Sample records for premature senescence sips

  1. Stress-induced premature senescence (SIPS)--influence of SIPS on radiotherapy.

    PubMed

    Suzuki, Masatoshi; Boothman, David A

    2008-03-01

    Replicative senescence is a fundamental feature in normal human diploid cells and results from dysfunctional telomeres at the Hayflick cell division limit. Ionizing radiation (IR) prematurely induces the same phenotypes as replicative senescence prior to the Hayflick limit. This process is known as stress-induced premature senescence (SIPS). Since the cell cycle is irreversibly arrested in SIPS-induced cells, even if they are stimulated by various growth factors, it is thought that SIPS is a form of cell death, irreversibly eliminating replicating cells. IR-induced-focus formation of DNA repair proteins, a marker of DNA damage, is detected in SIPS as well as replicative senescent cells. Furthermore, both processes persistently induce cell cycle checkpoint mechanisms, indicating DNA damage created by ionizing radiation induces SIPS in normal cells, possibly by the same mechanisms as those occurring in replicative senescence. Interestingly, IR induces SIPS not only in normal cells, but also in tumor cells. Due to the expression of telomerase in tumor cells, telomere-dependent replicative senescence does not occur. However, SIPS is induced under certain conditions after IR exposure. Thus, cell death triggered by IR can be attributed to apoptosis or SIPS in tumor cells. However, metabolic function remains intact in SIPS-induced cancer cells, and recent studies show that senescence eliminate cells undergoing SIPS secrete various kinds of factors outside the cell, changing the microenvironment. Evidence using co-culture systems containing normal senescent stromal cells and epithelial tumor cells show that factors secreted from senescent stroma cells promote the growth of tumor epithelial cells both in vitro and in vivo. Thus, regulation of factors secreted from SIPS-induced stromal cells, as well as tumor cells, may affect radiotherapy.

  2. Stress-induced premature senescence of endothelial cells.

    PubMed

    Chen, Jun; Patschan, Susann; Goligorsky, Michael S

    2008-01-01

    Stress-induced premature senescence (SIPS) is characterized by cell cycle arrest and curtailed Hayflick limit. Studies support a central role for Rb protein in controlling this process via signaling from the p53 and p16 pathways. Cellular senescence is considered an essential contributor to the aging process and has been shown to be an important tumor suppression mechanism. In addition, emerging evidence suggests that SIPS may be involved in the pathogenesis of chronic human diseases. Here, focusing on endothelial cells, we discuss recent advances in our understanding of SIPS and the pathways that trigger it, evaluate their correlation with the apoptotic response and examine their links to the development of chronic diseases, with the emphasis on vasculopathy. Emerging novel therapeutic interventions based on recent experimental findings are also reviewed.

  3. From the Hayflick mosaic to the mosaics of ageing. Role of stress-induced premature senescence in human ageing.

    PubMed

    Toussaint, Olivier; Remacle, Jose; Dierick, Jean-François; Pascal, Thierry; Frippiat, Christophe; Zdanov, Stéphanie; Magalhaes, Joao Pedro; Royer, Véronique; Chainiaux, Florence

    2002-11-01

    The Hayflick limit-senescence of proliferative cell types-is a fundamental feature of proliferative cells in vitro. Various human proliferative cell types exposed in vitro to many types of subcytotoxic stresses undergo stress-induced premature senescence (SIPS) (also called stress-induced premature senescence-like phenotype, according to the definition of senescence). The known mechanisms of appearance the main features of SIPS are reviewed: senescent-like morphology, growth arrest, senescence-related changes in gene expression, telomere shortening. Long before telomere-shortening induces senescence, other factors such as culture conditions or lack of 'feeder cells' can trigger either SIPS or prolonged reversible G(0) phase of the cell cycle. In vivo, 'proliferative' cell types of aged individuals are likely to compose a mosaic made of cells irreversibly growth arrested or not. The higher level of stress to which these cells have been exposed throughout their life span, the higher proportion of the cells of this mosaic will be in SIPS rather than in telomere-shortening dependent senescence. All cell types undergoing SIPS in vivo, most notably the ones in stressful conditions, are likely to participate in the tissular changes observed along ageing. For instance, human diploid fibroblasts (HDFs) exposed in vivo and in vitro to pro-inflammatory cytokines display biomarkers of senescence and might participate in the degradation of the extracellular matrix observed in ageing.

  4. Proteomic and metabolomic analysis of H2O2-induced premature senescent human mesenchymal stem cells.

    PubMed

    Kim, Ji-Soo; Kim, Eui-Jin; Kim, Hyun-Jung; Yang, Ji-Young; Hwang, Geum-Sook; Kim, Chan-Wha

    2011-06-01

    Stress induced premature senescence (SIPS) occurs after exposure to many different sublethal stresses including H(2)O(2), hyperoxia, or tert-butylhydroperoxide. Human mesenchymal stem cells (hMSCs) exhibit limited proliferative potential in vitro, the so-called Hayflick limit. According to the free-radical theory, reactive oxygen species (ROS) might be the candidates responsible for senescence and age-related diseases. H(2)O(2) may be responsible for the production of high levels of ROS, in which the redox balance is disturbed and the cells shift into a state of oxidative stress, which subsequently leads to premature senescence with shortening telomeres. H(2)O(2) has been the most commonly used inducer of SIPS, which shares features of replicative senescence (RS) including a similar morphology, senescence-associated β-galactosidase activity, cell cycle regulation, etc. Therefore, in this study, the senescence of hMSC during SIPS was confirmed using a range of different analytical methods. In addition, we determined five differentially expressed spots in the 2-DE map, which were identified as Annexin A2 (ANXA2), myosin light chain 2 (MLC2), peroxisomal enoyl-CoA hydratase 1 (ECH1), prosomal protein P30-33K (PSMA1) and mutant β-actin by ESI-Q-TOF MS/MS. Also, proton ((1)H) nuclear magnetic resonance spectroscopy (NMR) was used to elucidate the difference between metabolites in the control and hMSCs treated with H(2)O(2). Among these metabolites, choline and leucine were identified by (1)H-NMR as up-regulated metabolites and glycine and proline were identified as down-regulated metabolites. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Helicobacter pylori-induced premature senescence of extragastric cells may contribute to chronic skin diseases.

    PubMed

    Lewinska, Anna; Wnuk, Maciej

    2017-04-01

    Helicobacter pylori, one of the most frequently observed bacterium in the human intestinal flora, has been widely studied since Marshall and Warren documented a link between the presence of H. pylori in the gastrointestinal tract and gastritis and gastric ulcers. Interestingly, H. pylori has also been found in several other epithelial tissues, including the eyes, ears, nose and skin that may have direct or indirect effects on host physiology and may contribute to extragastric diseases, e.g. chronic skin diseases. More recently, it has been shown that H. pylori cytotoxin CagA expression induces cellular senescence of human gastric nonpolarized epithelial cells that may lead to gastrointestinal disorders and systemic inflammation. Here, we hypothesize that also chronic skin diseases may be promoted by stress-induced premature senescence (SIPS) of skin cells, namely fibroblasts and keratinocytes, stimulated with H. pylori cytotoxins. Future studies involving cell culture models and clinical specimens are needed to verify the involvement of H. pylori in SIPS-based chronic skin diseases.

  6. Anti-photoaging potential of Botulinum Toxin Type A in UVB-induced premature senescence of human dermal fibroblasts in vitro through decreasing senescence-related proteins.

    PubMed

    Permatasari, Felicia; Hu, Yan-yan; Zhang, Jia-an; Zhou, Bing-rong; Luo, Dan

    2014-04-05

    This study was aimed to evaluate the anti-photoaging effects of Botulinum Toxin Type A (BoNTA) in Ultraviolet B-induced premature senescence (UVB-SIPS) of human dermal fibroblasts (HDFs) in vitro and the underlying mechanism. We established a stress-induced premature senescence model by repeated subcytotoxic exposures to Ultraviolet B (UVB) irradiation. The aging condition was determined by cytochemical staining of senescence-associated β-galactosidase (SA-β-gal). The tumor suppressor and senescence-associated protein levels of p16(INK-4a), p21(WAF-1), and p53 were estimated by Western blotting. The G1 phase cell growth arrest was analyzed by flow cytometry. The mRNA expressions of p16, p21, p53, COL1a1, COL3a1, MMP1, and MMP3 were determined by real-time PCR. The level of Col-1, Col-3, MMP-1, and MMP-3 were determined by ELISA. Compared with the UVB-irradiated group, we found that the irradiated fibroblasts additionally treated with BoNTA demonstrated a decrease in the expression of SA-β-gal, a decrease in the level of tumor suppressor and senescence-associated proteins, a decrease in the G1 phase cell proportion, an increase in the production of Col-1 and Col-3, and a decrease in the secretion of MMP-1 and MMP-3, in a dose-dependent manner. Taken together, these results indicate that BoNTA significantly antagonizes premature senescence induced by UVB in HDFs in vitro, therefore potential of intradermal BoNTA injection as anti-photoaging treatment still remains a question. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Inactivation of AKT Induces Cellular Senescence in Uterine Leiomyoma

    PubMed Central

    Xu, Xiaofei; Lu, Zhenxiao; Qiang, Wenan; Vidimar, Vania; Kong, Beihua

    2014-01-01

    Uterine leiomyomas (fibroids) are a major public health problem. Current medical treatments with GnRH analogs do not provide long-term benefit. Thus, permanent shrinkage or inhibition of fibroid growth via medical means remains a challenge. The AKT pathway is a major growth and survival pathway for fibroids. We propose that AKT inhibition results in a transient regulation of specific mechanisms that ultimately drive cells into cellular senescence or cell death. In this study, we investigated specific mechanisms of AKT inhibition that resulted in senescence. We observed that administration of MK-2206, an allosteric AKT inhibitor, increased levels of reactive oxygen species, up-regulated the microRNA miR-182 and several senescence-associated genes (including p16, p53, p21, and β-galactosidase), and drove leiomyoma cells into stress-induced premature senescence (SIPS). Moreover, induction of SIPS was mediated by HMGA2, which colocalized to senescence-associated heterochromatin foci. This study provides a conceivable molecular mechanism of SIPS by AKT inhibition in fibroids. PMID:24476133

  8. ALA-PDT elicits oxidative damage and apoptosis in UVB-induced premature senescence of human skin fibroblasts.

    PubMed

    Zhou, Bing-Rong; Zhang, Li-Chao; Permatasari, Felicia; Liu, Juan; Xu, Yang; Luo, Dan

    2016-06-01

    5-Aminolevulinic acid photodynamic therapy (ALA-PDT) has been used for the treatment of skin photoaging. It can significantly improve the appearance of fine lines, dotted pigmentation, and roughness of photoaged skin. However, the mechanisms by which ALA-PDT yields rejuvenating effects on photoaged skin have not been well elucidated. Thus, in this study we explored the effects of ALA-PDT in photoaged fibroblasts. We established a stress-induced premature senescence (SIPS) model by repeated exposures of human dermal fibroblasts (HDFs) to ultraviolet B (UVB) irradiation. Cells were irradiated by red light laser at 635nm wavelength (50mW/cm(2)). Intracellular protoporphyrin IX (PpIX) was detected by confocal microscopy. Intracellular reactive oxygen species (ROS) level and mitochondrial membrane potential (MMP) change were detected by fluorescence microscopy and flow cytometry. Morphological changes were observed by optical microscopy. Proliferative activity was measured by a cell counting kit-8 (CCK-8). Cell apoptosis was detected by fluorescence microscopy using Hoechst staining and flow cytometry using annexin V/propidium Iodide double staining. Intracellular PpIX fluorescence in UVB-induced premature senescent HDFs (UVB-SIPS-HDFs) reached the highest intensity after incubation with 1.00mmol/L ALA for 6h (P<0.05). Compared with control group, intracellular ROS level, MMP, and apoptotic rate were increased (P<0.05) and proliferative activity was decreased (P<0.05) in UVB-SIPS-HDFs treated with ALA-PDT, which were positively correlated to ALA incubation time and red light laser dose. Our study demonstrated that ALA-PDT elicits oxidative damage and apoptosis in photoaged fibroblasts in vitro, which may be the basis for the rejuvenating effects on photoaged skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The effect of 648 nm diode laser irradiation on second messengers in senescent human keratinocytes

    NASA Astrophysics Data System (ADS)

    Hawkins Evans, D.; Abrahamse, H.

    2009-02-01

    Background/purpose: Stress induced premature senescence (SIPS) is defined as the long-term effect of subcytotoxic stress on proliferative cell types. Cells in SIPS display differences at the level of protein expression which affect energy metabolism, defense systems, redox potential, cell morphology and transduction pathways. This study aimed to determine the effect of laser irradiation on second messengers in senescent cells and to establish if that effect can be directly linked to changes in cellular function such as cell viability or proliferation. Materials and Methods: Human keratinocyte cell cultures were modified to induce premature senescence using repeated sub-lethal stresses of 200 uM H2O2 or 5% OH every day for four days with two days recovery. SIPS was confirmed by senescence-associated β-galactosidase staining. Control conditions included normal, repeated stress of 500 uM H2O2 to induce apoptosis and 200 uM PBN as an anti-oxidant or free radical scavenger. Cells were irradiated with 1.5 J/cm2 on day 1 and 4 using a 648 nm diode laser (3.3 mW/cm2) and cellular responses were measured 1 h post irradiation. The affect on second messengers was assessed by measuring cAMP, cGMP, nitric oxide and intracellular calcium (Ca2+) while functional changes were assessed using cell morphology, ATP cell viability, LDH membrane integrity and WST-1 cell proliferation. Results: Results indicate an increase in NO and a decrease in cGMP and Ca2+ in 200 uM H2O2 irradiated cells while PBN irradiated cells showed a decrease in cAMP and an increase in ATP viability and cell proliferation. Conclusion: Laser irradiation influences cell signaling which ultimately changes the biological function of senescent cells. If laser therapy can stimulate the biological function of senescent cells it may be beneficial to conditions such as immune senescence, skin ageing, muscle atrophy, premature ageing of arteries in patients with advanced heart disease, neurodegenerative disorders and

  10. Premature aging/senescence in cancer cells facing therapy: good or bad?

    PubMed

    Gonzalez, Llilians Calvo; Ghadaouia, Sabrina; Martinez, Aurélie; Rodier, Francis

    2016-02-01

    Normal and cancer cells facing their demise following exposure to radio-chemotherapy can actively participate in choosing their subsequent fate. These programmed cell fate decisions include true cell death (apoptosis-necroptosis) and therapy-induced cellular senescence (TIS), a permanent "proliferative arrest" commonly portrayed as premature cellular aging. Despite a permanent loss of proliferative potential, senescent cells remain viable and are highly bioactive at the microenvironment level, resulting in a prolonged impact on tissue architecture and functions. Cellular senescence is primarily documented as a tumor suppression mechanism that prevents cellular transformation. In the context of normal tissues, cellular senescence also plays important roles in tissue repair, but contributes to age-associated tissue dysfunction when senescent cells accumulate. Theoretically, in multi-step cancer progression models, cancer cells have already bypassed cellular senescence during their immortalization step (see hallmarks of cancer). It is then perhaps surprising to find that cancer cells often retain the ability to undergo TIS, or premature aging. This occurs because cellular senescence results from multiple signalling pathways, some retained in cancer cells, aiming to prevent cell cycle progression in damaged cells. Since senescent cancer cells persist after therapy and secrete an array of cytokines and growth factors that can modulate the tumor microenvironment, these cells may have beneficial and detrimental effects regarding immune modulation and survival of remaining proliferation-competent cancer cells. Similarly, while normal cells undergoing senescence are believed to remain indefinitely growth arrested, whether this is true for senescent cancer cells remains unclear, raising the possibility that these cells may represent a reservoir for cancer recurrence after treatment. This review discusses our current knowledge on cancer cell senescence and highlight questions

  11. Hyper telomere recombination accelerates replicative senescence and may promote premature aging

    PubMed Central

    Hagelstrom, R. Tanner; Blagoev, Krastan B.; Niedernhofer, Laura J.; Goodwin, Edwin H.; Bailey, Susan M.

