for efficient C-style string parsing and formatting. StrBioLib is the basis for the Pred2ary secondary structure prediction program, is used to build the astral compendium for sequence and structure analysis, and has been extensively tested through use in many smaller projects. Examples and documentation are available at the site below. StrBioLib may be obtained under the terms of the GNU LGPL license from http://strbio.sourceforge.net/
NASA Astrophysics Data System (ADS)
A. Farooq, W.; G. Rasool, K.; Walid, Tawfik; S. Aldawood, A.
2015-11-01
The Kingdom of Saudi Arabia is one of the leading date producing countries. Unfortunately, this important fruit crop is under great threat from the red palm weevil (RPW) (Rhynchophorus ferrugineus), which is a highly invasive pest. Several techniques, including visual inspection, acoustic sensors, sniffer dogs, and pheromone traps have been tried to detect the early stages of a RPW infestation; however, each method has suffered certain logistical and implementation issues. We have applied laser induced breakdown spectroscopy (LIBS) for the early detection of RPW infestation. Through the analysis of the observed LIBS spectra of different infested and healthy samples, we have found presence of Ca, Mg, Na, C, K elements and OH, CN molecules. The spectra also reveal that with the population growth of the pest, the intensity of Mg and Ca atomic lines in LIBS spectra increases rapidly. Similar behavior is observed in the molecular lines of LIBS spectra. The obtained results indicate that the LIBS technique can be used for the early detection of RPW infestation without damaging the date palms.
Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces.
L'Hermite, D; Vors, E; Vercouter, T; Moutiers, G
2016-05-01
Laser-induced breakdown spectroscopy (LIBS) is a laser-based optical technique particularly suited for in situ surface analysis. A portable LIBS instrument was tested to detect surface chemical contamination by chemical warfare agents (CWAs). Test of detection of surface contamination was carried out in a toxlab facility with four CWAs, sarin (GB), lewisite (L1), mustard gas (HD), and VX, which were deposited on different substrates, wood, concrete, military green paint, gloves, and ceramic. The CWAs were detected by means of the detection of atomic markers (As, P, F, Cl, and S). The LIBS instrument can give a direct response in terms of detection thanks to an integrated interface for non-expert users or so called end-users. We have evaluated the capability of automatic detection of the selected CWAs. The sensitivity of our portable LIBS instrument was confirmed for the detection of a CWA at surface concentrations above 15 μg/cm(2). The simultaneous detection of two markers may lead to a decrease of the number of false positive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Madhavi Z; Wullschleger, Stan D; Vass, Arpad Alexander
The technique of laser-induced breakdown spectroscopy (LIBS) to detect elements for a variety of homeland security applications such as nuclear materials identification and inventory,and forensic applications has been demonstrated. For nuclear materials applications, we detected and profiled metals in coatings that were used to encapsulate nuclear fuel. Multivariate analysis has been successfully employed in the quantification of elements present in treated wood and engineered wood composites. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications related to homeland security. Three key advantages are evident: (1) small samples (mg) are sufficient; (2) samples can be analyzedmore » by LIBS very rapidly, and (3) biological materials such as human and animal bones and wood can be analyzed with minimal sample preparation. For forensic applications they have used LIBS to determine differences in animal and human bones. They have also applied this technique in the determination of counterfeit and non-counterfeit currency. They recently applied LIBS in helping to solve a murder case.« less
Arp, Zane A; Cremers, David A; Wiens, Roger C; Wayne, David M; Sallé, Béatrice; Maurice, Sylvestre
2004-08-01
Recently, laser-induced breakdown spectroscopy (LIBS) has been developed for the elemental analysis of geological samples for application to space exploration. There is also interest in using the technique for the analysis of water ice and ice/dust mixtures located at the Mars polar regions. The application is a compact instrument for a lander or rover to the Martian poles to interrogate stratified layers of ice and dusts that contain a record of past geologic history, believed to date back several million years. Here we present results of a study of the use of LIBS for the analysis of water ice and ice/dust mixtures in situ and at short stand-off distances (< 6.5 m) using experimental parameters appropriate for a compact instrument. Characteristics of LIBS spectra of water ice, ice/soil mixtures, element detection limits, and the ability to ablate through ice samples to monitor subsurface dust deposits are discussed.
NASA Astrophysics Data System (ADS)
Rauschenbach, I.; Jessberger, E. K.; Pavlov, S. G.; Hübers, H.-W.
2010-08-01
We report on our ongoing studies to develop Laser-Induced Breakdown Spectroscopy (LIBS) for planetary surface missions to Mars and other planets and moons, like Jupiter's moon Europa or the Earth's moon. Since instruments for space missions are severely mass restricted, we are developing a light-weight miniaturized close-up LIBS instrument to be installed on a lander or rover for the in-situ geochemical analysis of planetary surface rocks and coarse fines. The total mass of the instrument will be ≈ 1 kg in flight configuration. Here we report on a systematic performance study of a LIBS instrument equipped with a prototype laser of 216 g total mass and an energy of 1.8 mJ. The LIBS measurements with the prototype laser and the comparative measurements with a regular 40 mJ laboratory laser were both performed under Martian atmospheric conditions. We calibrated 14 major and minor elements by analyzing 18 natural samples of certified composition. The calibration curves define the limits of detection that are > 5 ppm for the lab laser and > 400 ppm for the prototype laser, reflecting the different analyzed sample masses of ≈ 20 µg and ≈ 2 µg, respectively. To test the accuracy we compared the LIBS compositions, determined with both lasers, of Mars analogue rocks with certified or independently measured compositions and found agreements typically within 10-20%. In addition we verified that dust coverage is effectively removed from rock surfaces by the laser blast. Our study clearly demonstrates that a close-up LIBS instrument (spot size ≈ 50 µm) will decisively enhance the scientific output of planetary lander missions by providing a very large number of microscopic elemental analyses.
2015-06-01
examine how a computer forensic investigator/incident handler, without specialised computer memory or software reverse engineering skills , can successfully...memory images and malware, this new series of reports will be directed at those who must analyse Linux malware-infected memory images. The skills ...disable 1287 1000 1000 /usr/lib/policykit-1-gnome/polkit-gnome-authentication- agent-1 1310 1000 1000 /usr/lib/pulseaudio/pulse/gconf- helper 1350
Lin, Qingyu; Wei, Zhimei; Guo, Hongli; Wang, Shuai; Guo, Guangmeng; Zhang, Zhi; Duan, Yixiang
2017-06-10
A highly concentrated, ring-shaped phase conversion (RSPC) method was developed for liquid sample analysis using the laser-induced breakdown spectroscopy (LIBS) technique. In this work, test samples were prepared by mixing the metal particles with polyvinyl alcohol (PVA) supporter in liquid phase. With heat, the PVA solution solidified inside a modified glass petri dish, forming a metal-enriched polymer ring film. Distinguished from other traditional liquid-to-solid conversing methods, the proposed new method takes advantage of enhanced homogeneity for the target elements inside the ring film. The modified glass petri dish was used to control the ring-shaped concentration. Due to the specially designed circular groove at the bottom of this dish, where the PVA solution and liquid sample mixture accumulated, the target elements were concentrated in this small ring, which is beneficial for enhancing and stabilizing the plasma signals compared to the direct liquid sample analysis using LIBS. The limits of detection for Ag, Cu, Cr, and Ba obtained with the RSPC-LIBS technology were 0.098 μg·mL -1 , 0.18 μg·mL -1 , 0.83 μg·mL -1 , and 0.046 μg·mL -1 , respectively, which provided greater improvement than the direct bulk liquid analysis using LIBS.
Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby
2017-01-01
Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.
Using Content Analysis Software to Analyze Survey Comments
ERIC Educational Resources Information Center
Dennis, Bradford W.; Bower, Tim
2008-01-01
In order to get the most from LibQUAL+[TM] qualitative data, libraries must organize and classify the comments of their patrons. The challenge is to do this effectively and efficiently. This article illustrates how researchers at Western Michigan University Libraries utilized ATLAS.ti 5.0 to organize, classify, and consolidate the LibQUAL+[TM]…
Moon, Youngmin; Han, Jung Hyun; Shin, Sungho; Kim, Yong-Chul; Jeong, Sungho
2016-01-01
By laser induced breakdown spectroscopy (LIBS) analysis of epidermal lesion and dermis tissue pellets of hairless mouse, it is shown that Ca intensity in the epidermal lesion is higher than that in dermis, whereas Na and K intensities have an opposite tendency. It is demonstrated that epidermal lesion and normal dermis can be differentiated with high selectivity either by univariate or multivariate analysis of LIBS spectra with an intensity ratio difference by factor of 8 or classification accuracy over 0.995, respectively. PMID:27231610
Internal-short-mitigating current collector for lithium-ion battery
NASA Astrophysics Data System (ADS)
Wang, Meng; Le, Anh V.; Noelle, Daniel J.; Shi, Yang; Meng, Y. Shirley; Qiao, Yu
2017-05-01
Mechanical abuse often causes thermal runaway of lithium-ion battery (LIB). When a LIB cell is impacted, radial cracks can be formed in the current collector, separating the electrode into petals. As separator ruptures, the petals on positive and negative electrodes may contact each other, forming internal short circuit (ISC). In this study, we conducted an experimental investigation on LIB coin cells with current collectors modified by surface notches. Our testing results showed that as the current collector contained appropriate surface notches, the cracking mode of electrode in a damaged LIB cell could be adjusted. Particularly, if a complete circumferential crack was generated, the petals would be cut off, which drastically reduced the area of electrode involved in ISC and the associated heat generation rate. A parameterized study was performed to analysis various surface-notch configurations. We identified an efficient surface-notch design that consistently led to trivial temperature increase of ISC.
[Study on physical deviation factors on laser induced breakdown spectroscopy measurement].
Wan, Xiong; Wang, Peng; Wang, Qi; Zhang, Qing; Zhang, Zhi-Min; Zhang, Hua-Ming
2013-10-01
In order to eliminate the deviation between the measured LIBS spectral line and the standard LIBS spectral line, and improve the accuracy of elements measurement, a research of physical deviation factors in laser induced breakdown spectroscopy technology was proposed. Under the same experimental conditions, the relationship of ablated hole effect and spectral wavelength was tested, the Stark broadening data of Mg plasma laser induced breakdown spectroscopy with sampling time-delay from 1.00 to 3.00 micros was also studied, thus the physical deviation influences such as ablated hole effect and Stark broadening could be obtained while collecting the spectrum. The results and the method of the research and analysis can also be applied to other laser induced breakdown spectroscopy experiment system, which is of great significance to improve the accuracy of LIBS elements measuring and is also important to the research on the optimum sampling time-delay of LIBS.
Nanotechnology for environmentally sustainable electromobility
NASA Astrophysics Data System (ADS)
Ellingsen, Linda Ager-Wick; Hung, Christine Roxanne; Majeau-Bettez, Guillaume; Singh, Bhawna; Chen, Zhongwei; Whittingham, M. Stanley; Strømman, Anders Hammer
2016-12-01
Electric vehicles (EVs) powered by lithium-ion batteries (LIBs) or proton exchange membrane hydrogen fuel cells (PEMFCs) offer important potential climate change mitigation effects when combined with clean energy sources. The development of novel nanomaterials may bring about the next wave of technical improvements for LIBs and PEMFCs. If the next generation of EVs is to lead to not only reduced emissions during use but also environmentally sustainable production chains, the research on nanomaterials for LIBs and PEMFCs should be guided by a life-cycle perspective. In this Analysis, we describe an environmental life-cycle screening framework tailored to assess nanomaterials for electromobility. By applying this framework, we offer an early evaluation of the most promising nanomaterials for LIBs and PEMFCs and their potential contributions to the environmental sustainability of EV life cycles. Potential environmental trade-offs and gaps in nanomaterials research are identified to provide guidance for future nanomaterial developments for electromobility.
Lee, Jong Jin; Moon, Youngmin; Han, Jung Hyun; Jeong, Sungho
2017-04-01
The concentration difference of major elements in melanocytic skin with respect to pigmentation level is analysed by laser-induced breakdown spectroscopy (LIBS) to investigate the applicability of LIBS as an in situ feedback tool for selective and complete laser removal of melanocytic skin tissue like nevus. The skin of black silkie chicken which had a characteristic darkly pigmented perifollicular skin surrounded by lightly pigmented extrafollicular skin was used as the sample. The results showed higher LIBS signal intensities of Ca 2+ and Mg 2+ but lower intensities of Na + , Cl - and K + in the perifollicular skin than in the extrafollicular skin, which demonstrated the feasibility to use LIBS as a reliable method to distinguish skin tissues with difference in pigmentation level. Plasma emission of biochemical elements generated with a laser irradiation on melanocytic skin lesion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gondal, M A; Habibullah, Y B; Baig, Umair; Oloore, L E
2016-05-15
Tea is one of the most common and popular beverages spanning vast array of cultures all over the world. The main nutritional benefits of drinking tea are its anti-oxidant properties, presumed protection against certain cancers, inhibition of inflammation and possible protective effects against diabetes. Laser induced breakdown spectrometer (LIBS) was assembled as a powerful tool for qualitative and quantitative analysis of various brands of tea samples using 266 nm pulsed UV laser. LIBS spectra for six brands of tea samples in the wavelength range of 200-900 nm was recorded and all elements present in our tea samples were identified. The major toxic elements detected in several brands of tea samples were bromine, chromium and minerals like iron, calcium, potassium and silicon. The spectral assignment was conducted prior to the determination of concentration of each element. For quantitative analysis, calibration curves were drawn for each element using standard samples prepared in known concentration in the tea matrix. The plasma parameters (electron temperature and electron density) were also determined prior to the tea samples spectroscopic analysis. The concentration of iron, chromium, potassium, bromine, copper, silicon and calcium detected in all tea samples was between 378-656, 96-124, 1421-6785, 99-1476, 17-36, 2-11 and 92-130 mg L(-1) respectively. The limits of detection estimated for Fe, Cr, K, Br, Cu, Si, Ca in tea samples were 22, 12, 14, 11, 6, 1 and 12 mg L(-1) respectively. To further confirm the accuracy of our LIBS results, we determined the concentration of each element present in tea samples by using standard analytical technique like ICP-MS. The concentrations detected with our LIBS system are in excellent agreement with ICP-MS results. The system assembled for spectral analysis in this work could be highly applicable for testing the quality and purity of food and also pharmaceuticals products. Copyright © 2016 Elsevier B.V. All rights reserved.
Wavelength comparison for laser induced breakdown spectroscopy caries detection
NASA Astrophysics Data System (ADS)
Amaral, Marcello M.; Raele, Marcus P.; Ana, Patrícia A.; Núñez, Sílvia C.; Zamataro, Claudia B.; Zezell, Denise M.
2018-02-01
Laser Induced Breakdown Spectroscopy (LIBS) is a technique capable to perform elemental analyses of a variety of samples, independent of matter state. Other spectroscopy techniques may require a destructive and time-consuming sample preparation. On the other hand, LIBS is a less destructive technique with no (or considerably less) sample preparation, using a relatively simple experimental setup. LIBS also provides a multielement analysis into one single spectrum acquisition, applying a Nd:YAG short-pulsed laser to ensure the stoichiometry between the sample and the generated plasma. LIBS have been applied on the study of carious lesions using a Nd:YAG into its fundamental emission at 1064 nm. It was shown that ratio of P/Ca and Zn/Ca can be used to monitor the cariogenic process. Another minor elements, e.g. C and Cu, associated with bacteria biofilm were also measured with the Nd:YAG laser. The fundamental wavelength emission (1064 nm) of Nd:YAG is coincident with a hydroxyapatite transmission window and it may affect the result. In order to address this issue a study used the second harmonic of the Nd:YAG laser at 532 nm. It was show that it is also possible perform LIBS on carious lesion using the Nd:YAG at 532 nm. However, there is not a work direct comparing the LIBS at 532 nm and 1064 nm for carious lesion detection. So, the aim of this work was to investigate the influence of laser wavelength on the LIBS performance for carious lesion detection. In both cases the carious lesion was detected with the advantage of no interference with hydroxyapatite at 532 nm.
Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries.
Dash, Ranjan; Pannala, Sreekanth
2016-06-17
Silicon (Si) is under consideration as a potential next-generation anode material for the lithium ion battery (LIB). Experimental reports of up to 40% increase in energy density of Si anode based LIBs (Si-LIBs) have been reported in literature. However, this increase in energy density is achieved when the Si-LIB is allowed to swell (volumetrically expand) more than graphite based LIB (graphite-LIB) and beyond practical limits. The volume expansion of LIB electrodes should be negligible for applications such as automotive or mobile devices. We determine the theoretical bounds of Si composition in a Si-carbon composite (SCC) based anode to maximize the volumetric energy density of a LIB by constraining the external dimensions of the anode during charging. The porosity of the SCC anode is adjusted to accommodate the volume expansion during lithiation. The calculated threshold value of Si was then used to determine the possible volumetric energy densities of LIBs with SCC anode (SCC-LIBs) and the potential improvement over graphite-LIBs. The level of improvement in volumetric and gravimetric energy density of SCC-LIBs with constrained volume is predicted to be less than 10% to ensure the battery has similar power characteristics of graphite-LIBs.
Effect of Atmosphere on Collinear Double-Pulse Laser-Induced Breakdown Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew J. Effenberger, Jr; Jill R. Scott
2011-07-01
Double pulse laser induced breakdown spectroscopy (DP-LIBS) has been shown to enhance LIBS spectra. Several researches have reported significant increases in signal-to-noise and or spectral intensity. In addition to DP-LIBS, atmospheric conditions can also increase spectra intensity. For example, He and Ar both increase LIBS intensity compared to air at one 1 atm. It was also found that as the pressure was decreased to 100 Torr, LIBS intensity increased in Ar and air for single pulse (SP) LIBS. In this study, a collinear DP-LIBS scheme is used along with manipulation of the atmospheric conditions. The DP-LIBS scheme consists of amore » 355 nm ablative pulse fired into a sample contained in a vacuum chamber. A second analytical 1064 nm pulse is then fired 100 ns to 10 {micro}s after and along the same path of the first pulse. Ar, He and air at pressures ranging from atmospheric pressure (630 Torr at elevation) to 10{sup -5} Torr are introduced during DP-LIBS and SP-LIBS experiments. For a brass sample, a significant increase in spectral intensity of Cu and Zn lines were observed in DP-LIBS under Ar compared to DP-LIBS in air. It was also found that Cu and Zn lines acquired with SP-LIBS in Ar are nearly as intense as DP-LIBS in air. Signal-to-noise for lines from various samples will be reported for both DP-LIBS and SP-LIBS in Ar, He, and air at pressures ranging from 630 Torr to 10{sup -5} Torr.« less
Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew J. Effenberger, Jr.; Jill R. Scott
2010-09-01
Double pulse laser induced breakdown spectroscopy (DP-LIBS) has been shown to enhance LIBS spectra. Several researches have reported significant increases in signal-to-noise and or spectral intensity [1-4]. In addition to DP-LIBS, atmospheric conditions can also increase spectra intensity. For example, Iida [5] found that He and Ar both increase LIBS intensity compared to air at one 1 atm. It was also found that as the pressure was decreased to 100 Torr, LIBS intensity increased in Ar and air for single pulse (SP) LIBS. In this study, a collinear DP-LIBS scheme is used along with manipulation of the atmospheric conditions. Themore » DP-LIBS scheme consists of a 355 nm ablative pulse fired into a sample contained in a vacuum chamber. A second analytical 1064 nm pulse is then fired 100 ns to 10 µs after and along the same path of the first pulse. Ar, He and air at pressures ranging from atmospheric pressure (630 Torr at elevation) to 10-5 Torr are introduced during DP-LIBS and SP-LIBS experiments. For a brass sample, a significant increase in spectral intensity of Cu and Zn lines were observed in DP-LIBS under Ar compared to DP-LIBS in air (Figure 1). It was also found that Cu and Zn lines acquired with SP-LIBS in Ar are nearly as intense as DP-LIBS in air. Signal-to-noise for lines from various samples will be reported for both DP-LIBS and SP-LIBS in Ar, He, and air at pressures ranging from 630 Torr to 10-5 Torr.« less
Hu, Zhi-yu; Zhang, Lei; Ma, Wei-guang; Yan, Xiao-juan; Li, Zhi-xin; Zhang, Yong-zhi; Wang, Le; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang
2012-03-01
Self-designed identifying software for LIBS spectral line was introduced. Being integrated with LabVIEW, the soft ware can smooth spectral lines and pick peaks. The second difference and threshold methods were employed. Characteristic spectrum of several elements matches the NIST database, and realizes automatic spectral line identification and qualitative analysis of the basic composition of sample. This software can analyze spectrum handily and rapidly. It will be a useful tool for LIBS.
Downhole Elemental Analysis with LIBS
NASA Technical Reports Server (NTRS)
Moreschini, Paolo; Zacny, Kris; Rickman, Doug
2011-01-01
In this paper we discuss a novel instrument, currently under development at Honeybee Robotics with SBIR funding from NASA. The device is designed to characterize elemental composition as a function of depth in non-terrestrial geological formations. The instrument consists of a miniaturized laser-induced breakdown spectrometer (LIBS) analyzer integrated in a 2" diameter drill string. While the drill provides subsurface access, the LIBS analyzer provides information on the elemental composition of the borehole wall. This instrument has a variety of space applications ranging from exploration of the Moon for which it was originally designed, to Mars, as well as a variety of terrestrial applications. Subsurface analysis is usually performed by sample acquisition through a drill or excavator, followed by sample preparation and subsequent sample presentation to an instrument or suite of instruments. An alternative approach consisting in bringing a miniaturized version of the instrument to the sample has many advantages over the traditional methodology, as it allows faster response, reduced probability of cross-contamination and a simplification in the sampling mechanisms. LIBS functions by focusing a high energy laser on a material inducing a plasma consisting of a small fraction of the material under analysis. Optical emission from the plasma, analyzed by a spectrometer, can be used to determine elemental composition. A triangulation sensor located in the sensor head determines the distance of the sensor from the borehole wall. An actuator modifies the position of the sensor accordingly, in order to compensate for changes due to the profile of the borehole walls. This is necessary because LIBS measurements are negatively affected by changes in the relative position of the focus of the laser with respect to the position of the sample (commonly referred to as the "lens to sample distance"). Profiling the borehole is done by adjusting the position of the sensor with a vertical stage; a second actuator at the top of the downhole probe allows radial scanning of the borehole. Analysis of iron and titanium in lunar simulant with LIBS was performed in air using the method of standard addition. The results for lunar simulant NU-LHT-2M show a value for the concentration of iron ranging between 2.29% and 3.05% depending on the atomic line selected. The accepted value for the sample analyzed is 2.83%, showing the capability for the system in development to provide qualitative and semi-quantitative analysis in real-time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barefield Ii, James E; Clegg, Samuel M; Lopez, Leon N
2010-01-01
Advanced methodologies and improvements to current measurements techniques are needed to strengthen the effectiveness and efficiency of international safeguards. This need was recognized and discussed at a Technical Meeting on 'The Application of Laser Spectrometry Techniques in IAEA Safeguards' held at IAEA headquarters (September 2006). One of the principal recommendations from that meeting was the need to pursue the development of novel complementary access instrumentation based on Laser Induced Breakdown Spectroscopy (UBS) for the detection of gaseous and solid signatures and indicators of nuclear fuel cycle processes and associated materials'. Pursuant to this recommendation the Department of Safeguards (SG) undermore » the Division of Technical Support (SGTS) convened the 'Experts and Users Advisory Meeting on Laser Induced Breakdown Spectroscopy (LIBS) for Safeguards Applications' also held at IAEA headquarters (July 2008). This meeting was attended by 12 LlBS experts from the Czech Republic, the European Commission, France, the Republic of South Korea, the United States of America, Germany, the United Kingdom of Great Britain, Canada, and Northern Ireland. Following a presentation of the needs of the IAEA inspectors, the LIBS experts agreed that needs as presented could be partially or fully fulfilled using LIBS instrumentation. Inspectors needs were grouped into the following broad categories: (1) Improvements to in-field measurements/environmental sampling; (2) Monitoring status of activities in Hot Cells; (3) Verify status of activity at a declared facility via process monitoring; and (4) Need for pre-screening of environmental samples before analysis. The primary tool employed by the IAEA to detect undeclared processes and activities at special nuclear material facilities and sites is environmental sampling. One of the objectives of the Next Generation Safeguards Initiative (NGSI) Program Plan calls for the development of advanced tools and methodologies to detect and analyze undeclared processing or production of special nuclear material. Los Alamos National Laboratory is currently investigating potential uses of LIBS for safeguards applications, including (1) a user-friendly man-portable LIBS system to characterize samples in real to near-real time (typical analysis time are on the order of minutes) across a wide range of elements in the periodic table from hydrogen up to heavy elements like plutonium and uranium, (2) a LIBS system that can be deployed in harsh environments such as hot cells and glove boxes providing relative compositional analysis of process streams for example ratios like Cm/Up and Cm/U, (3) an inspector field deployable system that can be used to analyze the elemental composition of microscopic quantities of samples containing plutonium and uranium, and (4) a high resolution LIBS system that can be used to determine the isotopic composition of samples containing for example uranium, plutonium... etc. In this paper, we will describe our current development and performance testing results for LIBS instrumentation both in a fixed lab and measurements in field deployable configurations.« less
Liu, Dong
2013-01-01
Isoleucine is one of the branched-chain amino acids (BCAAs) that are essential substrates for protein synthesis in all organisms. Although the metabolic pathway for isoleucine has been well characterized in higher plants, it is not known whether it plays a specific role in plant development. In this study, an Arabidopsis mutant, lib (low isoleucine biosynthesis), that has defects in both cell proliferation and cell expansion processes during root development, was characterized. The lib mutant carries a T-DNA insertion in the last exon of the OMR1 gene that encodes a threonine deaminase/dehydratase (TD). TD catalyses the deamination and dehydration of threonine, which is the first and also the committed step in the biosynthesis of isoleucine. This T-DNA insertion results in a partial deficiency of isoleucine in lib root tissues but it does not affect its total protein content. Application of exogenous isoleucine or introduction of a wild-type OMR1 gene into the lib mutant can completely rescue the mutant phenotypes. These results reveal an important role for isoleucine in plant development. In addition, microarray analysis indicated that the partial deficiency of isoleucine in the lib mutant triggers a decrease in transcript levels of the genes encoding the major enzymes involved in the BCAA degradation pathway; the analysis also indicated that many genes involved in the biosynthesis of methionine-derived glucosinolates are up-regulated. PMID:23230023
Next generation laser-based standoff spectroscopy techniques for Mars exploration.
Gasda, Patrick J; Acosta-Maeda, Tayro E; Lucey, Paul G; Misra, Anupam K; Sharma, Shiv K; Taylor, G Jeffrey
2015-01-01
In the recent Mars 2020 Rover Science Definition Team Report, the National Aeronautics and Space Administration (NASA) has sought the capability to detect and identify elements, minerals, and most importantly, biosignatures, at fine scales for the preparation of a retrievable cache of samples. The current Mars rover, the Mars Science Laboratory Curiosity, has a remote laser-induced breakdown spectroscopy (LIBS) instrument, a type of quantitative elemental analysis, called the Chemistry Camera (ChemCam) that has shown that laser-induced spectroscopy instruments are not only feasible for space exploration, but are reliable and complementary to traditional elemental analysis instruments such as the Alpha Particle X-Ray Spectrometer. The superb track record of ChemCam has paved the way for other laser-induced spectroscopy instruments, such as Raman and fluorescence spectroscopy. We have developed a prototype remote LIBS-Raman-fluorescence instrument, Q-switched laser-induced time-resolved spectroscopy (QuaLITy), which is approximately 70 000 times more efficient at recording signals than a commercially available LIBS instrument. The increase in detection limits and sensitivity is due to our development of a directly coupled system, the use of an intensified charge-coupled device image detector, and a pulsed laser that allows for time-resolved measurements. We compare the LIBS capabilities of our system with an Ocean Optics spectrometer instrument at 7 m and 5 m distance. An increase in signal-to-noise ratio of at least an order of magnitude allows for greater quantitative analysis of the elements in a LIBS spectrum with 200-300 μm spatial resolution at 7 m, a Raman instrument capable of 1 mm spatial resolution at 3 m, and bioorganic fluorescence detection at longer distances. Thus, the new QuaLITy instrument fulfills all of the NASA expectations for proposed instruments.
Quantification of metals in preservatively-treated lumber using laser induced breakdown spectroscopy
Brad Gething; John Janowiak; Bob Falk
2006-01-01
The laser induced breakdown spectroscopy (LIBS) technique was evaluated for its capability of quantifying CCA in preservative-treated wood. The results of the study reveal that the LIBS technique can be used to predict the amount of preservative based on chromium peak analysis, but further refinement of the process is necessary before the technique is practiced. The...
Critical aspects of data analysis for quantification in laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Motto-Ros, V.; Syvilay, D.; Bassel, L.; Negre, E.; Trichard, F.; Pelascini, F.; El Haddad, J.; Harhira, A.; Moncayo, S.; Picard, J.; Devismes, D.; Bousquet, B.
2018-02-01
In this study, a collaborative contest focused on LIBS data processing has been conducted in an original way since the participants did not share the same samples to be analyzed on their own LIBS experiments but a set of LIBS spectra obtained from one single experiment. Each participant was asked to provide the predicted concentrations of several elements for two glass samples. The analytical contest revealed a wide diversity of results among participants, even when the same spectral lines were considered for the analysis. Then, a parametric study was conducted to investigate the influence of each step during the data processing. This study was based on several analytical figures of merit such as the determination coefficient, uncertainty, limit of quantification and prediction ability (i.e., trueness). Then, it was possible to interpret the results provided by the participants, emphasizing the fact that the type of data extraction, baseline modeling as well as the calibration model play key roles in the quantification performance of the technique. This work provides a set of recommendations based on a systematic evaluation of the quantification procedure with the aim of optimizing the methodological steps toward the standardization of LIBS.
Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries
Dash, Ranjan; Pannala, Sreekanth
2016-01-01
Silicon (Si) is under consideration as a potential next-generation anode material for the lithium ion battery (LIB). Experimental reports of up to 40% increase in energy density of Si anode based LIBs (Si-LIBs) have been reported in literature. However, this increase in energy density is achieved when the Si-LIB is allowed to swell (volumetrically expand) more than graphite based LIB (graphite-LIB) and beyond practical limits. The volume expansion of LIB electrodes should be negligible for applications such as automotive or mobile devices. We determine the theoretical bounds of Si composition in a Si–carbon composite (SCC) based anode to maximize the volumetric energy density of a LIB by constraining the external dimensions of the anode during charging. The porosity of the SCC anode is adjusted to accommodate the volume expansion during lithiation. The calculated threshold value of Si was then used to determine the possible volumetric energy densities of LIBs with SCC anode (SCC-LIBs) and the potential improvement over graphite-LIBs. The level of improvement in volumetric and gravimetric energy density of SCC-LIBs with constrained volume is predicted to be less than 10% to ensure the battery has similar power characteristics of graphite-LIBs. PMID:27311811
NASA Astrophysics Data System (ADS)
Xu, Tao; Zhang, Yong; Zhang, Ming; He, Yi; Yu, Qiaoling; Duan, Yixiang
2016-07-01
Optical emission of laser ablation plasma on a shale target surface provides sensitive laser-induced breakdown spectrometry (LIBS) detection of major, minor or trace elements. An exploratory study for the characterization of the plasma induced on shale materials was carried out with the aim to trigger a crucial step towards the quantitative LIBS measurement. In this work, the experimental strategies that optimize the plasma generation on a pressed shale pellet surface are presented. The temporal evolution properties of the plasma induced by ns Nd:YAG laser pulse at the fundamental wavelength in air were investigated using time-resolved space-integrated optical emission spectroscopy. The electron density as well as the temperatures of the plasma were diagnosed as functions of the decay time for the bulk plasma analysis. In particular, the values of time-resolved atomic and ionic temperatures of shale elements, such as Fe, Mg, Ca, and Ti, were extracted from the well-known Boltzmann or Saha-Boltzmann plot method. Further comparison of these temperatures validated the local thermodynamic equilibrium (LTE) within specific interval of the delay time. In addition, the temporal behaviors of the signal-to-noise ratio of shale elements, including Si, Al, Fe, Ca, Mg, Ba, Li, Ti, K, Na, Sr, V, Cr, and Ni, revealed the coincidence of their maximum values with LIBS LTE condition in the time frame, providing practical implications for an optimized LIBS detection of shale elements. Analytical performance of LIBS was further evaluated with the linear calibration procedure for the most concerned trace elements of Sr, V, Cr, and Ni present in different shales. Their limits of detection obtained are elementally dependent and can be lower than tens of parts per million with the present LIBS experimental configurations. However, the occurrence of saturation effect for the calibration curve is still observable with the increasing trace element content, indicating that, due to the complex composition of shale materials, the omnipresent "matrix effect" is still a great challenging for the performance of quantitative LIBS measurement even in the framework of the LTE approach.
Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens
We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less
Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens; ...
2016-12-15
We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less
NASA Astrophysics Data System (ADS)
Yi, Cancan; Lv, Yong; Xiao, Han; Ke, Ke; Yu, Xun
2017-12-01
For laser-induced breakdown spectroscopy (LIBS) quantitative analysis technique, baseline correction is an essential part for the LIBS data preprocessing. As the widely existing cases, the phenomenon of baseline drift is generated by the fluctuation of laser energy, inhomogeneity of sample surfaces and the background noise, which has aroused the interest of many researchers. Most of the prevalent algorithms usually need to preset some key parameters, such as the suitable spline function and the fitting order, thus do not have adaptability. Based on the characteristics of LIBS, such as the sparsity of spectral peaks and the low-pass filtered feature of baseline, a novel baseline correction and spectral data denoising method is studied in this paper. The improved technology utilizes convex optimization scheme to form a non-parametric baseline correction model. Meanwhile, asymmetric punish function is conducted to enhance signal-noise ratio (SNR) of the LIBS signal and improve reconstruction precision. Furthermore, an efficient iterative algorithm is applied to the optimization process, so as to ensure the convergence of this algorithm. To validate the proposed method, the concentration analysis of Chromium (Cr),Manganese (Mn) and Nickel (Ni) contained in 23 certified high alloy steel samples is assessed by using quantitative models with Partial Least Squares (PLS) and Support Vector Machine (SVM). Because there is no prior knowledge of sample composition and mathematical hypothesis, compared with other methods, the method proposed in this paper has better accuracy in quantitative analysis, and fully reflects its adaptive ability.
NASA Astrophysics Data System (ADS)
Ferreira, Edilene; Ferreira, Ednaldo; Villas-Boas, Paulino; Senesi, Giorgio; Carvalho, Camila; Romano, Renan; Martin-Neto, Ladislau; Milori, Debora
2014-05-01
Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SOM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration in soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of Laser-Induced Breakdown Spectroscopy (LIBS) to estimate the HD of SOM was evaluated for the first time. In a LIBS experiment a high-energy laser pulse irradiates the sample and the energy absorbed by the sample causes a local heating of the material that results in its evaporation or sublimation. The high temperature of the ablated material generates a small plasma plume and, as a result of the plasma temperature, the ablated material breaks down into excited atomic and ionic species. During the plasma cooling, the excited species return to their lower energy state emitting electromagnetic radiation at characteristic wavelengths. In a LIBS spectrum the measurement of the characteristic emission wavelengths provides qualitative information about the elemental composition of the sample, whereas the intensities of the signals can be used for quantitative determinations. The LIBS potential for the analysis of organic compounds has been explored recently by using the emission lines of elements that are commonly present in organic compounds, such as the predominant C, H, P, O and N. LIBS elemental emissions were correlated to fluorescence emissions determined by Laser-Induced Fluorescence Spectroscopy (LIFS), which was considered as the reference technique. The HD of SOM determined by LIBS showed a strong correlation to that determined by LIFS, suggesting a great potential of LIBS for this novel application.
NASA Astrophysics Data System (ADS)
Ahlers, B.; Hutchinson, I.; Ingley, R.
2017-11-01
A spectrometer for combined Raman and Laser Induced Breakdown Spectroscopy (LIBS) is amongst the different instruments that have been pre-selected for the Pasteur payload of the ExoMars rover. It is regarded as a fundamental, next-generation instrument for organic, mineralogical and elemental characterisation of Martian soil, rock samples and organic molecules. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities [1]. The combined Raman / LIBS instrument has been recommended as the highest priority mineralogy instrument to be included in the rover's analytical laboratory for the following tasks: Analyse surface and sub-surface soil and rocks on Mars, identify organics in the search for life and determine soil origin & toxicity. The synergy of the system is evident: the Raman spectrometer is dedicated to molecular analysis of organics and minerals; the LIBS provides information on the sample's elemental composition. An international team, under ESA contract and with the leadership of TNO Science and Industry, has built and tested an Elegant Bread Board (EBB) of the combined Raman / LIBS instrument. The EBB comprises a specifically designed, extremely compact, spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. The EBB also includes lasers, illumination and imaging optics as well as fibre optics for light transfer. A summary of the functional and environmental requirements together with a description of the optical design and its expected performance are described in [2]. The EBB was developed and constructed to verify the instruments' end-to-end functional performance with natural samples. The combined Raman / LIBS EBB realisation and test results of natural samples will be presented. For the Flight Model (FM) instrument, currently in the design phase, the Netherlands will be responsible for the design, development and verification of the spectrometer unit, while the UK provides the detector. The differences between the EBB and the FM will be demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Lucia, Frank C. Jr.; Gottfried, Jennifer L.; Munson, Chase A.
2008-11-01
A technique being evaluated for standoff explosives detection is laser-induced breakdown spectroscopy (LIBS). LIBS is a real-time sensor technology that uses components that can be configured into a ruggedized standoff instrument. The U.S. Army Research Laboratory has been coupling standoff LIBS spectra with chemometrics for several years now in order to discriminate between explosives and nonexplosives. We have investigated the use of partial least squares discriminant analysis (PLS-DA) for explosives detection. We have extended our study of PLS-DA to more complex sample types, including binary mixtures, different types of explosives, and samples not included in the model. We demonstrate themore » importance of building the PLS-DA model by iteratively testing it against sample test sets. Independent test sets are used to test the robustness of the final model.« less
Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means
NASA Astrophysics Data System (ADS)
Yangmin, GUO; Yun, TANG; Yu, DU; Shisong, TANG; Lianbo, GUO; Xiangyou, LI; Yongfeng, LU; Xiaoyan, ZENG
2018-06-01
Laser-induced breakdown spectroscopy (LIBS) combined with K-means algorithm was employed to automatically differentiate industrial polymers under atmospheric conditions. The unsupervised learning algorithm K-means were utilized for the clustering of LIBS dataset measured from twenty kinds of industrial polymers. To prevent the interference from metallic elements, three atomic emission lines (C I 247.86 nm , H I 656.3 nm, and O I 777.3 nm) and one molecular line C–N (0, 0) 388.3 nm were used. The cluster analysis results were obtained through an iterative process. The Davies–Bouldin index was employed to determine the initial number of clusters. The average relative standard deviation values of characteristic spectral lines were used as the iterative criterion. With the proposed approach, the classification accuracy for twenty kinds of industrial polymers achieved 99.6%. The results demonstrated that this approach has great potential for industrial polymers recycling by LIBS.
NASA Astrophysics Data System (ADS)
Rehse, Steven J.; Miziolek, Andrzej W.
2012-06-01
Laser-induced breakdown spectroscopy (LIBS) has made tremendous progress in becoming a viable technology for rapid bacterial pathogen detection and identification. The significant advantages of LIBS include speed (< 1 sec analysis), portability, robustness, lack of consumables, little to no need for sample preparation, lack of genetic amplification, and the ability to identify all bacterial pathogens without bias (including spore-forms and viable but nonculturable specimens). In this manuscript, we present the latest advances achieved in LIBS-based bacterial sensing including the ability to uniquely identify species from more than five bacterial genera with high-sensitivity and specificity. Bacterial identifications are completely unaffected by environment, nutrition media, or state of growth and accurate diagnoses can be made on autoclaved or UV-irradiated specimens. Efficient discrimination of bacteria at the strain level has been demonstrated. A rapid urinary tract infection diagnosis has been simulated with no sample preparation and a one second diagnosis of a pathogen surrogate has been demonstrated using advanced chemometric analysis with a simple "stop-light" user interface. Stand-off bacterial identification at a 20-m distance has been demonstrated on a field-portable instrument. This technology could be implemented in doctors' offices, clinics, or hospital laboratories for point-of-care medical specimen analysis; mounted on military medical robotic platforms for in-the- field diagnostics; or used in stand-off configuration for remote sensing and detection.
Vortmann, Britta; Nowak, Sascha; Engelhard, Carsten
2013-03-19
Lithium ion batteries (LIBs) are key components for portable electronic devices that are used around the world. However, thermal decomposition products in the battery reduce its lifetime, and decomposition processes are still not understood. In this study, a rapid method for in situ analysis and reaction monitoring in LIB electrolytes is presented based on high-resolution mass spectrometry (HR-MS) with low-temperature plasma probe (LTP) ambient desorption/ionization for the first time. This proof-of-principle study demonstrates the capabilities of ambient mass spectrometry in battery research. LTP-HR-MS is ideally suited for qualitative analysis in the ambient environment because it allows direct sample analysis independent of the sample size, geometry, and structure. Further, it is environmental friendly because it eliminates the need of organic solvents that are typically used in separation techniques coupled to mass spectrometry. Accurate mass measurements were used to identify the time-/condition-dependent formation of electrolyte decomposition compounds. A LIB model electrolyte containing ethylene carbonate and dimethyl carbonate was analyzed before and after controlled thermal stress and over the course of several weeks. Major decomposition products identified include difluorophosphoric acid, monofluorophosphoric acid methyl ester, monofluorophosphoric acid dimethyl ester, and hexafluorophosphate. Solvents (i.e., dimethyl carbonate) were partly consumed via an esterification pathway. LTP-HR-MS is considered to be an attractive method for fundamental LIB studies.
NASA Astrophysics Data System (ADS)
Kiyokawa, T.; Nakajima, M.; Mori, Y.
2012-01-01
Application of Lithium Ion Battery (LIB) is getting growth these days in space industry. Through the supply chain of LIB, it is very important to establish deepen mutual understandings between space industry people and non-space industry people in order to meet requirements of space grade quality control. Furthermore, this approach has positive effects for safety handling and safety transportation. This paper explains necessity of mutual understandings based on the analysis of aviation incident report. The study is focused on its background and issues on each related industry. These contents are studied and discussed in the New Work Item Proposal of the International Standard of LIB for space vehicle.
Takeda, Sahori; Morimura, Wataru; Liu, Yi-Hung; Sakai, Tetsuo; Saito, Yuria
2016-08-15
Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard. In this study, mass spectrometric analytical methods were utilized for the identification of the individual degradation products. The degradation products in the electrolytes recovered from cycle-tested cells were separated by liquid chromatography (LC) and their mass spectrometric analysis was conducted by electrospray ionization mass spectrometry (ESI-MS). For identification of degradation products on the surface of electrodes, atmospheric solid analysis probe (ASAP)-MS analysis was conducted by time-of-flight mass spectrometry with an ASAP probe and an atmospheric pressure chemical ionization source. The degradation products in the electrolytes, namely carbonate oligomers and organophosphates, were identified simultaneously by LC/ESI-MS. Their formation mechanisms were estimated, which explain their different compositions at different temperatures. One degradation product was found on the anode surface by ASAP-MS, and its formation mechanism was explained similarly to those in the electrolyte. The results suggest that the electrolyte degradation is correlated with the formation of a solid electrolyte interphase, which is an important factor in the performance of LIBs. We expect that further investigation of the degradation products by LC/ESI-MS and ASAP-MS will be helpful for studying their degradation processes in LIBs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Simulated In Situ Determination of Soil Profile Organic and Inorganic Carbon With LIBS and VisNIR
NASA Astrophysics Data System (ADS)
Bricklemyer, R. S.; Brown, D. J.; Clegg, S. M.; Barefield, J. E.
2008-12-01
There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laser Induced Breakdown Spectroscopy (LIBS) and Visible and Near Infrared Spectroscopy (VisNIR) are complementary analytical techniques that have the potential to fill that need. The LIBS method provides precise elemental analysis of soils, but generally cannot distinguish between organic C and inorganic C. VisNIR has been established as a viable technique for measuring soil properties including SOC and inorganic carbon (IC). As part of the Big Sky Carbon Sequestration Regional Partnership, 240 intact core samples (3.8 x 50 cm) have been collected from six agricultural fields in north central Montana, USA. Each of these core samples were probed concurrently with LIBS and VisNIR at 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 35 and 45 cm (+/- 1.5 cm) depths. VisNIR measurements were taken using an Analytical Spectral Devices (ASD, Boulder, CO, USA) Agrispec spectrometer to determine the partition of SOC vs. IC in the samples. The LIBS scans were collected with the LANL LIBS Core Scanner Instrument which collected the entire 200 - 900 nm plasma emission including the 247.8 nm carbon emission line. This instrument also collected the emission from the elements typically found in inorganic carbon (Ca and Mg) and organic carbon (H, O, and N). Subsamples of soil (~ 4 g) were taken from interrogation points for laboratory determination of SOC and IC. Using this analytical data, we constructed several full spectrum multivariate VisNIR/LIBS calibration models for SOC and IC. These models were then applied to independent validation cores for model evaluation.
ERIC Educational Resources Information Center
Maceli, Monica
2015-01-01
This research study explores technology-related course offerings in ALA-accredited library and information science (LIS) graduate programs in North America. These data are juxtaposed against a text analysis of several thousand LIS-specific technology job listings from the Code4lib jobs website. Starting in 2003, as a popular library technology…
NASA Astrophysics Data System (ADS)
Díaz, Daniel; Molina, Alejandro; Hahn, David
2018-07-01
The influence of laser irradiance and wavelength on the analysis of gold and silver in ore and surrogate samples with laser-induced breakdown spectroscopy (LIBS) was evaluated. Gold-doped mineral samples (surrogates) and ore samples containing naturally-occurring gold and silver were analyzed with LIBS using 1064 and 355 nm laser wavelengths at irradiances from 0.36 × 109 to 19.9 × 109 W/cm2 and 0.97 × 109 to 4.3 × 109 W/cm2, respectively. The LIBS net, background and signal-to-background signals were analyzed. For all irradiances, wavelengths, samples and analytes the calibration curves behaved linearly for concentrations from 1 to 9 μg/g gold (surrogate samples) and 0.7 to 47.0 μg/g silver (ore samples). However, it was not possible to prepare calibration curves for gold-bearing ore samples (at any concentration) nor for gold-doped surrogate samples with gold concentrations below 1 μg/g. Calibration curve parameters for gold-doped surrogate samples were statistically invariant at 1064 and 355 nm. Contrary, the Ag-ore analyte showed higher emission intensity at 1064 nm, but the signal-to-background normalization reduced the effect of laser wavelength of silver calibration plots. The gold-doped calibration curve metrics improved at higher laser irradiance, but that did not translate into lower limits of detection. While coefficients of determination (R2) and limits of detection did not vary significantly with laser wavelength, the LIBS repeatability at 355 nm improved up to a 50% with respect to that at 1064 nm. Plasma diagnostics by the Boltzmann and Stark broadening methods showed that the plasma temperature and electron density did not follow a specific trend as the wavelength changed for the delay and gate times used. This research presents supporting evidence that the LIBS discrete sampling features combined with the discrete and random distribution of gold in minerals hinder gold analysis by LIBS in ore samples; however, the use of higher laser irradiances at 1064 nm increased the probability of sampling and detecting naturally-occurring gold.
Contaminant concentration in environmental samples using LIBS and CF-LIBS
NASA Astrophysics Data System (ADS)
Pandhija, S.; Rai, N. K.; Rai, A. K.; Thakur, S. N.
2010-01-01
The present paper deals with the detection and quantification of toxic heavy metals like Cd, Co, Pb, Zn, Cr, etc. in environmental samples by using the technique of laser-induced breakdown spectroscopy (LIBS) and calibration-free LIBS (CF-LIBS). A MATLABTM program has been developed based on the CF-LIBS algorithm given by earlier workers and concentrations of pollutants present in industrial area soil have been determined. LIBS spectra of a number of certified reference soil samples with varying concentrations of toxic elements (Cd, Zn) have been recorded to obtain calibration curves. The concentrations of Cd and Zn in soil samples from the Jajmau area, Kanpur (India) have been determined by using these calibration curves and also by the CF-LIBS approach. Our results clearly demonstrate that the combination of LIBS and CF-LIBS is very useful for the study of pollutants in the environment. Some of the results have also been found to be in good agreement with those of ICP-OES.
Wang, Zhenzhen; Deguchi, Yoshihiro; Liu, Renwei; Ikutomo, Akihiro; Zhang, Zhenzhen; Chong, Daotong; Yan, Junjie; Liu, Jiping; Shiou, Fang-Jung
2017-09-01
Collinear long and short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under free running (FR) conditions as an external energy source. Comparing the measurement results of stainless steel in air using single-pulse LIBS (SP-LIBS) and DP-LIBS, the emission intensity was markedly enhanced using DP-LIBS. The temperature of plasma induced by DP-LIBS was maintained at a higher temperature under different gate delay time and short pulse-width laser power conditions compared with those measured using short SP-LIBS. Moreover, the variation rates of plasma temperatures measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short and long pulse widths. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method.
Multari, Rosalie A; Cremers, David A; Dupre, Jo Anne M; Gustafson, John E
2013-09-11
The rapid detection of biological contaminants, such as Escherichia coli O157:H7 and Salmonella enterica , on foods and food-processing surfaces is important to ensure food safety and streamline the food-monitoring process. Laser-induced breakdown spectroscopy (LIBS) is an ideal candidate technology for this application because sample preparation is minimal and results are available rapidly (seconds to minutes). Here, multivariate regression analysis of LIBS data is used to differentiate the live bacterial pathogens E. coli O157:H7 and S. enterica on various foods (eggshell, milk, bologna, ground beef, chicken, and lettuce) and surfaces (metal drain strainer and cutting board). The type (E. coli or S. enterica) of bacteria could be differentiated in all cases studied along with the metabolic state (viable or heat killed). This study provides data showing the potential of LIBS for the rapid identification of biological contaminants using spectra collected directly from foods and surfaces.
Identification of meat species by using laser-induced breakdown spectroscopy.
Bilge, Gonca; Velioglu, Hasan Murat; Sezer, Banu; Eseller, Kemal Efe; Boyaci, Ismail Hakki
2016-09-01
The aim of the present study is to identify meat species by using laser-induced breakdown spectroscopy (LIBS). Elemental composition differences between meat species were used for meat identification. For this purpose, certain amounts of pork, beef and chicken were collected from different sources and prepared as pellet form for LIBS measurements. The obtained LIBS spectra were evaluated with some chemometric methods, and meat species were qualitatively discriminated with principal component analysis (PCA) method with 83.37% ratio. Pork-beef and chicken-beef meat mixtures were also analyzed with partial least square (PLS) method quantitatively. Determination coefficient (R(2)) and limit of detection (LOD) values were found as 0.994 and 4.4% for pork adulterated beef, and 0.999 and 2.0% for chicken adulterated beef, respectively. In the light of the findings, it was seen that LIBS can be a valuable tool for quality control measurements of meat as a routine method. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayyad, M. H.; Saleem, M.; Shah, M.
In this work the technique of laser-induced breakdown spectroscopy (LIBS) has been used for the elemental analysis of cigarettes. For this purpose emission spectra have been measured of eleven different kinds of cigarette brands sold and/or produced in Pakistan. Analysis of the spectral peaks observed shows that Na, Mg, Al, K, Ca, Cr, Fe, Sr and Ba are contained in all brands. Exhibiting the LIBS results, the powerful potential of this method for the identification of the elemental content of cigarettes is demonstrated.
Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Sayyad, M. H.; Saleem, M.; Shah, M.; Shaikh, N. M.; Baig, M. A.
2008-05-01
In this work the technique of laser-induced breakdown spectroscopy (LIBS) has been used for the elemental analysis of cigarettes. For this purpose emission spectra have been measured of eleven different kinds of cigarette brands sold and/or produced in Pakistan. Analysis of the spectral peaks observed shows that Na, Mg, Al, K, Ca, Cr, Fe, Sr and Ba are contained in all brands. Exhibiting the LIBS results, the powerful potential of this method for the identification of the elemental content of cigarettes is demonstrated.
NASA Astrophysics Data System (ADS)
Idris, N.; Lahna, K.; Usmawanda, T. N.; Herman; Ramli, M.; Hedwig, R.; Marpaung, A. M.; Kurniawan, K. H.
2018-04-01
A wide coverage spectral investigation on the muscle of river calm sample has been carried out using laser-induced breakdown spectroscopy for examining the overall profile of the emission spectra from the produced plasma. The basic apparatus of LIBS system used is a Nd-YAG laser and wide coverage optical multichannel analyzer (OMA) system. The river clam samples used is collected from Panga River in Aceh Jaya Regency, Aceh, Indonesia up streaming in a mountain of Gunong Ujeun, which is used as a location of the intensive traditional mining activity. Assuming that heavy metal accumulated in the clam muscle, LIBS experiments were carried out on the muscle of the calm. The sample used was fresh muscle sliced and attached to a copper plate. Plasma was generated by focusing the laser beam on the sample surface under air surrounding gas at 1 atmosphere. It is found that there are only major elements of host organic, namely C, H, O, N and the minor element of salts can be detected from fresh the clam sample when using a high pulse laser energy under air surrounding at high pressure of 1 atmosphere. There is no emission lines from any metal can be detected. Several experimental parameters were explored to study the panoramic dynamic of the emission spectra. It is found that the lower energy and the lower pressure is better for obtaining better emission spectra showing the possibility for determination of the analyte.
NASA Astrophysics Data System (ADS)
Hark, R. R.; Harmon, R. S.; Remus, J. J.; East, L. J.; Wise, M. A.; Tansi, B. M.; Shughrue, K. M.; Dunsin, K. S.; Liu, C.
2012-04-01
Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different places of origin for a mineral because the LIBS plasma emission spectrum provides the complete chemical composition (i.e. geochemical fingerprint) of a mineral in real-time. An application of this approach with potentially significant commercial and political importance is the spectral fingerprinting of the 'conflict minerals' columbite-tantalite ("coltan"). Following a successful pilot study of three columbite-tantalite suites from the United States and Canada, a more geographically diverse set of samples from 37 locations worldwide were analyzed using a commercial laboratory LIBS system and a subset of samples also analyzed using a prototype broadband field-portable system. The spectral range from 250-490 nm was chosen for the laboratory analysis to encompass many of the intense emission lines for the major elements (Ta, Nb, Fe, Mn) and the significant trace elements (e.g., W, Ti, Zr, Sn, U, Sb, Ca, Zn, Pb, Y, Mg, and Sc) known to commonly substitute in the columbite-tantalite solid solution series crystal structure and in the columbite group minerals. The field-portable instrument offered an increased spectral range (198-1005 nm), over which all elements have spectral emission lines, and higher resolution than the laboratory instrument. In both cases, the LIBS spectra were analyzed using advanced multivariate statistical signal processing techniques. Partial Least Squares Discriminant Analysis (PLSDA) resulted in a correct place-level geographic classification at success rates between 90 and 100%. The possible role of rare-earth elements (REE's) as a factor contributing to the high levels of sample discrimination was explored. Given the fact that it can be deployed as a man-portable analytical technology, these results lend additional evidence that LIBS has the potential to be utilized in the field as a real-time tool to discriminate between columbite-tantalite ores of different provenance.
NASA Astrophysics Data System (ADS)
Gaona, I.; Serrano, J.; Moros, J.; Laserna, J. J.
2014-06-01
Although radioactive materials are nowadays valuable tools in nearly all fields of modern science and technology, the dangers stemming from the uncontrolled use of ionizing radiation are more than evident. Since preparedness is a key issue to face the risks of a radiation dispersal event, development of rapid and efficient monitoring technologies to control the contamination caused by radioactive materials is of crucial interest. Laser-induced breakdown spectroscopy (LIBS) exhibits appealing features for this application. This research focuses on the assessment of LIBS potential for the in-situ fingerprinting and identification of radioactive material surrogates from a safe distance. LIBS selectivity and sensitivity to detect a variety of radioactive surrogates, namely 59Co, 88Sr, 130Ba, 133Cs, 193Ir and 238U, on the surface of common urban materials at a distance of 30 m have been evaluated. The performance of the technique for nuclear forensics has been also studied on different model scenarios. Findings have revealed the difficulties to detect and to identify the analytes depending on the surface being interrogated. However, as demonstrated, LIBS shows potential enough for prompt and accurate gathering of essential evidence at a number of sites after the release, either accidental or intentional, of radioactive material. The capability of standoff analysis confers to LIBS unique advantages in terms of fast and safe inspection of forensic scenarios. The identity of the radioactive surrogates is easily assigned from a distance and the sensitivity to their detection is in the range of a few hundreds of ng per square centimeter.
An exploratory study of the potential of LIBS for visualizing gunshot residue patterns.
López-López, María; Alvarez-Llamas, César; Pisonero, Jorge; García-Ruiz, Carmen; Bordel, Nerea
2017-04-01
The study of gunshot residue (GSR) patterns can assist in the reconstruction of shooting incidences. Currently, there is a real need of methods capable of furnishing simultaneous elemental analysis with higher specificity for the GSR pattern visualization. Laser-Induced Breakdown Spectroscopy (LIBS) provides a multi-elemental analysis of the sample, requiring very small amounts of material and no sample preparation. Due to these advantages, this study aims at exploring the potential of LIBS imaging for the visualization of GSR patterns. After the spectral characterization of individual GSR particles, the distribution of Pb, Sb and Ba over clothing targets, shot from different distances, were measured in laser raster mode. In particular, an array of spots evenly spaced at 800μm, using a stage displacement velocity of 4mm/s and a laser frequency of 5Hz was employed (e.g. an area of 130×165mm 2 was measured in less than 3h). A LIBS set-up based on the simultaneous use of two spectrographs with iCCD cameras and a motorized stage was used. This set-up allows obtaining information from two different wavelength regions (258-289 and 446-463nm) from the same laser induced plasma, enabling the simultaneous detection of the three characteristic elements (Pb, Sb, and Ba) of GSR particles from conventional ammunitions. The ability to visualize the 2D distribution GSR pattern by LIBS may have an important application in the forensic field, especially for the ballistics area. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Yan, Jun Jie; Liu, Ji Ping
2013-11-01
Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width. In order to verify this method, low-pressure gas plasma was induced using nanosecond and picosecond lasers. The method was applied to the detection of Hg. The emission intensity ratio of the Hg atom to NO (IHg/INO) was analyzed to evaluate the LIBS detection limit because the NO emission (interference signal) was formed during the plasma generation and cooling process of N2 and O2 in the air. It was demonstrated that the enhancement of IHg/INO arose by decreasing the pressure to a few kilopascals, and the IHg/INO of the picosecond breakdown was always much higher than that of the nanosecond breakdown at low buffer gas pressure. Enhancement of IHg/INO increased more than 10 times at 700 Pa using picosecond laser with 35 ps pulse width. The detection limit was enhanced to 0.03 ppm (parts per million). We also saw that the spectra from the center and edge parts of plasma showed different features. Comparing the central spectra with the edge spectra, IHg/INO of the edge spectra was higher than that of the central spectra using the picosecond laser breakdown process.
ERIC Educational Resources Information Center
Guder, Christopher S.
2012-01-01
The purpose of this study was to explore how faculty and students responded to the Information Control section of the LibQUAL+® survey at two libraries with different Carnegie Classifications. As one of the institutions being studied was considering a shift from a research institution to one more focused on teaching and learning, this study used…
NASA Astrophysics Data System (ADS)
E. Romero, Carlos; De Saro, Robert
Coal is a non-uniform material with large inherent variability in composition, and other important properties, such as calorific value and ash fusion temperature. This quality variability is very important when coal is used as fuel in steam generators, since it affects boiler operation and control, maintenance and availability, and the extent and treatment of environmental pollution associated with coal combustion. On-line/in situ monitoring of coal before is fed into a boiler is a necessity. A very few analytical techniques like X-ray fluorescence and prompt gamma neutron activation analysis are available commercially with enough speed and sophistication of data collection for continuous coal monitoring. However, there is still a need for a better on-line/in situ technique that has higher selectivity, sensitivity, accuracy and precision, and that is safer and has a lower installation and operating costs than the other options. Laser induced breakdown spectroscopy (LIBS) is ideal for coal monitoring in boiler applications as it need no sample preparation, it is accurate and precise it is fast, and it can detect all of the elements of concern to the coal-fired boiler industry. LIBS data can also be adapted with advanced data processing techniques to provide real-time information required by boiler operators nowadays. This chapter summarizes development of LIBS for on-line/in situ coal applications in utility boilers.
NASA Astrophysics Data System (ADS)
Fortes, Francisco J.; Fernández-Bravo, Angel; Javier Laserna, J.
2014-10-01
Spectral identification of individual micro- and nano-sized particles by the sequential intervention of optical catapulting, optical trapping and laser-induced breakdown spectroscopy is presented. The three techniques are used for different purposes. Optical catapulting (OC) serves to put the particulate material under inspection in aerosol form. Optical trapping (OT) permits the isolation and manipulation of individual particles from the aerosol, which are subsequently analyzed by laser-induced breakdown spectroscopy (LIBS). Once catapulted, the dynamics of particle trapping depends both on the laser beam characteristics (power and intensity gradient) and on the particle properties (size, mass and shape). Particles are stably trapped in air at atmospheric pressure and can be conveniently manipulated for a precise positioning for LIBS analysis. The spectra acquired from the individually trapped particles permit a straightforward identification of the material inspected. Variability of LIBS signal for the inspection of Ni microspheres was 30% relative standard deviation. OC-OT-LIBS permits the separation of particles in a heterogeneous mixture and the subsequent analysis of the isolated particle of interest. In order to evaluate the sensitivity of the approach, the number of absolute photons emitted by a single trapped particle was calculated. The limit of detection (LOD) for Al2O3 particles was calculated to be 200 attograms aluminium.
Spectral analysis of rare earth elements using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Martin, Madhavi Z.; Fox, Robert V.; Miziolek, Andrzej W.; DeLucia, Frank C.; André, Nicolas
2015-06-01
There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.
Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W
2015-01-01
There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to bemore » able to quantify the concentrations of various REEs in real-world complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.« less
Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W
2015-01-01
There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to bemore » able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.« less
Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhavi Z. Martin; Robert V. Fox; Andrzej W. Miziolek
2001-05-01
There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to bemore » able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.« less
NASA Astrophysics Data System (ADS)
Mei, Yaguang; Cheng, Yuxin; Cheng, Shusen; Hao, Zhongqi; Guo, Lianbo; Li, Xiangyou; Zeng, Xiaoyan
2017-10-01
During the iron-making process in blast furnace, the Si content in liquid pig iron was usually used to evaluate the quality of liquid iron and thermal state of blast furnace. None effective method was found for rapid detecting the Si concentration of liquid iron. Laser-induced breakdown spectroscopy (LIBS) is a kind of atomic emission spectrometry technology based on laser ablation. Its obvious advantage is realizing rapid, in-situ, online analysis of element concentration in open air without sample pretreatment. The characteristics of Si in liquid iron were analyzed from the aspect of thermodynamic theory and metallurgical technology. The relationship between Si and C, Mn, S, P or other alloy elements were revealed based on thermodynamic calculation. Subsequently, LIBS was applied on rapid detection of Si of pig iron in this work. During LIBS detection process, several groups of standard pig iron samples were employed in this work to calibrate the Si content in pig iron. The calibration methods including linear, quadratic and cubic internal standard calibration, multivariate linear calibration and partial least squares (PLS) were compared with each other. It revealed that the PLS improved by normalization was the best calibration method for Si detection by LIBS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Kareem, O.; Ghoneim, M.; Harith, M. A.
2011-09-22
Analysis of metal objects is a necessary step for establishing an appropriate conservation treatment of an object or to follow up the application's result of the suggested treatments. The main considerations on selecting a method that can be used in investigation and analysis of metal objects are based on the diagnostic power, representative sampling, reproducibility, destructive nature/invasiveness of analysis and accessibility to the appropriate instrument. This study aims at evaluating the usefulness of the use of Laser Induced Breakdown Spectroscopy (LIBS) Technique for analysis of historical metal objects. In this study various historical metal objects collected from different museums andmore » excavations in Egypt were investigated using (LIBS) technique. For evaluating usefulness of the suggested analytical protocol of this technique, the same investigated metal objects were investigated by other methods such as Scanning Electron Microscope with energy-dispersive x-ray analyzer (SEM-EDX) and X-ray Diffraction (XRD). This study confirms that Laser Induced Breakdown Spectroscopy (LIBS) Technique is considered very useful technique that can be used safely for investigating historical metal objects. LIBS analysis can quickly provide information on the qualitative and semi-quantitative elemental content of different metal objects and their characterization and classification. It is practically non-destructive technique with the critical advantage of being applicable in situ, thereby avoiding sampling and sample preparations. It is can be dependable, satisfactory and effective method for low cost study of archaeological and historical metals. But we have to take into consideration that the corrosion of metal leads to material alteration and possible loss of certain metals in the form of soluble salts. Certain corrosion products are known to leach out of the object and therefore, their low content does not necessarily reflect the composition of the metal at the time of the object manufacture. Another point should be taken into consideration that the heterogeneity of a metal alloy object that often result from poor mixing of the different metal alloy composition.There is a necessity to carry out further research to investigate and determine the most appropriate and effective approaches and methods for conservation of these metal objects.« less
Stipe, Christopher B.; Miller, Arthur L.; Brown, Jonathan; Guevara, Edward; Cauda, Emanuele
2015-01-01
Airborne silica dust (quartz) is common in coal mines and represents a respiratory hazard that can lead to silicosis, a potentially fatal lung disease. With an eye toward developing a portable monitoring device for rapid analysis of silica dust, laser-induced breakdown spectroscopy (LIBS) was used to quantify quartz in coal dust samples collected on filter media. Pure silica (Min-U-Sil™ 5), Georgia kaolin, and Pittsburgh-4 and Illinois-6 coal dusts were deposited separately and at multiple mass loadings onto 37-mm polyvinylchloride (PVC) filters. LIBS-generated silicon emission was monitored at 288.16 nm, and non-silica contributions to that signal from kaolinite were removed by simultaneously detecting aluminum. Measurements of the four samples were used to calculate limits of detection (LOD) for silicon and aluminum of approximately 0.08 µg/cm2 and 0.05 µg/cm2, respectively (corresponding to 0.16 µg/cm2 and 0.20 µg/cm2 for silica and kaolinite, respectively). Relative errors of prediction are around 10%. Results demonstrate that LIBS can dependably quantify silica on filter samples of coal dust and confirm that accurate quantification can be achieved for very lightly loaded samples, which supports the potential application of LIBS for rapid, in-field monitoring. PMID:23146184
Stipe, Christopher B; Miller, Arthur L; Brown, Jonathan; Guevara, Edward; Cauda, Emanuele
2012-11-01
Airborne silica dust (quartz) is common in coal mines and represents a respiratory hazard that can lead to silicosis, a potentially fatal lung disease. With an eye toward developing a portable monitoring device for rapid analysis of silica dust, laser-induced breakdown spectroscopy (LIBS) was used to quantify quartz in coal dust samples collected on filter media. Pure silica (Min-U-Sil™ 5), Georgia kaolin, and Pittsburgh-4 and Illinois-6 coal dusts were deposited separately and at multiple mass loadings onto 37-mm polyvinylchloride (PVC) filters. LIBS-generated silicon emission was monitored at 288.16 nm, and non-silica contributions to that signal from kaolinite were removed by simultaneously detecting aluminum. Measurements of the four samples were used to calculate limits of detection (LOD) for silicon and aluminum of approximately 0.08 μg/cm(2) and 0.05 μg/cm(2), respectively (corresponding to 0.16 μg/cm(2) and 0.20 μg/cm(2) for silica and kaolinite, respectively). Relative errors of prediction are around 10%. Results demonstrate that LIBS can dependably quantify silica on filter samples of coal dust and confirm that accurate quantification can be achieved for very lightly loaded samples, which supports the potential application of LIBS for rapid, in-field monitoring.
Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei
2017-09-01
The laser induced breakdown spectroscopy (LIBS) technique is an effective method to detect material composition by obtaining the plasma emission spectrum. The overlapping peaks in the spectrum are a fundamental problem in the qualitative and quantitative analysis of LIBS. Based on a curve fitting method, this paper studies an error compensation method to achieve the decomposition and correction of overlapping peaks. The vital step is that the fitting residual is fed back to the overlapping peaks and performs multiple curve fitting processes to obtain a lower residual result. For the quantitative experiments of Cu, the Cu-Fe overlapping peaks in the range of 321-327 nm obtained from the LIBS spectrum of five different concentrations of CuSO 4 ·5H 2 O solution were decomposed and corrected using curve fitting and error compensation methods. Compared with the curve fitting method, the error compensation reduced the fitting residual about 18.12-32.64% and improved the correlation about 0.86-1.82%. Then, the calibration curve between the intensity and concentration of the Cu was established. It can be seen that the error compensation method exhibits a higher linear correlation between the intensity and concentration of Cu, which can be applied to the decomposition and correction of overlapping peaks in the LIBS spectrum.
Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries
NASA Astrophysics Data System (ADS)
Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji
2015-06-01
A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.
ERIC Educational Resources Information Center
Heath, Fred M.; Thompson, Bruce; Cook, Colleen; Thompson, Russel L.; Kyrillidou, Martha
2002-01-01
Includes four articles that discuss LibQUAL+[TM], a collaborative effort of the Association of Research Libraries and Texas A&M University responding to the need for greater accountability in measuring the delivery of library services to research library users. Discusses the reliability of LibQUAL+[TM] scores in measuring perceived library…
Qualitative Analysis of Dairy and Powder Milk Using Laser-Induced Breakdown Spectroscopy (LIBS).
Alfarraj, Bader A; Sanghapi, Herve K; Bhatt, Chet R; Yueh, Fang Y; Singh, Jagdish P
2018-01-01
Laser-induced breakdown spectroscopy (LIBS) technique was used to compare various types of commercial milk products. Laser-induced breakdown spectroscopy spectra were investigated for the determination of the elemental composition of soy and rice milk powder, dairy milk, and lactose-free dairy milk. The analysis was performed using radiative transitions. Atomic emissions from Ca, K, Na, and Mg lines observed in LIBS spectra of dairy milk were compared. In addition, proteins and fat level in milks can be determined using molecular emissions such as CN bands. Ca concentrations were calculated to be 2.165 ± 0.203 g/L in 1% of dairy milk fat samples and 2.809 ± 0.172 g/L in 2% of dairy milk fat samples using the standard addition method (SAM) with LIBS spectra. Univariate and multivariate statistical analysis methods showed that the contents of major mineral elements were higher in lactose-free dairy milk than those in dairy milk. The principal component analysis (PCA) method was used to discriminate four milk samples depending on their mineral elements concentration. In addition, proteins and fat level in dairy milks were determined using molecular emissions such as CN band. We applied partial least squares regression (PLSR) and simple linear regression (SLR) models to predict levels of milk fat in dairy milk samples. The PLSR model was successfully used to predict levels of milk fat in dairy milk sample with the relative accuracy (RA%) less than 6.62% using CN (0,0) band.
NASA Astrophysics Data System (ADS)
Rehan, Imran; Khan, M. Zubair; Ali, Irfan; Rehan, Kamran; Sultana, Sabiha; Shah, Sher
2018-03-01
The spectroscopic analysis of high protein nigella seeds (also called Kalonji) was performed using pulsed nanosecond laser-induced breakdown spectroscopy (LIBS) at 532 nm. The emission spectrum of Kalonji recorded with an LIBS spectrometer exposed the presence of various elements like Al, B, Ba, Ca, Cr, K, P, Mg, Mn, Na, Ni, S, Si, Cu, Fe, Ti, Sn, Sr, and Zn. The plasma parameters (electron temperature and electron density) were estimated using Ca-I spectral lines and their behavior were studied against laser irradiance. The electron temperature and electron density was observed to show an increasing trend in the range of 5802-7849 K, and (1.2-3.9) × 1017 cm- 3, respectively, in the studied irradiance range of (1.2-12.6) × 109 W/cm2. Furthermore, the effect of varying laser energy on the integrated signal intensities was also studied. The quantitative analysis of the detected elements was performed via the calibration curves drawn for all the observed elements through typical samples made in the known concentration in the Kalonji matrix, and by setting the concentration of P as the calibration. The validity of our LIBS findings was verified via comparison of the results with the concentration of every element find in Kalonji using the standard analytical tool like ICP/OES. The results acquired using LIBS and ICP/OES were found in fine harmony. Moreover, limit of detection was measured for toxic metals only.
NASA Astrophysics Data System (ADS)
Morton, Kenneth D., Jr.; Torrione, Peter A.; Collins, Leslie
2011-05-01
Laser induced breakdown spectroscopy (LIBS) can provide rapid, minimally destructive, chemical analysis of substances with the benefit of little to no sample preparation. Therefore, LIBS is a viable technology for the detection of substances of interest in near real-time fielded remote sensing scenarios. Of particular interest to military and security operations is the detection of explosive residues on various surfaces. It has been demonstrated that LIBS is capable of detecting such residues, however, the surface or substrate on which the residue is present can alter the observed spectra. Standard chemometric techniques such as principal components analysis and partial least squares discriminant analysis have previously been applied to explosive residue detection, however, the classification techniques developed on such data perform best against residue/substrate pairs that were included in model training but do not perform well when the residue/substrate pairs are not in the training set. Specifically residues in the training set may not be correctly detected if they are presented on a previously unseen substrate. In this work, we explicitly model LIBS spectra resulting from the residue and substrate to attempt to separate the response from each of the two components. This separation process is performed jointly with classifier design to ensure that the classifier that is developed is able to detect residues of interest without being confused by variations in the substrates. We demonstrate that the proposed classification algorithm provides improved robustness to variations in substrate compared to standard chemometric techniques for residue detection.
NASA Astrophysics Data System (ADS)
Cattani, F.; Gillot, P. Y.; Hildenbrand, A.; Quidelleur, X.; Courtade, F.; Boukari, C.; Lefevre, J. C.
2017-12-01
Absolute dating within ± 20% is needed to check and to calibrate the relative Martian chronology presently available. For that purpose, a K-Ar dating system has been developed to experiment the feasibility of such dating in future landing planetary missions. It consists in a laser ablation-based system built to vaporize a reproducible volume of rock. Potassium content is measured by laser-induced breakdown spectroscopy (LIBS) and argon by quadrupole mass spectrometry (QMS). Improvements of LIBS acquisition (optimization of optics part and normalization by total intensity spectrum) and QMS calibration (by reproducible known amount of argon) have been achieved. In addition, we have test the determination of ablated mass from volume measurement performed by profilometry technique. Instrument calibration for Martian analyses requires terrestrial analogues to determine the most suitable analytical conditions. For that purpose, total chemistry, electron microprobe analyses, flame absorption spectrometry and mass spectrometry have been performed in order to qualify stoichiometry, mineralogy, K concentration and Ar content from a collection of old terrestrial rocks. These analyses coupled with those published have helped to select 14 mineral phases (e.g. feldspars) showing a large range of K content (0.15 - 11%). The objective is to calibrate the LIBS on different geological material with Mars-like %K values ( 0.4%), and assess the detection limit of the LIBS with extreme %K values. All these mineral phases display a K-Ar age older than 260 Ma. Hence, the content of radiogenic Ar atoms per gram is within the range of Martian samples (on the order of 1 Ga for 0.4 %K). Furthermore, the ablated mass is estimated by measurement of Ar extracted from an analogue mineral of known amount of radiogenic Ar content per gram. This quantification is then compared with the mass estimated from the volume measured by profilometry technique. Finally, it provides a well-defined relationship between the ablation time and the type of ablated mineral. Experiments have been conducted to test our dating system for rocks with similar features than those from the Martian surface. Our preliminary results show that our QMS and LIBS instruments are suitable for in-situ K-Ar analyses with an uncertainty for K-Ar age much better than 15%.
LIBS analysis of hydroxyapatite extracted from bovine bone for Ca/P ratio measurements
NASA Astrophysics Data System (ADS)
Tariq, Usman; Haider, Zuhaib; Hussain, Rafaqat; Tufail, Kashif; Ali, Jalil
2017-03-01
Hydroxyapatite has been extensively used as a potential biocompatible ceramic in many orhtopedic applications. Hydroxyapatite is one of the members of calcium phosphate family and been used extensively as a bone substitute. The mechanical properties of hydroxyapatite itself, ceramics and bone cements prepared from hydroxyapatite vary greatly with slight variation in its Ca/P ratio. At present EDX, XRD, XRF and ICP-OES are being used for the determination of Ca/P ratio in hydroxyapatite. These techniques require special sample preparation, may also use toxic chemicals and usually are not very fast in giving the measurements. We report LIBS as a rapid alternative technique for calculation of Ca/P ratio in hydroxyapatite extracted from bovine bone (BHA). Ca/P ratio in laboratory prepared HA is calculated using LIBS and the results are validated against EDX results Ca/P ratio of the hydroxyapatite was calculated as 1.54±0.19 using LIBS while 1.63±0.03 using EDX. Ca/P ratio calculated by LIBS and EDX and showed comparable results with a difference of 5.5%. Moreover, plasma temperature and the ratio of the calcium (ion) line to calcium (atomic) line did not show significant variation in plasma conditions during measurements. The present study has demonstrated that LIBS can also be used for the determination of Ca/P ratio of hydroxyapatite and other calcium phosphates. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 May 2017.
[Effect of Characteristic Variable Extraction on Accuracy of Cu in Navel Orange Peel by LIBS].
Li, Wen-bing; Yao, Ming-yin; Huang, Lin; Chen, Tian-bing; Zheng, Jian-hong; Fan, Shi-quan; Liu Mu-hua HE, Mu-hua; Lin, Jin-long; Ouyang, Jing-yi
2015-07-01
Heavy metals pollution in foodstuffs is more and more serious. It is impossible to satisfy the modern agricultural development by conventional chemical analysis. Laser induced breakdown spectroscopy (LIBS) is an emerging technology with the characteristic of rapid and nondestructive detection. But LIBS' s repeatability, sensitivity and accuracy has much room to improve. In this work, heavy metal Cu in Gannan Navel Orange which is the Jiangxi specialty fruit will be predicted by LIBS. Firstly, the navel orange samples were contaminated in our lab. The spectra of samples were collected by irradiating the peel by optimized LIBS parameters. The laser energy was set as 20 mJ, delay time of Spectral Data Gathering was set as 1.2 micros, the integration time of Spectral data gathering was set as 2 ms. The real concentration in samples was obtained by AAS (atom absorption spectroscopy). The characteristic variables Cu I 324.7 and Cu I 327.4 were extracted. And the calibration model was constructed between LIBS spectra and real concentration about Cu. The results show that relative error of the predicted concentrations of three relational model were 7.01% or less, reached a minimum of 0.02%, 0.01% and 0.02% respectively. The average relative errors were 2.33%, 3.10% and 26.3%. Tests showed that different characteristic variables decided different accuracy. It is very important to choose suitable characteristic variable. At the same time, this work is helpful to explore the distribution of heavy metals between pulp and peel.
NASA Astrophysics Data System (ADS)
McManus, Catherine E.; Dowe, James; McMillan, Nancy J.
2018-07-01
Many industrial and commercial issues involve authentication of such matters as the manufacturer or geographic source of a material, and quality control of materials, determining whether specific treatments have been properly applied, or if a material is authentic or fraudulent. Often, multiple analytical techniques and tests are used, resulting in expensive and time-consuming testing procedures. Laser-Induced Breakdown Spectroscopy (LIBS) is a rapid laser ablation spectroscopic analytical method. Each LIBS spectrum contains information about the concentration of every element, some isotopic ratios, and the molecular structure of the material, making it a unique and comprehensive signature of the material. Quantagenetics® is a multivariate statistical method based on Bayesian statistics that uses the Euclidian distance between LIBS spectra of materials to classify materials (US Patents 9,063,085 and 8,699,022). The fundamental idea behind Quantagenetics® is that LIBS spectra contain sufficient information to determine the origin and history of materials. This study presents two case studies that illustrate the method. LIBS spectra from 510 Colombian emeralds from 18 mines were classified by mine. Overall, 99.4% of the spectra were correctly classified; the success rate for individual mines ranges from 98.2% to 100%. Some of the mines are separated by distances as little as 200 m, indicating that the method uses the slight but consistent differences in composition to identify the mine of origin accurately. The second study used bars of 17-4 stainless steel from three manufacturers. Each of the three bars was cut into 90 coupons; 30 of each bar received no further treatment, another 30 from each bar received one tempering and hardening treatment, and the final 30 coupons from each bar received a different heat treatment. Using LIBS spectra taken from the coupons, the Quantagenetics® method classified the 270 coupons both by manufacturer (composition) and heat treatment (structure) with an overall success rate of 95.3%. Individual success rates range from 92.4% to 97.6%. These case studies were successful despite having no preconceived knowledge of the materials; artificial intelligence allows the materials to classify themselves without human intervention or bias. Multivariate analysis of LIBS spectra using the Quantagenetics® method has promise to improve quality control and authentication of a wide variety of materials in industrial enterprises.
Goldschmidt, Jürgen; Pethe, Annette; Hagemeyer, Christoph E.; Neudorfer, Irene; Zirlik, Andreas; Weber, Wolfgang A.; Bode, Christoph; Meyer, Philipp T.
2011-01-01
Background Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. Methodology/Principal Findings LIBS as well as an unspecific control single-chain antibody were labeled with 111Indium (111In) via bifunctional DTPA ( = 111In-LIBS/111In-control). Autoradiography after incubation with 111In-LIBS on activated platelets in vitro (mean 3866±28 DLU/mm2, 4010±630 DLU/mm2 and 4520±293 DLU/mm2) produced a significantly higher ligand uptake compared to 111In-control (2101±76 DLU/mm2, 1181±96 DLU/mm2 and 1866±246 DLU/mm2) indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of 111In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630±10650 DLU/mm2 vs. 17390±7470 DLU/mm2; P<0.05). These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with 111In-LIBS resulted in a significant increase of the target-to-background ratio compared to 111In-control (1.99±0.36 vs. 1.1±0.24; P<0.01). Conclusions/Significance Nuclear imaging with 111In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of activated platelets in plaque pathology and atherosclerosis and might be of interest for further developments towards clinical application. PMID:21479193
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Donald; Elgqvist, Emma; Santhanagopalan, Shriram
Manufacturing capacity for lithium-ion batteries (LIBs)--which power many consumer electronics and are increasingly used to power electric vehicles--is heavily concentrated in east Asia. Currently, China, Japan, and Korea collectively host 88% of all LIB cell and 79% of automotive LIB cell manufacturing capacity. Mature supply chains and strong cumulative production experience suggest that most LIB cell production will remain concentrated in Asia. However, other regions--including North America--could be competitive in the growing automotive LIB cell market under certain conditions. To illuminate the factors that drive regional competitiveness in automotive LIB cell production, this study models cell manufacturing cost and minimummore » sustainable price, and examines development of LIB supply chains and current LIB market conditions. Modeled costs are for large format, 20-Ah stacked pouch cells with lithium-nickel-manganese-cobalt-oxide (NMC) cathodes and graphite anodes suitable for automotive application. Production volume is assumed to be at commercial scale, 600 MWh per year.« less
Ángel Aguirre, Miguel; Hidalgo, Montserrat; Canals, Antonio; Nóbrega, Joaquim A; Pereira-Filho, Edenir R
2013-12-15
This study shows the application of laser induced breakdown spectroscopy (LIBS) for waste electrical and electronic equipment (WEEE) investigation. Several emission spectra were obtained for 7 different mobiles from 4 different manufacturers. Using the emission spectra of the black components it was possible to see some differences among the manufacturers and some emission lines from organic elements and molecules (N, O, CN and C2) led to the highest contribution for this differentiation. Some polymeric internal parts in contact with the inner pieces of the mobiles and covered with a special paint presented a strong emission signal for Cr. The white pieces presented mainly Al, Ba and Ti in their composition. Finally, this study developed a procedure for LIBS emission spectra using chemometric strategies and suitable information can be obtained for identification of manufacturer and counterfeit products. In addition, the results obtained can improve the classification for establishing recycling strategies of e-waste. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier
2017-04-01
Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.