    2010-01-01

    Werner syndrome and Bloom syndrome result from defects in the RecQ helicases Werner (WRN) and Bloom (BLM), respectively, and display premature aging phenotypes. Similarly, XFE progeroid syndrome results from defects in the ERCC1-XPF DNA repair endonuclease. To gain insight into the origin of cellular senescence and human aging, we analyzed the dependence of sister chromatid exchange (SCE) frequencies on location [i.e., genomic (G-SCE) vs. telomeric (T-SCE) DNA] in primary human fibroblasts deficient in WRN, BLM, or ERCC1-XPF. Consistent with our other studies, we found evidence of elevated T-SCE in telomerase-negative but not telomerase-positive backgrounds. In telomerase-negative WRN-deficient cells, T-SCE—but not G-SCE—frequencies were significantly increased compared with controls. In contrast, SCE frequencies were significantly elevated in BLM-deficient cells irrespective of genome location. In ERCC1-XPF-deficient cells, neither T- nor G-SCE frequencies differed from controls. A theoretical model was developed that allowed an in silico investigation into the cellular consequences of increased T-SCE frequency. The model predicts that in cells with increased T-SCE, the onset of replicative senescence is dramatically accelerated even though the average rate of telomere loss has not changed. Premature cellular senescence may act as a powerful tumor-suppressor mechanism in telomerase-deficient cells with mutations that cause T-SCE levels to rise. Furthermore, T-SCE-driven premature cellular senescence may be a factor contributing to accelerated aging in Werner and Bloom syndromes, but not XFE progeroid syndrome. PMID:20798040

  12. Adiponectin Suppresses UVB-Induced Premature Senescence and hBD2 Overexpression in Human Keratinocytes

    PubMed Central

    Kim, MinJeong; Park, Kui Young; Lee, Mi-Kyung; Jin, Taewon; Seo, Seong Jun

    2016-01-01

    Recent studies have revealed that adiponectin can suppress cellular inflammatory signaling pathways. This study aimed to elucidate the effect of adiponectin on the unregulated production of hBD2 in UVB-induced premature senescent keratinocytes. We constructed an in vitro model of premature senescent keratinocytes through repeated exposure to low energy UVB. After repeated low energy UVB exposure, there was significant generation of reactive oxygen species (ROS) and induction of senescence-associated markers, including senescence associated beta-galactosidase activity and expression of p16INK4a and histone H2AX. In addition, the present clinical study showed higher expression of hBD2 in sun-exposed skin of elderly group, and the overexpression of hBD2 was observed by c-Fos activation in vitro. Adiponectin has the ability to scavenge ROS and consequently inhibit MAPKs and SA-markers in UVB-exposed keratinocytes. An inhibitor study demonstrated that adiponectin downregulated hBD2 mRNA expression through suppression of the AP-1 transcription factor components c-Fos via inactivation of p38 MAPK. Collectively, the dysregulated production of hBD2 by the induction of oxidative stress was attenuated by adiponectin through the suppression of p38 and JNK/SAPK MAPK signaling in UVB-mediated premature senescent inducible conditions. These results suggest the feasibility of adiponectin as an anti-photoaging and anti-inflammatory agent in the skin. PMID:27526049

  13. Ochratoxin A induced premature senescence in human renal proximal tubular cells.

    PubMed

    Yang, Xuan; Liu, Sheng; Huang, Chuchu; Wang, Haomiao; Luo, Yunbo; Xu, Wentao; Huang, Kunlun

    2017-05-01

    Ochratoxin A (OTA) has many nephrotoxic effects and is a promising compound for the study of nephrotoxicity. Human renal proximal tubular cells (HKC) are an important model for the study of renal reabsorption, renal physiology and pathology. Since the induction of OTA in renal senescence is largely unknown, whether OTA can induce renal senescence, especially at a sublethal dose, and the mechanism of OTA toxicity remain unclear. In our study, a sublethal dose of OTA led to an enhanced senescent phenotype, β-galactosidase staining and senescence associated secretory phenotype (SASP). Cell cycle arrest and cell shape alternations also confirmed senescence. In addition, telomere analysis by RT-qPCR allowed us to classify OTA-induced senescence as a premature senescence. Western blot assays showed that the p53-p21 and the p16-pRB pathways and the ezrin-associated cell spreading changes were activated during the OTA-induced senescence of HKC. In conclusion, our results demonstrate that OTA promotes the senescence of HKC through the p53-p21 and p16-pRB pathways. The understanding of the mechanisms of OTA-induced senescence is critical in determining the role of OTA in cytotoxicity and its potential carcinogenicity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Partial uncoupling of oxidative phosphorylation induces premature senescence in human fibroblasts and yeast mother cells.

    PubMed

    Stöckl, Petra; Zankl, Christina; Hütter, Eveline; Unterluggauer, Hermann; Laun, Peter; Heeren, Gino; Bogengruber, Edith; Herndler-Brandstetter, Dietmar; Breitenbach, Michael; Jansen-Dürr, Pidder

    2007-09-15

    The mitochondrial theory of aging predicts that functional alterations in mitochondria leading to reactive oxygen species (ROS) production contribute to the aging process in most if not all species. Using cellular senescence as a model for human aging, we have recently reported partial uncoupling of the respiratory chain in senescent human fibroblasts. In the present communication, we address a potential cause-effect relationship between impaired mitochondrial coupling and premature senescence. Chronic exposure of human fibroblasts to the chemical uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) led to a temporary, reversible uncoupling of oxidative phosphorylation. FCCP inhibited cell proliferation in a dose-dependent manner, and a significant proportion of the cells entered premature senescence within 12 days. Unexpectedly, chronic exposure of cells to FCCP led to a significant increase in ROS production, and the inhibitory effect of FCCP on cell proliferation was eliminated by the antioxidant N-acetyl-cysteine. However, antioxidant treatment did not prevent premature senescence, suggesting that a reduction in the level of oxidative phosphorylation contributes to phenotypical changes characteristic of senescent human fibroblasts. To assess whether this mechanism might be conserved in evolution, the influence of mitochondrial uncoupling on replicative life span of yeast cells was also addressed. Similar to our findings in human fibroblasts, partial uncoupling of oxidative phsophorylation in yeast cells led to a substantial decrease in the mother-cell-specific life span and a concomitant incrase in ROS, indicating that life span shortening by mild mitochondrial uncoupling may represent a "public" mechanism of aging.

  15. Transcriptional up-regulation of antioxidant genes by PPAR{delta} inhibits angiotensin II-induced premature senescence in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin

    2011-03-25

    Research highlights: {yields} Activation of PPAR{delta} by GW501516 significantly inhibited Ang II-induced premature senescence in hVSMCs. {yields} Agonist-activated PPAR{delta} suppressed generation of Ang II-triggered ROS with a concomitant reduction in DNA damage. {yields} GW501516 up-regulated expression of antioxidant genes, such as GPx1, Trx1, Mn-SOD and HO-1. {yields} Knock-down of these antioxidant genes abolished the effects of GW501516 on ROS production and premature senescence. -- Abstract: This study evaluated peroxisome proliferator-activated receptor (PPAR) {delta} as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPAR{delta} by GW501516, a specific agonist ofmore » PPAR{delta}, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPAR{delta} suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPAR{delta}-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II.« less

  16. Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro.

    PubMed

    Menon, Ramkumar; Boldogh, Istvan; Hawkins, Hal K; Woodson, Michael; Polettini, Jossimara; Syed, Tariq Ali; Fortunato, Stephen J; Saade, George R; Papaconstantinou, John; Taylor, Robert N

    2014-06-01

    Preterm prelabor rupture of the membranes (pPROM) may lead to preterm births (PTBs). We investigated premature senescence of fetal membranes in women with pPROM and spontaneous PTB with intact membranes (<34 weeks) and the inducibility fetal membrane senescence phenotype by oxidative stress in vitro. IHC was performed for p53, p21, and phospho (p)-p38 mitogen-activated protein kinase (MAPK) as markers of senescence phenotype in pPROM, PTBs, and term births. Term fetal membranes were exposed to cigarette smoke extract to induce oxidative stress. Western blots documented p-p53 and p-p38 MAPK. Transmission electron microscopy assessed cellular morphologic features in clinical and cigarette smoke extract-treated membranes. A total of 80% of pPROM cells and >60% of term cells were positive for all three senescence phenotype markers, and concentrations were higher than in PTBs (P < 0.05). p53 staining was comparable in membranes from PTB and term birth pregnancies, whereas only <30% and <45% of cells were positive for p21 and p38 MAPK, respectively. In vitro cigarette smoke extract exposure increased p-p38 MAPK without any detectable change in p-p53 MAPK. Enlargement of organelles consistent with senescence phenotype was evident in pPROM and term membranes in vivo and after cigarette smoke extract treatment in vitro but was less apparent in PTBs. Histologic and biochemical resemblance of pPROM and term membranes suggests premature senescence of the membranes is a mechanistic feature in pPROM, and this can be phenocopied in an in vitro model. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Transcriptional up-regulation of antioxidant genes by PPARδ inhibits angiotensin II-induced premature senescence in vascular smooth muscle cells.

    PubMed

    Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin; Hwang, Jung Seok; Jung, Si Young; Kim, Min Young; Jin, Hanna; Kang, Eun Sil; Woo, Im Sun; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl; Han, Chang Woo; Seo, Han Geuk

    2011-03-25

    This study evaluated peroxisome proliferator-activated receptor (PPAR) δ as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPARδ by GW501516, a specific agonist of PPARδ, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPARδ suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPARδ-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Azelaic acid reduced senescence-like phenotype in photo-irradiated human dermal fibroblasts: possible implication of PPARγ.

    PubMed

    Briganti, Stefania; Flori, Enrica; Mastrofrancesco, Arianna; Kovacs, Daniela; Camera, Emanuela; Ludovici, Matteo; Cardinali, Giorgia; Picardo, Mauro

    2013-01-01

    Azelaic acid (AzA) has been used for the treatment for inflammatory skin diseases, such as acne and rosacea. Interestingly, an improvement in skin texture has been observed after long-time treatment with AzA. We previously unrevealed that anti-inflammatory activity of AzA involves a specific activation of PPARγ, a nuclear receptor that plays a relevant role in inflammation and even in ageing processes. As rosacea has been considered as a photo-aggravated disease, we investigated the ability of AzA to counteract stress-induced premature cell senescence (SIPS). We employed a SIPS model based on single exposure of human dermal fibroblasts (HDFs) to UVA and 8-methoxypsoralen (PUVA), previously reported to activate a senescence-like phenotype, including long-term growth arrest, flattened morphology and increased synthesis of matrix metalloproteinases (MMPs) and senescence-associated β-galactosidase (SA-β-gal). We found that PUVA-treated HDFs grown in the presence of AzA maintained their morphology and reduced MMP-1 release and SA-β-galactosidase-positive cells. Moreover, AzA induced a reduction in ROS generation, an up-modulation of antioxidant enzymes and a decrease in cell membrane lipid damages in PUVA-treated HDFs. Further evidences of AzA anti-senescence effect were repression of p53 and p21, increase in type I pro-collagen and abrogation of the enhanced expression of growth factors, such as HGF and SCF. Interestingly, PUVA-SIPS showed a decreased activation of PPARγ and AzA counteracted this effect, suggesting that AzA effect involves PPARγ modulation. All together these data showed that AzA interferes with PUVA-induced senescence-like phenotype and its ability to activate PPAR-γ provides relevant insights into the anti-senescence mechanism. © 2013 John Wiley & Sons A/S.

  19. HEREDITARY PREMATURE SENESCENCE OF THE RABBIT

    PubMed Central

    Pearce, Louise; Brown, Wade H.

    1960-01-01

    The occurrence of hereditary premature senescence in a family of pure bred Belgian hares belonging to a rabbit-breeding colony organized for the investigation of constitutional problems, has been described. Representatives of 20 generations of the complex have been studied. The condition was a degeneration of variable degrees of severity and two principal forms were recognized, the acute and the chronic, the chronic being the more frequent. The chronic form has now been described in terms of the principal local or external manifestations; that is, degeneration of the coat and skin, lesions of the eyes and feet, and reproductive abnormalities, and of the general deterioration which in severe cases pursued a progressive course characterized by muscle wasting, fat reduction, emaciation, weakness, and death. The acute form will be described in the next paper (2). PMID:13733754

  20. Placental telomere shortening in stillbirth: a sign of premature senescence?

    PubMed

    Ferrari, Francesca; Facchinetti, Fabio; Saade, George; Menon, Ramkumar

    2016-01-01

    The objective of this study is to investigate placental telomere shortening in unexplained stillbirths (SBs) as an indication of premature senescence. Placentas were collected from 42 unexplained SB (>22 weeks), 43 term and 15 preterm live births, at the Policlinico Hospital of Modena (Italy). DNA extracted from placentae was studied for telomere length by real time PCR. Standard curves were generated for telomere lengths from single copy gene amplifications using a reference DNA. The telomere length for each sample was derived based on the ratio of telomere length between the sample and single copy gene standard (T/S ratio). The mean ratio of placental telomere in term live births was 5.181 ± 3.841. A twofold decrease in telomere length was seen in SBs (over all 2.455 ± 1.239; p < 0.001). For early SBs (above 34 weeks), the T/S was 2.8884 ± 1.224 and for late SBs, the T/S was 2.207 ± 1.201, both lower than term live births (both p < 0.01). T/S remained lower both in small for gestational age-SB (2.639 ± 1.619) and appropriate for gestational age-SB (2.653 ± 1.335) with no difference between these subgroups (p = ns). T/S was lower in SB compared with spontaneous preterm births (PTBs) (6.382 ± 5.525; p < 0.01), whereas SBs telomere length were similar to those of preterm premature rupture of membranes (pPROM) (3.296 ± 3.599; p = ns). Substantial reduction in telomere length in SBs is indicative of placental senescence. These data provide mechanistic insights that premature aging may lead to placental dysfunction as an initiator of fetal demise in unexplained SBs.