Analytical application of femtosecond laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Melikechi, Noureddine; Markushin, Yuri
2015-05-01
We report on significant advantages provided by femtosecond laser-induced breakdown spectroscopy (LIBS) for analytical applications in fields as diverse as protein characterization and material science. We compare the results of a femto- and nanosecond-laser-induced breakdown spectroscopy analysis of dual-elemental pellets in terms of the shot-to-shot variations of the neutral/ionic emission line intensities. This study is complemented by a numerical model based on two-dimensional random close packing of disks in an enclosed geometry. In addition, we show that LIBS can be used to obtain quantitative identification of the hydrogen composition of bio-macromolecules in a heavy water solution. Finally, we show that simultaneous multi-elemental particle assay analysis combined with LIBS can significantly improve macromolecule detectability up to near single molecule per particle efficiency. Research was supported by grants from the National Science Foundation Centers of Research Excellence in Science and Technology (0630388), National Aeronautics and Space Administration (NX09AU90A). Our gratitude to Dr. D. Connolly, Fox Chase Cancer Center.
Metzinger, Anikó; Kovács-Széles, Eva; Almási, István; Galbács, Gábor
2014-01-01
The present study describes the development of an analytical method for the determination of cesium in biological fluid samples (human urine and blood samples) by laser-induced breakdown spectroscopy (LIBS). The developed method is based on sample presentation by liquid-to-solid conversion, enhancing the emission signal by drying the liquid into small "pockets" created in a metal support (zinc plate), and allows the analysis to be carried out on as little as 1 μL of sample volume, in a closed sample cell. Absolute detection limits on the Cs I 852.1 nm spectral line were calculated by the IUPAC 3σ method to be 6 ng in the urine sample and 27 ng in the blood serum sample. It is estimated that LIBS may be used to detect highly elevated concentration levels of Cs in fluid samples taken from people potentially exposed to surges of Cs from non-natural sources.
NASA Astrophysics Data System (ADS)
Walter, Nathan P.; Jaiswal, Abhishek; Cai, Zhikun; Zhang, Yang
2018-07-01
Neutron scattering is a powerful experimental technique for characterizing the structure and dynamics of materials on the atomic or molecular scale. However, the interpretation of experimental data from neutron scattering is oftentimes not trivial, partly because scattering methods probe ensemble-averaged information in the reciprocal space. Therefore, computer simulations, such as classical and ab initio molecular dynamics, are frequently used to unravel the time-dependent atomistic configurations that can reproduce the scattering patterns and thus assist in the understanding of the microscopic origin of certain properties of materials. LiquidLib is a post-processing package for analyzing the trajectory of atomistic simulations of liquids and liquid-like matter with application to neutron scattering experiments. From an atomistic simulation, LiquidLib provides the computation of various statistical quantities including the pair distribution function, the weighted and unweighted structure factors, the mean squared displacement, the non-Gaussian parameter, the four-point correlation function, the velocity auto correlation function, the self and collective van Hove correlation functions, the self and collective intermediate scattering functions, and the bond orientational order parameter. LiquidLib analyzes atomistic trajectories generated from packages such as LAMMPS, GROMACS, and VASP. It also offers an extendable platform to conveniently integrate new quantities into the library and integrate simulation trajectories of other file formats for analysis. Weighting the quantities by element-specific neutron-scattering lengths provides results directly comparable to neutron scattering measurements. Lastly, LiquidLib is independent of dimensionality, which allows analysis of trajectories in two, three, and higher dimensions. The code is beginning to find worldwide use.
Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution
NASA Astrophysics Data System (ADS)
Ruas, Alexandre; Matsumoto, Ayumu; Ohba, Hironori; Akaoka, Katsuaki; Wakaida, Ikuo
2017-05-01
In the context of the Fukushima Dai-ichi Nuclear Power Plant (F1-NPP) decommissioning process, laser-induced breakdown spectroscopy (LIBS) has many advantages. The purpose of the present work is to demonstrate the on-line monitoring capability of the LIBS coupled with the ultra-thin liquid jet sampling method. The study focuses on zirconium in aqueous solution, considering that it is a major element in the F1-NPP fuel debris that has been subject to only a few LIBS studies in the past. The methodology of data acquisition and processing are described. In particular, two regions of interest with many high intensity zirconium lines have been observed around 350 nm in the case of the ionic lines and 478 nm in the case of atomic lines. The best analytical conditions for zirconium are different depending on the analysis of ionic lines or atomic lines. A low LOD of about 4 mg L- 1 could be obtained, showing that LIBS coupled with the ultra-thin liquid jet sampling technique is a promising alternative for more complex solutions found in the F1-NPP, namely mixtures containing zirconium.
Quantitative elemental imaging of heterogeneous catalysts using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Trichard, F.; Sorbier, L.; Moncayo, S.; Blouët, Y.; Lienemann, C.-P.; Motto-Ros, V.
2017-07-01
Currently, the use of catalysis is widespread in almost all industrial processes; its use improves productivity, synthesis yields and waste treatment as well as decreases energy costs. The increasingly stringent requirements, in terms of reaction selectivity and environmental standards, impose progressively increasing accuracy and control of operations. Meanwhile, the development of characterization techniques has been challenging, and the techniques often require equipment with high complexity. In this paper, we demonstrate a novel elemental approach for performing quantitative space-resolved analysis with ppm-scale quantification limits and μm-scale resolution. This approach, based on laser-induced breakdown spectroscopy (LIBS), is distinguished by its simplicity, all-optical design, and speed of operation. This work analyzes palladium-based porous alumina catalysts, which are commonly used in the selective hydrogenation process, using the LIBS method. We report an exhaustive study of the quantification capability of LIBS and its ability to perform imaging measurements over a large dynamic range, typically from a few ppm to wt%. These results offer new insight into the use of LIBS-based imaging in the industry and paves the way for innumerable applications.
Mehder, A O; Gondal, Mohammed A; Dastageer, Mohamed A; Habibullah, Yusuf B; Iqbal, Mohammed A; Oloore, Luqman E; Gondal, Bilal
2016-01-01
Laser induced breakdown spectroscopy (LIBS) was applied for the detection of carcinogenic elements like bromine in four representative brands of loaf bread samples and the measured bromine concentrations were 352, 157, 451, and 311 ppm, using Br I (827.2 nm) atomic transition line as the finger print atomic transition. Our LIBS system is equipped with a pulsed laser of wavelength 266 nm with energy 25 mJ pulse(-1), 8 ns pulse duration, 20 Hz repetition rate, and a gated ICCD camera. The LIBS system was calibrated with the standards of known concentrations in the sample (bread) matrix and such plot is linear in 20-500 ppm range. The capability of our system in terms of limit of detection and relative accuracy with respect to the standard inductively coupled plasma mass spectrometry (ICPMS) technique was evaluated and these values were 5.09 ppm and 0.01-0.05, respectively, which ensures the applicability of our system for Br trace level detection, and LIBS results are in excellent agreement with that of ICPMS results.
Bukhari, Mahwish; Awan, M. Ali; Qazi, Ishtiaq A.; Baig, M. Anwar
2012-01-01
This paper illustrates systematic development of a convenient analytical method for the determination of chromium and cadmium in tannery wastewater using laser-induced breakdown spectroscopy (LIBS). A new approach was developed by which liquid was converted into solid phase sample surface using absorption paper for subsequent LIBS analysis. The optimized values of LIBS parameters were 146.7 mJ for chromium and 89.5 mJ for cadmium (laser pulse energy), 4.5 μs (delay time), 70 mm (lens to sample surface distance), and 7 mm (light collection system to sample surface distance). Optimized values of LIBS parameters demonstrated strong spectrum lines for each metal keeping the background noise at minimum level. The new method of preparing metal standards on absorption papers exhibited calibration curves with good linearity with correlation coefficients, R2 in the range of 0.992 to 0.998. The developed method was tested on real tannery wastewater samples for determination of chromium and cadmium. PMID:22567570
Elemental Analysis of Soils by Laser Induced Breakdown Spectroscopy
NASA Astrophysics Data System (ADS)
Gondal, Mohammed Ashraf; Dastageer, Mohamed A.
The chemical and elemental composition of soil is very complex as it contains many constituents like minerals, organic matters, living organisms, fossils, air and water. Considering the diversity of soil contents, quality and usability, a systematic scientific study on the elemental and chemical composition of soil is very important. In order to study the chemical composition of soil, Laser induced breakdown spectroscopy (LIBS) has been applied recently. The important features of LIBS system and its applications for the measurement of nutrients in green house soil, on-line monitoring of remediation process of chromium polluted soil, determination of trace elements in volcanic erupted soil samples collected from ancient cenozoic lava eruption sites and detection of toxic metals in Gulf war oil spill contaminated soil using LIBS are described in this chapter.
Spectroscopic identification of rare earth elements in phosphate glass
NASA Astrophysics Data System (ADS)
Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.
2018-01-01
In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV-VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.
Detection of Minerals in Green Leafy Vegetables Using Laser Induced Breakdown Spectroscopy
NASA Astrophysics Data System (ADS)
Shukla, P.; Kumar, R.; Raib, A. Kumar
2016-11-01
The distribution of minerals in different green leafy vegetables, such as spinach, chenopodium, chickpea, mustard, and fenugreek, was calculated using laser induced breakdown spectroscopy (LIBS). LIBS can provide an easy, reliable, efficient, low-cost, and in situ chemical analysis with a reasonable precision. In situ LIBS spectra in the range 200-500 nm were carried out using fresh leaves and leaves in the pellet form. As the spectra suggest, magnesium and calcium are present in each vegetable; however, the amount of them varies. It is observed that the amount of iron is maximal in spinach. The nutrition value of the plants was analyzed, and it was revealed that they are low in calories and fat and high in protein, fiber, iron, calcium, and phytochemicals.
Laser-Induced Breakdown Spectroscopy Based Protein Assay for Cereal Samples.
Sezer, Banu; Bilge, Gonca; Boyaci, Ismail Hakki
2016-12-14
Protein content is an important quality parameter in terms of price, nutritional value, and labeling of various cereal samples. However, conventional analysis methods, namely, Kjeldahl and Dumas, have major drawbacks such as long analysis time, titration mistakes, and carrier gas dependence with high purity. For this reason, there is an urgent need for rapid, reliable, and environmentally friendly technologies for protein analysis. The present study aims to develop a new method for protein analysis in wheat flour and whole meal by using laser-induced breakdown spectroscopy (LIBS), which is a multielemental, fast, and simple spectroscopic method. Unlike the Kjeldahl and Dumas methods, it has potential to analyze a high number of samples in considerably short time. In the study, nitrogen peaks in LIBS spectra of wheat flour and whole meal samples with different protein contents were correlated with results of the standard Dumas method with the aid of chemometric methods. A calibration graph showed good linearity with the protein content between 7.9 and 20.9% and a 0.992 coefficient of determination (R 2 ). The limit of detection was calculated as 0.26%. The results indicated that LIBS is a promising and reliable method with its high sensitivity for routine protein analysis in wheat flour and whole meal samples.
Analysis of charcoal blast furnace slags by laser-induced breakdown spectroscopy
Bhatt, Chet R.; Goueguel, Christian L.; Jain, Jinesh C.; ...
2017-09-22
Laser-induced breakdown spectroscopy (LIBS) was used for the analysis of charcoal blast furnace slags. Plasma was generated by an application of a 1064 nm wavelength Nd:YAG laser beam to the surface of pellets created from the slags. The presence of Al, Ca, Fe, K, Mg, Mn, and Si was determined by identifying their characteristic spectral signatures. Multivariate analysis was performed for the quantification of these elements. The predicted LIBS results were found in agreement with the inductively coupled plasma optical emission spectrometry analysis. The limit of detection for Al, Ca, Fe, K, Mg, Mn, and Si was calculated to bemore » 0.10%, 0.22%, 0.02%, 0.01%, 0.01%, 0.005%, and 0.18%, respectively.« less
Analysis of charcoal blast furnace slags by laser-induced breakdown spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Chet R.; Goueguel, Christian L.; Jain, Jinesh C.
Laser-induced breakdown spectroscopy (LIBS) was used for the analysis of charcoal blast furnace slags. Plasma was generated by an application of a 1064 nm wavelength Nd:YAG laser beam to the surface of pellets created from the slags. The presence of Al, Ca, Fe, K, Mg, Mn, and Si was determined by identifying their characteristic spectral signatures. Multivariate analysis was performed for the quantification of these elements. The predicted LIBS results were found in agreement with the inductively coupled plasma optical emission spectrometry analysis. The limit of detection for Al, Ca, Fe, K, Mg, Mn, and Si was calculated to bemore » 0.10%, 0.22%, 0.02%, 0.01%, 0.01%, 0.005%, and 0.18%, respectively.« less
Alhasmi, Abdul M; Gondal, Mohammed A; Nasr, Mohamed M; Shafik, Sami; Habibullah, Yusuf B
2015-08-20
A laser-induced breakdown spectrometer (LIBS) was built and optimized to detect levels of toxic elements such as lead, cadmium, and arsenic present in the roots of extracted teeth of smokers and nonsmokers. Sixty extracted teeth from patients having a history of chronic periodontitis were divided into two groups of 30 teeth each for smoker and nonsmoker patients and, as controls, a third group of 30 patients who did not have a history of chronic periodontitis. The respective elemental concentration (Pb, Cd, and As) 23-29, 0.26-0. 31, and 0.64-11 ppm are for nonsmokers, 35-55, 0.33-0.51, and 0.91-1.5 ppm are for smokers, and lastly 0.17-0.31, 0.01-0.05, and 0.05-0.09 ppm are for control group. In order to test the validity of the results achieved using our LIBS system, a standard inductively coupled plasma (ICP) technique was also applied for the analysis of the same teeth samples, and ICP results were found to be in excellent agreement with our LIBS results. In addition to this, the gingival index, plaque index, clinical attachment loss (CAL) and probing pocket depth were also recorded. Our LIBS spectroscopic analysis showed high levels of lead, cadmium, and arsenic concentration on root surfaces of teeth, which may be due to CAL.
Laser-Induced Breakdown Spectroscopy (LIBS) Measurement of Uranium in Molten Salt.
Williams, Ammon; Phongikaroon, Supathorn
2018-01-01
In this current study, the molten salt aerosol-laser-induced breakdown spectroscopy (LIBS) system was used to measure the uranium (U) content in a ternary UCl 3 -LiCl-KCl salt to investigate and assess a near real-time analytical approach for material safeguards and accountability. Experiments were conducted using five different U concentrations to determine the analytical figures of merit for the system with respect to U. In the analysis, three U lines were used to develop univariate calibration curves at the 367.01 nm, 385.96 nm, and 387.10 nm lines. The 367.01 nm line had the lowest limit of detection (LOD) of 0.065 wt% U. The 385.96 nm line had the best root mean square error of cross-validation (RMSECV) of 0.20 wt% U. In addition to the univariate calibration approach, a multivariate partial least squares (PLS) model was developed to further analyze the data. Using partial least squares (PLS) modeling, an RMSECV of 0.085 wt% U was determined. The RMSECV from the multivariate approach was significantly better than the univariate case and the PLS model is recommended for future LIBS analysis. Overall, the aerosol-LIBS system performed well in monitoring the U concentration and it is expected that the system could be used to quantitatively determine the U compositions within the normal operational concentrations of U in pyroprocessing molten salts.
Inoue, Takao; Mukai, Kazuhiko
2017-01-18
Although all-solid-state lithium-ion batteries (ALIBs) have been believed as the ultimate safe battery, their true character has been an enigma so far. In this paper, we developed an all-inclusive-microcell (AIM) for differential scanning calorimetry (DSC) analysis to clarify the degree of safety (DOS) of ALIBs. Here AIM possesses all the battery components to work as a battery by itself, and DOS is determined by the total heat generation ratio (ΔH) of ALIB compared with the conventional LIB. When DOS = 100%, the safety of ALIB is exactly the same as that of LIB; when DOS = 0%, ALIB reaches the ultimate safety. We investigated two types of LIB-AIM and three types of ALIB-AIM. Surprisingly, all the ALIBs exhibit one or two exothermic peaks above 250 °C with 20-30% of DOS. The exothermic peak is attributed to the reaction between the released oxygen from the positive electrode and the Li metal in the negative electrode. Hence, ALIBs are found to be flammable as in the case of LIBs. We also attempted to improve the safety of ALIBs and succeeded in decreasing the DOS down to ∼16% by incorporating Ketjenblack into the positive electrode as an oxygen scavenger. Based on ΔH as a function of voltage window, a safety map for LIBs and ALIBs is proposed.
Dust Removal on Mars Using Laser-Induced Breakdown Spectroscopy
NASA Technical Reports Server (NTRS)
Graff, T. G.; Morris, R. V.; Clegg, S. M.; Wiens, R. C.; Anderson, R. B.
2011-01-01
Dust coatings on the surface of Mars complicate and, if sufficiently thick, mask the spectral characteristics and compositional determination of underlying material from in situ and remote sensing instrumentation. The Laser-Induced Breakdown Spectroscopy (LIBS) portion of the Chemistry & Camera (ChemCam) instrument, aboard the Mars Science Laboratory (MSL) rover, will be the first active remote sensing technique deployed on Mars able to remove dust. ChemCam utilizes a 5 ns pulsed 1067 nm high-powered laser focused to less than 400 m diameter on targets at distances up to 7 m [1,2]. With multiple laser pulses, dust and weathering coatings can be remotely analyzed and potentially removed using this technique [2,3]. A typical LIBS measurement during MSL surface operations is planned to consist of 50 laser pulses at 14 mJ, with the first 5 to 10 pulses used to analyze as well as remove any surface coating. Additionally, ChemCam's Remote Micro-Imager (RMI) is capable of resolving 200 m details at a distance of 2 m, or 1 mm at 10 m [1,4]. In this study, we report on initial laboratory experiments conducted to characterize the removal of dust coatings using similar LIBS parameters as ChemCam under Mars-like conditions. These experiments serve to better understand the removal of surface dust using LIBS and to facilitate the analysis of ChemCam LIBS spectral data and RMI images.
Analyzing silver concentration in soil using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Prasetyo, S.; Isnaeni; Zaitun; Mitchell, K.; Suliyanti, M. M.; Herbani, Y.
2018-03-01
Determination of concentration of heavy metal ions in soil, such as silver, is very important to study soil pollution levels. Several techniques have been developed to determine silver ion concentration in soil. In this paper, we utilized laser-induced breakdown spectroscopy (LIBS) to study silver concentration in soil. We used four different data analysis methods to calculate silver concentration. In this case, we prepared soil samples with different silver ion concentrations from 400 ppm to 1000 ppm. Our analysis was focused on the 843.15 nm silver atomic absorption line. We found that plasma intensity increased as silver concentration increased. Our findings were based on our analysis using four different analysis methods. We believe that these analysis methods are able to calculate silver concentration in soil using LIBS.
NASA Astrophysics Data System (ADS)
Carson, Cantwell G.; Goueguel, Christian; Jain, Jinesh; McIntyre, Dustin
2015-05-01
The injection of CO2 into deep aquifers can potentially affect the quality of groundwater supplies were leakage to occur from the injection formation or fluids. Therefore, the detection of CO2 and/or entrained contaminants that migrate into shallow groundwater aquifers is important both to assess storage permanence and to evaluate impacts on water resources. Naturally occurring elements (i.e., Li, Sr) in conjunction with isotope ratios can be used to detect such leakage. We propose the use of laser induced breakdown spectroscopy (LIBS) as an analytical technique to detect a suite of elements in water samples. LIBS has real time monitoring capabilities and can be applied for elemental and isotopic analysis of solid, liquid, and gas samples. The flexibility of probe design and use of fiber optics make it a suitable technique for real time measurements in harsh conditions and in hard to reach places. The laboratory scale experiments to measure Li, K, Ca, and Sr composition of water samples indicate that the technique produces rapid and reliable data. Since CO2 leakage from saline aquifers may accompany a brine solution, we studied the effect of sodium salts on the accuracy of LIBS analysis. This work specifically also details the fabrication and application of a miniature ruggedized remotely operated diode pumped solid state passively Q-switched laser system for use as the plasma excitation source for a real time LIBS analysis. This work also proposes the optical distribution of many laser spark sources across a wide area for widespread leak detection and basin monitoring.
Hahn, David W; Omenetto, Nicoló
2010-12-01
Laser-induced breakdown spectroscopy (LIBS) has become a very popular analytical method in the last decade in view of some of its unique features such as applicability to any type of sample, practically no sample preparation, remote sensing capability, and speed of analysis. The technique has a remarkably wide applicability in many fields, and the number of applications is still growing. From an analytical point of view, the quantitative aspects of LIBS may be considered its Achilles' heel, first due to the complex nature of the laser-sample interaction processes, which depend upon both the laser characteristics and the sample material properties, and second due to the plasma-particle interaction processes, which are space and time dependent. Together, these may cause undesirable matrix effects. Ways of alleviating these problems rely upon the description of the plasma excitation-ionization processes through the use of classical equilibrium relations and therefore on the assumption that the laser-induced plasma is in local thermodynamic equilibrium (LTE). Even in this case, the transient nature of the plasma and its spatial inhomogeneity need to be considered and overcome in order to justify the theoretical assumptions made. This first article focuses on the basic diagnostics aspects and presents a review of the past and recent LIBS literature pertinent to this topic. Previous research on non-laser-based plasma literature, and the resulting knowledge, is also emphasized. The aim is, on one hand, to make the readers aware of such knowledge and on the other hand to trigger the interest of the LIBS community, as well as the larger analytical plasma community, in attempting some diagnostic approaches that have not yet been fully exploited in LIBS.
Xiu, Junshan; Liu, Shiming; Sun, Meiling; Dong, Lili
2018-01-20
The photoelectric performance of metal ion-doped TiO 2 film will be improved with the changing of the compositions and concentrations of additive elements. In this work, the TiO 2 films doped with different Sn concentrations were obtained with the hydrothermal method. Qualitative and quantitative analysis of the Sn element in TiO 2 film was achieved with laser induced breakdown spectroscopy (LIBS) with the calibration curves plotted accordingly. The photoelectric characteristics of TiO 2 films doped with different Sn content were observed with UV visible absorption spectra and J-V curves. All results showed that Sn doping could improve the optical absorption to be red-shifted and advance the photoelectric properties of the TiO 2 films. We had obtained that when the concentration of Sn doping in TiO 2 films was 11.89 mmol/L, which was calculated by the LIBS calibration curves, the current density of the film was the largest, which indicated the best photoelectric performance. It indicated that LIBS was a potential and feasible measured method, which was applied to qualitative and quantitative analysis of the additive element in metal oxide nanometer film.
Influence of water content on the laser-induced breakdown spectroscopy analysis of human cell pellet
NASA Astrophysics Data System (ADS)
Moon, Youngmin; Han, Jung Hyun; Lee, Jong Jin; Jeong, Sungho
2015-12-01
The effects of water content change in a biological sample on the emission signal intensity and intensity ratio during LIBS analysis were investigated. To examine the effects of water content only avoiding matrix effects, a homogeneous human cell pellet consisting of cultured human immortalized keratinocyte cell only was used as the sample. LIBS spectra of the human cell pellet sample produced with a Q-switched Nd:YAG laser (λ = 532 nm, τ = 5 ns, top-hat profile) and a six-channel CCD spectrometer (spectral range = 187-1045 nm, spectral resolution = 0.1 nm) revealed that most of the emission lines observed from a tissue sample were also observable from the human cell pellet. The intensity and intensity ratio of the emission lines varied significantly as the water content of the human cell pellet was changed. It was found that a typically selected internal standard in LIBS analysis of biological samples such as carbon could produce inconsistent results, whereas the ratio of properly selected emission lines such as Mg(II) 280.270 nm and Ca(II) 396.847 nm was nearly independent of sample water content.
Quantitative Analysis of Three-dimensional Microstructure of Li-ion Battery Electrodes
NASA Astrophysics Data System (ADS)
Liu, Zhao
Li-ion batteries (LIBs) have attracted considerable attention in the past two decades due to their widespread applications in portable electronics, and their growing use in electric vehicles and large-scale grid storage. Increasing battery energy density and powder density while maintaining long life, along with battery safety, are the biggest challenges that limit their further development. Various approaches with materials and chemistry have been employed to improve performance. However, one less-studied aspect that also impacts performance is the electrode microstructure. In particular, three-dimensional (3D) electrode microstructural data for LIB electrodes, which were not widely available prior to this thesis, can provide important input for understanding and improving LIB performance. The focus of this thesis is to apply 3D tomographic techniques, together with electrochemical performance data, to obtain LIB microstructure-performance correlations. Two advanced 3D structural analysis techniques, focused ion beam-scanning electron microscopy (FIB-SEM) and transmission X-ray microscopy (TXM) nanotomography, are used to quantify LIB electrode microstructure. 3D characterization of LIB electrode microstructure is used to obtain a deeper understanding of mechanisms that limit LIB performance. Microstructural characterization before and after cycling is used to explore capacity loss mechanisms. It is hoped that the results can guide electrode microstructures design to improve performance and stability. Two types of commercial electrodes, LiCoO2 and LiCoO 2/Li(Ni1/3Mn1/3Co1/3)O2, are studied using FIB-SEM and TXM. Both methods were found to be applicable to quantifying the oxide particle microstructure, including volume fraction, surface area, and particle size distribution, and results agreed well. However, structural inhomogeneity found in these commercial samples, limited the capability to resolve microstructural changes during cycling. In order to also quantify carbonaceous phases in the electrodes, which strongly correlate with LIB transport properties, a three-phase FIB-SEM method was developed where silicone resin was infiltrated into electrode pores, providing good image contrast with the carbon particles. Structural parameters including phase connectivity and tortuosity are quantified for commercial LiCoO 2 and laboratory-made LiFePO4 electrodes to help understand the transport process in these electrodes. For LiCoO2 electrodes, a heterogeneous tortuosity distribution observed in the electrolyte phase may result in inhomogeneous charge/discharge states, and consequently cause battery degradation. For LiFePO4 electrodes, highly percolated and less tortuous carbon found in a templated electrode explain its better high-C-rate performance. Finally, laboratory-made LiMn2O4 electrodes were electrochemically cycled with different operation parameters, including cycle number, temperature, and operating voltage. Quantitative analyses on 3D TXM data sets indicate particle fracture, mainly due to tetragonal to cubic phase transformations induced by the Jahn-Teller effect, resulting in electrode degradation. Moreover, high temperature operation is found to enhance active material dissolution and can also accelerate cell degradation. This ex-situ method, which combines electrochemical cycling and statistical analysis, proved to be an effective approach to provide insight for the interpretation of complex mechanical and electrochemical interactions within the electrodes.
Expanding Library Services and Instruction Through LibGuides.
Ream, Tim; Parker-Kelly, Darlene
2016-01-01
Beginning in 2012, the Charles R. Drew University (CDU) Health Sciences Library used LibGuides in a number of innovative ways. Librarians constructed e-book databases, in-depth tutorials on technology-related topics, and web pages highlighting special events. To assess similar LibGuides innovation, CDU librarians developed an eight-question survey distributed to health sciences and hospital libraries throughout Southern California and Arizona. Results showed that libraries used LibGuides primarily to deliver access to online resources and to provide supplementary materials supporting instruction. Responses also revealed that many libraries had not yet adopted LibGuides. These findings were analyzed and compared to past and current LibGuides design at CDU.
Questioning LibQUAL+[TM]: Expanding Its Assessment of Academic Library Effectiveness
ERIC Educational Resources Information Center
Edgar, William B.
2006-01-01
This article examines LibQUAL+[TM]'s instrument, fundamental assumption, and research approach and proposes a functional/technical model of academic library effectiveness. This expanded view of library effectiveness complements LibQUAL+[TM], emphasizing it to be dependent upon users' experience of service delivery, as LibQUAL+[TM] recognizes.…
NASA Astrophysics Data System (ADS)
Cui, Minchao; Deguchi, Yoshihiro; Wang, Zhenzhen; Fujita, Yuki; Liu, Renwei; Shiou, Fang-Jung; Zhao, Shengdun
2018-04-01
A collinear long-short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) method was employed to enhance and stabilize the laser-induced plasma from steel sample. The long-pulse-width laser beam with the pulse width of 60 μs was generated by a Nd: YAG laser which was operated at FR (free running) mode. The comparative experiments were carried out between single pulse LIBS (SP-LIBS) and long-short DP-LIBS. The recorded results showed that the emission intensities and the temperature of plasma were enhanced by long-short DP-LIBS. The plasma images showed that the plasma was bigger and had a longer lifetime in long-short DP-LIBS situation. Through the calculation of time-resolved plasma temperature and intensity ratio, it can be concluded that the plasma was stabilized by the long-pulse-width laser beam. The long-short DP-LIBS method also generated the stable plasma condition from the samples with different initial temperatures, which overcame the difficulties of LIBS in the online measurement for steel production line.
Comparison of SP-LIBS and DP-LIBS on metal and non-metal testing based on LIBS
NASA Astrophysics Data System (ADS)
Lin, Xiaomei; Sun, Haoran; Lin, Jingjun
2017-10-01
Laser-induced breakdown spectroscopy (LIBS) technology for metal and nonmetallic detection accuracy is the key technology to be solved in LIBS measurement, Due to metal elements and non-metallic elements in the lively, atomic structure and the degree of excitation of the laser are totally different, so the laser induced plasma evolution and spectral intensity are absolutely different. Among the many factors that affect measurement accuracy, the single and double pulse of the laser has a great influence on the measurement accuracy of metal and non-metal, they both have their own advantages, but also have their own shortcomings. In order to compare the effect of SP-LIBS and DP-LIBS on the measurement results of different elements, in this experiment, we put the metal element aluminum and non-metallic element carbon as the sample, the laser energy as a variable, using the high-speed camera shooting SP- LIBS and DP- LIBS plasma images. Using the spectral analyzer to record the spectral intensity of the elements, by calculating the relative RSD of the signal intensity and comparing the spectral intensity and the signal stability for different elements, develop an optimized experimental program. The experimental results show that under the same energy condition, the metal aluminum ion image under the DP- LIBS and the non-metallic carbon ion image under the SP- LIBS are the most suitable images. By considering the stability of the line intensity and the signal stability, we find that the sensitivity and stability of the signal strength of the metal elements under the double pulse are better than that of the single pulse, and for the non-metallic element, the single pulse laser is better than the double pulse.
AD-LIBS: inferring ancestry across hybrid genomes using low-coverage sequence data.
Schaefer, Nathan K; Shapiro, Beth; Green, Richard E
2017-04-04
Inferring the ancestry of each region of admixed individuals' genomes is useful in studies ranging from disease gene mapping to speciation genetics. Current methods require high-coverage genotype data and phased reference panels, and are therefore inappropriate for many data sets. We present a software application, AD-LIBS, that uses a hidden Markov model to infer ancestry across hybrid genomes without requiring variant calling or phasing. This approach is useful for non-model organisms and in cases of low-coverage data, such as ancient DNA. We demonstrate the utility of AD-LIBS with synthetic data. We then use AD-LIBS to infer ancestry in two published data sets: European human genomes with Neanderthal ancestry and brown bear genomes with polar bear ancestry. AD-LIBS correctly infers 87-91% of ancestry in simulations and produces ancestry maps that agree with published results and global ancestry estimates in humans. In brown bears, we find more polar bear ancestry than has been published previously, using both AD-LIBS and an existing software application for local ancestry inference, HAPMIX. We validate AD-LIBS polar bear ancestry maps by recovering a geographic signal within bears that mirrors what is seen in SNP data. Finally, we demonstrate that AD-LIBS is more effective than HAPMIX at inferring ancestry when preexisting phased reference data are unavailable and genomes are sequenced to low coverage. AD-LIBS is an effective tool for ancestry inference that can be used even when few individuals are available for comparison or when genomes are sequenced to low coverage. AD-LIBS is therefore likely to be useful in studies of non-model or ancient organisms that lack large amounts of genomic DNA. AD-LIBS can therefore expand the range of studies in which admixture mapping is a viable tool.
Applications of laser-induced breakdown spectrometry (LIBS) in surface analysis.
Vadillo, J M; Palanco, S; Romero, M D; Laserna, J J
1996-07-01
The applicability of laser-induced breakdown spectrometry (LIBS) for surface analysis is presented in terms of its lateral and depth resolution. A pulsed N(2) laser at 337.1 nm (3.65 J/cm(2)) was used to irradiate solar cells employed for photovoltaic energy production. Laser produced plasmas were collected and detected using a charge-coupled device. An experimental device developed in the laboratory permits an exact synchronization of sample positioning using an XY motorized system with laser pulses. Multielement analysis with lateral resolution of up to 30 microm is feasible with the present system. Three-dimensional capabilities of the system are used for studies on the distribution of carbon impurities at the surface of the solar cells.
NASA Astrophysics Data System (ADS)
Dequaire, T.; Meslin, P.-Y.; Beck, P.; Jaber, M.; Cousin, A.; Rapin, W.; Lasne, J.; Gasnault, O.; Maurice, S.; Buch, A.; Szopa, C.; Coll, P.
2017-05-01
Organic matter has been continuously delivered by meteorites and comets to Mars since its formation, and possibly formed in situ by abiogenic and/or biogenic processes. This organic matter may be preserved from the harsh oxidizing environment of Mars in specific locations. Together with water, organic molecules are necessary to the emergence of life as we know it. Since the first martian landers, scientists have been searching for organics and until today, only one positive detection has been made by a Gas Chromatography Mass Spectrometer (GCMS) instrument onboard the Curiosity rover. In this article we investigate a complementary approach to guide the search for organic matter using ChemCam, the first Laser-Induced Breakdown Spectroscopy (LIBS) instrument on Mars. This experimental study focuses on the analysis of carbon and nitrogen LIBS signatures in organoclay samples and allows the determination of the critical level (Lc) and limit of detection (LoD) of these elements with LIBS under Mars-like conditions, giving new insights into the search of organic matter on Mars.
Towards reconstruction of overlapping fingerprints using plasma spectroscopy
NASA Astrophysics Data System (ADS)
Yang, Jun-Ho; Choi, Soo-Jin; Yoh, Jack J.
2017-08-01
Chemical analysis is commonly used in the field of forensic science where the precise discrimination of primary evidence is of significant importance. Laser-Induced Breakdown Spectroscopy (LIBS) exceeds other spectroscopic methods in terms of the time required for pre- and post-sample preparation, the insensitivity to sample phase state be it solid, liquid, or gas, and the detection of two-dimensional spectral mapping from real time point measurements. In this research, fingerprint samples on various surface materials are considered in the chemical detection and reconstruction of fingerprints using the two-dimensional LIBS technique. Strong and distinct intensities of specific wavelengths represent visible ink, natural secretion of sweat, and contaminants from the environment, all of which can be present in latent fingerprints. The particular aim of the work presented here is to enhance the precision of the two-dimensional recreation of the fingerprints present on metal, plastic, and artificially prepared soil surface using LIBS with principal component analysis. By applying a distinct wavelength discrimination for two overlapping fingerprint samples, separation into two non-identical chemical fingerprints was successfully performed.
Rehan, I; Gondal, M A; Rehan, K
2018-05-15
A detection system based on Laser Induced Breakdown Spectroscopy (LIBS) was designed, optimized, and successfully employed for the estimation of lead (Pb) content in drilling fueled soil (DFS) collected from oil field drilling areas in Pakistan. The concentration of Pb was evaluated by the standard calibration curve method as well as by using an approach based on the integrated intensity of strongest emission of an element of interest. Remarkably, our investigation clearly demonstrated that the concentration of Pb in drilling fueled soil collected at the exact drilling site was greater than the safe permissible limits. Furthermore, the Pb concentration was observed to decline with increasing distance away from the specific drilling point. Analytical determinations were carried out under the assumptions that laser generated plasma was optically thin and in local thermodynamic equilibrium (LTE). In order to improve the sensitivity of our LIBS detection system, various parametric dependence studies were performed. To further validate the precision of our LIBS results, the concentration of Pb present in the acquired samples were also quantified via a standard analytical tool like inductively coupled plasma/optical emission spectroscopy (ICP/OES). Both results were in excellent agreement, implying remarkable reliability for the LIBS data. Furthermore, the Limit of detection (LOD) of our LIBS system for Pb was estimated to be 125.14 mg L -1 . Copyright © 2018 Elsevier B.V. All rights reserved.
Zeng, Xianlai; Li, Jinhui
2014-04-30
Because of the increasing number of electric vehicles, there is an urgent need for effective recycling technologies to recapture the significant amount of valuable metals contained in spent lithium-ion batteries (LiBs). Previous studies have indicated, however, that Al and cathode materials were quite difficult to separate due to the strong binding force supplied by the polyvinylidene fluoride (PVDF), which was employed to bind cathode materials and Al foil. This research devoted to seek a new method of melting the PVDF binder with heated ionic liquid (IL) to separate Al foil and cathode materials from the spent high-power LiBs. Theoretical analysis based on Fourier's law was adopted to determine the heat transfer mechanism of cathode material and to examine the relationship between heating temperature and retention time. All the experimental and theoretic results show that peel-off rate of cathode materials from Al foil could reach 99% when major process parameters were controlled at 180°C heating temperature, 300 rpm agitator rotation, and 25 min retention time. The results further imply that the application of IL for recycling Al foil and cathode materials from spent high-power LiBs is highly efficient, regardless of the application source of the LiBs or the types of cathode material. This study endeavors to make a contribution to an environmentally sound and economically viable solution to the challenge of spent LiB recycling. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achouri, M.; Baba-Hamed, T.; Beldjilali, S. A., E-mail: sidahmed.beldjilali@univ-usto.dz
2015-09-15
Laser-induced breakdown spectroscopy (LIBS) is a technique that can provide qualitative and quantitative measurements of the characteristics of irradiated metals. In the present work, we have calculated the parameters of the plasma produced from a brass alloy sample under the action of a pulsed Nd: YAG laser operating at 1064 nm. The emission lines of copper atoms (Cu I), zinc atoms (Zn I), and lead atoms (Pb I), which are elements of a brass alloy composition, were used to investigate the parameters of the brass plasma. The spectral profiles of Cu, Zn, and Pb lines have been used to extractmore » the electron temperature and density of the brass alloy plasma. The characteristics of Cu, Zn, and Pb were determined quantatively by the calibration-free LIBS (CF-LIBS) method considering for accurate analysis that the laser-induced ablated plasma is optically thin in local thermodynamic equilibrium conditions and the plasma ablation is stoichiometric. The Boltzmann plot method was used to evaluate the plasma temperature, and the Stark broadened profiles were used to determine the electron density. An algorithm based on the experimentally measured values of the intensity of spectral lines and the basic laws of plasma physics was developed for the determination of Cu, Zn, and Pb concentrations in the brass sample. The concentrations C{sub CF-LIBS} calculated by CF-LIBS and the certified concentrations C{sub certified} were very close.« less
Khalil, Ahmed A I; Morsy, Mohamed A
2016-07-01
A series of lithium-lead-borate glasses of a variable copper oxide loading were quantitatively analyzed in this work using two distinct spectroscopic techniques, namely double pulse laser induced breakdown spectroscopy (DP-LIBS) and electron paramagnetic resonance (EPR). DP-LIBS results measured upon a combined nanosecond lasers irradiation running at 266nm and 1064nm pulses of a collinear configuration directed to the surface of borate glass samples with a known composition. This arrangement was employed to predict the electron's temperature (Te) and density (Ne) of the excited plasma from the recorded spectra. The intensity of elements' responses using this scheme is higher than that of single-pulse laser induced breakdown spectroscopy (SP-LIBS) setup under the same experimental conditions. On the other hand, the EPR data shows typical Cu (II) EPR-signals in the borate glass system that is networked at a distorted tetragonal Borate-arrangement. The signal intensity of the Cu (II) peak at g⊥=2.0596 has been used to quantify the Cu-content accurately in the glass matrix. Both techniques produced linear calibration curves of Cu-metals in glasses with excellent linear regression coefficient (R(2)) values. This study establishes a good correlation between DP-LIBS analysis of glass and the results obtained using EPR spectroscopy. The proposed protocols prove the great advantage of DP-LIBS system for the detection of a trace copper on the surface of glasses. Copyright © 2016 Elsevier B.V. All rights reserved.