  1. Transcriptome Analysis of a Premature Leaf Senescence Mutant of Common Wheat (Triticum aestivum L.)

    PubMed Central

    Xia, Chuan; Zhang, Lichao; Dong, Chunhao; Liu, Xu; Kong, Xiuying

    2018-01-01

    Leaf senescence is an important agronomic trait that affects both crop yield and quality. In this study, we characterized a premature leaf senescence mutant of wheat (Triticum aestivum L.) obtained by ethylmethane sulfonate (EMS) mutagenesis, named m68. Genetic analysis showed that the leaf senescence phenotype of m68 is controlled by a single recessive nuclear gene. We compared the transcriptome of wheat leaves between the wild type (WT) and the m68 mutant at four time points. Differentially expressed gene (DEG) analysis revealed many genes that were closely related to senescence genes. Gene Ontology (GO) enrichment analysis suggested that transcription factors and protein transport genes might function in the beginning of leaf senescence, while genes that were associated with chlorophyll and carbon metabolism might function in the later stage. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the genes that are involved in plant hormone signal transduction were significantly enriched. Through expression pattern clustering of DEGs, we identified 1012 genes that were induced during senescence, and we found that the WRKY family and zinc finger transcription factors might be more important than other transcription factors in the early stage of leaf senescence. These results will not only support further gene cloning and functional analysis of m68, but also facilitate the study of leaf senescence in wheat. PMID:29534430

  2. Whey Protein Attenuates Angiotensin II-Primed Premature Senescence of Vascular Smooth Muscle Cells through Upregulation of SIRT1

    PubMed Central

    2017-01-01

    Whey protein, a by-product of milk curdling, exhibits diverse biological activities and is used as a dietary supplement. However, its effects on stress-induced vascular aging have not yet been elucidated. In this study, we found that whey protein significantly inhibited the Ang II-primed premature senescence of vascular smooth muscle cells (VSMCs). In addition, we observed a marked dose- and time-dependent increase in SIRT1 promoter activity and mRNA in VSMCs exposed to whey protein, accompanied by elevated SIRT1 protein expression. Ang II-mediated repression of SIRT1 level was dose-dependently reversed in VSMCs treated with whey protein, suggesting that SIRT1 is involved in preventing senescence in response to this treatment. Furthermore, resveratrol, a well-defined activator of SIRT1, potentiated the effects of whey protein on Ang II-primed premature senescence, whereas sirtinol, an inhibitor of SIRT1, exerted the opposite. Taken together, these results indicated that whey protein-mediated upregulation of SIRT1 exerts an anti-senescence effect, and can thus ameliorate Ang IIinduced vascular aging as a dietary supplement. PMID:29725214

  3. Attenuation of Replication Stress–Induced Premature Cellular Senescence to Assess Anti-Aging Modalities

    PubMed Central

    Zhao, Hong; Darzynkiewicz, Zbigniew

    2014-01-01

    Described is an in vitro model of premature senescence in pulmonary adenocarcinoma A549 cells induced by persistent DNA replication stress in response to treatment with the DNA damaging drug mitoxantrone (Mxt). The degree of cellular senescence, based on characteristic changes in cell morphology, is measured by laser scanning cytometry. Specifically, the flattening of cells grown on slides (considered the hallmark of cellular senescence) is measured as the decline in local intensity of DNA-associated DAPI fluorescence (represented by maximal pixels). This change is paralleled by an increase in nuclear area. Thus, the ratio of mean intensity of maximal pixels to nuclear area provides a very sensitive morphometric biomarker for the degree of senescence. This analysis is combined with immunocytochemical detection of senescence markers, such as overexpression of cyclin kinase inhibitors (e.g., p21WAF1) and phosphorylation of ribosomal protein S6 (rpS6), a key marker associated with aging/senescence that is detected using a phospho-specific antibody. These biomarker indices are presented in quantitative terms defined as a senescence index (SI), which is the fraction of the marker in test cultures relative to the same marker in exponentially growing control cultures. This system can be used to evaluate the anti-aging potential of test agents by assessing attenuation of maximal senescence. As an example, the inclusion of berberine, a natural alkaloid with reported anti-aging properties and a long history of use in traditional Chinese medicine, is shown to markedly attenuate the Mxt-induced SI and phosphorylation of rpS6. The multivariate analysis of senescence markers by laser scanning cytometry offers a promising tool to explore the potential anti-aging properties of a variety agents. PMID:24984966

  4. Salidroside protects against premature senescence induced by ultraviolet B irradiation in human dermal fibroblasts.

    PubMed

    Mao, G-X; Xing, W-M; Wen, X-L; Jia, B-B; Yang, Z-X; Wang, Y-Z; Jin, X-Q; Wang, G-F; Yan, J

    2015-06-01

    Salidroside, the predominant component of a Chinese herbal medicine, Rhodiola rosea L., becomes an attractive bio-agent due to its multifunction. Although it is well proposed that this herbal medicine may have photoprotective effect according to the folk hearsay, the direct supportive experimental evidences linking the drug with skin ageing have rarely been reported so far. The study was conducted to investigate the photoprotective role of salidrosdie and its related mechanisms in vitro. First, a premature senescence model induced by UVB irradiation (250 mJ cm(-2)) in human dermal fibroblasts (HDFs) was established, and senescent phenotypes were evaluated by cell morphology, cell proliferation, senescence-associated beta-galactosidase (SA-β-gal) activity and cell cycle distribution. Then the photoprotective effect of salidroside was investigated. Cells were pre-treated with various doses of salidroside (1, 5 and 10 μM) followed by the sublethal dosage of UVB exposure and then were harvested for various detections, including senescence-associated phenotypes and molecules, alteration of oxidative stress, matrix metalloproteinase-1 (MMP-1) secretion and inflammatory response. Pre-treatment of salidroside dose dependently reversed the senescent state of HDFs induced by UVB as evidenced by elevated cell viability, decreased SA-β-gal activity and relieving of G1/G0 cell cycle arrest. UVB-induced increased protein expression of cyclin-dependent kinase (CDK) inhibitors p21(WAF) (1) and p16(INK) (4) was also repressed by salidrosdie treatment in a dose-dependent manner. Meanwhile, the increment of malondialdehyde (MDA) level in UVB-irradiated HDFs was inhibited upon salidroside treatment. Additionally, salidroside significantly attenuated UVB-induced synthesis of MMP-1 as well as the production of IL-6 and TNF-α in HDFs. Our data provided the evidences for the protective role of salidroside against UVB-induced premature senescence in HDFs probably via its anti

  5. 2, 3, 7, 8-Tetrachlorodibenzo-P-dioxin (TCDD) induces premature senescence in human and rodent neuronal cells via ROS-dependent mechanisms.

    PubMed

    Wan, Chunhua; Liu, Jiao; Nie, Xiaoke; Zhao, Jianya; Zhou, Songlin; Duan, Zhiqing; Tang, Cuiying; Liang, Lingwei; Xu, Guangfei

    2014-01-01

    The widespread environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent toxicant that causes significant neurotoxicity. However, the biological events that participate in this process remain largely elusive. In the present study, we demonstrated that TCDD exposure triggered apparent premature senescence in rat pheochromocytoma (PC12) and human neuroblastoma SH-SY5Y cells. Senescence-associated β-galactosidase (SA-β-Gal) assay revealed that TCDD induced senescence in PC12 neuronal cells at doses as low as 10 nM. TCDD led to F-actin reorganization and the appearance of an alternative senescence marker, γ-H2AX foci, both of which are important features of cellular senescence. In addition, TCDD exposure altered the expression of senescence marker proteins, such as p16, p21 and p-Rb, in both dose- and time-dependent manners. Furthermore, we demonstrated that TCDD promotes mitochondrial dysfunction and the accumulation of cellular reactive oxygen species (ROS) in PC12 cells, leading to the activation of signaling pathways that are involved in ROS metabolism and senescence. TCDD-induced ROS generation promoted significant oxidative DNA damage and lipid peroxidation. Notably, treatment with the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and neuronal senescence. Moreover, we found that TCDD induced a similar ROS-mediated senescence response in human neuroblastoma SH-SY5Y cells. In sum, these results demonstrate for the first time that TCDD induces premature senescence in neuronal cells by promoting intracellular ROS production, supporting the idea that accelerating the onset of neuronal senescence may be an important mechanism underlying TCDD-induced neurotoxic effects.

  6. The thyroid hormone receptor β induces DNA damage and premature senescence.

    PubMed

    Zambrano, Alberto; García-Carpizo, Verónica; Gallardo, María Esther; Villamuera, Raquel; Gómez-Ferrería, Maria Ana; Pascual, Angel; Buisine, Nicolas; Sachs, Laurent M; Garesse, Rafael; Aranda, Ana

    2014-01-06

    There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate-activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism.

  7. Involvement of Abscisic Acid in PSII Photodamage and D1 Protein Turnover for Light-Induced Premature Senescence of Rice Flag Leaves

    PubMed Central

    Wang, Fubiao; Liu, Jianchao; Chen, Minxue; Zhou, Lujian; Li, Zhaowei; Zhao, Qian; Pan, Gang; Zaidi, Syed-Hassan-Raza; Cheng, Fangmin

    2016-01-01

    D1 protein in the PSII reaction center is the major target of photodamage, and it exhibits the highest turnover rate among all the thylakoid proteins. In this paper, rice psf (premature senescence of flag leaves) mutant and its wild type were used to investigate the genotype-dependent alteration in PSII photo-damage and D1 protein turnover during leaf senescence and its relation to ABA accumulation in senescent leaves. The symptom and extent of leaf senescence of the psf mutant appeared to be sunlight-dependent under natural field condition. The psf also displayed significantly higher levels of ABA accumulation in senescent leaves than the wild type. However, the premature senescence lesion of psf leaves could be alleviated by shaded treatment, concomitantly with the strikingly suppressed ABA level in the shaded areas of flag leaves. The change in ABA concentration contributed to the regulation of shade-delayed leaf senescence. The participation of ABA in the timing of senescence initiation and in the subsequent rate of leaf senescence was closely associated with PSII photodamage and D1 protein turnover during leaf senescence, in which the transcriptional expression of several key genes (psbA, psbB, psbC and OsFtsH2) involved in D1 protein biosynthesis and PSII repair cycle was seriously suppressed by the significantly increased ABA level. This response resulted in the low rate of D1 protein synthesis and impaired repair recovery in the presence of ABA. The psf showed evidently decreased D1 protein amount in the senescent leaves. Both the inhibition of de novo synthesized D1 protein and the slow rate of proteolytic removal for the photodamaged D1 protein was among the most crucial steps for the linkage between light-dependent leaf senescence and the varying ABA concentration in psf mutant leaves. OsFtsH2 transcriptional expression possibly played an important role in the regulation of D1 protein turnover and PSII repair cycle in relation to ABA mediated leaf

  8. Down-regulation of Wild-type p53-induced Phosphatase 1 (Wip1) Plays a Critical Role in Regulating Several p53-dependent Functions in Premature Senescent Tumor Cells*

    PubMed Central

    Crescenzi, Elvira; Raia, Zelinda; Pacifico, Francesco; Mellone, Stefano; Moscato, Fortunato; Palumbo, Giuseppe; Leonardi, Antonio

    2013-01-01

    Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser15 and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser15 phosphorylation is associated with enhanced phosphorylation at Ser46, increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype. PMID:23612976

  9. Is Post-Traumatic Stress Disorder Associated with Premature Senescence? A Review of the Literature

    PubMed Central

    Lohr, James B.; Palmer, Barton W.; Eidt, Carolyn A.; Aailaboyina, Smitha; Mausbach, Brent T.; Wolkowitz, Owen M.; Thorp, Steven R.; Jeste, Dilip V.

    2015-01-01

    Post-Traumatic Stress Disorder (PTSD) has major public health significance. Evidence that PTSD may be associated with premature senescence (early or accelerated aging) would have major implications for quality of life and healthcare policy. We conducted a comprehensive review of published empirical studies relevant to early aging in PTSD. Our search included the PubMed, PsycINFO and PILOTS databases for empirical reports published since the year 2000 relevant to early senescence and PTSD, including: (1) biomarkers of senescence (leukocyte telomere length (LTL) and pro-inflammatory markers), (2) prevalence of senescence-associated medical conditions, and (3) mortality rates. All six studies examining LTL indicated reduced LTL in PTSD (pooled Cohen’s d = 0.76). We also found consistent evidence of increased pro-inflammatory markers in PTSD (mean Cohen’s ds), including C-reactive protein = 0.18, Interleukin-1 beta = 0.44, Interleukin-6 = 0.78, and tumor necrosis factor alpha = 0.81. The majority of reviewed studies also indicated increased medical comorbidity among several targeted conditions known to be associated with normal aging, including cardiovascular disease, type 2 diabetes mellitus, gastrointestinal ulcer disease, and dementia. We also found seven of 10 studies indicated PTSD to be associated with earlier mortality (average HR = 1.29). In short, evidence from multiple lines of investigation suggests that PTSD may be associated with a phenotype of accelerated senescence. Further research is critical to understand the nature of this association. There may be a need to re-conceptualize PTSD beyond the boundaries of mental illness, and instead as a full systemic disorder. PMID:25959921

  10. Microtubule Binding and Disruption and Induction of Premature Senescence by Disorazole C1S⃞

    PubMed Central

    Tierno, Marni Brisson; Kitchens, Carolyn A.; Petrik, Bethany; Graham, Thomas H.; Wipf, Peter; Xu, Fengfeng L.; Saunders, William S.; Raccor, Brianne S.; Balachandran, Raghavan; Day, Billy W.; Stout, Jane R.; Walczak, Claire E.; Ducruet, Alexander P.; Reese, Celeste E.; Lazo, John S.