Contributions to process monitoring by laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Rusak, David Alexander
1998-12-01
When a pulsed laser of sufficient energy and pulse duration is brought to a focus, multi-photon ionization creates free electrons in the focal volume. These electrons are accelerated in a process known as inverse Bremsstrahlung and cause collisional ionization of species in the focal volume. More charge carriers are produced and the process continues for the duration of the laser pulse. The manifestation of this process is a visible spark or plasma which typically lasts for tens of microseconds. This laser-induced plasma can serve as a source in an atomic emission experiment. Because the composition of the plasma is determined in large part by the environment in which it forms, elements in the laser target can be determined spectroscopically. The goal of a laser-induced breakdown spectroscopy (LIBS) experiment is to establish a relationship between the concentration of an element of interest in the target and the intensity of light emitted from the laser-induced plasma at a wavelength characteristic of that element. Because LIBS requires only optical access to the sample and can perform elemental determinations in solids, liquids, or gases with little sample preparation, there is interest in using it as an on-line technique for process monitoring in a number of industrial applications. However, before the technique becomes useful in industrial applications, many issues regarding instrumentation and data analysis need to be addressed in the lab. The first two chapters of this dissertation provide, respectively, the basics of the atomic emission experiment and a background of laser-induced breakdown spectroscopy. The next two chapters examine the effect of target water content on the laser-induced plasma and the use of LIBS for analysis of aqueous samples. Chapter 5 describes construction of a fiber optic LIBS probe and its use to study temporal electron number density evolution in plasmas formed on different metals. Chapter 6 is a study of excitation, vibrational, and rotational temperatures in plasmas formed by ultraviolet and infrared laser beams. The last chapter is a brief assessment of classification software for analysis of LIBS data and a discussion of future work.
ERIC Educational Resources Information Center
Chinni, Rosemarie C.
2012-01-01
This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…
Concurrent Validity of LibQUAL+[TM] Scores: What Do LibQUAL+[TM] Scores Measure?
ERIC Educational Resources Information Center
Thompson, Bruce; Cook, Colleen; Kyrillidou, Martha
2005-01-01
The present study investigated the validity of LibQUAL+[TM] scores, and specifically how total and subscale LibQUAL+[TM] scores are associated with self-reported, library-related satisfaction and outcomes scores. Participants included 88,664 students and faculty who completed the American English (n[AE] = 69,494) or the British English (n[BE] =…
Rational material design for ultrafast rechargeable lithium-ion batteries.
Tang, Yuxin; Zhang, Yanyan; Li, Wenlong; Ma, Bing; Chen, Xiaodong
2015-10-07
Rechargeable lithium-ion batteries (LIBs) are important electrochemical energy storage devices for consumer electronics and emerging electrical/hybrid vehicles. However, one of the formidable challenges is to develop ultrafast charging LIBs with the rate capability at least one order of magnitude (>10 C) higher than that of the currently commercialized LIBs. This tutorial review presents the state-of-the-art developments in ultrafast charging LIBs by the rational design of materials. First of all, fundamental electrochemistry and related ionic/electronic conduction theories identify that the rate capability of LIBs is kinetically limited by the sluggish solid-state diffusion process in electrode materials. Then, several aspects of the intrinsic materials, materials engineering and processing, and electrode materials architecture design towards maximizing both ionic and electronic conductivity in the electrode with a short diffusion length are deliberated. Finally, the future trends and perspectives for the ultrafast rechargeable LIBs are discussed. Continuous rapid progress in this area is essential and urgent to endow LIBs with ultrafast charging capability to meet huge demands in the near future.
Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma
Morgan, Phyllis K.; Scott, Jill R.; Jovanovic, Igor
2015-12-19
An established optical emission spectroscopy technique, laser-induced breakdown spectroscopy (LIBS), holds promise for detection and rapid analysis of elements relevant for nuclear safeguards, nonproliferation, and nuclear power, including the measurement of isotope ratios. One such important application of LIBS is the measurement of uranium enrichment ( 235U/ 238U), which requires high spectral resolution (e.g., 25 pm for the 424.4 nm U II line). High-resolution dispersive spectrometers necessary for such measurements are typically bulky and expensive. We demonstrate the use of an alternative measurement approach, which is based on an inexpensive and compact Fabry–Perot etalon integrated with a low to moderatemore » resolution Czerny–Turner spectrometer, to achieve the resolution needed for isotope selectivity of LIBS of uranium in ambient air. Furthermore, spectral line widths of ~ 10 pm have been measured at a center wavelength 424.437 nm, clearly discriminating the natural from the highly enriched uranium.« less
Mehari, Fanuel; Rohde, Maximillian; Kanawade, Rajesh; Knipfer, Christian; Adler, Werner; Klämpfl, Florian; Stelzle, Florian; Schmidt, Michael
2016-10-01
In the present study, the elemental compositions of fat and nerve tissue during their plasma mediated laser ablation are studied in the context of tissue differentiation for laser surgery applications by using Laser-Induced Breakdown Spectroscopy (LIBS). Tissue samples of porcine fat and nerve were prepared as ex vivo experimental objects. Plasma mediated laser ablation is performed using an Nd : YAG laser in open air and under normal stray light conditions. The performed measurements suggest that the two tissue types show a high similarity in terms of qualitative elemental composition while at the same time revealing a distinct difference in the concentration of the constituent elements. Different analysis approaches are evaluated and discussed to optimize the tissue-differentiation performance of the LIBS approach. Plasma mediated laser tissue ablation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Prochazka, D.; Mazura, M.; Samek, O.; Rebrošová, K.; Pořízka, P.; Klus, J.; Prochazková, P.; Novotný, J.; Novotný, K.; Kaiser, J.
2018-01-01
In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways - separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared. By applying the PCA to Raman spectroscopy data, we observed that two bacterial strains were fully distinguished from the rest of the data set. In the case of LIBS data, three bacterial strains were fully discriminated. Using a combination of data from both methods, we achieved the complete discrimination of all bacterial strains. All the data were classified with a high success rate using SOM algorithm. The most accurate classification was obtained using a combination of data from both techniques. The classification accuracy varied, depending on specific samples and techniques. As for LIBS, the classification accuracy ranged from 45% to 100%, as for Raman Spectroscopy from 50% to 100% and in case of merged data, all samples were classified correctly. Based on the results of the experiments presented in this work, we can assume that the combination of Raman spectroscopy and LIBS significantly enhances discrimination and classification accuracy of bacterial species and strains. The reason is the complementarity in obtained chemical information while using these two methods.
Nondestructive Determination of Cu Residue in Orange Peel by Laser Induced Breakdown Spectroscopy
NASA Astrophysics Data System (ADS)
Hu, Huiqin; Huang, Lin; Liu, Muhua; Chen, Tianbing; Yang, Ping; Yao, Mingyin
2015-08-01
Laser induced breakdown spectroscopy (LIBS) is an emerging tool with rapid, nondestructive, green characteristics in qualitative or quantitative analyses of composition in materials. But LIBS has its shortcomings in detect limit and sensitivity. In this work, heavy metal Cu in Gannan Navel Orange, which is one of famous fruits from Jiangxi of China, was analyzed. In view of LIBS's limit, it is difficult to determinate heavy metals in natural fruits. In this work, nine orange samples were pretreated in 50-500 μg/mL Cu solution, respectively. Another one orange sample was chosen as a control group without any pollution treatment. Previous researchers observed that the content of heavy metals is much higher in peel than in pulp. So, the content in pulp can be reflected by detecting peel. The real concentrations of Cu in peels were acquired by atomic absorption spectrophotometer (AAS). A calibration model of Cu I 324.7 and Cu I 327.4 was constructed between LIBS intensity and AAS concentration by six samples. The correlation coefficient of the two models is also 0.95. All of the samples were used to verify the accuracy of the model. The results show that the relative error (RE) between predicted and real concentration is less than 6.5%, and Cu I 324.7 line has smaller RE than Cu I 327.4. The analysis demonstrated that different characteristic lines decided different accuracy. The results prove the feasibility of detecting heavy metals in fruits by LIBS. But the results are limited in treated samples. The next work will focus on direct analysis of heavy metals in natural fruits without any pretreatment. This work is helpful to explore the distribution of heavy metals between pulp and peel. supported by National Natural Science Foundation of China (No. 31460419) and Major Project of Science and Technology of Jiangxi, China (No. 20143ACB21013)
Combined raman spectrometer/laser-induced breakdown spectrometer design concept
NASA Astrophysics Data System (ADS)
Bazalgette Courrèges-Lacoste, Gregory; Ahlers, Berit; Boslooper, Erik; Rull-Perez, Fernando; Maurice, Sylvestre
2017-11-01
Amongst the different instruments that have been preselected to be on-board the Pasteur payload on ExoMars is the Raman/ Laser Induced Breakdown Spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman Spectrometer/ LIBS Elegant Bread-Board (EBB). The instrument is based on a specifically designed extremely compact spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and resources are the main drivers of the instrument's design concept. The proposed design concept, realization and testing programme for the combined Raman/ LIBS EBB is presented as well as background information on Raman and LIBS.
Nasr, M M; Gondal, Mohammed Asharf; Seddigi, Z S
2011-04-01
Highly toxic contaminants like Cr, As, and Pb were detected in chrome-tanning process of animal skin to produce leather by applying locally developed laser-induced breakdown spectrometer. An Nd-YAG laser with 1,064 nm wavelength was focused on the surface of leather samples (natural and manufactured) to generate a plasma spark and spectrally resolved spectra were used for identification and quantification of contaminants. The leather samples were collected from a tannery located in industrial cities of Riyadh and Jeddah, Saudi Arabia. The study was carried out on fully, half manufactured (wet blue leather), and natural hide (skin). To the best of our knowledge, this is the first attempt where laser-induced breakdown spectroscopy (LIBS) technique has been applied for the analysis of leather before and after tanning process. The maximum concentration of different elements of environmental significance like chromium, lead, arsenic, sulfur, magnesium were 199, 289, 31, 38, and 39 ppm, respectively, in one of the manufactured leather samples. The limit of detection (LOD) of our LIBS system for chromium, lead, arsenic, sulfur, and magnesium were 2, 3, 1.5,7, and 3 ppm, respectively. The safe permissible limit for tanned leather for highly toxic elements like chromium, lead, and arsenic are 1, 0.5, 0.01 ppm, respectively, as prescribed in Environmental Regulation Standards for Saudi Industries set by Royal Commission Jubail, Saudi Arabia. The LIBS technique is superior to other conventional techniques like ICP or atomic absorption that a little or no sample preparation is required, no chemicals are needed, multi-elemental analysis is possible for all kinds of samples (natural and anthropogenic materials), microgram of sample is essential, and LIBS could be applied for remote analysis. It is highly selective and sensitivity higher than ICP, and as no sample and chemicals are required, it is cost effective for multi-sample analysis per unit time as compared with other conventional techniques. The concentration of some toxic elements (Cr, Pb, As) is much higher than the safe permissible limits set by Occupational Safety and Health Administration in USA or Saudi environmental regulatory agencies. Results obtained with our LIBS systems were in close agreement with the results obtained using other standard analytical technique such as the inductively coupled plasma atomic emission spectroscopy.
Calibrating the ChemCam LIBS for Carbonate Minerals on Mars
DOE R&D Accomplishments Database
Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.; Barefield, James E.; Lanza, Nina; Newsom, Horton E.
2009-01-01
The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.
Lessons Learned from LIBS Calibration Development
NASA Astrophysics Data System (ADS)
Dyar, M. D.; Breves, E. A.; Lepore, K. H.; Boucher, T. F.; Giguere, S.
2016-10-01
More than two decades of work have been dedicated to development of robust standards, data processing, and calibration tools for LIBS. Here we summarize major considerations for improving accuracy of LIBS chemical analyses.
Adaptive Multi-sensor Data Fusion Model for In-situ Exploration of Mars
NASA Astrophysics Data System (ADS)
Schneiderman, T.; Sobron, P.
2014-12-01
Laser Raman spectroscopy (LRS) and laser-induced breakdown spectroscopy (LIBS) can be used synergistically to characterize the geochemistry and mineralogy of potential microbial habitats and biosignatures. The value of LRS and LIBS has been recognized by the planetary science community: (i) NASA's Mars2020 mission features a combined LRS-LIBS instrument, SuperCam, and an LRS instrument, SHERLOC; (ii) an LRS instrument, RLS, will fly on ESA's 2018 ExoMars mission. The advantages of combining LRS and LIBS are evident: (1) LRS/LIBS can share hardware components; (2) LIBS reveals the relative concentration of major (and often trace) elements present in a sample; and (3) LRS yields information on the individual mineral species and their chemical/structural nature. Combining data from LRS and LIBS enables definitive mineral phase identification with precise chemical characterization of major, minor, and trace mineral species. New approaches to data processing are needed to analyze large amounts of LRS+LIBS data efficiently and maximize the scientific return of integrated measurements. Multi-sensor data fusion (MSDF) is a method that allows for robust sample identification through automated acquisition, processing, and combination of data. It optimizes information usage, yielding a more robust characterization of a target than could be acquired through single sensor use. We have developed a prototype fuzzy logic adaptive MSDF model aimed towards the unsupervised characterization of Martian habitats and their biosignatures using LRS and LIBS datasets. Our model also incorporates fusion of microimaging (MI) data - critical for placing analyses in geological and spatial context. Here, we discuss the performance of our novel MSDF model and demonstrate that automated quantification of the salt abundance in sulfate/clay/phyllosilicate mixtures is possible through data fusion of collocated LRS, LIBS, and MI data.
Bricklemyer, Ross S; Brown, David J; Turk, Philip J; Clegg, Sam M
2013-10-01
Laser-induced breakdown spectroscopy (LIBS) provides a potential method for rapid, in situ soil C measurement. In previous research on the application of LIBS to intact soil cores, we hypothesized that ultraviolet (UV) spectrum LIBS (200-300 nm) might not provide sufficient elemental information to reliably discriminate between soil organic C (SOC) and inorganic C (IC). In this study, using a custom complete spectrum (245-925 nm) core-scanning LIBS instrument, we analyzed 60 intact soil cores from six wheat fields. Predictive multi-response partial least squares (PLS2) models using full and reduced spectrum LIBS were compared for directly determining soil total C (TC), IC, and SOC. Two regression shrinkage and variable selection approaches, the least absolute shrinkage and selection operator (LASSO) and sparse multivariate regression with covariance estimation (MRCE), were tested for soil C predictions and the identification of wavelengths important for soil C prediction. Using complete spectrum LIBS for PLS2 modeling reduced the calibration standard error of prediction (SEP) 15 and 19% for TC and IC, respectively, compared to UV spectrum LIBS. The LASSO and MRCE approaches provided significantly improved calibration accuracy and reduced SEP 32-55% over UV spectrum PLS2 models. We conclude that (1) complete spectrum LIBS is superior to UV spectrum LIBS for predicting soil C for intact soil cores without pretreatment; (2) LASSO and MRCE approaches provide improved calibration prediction accuracy over PLS2 but require additional testing with increased soil and target analyte diversity; and (3) measurement errors associated with analyzing intact cores (e.g., sample density and surface roughness) require further study and quantification.
Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte
NASA Astrophysics Data System (ADS)
Kammoun, M.; Berg, S.; Ardebili, H.
2015-10-01
Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method that is economical and scalable. The laminated battery shows robust mechanical flexibility over 6000 bending cycles and excellent electrochemical performance in both flat and bent configurations. Finite element analysis (FEA) of the LIB provides critical insights into the evolution of mechanical stresses during lamination and bending.Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method that is economical and scalable. The laminated battery shows robust mechanical flexibility over 6000 bending cycles and excellent electrochemical performance in both flat and bent configurations. Finite element analysis (FEA) of the LIB provides critical insights into the evolution of mechanical stresses during lamination and bending. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04339e
NASA Astrophysics Data System (ADS)
Dyar, M. D.; Nelms, M.; Breves, E. A.
2012-12-01
Laser-induced breakdown spectrometer (LIBS), as implemented on the ChemCam instrument on Mars Science Lab and the proposed New Frontiers SAGE mission to Venus, can analyze elements from H to Pb from up to 7m standoff. This study examines the capabilities of LIBS to analyze H, O, B, Be, and Li under conditions simulating Earth, the Moon, and Mars. Of these, H is a major constituent of clay minerals and a key indicator of the presence of water. Its abundance in terrestrial materials ranges from 0 ppm up to 10's of wt.% H2O in hydrated sulfates and clays, with prominent emission lines occurring ca. 656.4 nm. O is an important indicator of atmospheric and magmatic coevolution, and has lines ca. 615.8, 656.2, 777.6, and 844.8 nm. Unfortunately there are very few geological samples from which O has been directly measured, but stoichiometry suggests that O varies from ca. 0 wt.% in sulfides to 21% in ferberite, 32% in ilmenite, 42% in amphiboles, 53% in quartz, 63% in melanterite, and 71% in epsomite. Li (lines at 413.3, 460.4, and 670.9 nm in vacuum), B (412.3 nm), and Be (313.1 nm) are highly mobile elements and key indicators of interaction with water. Local atmospheric composition and pressure significantly influence LIBS plasma intensity because the local atmosphere and the breakdown products from the atmospheric species interact with the ablated surface material in the plasma. Measurement of light elements with LIBS requires that spectra be acquired under conditions matching the remote environment. LIBS is critically dependent on the availability of well characterized, homogeneous reference materials that are closely matched in matrix (composition and structure) to the sample being studied. In modern geochemistry, analyses of most major, minor, and trace elements are routinely made. However, quantitative determination of light element concentrations in geological specimens still represents a major analytical challenge. Thus standards for which hydrogen, oxygen, and other light elements are directly measured are nearly nonexistent in the 1-2 g quantities needed for LIBS analyses. For this study, we have obtained two sample suites that provide calibrations needed for accurate analyses of H, O, B, Be, and Li in geological samples. The first suite of 11 samples was analyzed for oxygen by fast neutron activation analysis. The second suite includes 11 gem-quality minerals representing the major rock-forming species for B, Li, and Be-rich parageneses. Light elements were directly analyzed using a combination of EMPA, XRF, ion microprobe, uranium extraction, proton-induced gamma-ray emission (PIGE), and prompt gamma-ray neutron activation analysis (PGNAA). LIBS spectra were acquired at Mount Holyoke College under air, vacuum, and CO2 to simulate terrestrial, lunar, and martian environments. Spectra were then used to develop three separate calibration models (one for each environment), enabling LIBS characterization of light elements using multivariate analyses. Results show that when direct analyses of H, O, Li, B, and Be are used rather than LOI results, inferred, or indirectly calculated values, optimal root mean squared errors of prediction result. We are actively adding samples to these calibration suites, and we expect that prediction errors (accuracies) of <1wt% for these elements are possible.
Yang, Clayton S-C; Brown, Ei E; Kumi-Barimah, Eric; Hommerich, Uwe H; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter
2014-01-01
In an effort to augment the atomic emission spectra of conventional laser-induced breakdown spectroscopy (LIBS) and to provide an increase in selectivity, mid-wave to long-wave infrared (IR), LIBS studies were performed on several organic pharmaceuticals. Laser-induced breakdown spectroscopy signature molecular emissions of target organic compounds are observed for the first time in the IR fingerprint spectral region between 4-12 μm. The IR emission spectra of select organic pharmaceuticals closely correlate with their respective standard Fourier transform infrared spectra. Intact and/or fragment sample molecular species evidently survive the LIBS event. The combination of atomic emission signatures derived from conventional ultraviolet-visible-near-infrared LIBS with fingerprints of intact molecular entities determined from IR LIBS promises to be a powerful tool for chemical detection.
Effect of Atmospheric Conditions on LIBS Spectra
Effenberger, Andrew J.; Scott, Jill R.
2010-01-01
Laser-induced breakdown spectroscopy (LIBS) is typically performed at ambient Earth atmospheric conditions. However, interest in LIBS in other atmospheric conditions has increased in recent years, especially for use in space exploration (e.g., Mars and Lunar) or to improve resolution for isotopic signatures. This review focuses on what has been reported about the performance of LIBS in reduced pressure environments as well as in various gases other than air. PMID:22399914
de Boer, Annette S.; Kremer, Kristin; Borgdorff, Martien W.; de Haas, Petra E. W.; Heersma, Herre F.; van Soolingen, Dick
2000-01-01
Mycobacterium tuberculosis isolates with identical IS6110 restriction fragment length polymorphism (RFLP) patterns are considered to originate from the same ancestral strain and thus to reflect ongoing transmission. In this study, we investigated 1,277 IS6110 RFLP patterns for the presence of multiple low-intensity bands (LIBs), which may indicate infections with multiple M. tuberculosis strains. We did not find any multiple LIBs, suggesting that multiple infections are rare in the Netherlands. However, we did observe a few LIBs in 94 patterns (7.4%) and examined the nature of this phenomenon. With single-colony cultures it was found that LIBs mostly represent mixed bacterial populations with slightly different RFLP patterns. Mixtures were expressed in RFLP patterns as LIBs when 10 to 30% of the DNA analyzed originated from a bacterial population with another RFLP pattern. Presumably, a part of the LIBs did not represent mixed bacterial populations, as in some clusters all strains exhibited LIBs in their RFLP patterns. The occurrence of LIBs was associated with increased age in patients. This may reflect either a gradual change of the bacterial population in the human body over time or IS6110-mediated genetic adaptation of M. tuberculosis to changes in the environmental conditions during the dormant state or reactivation thereafter. PMID:11101583
Liu, Yao; Yang, Bingchang; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao
2017-12-22
Lithium-ion batteries (LIBs) are being used to power the commercial electric vehicles (EVs). However, the charge/discharge rate and life of current LIBs still cannot satisfy the further development of EVs. Furthermore, the poor low-temperature performance of LIBs limits their application in cold climates and high altitude areas. Herein, a simple prelithiation method is developed to fabricate a new LIB. In this strategy, a Li 3 V 2 (PO 4 ) 3 cathode and a pristine hard carbon anode are used to form a primary cell, and the initial Li + extraction from Li 3 V 2 (PO 4 ) 3 is used to prelithiate the hard carbon. Then, the self-formed Li 2 V 2 (PO 4 ) 3 cathode and prelithiated hard carbon anode are used to form a 4 V LIB. The LIB exhibits a maximum energy density of 208.3 Wh kg -1 , a maximum power density of 8291 W kg -1 and a long life of 2000 cycles. When operated at -40 °C, the LIB can keep 67 % capacity of room temperature, which is much better than conventional LIBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Risk Factors for Mortality in Lower Intestinal Bleeding
Strate, Lisa L.; Ayanian, John Z.; Kotler, Gregory; Syngal, Sapna
2009-01-01
Background and Aims Previous studies of Lower Intestinal Bleeding (LIB) have limited power to study mortality. We sought to identify characteristics associated with in-hospital mortality in a large cohort of patients with LIB. Methods We used the 2002 Healthcare Cost and Utilization Project (HCUP) Nationwide Inpatient Sample (NIS) to study a cross-sectional cohort of 227,022 hospitalized patients with discharge diagnoses indicating LIB. Predictors of mortality were identified using multiple logistic regression. Results In 2002, an estimated 8,737 patients with LIB (3.9%) died while hospitalized. Independent predictors of in-hospital mortality were age (age >70 vs. <50, odds ratio (OR) 4.91; 95% CI 2.45–9.87), intestinal ischemia (OR 3.47; 95% CI 2.57–4.68), comorbid illness (≥ 2 vs. 0 comorbidities, OR 3.00; 95% CI 2.25–3.98), bleeding while hospitalized for a separate process (OR 2.35; 95% CI 1.81–3.04), coagulation defects (OR 2.34; 95% CI 1.50–3.65), hypovolemia (OR 2.22; 95% CI 1.69–2.90), transfusion of packed red blood cells (OR 1.60; 95% CI 1.23–2.08), and male gender (OR 1.52; 95% CI 1.21–1.92). Colorectal polyps (OR 0.26, 95% CI 0.15–0.45), and hemorrhoids (OR 0.42; 95% CI 0.28–0.64) were associated with a lower risk of mortality, as was diagnostic testing for LIB when added to the multivariate model (OR 0.37, 95% CI 0.28–0.48; p<0.001). Hospital characteristics were not significantly related to mortality. Predictors of mortality were similar in an analysis restricted to patients with diverticular bleeding. Conclusions The all-cause in-hospital mortality rate in LIB is low (3.9%). Advanced age, intestinal ischemia and comorbid illness were the strongest predictors of mortality. PMID:18558513
[Determination of Cu in Shell of Preserved Egg by LIBS Coupled with PLS].
Hu, Hui-qin; Xu, Xue-hong; Liu, Mu-hua; Tu, Jian-ping; Huang, Le; Huang, Lin; Yao, Ming-yin; Chen, Tian-bing; Yang, Ping
2015-12-01
In this work, the content of copper in the shell of preserved eggs were determined directly by Laser induced breakdown spectroscopy (LIBS), and the characteristics lines of Cu was obtained. The samples of eggshell were pretreated by acid wet digestion, and the real content of Cu was obtained by atomic absorption spectrophotometer (AAS). Due to the test precision and accuracy of LIBS was influenced by a serious of factors, for example, the complex matrix effect of sample, the enviro nment noise, the system noise of the instrument, the stability of laser energy and so on. And the conventional unvariate linear calibration curve between LIBS intensity and content of element of sample, such as by use of Schiebe G-Lomakin equation, can not meet the requirement of quantitative analysis. In account of that, a kind of multivariate calibration method is needed. In this work, the data of LIBS spectra were processed by partial least squares (PLS), the precision and accuracy of PLS model were compared by different smoothing treatment and five pretreatment methods. The result showed that the correlation coefficient and the accuracy of the PLS model were improved, and the root mean square error and the average relative error were reduced effectively by 11 point smoothing with Multiplicative scatter correction (MSC) pretreatment. The results of the study show that, heavy metal Cu in preserved egg shells can be direct detected accurately by laser induced breakdown spectroscopy, and the next step batch tests will been conducted to find out the relationship of heavy metal Cu content in the preserved egg between the eggshell, egg white and egg yolk. And the goal of the contents of heavy metals in the egg white, egg yolk can be knew through determinate the eggshell by the LIBS can be achieved, to provide new method for rapid non-destructive testing technology for quality and satety of agricultural products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Donald; Elgqvist, Emma; Santhanagopalan, Shriram
Manufacturing capacity for lithium-ion batteries (LIBs) — which power many consumer electronics and are increasingly used to power electric vehicles — is heavily concentrated in East Asia. To illuminate the factors that drive regional competitiveness in automotive LIB cell production, this study models cell manufacturing cost and minimum sustainable price, and examines development of LIB supply chains and current LIB market conditions. The study shows that factors driving the cost competitiveness of LIB manufacturing locations are mostly built—supply chain developments and competition, access to materials, and production expertise. Some regional costs — including cost of capital, labor, and materials —more » are significant and should be considered.« less
EggLib: processing, analysis and simulation tools for population genetics and genomics
2012-01-01
Background With the considerable growth of available nucleotide sequence data over the last decade, integrated and flexible analytical tools have become a necessity. In particular, in the field of population genetics, there is a strong need for automated and reliable procedures to conduct repeatable and rapid polymorphism analyses, coalescent simulations, data manipulation and estimation of demographic parameters under a variety of scenarios. Results In this context, we present EggLib (Evolutionary Genetics and Genomics Library), a flexible and powerful C++/Python software package providing efficient and easy to use computational tools for sequence data management and extensive population genetic analyses on nucleotide sequence data. EggLib is a multifaceted project involving several integrated modules: an underlying computationally efficient C++ library (which can be used independently in pure C++ applications); two C++ programs; a Python package providing, among other features, a high level Python interface to the C++ library; and the egglib script which provides direct access to pre-programmed Python applications. Conclusions EggLib has been designed aiming to be both efficient and easy to use. A wide array of methods are implemented, including file format conversion, sequence alignment edition, coalescent simulations, neutrality tests and estimation of demographic parameters by Approximate Bayesian Computation (ABC). Classes implementing different demographic scenarios for ABC analyses can easily be developed by the user and included to the package. EggLib source code is distributed freely under the GNU General Public License (GPL) from its website http://egglib.sourceforge.net/ where a full documentation and a manual can also be found and downloaded. PMID:22494792
NASA Astrophysics Data System (ADS)
Ledesma, Rodolfo; Palmieri, Frank; Connell, John; Yost, William; Fitz-Gerald, James
2018-02-01
Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants as part of a vigorous quality control process to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding are essential in order to obtain a surface which is free from contaminants that may lead to inferior bond quality. In this study, the focus is to advance the laser induced breakdown spectroscopy (LIBS) technique by using pulse energies below 100 μJ (μLIBS) for the detection of low levels of silicone contaminants in carbon fiber reinforced polymer (CFRP) composites. Various CFRP surface conditions were investigated by LIBS using ∼10 ps, 355 nm laser pulses with pulse energies below 30 μJ. Time-resolved analysis was conducted to optimize the gate delay and gate width for the detection of the C I emission line at 247.9 nm to monitor the epoxy resin matrix of CFRP composites and the Si I emission line at 288.2 nm for detection of silicone contaminants in CFRP. To study the surface sensitivity to silicone contamination, CFRP surfaces were coated with polydimethylsiloxane (PDMS), the active ingredient in many mold release agents. The presence of PDMS was studied by inspecting the Si I emission lines at 251.6 nm and 288.2 nm. The measured PDMS areal densities ranged from 0.15 to 2 μg/cm2. LIBS measurements were performed before and after laser surface ablation. The results demonstrate the successful detection of PDMS thin layers on CFRP using picosecond μLIBS.
EggLib: processing, analysis and simulation tools for population genetics and genomics.
De Mita, Stéphane; Siol, Mathieu
2012-04-11
With the considerable growth of available nucleotide sequence data over the last decade, integrated and flexible analytical tools have become a necessity. In particular, in the field of population genetics, there is a strong need for automated and reliable procedures to conduct repeatable and rapid polymorphism analyses, coalescent simulations, data manipulation and estimation of demographic parameters under a variety of scenarios. In this context, we present EggLib (Evolutionary Genetics and Genomics Library), a flexible and powerful C++/Python software package providing efficient and easy to use computational tools for sequence data management and extensive population genetic analyses on nucleotide sequence data. EggLib is a multifaceted project involving several integrated modules: an underlying computationally efficient C++ library (which can be used independently in pure C++ applications); two C++ programs; a Python package providing, among other features, a high level Python interface to the C++ library; and the egglib script which provides direct access to pre-programmed Python applications. EggLib has been designed aiming to be both efficient and easy to use. A wide array of methods are implemented, including file format conversion, sequence alignment edition, coalescent simulations, neutrality tests and estimation of demographic parameters by Approximate Bayesian Computation (ABC). Classes implementing different demographic scenarios for ABC analyses can easily be developed by the user and included to the package. EggLib source code is distributed freely under the GNU General Public License (GPL) from its website http://egglib.sourceforge.net/ where a full documentation and a manual can also be found and downloaded.
NASA Astrophysics Data System (ADS)
Delia García, Rosa; Barreto, Africa; Cuevas, Emilio; Gröbner, Julian; García, Omaira Elena; Gómez-Peláez, Angel; Romero-Campos, Pedro Miguel; Redondas, Alberto; Cachorro, Victoria Eugenia; Ramos, Ramon
2018-06-01
A 7-year (2010-2016) comparison study between measured and simulated longwave downward radiation (LDR) under cloud-free conditions was performed at the Izaña Atmospheric Observatory (IZO, Spain). This analysis encompasses a total of 2062 cases distributed approximately evenly between day and night. Results show an excellent agreement between Baseline Surface Radiation Network (BSRN) measurements and simulations with libRadtran V2.0.1 and MODerate resolution atmospheric TRANsmission model (MODTRAN) V6 radiative transfer models (RTMs). Mean bias (simulated - measured) of < 1.1 % and root mean square of the bias (RMS) of < 1 % are within the instrumental error (2 %). These results highlight the good agreement between the two RTMs, proving to be useful tools for the quality control of LDR observations and for detecting temporal drifts in field instruments. The standard deviations of the residuals, associated with the RTM input parameters uncertainties are rather small, 0.47 and 0.49 % for libRadtran and MODTRAN, respectively, at daytime, and 0.49 to 0.51 % at night-time. For precipitable water vapor (PWV) > 10 mm, the observed night-time difference between models and measurements is +5 W m-2 indicating a scale change of the World Infrared Standard Group of Pyrgeometers (WISG), which serves as reference for atmospheric longwave radiation measurements. Preliminary results suggest a possible impact of dust aerosol on infrared radiation during daytime that might not be correctly parametrized by the models, resulting in a slight underestimation of the modeled LDR, of about -3 W m-2, for relatively high aerosol optical depth (AOD > 0.20).
Application of Laser Induced Breakdown Spectroscopy to Monitor Rare Earth Ions in Glass Matrix
NASA Astrophysics Data System (ADS)
Sharma, Prakash; Carter, Michael; Kumar, Akshaya
2013-05-01
The Laser Induced breakdown spectroscopy (LIBS) is a real time online technique that can be used to monitor the concentration of rare earth ions in amorphous glass matrix. This study has significant application in the glass industry where the composition of the glass can be monitored in real time using LIBS technology for quality control. The Eu3 + ions doped silicate glasses were developed via sol gel method. The glasses of varying molar percentages of Eu3 + (0.02, 0.05 and 0.08 mole percent), were prepared to study the effect of variation in concentration of Eu3 + ions on the LIBS signal and to calculate its limit of detection (LOD). The spectral assignment of the observed LIBS spectrum has been made. In order to find the maximum signal to noise ratio, we also recorded the intensity of LIBS signal for various integration start delay (ISD) time at a constant power of (pulsed Nd: YAG) laser. The ocean optics LIBS 2500plus spectrometer along with a Q switched Nd:YAG laser (Quantel, Big Sky) were used to record the LIBS spectrum.
NASA Astrophysics Data System (ADS)
M. Amaral, Marcello; Raele, Marcus P.; Z. de Freitas, Anderson; Zahn, Guilherme S.; Samad, Ricardo E.; D. Vieira, Nilson, Jr.; G. Tarelho, Luiz V.
2009-07-01
This work presents a compositional characterization of 1939's Thousand "Réis" and 1945's One "Cruzeiro" Brazilian coins, forged on aluminum bronze alloy. The coins were irradiated by a Q-switched Nd:YAG laser with 4 ns pulse width and energy of 25mJ emitting at 1064nm reaching 3.1010Wcm-2 (assured condition for stoichiometric ablation), forming a plasma in a small fraction of the coin. Plasma emission was collected by an optical fiber system connected to an Echelle spectrometer. The capability of LIBS to remove small fraction of material was exploited and the coins were analyzed ablating layer by layer from patina to the bulk. The experimental conditions to assure reproductivity were determined by evaluation of three plasma paramethers: ionization temperature using Saha-Boltzmann plot, excitation temperature using Boltzmann plot, plasma density using Saha-Boltzmann plot and Stark broadening. The Calibration-Free LIBS technique was applied to both coins and the analytical determination of elemental composition was employed. In order to confirm the Edict Law elemental composition the results were corroborated by Neutron Activation Analysis (NAA). In both cases the results determined by CF-LIBS agreed to with the Edict Law and NAA determination. Besides the major components for the bronze alloy some other impurities were observed. Finally, in order to determine the coin damage made by the laser, the OCT (Optical Coherence Tomography) technique was used. After tree pulses of laser 54μg of coin material were removed reaching 120μm in depth.
Shi, Linli; Lin, Qingyu; Duan, Yixiang
2015-11-01
In view of the inevitable preprocessing of powder samples for LIBS detection, epoxy resin glue was investigated for the first time as a binder of powder samples due to its superior property of improved performance in laser induced breakdown spectroscopy (LIBS) technique as a quantitative analytical tool. For comparative studies of the epoxy resin and traditional polyethylene (PE) pellets in soil, sample detection, the signal intensities of Fe (I) at 404.58 nm, Ca (I) at 443.57 nm, and Cr (I) at 453.52 nm, were studied and subsequently, the calibration curves for these elements were constructed using the standard samples with variable concentrations. The signal intensities of epoxy resin samples were, on average, about 2 times greater than those obtained with the traditional PE pellet samples. Meanwhile, the resin samples showed better R square values of 0.981, 0.985 and 0.979 for curves of Fe (I) 404.58 nm, Ca (I) 443.57 nm, and Cr (I) 453.52 nm, compared to the 0.974, 0.950 and 0.934, of the PE pellet samples. Furthermore, the former represented lower limits of detection (LOD) for Fe, Ca and Cr. These experimental results indicated that this proposed novel method based on epoxy resin can attach samples of properties of high homogeneity, cohesiveness, smoothness and hardness, which are conducive to system stability, testing accuracy and signal enhancement. This method can make LIBS more practical in powder sample analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bilge, Gonca; Sezer, Banu; Boyaci, Ismail Hakki; Eseller, Kemal Efe; Berberoglu, Halil
2018-07-01
Liquid analysis by using LIBS is a complicated process due to difficulties encountered during the collection of light and formation of plasma in liquid. To avoid these, some applications are performed such as aerosol formation and transforming liquid into solid state. However, performance of LIBS in liquid samples still remains a challenging issue. In this study, performance evaluation of LIBS and parameter optimizations in liquid and solid phase samples were performed. For this purpose, milk was chosen as model sample; milk powder was used as solid sample, and milk was used as liquid sample in the experiments. Different experimental setups have been constructed for each sampling technique, and optimizations were performed to determine suitable parameters such as delay time, laser energy, repetition rate and speed of rotary table for solid sampling technique, and flow rate of carrier gas for liquid sampling technique. Target element was determined as Ca, which is a critically important element in milk for determining its nutritional value and Ca addition. In optimum parameters, limit of detection (LOD), limit of quantification (LOQ) and relative standard deviation (RSD) values were calculated as 0.11%, 0.36% and 8.29% respectively for milk powders samples; while LOD, LOQ and RSD values were calculated as 0.24%, 0.81%, and 10.93% respectively for milk samples. It can be said that LIBS is an applicable method in both liquid and solid samples with suitable systems and parameters. However, liquid analysis requires much more developed systems for more accurate results.
Laserna, J J; Reyes, R Fernández; González, R; Tobaria, L; Lucena, P
2009-06-08
We report on an experimental study of the effect of atmospheric turbulence on laser induced breakdown spectroscopy (LIBS) measurements. The characteristics of the atmosphere dictate specific performance constraints to this technology. Unlike classical laboratory LIBS systems where the distance to the sample is well known and characterized, LIBS systems working at several tens of meters to the target have specific atmospheric propagation conditions that cause the quality of the LIBS signals to be affected to a significant extent. Using a new LIBS based sensor system fitted with a nanosecond laser emitting at 1064 nm, propagation effects at distances of up to 120 m were investigated. The effects observed include wander and scintillation in the outgoing laser beam and in the return atomic emission signal. Plasmas were formed on aluminium targets. Average signal levels and signal fluctuations are measured so the effect of atmospheric turbulence on LIBS measurements is quantified.
Generation and management of waste electric vehicle batteries in China.
Xu, ChengJian; Zhang, Wenxuan; He, Wenzhi; Li, Guangming; Huang, Juwen; Zhu, Haochen
2017-09-01
With the increasing adoption of EVs (electric vehicles), a large number of waste EV LIBs (electric vehicle lithium-ion batteries) were generated in China. Statistics showed generation of waste EV LIBs in 2016 reached approximately 10,000 tons, and the amount of them would be growing rapidly in the future. In view of the deleterious effects of waste EV LIBs on the environment and the valuable energy storage capacity or materials that can be reused in them, China has started emphasizing the management, reuse, and recycling of them. This paper presented the generation trend of waste EV LIBs and focused on interrelated management development and experience in China. Based on the situation of waste EV LIBs management in China, existing problems were analyzed and summarized. Some recommendations were made for decision-making organs to use as valuable references to improve the management of waste EV LIBs and promote the sustainable development of EVs.
Materials insights into low-temperature performances of lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zhu, Gaolong; Wen, Kechun; Lv, Weiqiang; Zhou, Xingzhi; Liang, Yachun; Yang, Fei; Chen, Zhilin; Zou, Minda; Li, Jinchao; Zhang, Yuqian; He, Weidong
2015-12-01
Lithium-ion batteries (LIBs) have been employed in many fields including cell phones, laptop computers, electric vehicles (EVs) and stationary energy storage wells due to their high energy density and pronounced recharge ability. However, energy and power capabilities of LIBs decrease sharply at low operation temperatures. In particular, the charge process becomes extremely sluggish at temperatures below -20 °C, which severely limits the applications of LIBs in some cold areas during winter. Extensive research has shown that the electrolyte/electrode composition and microstructure are of fundamental importance to low-temperature performances of LIBs. In this report, we review the recent findings in the role of electrolytes, anodes, and cathodes in the low temperature performances of LIBs. Our overview aims to understand comprehensively the fundamental origin of low-temperature performances of LIBs from a materials perspective and facilitates the development of high-performance lithium-ion battery materials that are operational at a large range of working temperatures.
Application of spectroscopic techniques for the analysis of kidney stones: a pilot study
NASA Astrophysics Data System (ADS)
Shameem, K. M., Muhammed; Chawla, Arun; Bankapur, Aseefhali; Unnikrishnan, V. K.; Santhosh, C.
2016-03-01
Identification and characterization of kidney stone remains one of the important analytical tasks in the medical field. Kidney stone is a common health complication throughout the world, which may cause severe pain, obstruction and infection of urinary tract, and can lead to complete renal damage. It commonly occurs in both sexes regardless of age. Kidney stones have different composition, although each stones have a major single characteristic component. A complete understanding of a sample properties and their function can only be feasible by utilizing elemental and molecular information simultaneously. Two laser based analytical techniques; Laser Induced Breakdown spectroscopy (LIBS) and Raman spectroscopy have been used to study different types of kidney stones from different patients. LIBS and Raman spectroscopy are highly complementary spectroscopic techniques, which provide elemental and molecular information of a sample. Q-switched Nd:YAG laser at 355 nm laser having energy 17mJ per pulse at 10 Hz repetition rate was used for getting LIBS spectra. Raman measurements were carried out using a home assembled micro-Raman spectrometer. Using the recorded Raman spectra of kidney stones, we were able to differentiate different kinds of kidney stones. LIBS spectra of the same stones are showing the evidence of C, Ca, H, and O and also suggest the presence of certain pigments.