    2009-01-01

    Disorazoles comprise a family of 29 macrocyclic polyketides isolated from the fermentation broth of the myxobacterium Sorangium cellulosum. The major fermentation product, disorazole A1, was found previously to irreversibly bind to tubulin and to have potent cytotoxic activity against tumor cells, possibly because of its highly electrophilic epoxide moiety. To test this hypothesis, we synthesized the epoxide-free disorazole C1 and found it retained potent antiproliferative activity against tumor cells, causing prominent G2/M phase arrest and inhibition of in vitro tubulin polymerization. Furthermore, disorazole C1 produced disorganized microtubules at interphase, misaligned chromosomes during mitosis, apoptosis, and premature senescence in the surviving cell populations. Using a tubulin polymerization assay, we found disorazole C1 inhibited purified bovine tubulin polymerization, with an IC50 of 11.8 ± 0.4 μM, and inhibited [3H]vinblastine binding noncompetitively, with a Ki of 4.5 ± 0.6 μM. We also found noncompetitive inhibition of [3H]dolastatin 10 binding by disorazole C1, with a Ki of 10.6 ± 1.5 μM, indicating that disorazole C1 bound tubulin uniquely among known antimitotic agents. Disorazole C1 could be a valuable chemical probe for studying the process of mitotic spindle disruption and its relationship to premature senescence. PMID:19066338

  11. Regiospecific Synthesis of Ring A Fused Withaferin A Isoxazoline Analogues: Induction of Premature Senescence by W-2b in Proliferating Cancer Cells.

    PubMed

    Rasool, Faheem; Nayak, Debasis; Katoch, Archana; Faheem, Mir Mohd; Yousuf, Syed Khalid; Hussain, Nazar; Belawal, Chetan; Satti, N K; Goswami, Anindya; Mukherjee, Debaraj

    2017-10-23

    Induction of premature senescence represents a novel functional strategy to curb the uncontrolled proliferation of malignant cancer cells. This study unveils the regiospecific synthesis of novel isoxazoline derivatives condensed to ring A of medicinal plant product Withaferin-A. Intriguingly, the cis fused products with β-oriented hydrogen exhibited excellent cytotoxic activities against proliferating human breast cancer MCF7 and colorectal cancer HCT-116 cells. The most potent derivative W-2b triggered premature senescence along with increase in senescence-associated β-galactosidase activity, G2/M cell cycle arrest, and induction of senescence-specific marker p21 Waf1/Cip1 at its sub-toxic concentration. W-2b conferred a robust increase in phosphorylation of mammalian checkpoint kinase-2 (Chk2) in cancer cells in a dose-dependent manner. Silencing of endogenous Chk2 by siRNA divulged that the amplification of p21 expression and senescence by W-2b was Chk2-dependent. Chk2 activation (either by ectopic overexpression or through treatment with W-2b) suppressed NM23-H1 signaling axis involved in cancer cell proliferation. Finally, W-2b showed excellent in vivo efficacy with 83.8% inhibition of tumor growth at a dose of 25 mg/kg, b.w. in mouse mammary carcinoma model. Our study claims that W-2b could be a potential candidate to limit aberrant cellular proliferation rendering promising improvement in the treatment regime in cancer patients.

  12. Suppression of the DHX9 Helicase Induces Premature Senescence in Human Diploid Fibroblasts in a p53-dependent Manner*

    PubMed Central

    Lee, Teresa; Di Paola, Domenic; Malina, Abba; Mills, John R.; Kreps, Amina; Grosse, Frank; Tang, Hengli; Zannis-Hadjopoulos, Maria; Larsson, Ola; Pelletier, Jerry

    2014-01-01

    DHX9 is an ATP-dependent DEXH box helicase with a multitude of cellular functions. Its ability to unwind both DNA and RNA, as well as aberrant, noncanonical polynucleotide structures, has implicated it in transcriptional and translational regulation, DNA replication and repair, and maintenance of genome stability. We report that loss of DHX9 in primary human fibroblasts results in premature senescence, a state of irreversible growth arrest. This is accompanied by morphological defects, elevation of senescence-associated β-galactosidase levels, and changes in gene expression closely resembling those encountered during replicative (telomere-dependent) senescence. Activation of the p53 signaling pathway was found to be essential to this process. ChIP analysis and investigation of nascent DNA levels revealed that DHX9 is associated with origins of replication and that its suppression leads to a reduction of DNA replication. Our results demonstrate an essential role of DHX9 in DNA replication and normal cell cycle progression. PMID:24990949

  13. Senescence Meets Dedifferentiation

    PubMed Central

    Givaty Rapp, Yemima; Ransbotyn, Vanessa; Grafi, Gideon

    2015-01-01

    Senescence represents the final stage of leaf development but is often induced prematurely following exposure to biotic and abiotic stresses. Leaf senescence is manifested by color change from green to yellow (due to chlorophyll degradation) or to red (due to de novo synthesis of anthocyanins coupled with chlorophyll degradation) and frequently culminates in programmed death of leaves. However, the breakdown of chlorophyll and macromolecules such as proteins and RNAs that occurs during leaf senescence does not necessarily represent a one-way road to death but rather a reversible process whereby senescing leaves can, under certain conditions, re-green and regain their photosynthetic capacity. This phenomenon essentially distinguishes senescence from programmed cell death, leading researchers to hypothesize that changes occurring during senescence might represent a process of trans-differentiation, that is the conversion of one cell type to another. In this review, we highlight attributes common to senescence and dedifferentiation including chromatin structure and activation of transposable elements and provide further support to the notion that senescence is not merely a deterioration process leading to death but rather a unique developmental state resembling dedifferentiation. PMID:27135333

  14. Prospectively assessing risk for premature ovarian senescence in young females: a new paradigm.

    PubMed

    Gleicher, Norbert; Kushnir, Vitaly A; Barad, David H

    2015-04-18

    Approximately 10% of women suffer from premature ovarian senescence (POS), ca. 9% as occult primary ovarian insufficiency (OPOI, also called premature ovarian aging, POA) and ca. 1% as primary ovarian insufficiency (POI, also called premature ovarian failure, POF). In a large majority of cases POS is currently only diagnosed at advanced clinical stages when women present with clinical infertility. We here, based on published evidence, suggest a new diagnostic paradigm, which is based on identifying young women at increased risk for POS at much earlier stages. Risk factors for POS are known from the literature, and can be used to identify a sub-group of young women at increased risk, who then are followed sequentially with serial assessments of functional ovarian reserve (FOR) until a diagnosis of POS is either reached or refuted. At approximately 25% prevalence in general U.S. populations (and somewhat different prevalence rates in more homogenous Asian and African populations), so-called low (CGGn<26) mutations of the fragile X mental retardation 1 (FMR1) gene, likely, represents the most common known risk factor, including history-based risk factors from medical, genetic and family histories. Women so affirmatively diagnosed with POS at relative young ages, then have the opportunity to reconsider their reproductive planning and/or choose fertility preservation via oocyte or ovarian tissue cryopreservation at ages when such procedures are clinically much more effective and, therefore, also more cost-effective. Appropriate validation studies will have to precede widespread utilization of this paradigm.

  15. Early accelerated senescence of circulating endothelial progenitor cells in premature coronary artery disease patients in a developing country - a case control study.

    PubMed

    Vemparala, Kranthi; Roy, Ambuj; Bahl, Vinay Kumar; Prabhakaran, Dorairaj; Nath, Neera; Sinha, Subrata; Nandi, Pradipta; Pandey, Ravindra Mohan; Reddy, Kolli Srinath; Manhapra, Ajay; Lakshmy, Ramakrishnan

    2013-11-19

    The decreased number and senescence of circulating endothelial progenitor cells (EPCs) are considered markers of vascular senescence associated with aging, atherosclerosis, and coronary artery disease (CAD) in elderly. In this study, we explore the role of vascular senescence in premature CAD (PCAD) in a developing country by comparing the numerical status and senescence of circulating EPCs in PCAD patients to controls. EPCs were measured by flow cytometry in 57 patients with angiographically documented CAD, and 57 controls without evidence of CAD, recruited from random patients ≤ 50 years of age at All India Institute of Medical Sciences. EPC senescence as determined by telomere length (EPC-TL) and telomerase activity (EPC-TA) was studied by real time polymerase chain reaction (q PCR) and PCR- ELISA respectively. The number of EPCs (0.18% Vs. 0.039% of total WBCs, p < 0.0001), and EPC-TL (3.83 Vs. 5.10 kb/genome, p = 0.009) were markedly lower in PCAD patients compared to controls. These differences persisted after adjustment for age, sex, BMI, smoking and medications. EPC-TA was reduced in PCAD patients, but was statistically significant only after adjustment for confounding factors (1.81 Vs. 2.20 IU/cell, unadjusted p = 0.057, adjusted p = 0.044). We observed an association between increased vascular cell senescence with PCAD in a sample of young patients from India. This suggests that early accelerated vascular cell senescence may play an important mechanistic role in CAD epidemic in developing countries like India where PCAD burden is markedly higher compared to developed countries.

  16. Comparative Effects of Biodynes, Tocotrienol-Rich Fraction, and Tocopherol in Enhancing Collagen Synthesis and Inhibiting Collagen Degradation in Stress-Induced Premature Senescence Model of Human Diploid Fibroblasts

    PubMed Central

    Jam, Faidruz Azura; Ismail, Zahariah; Wan Ngah, Wan Zurinah

    2013-01-01

    Biodynes, tocotrienol-rich fraction (TRF), and tocopherol have shown antiaging properties. However, the combined effects of these compounds on skin aging are yet to be investigated. This study aimed to elucidate the skin aging effects of biodynes, TRF, and tocopherol on stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs) by determining the expression of collagen and MMPs at gene and protein levels. Primary HDFs were treated with biodynes, TRF, and tocopherol prior to hydrogen peroxide (H2O2) exposure. The expression of COL1A1, COL3A1, MMP1, MMP2, MMP3, and MMP9 genes was determined by qRT-PCR. Type I and type III procollagen proteins were measured by Western blotting while the activities of MMPs were quantified by fluorometric Sensolyte MMP Kit. Our results showed that biodynes, TRF, and tocopherol upregulated collagen genes and downregulated MMP genes (P < 0.05). Type I procollagen and type III procollagen protein levels were significantly increased in response to biodynes, TRF, and tocopherol treatment (P < 0.05) with reduction in MMP-1, MMP-2, MMP-3, and MMP-9 activities (P < 0.05). These findings indicated that biodynes, TRF, and tocopherol effectively enhanced collagen synthesis and inhibited collagen degradation and therefore may protect the skin from aging. PMID:24396567

  17. The Redox-sensitive Induction of the Local Angiotensin System Promotes Both Premature and Replicative Endothelial Senescence: Preventive Effect of a Standardized Crataegus Extract.

    PubMed

    Khemais-Benkhiat, Sonia; Idris-Khodja, Noureddine; Ribeiro, Thais Porto; Silva, Grazielle Caroline; Abbas, Malak; Kheloufi, Marouane; Lee, Jung-Ok; Toti, Florence; Auger, Cyril; Schini-Kerth, Valérie B

    2016-12-01

    Endothelial senescence, characterized by an irreversible cell cycle arrest, oxidative stress, and downregulation of endothelial nitric oxide synthase (eNOS), has been shown to promote endothelial dysfunction leading to the development of age-related vascular disorders. This study has assessed the possibility that the local angiotensin system promotes endothelial senescence in coronary artery endothelial cells and also the protective effect of the Crataegus extract WS1442, a quantified hawthorn extract. Serial passaging from P1 to P4 (replicative senescence) and treatment of P1 endothelial cells with the eNOS inhibitor L-NAME (premature senescence) promoted acquisition of markers of senescence, enhanced ROS formation, decreased eNOS expression, and upregulation of angiotensin-converting enzyme (ACE) and AT1 receptors. Increased SA-β-gal activity and the upregulation of ACE and AT1R in senescent cells were prevented by antioxidants, an ACE inhibitor, and by an AT1 receptor blocker. WS1442 prevented SA-β-gal activity, the downregulation of eNOS, and oxidative stress in P3 cells. These findings indicate that the impairment of eNOS-derived nitric oxide formation favors a pro-oxidant response triggering the local angiotensin system, which, in turn, promotes endothelial senescence. Such a sequence of events can be effectively inhibited by a standardized polyphenol-rich extract mainly by targeting the oxidative stress. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Activation of a PGC-1-related Coactivator (PRC)-dependent Inflammatory Stress Program Linked to Apoptosis and Premature Senescence*

    PubMed Central

    Gleyzer, Natalie; Scarpulla, Richard C.

    2013-01-01

    PGC-1-related coactivator (PRC), a growth-regulated member of the PGC-1 coactivator family, contributes to the expression of the mitochondrial respiratory apparatus. PRC also orchestrates a robust response to metabolic stress by promoting the expression of multiple genes specifying inflammation, proliferation, and metabolic reprogramming. Here, we demonstrate that this PRC-dependent stress program is activated during apoptosis and senescence, two major protective mechanisms against cellular dysfunction. Both PRC and its targets (IL1α, SPRR2D, and SPRR2F) were rapidly induced by menadione, an agent that promotes apoptosis through the generation of intracellular oxidants. Menadione-induced apoptosis and the PRC stress program were blocked by the antioxidant N-acetylcysteine. The PRC stress response was also activated by the topoisomerase I inhibitor 7-ethyl-10-hydroxycamptothecin (SN-38), an inducer of premature senescence in tumor cells. Cells treated with SN-38 displayed morphological characteristics of senescence and express senescence-associated β-galactosidase activity. In contrast to menadione, the SN-38 induction of the PRC program occurred over an extended time course and was antioxidant-insensitive. The potential adaptive function of the PRC stress response was investigated by treating cells with meclizine, a drug that promotes glycolytic energy metabolism and has been linked to cardio- and neuroprotection against ischemia-reperfusion injury. Meclizine increased lactate production and was a potent inducer of the PRC stress program, suggesting that PRC may contribute to the protective effects of meclizine. Finally, c-MYC and PRC were coordinately induced under all conditions tested, implicating c-MYC in the biological response to metabolic stress. The results suggest a general role for PRC in the adaptive response to cellular dysfunction. PMID:23364789

  19. Senescence as biologic endpoint following pharmacological targeting of receptor tyrosine kinases in cancer.

    PubMed

    Francica, Paola; Aebersold, Daniel M; Medová, Michaela

    2017-02-15

    Cellular senescence was first described in 1961 in a seminal study by Hayflick and Moorhead as a limit to the replicative lifespan of somatic cells after serial cultivation. Since then, major advances in our understanding of senescence have been achieved suggesting that this mechanism is activated also by oncogenic stimuli, oxidative stress and DNA damage, giving rise to the concept of premature senescence. Regardless of the initial trigger, numerous experimental observations have been provided to support the notion that both replicative and premature senescence play pivotal roles in early stages of tumorigenesis and in response of tumor cells to anticancer treatments. Moreover, various studies have suggested that the induction of senescence by both chemo- and radiotherapy in a variety of cancer types correlates with treatment outcome. As it is widely accepted that cellular senescence may function as a fundamental barrier of tumor progression, the significance of senescence for clinical interventions that make use of novel molecular targeting-based modalities needs to be well defined. Interestingly, despite numerous studies evaluating efficacies of receptor tyrosine kinases (RTKs) targeting strategies in both preclinical and clinical settings, the relevance of RTKs inhibition-associated senescence in tumors remains less characterized. Here we review the available literature that describes premature senescence as a major mechanism following targeting of RTKs in preclinical as well as in clinical settings. Additionally, we discuss the possible role of diverse RTKs in regulating the induction of senescence following cellular stress and possible implications of this crosstalk in identification of biomarkers of inhibitor-mediated chemo- and radiosensitization approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Oct4 suppresses IR‑induced premature senescence in breast cancer cells through STAT3- and NF‑κB-mediated IL‑24 production.