On the improvement of signal repeatability in laser-induced air plasmas
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Sheta, Sahar; Hou, Zong-Yu; Wang, Zhe
2018-04-01
The relatively low repeatability of laser-induced breakdown spectroscopy (LIBS) severely hinders its wide commercialization. In the present work, we investigate the optimization of LIBS system for repeatability improvement for both signal generation (plasma evolution) and signal collection. Timeintegrated spectra and images were obtained under different laser energies and focal lengths to investigate the optimum configuration for stable plasmas and repeatable signals. Using our experimental setup, the optimum conditions were found to be a laser energy of 250 mJ and a focus length of 100 mm. A stable and homogeneous plasma with the largest hot core area in the optimum condition yielded the most stable LIBS signal. Time-resolved images showed that the rebounding processes through the air plasma evolution caused the relative standard deviation (RSD) to increase with laser energies of > 250 mJ. In addition, the emission collection was improved by using a concave spherical mirror. The line intensities doubled as their RSDs decreased by approximately 25%. When the signal generation and collection were optimized simultaneously, the pulse-to-pulse RSDs were reduced to approximately 3% for O(I), N(I), and H(I) lines, which are better than the RSDs reported for solid samples and showed great potential for LIBS quantitative analysis by gasifying the solid or liquid samples.
Li, Wen-bing; Yao, Lin-tao; Liu, Mu-hua; Huang, Lin; Yao, Ming-yin; Chen, Tian-bing; He, Xiu-wen; Yang, Ping; Hu, Hui-qin; Nie, Jiang-hui
2015-05-01
Cu in navel orange was detected rapidly by laser-induced breakdown spectroscopy (LIBS) combined with partial least squares (PLS) for quantitative analysis, then the effect on the detection accuracy of the model with different spectral data ptetreatment methods was explored. Spectral data for the 52 Gannan navel orange samples were pretreated by different data smoothing, mean centralized and standard normal variable transform. Then 319~338 nm wavelength section containing characteristic spectral lines of Cu was selected to build PLS models, the main evaluation indexes of models such as regression coefficient (r), root mean square error of cross validation (RMSECV) and the root mean square error of prediction (RMSEP) were compared and analyzed. Three indicators of PLS model after 13 points smoothing and processing of the mean center were found reaching 0. 992 8, 3. 43 and 3. 4 respectively, the average relative error of prediction model is only 5. 55%, and in one word, the quality of calibration and prediction of this model are the best results. The results show that selecting the appropriate data pre-processing method, the prediction accuracy of PLS quantitative model of fruits and vegetables detected by LIBS can be improved effectively, providing a new method for fast and accurate detection of fruits and vegetables by LIBS.
Moncayo, S; Rosales, J D; Izquierdo-Hornillos, R; Anzano, J; Caceres, J O
2016-09-01
This work reports on a simple and fast classification procedure for the quality control of red wines with protected designation of origin (PDO) by means of Laser Induced Breakdown Spectroscopy (LIBS) technique combined with Neural Networks (NN) in order to increase the quality assurance and authenticity issues. A total of thirty-eight red wine samples from different PDO were analyzed to detect fake wines and to avoid unfair competition in the market. LIBS is well known for not requiring sample preparation, however, in order to increase its analytical performance a new sample preparation treatment by previous liquid-to-solid transformation of the wine using a dry collagen gel has been developed. The use of collagen pellets allowed achieving successful classification results, avoiding the limitations and difficulties of working with aqueous samples. The performance of the NN model was assessed by three validation procedures taking into account their sensitivity (internal validation), generalization ability and robustness (independent external validation). The results of the use of a spectroscopic technique coupled with a chemometric analysis (LIBS-NN) are discussed in terms of its potential use in the food industry, providing a methodology able to perform the quality control of alcoholic beverages. Copyright © 2016 Elsevier B.V. All rights reserved.
Yao, Mingyin; Yang, Hui; Huang, Lin; Chen, Tianbing; Rao, Gangfu; Liu, Muhua
2017-05-10
In seeking a novel method with the ability of green analysis in monitoring toxic heavy metals residue in fresh leafy vegetables, laser-induced breakdown spectroscopy (LIBS) was applied to prove its capability in performing this work. The spectra of fresh vegetable samples polluted in the lab were collected by optimized LIBS experimental setup, and the reference concentrations of cadmium (Cd) from samples were obtained by conventional atomic absorption spectroscopy after wet digestion. The direct calibration employing intensity of single Cd line and Cd concentration exposed the weakness of this calibration method. Furthermore, the accuracy of linear calibration can be improved a little by triple Cd lines as characteristic variables, especially after the spectra were pretreated. However, it is not enough in predicting Cd in samples. Therefore, partial least-squares regression (PLSR) was utilized to enhance the robustness of quantitative analysis. The results of the PLSR model showed that the prediction accuracy of the Cd target can meet the requirement of determination in food safety. This investigation presented that LIBS is a promising and emerging method in analyzing toxic compositions in agricultural products, especially combined with suitable chemometrics.
Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging
NASA Astrophysics Data System (ADS)
Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.
2016-07-01
One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells.
NASA Astrophysics Data System (ADS)
Brown, Staci R.; Akpovo, Charlemagne A.; Martinez, Jorge; Ford, Alan; Herbert, Kenley; Johnson, Lewis
2014-03-01
Laser Induced Breakdown Spectroscopy (LIBS) is a spectroscopic technique that is used for the qualitative and quantitative analysis of materials in the liquid, solid, or gas phase. LIBS can also be used for the detection of isotopic shifts in atomic and diatomic species via Laser-Ablation Molecular Isotopic Spectroscopy (LAMIS). However, any additional elements that are entrained into the plasma other than the element of interest, can affect the extent of ablation and quality of spectra and hence, potentially obscure or aid in the relative abundance assessment for a given element. To address the importance of matrix effects, the isotopic analysis of boron obtained from boron oxide (BO) emission originating from different boron-containing compounds, such as boron nitride (BN), boric acid (H3BO3) , and borax (Na2B4O710H2O), via LIBS has been performed here. Each of these materials has different physical properties and elemental composition in order to illustrate possible challenges for the LAMIS method. A calibration-free model similar to that for the original LAMIS work is used to determine properties of the plasma as the matrix is changed. DTRA
A study of using femtosecond LIBS in analyzing metallic thin film-semiconductor interface
NASA Astrophysics Data System (ADS)
Galmed, A. H.; Kassem, A. K.; von Bergmann, H.; Harith, M. A.
2011-01-01
Metals and metal alloys are usually employed as interconnections to guide electrical signals between components into the very large scale integrated (VLSI) devices. These devices demand higher complexity, better performance and lower cost. Thin film is a common geometry for these metallic applications, requiring a substrate for rigidity. Accurate depth profile analysis of coatings is becoming increasingly important with expanding industrial use in technological fields. A number of articles devoted to LIBS applications for depth-resolved analysis have been published in recent years. In the present work, we are studying the ability of femtosecond LIBS to make depth profiling for a Ti thin film of thickness 213 nm deposited onto a silicon (100) substrate before and after thermal annealing. The measurements revealed that an average ablation rates of 15 nm per pulse have been achieved. The thin film was examined using X-Ray Diffraction (XRD) and Atomic Force Microscope (AFM), while the formation of the interface was examined using Rutherford Back Scattering (RBS) before and after annealing. To verify the depth profiling results, a theoretical simulation model is presented that gave a very good agreement with the experimental results.
Laser-induced breakdown spectroscopy measurement of a small fraction of rhenium in bulk tungsten
NASA Astrophysics Data System (ADS)
Nishijima, D.; Ueda, Y.; Doerner, R. P.; Baldwin, M. J.; Ibano, K.
2018-03-01
Laser-induced breakdown spectroscopy (LIBS) of bulk rhenium (Re) and tungsten (W)-Re alloy has been performed using a Q-switched Nd:YAG laser (wavelength = 1064 nm, pulse width ∼4-6 ns, laser energy = 115 mJ). It is found that the electron temperature, Te, of laser-induced Re plasma is lower than that of W plasma, and that Te of W-Re plasma is in between Re and W plasmas. This indicates that material properties affect Te in a laser-induced plasma. For analysis of W-3.3%Re alloy, only the strongest visible Re I 488.9 nm line is found to be used because of the strong enough intensity without contamination with W lines. Using the calibration-free LIBS method, the atomic fraction of Re, cRe, is evaluated as a function of the ambient Ar gas pressure, PAr. At PAr < 10 Torr, LIBS-measured cRe agrees well with that from EDX (energy-dispersive X-ray micro-analysis), while cRe increases with an increase in PAr at >10 Torr due to spectral overlapping of the Re I 488.9 nm line by an Ar II 488.9 nm line.
Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses
Hartig, K. C.; Colgan, J.; Kilcrease, D. P.; ...
2015-07-30
Here, we report on a laser-induced breakdown spectroscopy (LIBS) experiment driven by mid-infrared (2.05-μm) fs pulses, in which time-resolved emission spectra of copper were studied. Ab-initio modeling is consistent with the results of new fs measurements at 2.05 μm and traditional 800-nm fs-LIBS. Ablation by mid-infrared fs pulses results in a plasma with a lower plasma density and temperature compared to fs-LIBS performed at shorter laser wavelength. LIBS driven by mid-infrared fs pulses results in a signal-to-background ratio ~50% greater and a signal-to-noise ratio ~40% lower than fs-LIBS at near-infrared laser wavelength.
Chen, Ru-Jun; Zhang, Yi-Bo; Liu, Ting; Xu, Bing-Qing; Lin, Yuan-Hua; Nan, Ce-Wen; Shen, Yang
2017-03-22
All-solid-state bulk-type lithium ion batteries (LIBs) are considered ultimate solutions to the safety issues associated with conventional LIBs using flammable liquid electrolyte. The development of bulk-type all-solid-state LIBs has been hindered by the low loading of active cathode materials, hence low specific surface capacity, and by the high interface resistance, which results in low rate and cyclic performance. In this contribution, we propose and demonstrate a synergistic all-composite approach to fabricating flexible all-solid-state LIBs. PEO-based composite cathode layers (filled with LiFePO 4 particles) of ∼300 μm in thickness and composite electrolyte layers (filled with Al-LLZTO particles) are stacked layer-by-layer with lithium foils as negative layer and hot-pressed into a monolithic all-solid-state LIB. The flexible LIB delivers a high specific discharge capacity of 155 mAh/g, which corresponds to an ultrahigh surface capacity of 10.8 mAh/cm 2 , exhibits excellent capacity retention up to at least 10 cycles and could work properly under harsh operating conditions such as bending or being sectioned into pieces. The all-composite approach is favorable for improving both mesoscopic and microscopic interfaces inside the all-solid-state LIB and may provide a new toolbox for design and fabrication of all-solid-state LIBs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee Spangler; Ross Bricklemyer; David Brown
2012-03-15
There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laboratory based soil characterization typically requires significant soil processing, which is time and resource intensive. This severely limits application for large-region soil characterization. Thus, development of rapid and accurate methods for characterizing soils are needed to map soil properties for precision agriculture applications, improve regional and global soil carbon (C) stock and flux estimates and efficiently map sub-surface metal contamination, among others. The greatest gains for efficientmore » soil characterization will come from collecting soil data in situ, thus minimizing soil sample transportation, processing, and lab-based measurement costs. Visible and near-infrared diffuse reflectance spectroscopy (VisNIR) and laser-induced breakdown spectroscopy (LIBS) are two complementary, yet fundamentally different spectroscopic techniques that have the potential to meet this need. These sensors have the potential to be mounted on a soil penetrometer and deployed for rapid soil profile characterization at field and landscape scales. Details of sensor interaction, efficient data management, and appropriate statistical analysis techniques for model calibrations are first needed. In situ or on-the-go VisNIR spectroscopy has been proposed as a rapid and inexpensive tool for intensively mapping soil texture and organic carbon (SOC). While lab-based VisNIR has been established as a viable technique for estimating various soil properties, few experiments have compared the predictive accuracy of on-the-go and lab-based VisNIR. Eight north central Montana wheat fields were intensively interrogated using on-the-go and lab-based VisNIR. Lab-based spectral data consistently provided more accurate predictions than on-the-go data. However, neither in situ nor lab-based spectroscopy yielded even semi-quantitative SOC predictions. There was little SOC variability to explain across the eight fields, and on-the-go VisNIR was not able to capture the subtle SOC variability in these Montana soils. With more variation in soil clay content compared to SOC, both lab and on-the-go VisNIR showed better explanatory power. There are several potential explanations for poor on-the-go predictive accuracy: soil heterogeneity, field moisture, consistent sample presentation, and a difference between the spatial support of on-the-go measurements and soil samples collected for laboratory analyses. Though the current configuration of a commercially available on-the-go VisNIR system allows for rapid field scanning, on-the-go soil processing (i.e. drying, crushing, and sieving) could improve soil carbon predictions. Laser-induced breakdown spectroscopy (LIBS) is an emerging elemental analysis technology with the potential to provide rapid, accurate and precise analysis of soil constituents, such as carbon, in situ across landscapes. The research team evaluated the accuracy of LIBS for measuring soil profile carbon in field-moist, intact soil cores simulating conditions that might be encountered by a probe-mounted LIBS instrument measuring soil profile carbon in situ. Over the course of three experiments, more than120 intact soil cores from eight north central Montana wheat fields and the Washington State University (WSU) Cook Agronomy Farm near Pullman, WA were interrogated with LIBS for rapid total carbon (TC), inorganic carbon (IC), and SOC determination. Partial least squares regression models were derived and independently validated at field- and regional scales. Researchers obtained the best LIBS validation predictions for IC followed by TC and SOC. Laser-induced breakdown spectroscopy is fundamentally an elemental analysis technique, yet LIBS PLS2 models appeared to discriminate IC from TC. Regression coefficients from initial models suggested a reliance upon stoichiometric relationships between carbon (247.8 nm) and other elements related to total and inorganic carbon in the soil matrix [Ca (210.2 nm, 211.3 nm, and 220.9 nm), Mg (279.55-280.4 nm, 285.26 nm), and Si (251.6 nm, 288.1 nm)]. Expanding the LIBS spectral range to capture emissions from a broader range of elements related to soil organic matter was explored using two spectrometer systems to improve SOC predictions. Results for increasing the spectral range of LIBS to the full 200-800 nm found modest gains in prediction accuracy for IC, but no gains for predicting TC or SOC. Poor SOC predictions are likely a function of (1) the lack of a consistent/definable molecular composition of SOC, (2) relatively little variation in SOC across field sites, and (3) inorganic carbon constituting the primary form of soil carbon, particularly for Montana soils.« less
NASA Astrophysics Data System (ADS)
Castillejo, M.; Martín, M.; Silva, D.; Stratoudaki, T.; Anglos, D.; Burgio, L.; Clark, R. J. H.
2000-09-01
Two laser-based analytical techniques, Laser Induced Breakdown Spectroscopy (LIBS) and Raman microscopy, have been used for the identification of pigments on a polychrome from the Rococo period. Detailed spectral data are presented from analyses performed on a fragment of a gilded altarpiece from the church of Escatrón, Zaragoza, Spain. LIBS measurements yielded elemental analytical data which suggest the presence of certain pigments and, in addition, provide information on the stratigraphy of the paint layers. Identification of most pigments and of the materials used in the preparation layer was performed by Raman microscopy.
[Comparative investigation of underwater-LIBS using 532 and 1 064 nm lasers].
Song, Jiao-Jian; Tian, Ye; Lu, Yuan; Li, Ying; Zheng, Rong-Er
2014-11-01
With the hope of applying laser induced breakdown spectroscopy (LIBS) to the ocean applications, the laser energy at 532 and 1 064 nm wavelength with 3 and 40 mj respectively was used, which was near their breakdown threshold. Extensive experimental investigations of LIBS from CaCl2 water solution were carried out in this paper using different laser wavelengths of 532 and 1 064 nm. The obtained results show that compared with the 532 nm laser, the 1 064 nm laser can induce the plasma in water with higher emission intensity and longer lifetime, while the reproducibility of LIBS signal under 1 064 nm laser is poorer. On the other hand, due to the different attenuation ratios of 532 and 1 064 nm laser energies in water, the LIBS signal of 1 064 nm laser decreases a lot within the transmission distance range 2-5 cm, while LIBS signal of 532 nm remains the same, because that the wavelength of 532 nm lies in the "transmission window" of the water solution. This study will provide valuable design considerations for the development of LIBS-sea system in near future.
Spreadsheet-based engine data analysis tool - user's guide.
DOT National Transportation Integrated Search
2016-07-01
This record refers to both the spreadsheet tool - Fleet Equipment Performance Measurement Preventive Maintenance Model: Spreadsheet-Based Engine Data Analysis Tool, http://ntl.bts.gov/lib/60000/60000/60007/0-6626-P1_Final.xlsm - and its accompanying ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Kareem, O.; Khedr, A.; Abdelhamid, M.
Analysis of the composition of an object is a necessary step in the documentation of the properties of this object for estimating its condition. Also this is an important task for establishing an appropriate conservation treatment of an object or to follow up the result of the application of the suggested treatments. There has been an important evolution in the methods used for analysis of metal threads since the second half of the twentieth century. Today, the main considerations of selecting a method are based on the diagnostic power, representative sampling, reproducibility, destructive nature/invasiveness of analysis and accessibility to themore » appropriate instrument. This study aims at evaluating the usefulness of the use of Laser Induced Breakdown Spectroscopy (LIBS) Technique for analysis of historical metal threads. In this study various historical metal threads collected from different museums were investigated using (LIBS) technique. For evaluating usefulness of the suggested analytical protocol of this technique, the same investigated metal thread samples were investigated with Scanning Electron Microscope (SEM) with energy-dispersive x-ray analyzer (EDX) which is reported in conservation field as the best method, to determine the chemical composition, and corrosion of investigated metal threads. The results show that all investigated metal threads in the present study are too dirty, strongly damaged and corroded with different types of corrosion products. Laser Induced Breakdown Spectroscopy (LIBS) Technique is considered very useful technique that can be used safely for investigating historical metal threads. It is, in fact, very useful tool as a noninvasive method for analysis of historical metal threads. The first few laser shots are very useful for the investigation of the corrosion and dirt layer, while the following shots are very useful and effective for investigating the coating layer. Higher number of laser shots are very useful for the main composition of the metal thread. There is a necessity to carry out further research to investigate and determine the most appropriate and effective approaches and methods for conservation of these metal threads.« less
Analysis of bakery products by laser-induced breakdown spectroscopy.
Bilge, Gonca; Boyacı, İsmail Hakkı; Eseller, Kemal Efe; Tamer, Uğur; Çakır, Serhat
2015-08-15
In this study, we focused on the detection of Na in bakery products by using laser-induced breakdown spectroscopy (LIBS) as a quick and simple method. LIBS experiments were performed to examine the Na at 589 nm to quantify NaCl. A series of standard bread sample pellets containing various concentrations of NaCl (0.025-3.5%) were used to construct the calibration curves and to determine the detection limits of the measurements. Calibration graphs were drawn to indicate functions of NaCl and Na concentrations, which showed good linearity in the range of 0.025-3.5% NaCl and 0.01-1.4% Na concentrations with correlation coefficients (R(2)) values greater than 0.98 and 0.96. The obtained detection limits for NaCl and Na were 175 and 69 ppm, respectively. Performed experimental studies showed that LIBS is a convenient method for commercial bakery products to quantify NaCl concentrations as a rapid and in situ technique. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dasari, Ramachandra Rao; Barman, Ishan; Gundawar, Manoj Kumar
2014-01-01
We demonstrate the application of non-gated laser induced breakdown spectroscopy (LIBS) for characterization and classification of organic materials with similar chemical composition. While use of such a system introduces substantive continuum background in the spectral dataset, we show that appropriate treatment of the continuum and characteristic emission results in accurate discrimination of pharmaceutical formulations of similar stoichiometry. Specifically, our results suggest that near-perfect classification can be obtained by employing suitable multivariate analysis on the acquired spectra, without prior removal of the continuum background. Indeed, we conjecture that pre-processing in the form of background removal may introduce spurious features in the signal. Our findings in this report significantly advance the prior results in time-integrated LIBS application and suggest the possibility of a portable, non-gated LIBS system as a process analytical tool, given its simple instrumentation needs, real-time capability and lack of sample preparation requirements. PMID:25084522
Libs-PCA based discrimination of Malaysian coins
NASA Astrophysics Data System (ADS)
Mustapha Imam, Auwal; Safwan Aziz, M.; Chaudhary, Kashif; Rizvi, Zuhaib; Ali, Jalil
2018-05-01
The investigations of currency coins dated back to many centuries. Many researchers developed an interest in the investigation of the coin’s weight, size, physical feature and elemental composition. Laser-induced breakdown spectroscopy (LIBS) has the novelty of analytical analyses of various samples. It has the ability for the elemental composition determination of samples of solid (including metals), liquid and/or gases. Malaysia as a country uses Ringgit as a currency, among which are coins of 10, 20 and 50 cents. These coins are in series of release from the Malaysian Central Bank from time to time. There are currently in circulation old and new coins of 5, 10, 20 and 50 cents coins. These coins differ in their physical features and are may be different also in their elemental composition. This paper presents the investigation of the differences in elemental composition between the old and new Malaysian coins of 10, 20 and 50 cents. Principal component analysis (PCA) was used to perform the discrimination between the coins from the LIBS spectra.
Mineral content analysis of root canal dentin using laser-induced breakdown spectroscopy
2018-01-01
Objectives This study aimed to introduce the use of laser-induced breakdown spectroscopy (LIBS) for evaluation of the mineral content of root canal dentin, and to assess whether a correlation exists between LIBS and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) methods by comparing the effects of irrigation solutions on the mineral content change of root canal dentin. Materials and Methods Forty teeth with a single root canal were decoronated and longitudinally sectioned to expose the canals. The root halves were divided into 4 groups (n = 10) according to the solution applied: group NaOCl, 5.25% sodium hypochlorite (NaOCl) for 1 hour; group EDTA, 17% ethylenediaminetetraacetic acid (EDTA) for 2 minutes; group NaOCl+EDTA, 5.25% NaOCl for 1 hour and 17% EDTA for 2 minutes; a control group. Each root half belonging to the same root was evaluated for mineral content with either LIBS or SEM/EDS methods. The data were analyzed statistically. Results In groups NaOCl and NaOCl+EDTA, the calcium (Ca)/phosphorus (P) ratio decreased while the sodium (Na) level increased compared with the other groups (p < 0.05). The magnesium (Mg) level changes were not significant among the groups. A significant positive correlation was found between the results of LIBS and SEM/EDS analyses (r = 0.84, p < 0.001). Conclusions Treatment with NaOCl for 1 hour altered the mineral content of dentin, while EDTA application for 2 minutes had no effect on the elemental composition. The LIBS method proved to be reliable while providing data for the elemental composition of root canal dentin. PMID:29487841
Wiens, Roger C; Sharma, Shiv K; Thompson, Justin; Misra, Anupam; Lucey, Paul G
2005-08-01
Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) of solid samples have both been shown to be feasible with sample-to-instrument distances of many meters. The two techniques are very useful together, as the combination of elemental compositions from LIBS and molecular vibrational information from Raman spectroscopy strongly complement each other. Remote LIBS and Raman spectroscopy spectra were taken together on a number of mineral samples including sulfates, carbonates and silicates at a distance of 8.3 m. The complementary nature of these spectra is highlighted and discussed. A factor of approximately 20 difference in intensity was observed between the brightest Raman line of calcite, at optimal laser power, and the brighter Ca I LIBS emission line measured with 55 mJ/pulse laser power. LIBS and Raman spectroscopy have several obstacles to devising a single instrument capable of both techniques. These include the differing spectral ranges and required detection sensitivity. The current state of technology in these areas is discussed.
libSRES: a C library for stochastic ranking evolution strategy for parameter estimation.
Ji, Xinglai; Xu, Ying
2006-01-01
Estimation of kinetic parameters in a biochemical pathway or network represents a common problem in systems studies of biological processes. We have implemented a C library, named libSRES, to facilitate a fast implementation of computer software for study of non-linear biochemical pathways. This library implements a (mu, lambda)-ES evolutionary optimization algorithm that uses stochastic ranking as the constraint handling technique. Considering the amount of computing time it might require to solve a parameter-estimation problem, an MPI version of libSRES is provided for parallel implementation, as well as a simple user interface. libSRES is freely available and could be used directly in any C program as a library function. We have extensively tested the performance of libSRES on various pathway parameter-estimation problems and found its performance to be satisfactory. The source code (in C) is free for academic users at http://csbl.bmb.uga.edu/~jix/science/libSRES/
Barnett, Patrick D; Lamsal, Nirmal; Angel, S Michael
2017-04-01
A spatial heterodyne spectrometer (SHS) is described for standoff laser-induced breakdown spectroscopy (LIBS) measurements. The spatial heterodyne LIBS spectrometer (SHLS) is a diffraction grating based interferometer with no moving parts that offers a very large field of view, high light throughput, and high spectral resolution in a small package. The field of view of the SHLS spectrometer is shown to be ∼1° in standoff LIBS measurements. In the SHLS system described here, the collection aperture was defined by the 10 mm diffraction gratings in the SHS and standoff LIBS measurements were made up to 20 m with no additional collection optics, corresponding to a collection solid angle of 0.2 μsr, or f/2000, and also using a small telescope to increase the collection efficiency. The use of a microphone was demonstrated to rapidly optimize laser focus for 20 m standoff LIBS measurements.
Study of different concentric rings inside gallstones with LIBS.
Pathak, Ashok Kumar; Singh, Vivek Kumar; Rai, Nilesh Kumar; Rai, Awadhesh Kumar; Rai, Pradeep Kumar; Rai, Pramod Kumar; Rai, Suman; Baruah, G D
2011-07-01
Gallstones obtained from patients from the north-east region of India (Assam) were studied using laser-induced breakdown spectroscopy (LIBS) technique. LIBS spectra of the different layers (in cross-section) of the gallstones were recorded in the spectral region 200-900 nm. Several elements, including calcium, magnesium, manganese, copper, silicon, phosphorus, iron, sodium and potassium, were detected in the gallstones. Lighter elements, including carbon, hydrogen, nitrogen and oxygen were also detected, which demonstrates the superiority of the LIBS technique over other existing analytical techniques. The LIBS technique was applied to investigate the evolution of C(2) swan bands and CN violet bands in the LIBS spectra of the gallstones in air and an argon atmosphere. The different layers (dark and light layers) of the gallstones were discriminated on the basis of the presence and intensities of the spectral lines for carbon, hydrogen, nitrogen, oxygen and copper. An attempt was also made to correlate the presence of major and minor elements in the gallstones with the common diet of the population of Assam.
NASA Astrophysics Data System (ADS)
Wu, Yu; Zheng, Lijuan; Xie, Donghai; Zhong, Ruofei
2017-07-01
In this study, the extended morphological attribute profiles (EAPs) and independent component analysis (ICA) were combined for feature extraction of high-resolution multispectral satellite remote sensing images and the regularized least squares (RLS) approach with the radial basis function (RBF) kernel was further applied for the classification. Based on the major two independent components, the geometrical features were extracted using the EAPs method. In this study, three morphological attributes were calculated and extracted for each independent component, including area, standard deviation, and moment of inertia. The extracted geometrical features classified results using RLS approach and the commonly used LIB-SVM library of support vector machines method. The Worldview-3 and Chinese GF-2 multispectral images were tested, and the results showed that the features extracted by EAPs and ICA can effectively improve the accuracy of the high-resolution multispectral image classification, 2% larger than EAPs and principal component analysis (PCA) method, and 6% larger than APs and original high-resolution multispectral data. Moreover, it is also suggested that both the GURLS and LIB-SVM libraries are well suited for the multispectral remote sensing image classification. The GURLS library is easy to be used with automatic parameter selection but its computation time may be larger than the LIB-SVM library. This study would be helpful for the classification application of high-resolution multispectral satellite remote sensing images.
Rohde, Maximilian; Mehari, Fanuel; Klämpfl, Florian; Adler, Werner; Neukam, Friedrich-Wilhelm; Schmidt, Michael; Stelzle, Florian
2017-10-01
Compared to conventional techniques, Laser surgery procedures provide a number of advantages, but may be associated with an increased risk of iatrogenic damage to important anatomical structures. The type of tissue ablated in the focus spot is unknown. Laser-Induced Breakdown-Spectroscopy (LIBS) has the potential to gain information about the type of material that is being ablated by the laser beam. This may form the basis for tissue selective laser surgery. In the present study, 7 different porcine tissues (cortical and cancellous bone, nerve, mucosa, enamel, dentine and pulp) from 6 animals were analyzed for their qualitative and semiquantitative molecular composition using LIBS. The so gathered data was used to first differentiate between the soft- and hard-tissues using a Calcium-Carbon emission based classifier. The tissues were then further classified using emission-ratio based analysis, principal component analysis (PCA) and linear discriminant analysis (LDA). The relatively higher concentration of Calcium in the hard tissues allows for an accurate first differentiation of soft- and hard tissues (100% sensitivity and specificity). The ratio based statistical differentiation approach yields results in the range from 65% (enamel-dentine pair) to 100% (nerve-pulp, cancellous bone-dentine, cancellous bone-enamel pairs) sensitivity and specificity. Experimental LIBS measuring setup. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stewart, Alex; Harrison, Joseph S; Regula, Lauren K; Lai, Jonathan R
2013-04-08
Analysis of factors contributing to high affinity antibody-protein interactions provides insight into natural antibody evolution, and guides the design of antibodies with new or enhanced function. We previously studied the interaction between antibody D5 and its target, a designed protein based on HIV-1 gp41 known as 5-Helix, as a model system [Da Silva, G. F.; Harrison, J. S.; Lai, J. R., Biochemistry, 2010, 49, 5464-5472]. Antibody D5 represents an interesting case study because it is derived from the VH1-69 germline segment; this germline segment is characterized by a hydrophobic second heavy chain complementarity determining region (HCDR2) that constitutes the major functional paratope in D5 and several antibodies derived from the same progenitor. Here we explore side chain requirements for affinity and specificity in D5 using phage display. Two D5-based libraries were prepared that contained diversity in all three light chain complementarity determining regions (LCDRs 1-3), and in the third HCDR (HCDR3). The first library allowed residues to vary among a restricted set of six amino acids (Tyr/Ala/Asp/Ser/His/Pro; D5-Lib-I). The second library was designed based on a survey of existing VH1-69 antibody structures (D5-Lib-II). Both libraries were subjected to multiple rounds of selection against 5-Helix, and individual clones characterized. We found that selectants from D5-Lib-I generally had moderate affinity and specificity, while many clones from D5-Lib-II exhibited D5-like properties. Additional analysis of the D5-Lib-II functional population revealed position-specific biases for particular amino acids, many that differed from the identity of those side chains in D5. Together these results suggest that there is some permissiveness for alternative side chains in the LCDRs and HCDR3 of D5, but that replacement with a minimal set of residues is not tolerated in this scaffold for 5-Helix recognition. This work provides novel information about this high-affinity interaction involving an antibody from the VH1-69 germline segment.
Resistor Susceptibility Survey
1976-11-01
SATIN IV ATTN: DCKE, L. Staples ATTN. YWES ATTN XRE-Surv. ATTN- MCAE, Lt Col Sparks ATTN: XRP , Maj Gingrich Sandia Lab. ATTN 3141 ATTN E...Diamond Lab. ATTN: Lib. HQ USAF ATTN: XOOWD AFSC Tech. Lib. ATTN: DLCAW ATTN: XRP ! Sperry Rand Fit. Sys. Div. ATTN: Tech. Lib. ATTN: D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, D. E.; Ehlmann, B. L.; Forni, O.
Ancient environmental conditions on Mars can be probed through the identification of minerals on its surface, including water-deposited salts and cements dispersed in the pore space of sedimentary rocks. Laser-induced breakdown spectroscopy (LIBS) analyses by the Martian rover Curiosity's ChemCam instrument can indicate salts, and ChemCam surveys aid in identifying and selecting sites for further, detailed in situ analyses. Here, we performed laboratory LIBS experiments under simulated Mars conditions with a ChemCam-like instrument on a series of mixtures containing increasing concentrations of salt in a basaltic background to investigate the potential for identifying and quantifying chloride, carbonate, and sulfate saltsmore » found only in small amounts, dispersed in bulk rock with ChemCam, rather than concentrated in veins. The data then indicate that the presence of emission lines from the basalt matrix limited the number of Cl, C, and S emission lines found to be useful for quantitative analysis; nevertheless, several lines with intensities sensitive to salt concentration were identified. Detection limits for the elements based on individual emission lines ranged from ~20 wt % carbonate (2 wt % C), ~5–30 wt % sulfate (1–8 wt % S), and ~5–10 wt % chloride (3–6 wt % Cl) depending on the basaltic matrix and/or salt cation. Absolute quantification of Cl, C, and S in the samples via univariate analysis depends on the cation-anion pairing in the salt but appears relatively independent of matrices tested, following normalization. Our results are promising for tracking relative changes in the salt content of bulk rock on the Martian surface with ChemCam.« less
Anderson, D. E.; Ehlmann, B. L.; Forni, O.; ...
2017-04-24
Ancient environmental conditions on Mars can be probed through the identification of minerals on its surface, including water-deposited salts and cements dispersed in the pore space of sedimentary rocks. Laser-induced breakdown spectroscopy (LIBS) analyses by the Martian rover Curiosity's ChemCam instrument can indicate salts, and ChemCam surveys aid in identifying and selecting sites for further, detailed in situ analyses. Here, we performed laboratory LIBS experiments under simulated Mars conditions with a ChemCam-like instrument on a series of mixtures containing increasing concentrations of salt in a basaltic background to investigate the potential for identifying and quantifying chloride, carbonate, and sulfate saltsmore » found only in small amounts, dispersed in bulk rock with ChemCam, rather than concentrated in veins. The data then indicate that the presence of emission lines from the basalt matrix limited the number of Cl, C, and S emission lines found to be useful for quantitative analysis; nevertheless, several lines with intensities sensitive to salt concentration were identified. Detection limits for the elements based on individual emission lines ranged from ~20 wt % carbonate (2 wt % C), ~5–30 wt % sulfate (1–8 wt % S), and ~5–10 wt % chloride (3–6 wt % Cl) depending on the basaltic matrix and/or salt cation. Absolute quantification of Cl, C, and S in the samples via univariate analysis depends on the cation-anion pairing in the salt but appears relatively independent of matrices tested, following normalization. Our results are promising for tracking relative changes in the salt content of bulk rock on the Martian surface with ChemCam.« less
Monitoring of heavy metal particle emission in the exhaust duct of a foundry using LIBS.
Dutouquet, C; Gallou, G; Le Bihan, O; Sirven, J B; Dermigny, A; Torralba, B; Frejafon, E
2014-09-01
Heavy metals have long been known to be detrimental to human health and the environment. Their emission is mainly considered to occur via the atmospheric route. Most of airborne heavy metals are of anthropogenic origin and produced through combustion processes at industrial sites such as incinerators and foundries. Current regulations impose threshold limits on heavy metal emissions. The reference method currently implemented for quantitative measurements at exhaust stacks consists of on-site sampling of heavy metals on filters for the particulate phase (the most prominent and only fraction considered in this study) prior to subsequent laboratory analysis. Results are therefore known only a few days after sampling. Stiffer regulations require the development of adapted tools allowing automatic, on-site or even in-situ measurements with temporal resolutions. The Laser-Induced Breakdown Spectroscopy (LIBS) technique was deemed as a potential candidate to meet these requirements. On site experiments were run by melting copper bars and monitoring emission of this element in an exhaust duct at a pilot-scale furnace in a French research center dedicated to metal casting. Two approaches designated as indirect and direct analysis were broached in these experiments. The former corresponds to filter enrichment prior to subsequent LIBS interrogation whereas the latter entails laser focusing right through the aerosol for detection. On-site calibration curves were built and compared with those obtained at laboratory scale in order to investigate possible matrix and analyte effects. Eventually, the obtained results in terms of detection limits and quantitative temporal monitoring of copper emission clearly emphasize the potentialities of the direct LIBS measurements. Copyright © 2014 Elsevier B.V. All rights reserved.
PC based electrolytes with LiDFOB as an alternative salt for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Knight, Brandon M.
Lithium-ion batteries (LIBs) have been greatly sought after as a source of renewable energy storage. LIBs have a wide range of applications including but not limited portable electronic devices, electric vehicles, and power tools. As a direct result of their commercial viability an insatiable hunger for knowledge, advancement within the field of LIBs has been omnipresent for the last two decades. However, there are set backs evident within the LIB field; most notably the limitations of standard electrolyte formulations and LiPF6 lithium salt. The standard primary carbonate of ethylene carbonate (EC) has a very limited operating range due to its innate physical properties, and the LiPF6 salt is known to readily decompose to form HF which can further degrade LIB longevity. The goal of our research is to explore the use of a new primary salt LiDFOB in conjunction with a propylene carbonate based electrolyte to establish a more flexible electrolyte formulation by constructing coin cells and cycling them under various conditions to give a clear understanding of each formulation inherent performance capabilities. Our studies show that 1.2M LiDFOB in 3:7 PC/EMC + 1.5% VC is capable of performing comparably to the standard 1.2M LiPF6 in 3:7 EC/EMC at 25°C and the PC electrolyte also illustrates performance superior to the standard at 55°C. The degradation of lithium manganese spinel electrodes, including LiNi 0.5Mn1.5O4, is an area of great concern within the field of lithium ion batteries (LIBs). Manganese containing cathode materials frequently have problems associated with Mn dissolution which significantly reduces the cycle life of LIB. Thus the stability of the cathode material is paramount to the performance of Mn spinel cathode materials in LIBs. In an effort to gain a better understanding of the stability of LiNi0.5 Mn1.5O4 in common LiPF6/carbonate electrolytes, samples were stored at elevated temperature in the presence of electrolyte. Then after storage both the electrolyte solution and uncharged cathode particles were analyzed. The solid cathode particles were analyzed via scanning electron microscopy (SEM) whereas the electrolyte solution was analyzed using inductively coupled plasma mass spectroscopy (ICP-MS). The SEM analysis assists with elucidation of changes to the surfaces of the cathode particles. The ICP-MS of the electrolyte allows the determination of the extent of Mn and Ni dissolution. Samples of LiNi0.5Mn1.5O4 with different crystal surface facets were prepared to investigate the role of particle morphology in Mn and Ni dissolution. The factors affecting Mn and Ni dissolution and methods to inhibit dissolution will be discussed.
The effect of nutrient media water purity on LIBS based identification of bacteria
USDA-ARS?s Scientific Manuscript database
Single pulse laser induced breakdown spectroscopy (LIBS) is used as the basis for discrimination between 3 genera of Gram-negative bacteria and 2 genera of gram-positive bacteria representing pathogenic threats commonly found in poultry processing rinse waters. Because LIBS-based discrimination reli...
NASA Astrophysics Data System (ADS)
Pinto, M.; Calderón, X.; Mejía Ospino, E.; Cabanzo, R.; Poveda, Juan C.
2016-02-01
In the present study, optical microscopy in stereoscopic mode coupled to laser- induced p-breakdown spectroscopy (μ-LIBS) was applied for analysing HP-40 steel samples. microLIBS (μ-LIBS) is a new growing area that employs low energy laser pulses for the generation of plasma emission, which allow the realization of localized microanalysis [1]. This new LIBS instrument was used for the surface characterization of the steel samples in the spectral range from 356 to 401nm. Elements such as Cr, Ni, Fe, Nb, Pb, Mo, C, Mn and Si in the steel samples were investigated. The results allowed the construction of elemental distribution profiles of the samples. Complementary the HP-40 steel samples were superficially characterized by Scanning Electron Microscope (SEM).
Register, Janna; Scaffidi, Jonathan; Angel, S Michael
2012-08-01
Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrodzki, P. J.; Becker, J. R.; Diwakar, P. K.
Laser-induced breakdown spectroscopy (LIBS) holds potential advantages in special nuclear material (SNM) sensing and nuclear forensics which require rapid analysis, minimal sample preparation and stand-off distance capability. SNM, such as U, however, result in crowded emission spectra with LIBS, and characteristic emission lines are challenging to discern. It is well-known that double-pulse LIBS (DPLIBS) improves the signal intensity for analytes over conventional single-pulse LIBS (SPLIBS). This study investigates U signal in a glass matrix using DPLIBS and compares to signal features obtained using SPLIBS. DPLIBS involves sequential firing of 1.06 µm Nd:YAG pre-pulse and 10.6 µm TEA CO2 heating pulsemore » in near collinear geometry. Optimization of experimental parameters including inter-pulse delay and energy follows identification of characteristic lines and signals for bulk analyte Ca and minor constituent analyte U for both DPLIBS and SPLIBS. Spatial and temporal coupling of the two pulses in the proposed DPLIBS technique yields improvements in analytical merits with negligible further damage to the sample compared to SPLIBS. Subsequently, the study discusses optimum plasma emission conditions of U lines and relative figures of merit in both SPLIBS and DPLIBS. Investigation into plasma characteristics also addresses plausible mechanisms related to observed U analyte signal variation between SPLIBS and DPLIBS.« less
Shameem, K M Muhammed; Choudhari, Khoobaram S; Bankapur, Aseefhali; Kulkarni, Suresh D; Unnikrishnan, V K; George, Sajan D; Kartha, V B; Santhosh, C
2017-05-01
Classification of plastics is of great importance in the recycling industry as the littering of plastic wastes increases day by day as a result of its extensive use. In this paper, we demonstrate the efficacy of a combined laser-induced breakdown spectroscopy (LIBS)-Raman system for the rapid identification and classification of post-consumer plastics. The atomic information and molecular information of polyethylene terephthalate, polyethylene, polypropylene, and polystyrene were studied using plasma emission spectra and scattered signal obtained in the LIBS and Raman technique, respectively. The collected spectral features of the samples were analyzed using statistical tools (principal component analysis, Mahalanobis distance) to categorize the plastics. The analyses of the data clearly show that elemental information and molecular information obtained from these techniques are efficient for classification of plastics. In addition, the molecular information collected via Raman spectroscopy exhibits clearly distinct features for the transparent plastics (100% discrimination), whereas the LIBS technique shows better spectral feature differences for the colored samples. The study shows that the information obtained from these complementary techniques allows the complete classification of the plastic samples, irrespective of the color or additives. This work further throws some light on the fact that the potential limitations of any of these techniques for sample identification can be overcome by the complementarity of these two techniques. Graphical Abstract ᅟ.