    PubMed

    Kim, Jeong-Yub; Kim, Jeong-Chul; Lee, Ji-Yun; Park, Myung-Jin

    2018-07-01

    Breast cancer stem cells (BCSCs) are a small subpopulation of breast cancer cells that have been proposed to be a primary cause of failure of therapies, including ionizing radiation (IR). Their embryonic stem-like signature is associated with poor clinical outcome. In the present study, the function of octamer-binding transcription factor 4 (Oct4), an embryonic stem cell factor, in the resistance of BCSCs to IR was investigated. Mammosphere cells exhibited increased expression of stemness-associated genes, including Oct4 and sex‑determining region Y‑box 2 (Sox2), and were more resistant to IR compared with serum-cultured monolayer cells. IR‑resistant MCF7 cells also exhibited significantly increased expression of Oct4. To investigate the possible involvement of Oct4 in IR resistance of breast cancer cells, cells were transfected with Oct4. Ectopic expression of Oct4 increased the clonogenic survival of MCF7 cells following IR, which was reversed by treatment with small interfering RNA (siRNA) targeting Oct4. Oct4 expression decreased phosphorylated histone H2AX (γ-H2AX) focus formation and suppressed IR‑induced premature senescence in these cells. Mammosphere, IR‑resistant and Oct4‑overexpressing MCF7 cells exhibited enhanced phosphorylation of signal transducer and activation of transcription 3 (STAT3) (Tyr705) and inhibitor of nuclear factor κB (NF‑κB), and blockade of these pathways with siRNA against STAT3 and/or specific inhibitors of STAT3 and NF‑κB significantly increased IR‑induced senescence. Secretome analysis revealed that Oct4 upregulated interleukin 24 (IL‑24) expression through STAT3 and NF‑κB signaling, and siRNA against IL‑24 increased IR‑induced senescence, whereas recombinant human IL‑24 suppressed it. The results of the present study indicated that Oct4 confers IR resistance on breast cancer cells by suppressing IR‑induced premature senescence through STAT3- and NF‑κB-mediated IL‑24 production.

  1. The Brown Midrib Leaf (bml) Mutation in Rice (Oryza sativa L.) Causes Premature Leaf Senescence and the Induction of Defense Responses.

    PubMed

    Akhter, Delara; Qin, Ran; Nath, Ujjal Kumar; Alamin, Md; Jin, Xiaoli; Shi, Chunhai

    2018-04-09

    Isolating and characterizing mutants with altered senescence phenotypes is one of the ways to understand the molecular basis of leaf aging. Using ethyl methane sulfonate mutagenesis, a new rice ( Oryza sativa ) mutant, brown midrib leaf ( bml ), was isolated from the indica cultivar 'Zhenong34'. The bml mutants had brown midribs in their leaves and initiated senescence prematurely, at the onset of heading. The mutants had abnormal cells with degraded chloroplasts and contained less chlorophyll compared to the wild type (WT). The bml mutant showed excessive accumulation of reactive oxygen species (ROS), increased activities of superoxide dismutase, catalase, and malondialdehyde, upregulation of senescence-induced STAY-GREEN genes and senescence-related transcription factors, and down regulation of photosynthesis-related genes. The levels of abscisic acid (ABA) and jasmonic acid (JA) were increased in bml with the upregulation of some ABA and JA biosynthetic genes. In pathogen response, bml demonstrated higher resistance against Xanthomonas oryzae pv. oryzae and upregulation of four pathogenesis-related genes compared to the WT. A genetic study confirmed that the bml trait was caused by a single recessive nuclear gene ( BML ). A map-based cloning using insertion/deletion markers confirmed that BML was located in the 57.32kb interval between the L5IS7 and L5IS11 markers on the short arm of chromosome 5. A sequence analysis of the candidate region identified a 1 bp substitution (G to A) in the 5'-UTR (+98) of bml . BML is a candidate gene associated with leaf senescence, ROS regulation, and disease response, also involved in hormone signaling in rice. Therefore, this gene might be useful in marker-assisted backcrossing/gene editing to improve rice cultivars.

  2. mir-24 activity propagates stress-induced senescence by down regulating DNA topoisomerase 1.

    PubMed

    Bu, Huajie; Baraldo, Giorgia; Lepperdinger, Günter; Jansen-Dürr, Pidder

    2016-03-01

    MicroRNAs (miRNAs) are a group of small non-coding executor RNAs. Their function as key modulators of cellular senescence has been widely recognized recently. By cross-comparing several human aging models we previously identified dozens of miRNAs being differentially regulated during aging. Here the functions of two miRNAs, mir-24 and mir-424, were investigated in an oxidative stress-induced fibroblast premature senescence model. Using pre-miRNA precursors, miRNAs were overexpressed in cells undergoing premature senescence induced by oxidative stress. More senescent cells were observed in mir-24 transfected cells. p53 was upregulated in mir-24 overexpressing cells, but downregulated in mir-424 overexpressing cells. DNA topoisomerase I (TOP1), an enzyme controlling DNA topology, was identified as a target of mir-24, whose expression was induced by oxidative stress. Knocking down TOP1 induced cellular senescence. These results suggest that mir-24 activity propagates stress-induced senescence by down regulating TOP1. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. iTRAQ-Based Quantitative Proteomic Analysis Reveals Cold Responsive Proteins Involved in Leaf Senescence in Upland Cotton (Gossypium hirsutum L.).

    PubMed

    Zheng, Xuewei; Fan, Shuli; Wei, Hengling; Tao, Chengcheng; Ma, Qiang; Ma, Qifeng; Zhang, Siping; Li, Hongbin; Pang, Chaoyou; Yu, Shuxun

    2017-09-16

    Premature leaf senescence occurs in the ultimate phase of the plant, and it occurs through a complex series of actions regulated by stress, hormones and genes. In this study, a proteomic analysis was performed to analyze the factors that could induce premature leaf senescence in two cotton cultivars. We successfully identified 443 differential abundant proteins (DAPs) from 7388 high-confidence proteins at four stages between non-premature senescence (NS) and premature senescence (PS), among which 158 proteins were over-accumulated, 238 proteins were down-accumulated at four stages, and 47 proteins displayed overlapped accumulation. All the DAPs were mapped onto 21 different categories on the basis of a Clusters of Orthologous Groups (COG) analysis, and 9 clusters were based on accumulation. Gene Ontology (GO) enrichment results show that processes related to stress responses, including responses to cold temperatures and responses to hormones, are significantly differentially accumulated. More importantly, the enriched proteins were mapped in The Arabidopsis Information Resource (TAIR), showing that 58 proteins play an active role in abiotic stress, hormone signaling and leaf senescence. Among these proteins, 26 cold-responsive proteins (CRPs) are significantly differentially accumulated. The meteorological data showed that the median temperatures declined at approximately 15 days before the onset of aging, suggesting that a decrease in temperature is tightly linked to an onset of cotton leaf senescence. Because accumulations of H₂O₂ and increased jasmonic acid (JA) were detected during PS, we speculate that two pathways associated with JA and H₂O₂ are closely related to premature leaf senescence in cotton.

  4. Repeated exposure of mouse dermal fibroblasts at a sub-cytotoxic dose of UVB leads to premature senescence: a robust model of cellular photoaging.

    PubMed

    Zeng, Ji-ping; Bi, Bo; Chen, Liang; Yang, Ping; Guo, Yu; Zhou, Yi-qun; Liu, Tian-yi

    2014-01-01

    Photoaging skin is due to accumulative effect of UV irradiation that mainly imposes its damage on dermal fibroblasts. To mimic the specific cellular responses invoked by long term effect of UVB, it is preferable to develop a photo-damaged model in vitro based on repeated UVB exposure instead of a single exposure. To develop a photo-damaged model of fibroblasts by repeated UVB exposure allowing for investigation of molecular mechanism underlying premature senescence and testing of potential anti-photoaging compounds. Mouse dermal fibroblasts (MDFs) at early passages (passages 1-3) were exposed to a series of 4 sub-cytotoxic dose of UVB. The senescent phenotypes were detected at 24 or 48h after the last irradiation including cell viability, ROS generation, mitochondrial membrane potential, cell cycle, production and degradation of extracellular matrix. Repeated exposure of UVB resulted in remarkable features of senescence. It effectively avoided the disadvantages of single dose such as induction of cell death rather than senescence, inadequate stress resulting in cellular self-rehabilitation. Our work confirms the possibility of detecting cellular machinery that mediates UVB damage to fibroblasts in vitro by repeated exposure, while the potential molecular mechanisms including cell surface receptors, protein kinase signal transduction pathways, and transcription factors remain to be further evaluated. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Anti-ageing effects of Sonchus oleraceus L. (pūhā) leaf extracts on H₂O₂-induced cell senescence.

    PubMed

    Ou, Zong-Quan; Rades, Thomas; McDowell, Arlene

    2015-03-12

    Antioxidants protect against damage from free radicals and are believed to slow the ageing process. Previously, we have reported the high antioxidant activity of 70% methanolic Sonchus oleraceus L. (Asteraceae) leaf extracts. We hypothesize that S. oleraceus extracts protect cells against H2O2-induced senescence by mediating oxidative stress. Premature senescence of young WI-38 cells was induced by application of H2O2. Cells were treated with S. oleraceus extracts before or after H2O2 stress. The senescence- associated β-galactosidase (SA-β-gal) activity was used to indicate cell senescence. S. oleraceus extracts showed higher cellular antioxidant activity than chlorogenic acid in WI-38 cells. S. oleraceus extracts suppressed H2O2 stress-induced premature senescence in a concentration-dependent manner. At 5 and 20 mg/mL, S. oleraceus extracts showed better or equivalent effects of reducing stress-induced premature senescence than the corresponding ascorbic acid treatments. These findings indicate the potential of S. oleraceus extracts to be formulated as an anti-ageing agent.

  6. Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H

    PubMed Central

    Kudryashova, Elena; Kramerova, Irina; Spencer, Melissa J.

    2012-01-01

    Mutations in the E3 ubiquitin ligase tripartite motif-containing 32 (TRIM32) are responsible for the disease limb-girdle muscular dystrophy 2H (LGMD2H). Previously, we generated Trim32 knockout mice (Trim32–/– mice) and showed that they display a myopathic phenotype accompanied by neurogenic features. Here, we used these mice to investigate the muscle-specific defects arising from the absence of TRIM32, which underlie the myopathic phenotype. Using 2 models of induced atrophy, we showed that TRIM32 is dispensable for muscle atrophy. Conversely, TRIM32 was necessary for muscle regrowth after atrophy. Furthermore, TRIM32-deficient primary myoblasts underwent premature senescence and impaired myogenesis due to accumulation of PIAS4, an E3 SUMO ligase and TRIM32 substrate that was previously shown to be associated with senescence. Premature senescence of myoblasts was also observed in vivo in an atrophy/regrowth model. Trim32–/– muscles had substantially fewer activated satellite cells, increased PIAS4 levels, and growth failure compared with wild-type muscles. Moreover, Trim32–/– muscles exhibited features of premature sarcopenia, such as selective type II fast fiber atrophy. These results imply that premature senescence of muscle satellite cells is an underlying pathogenic feature of LGMD2H and reveal what we believe to be a new mechanism of muscular dystrophy associated with reductions in available satellite cells and premature sarcopenia. PMID:22505452

  7. Ligand-activated PPARδ inhibits UVB-induced senescence of human keratinocytes via PTEN-mediated inhibition of superoxide production.

    PubMed

    Ham, Sun Ah; Hwang, Jung Seok; Yoo, Taesik; Lee, Hanna; Kang, Eun Sil; Park, Chankyu; Oh, Jae-Wook; Lee, Hoon Taek; Min, Gyesik; Kim, Jin-Hoi; Seo, Han Geuk

    2012-05-15

    UV radiation-mediated photodamage to the skin has been implicated in premature aging and photoaging-related skin cancer and melanoma. Little is known about the cellular events that underlie premature senescence, or how to impede these events. In the present study we demonstrate that PPARδ (peroxisome-proliferator-activated receptor δ) regulates UVB-induced premature senescence of normal keratinocytes. Activation of PPARδ by GW501516, a specific ligand of PPARδ, significantly attenuated UVB-mediated generation of ROS (reactive oxygen species) and suppressed senescence of human keratinocytes. Ligand-activated PPARδ up-regulated the expression of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and suppressed the PI3K (phosphatidylinositol 3-kinase)/Akt pathway. Concomitantly, translocation of Rac1 to the plasma membrane, which leads to the activation of NADPH oxidases and generation of ROS, was significantly attenuated. siRNA (small interfering RNA)-mediated knockdown of PTEN abrogated the effects of PPARδ on cellular senescence, on PI3K/Akt/Rac1 signalling and on generation of ROS in keratinocytes exposed to UVB. Finally, when HR-1 hairless mice were treated with GW501516 before exposure to UVB, the number of senescent cells in the skin was significantly reduced. Thus ligand-activated PPARδ confers resistance to UVB-induced cellular senescence by up-regulating PTEN and thereby modulating PI3K/Akt/Rac1 signalling to reduce ROS generation in keratinocytes.

  8. Autophagic cell death and premature senescence: New mechanism of 5-fluorouracil and sulforaphane synergistic anticancer effect in MDA-MB-231 triple negative breast cancer cell line.