Rapid Analysis of Ash Composition Using Laser-Induced Breakdown Spectroscopy (LIBS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler L. Westover
2013-01-01
Inorganic compounds are known to be problematic in the thermochemical conversion of biomass to syngas and ultimately hydrocarbon fuels. The elements Si, K, Ca, Na, S, P, Cl, Mg, Fe, and Al are particularly problematic and are known to influence reaction pathways, contribute to fouling and corrosion, poison catalysts, and impact waste streams. Substantial quantities of inorganic species can be entrained in the bark of trees during harvest operations. Herbaceous feedstocks often have even greater quantities of inorganic constituents, which can account for as much as one-fifth of the total dry matter. Current methodologies to measure the concentrations of thesemore » elements, such as inductively coupled plasma-optical emission spectrometry/mass spectrometry (ICP-OES/MS) are expensive in time and reagents. This study demonstrates that a new methodology employing laser-induced breakdown spectroscopy (LIBS) can rapidly and accurately analyze the inorganic constituents in a wide range of biomass materials, including both woody and herbaceous examples. This technique requires little or no sample preparation, does not consume any reagents, and the analytical data is available immediately. In addition to comparing LIBS data with the results from ICP-OES methods, this work also includes discussions of sample preparation techniques, calibration curves for interpreting LIBS spectra, minimum detection limits, and the use of internal standards and standard reference materials.« less
Moros, J; Lorenzo, J A; Laserna, J J
2011-07-01
In general, any standoff sensor for the effective detection of explosives must meet two basic requirements: first, a capacity to detect the response generated from only a small amount of material located at a distance of several meters (high sensitivity) and second, the ability to provide easily distinguishable responses for different materials (high specificity). Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) are two analytical techniques which share similar instrumentation and, at the same time, generate complementary data. These factors have been taken into account recently for the design of sensors used in the detection of explosives. Similarly, research on the proper integration of both techniques has been around for a while. A priori, the different operational conditions required by the two techniques oblige the acquisition of the response for each sensor through sequential analysis, previously necessary to define the proper hierarchy of actuation. However, such an approach does not guarantee that Raman and LIBS responses obtained may relate to each other. Nonetheless, the possible advantages arising from the integration of the molecular and elemental spectroscopic information come with an obvious underlying requirement, simultaneous data acquisition. In the present paper, strong and weak points of Raman spectroscopy and LIBS for solving explosives detection problems, in terms of selectivity, sensitivity, and throughput, are critically examined, discussed, and compared for assessing the ensuing options on the fusion of the responses of both sensing technologies.
Quantification of calcium using localized normalization on laser-induced breakdown spectroscopy data
NASA Astrophysics Data System (ADS)
Sabri, Nursalwanie Mohd; Haider, Zuhaib; Tufail, Kashif; Aziz, Safwan; Ali, Jalil; Wahab, Zaidan Abdul; Abbas, Zulkifly
2017-03-01
This paper focuses on localized normalization for improved calibration curves in laser-induced breakdown spectroscopy (LIBS) measurements. The calibration curves have been obtained using five samples consisting of different concentrations of calcium (Ca) in potassium bromide (KBr) matrix. The work has utilized Q-switched Nd:YAG laser installed in LIBS2500plus system with fundamental wavelength and laser energy of 650 mJ. Optimization of gate delay can be obtained from signal-to-background ratio (SBR) of Ca II 315.9 and 317.9 nm. The optimum conditions are determined in which having high spectral intensity and SBR. The highest spectral lines of ionic and emission lines of Ca at gate delay of 0.83 µs. From SBR, the optimized gate delay is at 5.42 µs for both Ca II spectral lines. Calibration curves consist of three parts; original intensity from LIBS experimentation, normalization and localized normalization of the spectral line intensity. The R2 values of the calibration curves plotted using locally normalized intensities of Ca I 610.3, 612.2 and 616.2 nm spectral lines are 0.96329, 0.97042, and 0.96131, respectively. The enhancement from calibration curves using the regression coefficient allows more accurate analysis in LIBS. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 May 2017.
Bhatt, Chet R; Alfarraj, Bader; Ghany, Charles T; Yueh, Fang Y; Singh, Jagdish P
2017-04-01
In this study, the laser-induced breakdown spectroscopy (LIBS) technique was used to identify and compare the presence of major nutrient elements in organic and conventional vegetables. Different parts of cauliflowers and broccolis were used as working samples. Laser-induced breakdown spectra from these samples were acquired at optimum values of laser energy, gate delay, and gate width. Both univariate and multivariate analyses were performed for the comparison of these organic and conventional vegetable flowers. Principal component analysis (PCA) was taken into account for multivariate analysis while for univariate analysis, the intensity of selected atomic lines of different elements and their intensity ratio with some reference lines of organic cauliflower and broccoli samples were compared with those of conventional ones. In addition, different parts of the cauliflower and broccoli were compared in terms of intensity and intensity ratio of elemental lines.
NASA Astrophysics Data System (ADS)
Clegg, S. M.; Wiens, R. C.; Newell, R. T.; DeCroix, D. S.; Sharma, S. K.; Misra, A. K.; Dyar, M. D.; Anderson, R. B.; Angel, S. M.; Martinez, R.; McInroy, R.
2016-12-01
The extreme Venus surface temperature ( 740 K) and atmospheric pressure ( 93 atm) create a challenging environment for surface geochemical and mineralogical investigations. Such investigations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS spectrometer (RLS) is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. [1], Sharma et al. [2] and Clegg et al. [3] demonstrated that both analytical techniques can be integrated into a single instrument similar to the SuperCam instrument selected for the Mars 2020 rover. The focus of this paper is to explore the capability to probe geologic samples by Raman and LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of determining both the mineralogical and geochemical composition of Venus surface samples. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from the Venera and VEGA landers [4]. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, samples were chosen to constitute a Venus-analog suite for this study. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to quantitatively determine the major elemental abundance of the remaining samples. The Raman experiments have been conducted under supercritical CO2 involving single-mineral and mixed-mineral samples containing talc, olivine, pyroxenes, feldspars, anhydrite, barite, and siderite. These experiments involve a new RLS prototype similar to the SuperCam instrument as well a new 2 m long pressure chamber capable of simulating the Venus surface temperature and pressure. Results of these combined Raman-LIBS investigations will be presented and discussed. [1] Wiens R.C., et al. (2005) Spect. Acta A 61, 2324; [2] Sharma, S. K. et al. (2007) Spect. Acta A, 68 , 1036 (2007); [3] Clegg, S.M. et al. (2014) Appl. Spec. 68, 925; [4] Barsukov VL (1992) In Venus Geology, Geochemistry, and Geophysics, Univ. Arizona Press, pp. 165.
Holocene closure of Lib Pond, Marshall Islands.
Myhrvold, Conor L; Janny, Fran; Nelson, Daniel; Ladd, S Nemiah; Atwood, Alyssa; Sachs, Julian P
2014-01-01
Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18' 48.99″ N, 167 22' 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water.
Holocene Closure of Lib Pond, Marshall Islands
Myhrvold, Conor L.; Janny, Fran; Nelson, Daniel; Ladd, S. Nemiah; Atwood, Alyssa; Sachs, Julian P.
2014-01-01
Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18′ 48.99″ N, 167 22′ 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water. PMID:24638020
Elsherbiny, Nany; Aied Nassef, O
2015-07-01
The fast and nearly non-destructive criteria of laser induced breakdown spectroscopy (LIBS) technique has been exploited for forensic purposes, specifically, document investigation. The dependence of the optical emission spectra of different black gel ink samples on the excitation laser wavelength, namely the visible wavelength at λ=532 nm and the IR wavelength at λ=1064 nm, was studied. The inks of thirty black gel-ink pens comprising ten brands were analyzed to determine the variation of the chemical composition of ink and to discriminate among them with minimum mass removal and minimum damage to the document's paper. Under the adopted experimental conditions, the ability of the visible LIBS to differentiate among the different ink samples was successful compared to IR LIBS at the same laser pulse energy (~25 mJ/pulse, laser fluence is ~1400J·cm(-2) for visible laser and ~1100J·cm(-2) for IR laser) which could be attributed to the IR absorption effects by the black ink. However, the visible LIBS produces deeper crater with respect to that produced by IR LIBS. Applying IR LIBS with higher pulse energy of ~87mJ (laser fluence is ~4100J·cm(-2)), identification and differentiation of the adopted samples was performed with producing a larger-diameter but superficial crater. The plasma parameters are discussed at the adopted experimental conditions. The results support the potential of LIBS technique using both the visible and IR lasers to be commercially developed for forensic document examination. Copyright © 2015 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Yeşiller, Semira Unal; Yalçın, Serife
2013-04-03
A laser induced breakdown spectrometry hyphenated with on-line continuous flow hydride generation sample introduction system, HG-LIBS, has been used for the determination of arsenic, antimony, lead and germanium in aqueous environments. Optimum chemical and instrumental parameters governing chemical hydride generation, laser plasma formation and detection were investigated for each element under argon and nitrogen atmosphere. Arsenic, antimony and germanium have presented strong enhancement in signal strength under argon atmosphere while lead has shown no sensitivity to ambient gas type. Detection limits of 1.1 mg L(-1), 1.0 mg L(-1), 1.3 mg L(-1) and 0.2 mg L(-1) were obtained for As, Sb, Pb and Ge, respectively. Up to 77 times enhancement in detection limit of Pb were obtained, compared to the result obtained from the direct analysis of liquids by LIBS. Applicability of the technique to real water samples was tested through spiking experiments and recoveries higher than 80% were obtained. Results demonstrate that, HG-LIBS approach is suitable for quantitative analysis of toxic elements and sufficiently fast for real time continuous monitoring in aqueous environments. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rehse, Steven; Trojand, Daniel; Putnam, Russell; Gillies, Derek; Woodman, Ryan; Sheikh, Khadija; Daabous, Andrew
2013-05-01
There is a well-known and urgent need in the fields of medicine, environmental health and safety, food-processing, and defense/security to develop new 21st Century technologies for the rapid and sensitive identification of bacterial pathogens. In only the last five years, the use of a real-time elemental (atomic) analysis performed with laser-induced breakdown spectroscopy (LIBS) has made tremendous progress in becoming a viable technology for rapid bacterial pathogen detection and identification. In this talk we will show how this laser-based optical emission spectroscopic technique is able to sensitively assay the elemental composition of bacterial cells in situ. We will also present the latest achievements of our lab to fully develop LIBS-based bacterial sensing including simulation of a rapid urinary tract infection diagnosis and investigation of a variety of autonomous multivariate analysis algorithms. Lastly, we will show how this technology is now ready to be transitioned from the laboratory to field-portable and potentially man-portable instrumentation. The introduction of such a technology into popular use could very well transform the field of bacterial biosensing - a market valued at approximately 10 billion/year world-wide. Funding for this project was provided in part by a Natural Sciences and Engineering Research Council of Canada Discovery Grant.
Myakalwar, Ashwin Kumar; Sreedhar, S.; Barman, Ishan; Dingari, Narahara Chari; Rao, S. Venugopal; Kiran, P. Prem; Tewari, Surya P.; Kumar, G. Manoj
2012-01-01
We report the effectiveness of laser-induced breakdown spectroscopy (LIBS) in probing the content of pharmaceutical tablets and also investigate its feasibility for routine classification. This method is particularly beneficial in applications where its exquisite chemical specificity and suitability for remote and on site characterization significantly improves the speed and accuracy of quality control and assurance process. Our experiments reveal that in addition to the presence of carbon, hydrogen, nitrogen and oxygen, which can be primarily attributed to the active pharmaceutical ingredients, specific inorganic atoms were also present in all the tablets. Initial attempts at classification by a ratiometric approach using oxygen to nitrogen compositional values yielded an optimal value (at 746.83 nm) with the least relative standard deviation but nevertheless failed to provide an acceptable classification. To overcome this bottleneck in the detection process, two chemometric algorithms, i.e. principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA), were implemented to exploit the multivariate nature of the LIBS data demonstrating that LIBS has the potential to differentiate and discriminate among pharmaceutical tablets. We report excellent prospective classification accuracy using supervised classification via the SIMCA algorithm, demonstrating its potential for future applications in process analytical technology, especially for fast on-line process control monitoring applications in the pharmaceutical industry. PMID:22099648
NASA Astrophysics Data System (ADS)
Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.
2017-07-01
Lithium plating is considered one of the most detrimental phenomenon in lithium ion batteries (LIBs), as it increases cell degradation and might lead to safety issues. Plating induced LIB failure presents a major concern for emerging applications in transportation and electrical energy storage. Hence, the necessity to operando monitor, detect and analyze lithium plating becomes critical for safe and reliable usage of LIB systems. Here, we report in situ lithium plating analyses for a commercial graphite||LiFePO4 cell cycled under dynamic stress test (DST) driving schedule. We designed a framework based on incremental capacity (IC) analysis and mechanistic model simulations to quantify degradation modes, relate their effects to lithium plating occurrence and assess cell degradation. The results show that lithium plating was induced by large loss of active material on the negative electrode that eventually led the electrode to over-lithiate. Moreover, when lithium plating emerged, we quantified that the loss of lithium inventory pace was increased by a factor of four. This study illustrates the benefits of the proposed framework to improve lithium plating analysis. It also discloses the symptoms of lithium plating formation, which prove valuable for novel, online strategies on early lithium plating detection.
Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; ...
2016-12-24
The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides, have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with amore » calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was previously significantly over-estimated, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. Here, the uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.« less
Muhammed Shameem, K M; Chawla, Arun; Mallya, Madhukar; Barik, Bijay Kumar; Unnikrishnan, V K; Kartha, V B; Santhosh, C
2018-06-01
Presence of renal-calculi (kidney stones) in human urethra is being increasingly diagnosed over the last decade and is considered as one of the most painful urological disorders. Accurate analysis of such stones plays a vital role in the evaluation of urolithiasis patients and in turn helps the clinicians toward exact etiologies. Two highly complementary laser-based analytical techniques; laser-induced breakdown spectroscopy (LIBS) and micro-Raman spectroscopy have been used to identify the chemical composition of different types of renal-calculi. LIBS explores elemental characteristics while Raman spectroscopy provides molecular details of the sample. This complete information on the sample composition might help clinicians to identify the key aspects of the formation of kidney stones, hence assist in therapeutic management and to prevent recurrence. The complementarity of both techniques has been emphasized and discussed. LIBS spectra of different types of stones suggest the probable composition of it by virtue of the major, minor and trace elements detected from the sample. However, it failed to differentiate the crystalline form of different hydrates of calcium oxalate stone. This lacuna was overcome by the use of Raman spectroscopy and these results are compared with conventional chemical analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan
The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides, have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with amore » calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was previously significantly over-estimated, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. Here, the uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.« less
NASA Astrophysics Data System (ADS)
Rezaei, A. H.; Keshavarz, M. H.; Kavosh Tehrani, M.; Darbani, S. M. R.
2018-06-01
The aluminized plastic-bonded explosive (PBX) is a composite material in which solid explosive particles are dispersed in a polymer matrix, which includes three major components, i.e. polymeric binder, metal fuel (aluminum) and nitramine explosive. This work introduces a new method on the basis of the laser-induced breakdown spectroscopy (LIBS) technique in air and argon atmospheres to investigate the determination of aluminum content and detonation performance of aluminized PBXs. Plasma emissions of aluminized PBXs are recorded where atomic lines of Al, C and H as well as molecular bands of AlO and CN are identified. The experimental results demonstrate that a good discrimination and separation between the aluminized PBXs is possible using LIBS and principle component analysis, although they have similar atomic composition. Relative intensity of the AlO/Al is used to determine aluminum percentage of the aluminized PBXs. The obtained quantitative calibration curve using the relative intensity of the AlO/Al is better than the resulting calibration curve using only the intensity of Al. By using the LIBS method and the measured intensity ratio of CN/C, an Al content of 15% is found to be the optimum value in terms of velocity of detonation of the RDX/Al/HTPB standard samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.
2010-05-01
Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.
Leveraging the Libguides Platform for Electronic Resources Access Assistance
ERIC Educational Resources Information Center
Erb, Rachel A.; Erb, Brian
2014-01-01
This case study offers an alternative use of LibGuides beyond its intended purpose to offer course and subject guides. LibGuides have become an integral part of the virtual instruction landscape at Colorado State University (CSU) Libraries. We discovered that the LibGuides platform can also be effectively harnessed to provide support for…
Implementing LibGuides 2: An Academic Case Study
ERIC Educational Resources Information Center
Duncan, Vicky; Lucky, Shannon; McLean, Jaclyn
2015-01-01
Since 1997, the University of Saskatchewan Library has used "subject pages" to highlight key library resources. When Springshare announced it was launching LibGuides v2, a project team was assembled to transition a mixture of locally produced guides and guides created with the original LibGuides v1 software. This article synthesizes best…
A review of the development of portable laser induced breakdown spectroscopy and its applications
NASA Astrophysics Data System (ADS)
Rakovský, J.; Čermák, P.; Musset, O.; Veis, P.
2014-11-01
In this review, we present person-transportable laser induced breakdown spectroscopy (LIBS) devices that have previously been developed and reported in the literature as well as their applications. They are compared with X-ray fluorescent (XRF) devices, which represent their strongest competition. Although LIBS devices have advantages over XRF devices, such as sensitivity to the light elements, high spatial resolution and the possibility to distinguish between different layers of the sample, there are also disadvantages and both are discussed here. Furthermore, the essential portable LIBS instrumentation (laser, spectrograph and detector) is presented, and published results related to new laser sources (diode-pumped solid-state, microchip and fiber lasers) used in LIBS are overviewed. Compared to conventional compact flashlamp pumped solid-state lasers, the new laser sources provide higher repetition rates, higher efficiency (less power consumption) and higher beam quality, resulting in higher fluences, even for lower energies, and could potentially increase the figure of merit of portable LIBS instruments. Compact spectrometers used in portable LIBS devices and their parts (spectrograph, detector) are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao; Xu, Jun; Cao, Lei
The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less
Materials for lithium-ion battery safety.
Liu, Kai; Liu, Yayuan; Lin, Dingchang; Pei, Allen; Cui, Yi
2018-06-01
Lithium-ion batteries (LIBs) are considered to be one of the most important energy storage technologies. As the energy density of batteries increases, battery safety becomes even more critical if the energy is released unintentionally. Accidents related to fires and explosions of LIBs occur frequently worldwide. Some have caused serious threats to human life and health and have led to numerous product recalls by manufacturers. These incidents are reminders that safety is a prerequisite for batteries, and serious issues need to be resolved before the future application of high-energy battery systems. This Review aims to summarize the fundamentals of the origins of LIB safety issues and highlight recent key progress in materials design to improve LIB safety. We anticipate that this Review will inspire further improvement in battery safety, especially for emerging LIBs with high-energy density.
Materials for lithium-ion battery safety
Liu, Kai
2018-01-01
Lithium-ion batteries (LIBs) are considered to be one of the most important energy storage technologies. As the energy density of batteries increases, battery safety becomes even more critical if the energy is released unintentionally. Accidents related to fires and explosions of LIBs occur frequently worldwide. Some have caused serious threats to human life and health and have led to numerous product recalls by manufacturers. These incidents are reminders that safety is a prerequisite for batteries, and serious issues need to be resolved before the future application of high-energy battery systems. This Review aims to summarize the fundamentals of the origins of LIB safety issues and highlight recent key progress in materials design to improve LIB safety. We anticipate that this Review will inspire further improvement in battery safety, especially for emerging LIBs with high-energy density. PMID:29942858
NASA Astrophysics Data System (ADS)
Simeonsson, J. B.; Williamson, L. J.
2011-09-01
Studies have been performed to characterize laser induced breakdown spectroscopy (LIBS) plasmas formed in Ar/H 2 gas mixtures that are used for hydride generation (HG) LIBS measurements of arsenic (As), antimony (Sb) and selenium (Se) hydrides. The plasma electron density and plasma excitation temperature have been determined through hydrogen, argon and arsenic emission measurements. The electron density ranges from 4.5 × 10 17 to 8.3 × 10 15 cm -3 over time delays of 0.2 to 15 μs. The plasma temperatures range from 8800 to 7700 K for Ar and from 8800 to 6500 K for As in the HG LIBS plasmas. Evaluation of the plasma properties leads to the conclusion that partial local thermodynamic equilibrium conditions are present in the HG LIBS plasmas. Comparison measurements in LIBS plasmas formed in Ar gas only indicate that the temperatures are similar in both plasmas. However it is also observed that the electron density is higher in the Ar only plasmas and that the emission intensities of Ar are higher and decay more slowly in the Ar only plasmas. These differences are attributed to the presence of H 2 which has a higher thermal conductivity and provides additional dissociation, excitation and ionization processes in the HG LIBS plasma environment. Based on the observed results, it is anticipated that changes to the HG conditions that change the amount of H 2 in the plasma will have a significant effect on analyte emission in the HG LIBS plasmas that is independent of changes in the HG efficiency. The HG LIBS plasmas have been evaluated for measurements of elements hydrides using a constant set of HG LIBS plasma conditions. Linear responses are observed and limits of detection of 0.7, 0.2 and 0.6 mg/L are reported for As, Sb and Se, respectively.
NASA Astrophysics Data System (ADS)
Williams, Ammon Ned
The primary objective of this research is to develop an applied technology and provide an assessment for remotely measuring and analyzing the real time or near real time concentrations of used nuclear fuel (UNF) elements in electroreners (ER). Here, Laser-Induced Breakdown Spectroscopy (LIBS) in UNF pyroprocessing facilities was investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantages of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis; (ii) Direct detection of elements and impurities in the system with low limits of detection (LOD); and (iii) Little to no sample preparation is required. One important challenge to overcome is achieving reproducible spectral data over time while being able to accurately quantify fission products, rare earth elements, and actinides in the molten salt. Another important challenge is related to the accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment within an argon gas atmosphere. This dissertation aims to address these challenges and approaches in the following phases with their highlighted outcomes: 1. Aerosol-LIBS system design and aqueous testing: An aerosol-LIBS system was designed around a Collison nebulizer and tested using deionized water with Ce, Gd, and Nd concentrations from 100 ppm to 10,000 ppm. The average %RSD values between the sample repetitions were 4.4% and 3.8% for the Ce and Gd lines, respectively. The univariate calibration curve for Ce using the peak intensities of the Ce 418.660 nm line was recommended and had an R 2 value, LOD, and RMSECV of 0.994, 189 ppm, and 390 ppm, respectively. The recommended Gd calibration curve was generated using the peak areas of the Gd 409.861 nm line and had an R2, LOD, and RMSECV of 0.992, 316 ppm, and 421 ppm, respectively. The partial least squares (PLS) calibration curves yielded similar results with RMSECV of 406 ppm and 417 ppm for the Ce and Gd curves, respectively. 2. High temperature aerosol-LIBS system design and CeCl3 testing: The aerosol-LIBS system was transitioned to a high temperature and used to measure Ce in molten LiCl-KCl salt within a glovebox environment. The concentration range studied was from 0.1 wt% to 5 wt% Ce. Normalization was necessary due to signal degradation over time; however, with the normalization the %RSD values averaged 5% for the mid and upper concentrations studied. The best univariate calibration curve was generated using the peak areas of the Ce 418.660 nm line. The LOD for this line was 148 ppm with the RMSECV of 647 ppm. The PLS calibration curve was made using 7 latent variables (LV) and resulting in the RMSECV of 622 ppm. The LOD value was below the expected rare earth concentration within the ER. 3. Aerosol-LIBS testing using UCl3: Samples containing UCl 3 with concentrations ranging from 0.3 wt% to 5 wt% were measured. The spectral response in this range was linear. The best univariate calibration curves were generated using the peak areas of the U 367.01 nm line and had an R2 value of 0.9917. Here, the LOD was 647 ppm and the RMSECV was 2,290 ppm. The PLS model was substantially better with a RMSECV of 1,110 ppm. The LOD found here is below the expected U concentrations in the ER. The successful completion of this study has demonstrated the feasibility of using an aerosol-LIBS analytical technique to measure rare earth elements and actinides in the pyroprocessing salt.
Kirigami-based stretchable lithium-ion batteries
Song, Zeming; Wang, Xu; Lv, Cheng; An, Yonghao; Liang, Mengbing; Ma, Teng; He, David; Zheng, Ying-Jie; Huang, Shi-Qing; Yu, Hongyu; Jiang, Hanqing
2015-01-01
We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to cutting and folding is suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be integrated and power a smart watch, which may disruptively impact the field of wearable electronics by offering extra physical and functionality design spaces. PMID:26066809
NASA Astrophysics Data System (ADS)
Agrosì, G.; Tempesta, G.; Scandale, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Palleschi, V.; Mangone, A.; Lezzerini, M.
2014-12-01
Laser Induced Breakdown Spectroscopy can provide a useful contribution in mineralogical field in which the quantitative chemical analyses (including the evaluation of light elements) can play a key role in the studies on the origin of the emeralds. In particular, the chemical analyses permit to determine those trace elements, known as fingerprints, that can be useful to study their provenance. This technique, not requiring sample preparation results particularly suitable for gemstones, that obviously must be studied in a non-destructive way. In this paper, the LIBS technique was applied to distinguish synthetic emeralds grown by Biron hydrothermal method from those grown by Chatham flux method. The analyses performed by collinear double-pulse LIBS give a signal enhancement useful for the quantitative chemical analyses while guaranteeing a minimal sample damage. In this way it was obtained a considerable improvement on the detection limit of the trace elements, whose determination is essential for determining the origin of emerald gemstone. The trace elements V, Cr, and Fe and their relative amounts allowed the correct attribution of the manufacturer. Two different methods for quantitative analyses were used for this study: the standard Calibration-Free LIBS (CF-LIBS) method and its recent evolution, the One Point Calibration LIBS (OPC-LIBS). This is the first approach to the evaluation of the emerald origin by means of the LIBS technique.
Rehan, I; Gondal, M A; Rehan, K
2018-04-20
Laser-induced breakdown spectroscopy (LIBS) was applied as a potential tool for the determination of xenobiotic metal in monosodium glutamate (MSG). In order to achieve a high-sensitivity LIBS system required to determine trace amounts of metallic silver in MSG and to attain the best detection limit, the parameters used in our experiment (impact of focusing laser energy on the intensity of LIBS emission signals, the influence of focusing lens distance on the intensity of LIBS signals, and time responses of the plasma emissions) were optimized. The spectra of MSG were obtained in air using a suitable detector with an optical resolution of 0.06 nm, covering a spectral region from 220 to 720 nm. Along with the detection of xenobiotic silver, other elements such as Ca, Mg, S, and Na were also detected in MSG. To determine the concentration of xenobiotic silver in MSG, the calibration curve was plotted by preparing standard samples having different silver abundances in an MSG matrix. The LIBS results of each sample were cross-verified by analyzing with a standard analytical technique such as inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Both (LIBS and ICP-AES) results were in mutual agreement. The limit of detection of the LIBS setup was found to be 0.57 ppm for silver present in MSG samples.
Theoretical modeling of laser-induced plasmas using the ATOMIC code
NASA Astrophysics Data System (ADS)
Colgan, James; Johns, Heather; Kilcrease, David; Judge, Elizabeth; Barefield, James, II; Clegg, Samuel; Hartig, Kyle
2014-10-01
We report on efforts to model the emission spectra generated from laser-induced breakdown spectroscopy (LIBS). LIBS is a popular and powerful method of quickly and accurately characterizing unknown samples in a remote manner. In particular, LIBS is utilized by the ChemCam instrument on the Mars Science Laboratory. We model the LIBS plasma using the Los Alamos suite of atomic physics codes. Since LIBS plasmas generally have temperatures of somewhere between 3000 K and 12000 K, the emission spectra typically result from the neutral and singly ionized stages of the target atoms. We use the Los Alamos atomic structure and collision codes to generate sets of atomic data and use the plasma kinetics code ATOMIC to perform LTE or non-LTE calculations that generate level populations and an emission spectrum for the element of interest. In this presentation we compare the emission spectrum from ATOMIC with an Fe LIBS laboratory-generated plasma as well as spectra from the ChemCam instrument. We also discuss various physics aspects of the modeling of LIBS plasmas that are necessary for accurate characterization of the plasma, such as multi-element target composition effects, radiation transport effects, and accurate line shape treatments. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.
NASA Astrophysics Data System (ADS)
Shakeel, Hira; Haq, S. U.; Aisha, Ghulam; Nadeem, Ali
2017-06-01
The quantitative analysis of the standard aluminum-silicon alloy has been performed using calibration free laser induced breakdown spectroscopy (CF-LIBS). The plasma was produced using the fundamental harmonic (1064 nm) of the Nd: YAG laser and the emission spectra were recorded at 3.5 μs detector gate delay. The qualitative analysis of the emission spectra confirms the presence of Mg, Al, Si, Ti, Mn, Fe, Ni, Cu, Zn, Sn, and Pb in the alloy. The background subtracted and self-absorption corrected emission spectra were used for the estimation of plasma temperature as 10 100 ± 300 K. The plasma temperature and self-absorption corrected emission lines of each element have been used for the determination of concentration of each species present in the alloy. The use of corrected emission intensities and accurate evaluation of plasma temperature yield reliable quantitative analysis up to a maximum 2.2% deviation from reference sample concentration.
Analysis of human nails by laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Hosseinimakarem, Zahra; Tavassoli, Seyed Hassan
2011-05-01
Laser-induced breakdown spectroscopy (LIBS) is applied to analyze human fingernails using nanosecond laser pulses. Measurements on 45 nail samples are carried out and 14 key species are identified. The elements detected with the present system are: Al, C, Ca, Fe, H, K, Mg, N, Na, O, Si, Sr, Ti as well as CN molecule. Sixty three emission lines have been identified in the spectrum that are dominated by calcium lines. A discriminant function analysis is used to discriminate among different genders and age groups. This analysis demonstrates efficient discrimination among these groups. The mean concentration of each element is compared between different groups. Correlation between concentrations of elements in fingernails is calculated. A strong correlation is found between sodium and potassium while calcium and magnesium levels are inversely correlated. A case report on high levels of sodium and potassium in patients with hyperthyroidism is presented. It is shown that LIBS could be a promising technique for the analysis of nails and therefore identification of health problems.
Analysis of antique bronze coins by Laser Induced Breakdown Spectroscopy and multivariate analysis
NASA Astrophysics Data System (ADS)
Bachler, M. Orlić; Bišćan, M.; Kregar, Z.; Jelovica Badovinac, I.; Dobrinić, J.; Milošević, S.
2016-09-01
This work presents a feasibility study of applying the Principal Component Analysis (PCA) to data obtained by Laser-Induced Breakdown Spectroscopy (LIBS) with the aim of determining correlation between different samples. The samples were antique bronze coins coated in silver (follis) dated in the Roman Empire period and were made during different rulers in different mints. While raw LIBS data revealed that in the period from the year 286 to 383 CE content of silver was constantly decreasing, the PCA showed that the samples can be somewhat grouped together based on their place of origin, which could be a useful hint when analysing unknown samples. It was also found that PCA can help in discriminating spectra corresponding to ablation from the surface and from the bulk. Furthermore, Partial Least Squares method (PLS) was used to obtain, based on a set of samples with known composition, an estimation of relative copper concentration in studied ancient coins. This analysis showed that copper concentration in surface layers ranged from 83% to 90%.
"Zones of Tolerance" in Perceptions of Library Service Quality: A LibQUAL+[TM] Study.
ERIC Educational Resources Information Center
Cook, Colleen; Heath, Fred M.; Thompson, Bruce
2003-01-01
One of the two major ways of interpreting LibQUAL+[TM] data involves placing perceived service quality ratings within "zones of tolerance" defined as the distances between minimally-acceptable and desired service quality levels. This study compared zones of tolerance on the 25 LibQUAL+[TM] items across undergraduate, graduate student and…
New Library, New Librarian, New Student: Using LibGuides to Reach the Virtual Student
ERIC Educational Resources Information Center
Roberts, Sara; Hunter, Dwight
2011-01-01
This article examines the virtual pathfinder and its relationship with distance education students. Various topics are addressed in relation to virtual students, LibGuides and collaborative efforts between librarians and teaching faculty. A brief history of the subject guide is presented, advantages and disadvantages of LibGuides are discussed and…
Korst, M; Koch, C; Kesser, J; Müller, U; Romberg, F-J; Rehage, J; Eder, K; Sauerwein, H
2017-04-01
We aimed to test the effects of ad libitum feeding of whole milk (WM) or milk replacer (MR) versus restrictive feeding of MR during the first 4 wk of life on growth performance and on milk yield in the first lactation. We studied 57 German Holstein calves (29 females, 28 males) from birth until d 110 of life (trial 1). The 28 females from trial 1 were further studied during their first lactation (trial 2). In trial 1, all calves were randomly allocated at birth to 1 of 3 groups: MR-res [n = 20, 6.78 kg MR (11.5% solids)/calf per day], MR-ad lib (n = 17, 13.8% solids) or WM-ad lib (n = 20). All calves received colostrum ad libitum from their dam until d 3 of age. From d 4 to 27, calves were fed according to their group regimen. From d 28 to 55, all calves received MR-res feeding and were then gradually weaned until d 69. We recorded body weight (until d 110) and feed intake (amount, metabolizable energy, and frequency of liquid feed intake until weaning). We estimated the profitability of the different feeding regimens, taking into account income from milk yield (trial 2) and feed costs during rearing. In trial 1, the calves from WM-ad lib and MR-ad lib had total metabolizable energy intakes 2.02- and 1.65-fold greater than the MR-res group during the first 4 wk of life. During this period, concentrate intake did not differ among groups, but tended to be greater in WM-ad lib than in MR-ad lib calves from d 28 to 69. The MR-res calves visited the automatic feeders more often than the ad libitum-fed groups during differential feeding, but 70% of the visits were unrewarded (<10% in the ad libitum-fed calves). When all calves were fed at the MR-res level, the average proportion of unrewarded visits was 65% in all groups. Average daily gain and body weight were greater among MR-ad lib and WM-ad lib calves than among MR-res animals during the first 4 wk of life, but not from d 1 to 110. In trial 2, age at first calving, dry matter intake, and body weight over the first 10 mo of lactation were not different among groups, nor was milk composition. Milk yields (305 d) were numerically but not statistically greater in the ad libitum-fed groups during the first lactation (+765 kg for WM-ad lib vs. MR-res; +612 kg for MR-ad lib vs. MR-res). Feeding WM-ad lib and MR-ad lib was 1.37- and 1.21-fold more costly than MR-res, respectively, but amounted to 18, 15, and 13% of the total estimated feed costs until first calving in WM-ad lib, MR-ad lib, and MR-res, respectively. Our study confirms that ad libitum feeding is an attractive measure for rearing dairy calves, both for animal welfare and-with the caveat of a small sample size in trial 2 that led to insufficient power-economic profit from milk. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
[High Precision Identification of Igneous Rock Lithology by Laser Induced Breakdown Spectroscopy].
Wang, Chao; Zhang, Wei-gang; Yan, Zhi-quan
2015-09-01
In the field of petroleum exploration, lithology identification of finely cuttings sample, especially high precision identification of igneous rock with similar property, has become one of the geological problems. In order to solve this problem, a new method is proposed based on element analysis of Laser-Induced Breakdown Spectroscopy (LIBS) and Total Alkali versus Silica (TAS) diagram. Using independent LIBS system, factors influencing spectral signal, such as pulse energy, acquisition time delay, spectrum acquisition method and pre-ablation are researched through contrast experiments systematically. The best analysis conditions of igneous rock are determined: pulse energy is 50 mJ, acquisition time delay is 2 μs, the analysis result is integral average of 20 different points of sample's surface, and pre-ablation has been proved not suitable for igneous rock sample by experiment. The repeatability of spectral data is improved effectively. Characteristic lines of 7 elements (Na, Mg, Al, Si, K, Ca, Fe) commonly used for lithology identification of igneous rock are determined, and igneous rock samples of different lithology are analyzed and compared. Calibration curves of Na, K, Si are generated by using national standard series of rock samples, and all the linearly dependent coefficients are greater than 0.9. The accuracy of quantitative analysis is investigated by national standard samples. Element content of igneous rock is analyzed quantitatively by calibration curve, and its lithology is identified accurately by the method of TAS diagram, whose accuracy rate is 90.7%. The study indicates that LIBS can effectively achieve the high precision identification of the lithology of igneous rock.
Boisset, Aurélien; Menne, Sebastian; Jacquemin, Johan; Balducci, Andrea; Anouti, Mérièm
2013-12-14
In this work, we present a study on the physical and electrochemical properties of three new Deep Eutectic Solvents (DESs) based on N-methylacetamide (MAc) and a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF6; or nitrate, NO3). Based on DSC measurements, it appears that these systems are liquid at room temperature for a lithium salt mole fraction ranging from 0.10 to 0.35. The temperature dependences of the ionic conductivity and the viscosity of these DESs are correctly described by using the Vogel-Tammann-Fulcher (VTF) type fitting equation, due to the strong interactions between Li(+), X(-) and MAc in solution. Furthermore, these electrolytes possess quite large electrochemical stability windows up to 4.7-5 V on Pt, and demonstrate also a passivating behavior toward the aluminum collector at room temperature. Based on these interesting electrochemical properties, these selected DESs can be classified as potential and promising electrolytes for lithium-ion batteries (LIBs). For this purpose, a test cell was then constructed and tested at 25 °C, 60 °C and 80 °C by using each selected DES as an electrolyte and LiFePO4 (LFP) material as a cathode. The results show a good compatibility between each DES and LFP electrode material. A capacity of up to 160 mA h g(-1) with a good efficiency (99%) is observed in the DES based on the LiNO3 salt at 60 °C despite the presence of residual water in the electrolyte. Finally preliminary tests using a LFP/DES/LTO (lithium titanate) full cell at room temperature clearly show that LiTFSI-based DES can be successfully introduced into LIBs. Considering the beneficial properties, especially, the cost of these electrolytes, such introduction could represent an important contribution for the realization of safer and environmentally friendly LIBs.
NASA Astrophysics Data System (ADS)
Zasche, P.
2016-01-01
The available photometry from the online databases were used for the first light curve analysis of eight eclipsing binary systems EI Aur, XY Dra, BP Dra, DD Her, VX Lac, WX Lib, RZ Lyn, and TY Tri. All these stars are of Algol-type, having the detached components and the orbital periods from 0.92 to 6.8 days. For the systems EI Aur and BP Dra the large amount of the third light was detected during the light curve solution. Moreover, 468 new times of minima for these binaries were derived, trying to identify the period variations. For the systems XY Dra and VX Lac the third bodies were detected with the periods 17.7, and 49.3 years, respectively.
NASA Astrophysics Data System (ADS)
Bahreini, M.; Ashrafkhani, B.; Tavassoli, S. H.
2014-03-01
Laser-induced breakdown spectroscopy (LIBS) is applied to investigate the effect of alcoholism and doping on elemental composition of fingernails of subjects. Measurements are made on 36 fingernail clippings including 8 doping, 8 alcoholic and 20 normal subjects. Classification of normal, alcoholic and doping subjects based on 46 atomic and ionic emission lines belonging to 13 elements of fingernail is examined using discriminant function analysis (DFA) method. The most affecting elements in classification of groups are discussed. In order to improve the repeatability of LIBS measurements, an auto-focus system has been designed and used in experiments. Results are promising and show that by improving the repeatability of experiments through improving the setup, some evidence of the impact of the alcohol and doping on elemental composition of fingernails is observed.
The evaluation of a new technology for gunshot residue (GSR) analysis in the field
NASA Astrophysics Data System (ADS)
Hondrogiannis, Ellen; Andersen, Danielle; Miziolek, Andrzej W.
2013-05-01
There continues to be a need for improved technology to be used in theater to quickly and accurately identify the person who shot any weapon during a terrorist attack as well as to link a suspect to the actual weapon fired during a crime. Beyond this, in areas of conflict it would be desirable to have the capability to establish the source country for weaponry and ammunition. Gunshot residue (GSR) analysis is a reasonably well-studied technology area. Recent scientific publications have reported that the residues have a rich composition of both organic and inorganic compounds. For the purposes of identifying the manufacturer or country of origin for the ammunition, the inorganic components of GSR appear to be especially promising since their presence in the propellant and primer formulations are either specific to a given chemical formula, or they represent impurities in the manufacturing process that can be unique to a manufacturer or the source country for the chemicals used for propellants and primers. The Laser Induced Breakdown Spectroscopy (LIBS) technology has already demonstrated considerable capability for elemental fingerprinting, especially for inorganic/metallic components. A number of reports have demonstrated LIBS capability in forensics for matching materials such as inks, fabrics, paper, glass, and paint. This work describes the encouraging results of an initial study to assess a new commercial field-portable (battery operated) LIBS system for GSR analysis with gunshot residues having been collected from inside cartridge casings from 3 different ammunition manufacturers.
[An automatic peak detection method for LIBS spectrum based on continuous wavelet transform].
Chen, Peng-Fei; Tian, Di; Qiao, Shu-Jun; Yang, Guang
2014-07-01
Spectrum peak detection in the laser-induced breakdown spectroscopy (LIBS) is an essential step, but the presence of background and noise seriously disturb the accuracy of peak position. The present paper proposed a method applied to automatic peak detection for LIBS spectrum in order to enhance the ability of overlapping peaks searching and adaptivity. We introduced the ridge peak detection method based on continuous wavelet transform to LIBS, and discussed the choice of the mother wavelet and optimized the scale factor and the shift factor. This method also improved the ridge peak detection method with a correcting ridge method. The experimental results show that compared with other peak detection methods (the direct comparison method, derivative method and ridge peak search method), our method had a significant advantage on the ability to distinguish overlapping peaks and the precision of peak detection, and could be be applied to data processing in LIBS.
NASA Astrophysics Data System (ADS)
Hassanimatin, M. M.; Tavassoli, S. H.
2018-05-01
A combination of electrical spark and laser induced breakdown spectroscopy (LIBS), which is called spark assisted LIBS (SA-LIBS), has shown its capability in plasma spectral emission enhancement. The aim of this paper is a detailed study of plasma emission to determine the effect of plasma and experimental parameters on increasing the spectral signal. An enhancement ratio of SA-LIBS spectral lines compared with LIBS is theoretically introduced. The parameters affecting the spectral enhancement ratio including ablated mass, plasma temperature, the lifetime of neutral and ionic spectral lines, plasma volume, and electron density are experimentally investigated and discussed. By substitution of the effective parameters, the theoretical spectral enhancement ratio is calculated and compared with the experimental one. Two samples of granite as a dielectric and aluminum as a metal at different laser pulse energies are studied. There is a good agreement between the calculated and the experimental enhancement ratio.
The development of lithium ion secondary batteries.
Nishi, Y
2001-01-01
Lithium ion secondary batteries (LIBs) were successfully developed as battery systems with high volumetric and gravimetric energy densities, which were inherited from lithium secondary batteries (LSBs) with metallic lithium anodes. LSBs have several drawbacks, however, including poor cyclability and quick-charge rejection. The cell reaction in LIB is merely a topochemical one, namely the migration of lithium ions between positive and negative electroces. No chemical changes were observed in the two electrodes or in the electrolytes. This results in little chemical transformation of the active electrode materials and electrolytes, and thus, LIBs can overcome the weaknesses of LSBs; for example, LIBs show excellent cyclability and quick-charge acceptance. Many difficulties, however, were encountered during the course of development, including capacity fade during cycling and safety issues. This article is the story of the development of LIBs and it describes how the difficulties were surmounted. Copyright 2001 The Japan Chemical Journal Forum and John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Hu, Z.; Gierse, N.; Li, C.; Liu, P.; Zhao, D.; Sun, L.; Oelmann, J.; Nicolai, D.; Wu, D.; Wu, J.; Mao, H.; Ding, F.; Brezinsek, S.; Liang, Y.; Ding, H.; Luo, G.; Linsmeier, C.; EAST Team
2017-12-01
A laser based method combined with spectroscopy, such as laser-induced breakdown spectroscopy (LIBS) and laser-induced ablation spectroscopy (LIAS), is a promising technology for plasma-wall interaction studies. In this work, we report the development of in situ laser-based diagnostics (LIBS and LIAS) for the assessment of static and dynamic fuel retention on the first wall without removing the tiles between and during plasma discharges in the Experimental Advanced Superconducting Tokamak (EAST). The fuel retention on the first wall was measured after different wall conditioning methods and daily plasma discharges by in situ LIBS. The result indicates that the LIBS can be a useful tool to predict the wall condition in EAST. With the successful commissioning of a refined timing system for LIAS, an in situ approach to investigate fuel retention is proposed.
NASA Astrophysics Data System (ADS)
Godoi, Quienly; Santos, Dario, Jr.; Nunes, Lidiane C.; Leme, Flávio O.; Rufini, Iolanda A.; Agnelli, José A. M.; Trevizan, Lilian C.; Krug, Francisco J.
2009-06-01
The performance of laser-induced breakdown spectrometry (LIBS) for the determination of Ba, Cd, Cr and Pb in toys has been evaluated by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with intensified charge-coupled device detector. Samples were purchased in different cities of São Paulo State market and analyzed directly without sample preparation. Laser-induced breakdown spectrometry experimental conditions (number of pulses, delay time, integration time gate and pulse energy) were optimized by using a Doehlert design. Laser-induced breakdown spectrometry signals correlated reasonably well with inductively coupled plasma optical emission spectrometry (ICP OES) concentrations after microwave-assisted acid digestion of selected samples. Thermal analysis was used for polymer identification and scanning electron microscopy to visualize differences in crater geometry of different polymers employed for toy fabrication. Results indicate that laser-induced breakdown spectrometry can be proposed as a rapid screening method for investigation of potentially toxic elements in toys. The unique application of laser-induced breakdown spectrometry for identification of contaminants in successive layers of ink and polymer is also demonstrated.
Determination of calcium to phosphate elemental ratio in natural hydroxypatite using LIBS
NASA Astrophysics Data System (ADS)
Mazalan, Elham; Chaudhary, Kashif; Haider, Zuhaib; Hadi, Siti Fatimah Abd; Ali, Jalil
2018-05-01
In this work, laser induced breakdown spectroscopy (LIBS) is employed for determination of calcium to phosphate (Ca/P) ratio in hydroxyapatite (HA) extracted from animal bones. HA was extracted from the biological bones of lamb, bovine, and fish separately. Fresh bones were boiled in deuterium-depleted water (DDW) for 4 hours and immersed it in acetone for 15 hours followed by drying process in the oven. Dried bones were heated at 600 °C and crushed into powder form which was then mixed with potassium bromide (KBr) in a known quantity. The mixture for each sample was palletized into pellets of identical mass using a hydraulic press. The palletized samples of HA extracted from the bones were ablated with 10 ns Q-switched Nd-YAG laser pulses having an energy of 320 mJ/pulse. The optical emissions produced from the laser induced plasma were recorded. Ca and P emission lines are identified and the Ca/P is calculated. Ca/P ratio by LIBS analysis has been verified by EDX measurements and are found in good agreement.
A spectroscopic tool for identifying sources of origin for materials of military interest
NASA Astrophysics Data System (ADS)
Miziolek, Andrzej W.; De Lucia, Frank C.
2014-05-01
There is a need to identify the source of origin for many items of military interest, including ammunition and weapons that may be circulated and traded in illicit markets. Both fieldable systems (man-portable or handheld) as well as benchtop systems in field and home base laboratories are desired for screening and attribution purposes. Laser Induced Breakdown Spectroscopy (LIBS) continues to show significant capability as a promising new tool for materials identification, matching, and provenance. With the use of the broadband, high resolution spectrometer systems, the LIBS devices can not only determine the elemental inventory of the sample, but they are also capable of elemental fingerprinting to signify sources of origin of various materials. We present the results of an initial study to differentiate and match spent cartridges from different manufacturers and countries. We have found that using Partial Least Squares Discriminant Analysis (PLS-DA) we are able to achieve on average 93.3% True Positives and 5.3% False Positives. These results add to the large body of publications that have demonstrated that LIBS is a particularly suitable tool for source of origin determinations.
Sezer, Banu; Velioglu, Hasan Murat; Bilge, Gonca; Berkkan, Aysel; Ozdinc, Nese; Tamer, Ugur; Boyaci, Ismail Hakkı
2018-01-01
The use of Li salts in foods has been prohibited due to their negative effects on central nervous system; however, they might still be used especially in meat products as Na substitutes. Lithium can be toxic and even lethal at higher concentrations and it is not approved in foods. The present study focuses on Li analysis in meatballs by using laser induced breakdown spectroscopy (LIBS). Meatball samples were analyzed using LIBS and flame atomic absorption spectroscopy. Calibration curves were obtained by utilizing Li emission lines at 610nm and 670nm for univariate calibration. The results showed that Li calibration curve at 670nm provided successful determination of Li with 0.965 of R 2 and 4.64ppm of limit of detection (LOD) value. While Li Calibration curve obtained using emission line at 610nm generated R 2 of 0.991 and LOD of 22.6ppm, calibration curve obtained at 670nm below 1300ppm generated R 2 of 0.965 and LOD of 4.64ppm. Copyright © 2017. Published by Elsevier Ltd.
Hedwig, Rinda; Lahna, Kurnia; Lie, Zener Sukra; Pardede, Marincan; Kurniawan, Koo Hendrik; Tjia, May On; Kagawa, Kiichiro
2016-11-10
This report presents the results of laser-induced breakdown spectroscopy (LIBS) study on biological and food samples of high water content using a picosecond (ps) laser at low output energy of 10 mJ and low-pressure helium ambient gas at 2 kPa. Evidence of excellent emission spectra of various analyte elements with very low background is demonstrated for a variety of samples without the need of sample pretreatment. Specifically, limits of detection in the range of sub-ppm are obtained for hazardous Pb and B impurities in carrots and meatballs. This study also shows the inferior performance of LIBS using a nanosecond laser and atmospheric ambient air for a soft sample of high water content and thereby explains its less successful applications in previous attempts. The present result has instead demonstrated the feasibility and favorable results of employing LIBS with a ps laser and low-pressure helium ambient gas as a less costly and more practical alternative to inductively coupled plasma for regular high sensitive inspection of harmful food preservatives and environmental pollutants.
Pulsations in the atmosphere of the rapidly oscillating star 33 Lib
NASA Astrophysics Data System (ADS)
Sachkov, M.; Hareter, M.; Ryabchikova, T.; Wade, G.; Kochukhov, O.; Shulyak, D.; Weiss, W. W.
2011-10-01
In 2009, the rapidly oscillating peculiar A-type (roAp) star 33 Lib was the target of an intense observing campaign, combining ground-based spectroscopy with space photometry obtained with the Microvariability and Oscillation of STars (MOST) satellite. We collected 780 spectra using the Echelle Spectro Polarimetric Device for the Observation of Stars (ESPaDOnS) spectrograph attached at the 3.6-m Canada-France-Hawaii Telescope and 374 spectra with the Fibre-fed Echelle Spectrograph attached at the 2.56-m Nordic Optical Telescope to perform time-resolved spectroscopy of 33 Lib. In addition, we used 111 Ultraviolet and Visual Echelle Spectrograph (UVES) spectra (2004) from the European Southern Observatory archive to check mode stability. Frequency analysis of the new radial velocity (RV) measurements confirms the previously reported frequency pattern (two frequencies and the first harmonic of the main one) and reveals an additional frequency at 1.991 mHz. The new frequency solution perfectly reproduces the RV variations from the 2004 and 2009 observational sets, providing strong support for p mode stability in this roAp star over at least 5 years.
ERIC Educational Resources Information Center
Najarian, Maya L.; Chinni, Rosemarie C.
2013-01-01
This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…
Designing LibGuides as Instructional Tools for Critical Thinking and Effective Online Learning
ERIC Educational Resources Information Center
Baker, Ruth L.
2014-01-01
Did you ever wish for an easy-to-maintain tool to create course-level or assignment-level instruction for online or distance students? LibGuides can provide the solution! LibGuides provide a versatile and easy-to-maintain platform for delivering step-by-step, scaffolded tutorials that enhance learning outcomes through chunking, reduced strain on…
ERIC Educational Resources Information Center
Wei, Youhua; Thompson, Bruce; Cook, C. Colleen
2005-01-01
LibQUAL+[TM] data to date have not been subjected to the modern measurement theory called polytomous item response theory (IRT). The data interpreted here were collected from 42,090 participants who completed the "American English" version of the 22 core LibQUAL+[TM] items, and 12,552 participants from Australia and Europe who…
76 FR 40935 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-12
.... Claim No. LIB-I-007; 4 p.m. Claim No. LIB-II-007 Friday, July 22, 2011 10 a.m. Claim No. LIB-II-001; 10...) 616-6975. Judith H. Lock, Executive Officer. [FR Doc. 2011-17632 Filed 7-8-11; 4:15 pm] BILLING CODE... FOREIGN CLAIMS SETTLEMENT COMMISSION [F.C.S.C. Meeting and Hearing Notice No. 5-11] Sunshine Act...
NASA Astrophysics Data System (ADS)
Kaiser, J.; Novotný, K.; Hrdlička, A.; Malina, R.; Novotný, J.; Prochazka, D.; Petrilak, M.; Krajcarová, L.; Vítková, G.; Kučerová, P.
2010-12-01
Here we report on the recent developments and upgrades of our Laser-Induced Breakdown Spectroscopy setups and their different modification for high-resolution mapping. Mapping capabilities of Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry are compared. The applied improvements as an autofocus algorithm, together with the realization of double-pulse LIBS or combination of LIBS by Laser-Induced Fluorescence Spectroscopy (LIFS) with technique are detailed. The signal enhancement obtained by double-pulse approach is demonstrated. The state of the art on development of portable remote LIBS apparatus is also presented.
Laser Induced Breakdown Spectroscopy of Glass and Crystal Samples
NASA Astrophysics Data System (ADS)
Sharma, Prakash; Sandoval, Alejandra; Carter, Michael; Kumar, Akshaya
2015-03-01
Different types of quartz crystals and rare earth ions doped glasses have been identified using the laser induced breakdown spectroscopy (LIBS) technique. LIBS is a real time technique, can be used to identify samples in solid, liquid and gas phases. The advantage of LIBS technique is that no sample preparation is required and laser causes extremely minimal damage to the sample surface. The LIBS spectrum of silicate glasses, prepared by sol-gel method and doped with different concentration of rare earth ions, has been recorded. The limit of detection of rare earth ions in glass samples has been calculated. Total 10 spectrums of each sample were recorded and then averaged to get a final spectrum. The ocean optics LIBS2500 plus spectrometer along with a Q- switched Nd: YAG laser (Quantel, Big Sky) were used to record the LIBS spectrum. This spectrometer can analyze the sample in the spectral range of 200 nm to 980 nm. The spectrum was processed by OOILIBS-plus (v1.0) software. This study has application in the industry where different crystals can be easily identified before they go for shaping and polishing. Also, concentration of rare earth ions in glass can be monitored in real time for quality control.
Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram
2017-07-01
The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.
Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries
Zhang, Chao; Xu, Jun; Cao, Lei; ...
2017-05-05
The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less
Gilon, N; El-Haddad, J; Stankova, A; Lei, W; Ma, Q; Motto-Ros, V; Yu, J
2011-11-01
Laser ablation coupled to inductively coupled plasma optical emission spectrometry (LA-ICP-OES) and laser-induced breakdown spectroscopy (LIBS) were investigated for the determination of Ca, Mg, Zn and Na in milk samples. The accuracy of both methods was evaluated by comparison of the concentration found using LA-ICP-OES and LIBS with classical wet digestion associated with ICP-OES determination. The results were not fully acceptable, with biases from less than 1% to more than 60%. Matrix effects were also investigated. The sample matrix can influence the temperature, electron number density (n (e)) and other excitation characteristics in the ICP. These ICP characteristics were studied and evaluated during ablation of eight milk samples. Differences in n (e) (from 8.9 to 13.8 × 10(14) cm(-3)) and rotational temperature (ranging from 3,400 to 4,400 K) occurred with no correlation with trueness. LIBS results obtained after classical external calibration procedure gave degraded accuracy, indicating a strong matrix effect. The LIBS measurements clearly showed that the major problem in LA-ICP was related to the ablation process and that LIBS spectroscopy is an excellent diagnostic tool for LA-ICP techniques.
Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.
Zeng, Xianlai; Li, Jinhui; Shen, Bingyu
2015-09-15
With the booming of consumer electronics (CE) and electric vehicle (EV), a large number of spent lithium-ion battery (LIBs) have been generated worldwide. Resource depletion and environmental concern driven from the sustainable industry of CE and EV have motivated spent LIBs should be recovered urgently. However, the conventional process combined with leaching, precipitating, and filtering was quite complicated to recover cobalt and lithium from spent LIBs. In this work, we developed a novel recovery process, only combined with oxalic acid leaching and filtering. When the optimal parameters for leaching process is controlled at 150 min retention time, 95 °C heating temperature, 15 g L(-1) solid-liquid ratio, and 400 rpm rotation rate, the recovery rate of lithium and cobalt from spent LIBs can reach about 98% and 97%, respectively. Additionally, we also tentatively discovered the leaching mechanism of lithium cobalt oxide (LiCoO2) using oxalic acid, and the leaching order of the sampling LiCoO2 of spent LIBs. All the obtained results can contribute to a short-cut and high-efficiency process of spent LIBs recycling toward a sound closed-loop cycle. Copyright © 2015 Elsevier B.V. All rights reserved.
Iqbal, Shahid; Bahadur, Ali; Saeed, Aamer; Zhou, Kebin; Shoaib, Muhammad; Waqas, Muhammad
2017-09-15
Lithium-ion battery (LIB) is a revolutionary step in the electric energy storage technology for making green environment. In the present communication, a LIB anode material was constructed by using graphene/polyaniline/CuS nanocomposite (GR/PANI/CuS NC) as a high-performance electrode. Initially, pure covellite CuS nanoplates (NPs) of the hexagonal structure were synthesized by hydrothermal route and then GR/PANI/CuS NC was fabricated by in-situ polymerization of aniline in the presence of CuS NPs and graphene nanosheets (GR NSs) as host matrix. GR/PANI/CuS NC-based LIB has shown the superior reversible current capacity of 1255mAhg -1 , a high cycling stability with more than 99% coulombic efficiency over 250 cycles even at a high current density of 5Ag -1 , low volume expansion, and excellent power capabilities. Galvanostatic charge/discharge tests and cyclic voltammetry analysis were used to investigate electrochemical properties. The electrochemical test proves that GR/PANI/CuS NC is promising anode material for LIB. The crystal phases and purity of the GR/PANI/CuS NC were confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) were employed to examine the morphology, size, chemical composition, and phase structure of the synthesized GR/PANI/CuS NC. Copyright © 2017. Published by Elsevier Inc.
Design optimization of Cassegrain telescope for remote explosive trace detection
NASA Astrophysics Data System (ADS)
Bhavsar, Kaushalkumar; Eseller, K. E.; Prabhu, Radhakrishna
2017-10-01
The past three years have seen a global increase in explosive-based terror attacks. The widespread use of improvised explosives and anti-personnel landmines have caused thousands of civilian casualties across the world. Current scenario of globalized civilization threat from terror drives the need to improve the performance and capabilities of standoff explosive trace detection devices to be able to anticipate the threat from a safe distance to prevent explosions and save human lives. In recent years, laser-induced breakdown spectroscopy (LIBS) is an emerging approach for material or elemental investigations. All the principle elements on the surface are detectable in a single measurement using LIBS and hence, a standoff LIBS based method has been used to remotely detect explosive traces from several to tens of metres distance. The most important component of LIBS based standoff explosive trace detection system is the telescope which enables remote identification of chemical constituents of the explosives. However, in a compact LIBS system where Cassegrain telescope serves the purpose of laser beam delivery and light collection, need a design optimization of the telescope system. This paper reports design optimization of a Cassegrain telescope to detect explosives remotely for LIBS system. A design optimization of Schmidt corrector plate was carried out for Nd:YAG laser. Effect of different design parameters was investigated to eliminate spherical aberration in the system. Effect of different laser wavelengths on the Schmidt corrector design was also investigated for the standoff LIBS system.
NASA Astrophysics Data System (ADS)
Idris, N.; Ramli, M.; Khumaeni, A.; Kurihara, K.
2018-04-01
In this work, a nickel metal mesh was used to allow a direct detection of salt in soil sample by LIBS utilizing unique characteristics of a TEA CO2. The metal mesh is placed in the front of the soil sample to prevent the soil sample from blowing off upon focusing the high pulsed laser beam irradiation. LIBS apparatus used in this work is a TEA CO2 laser operated at wavelength of 10.6 μm with pulse energy and duration of 3J and 200 ns, respectively. The laser beam was focused using a ZnSe lens (f = 200 mm) onto soil sample after passing through the metal mesh. The emission spectrum from the induced plasma was detected using an optical multichannel analyzer (OMA) system consisting of a 0.32-m-focal length spectrograph with a grating of 1200 graves/mm and a 1024-channel photodiode detector array with a micro-channel plate intensifier. The soil sample used is a standard soil and ordinary soil containing several salts such as Ca, Mg at high concentration. The LIBS experiment was carried out at high pressure surrounding gas of 1 atmosphere. It was observed that by the aid of the metal mesh, strong breakdown gas plasma can be produced just after TEA CO2 laser irradiation on soil sample without significant sample blowing off. It was found that emission lines from salts, Ca (Ca II 393. 3 nm, Ca II 396.3 nm, Ca I 422.5 nm), and also other salts including Mg and Na can clearly be detected with strong emission intensity and narrow spectral width. This result implies that a TEA CO2 LIBS assisted by the metal mesh (metal mesh method) can be used for direct analysis several salts such as Ca, Mg, and Na in soil sample.
Laser-Induced Breakdown Spectroscopy: Capabilities and Applications
2010-07-01
substances such as drugs, counterfeit goods, and laundered money . It may even be possible to pinpoint specific manufacturing facilities based on...point detection or standoff mode operation. LIBS used in conjunction with broadband detectors (ultraviolet [ UV ]-visible[VIS]-near-infrared[NIR] spectral...lines in the UV -VIS-NIR spectral range. Although most early LIBS applications involved metal targets, LIBS has recently been applied to a variety
On-Premises Library versus Google-Like Information Gateway Usage Patterns: A LibQUAL+[R] Study
ERIC Educational Resources Information Center
Thompson, Bruce; Kyrillidou, Martha; Cook, Colleen
2007-01-01
Using LibQUAL+[R] data provided by 295,355 of the participants who completed the LibQUAL+[R] survey in 2003, 2004, and 2005, the present study was conducted to address three research questions. First, what differences, if any, have occurred across time in the use by (a) undergraduates, (b) graduate students/postgraduates, and (c) faculty of…
NASA Astrophysics Data System (ADS)
Gagnon, Daniel
Detection of sulfur by optical emission spectroscopy generally presents difficulties because the strongest lines are in the vacuum ultraviolet and therefore are readily absorbed by oxygen molecules in air. A novel concept for a low cost and efficient system to detect sulfur using near infrared lines by Laser-Induced Breakdown Spectroscopy is proposed in this thesis. The concept proposes to use customized thick holographic gratings, also referred as Volume Bragg Grating, for spectral filtering of the plasma light, and built-in custom electronics that amplify and integrate photodiodes output signals. In this work, the optomechanical design, manufacturing and trials of a multiband sensor's prototype is reviewed. Preliminary results has been presented at NASLIBS 2011 and showed a limit of detection comparable to that of a conventional high-end system. An article describing the concept and results has been published in a special issue of the Applied Optics journal. To turn this newly patented concept into commercial success, the management of the innovation has been performed by proposing strategic and tactic alliances for commercialisation purposes applied to strategic business positioning structured along the 3 axis Technology -- Product -- Market. Open innovation is here acting as the paradigm to efficiently reach the market. Discussion relative to strategic and tactic alliance is actually taking place for deployment of the LIBS multiband sensor in the mining industry.
NASA Astrophysics Data System (ADS)
Łazarek, Łukasz; Antończak, Arkadiusz J.; Wójcik, Michał R.; Kozioł, Paweł E.; Stepak, Bogusz; Abramski, Krzysztof M.
2014-08-01
Laser-induced breakdown spectroscopy (LIBS) is a fast, fully optical method, that needs little or no sample preparation. In this technique qualitative and quantitative analysis is based on comparison. The determination of composition is generally based on the construction of a calibration curve namely the LIBS signal versus the concentration of the analyte. Typically, to calibrate the system, certified reference materials with known elemental composition are used. Nevertheless, such samples due to differences in the overall composition with respect to the used complex inorganic materials can influence significantly on the accuracy. There are also some intermediate factors which can cause imprecision in measurements, such as optical absorption, surface structure, thermal conductivity etc. This paper presents the calibration procedure performed with especially prepared pellets from the tested materials, which composition was previously defined. We also proposed methods of post-processing which allowed for mitigation of the matrix effects and for a reliable and accurate analysis. This technique was implemented for determination of trace elements in industrial copper concentrates standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for contents of three elements, that is silver, cobalt and vanadium. It has been shown that the described technique can be used to qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates.
Identification of Coffee Varieties Using Laser-Induced Breakdown Spectroscopy and Chemometrics.
Zhang, Chu; Shen, Tingting; Liu, Fei; He, Yong
2017-12-31
We linked coffee quality to its different varieties. This is of interest because the identification of coffee varieties should help coffee trading and consumption. Laser-induced breakdown spectroscopy (LIBS) combined with chemometric methods was used to identify coffee varieties. Wavelet transform (WT) was used to reduce LIBS spectra noise. Partial least squares-discriminant analysis (PLS-DA), radial basis function neural network (RBFNN), and support vector machine (SVM) were used to build classification models. Loadings of principal component analysis (PCA) were used to select the spectral variables contributing most to the identification of coffee varieties. Twenty wavelength variables corresponding to C I, Mg I, Mg II, Al II, CN, H, Ca II, Fe I, K I, Na I, N I, and O I were selected. PLS-DA, RBFNN, and SVM models on selected wavelength variables showed acceptable results. SVM and RBFNN models performed better with a classification accuracy of over 80% in the prediction set, for both full spectra and the selected variables. The overall results indicated that it was feasible to use LIBS and chemometric methods to identify coffee varieties. For further studies, more samples are needed to produce robust classification models, research should be conducted on which methods to use to select spectral peaks that correspond to the elements contributing most to identification, and the methods for acquiring stable spectra should also be studied.
Identification of Coffee Varieties Using Laser-Induced Breakdown Spectroscopy and Chemometrics
Zhang, Chu; Shen, Tingting
2017-01-01
We linked coffee quality to its different varieties. This is of interest because the identification of coffee varieties should help coffee trading and consumption. Laser-induced breakdown spectroscopy (LIBS) combined with chemometric methods was used to identify coffee varieties. Wavelet transform (WT) was used to reduce LIBS spectra noise. Partial least squares-discriminant analysis (PLS-DA), radial basis function neural network (RBFNN), and support vector machine (SVM) were used to build classification models. Loadings of principal component analysis (PCA) were used to select the spectral variables contributing most to the identification of coffee varieties. Twenty wavelength variables corresponding to C I, Mg I, Mg II, Al II, CN, H, Ca II, Fe I, K I, Na I, N I, and O I were selected. PLS-DA, RBFNN, and SVM models on selected wavelength variables showed acceptable results. SVM and RBFNN models performed better with a classification accuracy of over 80% in the prediction set, for both full spectra and the selected variables. The overall results indicated that it was feasible to use LIBS and chemometric methods to identify coffee varieties. For further studies, more samples are needed to produce robust classification models, research should be conducted on which methods to use to select spectral peaks that correspond to the elements contributing most to identification, and the methods for acquiring stable spectra should also be studied. PMID:29301228
Hierarchically Nanostructured Transition Metal Oxides for Lithium‐Ion Batteries
Zheng, Mingbo; Tang, Hao; Li, Lulu; Hu, Qin; Zhang, Li; Xue, Huaiguo
2018-01-01
Abstract Lithium‐ion batteries (LIBs) have been widely used in the field of portable electric devices because of their high energy density and long cycling life. To further improve the performance of LIBs, it is of great importance to develop new electrode materials. Various transition metal oxides (TMOs) have been extensively investigated as electrode materials for LIBs. According to the reaction mechanism, there are mainly two kinds of TMOs, one is based on conversion reaction and the other is based on intercalation/deintercalation reaction. Recently, hierarchically nanostructured TMOs have become a hot research area in the field of LIBs. Hierarchical architecture can provide numerous accessible electroactive sites for redox reactions, shorten the diffusion distance of Li‐ion during the reaction, and accommodate volume expansion during cycling. With rapid research progress in this field, a timely account of this advanced technology is highly necessary. Here, the research progress on the synthesis methods, morphological characteristics, and electrochemical performances of hierarchically nanostructured TMOs for LIBs is summarized and discussed. Some relevant prospects are also proposed. PMID:29593962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gondal, M. A., E-mail: magondal@kfupm.edu.sa; Baig, Umair; Dastageer, M. A.
A detection system based on laser induced breakdown spectroscopy (LIBS) was built using 266 nm wavelength pulsed laser from the fourth harmonic of Nd:YAG laser, 500 mm spectrograph and gated ICCD camera with built-in delay generator. The LIBS system was used to study the elemental composition in coffee available in the local market of Saudi Arabia for the detection of elements in coffee samples. The LIBS spectrum of coffee sample revealed the presence magnesium, calcium, aluminum, copper, sodium, barium, bromine, cobalt, chromium, cerium manganese and molybdenum. Atomic transition line of sodium is used to study the parametric dependence of LIBSmore » signal. The study of the dependence of LIBS signal on the laser pulse energy is proven to be linear and the dependence of LIBS signal on the time delay between the excitation and data acquisition showed a typical increase, a peak value and a decrease with the optimum excitation – acquisition delay at 400 ns.« less
NASA Astrophysics Data System (ADS)
Li, Desheng; Wang, Dongya; Rui, Kun; Ma, Zhongyuan; Xie, Ling; Liu, Jinhua; Zhang, Yu; Chen, Runfeng; Yan, Yan; Lin, Huijuan; Xie, Xiaoji; Zhu, Jixin; Huang, Wei
2018-04-01
The emerging wearable and foldable electronic devices drive the development of flexible lithium ion batteries (LIBs). Carbon materials are considered as one of the most promising electrode materials for LIBs due to their light weight, low cost and good structural stability against repeated deformations. However, the specific capacity, rate capability and long-term cycling performance still need to be improved for their applications in next-generation LIBs. Herein, we report a facile approach for immobilizing phosphorus into a large-area carbon nanosheets/nanofibers interwoven free-standing paper for LIBs. As an anode material for LIBs, it shows high reversible capacity of 1100 mAh g-1 at a current density of 200 mA g-1, excellent rate capabilities (e.g., 200 mAh g-1 at 20,000 mA g-1). Even at a high current density of 1000 mA g-1, it still maintains a superior specific capacity of 607 mAh g-1 without obvious decay.
Hierarchically Nanostructured Transition Metal Oxides for Lithium-Ion Batteries.
Zheng, Mingbo; Tang, Hao; Li, Lulu; Hu, Qin; Zhang, Li; Xue, Huaiguo; Pang, Huan
2018-03-01
Lithium-ion batteries (LIBs) have been widely used in the field of portable electric devices because of their high energy density and long cycling life. To further improve the performance of LIBs, it is of great importance to develop new electrode materials. Various transition metal oxides (TMOs) have been extensively investigated as electrode materials for LIBs. According to the reaction mechanism, there are mainly two kinds of TMOs, one is based on conversion reaction and the other is based on intercalation/deintercalation reaction. Recently, hierarchically nanostructured TMOs have become a hot research area in the field of LIBs. Hierarchical architecture can provide numerous accessible electroactive sites for redox reactions, shorten the diffusion distance of Li-ion during the reaction, and accommodate volume expansion during cycling. With rapid research progress in this field, a timely account of this advanced technology is highly necessary. Here, the research progress on the synthesis methods, morphological characteristics, and electrochemical performances of hierarchically nanostructured TMOs for LIBs is summarized and discussed. Some relevant prospects are also proposed.
Laser-induced breakdown spectroscopy for detection of heavy metals in environmental samples
NASA Astrophysics Data System (ADS)
Wisbrun, Richard W.; Schechter, Israel; Niessner, Reinhard; Schroeder, Hartmut
1993-03-01
The application of LIBS technology as a sensor for heavy metals in solid environmental samples has been studied. This specific application introduces some new problems in the LIBS analysis. Some of them are related to the particular distribution of contaminants in the grained samples. Other problems are related to mechanical properties of the samples and to general matrix effects, like the water and organic fibers content of the sample. An attempt has been made to optimize the experimental set-up for the various involved parameters. The understanding of these factors has enabled the adjustment of the technique to the substrates of interest. The special importance of the grain size and of the laser-induced aerosol production is pointed out. Calibration plots for the analysis of heavy metals in diverse sand and soil samples have been carried out. The detection limits are shown to be usually below the recent regulation restricted concentrations.
NASA Astrophysics Data System (ADS)
Savovic, Jelena; Stoiljkovic, Milovan; Kuzmanovic, Miroslav; Momcilovic, Milos; Ciganovic, Jovan; Rankovic, Dragan; Zivkovic, Sanja; Trtica, Milan
2016-04-01
The present work studies the possibility of using pulsed Transversely Excited Atmospheric (TEA) carbon dioxide laser as an energy source for laser-induced breakdown spectroscopy (LIBS) analysis of rocks under simulated Martian atmospheric conditions. Irradiation of a basaltic rock sample with the laser intensity of 56 MW cm- 2, in carbon-dioxide gas at a pressure of 9 mbar, created target plasma with favorable conditions for excitation of all elements usually found in geological samples. Detection limits of minor constituents (Ba, Cr, Cu, Mn, Ni, Sr, V, and Zr) were in the 3 ppm-30 ppm range depending on the element. The precision varied between 5% and 25% for concentration levels of 1% to 10 ppm, respectively. Generally, the proposed relatively simple TEA CO2 laser-LIBS system provides good sensitivity for geological studies under reduced CO2 pressure.
NASA Astrophysics Data System (ADS)
Luna, Aderval S.; Gonzaga, Fabiano B.; da Rocha, Werickson F. C.; Lima, Igor C. A.
2018-01-01
Laser-induced breakdown spectroscopy (LIBS) analysis was carried out on eleven steel samples to quantify the concentrations of chromium, nickel, and manganese. LIBS spectral data were correlated to known concentrations of the samples using different strategies in partial least squares (PLS) regression models. For the PLS analysis, one predictive model was separately generated for each element, while different approaches were used for the selection of variables (VIP: variable importance in projection and iPLS: interval partial least squares) in the PLS model to quantify the contents of the elements. The comparison of the performance of the models showed that there was no significant statistical difference using the Wilcoxon signed rank test. The elliptical joint confidence region (EJCR) did not detect systematic errors in these proposed methodologies for each metal.
Fu, Hongbo; Wang, Huadong; Jia, Junwei; Ni, Zhibo; Dong, Fengzhong
2018-01-01
Due to the influence of major elements' self-absorption, scarce observable spectral lines of trace elements, and relative efficiency correction of experimental system, accurate quantitative analysis with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is in fact not easy. In order to overcome these difficulties, standard reference line (SRL) combined with one-point calibration (OPC) is used to analyze six elements in three stainless-steel and five heat-resistant steel samples. The Stark broadening and Saha - Boltzmann plot of Fe are used to calculate the electron density and the plasma temperature, respectively. In the present work, we tested the original SRL method, the SRL with the OPC method, and intercept with the OPC method. The final calculation results show that the latter two methods can effectively improve the overall accuracy of quantitative analysis and the detection limits of trace elements.
Nanocarbons for Battery Applications in China
2015-04-29
Lithium - Ion Batteries (LIBs) Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...Conductive Additives in Lithium - Ion Batteries (LIBs) 3.3.3 As Composite Cathodes in Lithium -Sulfur (Li-S) Batteries 3.3.6.1 CNTs...composite electrode materials and conductive additives in lithium - ion batteries (LIBs) and composite cathodes in novel lithium -sulfur (Li-S) and
Medical Applications of Laser Induced Breakdown Spectroscopy
NASA Astrophysics Data System (ADS)
Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.
2014-11-01
Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.
NASA Astrophysics Data System (ADS)
Suresh, Pooja
2014-05-01
Alloy identification of oil-borne wear debris captured on chip detectors, filters and magnetic plugs allows the machinery maintainer to assess the health of the engine or gearbox and identify specific component damage. Today, such identification can be achieved in real time using portable, at-line laser-induced breakdown spectroscopy (LIBS) and Xray fluorescence (XRF) instruments. Both techniques can be utilized in various industries including aviation, marine, railways, heavy diesel and other industrial machinery with, however, some substantial differences in application and instrument performance. In this work, the performances of a LIBS and an XRF instrument are compared based on measurements of a wide range of typical aerospace alloys including steels, titanium, aluminum and nickel alloys. Measurement results were analyzed with a staged correlation technique specifically developed for the purposes of this study - identifying the particle alloy composition using a pre-recorded library of spectral signatures. The analysis is performed in two stages: first, the base element of the alloy is determined by correlation with the stored elemental spectra and then, the alloy is identified by matching the particle's spectral signature using parametric correlation against the stored spectra of all alloys that have the same base element. The correlation analysis has achieved highly repeatable discrimination between alloys of similar composition. Portable LIBS demonstrates higher detection accuracy and better identification of alloys comprising lighter elements as compared to that of the portable XRF system, and reveals a significant reduction in the analysis time over XRF.
Bers, Karolien; Leroy, Baptiste; Breugelmans, Philip; Albers, Pieter; Lavigne, Rob; Sørensen, Sebastian R.; Aamand, Jens; De Mot, René; Wattiez, Ruddy; Springael, Dirk
2011-01-01
The soil bacterial isolate Variovorax sp. strain SRS16 mineralizes the phenylurea herbicide linuron. The proposed pathway initiates with hydrolysis of linuron to 3,4-dichloroaniline (DCA) and N,O-dimethylhydroxylamine, followed by conversion of DCA to Krebs cycle intermediates. Differential proteomic analysis showed a linuron-dependent upregulation of several enzymes that fit into this pathway, including an amidase (LibA), a multicomponent chloroaniline dioxygenase, and enzymes associated with a modified chlorocatechol ortho-cleavage pathway. Purified LibA is a monomeric linuron hydrolase of ∼55 kDa with a Km and a Vmax for linuron of 5.8 μM and 0.16 nmol min−1, respectively. This novel member of the amidase signature family is unrelated to phenylurea-hydrolyzing enzymes from Gram-positive bacteria and lacks activity toward other tested phenylurea herbicides. Orthologues of libA are present in all other tested linuron-degrading Variovorax strains with the exception of Variovorax strains WDL1 and PBS-H4, suggesting divergent evolution of the linuron catabolic pathway in different Variovorax strains. The organization of the linuron degradation genes identified in the draft SRS16 genome sequence indicates that gene patchwork assembly is at the origin of the pathway. Transcription analysis suggests that a catabolic intermediate, rather than linuron itself, acts as effector in activation of the pathway. Our study provides the first report on the genetic organization of a bacterial pathway for complete mineralization of a phenylurea herbicide and the first report on a linuron hydrolase in Gram-negative bacteria. PMID:22003008
Gas Analysis and Control Methods for Thermal Batteries
2013-09-01
THERMAL BATTERIES (PDFS) INC DOUG BRISCOE JEFFREY REINIG 3 ENERSYS ADVANCED SYSTEMS (PDFS) PAUL SCHISSELBAUER ANDREW SEIDEL TIM...MGMT ATTN RDRL CIO LL TECHL LIB 3 SANDIA NATIONAL LABORATORIES (PDFS) DANIEL WESOLOWSKI EDWARD PIEKOS ANNE GRILLET 2 ADVANCED
Yoon, Jihee; Oh, Dongyeop X; Jo, Changshin; Lee, Jinwoo; Hwang, Dong Soo
2014-12-14
Si-based anodes in lithium ion batteries (LIBs) have exceptionally high theoretical capacity, but the use of a Si-based anode in LIBs is problematic because the charging-discharging process can fracture the Si particles. Alginate and its derivatives show promise as Si particle binders in the anode. We show that calcium-mediated "egg-box" electrostatic cross-linking of alginate improves toughness, resilience, electrolyte desolvation of the alginate binder as a Si-binder for LIBs. Consequently, the improved mechanical properties of the calcium alginate binder compared to the sodium alginate binder and other commercial binders extend the lifetime and increase the capacity of Si-based anodes in LIBs.
NASA Astrophysics Data System (ADS)
Siozos, Panagiotis; Philippidis, Aggelos; Anglos, Demetrios
2017-11-01
A novel, portable spectrometer, combining two analytical techniques, laser-induced breakdown spectroscopy (LIBS) and diffuse reflectance spectroscopy, was developed with the aim to provide an enhanced instrumental and methodological approach with regard to the analysis of pigments in objects of cultural heritage. Technical details about the hybrid spectrometer and its operation are presented and examples are given relevant to the analysis of paint materials. Both LIBS and diffuse reflectance spectra in the visible and part of the near infrared, corresponding to several neat mineral pigment samples, were recorded and the complementary information was used to effectively distinguish different types of pigments even if they had similar colour or elemental composition. The spectrometer was also employed in the analysis of different paints on the surface of an ancient pottery sherd demonstrating the capabilities of the proposed hybrid diagnostic approach. Despite its instrumental simplicity and compact size, the spectrometer is capable of supporting analytical campaigns relevant to archaeological, historical or art historical investigations, particularly when quick data acquisition is required in the context of surveys of large numbers of objects and samples.
SBIR Phase I final report, Sensor for direct, rapid and complete elemental analysis of coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chunyi
This Final Report is the result of the DOE SBIR Phase I assistance agreement No: DE-FOA-0001619 awarded to Applied Spectra, Inc. During the nine-month Phase I effort, we successfully demonstrated the ability to quantify rare-earth elements (REE) in coal using LIBS (Laser Induced Breakdown Spectroscopy) along with other elements of interest such as silicon (Si), aluminum (Al), magnesium (Mg), calcium (Ca), potassium (K), titanium (Ti) and iron (Fe). In addition to elemental quantification, eighteen different coal types could be classified with 100% certainty using their LIBS spectrum. High-resolution LA-ICP-MS surface mapping showed a correlation between REE and other prevalent elementsmore » such as aluminum, silicon, and titanium.« less
NASA Astrophysics Data System (ADS)
Pedarnig, Johannes D.