    PubMed

    Milczarek, Małgorzata; Wiktorska, Katarzyna; Mielczarek, Lidia; Koronkiewicz, Mirosława; Dąbrowska, Aleksandra; Lubelska, Katarzyna; Matosiuk, Dariusz; Chilmonczyk, Zdzisław

    2018-01-01

    In view of the need for new, more effective therapies for the triple negative breast cancer treatment, the aim of the study was to evaluate the anticancer activity and mechanism of action of the sulforaphane and 5-fluorouracil combination in the triple negative breast cancer cell line MDA-MB-231. Changes in the number of live cells after alone and sequential treatment were determined by the MTT test. The Chou and Talaly method was used to identify the type of interaction. Confocal microscopy, flow cytometry, western blot and spectrophotometry were used to examine apoptosis, autophagy and premature senescence. The western blot method was applied to measure the level of enzymes that are crucial for the 5-fluorouracil activity. Sulforaphane and 5-fluorouracil have been shown to interact synergistically in the breast cancerMDA-MB-231 cell line, resulting in a significant reduction of the number of live cells compared to alone treatments. Sulforaphane has decreased the level of thymidylate synthetase, which was also observed in the case of the sequential sulforaphane and 5-fluorouracil treatment. Studies of the interaction mechanism have revealed that sulforaphane and 5-fluorouracil act synergistically in the MDA-MB-231 cells by inducing autophagic cell death and premature senescence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Curcumin elevates sirtuin level but does not postpone in vitro senescence of human cells building the vasculature

    PubMed Central

    Grabowska, Wioleta; Suszek, Małgorzata; Wnuk, Maciej; Lewinska, Anna; Wasiak, Emilia; Sikora, Ewa; Bielak-Zmijewska, Anna

    2016-01-01

    It is believed that curcumin, a component of the turmeric that belongs to hormetins, possesses anti-aging propensity. This property of curcumin can be partially explained by its influence on the level of sirtuins. Previously, we have shown that relatively high (2.5-10 μM) doses of curcumin induce senescence of cancer cells and cells building the vasculature. In the present study we examined whether curcumin at low doses (0.1 and 1 μM) is able to delay cell senescence and upregulate the level of sirtuins in human cells building the vasculature, namely vascular smooth muscle (VSMC) and endothelial (EC) cells. To this end we used cells senescing in a replicative and premature manner. We showed that low doses of curcumin in case of VSMC neither postponed the replicative senescence nor protected from premature senescence induced by doxorubicin. Moreover, curcumin slightly accelerated replicative senescence of EC. Despite some fluctuations, a clear increasing tendency in the level of sirtuins was observed in curcumin-treated young, senescing or already senescent cells. Sirtuin activation could be caused by the activation of AMPK resulting from superoxide elevation and ATP reduction. Our results show that curcumin at low doses can increase the level of sirtuins without delaying senescence of VSMC. PMID:27034011

  10. Knockdown of IL-8 Provoked Premature Senescence of Placenta-Derived Mesenchymal Stem Cells.

    PubMed

    Li, Juan-Juan; Ma, Feng-Xia; Wang, You-Wei; Chen, Fang; Lu, Shi-Hong; Chi, Ying; Du, Wen-Jing; Song, Bao-Quan; Hu, Liang-Ding; Chen, Hu; Han, Zhong-Chao

    2017-06-15

    Mesenchymal stem cells (MSCs) have shown promise for use in cell therapy, and due to their tumor tropism can serve as vehicles for delivering therapeutic agents to tumor sites. Because interleukin-8 (IL-8) is known to mediate the protumor effect of MSCs, elimination of IL-8 secretion by MSCs may enhance their safety for use in cancer gene therapy. However, little is known concerning the effect of endogenously secreted IL-8 on MSCs. We performed studies using placenta-derived MSCs (PMSCs) to determine whether knockdown of IL-8 would influence their biological activity. We first verified that IL-8 and its membrane receptor CXCR2, but not CXCR1, were highly expressed in PMSCs. We then employed lentivirus-mediated small hairpin RNA interference to generate stable IL-8-silenced PMSCs, which displayed a variety of characteristic senescent phenotypes. We observed that at day 9 post-transfection, IL-8-silenced PMSCs had become larger and displayed a more flattened appearance when compared with their controls. Moreover, their proliferation, colony forming unit-fibroblast formation, adipogenic and osteogenic differentiation, and immunosuppressive potentials were significantly impaired. Enhanced senescence-associated β-galactosidase (SA-β-gal) activity and specific global gene expression profiles confirmed that IL-8 silencing evoked the senescence process in PMSCs. Increased levels of p-Akt and decreased levels of FOXO3a protein expression suggested that reactive oxygen species played a role in the initiation and maintenance of senescence in IL-8-silenced PMSCs. Notably, the majority of CXCR2 ligands were downregulated in presenescent IL-8-silenced PMSCs but upregulated in senescent cells, indicating an antagonistic pleiotropy of the IL-8/CXCR2 signaling pathway in PMSCs. This effect may promote the proliferation of young cells and accelerate senescence of old cells.

  11. Reversal of Myoblast Aging by Tocotrienol Rich Fraction Posttreatment

    PubMed Central

    Wan Ngah, Wan Zurinah; Mouly, Vincent; Abdul Karim, Norwahidah

    2013-01-01

    Skeletal muscle satellite cells are heavily involved in the regeneration of skeletal muscle in response to the aging-related deterioration of the skeletal muscle mass, strength, and regenerative capacity, termed as sarcopenia. This study focused on the effect of tocotrienol rich fraction (TRF) on regenerative capacity of myoblasts in stress-induced premature senescence (SIPS). The myoblasts was grouped as young control, SIPS-induced, TRF control, TRF pretreatment, and TRF posttreatment. Optimum dose of TRF, morphological observation, activity of senescence-associated β-galactosidase (SA-β-galactosidase), and cell proliferation were determined. 50 μg/mL TRF treatment exhibited the highest cell proliferation capacity. SIPS-induced myoblasts exhibit large flattened cells and prominent intermediate filaments (senescent-like morphology). The activity of SA-β-galactosidase was significantly increased, but the proliferation capacity was significantly reduced as compared to young control. The activity of SA-β-galactosidase was significantly reduced and cell proliferation was significantly increased in the posttreatment group whereas there was no significant difference in SA-β-galactosidase activity and proliferation capacity of pretreatment group as compared to SIPS-induced myoblasts. Based on the data, we hypothesized that TRF may reverse the myoblasts aging through replenishing the regenerative capacity of the cells. However, further investigation on the mechanism of TRF in reversing the myoblast aging is needed. PMID:24349615

  12. Chilling Stress—The Key Predisposing Factor for Causing Alternaria alternata Infection and Leading to Cotton (Gossypium hirsutum L.) Leaf Senescence

    PubMed Central

    Zhao, Jingqing; Li, Sha; Jiang, Tengfei; Liu, Zhi; Zhang, Wenwei; Jian, Guiliang; Qi, Fangjun

    2012-01-01

    Leaf senescence plays a vital role in nutrient recycling and overall capacity to assimilate carbon dioxide. Cotton premature leaf senescence, often accompanied with unexpected short-term low temperature, has been occurring with an increasing frequency in many cotton-growing areas and causes serious reduction in yield and quality of cotton. The key factors for causing and promoting cotton premature leaf senescence are still unclear. In this case, the relationship between the pre-chilling stress and Alternaria alternata infection for causing cotton leaf senescence was investigated under precisely controlled laboratory conditions with four to five leaves stage cotton plants. The results showed short-term chilling stress could cause a certain degree of physiological impairment to cotton leaves, which could be recovered to normal levels in 2–4 days when the chilling stresses were removed. When these chilling stress injured leaves were further inoculated with A. alternata, the pronounced appearance and development of leaf spot disease, and eventually the pronounced symptoms of leaf senescence, occurred on these cotton leaves. The onset of cotton leaf senescence at this condition was also reflected in various physiological indexes such as irreversible increase in malondialdehyde (MDA) content and electrolyte leakage, irreversible decrease in soluble protein content and chlorophyll content, and irreversible damage in leaves' photosynthesis ability. The presented results demonstrated that chilling stress acted as the key predisposing factor for causing A. alternata infection and leading to cotton leaf senescence. It could be expected that the understanding of the key factors causing and promoting cotton leaf senescence would be helpful for taking appropriate management steps to prevent cotton premature leaf senescence. PMID:22558354

  13. Embryonic senescence and laminopathies in a progeroid zebrafish model.

    PubMed

    Koshimizu, Eriko; Imamura, Shintaro; Qi, Jie; Toure, Jamal; Valdez, Delgado M; Carr, Christopher E; Hanai, Jun-ichi; Kishi, Shuji

    2011-03-30

    Mutations that disrupt the conversion of prelamin A to mature lamin A cause the rare genetic disorder Hutchinson-Gilford progeria syndrome and a group of laminopathies. Our understanding of how A-type lamins function in vivo during early vertebrate development through aging remains limited, and would benefit from a suitable experimental model. The zebrafish has proven to be a tractable model organism for studying both development and aging at the molecular genetic level. Zebrafish show an array of senescence symptoms resembling those in humans, which can be targeted to specific aging pathways conserved in vertebrates. However, no zebrafish models bearing human premature senescence currently exist. We describe the induction of embryonic senescence and laminopathies in zebrafish harboring disturbed expressions of the lamin A gene (LMNA). Impairments in these fish arise in the skin, muscle and adipose tissue, and sometimes in the cartilage. Reduced function of lamin A/C by translational blocking of the LMNA gene induced apoptosis, cell-cycle arrest, and craniofacial abnormalities/cartilage defects. By contrast, induced cryptic splicing of LMNA, which generates the deletion of 8 amino acid residues lamin A (zlamin A-Δ8), showed embryonic senescence and S-phase accumulation/arrest. Interestingly, the abnormal muscle and lipodystrophic phenotypes were common in both cases. Hence, both decrease-of-function of lamin A/C and gain-of-function of aberrant lamin A protein induced laminopathies that are associated with mesenchymal cell lineages during zebrafish early development. Visualization of individual cells expressing zebrafish progerin (zProgerin/zlamin A-Δ37) fused to green fluorescent protein further revealed misshapen nuclear membrane. A farnesyltransferase inhibitor reduced these nuclear abnormalities and significantly prevented embryonic senescence and muscle fiber damage induced by zProgerin. Importantly, the adult Progerin fish survived and remained fertile with

  14. Intracellular oxidant activity, antioxidant enzyme defense system, and cell senescence in fibroblasts with trisomy 21.

    PubMed

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS.

  15. Intracellular Oxidant Activity, Antioxidant Enzyme Defense System, and Cell Senescence in Fibroblasts with Trisomy 21

    PubMed Central

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS. PMID:25852816

  16. HIV-associated cellular senescence: A contributor to accelerated aging.

    PubMed

    Cohen, Justin; Torres, Claudio

    2017-07-01

    Due to the advent of antiretroviral therapy HIV is no longer a terminal disease and the HIV infected patients are becoming increasingly older. While this is a major success, with increasing age comes an increased risk for disease. The age-related comorbidities that HIV infected patients experience suggest that they suffer from accelerated aging. One possible contributor to this accelerated aging is cellular senescence, an age-associated response that can occur prematurely in response to stress, and that is emerging as a contributor to disease and aging. HIV patients experience several stressors such as the virus itself, antiretroviral drugs and to a lesser extent, substance abuse that can induce cellular senescence. This review summarizes the current knowledge of senescence induction in response to these stressors and their relation to the comorbidities in HIV patients. Cellular senescence may be a possible therapeutic target for these comorbidities. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression

    PubMed Central

    Yeh, Yueh-Chiao; Liu, Tsun-Jui; Lai, Hui-Chin

    2015-01-01

    Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1–2.5 μg/mL) cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5–10 μg/mL) precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice. PMID:25737737

  18. SORBS2 and TLR3 induce premature senescence in primary human fibroblasts and keratinocytes

    PubMed Central

    2013-01-01

    Background Genetic aberrations are required for the progression of HPV-induced cervical precancers. A prerequisite for clonal expansion of cancer cells is unlimited proliferative capacity. In a cell culture model for cervical carcinogenesis loss of genes located on chromosome 4q35→qter and chromosome 10p14-p15 were found to be associated with escape from senescence. Moreover, by LOH and I-FISH analyses a higher frequency of allele loss of these regions was also observed in cervical carcinomas as compared to CIN3. The aim of this study was to identify candidate senescence-related genes located on chromosome 4q35→qter and chromosome 10p14-p15 which may contribute to clonal expansion at the transition of CIN3 to cancer. Methods Microarray expression analyses were used to identify candidate genes down-regulated in cervical carcinomas as compared to CIN3. In order to relate these genes with the process of senescence their respective cDNAs were overexpressed in HPV16-immortalized keratinocytes as well as in primary human fibroblasts and keratinocytes using lentivirus mediated gene transduction. Results Overall fifteen genes located on chromosome 4q35→qter and chromosome 10p14-p15 were identified. Ten of these genes could be validated in biopsies by RT-PCR. Of interest is the novel finding that SORBS2 and TLR3 can induce senescence in primary human fibroblasts and keratinocytes but not in HPV-immortalized cell lines. Intriguingly, the endogenous expression of both genes increases during finite passaging of primary keratinocytes in vitro. Conclusions The relevance of the genes SORBS2 and TLR3 in the process of cellular senescence warrants further investigation. In ongoing experiments we are investigating whether this increase in gene expression is also characteristic of replicative senescence. PMID:24165198

  19. CD9 monoclonal antibody-conjugated PEGylated liposomes for targeted delivery of rapamycin in the treatment of cellular senescence

    NASA Astrophysics Data System (ADS)

    Thuy Nguyen, Hanh; Thapa, Raj Kumar; Shin, Beom Soo; Jeong, Jee-Heon; Kim, Jae-Ryong; Yong, Chul Soon; Kim, Jong Oh

    2017-03-01

    Premature cellular senescence refers to the state of irreversible cell cycle arrest due to DNA damage or other stresses. In this study, CD9 monoclonal antibody (CD9mAb) was successfully conjugated to the surface of PEGylated liposomes for targeted delivery of rapamycin (LR-CD9mAb) to overcome senescence of CD9 receptor-overexpressing cells. LR-CD9mAb has a small particle size (143.3 ± 2.4 nm), narrow size distribution (polydispersity index: 0.220 ± 0.036), and negative zeta potential (-14.6 ± 1.2 mV). The uptake of CD9-targeted liposomes by premature senescent human dermal fibroblasts (HDFs) was higher than that by young HDFs, as displayed by confocal microscopic images. The senescence might not be reversed by treatment with rapamycin; however, the drug promoted cell proliferation and reduced the number of cells that expressed the senescence-associated-β-galactosidase (SA-β-gal). These effects were further confirmed by cell viability, cell cycle, and Western blotting analyses. Moreover, CD9-targeted liposomes showed better anti-senescence activity, in comparison with free rapamycin or the conventional liposomal formulation, suggesting the potential application of this system in further in vivo studies.