2010-10-01
New results of the Linz group on pulsed—laser deposition (PLD) of oxide thin films and on laser—induced breakdown spectroscopy (LIBS) of multi-element materials are reported. High-Tc superconducting (HTS) films with enhanced critical current density Jc are produced by laser ablation of novel nano-composite ceramic targets. The targets contain insulating nano-particles that are embedded into the YBa2Cu3O7 matrix. Epitaxial double-layers of lithium-doped and aluminum-doped ZnO are deposited on r-cut sapphire substrates. Acoustic over-modes in the GHz range are excited by piezoelectric actuation of layers. Smooth films of rare-earth doped glass are produced by F2—laser ablation. The transport properties of HTS thin films are modified by light—ion irradiation. Thin film nano—patterning is achieved by masked ion beam irradiation. LIBS is employed to analyze trace elements in industrial iron oxide powder and reference polymer materials. Various trace elements of ppm concentration are measured in the UV/VIS and vacuum-UV spectral range. Quantitative LIBS analysis of major components in oxide materials is performed by calibration-free methods.
Niu, Zhirui; Zou, Yikan; Xin, Baoping; Chen, Shi; Liu, Changhao; Li, Yuping
2014-08-01
Release of Co and Li from spent lithium ion batteries (LIBs) by bioleaching has attracted growing attentions. However, the pulp density was only 1% or lower, meaning that a huge quantity of media was required for bioleaching. In this work, bioleaching behavior of the spent LIBs at pulp densities ranging from 1% to 4% was investigated and process controls to improve bioleaching performance at pulp density of 2% were explored. The results showed that the pulp density exerted a considerable influence on leaching performance of Co and Li. The bioleaching efficiency decreased respectively from 52% to 10% for Co and from 80% to 37% for Li when pulp density rose from 1% to 4%. However, the maximum extraction efficiency of 89% for Li and 72% for Co was obtained at pulp density of 2% by process controls. Bioleaching of the spent LIBs has much greater potential to occur than traditional chemical leaching based on thermodynamics analysis. The product layer diffusion model described best bioleaching behavior of Co and Li. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrdlicka, Ales; Prokes, Lubomir; Stankova, Alice
2010-05-01
The development of a remote laser-induced breakdown spectroscopy (LIBS) setup with an off-axis Newtonian collection optics, Galilean-based focusing telescope, and a 532 nm flattop laser beam source is presented. The device was tested at a 6 m distance on a slice of bone to simulate its possible use in the field, e.g., during archaeological excavations. It is shown that this setup is sufficiently sensitive to both major (P, Mg) and minor elements (Na, Zn, Sr). The measured quantities of Mg, Zn, and Sr correspond to the values obtained by reference laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) measurements within an approximatelymore » 20% range of uncertainty. A single point calibration was performed by use of a bone meal standard . The radial element distribution is almost invariable by use of LA-ICP-MS, whereas the LIBS measurement showed a strong dependence on the sample porosity. Based on these results, this remote LIBS setup with a relatively large (350 mm) collecting mirror is capable of semiquantitative analysis at the level of units of mg kg{sup -1}.« less
NASA Astrophysics Data System (ADS)
Bahreini, Maryam; Hosseinimakarem, Zahra; Hassan Tavassoli, Seyed
2012-09-01
Laser induced breakdown spectroscopy (LIBS) is used to investigate the possible effect of osteoporosis on the elemental composition of fingernails. Also, the ability to classify healthy, osteopenic, and osteoporotic subjects based on their fingernail spectra has been examined. 46 atomic and ionic emission lines belonging to 13 elements, which are dominated by calcium and magnesium, have been identified. Measurements are carried out on fingernail clippings of 99 subjects including 27 healthy, 47 osteopenic, and 25 osteoporotic subjects. The Pearson correlations between spectral intensities of different elements of fingernail and age and bone mineral densities (BMDs) in nail samples are calculated. Correlations between line intensities of some elements such as sodium and potassium, calcium and iron, magnesium and silicon and also between some fingernail elements, BMD, and age are observed. Although some of these correlations are weak, some information about mineral metabolism can be deduced from them. Discrimination between nail samples of healthy, osteopenic, and osteoporotic subjects is shown to be somehow possible by a discriminant function analysis using 46 atomic emission lines of the LIBS spectra as input variables. The results of this study provide some evidences for association between osteoporosis and elemental composition of fingernails measured by LIBS.
NASA Astrophysics Data System (ADS)
Maganda, Yasin Wandhami
In this research work we developed a highly sensitive analytical Laser Induced Breakdown Spectrometer to detect toxic elements in commercially available cosmetic products. These products are frequently used by many all over the world, therefore there is an increasing demand to determine concentration levels of toxic elements present in them because they cause dangerous diseases and most of them are highly carcinogenic and life threatening. Laser Induced Breakdown Spectroscopy (LIBS) was applied for spectroscopic analysis of cosmetic products such as tooth paste, synthetic hair dye, kohl eyeliners and talcum powder samples. These samples were purchased from the local market within the kingdom of Saudi Arabia. The LIBS method is based on spectroscopic analysis of plasma resulting from the interaction of a high power pulsed laser radiations with a sample medium. In order to improve the sensitivity of the spectrometer, the dependence of the LIBS signal intensity and plasma parameters such as temperature (T) and electron density (ne) on gate/time delay, laser fluence and wavelength of the excitation source for plasma generated under ambient conditions were studied. During this work Nd: YAG lasers having 266nm, 532 nm and 1064 nm wavelengths operating in Q-switch mode were used as the excitation sources in combination with a spectrograph having a gated ICCD camera. Boltzmann plots and stark broadening for the recorded spectral lines were used to estimate the plasma temperature and electron density respectively. Temporal evolution of the plasma temperature and electron density showed a t-2 dependence. On the other hand plasma temperature and electron density increased with increase in laser fluence but leveled off at higher fluencies. It is worth noting that in both cases 266 nm and 1064 nm excitation wavelengths consistently had the highest and lowest values respectively. Therefore a 266 nm wavelength Nd: YAG laser excitation source was selected to develop a highly sensitive Laser Induced Breakdown spectrometer to detect and quantify the fluoride (F), lead (Pb) and chromium (Cr) content in commercially available toothpaste, synthetic hair dye, kohl eyeliners and talcum powder samples. The experimental parameters such as gate/ delays and laser fluencies were optimized to achieve an optically thin and in local thermodynamic equilibrium plasma (L.T.E) which improved the limit of detection of our spectrometer. The choice of the parameters was validated using the Mcwhirter criterion. For fluoride detection in the toothpaste samples, a strong atomic transition line of fluorine at 731.102 nm was used as the marker line. The LIBS system was able to detect fluoride concentration levels in the range of 1300 - 1750 ppm with a detection limit of 156ppm.In the synthetic hair dye, chromium was detected using a strong atomic transition of chromium (Cr) at a wavelength 427.5 nm as the spectral marker line and the spectrometer with a detection limit of 1.2 ppm was able to detect chromium concentration levels in the range of 5-11 ppm. These results achieved with our LIBS system were compared with those obtained using a standard detection method such as ICP-MS. The results obtained are in excellent agreement with ICP-MS. Lead (Pb) and Chromium (Cr) in kohl were detected using atomic transitions at wavelengths of 405.7 nm and 425.4 nm respectively as the spectral marker lines. The system was calibrated for these toxic metals and it was able to detect Lead and Chromium in the range of 5-14 ppm and 4-9 ppm with detection limits of 1ppm and 2 ppm respectively. The LIBS results were compared with those obtained using ICP-MS and were in good agreement yielding a relative accuracy in the range 0.05-0.3 which is acceptable. Lead (Pb) and Chromium (Cr) levels in talcum powder samples were detected and quantified using strong transitions at wavelengths of 405.7 nm and 425.4 nm respectively. The LIBS system detected lead and chromium in the range of 15-17 ppm and 23-29 ppm with limits of detection of 1.96 ppm and 1.72 ppm respectively. The concentration levels of fluoride, lead and chromium detected using our LIBS system exceeded the permissible limits set by the Environmental agency and other regulatory organization and hence frequent use of such cosmetic products can be hazardous to human health. The LIBS spectrometer developed through this research work can be applied for analysis of many other samples like pharmaceutical, polymers, iron, volcanic eruption and geological samples for mineral quantification.
NASA Astrophysics Data System (ADS)
Harmon, Russell S.; De Lucia, Frank C.; Winkel, Raymond J., Jr.; LaPointe, Aaron; Grossman, Scott L.; McNesby, Kevin L.; Miziolek, Andrzej W.
2003-09-01
Laser Induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopic technique that utilizes a pulsed laser to create a microplasma on the target together with an array spectrometer to capture the transient light for elemental identification and quantification. LIBS has certain important characteristics that make it a very attractive sensor technology for military uses. Such attributes include that facts that LIBS (1) is relatively simple and straightforward, (2) requires no sample preparation, (3) generates a real-time response, and (4) only engages a very small sample (pg-ng) of matter in each laser shot and microplasma event, (5) has inherent high sensitivity, and (6) responds to all forms of unknowns, and, therefore, is particularly suited for the sensing of dangerous materials. Additionally, a LIBS sensor system can be inexpensive, configured to be man-portable, and designed for both in-situ point sensing and remote stand-off detection with distances of up to 20-25 meters. Broadband LIBS results covering the spectral region from 200-970 nm acquired at the Army Research Laboratory (ARL) under laboratory conditions for a variety of landmine casings and explosive materials. This data will illustrate the potential that LIBS has to be developed into a hand-deployable device that could be utilized as a confirmatory sensor in landmine detection. The concept envisioned is a backpack-size system in which an eyesafe micro-laser is contained in the handle of a deminer's probe and light is delivered and collected through an optical fiber in the tapered tip of the probe. In such a configuration, analyses can be made readily by touching the buried object that one is interested in identifying.
libChEBI: an API for accessing the ChEBI database.
Swainston, Neil; Hastings, Janna; Dekker, Adriano; Muthukrishnan, Venkatesh; May, John; Steinbeck, Christoph; Mendes, Pedro
2016-01-01
ChEBI is a database and ontology of chemical entities of biological interest. It is widely used as a source of identifiers to facilitate unambiguous reference to chemical entities within biological models, databases, ontologies and literature. ChEBI contains a wealth of chemical data, covering over 46,500 distinct chemical entities, and related data such as chemical formula, charge, molecular mass, structure, synonyms and links to external databases. Furthermore, ChEBI is an ontology, and thus provides meaningful links between chemical entities. Unlike many other resources, ChEBI is fully human-curated, providing a reliable, non-redundant collection of chemical entities and related data. While ChEBI is supported by a web service for programmatic access and a number of download files, it does not have an API library to facilitate the use of ChEBI and its data in cheminformatics software. To provide this missing functionality, libChEBI, a comprehensive API library for accessing ChEBI data, is introduced. libChEBI is available in Java, Python and MATLAB versions from http://github.com/libChEBI, and provides full programmatic access to all data held within the ChEBI database through a simple and documented API. libChEBI is reliant upon the (automated) download and regular update of flat files that are held locally. As such, libChEBI can be embedded in both on- and off-line software applications. libChEBI allows better support of ChEBI and its data in the development of new cheminformatics software. Covering three key programming languages, it allows for the entirety of the ChEBI database to be accessed easily and quickly through a simple API. All code is open access and freely available.
2009-05-07
would discourage the use of LIBS for distinguishing between gaseous and particulate species; however, recent studies by Prof. David Hahn at the...If a concept proved feasible, then it would be evaluated in more realistic environments. The program involved a joint effort between Prof. David ...multiphase ns-LIBS measurement that are most relevant to this study are illustrated in the research performed by Prof. David Hahn at the University of Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunhart-Lupo, Nicholas
2016-12-06
LibIsopach is a toolkit for high performance distributed immersive visualization, leveraging modern OpenGL. It features a multi-process scenegraph, explicit instance rendering, mesh generation, and three-dimensional user interaction event processing.
NASA Astrophysics Data System (ADS)
Hark, Richard R.; East, Lucille J.
Forensic science is broadly defined as the application of science to matters of the law. Practitioners typically use multidisciplinary scientific techniques for the analysis of physical evidence in an attempt to establish or exclude an association between a suspect and the scene of a crime.
Intercalated Water and Organic Molecules for Electrode Materials of Rechargeable Batteries.
Lee, Hyeon Jeong; Shin, Jaeho; Choi, Jang Wook
2018-03-24
The intrinsic limitations of lithium-ion batteries (LIBs) with regard to safety, cost, and the availability of raw materials have promoted research on so-called "post-LIBs". The recent intense research of post-LIBs provides an invaluable lesson that existing electrode materials used in LIBs may not perform as well in post-LIBs, calling for new material designs compliant with emerging batteries based on new chemistries. One promising approach in this direction is the development of materials with intercalated water or organic molecules, as these materials demonstrate superior electrochemical performance in emerging battery systems. The enlarged ionic channel dimensions and effective shielding of the electrostatic interaction between carrier ions and the lattice host are the origins of the observed electrochemical performance. Moreover, these intercalants serve as interlayer pillars to sustain the framework for prolonged cycles. Representative examples of such intercalated materials applied to batteries based on Li + , Na + , Mg 2+ , and Zn 2+ ions and supercapacitors are considered, along with their impact in materials research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goode, S.R.; Angel, S.M.
1997-01-01
'The long-term goal of this project is to develop a system to measure the elemental composition of unprepared samples using laser-induced breakdown spectroscopy, LIBS, with a fiber-optic probe. From images shown in this report it is evident that the temporal and spatial behavior of laser-induced plasmas IS a complex process. However, through the use of spectral imaging, optimal conditions can be determined for collecting the atomic emission signal in these plasmas. By tailoring signal collection to the regions of the plasma that contain the highest emission signal with the least amount of background interference both the detection limits and themore » precision of LIBS measurements could be improved. The optimal regions for both gated and possibly non-gated LIBS measurements have been shown to correspond to the inner regions and outer regions, respectively, in an axial plasma. By using this data fiber-optic LIBS probe designs can be optimized for collecting plasma emission at the optimal regions for improved detection limits and precision in a LIBS measurement.'« less
NASA Astrophysics Data System (ADS)
D'Ulivo, A.; Onor, M.; Pitzalis, E.; Spiniello, R.; Lampugnani, L.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E.
2006-07-01
This paper reports the first application of laser-induced breakdown spectroscopy technique (LIBS) to the determination of deuterium/hydrogen numeric ratio ( β) in the headspace gases, essentially HD + H 2, that are generated by the hydrolysis of NaBD 4-NaBH 4 mixtures (molar fraction of NaBD 4, x = 50-100%) in acidic H 2O media (0 < pH < 1). The LIBS measurement of β can be easily achieved with a coefficient of variation better than 5% (over four replicates). The value of β allowed the calculation of the molar fraction of NaBD 4, xLIBS, with a coefficient of variation better than 2.5%. The comparison of x vs. xLIBS gives results that are in good agreement, within an average deviation of 3%, for x in the range of 50-100%. The best performances are obtained for β close to unit, which makes LIBS perfectly suited for the detection of H-D exchange taking place during aqueous hydrolysis of NaBD 4 or NaBH 4.
Linguistic intergroup bias in political communication.
Anolli, Luigi; Zurloni, Valentino; Riva, Giuseppe
2006-07-01
The Linguistic Intergroup Bias (LIB) illustrates the disposition to communicate positive in-group and negative out-group behaviors more abstractly than negative in-group and positive out-group behaviors. The present research examined the function of language in reinforcing this bias in political communication. To illustrate the LIB, the Linguistic Category Model (LCM) was used, including a nouns category. Because social stereotypes are usually conveyed by nominal terms, the aim was to observe the relationship between stereotypes and language in political communication. Moreover, we were interested in analyzing the psychological processes that drive the LIB. Therefore, we verified whether the LIB is more related to language abstractness than to agent-patient causality. Several political debates and interviews, which took place before the latest Italian provincial elections, were analyzed. Results suggested that the language politicians use in communicating about political groups are conceptualized as stereotypes rather than as trait-based categories. Moreover, it seems that the LIB could not be explained only at a lexical level. Social implications of the present findings in interpersonal relations and causal attribution were discussed.
Study of Bacterial Samples Using Laser Induced Breakdown Spectroscopy
NASA Astrophysics Data System (ADS)
W, A. Farooq; M, Atif; W, Tawfik; M, S. Alsalhi; Z, A. Alahmed; M, Sarfraz; J, P. Singh
2014-12-01
Laser-induced breakdown spectroscopy (LIBS) technique has been applied to investigate two different types of bacteria, Escherichia coli (B1) and Micrococcus luteus (B2) deposited on glass slides using Spectrolaser 7000. LIBS spectra were analyzed using spectrolaser software. LIBS spectrum of glass substrate was compared with bacteria spectra. Ca, Mg, Na, K, P, S, Cl, Fe, Al, Mn, Cu, C, H and CN-band appeared in bacterial samples in air. Two carbon lines at 193.02 nm, 247.88 nm and one hydrogen line at 656.28 nm with intensity ratios of 1.9, 1.83 and 1.53 appeared in bacterial samples B1 and B2 respectively. Carbon and hydrogen are the important components of the bio-samples like bacteria and other cancer cells. Investigation on LIBS spectra of the samples in He and Ar atmospheres is also presented. Ni lines appeared only in B2 sample in Ar atmosphere. From the present experimental results we are able to show that LIBS technique has a potential in the identification and discrimination of different types of bacteria.
Investigation of Metal Oxide/Carbon Nano Material as Anode for High Capacity Lithium-ion Cells
NASA Technical Reports Server (NTRS)
Wu, James Jianjun; Hong, Haiping
2014-01-01
NASA is developing high specific energy and high specific capacity lithium-ion battery (LIB) technology for future NASA missions. Current state-of-art LIBs have issues in terms of safety and thermal stability, and are reaching limits in specific energy capability based on the electrochemical materials selected. For example, the graphite anode has a limited capability to store Li since the theoretical capacity of graphite is 372 mAh/g. To achieve higher specific capacity and energy density, and to improve safety for current LIBs, alternative advanced anode, cathode, and electrolyte materials are pursued under the NASA Advanced Space Power System Project. In this study, the nanostructed metal oxide, such as Fe2O3 on carbon nanotubes (CNT) composite as an LIB anode has been investigated.
Nirmale, Trupti C; Kale, Bharat B; Varma, Anjani J
2017-10-01
Lithium ion batteries (LIB) are the most promising energy storage systems for portable electronics and future electric or hybrid-electric vehicles. However making them safer, cost effective and environment friendly is the key challenge. In this regard, replacing petro-derived materials by introducing renewable biomass derived cellulose derivatives and lignin based materials into the battery system is a promising approach for the development of green materials for LIB. These biomaterials introduce sustainability as well as improved safety in the final disposal of LIB batteries. In this review we introduce LIB materials technology in brief and recent developments in electrodes and binders based on cellulose and their derivatives and lignin for lithium ion batteries. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Anggraeni, Karina; Nasution, Aulia; Suyanto, Hery
2016-11-01
Coffee is one of the world's commodity that is cultivated in more than 50 countries. Production of coffee in Indonesia is positioned of fourth rank in the world, after Brazil, Vietnam, and Colombia. There are two varieties of coffee grown in Indonesia, i.e. the arabica and robusta. The chemical compositions between arabica and robusta are different each other. A trained coffee tester can distinguish these differences from its taste, but it is very subjective. Laser-Induced Breakdown Spectroscopy (LIBS) is a spectroscopic technique based on the analysis of micro-plasma induced on the surface sample after being shot with a laser pulse. In this study, elemental spectra acquired using Laser-Induced Breakdown Spectroscopy (LIBS) technique were analysed to differentate between green coffee beans of arabica and robusta, which are collected from plantations in Malang, Bondowoso, Prigen, and Pasuruan. Results show that optimum conditions for acquiring spectra from green coffee beans using LIBS are at 120 mJ of laser energy and 1,0 μs of delay time. Green coffee beans of arabica and robusta contain some elements such as Ca, W, Sr, Mg, Be, Na, H, N, K, Rb, and O. Discriminant analysis method was then applied to distinguish the green beans of arabica and robusta coffee. Element identifiers of green coffee beans are Ca, W, Mg, Be, Na, and Sr. The abundant element in green coffee beans is Calcium (Ca), and depth-profile testing shows that Ca is homogeneous inside the beans.
Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; Forni, Olivier; Frydenvang, Jens; Lasue, Jeremie; Cousin, Agnes; Payre, Valerie; Boucher, Tommy; Dyar, M. Darby; McLennan, Scott M.; Morris, Richard V.; Graff, Trevor G.; Mertzman, Stanley A; Ehlmann, Bethany L.; Belgacem, Ines; Newsom, Horton E.; Clark, Ben C.; Melikechi, Noureddine; Mezzacappa, Alissa; McInroy, Rhonda E.; Martinez, Ronald; Gasda, Patrick J.; Gasnault, Olivier; Maurice, Sylvestre
2017-01-01
The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with a calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was significantly over-estimated by the previous model, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. The uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.
Applications of Laser-Induced Breakdown Spectroscopy (LIBS) in Molten Metal Processing
NASA Astrophysics Data System (ADS)
Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran
2017-10-01
In order for metals to meet the demand for critical applications in the automotive, aerospace, and defense industries, tight control over the composition and cleanliness of the metal must be achieved. The use of laser-induced breakdown spectroscopy (LIBS) for applications in metal processing has generated significant interest for its ability to perform quick analyses in situ. The fundamentals of LIBS, current techniques for deployment on molten metal, demonstrated capabilities, and possible avenues for development are reviewed and discussed.
2007-09-01
1.1.2 Advantages and Disadvantages of the LIBS Technique ..... .. 21 1.1.3 LIBS in Liquids ................................ 23 1.2 Scientific ...1.2 Scientific Application: Hydrothermal Vent Chemistry Study of in situ hydrothermal vent chemistry could benefit greatly from the develop- ment of a...4935, 1994. [50] K. L. Von Danim . Chemistry of hydrothermal vent fluids froin 90 - 100 N, East Pacific Rise: ’Time zero,’ The inmnediate posteruptive
Liu, Fei; Ye, Lanhan; Peng, Jiyu; Song, Kunlin; Shen, Tingting; Zhang, Chu; He, Yong
2018-02-27
Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R 2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where R c 2 and R p 2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice.
Ye, Lanhan; Song, Kunlin; Shen, Tingting
2018-01-01
Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where Rc2 and Rp2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice. PMID:29495445
Ojanen, Severi; Lundström, Mari; Santasalo-Aarnio, Annukka; Serna-Guerrero, Rodrigo
2018-06-01
The use of lithium-ion batteries (LIB) has grown significantly in recent years, making them a promising source of secondary raw materials due to their rich composition of valuable materials such as Co, Ni and Al. However, the high voltage and reactive components of LIBs pose safety hazards during crushing stages in recycling processes, and during storage and transportation. Electrochemical discharge by immersion of spent batteries in salt solutions has been generally accepted as a robust and straightforward discharging step to address these potential hazards. Nonetheless, there is no clear evidence in the literature to support the use of electrochemical discharge in real systems, neither are there clear indications of the real-world limitations of this practice. To that aim, this work presents a series of experiments systematically conducted to study the behavior of LIBs during electrochemical discharge in salt solutions. In the first part of this study, a LIB sample was discharged ex-situ using Pt wires connected to the battery poles and submerged into the electrolyte solution on the opposite end. The evolution of voltage in the battery was measured for solutions of NaCl, NaSO 4 , FeSO 4 , and ZnSO 4 . The results indicate that, among the electrolytes used in the present study, NaCl solution is the most effective for LIBs discharge. The discharge of LIB using sulfate salts is however only possible with the aid of stirring, as deposition of solid precipitated on the electrodes hinder the electrochemical discharge. Furthermore, it was found that the addition of particulates of Fe or Zn as sacrificial metal further enhances the discharging rate, likely due to an increased contact area with the electrolyte solution. While these findings support the idea of using electrochemical discharge as a pre-treatment of LIBs, severe corrosion of the battery poles was observed upon direct immersion of batteries into electrolyte solutions. Prevention of such corrosion requires further research efforts, perhaps focused on a new design-for-recycling approach of LIBs. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clegg, Sanuel M; Barefield, James E; Humphries, Seth D
2010-12-13
The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focusmore » of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to quantitatively determine the major elemental abundance of the remaining samples. PLS analysis suggests that the major element compositions can be determined with root mean square errors ca. 5% (absolute) for SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}(total), MgO, and CaO, and ca. 2% or less for TiO{sub 2}, Cr{sub 2}O{sub 3}, MnO, K{sub 2}O, and Na{sub 2}O. Finally, the Raman experiments have been conducted under supercritical CO{sub 2} involving single-mineral and mixed-mineral samples containing talc, olivine, pyroxenes, feldspars, anhydrite, barite, and siderite. The Raman data have shown that the individual minerals can easily be identified individually or in mixtures.« less
System Concept for Remote Measurement of Asteroid Molecular Composition
NASA Astrophysics Data System (ADS)
Hughes, G. B.; Lubin, P. M.; Zhang, Q.; Brashears, T.; Cohen, A. N.; Madajian, J.
2016-12-01
We propose a method for probing the molecular composition of cold solar system targets (asteroids, comets, planets, moons) from a distant vantage, such as from a spacecraft orbiting the object. A directed energy beam is focused on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption of the blackbody radiation occurs within the ejected plume. Bulk composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected material. Our proposed method differs from technologies such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes materials in the target; scattered ions emit characteristic radiation, and the LIBS detector performs atomic composition analysis by observing emission spectra. Standoff distance for LIBS is limited by the strength of characteristic emission, and distances greater than 10 m are problematic. Our proposed method detects atomic and molecular absorption spectra in the plume; standoff distance is limited by the size of heated spot, and the plume opacity; distances on the order of tens of kilometers are immediately feasible. Simulations have been developed for laser heating of a rocky target, with concomitant evaporation. Evaporation rates lead to determination of plume density and opacity. Absorption profiles for selected materials are estimated from plume properties. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis from tens of kilometers distance. This paper explores the feasibility a hypothetical mission that seeks to perform surface molecular composition analysis of a near-earth asteroid while the craft orbits the asteroid. Such a system has compelling potential benefit for solar system exploration.
Potential application of LIBS to NNSA next generation safeguards initiative (NGSI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barefield Ii, James E; Clegg, Samuel M; Veirs, Douglas K
2009-01-01
In a climate in which states and nations have been and perhaps currently are involved in the prol iferation of nuclear materials and technologies, advanced methodologies and improvements in current measurement techniques are needed to combat new threats and increased levels of sophistication. The Department of Energy through the National Nuclear Security Administration (NNSA) has undertaken a broad review of International Safeguards. The conclusion from that review was that a comprehensive initiative to revitalize international safeguards technology and the human resource base was urgently needed to keep pace with demands and increasingly sophisticated emerging safeguards challenges. To address these challenges,more » NNSA launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves for the next 25 years. NGSI is designed to revitalize and strengthen the U.S. safeguards technical base, recognizing that without a robust program the United States of America will not be in a position to exercise leadership or provide the necessary support to the IAEA (International Atomic Energy Agency). International safeguards as administrated by the IAEA are the primary vehicle for verifying compliance with the peaceful use and nonproliferation of nuclear materials and technologies. Laser Induced Breakdown Spectroscopy or LIBS has the potential to support the goals of NGSI as follows: by providing (1) automated analysis in complex nuclear processing or reprocessing facilities in real-time or near real-time without sample preparation or removal, (2) isotopic and important elemental ratio (Cm/Pu, Cm/U, ... etc) analysis, and (3) centralized remote control, process monitoring, and analysis of nuclear materials in nuclear facilities at multiple locations within the facility. Potential application of LIBS to international safeguards as outlined in the NGSI will be discussed.« less
Peng, Jiyu; He, Yong; Ye, Lanhan; Shen, Tingting; Liu, Fei; Kong, Wenwen; Liu, Xiaodan; Zhao, Yun
2017-07-18
Fast detection of heavy metals in plant materials is crucial for environmental remediation and ensuring food safety. However, most plant materials contain high moisture content, the influence of which cannot be simply ignored. Hence, we proposed moisture influence reducing method for fast detection of heavy metals using laser-induced breakdown spectroscopy (LIBS). First, we investigated the effect of moisture content on signal intensity, stability, and plasma parameters (temperature and electron density) and determined the main influential factors (experimental parameters F and the change of analyte concentration) on the variations of signal. For chromium content detection, the rice leaves were performed with a quick drying procedure, and two strategies were further used to reduce the effect of moisture content and shot-to-shot fluctuation. An exponential model based on the intensity of background was used to correct the actual element concentration in analyte. Also, the ratio of signal-to-background for univariable calibration and partial least squared regression (PLSR) for multivariable calibration were used to compensate the prediction deviations. The PLSR calibration model obtained the best result, with the correlation coefficient of 0.9669 and root-mean-square error of 4.75 mg/kg in the prediction set. The preliminary results indicated that the proposed method allowed for the detection of heavy metals in plant materials using LIBS, and it could be possibly used for element mapping in future work.
Kolta, M G; Holson, R; Duffy, P; Hart, R W
1989-05-01
The present study examines the changes in central monoamines and their metabolites in aged male and female rats after long-term caloric restriction. Fischer 344 rats of both sexes (n = 5-10/group) were maintained on one of two dietary regimens: ad libitum NIH 31 diet or 60% by weight of the ad lib. intake (restricted), supplemented with vitamins and minerals. Animals received these diets from the age of 14 weeks until killed at 22.25 months of age. Caudate nucleus (CN), hypothalamus (HYPO), olfactory bulb (OB) and nucleus accumbens (NA) were assayed for content of norepinephrine (NE), dopamine (DA) and its metabolites (dihydroxyphenylacetic acid, DOPAC, and homovanillic acid, HVA) and serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) using HPLC/EC. Relative to the ad lib. group, restricted rats of both sex showed significant decreases in NE content in CN, HYPO and OB. DA and 5-HT content were decreased significantly in the CN and HYPO. No significant changes were found in the levels of DA metabolites in all brain regions studied. While the 5-HIAA level was significantly reduced in the HYPO and NA of the female restricted rats, it was increased several-fold in the OB of the male restricted animals. These preliminary results suggest that long-term caloric restriction alters brain monoamine concentrations, an effect which may in turn modify the normal rate of aging.
Superhumps linked to X-ray emission. The superoutbursts of SSS J122221.7-311525 and GW Lib
NASA Astrophysics Data System (ADS)
Neustroev, V. V.; Page, K. L.; Kuulkers, E.; Osborne, J. P.; Beardmore, A. P.; Knigge, C.; Marsh, T.; Suleimanov, V. F.; Zharikov, S. V.
2018-03-01
Context. We present more than 4 years of Swift X-ray observations of the 2013 superoutburst, subsequent decline and quiescence of the WZ Sge-type dwarf nova SSS J122221.7-311525 (SSS J122222) from 6 days after discovery. Aims: Only a handful of WZ Sge-type dwarf novae have been observed in X-rays, and until recently GW Lib was the only binary of this type with complete coverage of an X-ray light curve throughout a superoutburst. We collected extensive X-ray data of a second such system to understand the extent to which the unexpected properties of GW Lib are common to the WZ Sge class. Methods: We collected 60 Swift-XRT observations of SSS J122222 between 2013 January 6 and 2013 July 1. Four follow-up observations were performed in 2014, 2015, 2016 and 2017. The total exposure time of our observations is 86.6 ks. We analysed the X-ray light curve and compared it with the behaviour of superhumps which were detected in the optical light curve. We also performed spectral analysis of the data. The results were compared with the properties of GW Lib, for which new X-ray observations were also obtained. Results: SSS J122222 was variable and around five times brighter in 0.3-10 keV X-rays during the superoutburst than in quiescence, mainly because of a significant strengthening of a high-energy component of the X-ray spectrum. The post-outburst decline of the X-ray flux lasted at least 500 d. The data show no evidence of the expected optically thick boundary layer in the system during the outburst. SSS J122222 also exhibited a sudden X-ray flux change in the middle of the superoutburst, which occurred exactly at the time of the superhump stage transition. A similar X-ray behaviour was also detected in GW Lib. Conclusions: We show that the X-ray flux exhibits changes at the times of changes in the superhump behaviour of both SSS J122222 and GW Lib. This result demonstrates a relationship between the outer disc and the white dwarf boundary layer for the first time, and suggests that models for accretion discs in high mass ratio accreting binaries are currently incomplete. The very long decline to X-ray quiescence is also in strong contrast to the expectation of low viscosity in the disc after outburst.
Krajcarová, L; Novotný, K; Kummerová, M; Dubová, J; Gloser, V; Kaiser, J
2017-10-01
The manuscript presents a procedure for optimal sample preparation and the mapping of the spatial distribution of metal ions and nanoparticles in plant roots using laser-induced breakdown spectroscopy (LIBS) in a double-pulse configuration (DP LIBS) in orthogonal reheating mode. Two Nd:YAG lasers were used; the first one was an ablation laser (UP-266 MACRO, New Wave, USA) with a wavelength of 266nm, and the second one (Brilliant, Quantel, France), with a fundamental wavelength of 1064nm, was used to reheat the microplasma. Seedlings of Vicia faba were cultivated for 7 days in CuSO 4 or AgNO 3 solutions with a concentration of 10µmoll -1 or in a solution of silver nanoparticles (AgNPs) with a concentration of 10µmoll -1 of total Ag, and in distilled water as a control. The total contents of the examined metals in the roots after sample mineralization as well as changes in the concentrations of the metals in the cultivation solutions were monitored by ICP-OES. Root samples embedded in the TissueTek medium and cut into 40µm thick cross sections using the Cryo-Cut Microtome proved to be best suited for an accurate LIBS analysis with a 50µm spatial resolution. 2D raster maps of elemental distribution were created for the emission lines of Cu(I) at 324.754nm and Ag(I) at 328.068nm. The limits of detection of DP LIBS for the root cross sections were estimated to be 4pg for Cu, 18pg for Ag, and 3pg for AgNPs. The results of Ag spatial distribution mapping indicated that unlike Ag + ions, AgNPs do not penetrate into the inner tissues of Vicia faba roots but stay in their outermost layers. The content of Ag in roots cultivated in the AgNP solution was one order of magnitude lower compared to roots cultivated in the metal ion solutions. The significantly smaller concentration of Ag in root tissues cultivated in the AgNP solution also supports the conclusion that the absorption and uptake of AgNPs by roots of Vicia faba is very slow. LIBS mapping of root sections represents a fast analytical method with sufficient precision and spatial resolution that can provide very important information for researchers, particularly in the fields of plant science and ecotoxicology. Copyright © 2017 Elsevier B.V. All rights reserved.
A Review: Enhanced Anodes of Li/Na-Ion Batteries Based on Yolk-Shell Structured Nanomaterials
NASA Astrophysics Data System (ADS)
Wu, Cuo; Tong, Xin; Ai, Yuanfei; Liu, De-Sheng; Yu, Peng; Wu, Jiang; Wang, Zhiming M.
2018-09-01
Lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) have received much attention in energy storage system. In particular, among the great efforts on enhancing the performance of LIBs and SIBs, yolk-shell (YS) structured materials have emerged as a promising strategy toward improving lithium and sodium storage. YS structures possess unique interior void space, large surface area and short diffusion distance, which can solve the problems of volume expansion and aggregation of anode materials, thus enhancing the performance of LIBs and SIBs. In this review, we present a brief overview of recent advances in the novel YS structures of spheres, polyhedrons and rods with controllable morphology and compositions. Enhanced electrochemical performance of LIBs and SIBs based on these novel YS structured anode materials was discussed in detail. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Wang, Meng; Noelle, Daniel J.; Shi, Yang; Le, Anh V.; Qiao, Yu
2018-01-01
Formation of internal short circuit (ISC) may result in catastrophic thermal runaway of lithium-ion battery (LIB). Among LIB cell components, direct contact between cathode and anode current collectors is most critical to the ISC behavior, yet is still relatively uninvestigated. In the current study, we analyze the effect of heterogeneity of current collector on the temperature increase of LIB cells subjected to mechanical abuse. The cathode current collector is modified by surface notches, so that it becomes effectively brittle and the ISC site can be isolated. Results from impact tests on LIB cells with modified current collectors suggest that their temperature increase can be negligible. The critical parameters include the failure strain and the failure work of modified current collector, both of which are related to the notch depth.
LibKiSAO: a Java library for Querying KiSAO.
Zhukova, Anna; Adams, Richard; Laibe, Camille; Le Novère, Nicolas
2012-09-24
The Kinetic Simulation Algorithm Ontology (KiSAO) supplies information about existing algorithms available for the simulation of Systems Biology models, their characteristics, parameters and inter-relationships. KiSAO enables the unambiguous identification of algorithms from simulation descriptions. Information about analogous methods having similar characteristics and about algorithm parameters incorporated into KiSAO is desirable for simulation tools. To retrieve this information programmatically an application programming interface (API) for KiSAO is needed. We developed libKiSAO, a Java library to enable querying of the KiSA Ontology. It implements methods to retrieve information about simulation algorithms stored in KiSAO, their characteristics and parameters, and methods to query the algorithm hierarchy and search for similar algorithms providing comparable results for the same simulation set-up. Using libKiSAO, simulation tools can make logical inferences based on this knowledge and choose the most appropriate algorithm to perform a simulation. LibKiSAO also enables simulation tools to handle a wider range of simulation descriptions by determining which of the available methods are similar and can be used instead of the one indicated in the simulation description if that one is not implemented. LibKiSAO enables Java applications to easily access information about simulation algorithms, their characteristics and parameters stored in the OWL-encoded Kinetic Simulation Algorithm Ontology. LibKiSAO can be used by simulation description editors and simulation tools to improve reproducibility of computational simulation tasks and facilitate model re-use.
Wheel-running reinforcement in free-feeding and food-deprived rats.
Belke, Terry W; Pierce, W David
2016-03-01
Rats experiencing sessions of 30min free access to wheel running were assigned to ad-lib and food-deprived groups, and given additional sessions of free wheel activity. Subsequently, both ad-lib and deprived rats lever pressed for 60s of wheel running on fixed ratio (FR) 1, variable ratio (VR) 3, VR 5, and VR 10 schedules, and on a response-initiated variable interval (VI) 30s schedule. Finally, the ad-lib rats were switched to food deprivation and the food-deprived rats were switched to free food, as rats continued responding on the response-initiated VI 30-s schedule. Wheel running functioned as reinforcement for both ad-lib and food-deprived rats. Food-deprived rats, however, ran faster and had higher overall lever-pressing rates than free-feeding rats. On the VR schedules, wheel-running rates positively correlated with local and overall lever pressing rates for deprived, but not ad-lib rats. On the response-initiated VI 30s schedule, wheel-running rates and lever-pressing rates changed for ad-lib rats switched to food deprivation, but not for food-deprived rats switched to free-feeding. The overall pattern of results suggested different sources of control for wheel running: intrinsic motivation, contingencies of automatic reinforcement, and food-restricted wheel running. An implication is that generalizations about operant responding for wheel running in food-deprived rats may not extend to wheel running and operant responding of free-feeding animals. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Blacksberg, J.; Rossman, G. R.; Maruyama, Y.; Charbon, E.
2011-12-01
In situ exploration of planetary surfaces has to date required multiple techniques that, when used together, yield important information about their formation histories and evolution. We present a time-resolved laser spectroscopic technique that could potentially collect complementary sets of data providing information on mineral structure, composition, and hydration state. Using a picosecond-scale pulsed laser and a fast time-resolved detector we can simultaneously collect spectra from Raman, Laser Induced Breakdown Spectroscopy (LIBS), and fluorescence emissions that are separated in time due to the unique decay times of each process. The use of a laser with high rep rate (40 KHz) and low pulse energy (1 μJ/pulse) allows us to rapidly collect high signal to noise Raman spectra while minimizing sample damage. Increasing the pulse energy by about an order of magnitude creates a microscopic plasma near the surface and enables the collection of LIBS spectra at an unusually high rep rate and low pulse energy. Simultaneously, broader fluorescence peaks can be detected with lifetimes varying from nanosecond to microsecond. We will present Raman, LIBS, and fluorescence spectra obtained on natural mineral samples such as sulfates, clays, pyroxenes and carbonates that are of interest for Mars mineralogy. We demonstrate this technique using a photocathode-based streak camera detector as well as a newly-developed solid state Single Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. We will discuss the impact of system design and detector choice on science return of a potential planetary surface mission, with a specific focus on size, weight, power, and complexity. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).
Goueguel, Christian; Singh, Jagdish P; McIntyre, Dustin L; Jain, Jinesh; Karamalidis, Athanasios K
2014-01-01
Leakage of injected carbon dioxide (CO2) or resident fluids, such as brine, is a major concern associated with the injection of large volumes of CO2 into deep saline formations. Migration of brine could contaminate drinking water resources by increasing their salinity or endanger vegetation and animal life as well as human health. The main objective of this study was to investigate the effect of sodium chloride (NaCl) concentration on the detection of calcium and potassium in brine samples using laser-induced breakdown spectroscopy (LIBS). The ultimate goals were to determine the suitability of the LIBS technique for in situ measurements of metal ion concentrations in NaCl-rich solution and to develop a chemical sensor that can provide the early detection of brine intrusion into formations used for domestic or agricultural water production. Several brine samples of NaCl-CaCl2 and NaCl-KCl were prepared at NaCl concentrations between 0.0 and 3.0 M. The effect of NaCl concentration on the signal-to-background ratio (SBR) and signal-to-noise ratio (SNR) for calcium (422.67 nm) and potassium (769.49 nm) emission lines was evaluated. Results show that, for a delay time of 300 ns and a gate width of 3 μs, the presence of and changes in NaCl concentration significantly affect the SBR and SNR for both emission lines. An increase in NaCl concentration from 0.0 to 3.0 M produced an increase in the SNR, whereas the SBR dropped continuously. The detection limits obtained for both elements were in the milligrams per liter range, suggesting that a NaCl-rich solution does not severely limit the ability of LIBS to detect trace amount of metal ions.