  20. Induction of senescence pathways in Kindler syndrome primary keratinocytes.

    PubMed

    Piccinni, E; Di Zenzo, G; Maurelli, R; Dellambra, E; Teson, M; Has, C; Zambruno, G; Castiglia, D

    2013-05-01

    Individuals with Kindler syndrome (KS) have loss-of-function mutations in the FERMT1 gene that encodes the focal adhesion component kindlin-1. The major clinical manifestation of KS is epidermal atrophy (premature skin ageing). This phenotypic feature is thought to be related to the decreased proliferation rate of KS keratinocytes; nevertheless, molecular mediators of such abnormal behaviour have not been fully elucidated. To investigate how kindlin-1 deficiency affects the proliferative potential of primary human keratinocytes. We serially cultivated nine primary KS keratinocyte strains until senescence and determined their lifespan and colony-forming efficiency (CFE) at each serial passage. The expression of molecular markers of stemness and cellular senescence were investigated by immunoblotting using cell extracts of primary keratinocyte cultures from patients with KS and healthy donors. In another set of experiments, kindlin-1 downregulation in normal keratinocytes was obtained by small interfering RNA (siRNA) technology. We found that KS keratinocytes exhibited a precocious senescence and strongly reduced clonogenic potential. Moreover, KS cultures showed a strikingly increased percentage of aborted colonies (paraclones) already at early passages indicating an early depletion of stem cells. Immunoblotting analysis of KS keratinocyte extracts showed reduced levels of the stemness markers p63 and Bmi-1, upregulation of p16 and scant amounts of hypophosphorylated Rb protein, which indicated cell cycle-arrested status. Treatment of normal human primary keratinocytes with siRNA targeting kindlin-1 proved that its deficiency was directly responsible for p63, Bmi-1 and pRb downregulation and p16 induction. Our data directly implicate kindlin-1 in preventing premature senescence of keratinocytes. © 2013 The Authors. BJD © 2013 British Association of Dermatologists.

  1. Potential roles of DNA methylation in the initiation and establishment of replicative senescence revealed by array-based methylome and transcriptome analyses

    PubMed Central

    Sakaki, Mizuho; Ebihara, Yukiko; Okamura, Kohji; Nakabayashi, Kazuhiko; Igarashi, Arisa; Matsumoto, Kenji; Hata, Kenichiro; Kobayashi, Yoshiro

    2017-01-01

    Cellular senescence is classified into two groups: replicative and premature senescence. Gene expression and epigenetic changes are reported to differ between these two groups and cell types. Normal human diploid fibroblast TIG-3 cells have often been used in cellular senescence research; however, their epigenetic profiles are still not fully understood. To elucidate how cellular senescence is epigenetically regulated in TIG-3 cells, we analyzed the gene expression and DNA methylation profiles of three types of senescent cells, namely, replicatively senescent, ras-induced senescent (RIS), and non-permissive temperature-induced senescent SVts8 cells, using gene expression and DNA methylation microarrays. The expression of genes involved in the cell cycle and immune response was commonly either down- or up-regulated in the three types of senescent cells, respectively. The altered DNA methylation patterns were observed in replicatively senescent cells, but not in prematurely senescent cells. Interestingly, hypomethylated CpG sites detected on non-CpG island regions (“open sea”) were enriched in immune response-related genes that had non-CpG island promoters. The integrated analysis of gene expression and methylation in replicatively senescent cells demonstrated that differentially expressed 867 genes, including cell cycle- and immune response-related genes, were associated with DNA methylation changes in CpG sites close to the transcription start sites (TSSs). Furthermore, several miRNAs regulated in part through DNA methylation were found to affect the expression of their targeted genes. Taken together, these results indicate that the epigenetic changes of DNA methylation regulate the expression of a certain portion of genes and partly contribute to the introduction and establishment of replicative senescence. PMID:28158250

  2. Blocking negative effects of senescence in human skin fibroblasts with a plant extract.

    PubMed

    Lämmermann, Ingo; Terlecki-Zaniewicz, Lucia; Weinmüllner, Regina; Schosserer, Markus; Dellago, Hanna; de Matos Branco, André Dargen; Autheried, Dominik; Sevcnikar, Benjamin; Kleissl, Lisa; Berlin, Irina; Morizot, Frédérique; Lejeune, Francois; Fuzzati, Nicola; Forestier, Sandra; Toribio, Alix; Tromeur, Anaïs; Weinberg, Lionel; Higareda Almaraz, Juan Carlos; Scheideler, Marcel; Rietveld, Marion; El Ghalbzouri, Abdoel; Tschachler, Erwin; Gruber, Florian; Grillari, Johannes

    2018-01-01

    There is increasing evidence that senescent cells are a driving force behind many age-related pathologies and that their selective elimination increases the life- and healthspan of mice. Senescent cells negatively affect their surrounding tissue by losing their cell specific functionality and by secreting a pro-tumorigenic and pro-inflammatory mixture of growth hormones, chemokines, cytokines and proteases, termed the senescence-associated secretory phenotype (SASP). Here we identified an extract from the plant Solidago virgaurea subsp. alpestris , which exhibited weak senolytic activity, delayed the acquisition of a senescent phenotype and induced a papillary phenotype with improved functionality in human dermal fibroblasts. When administered to stress-induced premature senescent fibroblasts, this extract changed their global mRNA expression profile and particularly reduced the expression of various SASP components, thereby ameliorating the negative influence on nearby cells. Thus, the investigated plant extract represents a promising possibility to block age-related loss of tissue functionality.

  3. Instant Messaging by SIP

    NASA Astrophysics Data System (ADS)

    Muhi, Daniel; Dulai, Tibor; Jaskó, Szilárd

    2008-11-01

    SIP is a general-purpose application layer protocol which is able to establish sessions between two or more parties. These sessions are mainly telephone calls and multimedia conferences. However it can be used for other purposes like instant messaging and presence service. SIP has a very important role in mobile communication as more and more communicating applications are going mobile. In this paper we would like to show how SIP can be used for instant messaging purposes.

  4. Sirtuins, Cell Senescence, and Vascular Aging.

    PubMed

    Kida, Yujiro; Goligorsky, Michael S

    2016-05-01

    The sirtuins (SIRTs) constitute a class of proteins with nicotinamide adenine dinucleotide-dependent deacetylase or adenosine diphosphate-ribosyltransferase activity. Seven SIRT family members have been identified in mammals, from SIRT1, the best studied for its role in vascular aging, to SIRT7. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are nuclear. Extensive studies have clearly revealed that SIRT proteins regulate diverse cell functions and responses to stressors. Vascular aging involves the aging process (senescence) of endothelial and vascular smooth muscle cells. Two types of cell senescence have been identified: (1) replicative senescence with telomere attrition; and (2) stress-induced premature senescence without telomere involvement. Both types of senescence induce vascular cell growth arrest and loss of vascular homeostasis, and contribute to the initiation and progression of cardiovascular diseases. Previous mechanistic studies have revealed in detail that SIRT1, SIRT3, and SIRT6 show protective functions against vascular aging, and definite vascular function of other SIRTs is under investigation. Thus, direct SIRT modulation and nicotinamide adenine dinucleotide stimulation of SIRT are promising candidates for cardiovascular disease therapy. A small number of pilot studies have been conducted to assess SIRT modulation in humans. These clinical studies have not yet provided convincing evidence that SIRT proteins alleviate morbidity and mortality in patients with cardiovascular diseases. The outcomes of multiple ongoing clinical trials are awaited to define the efficacy of SIRT modulators and SIRT activators in cardiovascular diseases, along with the potential adverse effects of chronic SIRT modulation. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  5. Streamlining the SIP Process

    EPA Pesticide Factsheets

    EPA collaborated with the The National Association of Clean Air Agencies (NACAA/ECOs) SIP Reform Work Group to minimize federal and state burden in developing SIPs, but ensure the plans effectiveness in complying with the Clean Air Act.

  6. 75 FR 28626 - Disease, Disability, and Injury Prevention and Control Special Interest Projects (SIPs): SIP 10...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Disease, Disability, and Injury Prevention and Control Special Interest Projects (SIPs): SIP 10-029, Pilot Study--Cancer Survivorship Care Planning & SIP 10-030, Evaluating Special Events as a Recruitment Strategy for Cancer Screening, Initial Review In accordance...

  7. Metabolic Dysfunction Consistent with Premature Aging Results from Deletion of Pim Kinases

    PubMed Central

    Din, Shabana; Konstandin, Mathias H; Johnson, Bevan; Emathinger, Jacqueline; Völkers, Mirko; Toko, Haruhiro; Collins, Brett; Ormachea, Lucy; Samse, Kaitlen; Kubli, Dieter A; De La Torre, Andrea; Kraft, Andrew S; Gustafsson, Asa B; Kelly, Daniel P; Sussman, Mark A

    2014-01-01

    Rationale The senescent cardiac phenotype is accompanied by changes in mitochondrial function and biogenesis causing impairment in energy provision. The relationship between myocardial senescence and Pim kinases deserves attention since Pim-1 kinase is cardioprotective, in part, by preservation of mitochondrial integrity. Study of the pathological effects resulting from genetic deletion of all Pim kinase family members could provide important insight regarding cardiac mitochondrial biology and the aging phenotype. Objective Demonstrate myocardial senescence is promoted by loss of Pim leading to premature aging and aberrant mitochondrial function. Methods and Results Cardiac myocyte senescence was evident at three months of age in Pim Triple KnockOut (PTKO) mice, where all three isoforms of Pim kinase family members are genetically deleted. Cellular hypertrophic remodeling and fetal gene program activation was followed by heart failure at six months in PTKO mice. Metabolic dysfunction is an underlying cause of cardiac senescence and instigates a decline in cardiac function. Altered mitochondrial morphology is evident consequential to Pim deletion together with decreased ATP levels and increased phosphorylated AMPK, exposing an energy deficiency in PTKO mice. Expression of the genes encoding master regulators of mitochondrial biogenesis, PPARγ coactivator-1 (PGC-1) α and β were diminished in PTKO hearts, as were downstream targets included in mitochondrial energy transduction, including fatty acid oxidation. Reversal of the dysregulated metabolic phenotype was observed by overexpressing c-Myc, a downstream target of Pim kinases. Conclusion Pim kinases prevent premature cardiac aging and maintain a healthy pool of functional mitochondria leading to efficient cellular energetics. PMID:24916111

  8. A guanine insert in OsBBS1 leads to early leaf senescence and salt stress sensitivity in rice (Oryza sativa L.).

    PubMed

    Zeng, Dong-Dong; Yang, Cheng-Cong; Qin, Ran; Alamin, Md; Yue, Er-Kui; Jin, Xiao-Li; Shi, Chun-Hai

    2018-06-01

    A rice receptor-like kinase gene OSBBS1/OsRLCK109 was identified; this gene played vital roles in leaf senescence and the salt stress response. Early leaf senescence can cause negative effects on rice yield, but the underlying molecular regulation is not fully understood. bilateral blade senescence 1 (bbs1), an early leaf senescence mutant with a premature senescence phenotype that occurs mainly performing at the leaf margins, was isolated from a rice mutant population generated by ethylmethane sulfonate (EMS) treatment. The mutant showed premature leaf senescence beginning at the tillering stage and exhibited severe symptoms at the late grain-filling stage. bbs1 showed accelerated dark-induced leaf senescence. The OsBBS1 gene was cloned by a map-based cloning strategy, and a guanine (G) insertion was found in the first exon of LOC_Os03g24930. This gene encodes a receptor-like cytoplasmic kinase and was named OsRLCK109 in a previous study. Transgenic LOC_Os03g24930 knockout plants generated by a CRISPR/Cas9 strategy exhibited similar early leaf senescence phenotypes as did the bbs1 mutant, which confirmed that LOC_Os03g24930 was the OsBBS1 gene. OsBBS1/OsRLCK109 was expressed in all detected tissues and was predominantly expressed in the main vein region of mature leaves. The expression of OsBBS1 could be greatly induced by salt stress, and the bbs1 mutant exhibited hypersensitivity to salt stress. In conclusion, this is the first identification of OsRLCKs participating in leaf senescence and playing critical roles in the salt stress response in rice (Oryza sativa L.).

  9. MicroRNA-33 promotes the replicative senescence of mouse embryonic fibroblasts by suppressing CDK6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shun; Huang, Haijiao; Li, Nanhong

    2016-05-13

    MicroRNAs are a large class of tiny noncoding RNAs, which have emerged as critical regulators of gene expression, and thus are involved in multiple cellular processes, including cellular senescence. MicroRNA-33 has previously been established to exert crucial effect on cell proliferation, lipid metabolism and cholesterol metabolism. Nonetheless, the association between microRNA-33 and cellular senescence and its underlying molecular mechanism are far to be elucidated. The present study has attempted to probe into the effect of microRNA-33 on MEFs senescence. Our data unveiled that microRNA-33 was dramatically down-regulated in senescent MEFs compared to the young MEFs, and ectopic expression of microRNA-33more » promoted MEFs senescence, while knock-down of microRNA-33 exhibited a protective effect against senescence phenotype. Moreover, we verified CDK6 as a direct target of microRNA-33 in mouse. Silencing of CDK6 induced the premature senescence phenotype of MEFs similarly as microRNA-33, while enforced expression of CDK6 significantly reverse the senescence-induction effect of microRNA-33. Taken together, our results suggested that microRNA-33 enhanced the replicative senescence of MEFs potentially by suppressing CDK6 expression. -- Highlights: •MicroRNA-33 was dramatically down-regulated in senescent MEF cells. •Altered expression of microRNA-33 exerted a critical role in MEFs senescence. •MicroRNA-33 promoted the replicative senescence of MEFs via targeting of CDK6.« less

  10. Maternal characteristics versus egg size and energy density: do stocked lake trout in Lake Ontario experience premature reproductive senescence?

    USGS Publications Warehouse

    Lantry, B.F.; O'Gorman, R.; Machut, L.S.

    2008-01-01

    Observations from September 1994 and 1997 collections of hatchery-origin, mature female lake trout (Salvelinus namaycush) from Lake Ontario indicated that egg mass decreased with age, fueling the notion that stocked fish experienced premature reproductive senescence. Supplemental collections during September 2002 and November 2002-2004 were combined with the 1994 and 1997 samples to examine whether sample date or maternal age, body mass, condition (K), egg count, or strain were related to egg mass or energy content (percentage dry mass [%DM]). Body mass was correlated with egg mass for age ≥ 8 lake trout sampled in September, and egg count was correlated with egg mass for September age-6 lake trout only. Within each month, egg mass was not related to K or egg %DM, however, egg %DM was 1.52% greater (P ≤ 0.0247) in November than in September which is equivalent to a 110 cal/g difference. Samples were grouped for the three most abundant strains (Seneca, Superior, and Ontario) after finding no strain or year effects from our 1994 and 1997 samples and based on life history data from the literature and our assessment sampling. Further analysis indicated that September egg masses were greater for fish ages ≤ 6 than for fish ages ≥ 8. The age effect disappeared in November when mean egg mass across all ages (0.078 g) was greater than September means (P < 0.0005) for ages -5 (0.054 g), -6 (0.057 g) and ≥ 8 (0.041 g). Our results indicate that the decrease in egg mass with female age in September was not due to senescence, but to oogenesis being closer to completion in young age-5 and -6 fish than in older individuals.

  11. Polyploidy Formation in Doxorubicin-Treated Cancer Cells Can Favor Escape from Senescence.

    PubMed

    Mosieniak, Grazyna; Sliwinska, Malgorzata A; Alster, Olga; Strzeszewska, Anna; Sunderland, Piotr; Piechota, Malgorzata; Was, Halina; Sikora, Ewa

    2015-12-01

    Cancer cells can undergo stress-induced premature senescence, which is considered to be a desirable outcome of anticancer treatment. However, the escape from senescence and cancer cell repopulation give rise to some doubts concerning the effectiveness of the senescence-induced anticancer therapy. Similarly, it is postulated that polyploidization of cancer cells is connected with disease relapse. We postulate that cancer cell polyploidization associated with senescence is the culprit of atypical cell divisions leading to cancer cell regrowth. Accordingly, we aimed to dissociate between these two phenomena. We induced senescence in HCT 116 cells by pulse treatment with doxorubicin and observed transiently increased ploidy, abnormal nuclear morphology, and various distributions of some proteins (e.g., p21, Ki-67, SA-β-galactosidase) in the subnuclei. Doxorubicin-treated HCT 116 cells displayed an increased production of reactive oxygen species (ROS) possibly caused by an increased amount of mitochondria, which are characterized by low membrane potential. A decrease in the level of ROS by Trolox partially protected the cells from polyploidization but not from senescence. Interestingly, a decreased level of ROS prevented the cells from escaping senescence. We also show that MCF7 cells senesce, but this is not accompanied by the increase of ploidy upon doxorubicin treatment. Moreover, they were stably growth arrested, thus proving that polyploidy but not senescence per se enables to regain the ability to proliferate. Our preliminary results indicate that the different propensity of the HCT 116 and MCF7 cells to increase ploidy upon cell senescence could be caused by a different level of the mTOR and/or Pim-1 kinases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. A steroid like phytochemical Antcin M is an anti-aging reagent that eliminates hyperglycemia-accelerated premature senescence in dermal fibroblasts by direct activation of Nrf2 and SIRT-1

    PubMed Central

    Senthil, Kumar K.J.; Gokila, Vani M.; Mau, Jeng-Leun; Lin, Chin-Chung; Chu, Fang-Hua; Wei, Chia-Cheng; Liao, Vivian Hsiu-Chuan; Wang, Sheng-Yang

    2016-01-01

    The present study revealed the anti-aging properties of antcin M (ANM) and elucidated the molecular mechanism underlying the effects. We found that exposure of human normal dermal fibroblasts (HNDFs) to high-glucose (HG, 30 mM) for 3 days, accelerated G0/G1 phase arrest and senescence. Indeed, co-treatment with ANM (10 μM) significantly attenuated HG-induced growth arrest and promoted cell proliferation. Further molecular analysis revealed that ANM blocked the HG-induced reduction in G1-S transition regulatory proteins such as cyclin D, cyclin E, CDK4, CDK6, CDK2 and protein retinoblastoma (pRb). In addition, treatment with ANM eliminated HG-induced reactive oxygen species (ROS) through the induction of anti-oxidant genes, HO-1 and NQO-1 via transcriptional activation of Nrf2. Moreover, treatment with ANM abolished HG-induced SIPS as evidenced by reduced senescence-associated β-galactosidase (SA-β-gal) activity. This effect was further confirmed by reduction in senescence-associated marker proteins including, p21CIP1, p16INK4A, and p53/FoxO1 acetylation. Also, the HG-induced decline in aging-related marker protein SMP30 was rescued by ANM. Furthermore, treatment with ANM increased SIRT-1 expression, and prevented SIRT-1 depletion. This protection was consistent with inhibition of SIRT-1 phosphorylation at Ser47 followed by blocking its upstream kinases, p38 MAPK and JNK/SAPK. Further analysis revealed that ANM partially protected HG-induced senescence in SIRT-1 silenced cells. A similar effect was also observed in Nrf2 silenced cells. However, a complete loss of protection was observed in both Nrf2 and SIRT-1 knockdown cells suggesting that both induction of Nrf2-mediated anti-oxidant defense and SIRT-1-mediated deacetylation activity contribute to the anti-aging properties of ANM in vitro. Result of in vivo studies shows that ANM-treated C. elegens exhibits an increased survival rate during HG-induced oxidative stress insult. Furthermore, ANM significantly

  13. Lightweight SIP/SDP compression scheme (LSSCS)

    NASA Astrophysics Data System (ADS)

    Wu, Jian J.; Demetrescu, Cristian

    2001-10-01

    In UMTS new IP based services with tight delay constraints will be deployed over the W-CDMA air interface such as IP multimedia and interactive services. To integrate the wireline and wireless IP services, 3GPP standard forum adopted the Session Initiation Protocol (SIP) as the call control protocol for the UMTS Release 5, which will implement next generation, all IP networks for real-time QoS services. In the current form the SIP protocol is not suitable for wireless transmission due to its large message size which will need either a big radio pipe for transmission or it will take far much longer to transmit than the current GSM Call Control (CC) message sequence. In this paper we present a novel compression algorithm called Lightweight SIP/SDP Compression Scheme (LSSCS), which acts at the SIP application layer and therefore removes the information redundancy before it is sent to the network and transport layer. A binary octet-aligned header is added to the compressed SIP/SDP message before sending it to the network layer. The receiver uses this binary header as well as the pre-cached information to regenerate the original SIP/SDP message. The key features of the LSSCS compression scheme are presented in this paper along with implementation examples. It is shown that this compression algorithm makes SIP transmission efficient over the radio interface without losing the SIP generality and flexibility.

  14. Early-onset Evans syndrome, immunodeficiency, and premature immunosenescence associated with tripeptidyl-peptidase II deficiency

    PubMed Central

    Stepensky, Polina; Rensing-Ehl, Anne; Gather, Ruth; Revel-Vilk, Shoshana; Fischer, Ute; Nabhani, Schafiq; Beier, Fabian; Brümmendorf, Tim H.; Fuchs, Sebastian; Zenke, Simon; Firat, Elke; Pessach, Vered Molho; Borkhardt, Arndt; Rakhmanov, Mirzokhid; Keller, Bärbel; Warnatz, Klaus; Eibel, Hermann; Niedermann, Gabriele; Elpeleg, Orly

    2015-01-01

    Autoimmune cytopenia is a frequent manifestation of primary immunodeficiencies. Two siblings presented with Evans syndrome, viral infections, and progressive leukopenia. DNA available from one patient showed a homozygous frameshift mutation in tripeptidyl peptidase II (TPP2) abolishing protein expression. TPP2 is a serine exopeptidase involved in extralysosomal peptide degradation. Its deficiency in mice activates cell death programs and premature senescence. Similar to cells from naïve, uninfected TPP2-deficient mice, patient cells showed increased major histocompatibility complex I expression and most CD8+ T-cells had a senescent CCR7-CD127−CD28−CD57+ phenotype with poor proliferative responses and enhanced staurosporine-induced apoptosis. T-cells showed increased expression of the effector molecules perforin and interferon-γ with high expression of the transcription factor T-bet. Age-associated B-cells with a CD21− CD11c+ phenotype expressing T-bet were increased in humans and mice, combined with antinuclear antibodies. Moreover, markers of senescence were also present in human and murine TPP2-deficient fibroblasts. Telomere lengths were normal in patient fibroblasts and granulocytes, and low normal in lymphocytes, which were compatible with activation of stress-induced rather than replicative senescence programs. TPP2 deficiency is the first primary immunodeficiency linking premature immunosenescence to severe autoimmunity. Determination of senescent lymphocytes should be part of the diagnostic evaluation of children with refractory multilineage cytopenias. PMID:25414442

  15. Anti-aging Effect of Transplanted Amniotic Membrane Mesenchymal Stem Cells in a Premature Aging Model of Bmi-1 Deficiency

    PubMed Central

    Xie, Chunfeng; Jin, Jianliang; Lv, Xianhui; Tao, Jianguo; Wang, Rong; Miao, Dengshun

    2015-01-01

    To determine whether transplanted amniotic membrane mesenchymal stem cells (AMSCs) ameliorated the premature senescent phenotype of Bmi-1-deficient mice, postnatal 2-day-old Bmi-1−/− mice were injected intraperitoneally with the second-passage AMSCs from amniotic membranes of β-galactosidase (β-gal) transgenic mice or wild-type (WT) mice labeled with DiI. Three reinjections were given, once every seven days. Phenotypes of 5-week-old β-gal+ AMSC-transplanted or 6-week-old DiI+ AMSC-transplanted Bmi-1−/− mice were compared with vehicle-transplanted Bmi-1−/− and WT mice. Vehicle-transplanted Bmi-1−/− mice displayed growth retardation and premature aging with decreased cell proliferation and increased cell apoptosis; a decreased ratio and dysmaturity of lymphocytic series; premature osteoporosis with reduced osteogenesis and increased adipogenesis; redox imbalance and DNA damage in multiple organs. Transplanted AMSCs carried Bmi-1 migrated into multiple organs, proliferated and differentiated into multiple tissue cells, promoted growth and delayed senescence in Bmi-1−/− transplant recipients. The dysmaturity of lymphocytic series were ameliorated, premature osteoporosis were rescued by promoting osteogenesis and inhibiting adipogenesis, the oxidative stress and DNA damage in multiple organs were inhibited by the AMSC transplantation in Bmi-1−/− mice. These findings indicate that AMSC transplantation ameliorated the premature senescent phenotype of Bmi-1-deficient mice and could be a novel therapy to delay aging and prevent aging-associated degenerative diseases. PMID:26370922

  16. A drug-induced accelerated senescence (DIAS) is a possibility to study aging in time lapse.

    PubMed

    Alili, Lirija; Diekmann, Johanna; Giesen, Melanie; Holtkötter, Olaf; Brenneisen, Peter

    2014-06-01

    Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. Accordingly, a stress-induced senescence-like phenotype of human dermal fibroblasts can be induced in vitro by the exposure of human diploid fibroblasts to subcytotoxic concentrations of hydrogen peroxide. However, several biomarkers of replicative senescence e.g. cell cycle arrest and enlarged morphology are abrogated 14 days after treatment, indicating that reactive oxygen species (ROS) rather acts as a trigger for short-term senescence (1-3 days) than being responsible for the maintenance of the senescence-like phenotype. Further, DNA-damaging factors are discussed resulting in a permanent senescent cell type. To induce long-term premature senescence and to understand the molecular alterations occurring during the aging process, we analyzed mitomycin C (MMC) as an alkylating DNA-damaging agent and ROS producer. Human dermal fibroblasts (HDF), used as model for skin aging, were exposed to non-cytotoxic concentrations of MMC and analyzed for potential markers of cellular aging, for example enlarged morphology, activity of senescence-associated-ß-galactosidase, cell cycle arrest, increased ROS production and MMP1-activity, which are well-documented for HDF in replicative senescence. Our data show that mitomycin C treatment results in a drug-induced accelerated senescence (DIAS) with long-term expression of senescence markers, demonstrating that a combination of different susceptibility factors, here ROS and DNA alkylation, are necessary to induce a permanent senescent cell type.

  17. School Inclusion Programmes (SIPS)

    ERIC Educational Resources Information Center

    Drossinou-Korea, Maria; Matousi, Dimitra; Panopoulos, Nikolaos; Paraskevopoulou, Aikaterini

    2016-01-01

    The purpose of this work was to understand the school inclusion programmes (SIPs) for students with special educational needs (SEN). The methodology was conducted in the field of special education (SE) and focuses on three case studies of students who was supported by SIPs. The Targeted, Individual, Structured, Inclusion Programme for students…

  18. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mytych, Jennifer, E-mail: jennifermytych@gmail.com; Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa; Wos, Izabela

    Monocytes ensure proper functioning and maintenance of epithelial cells, while good condition of monocytes is a key factor of these interactions. Although, it was shown that in some circumstances, a population of altered monocytes may appear, there is no data regarding their effect on epithelial cells. In this study, using direct co-culture model with LPS-activated and Dox-induced senescent THP-1 monocytes, we reported for the first time ROS-induced DNA damage, reduced metabolic activity, proliferation inhibition and cell cycle arrest followed by p16-, p21- and p27-mediated DNA damage response pathways activation, premature senescence and apoptosis induction in HeLa cells. Also, we showmore » that klotho protein possessing anti-aging and anti-inflammatory characteristics reduced cytotoxic and genotoxic events by inhibition of insulin/IGF-IR and downregulation of TRF1 and TRF2 proteins. Therefore, klotho protein could be considered as a protective factor against changes caused by altered monocytes in epithelial cells. - Highlights: • Activated and senescent THP-1 monocytes induced cyto- and genotoxicity in HeLa cells. • Altered monocytes provoked oxidative and nitrosative stress-induced DNA damage. • DNA damage activated DDR pathways and lead to premature senescence and apoptosis. • Klotho reduced ROS/RNS-mediated toxicity through insulin/IGF-IR pathway inhibition. • Klotho protects HeLa cells from cyto- and genotoxicity induced by altered monocytes.« less

  19. EPA Approved Regulations in the Texas SIP

    EPA Pesticide Factsheets

    changed name to EPA Approved Regulations in the Texas SIP, Add links to:Texas Read Me; Texas SIP History;Current/Previous SIP-Approved Regulations; Delete regulations--now in /node/191099, removed tables

  20. The oxidative hypothesis of senescence.

    PubMed

    Gilca, M; Stoian, I; Atanasiu, V; Virgolici, B

    2007-01-01

    The oxidative hypothesis of senescence, since its origin in 1956, has garnered significant evidence and growing support among scientists for the notion that free radicals play an important role in ageing, either as "damaging" molecules or as signaling molecules. Age-increasing oxidative injuries induced by free radicals, higher susceptibility to oxidative stress in short-lived organisms, genetic manipulations that alter both oxidative resistance and longevity and the anti-ageing effect of caloric restriction and intermittent fasting are a few examples of accepted scientific facts that support the oxidative theory of senescence. Though not completely understood due to the complex "network" of redox regulatory systems, the implication of oxidative stress in the ageing process is now well documented. Moreover, it is compatible with other current ageing theories (e.g, those implicating the mitochondrial damage/mitochondrial-lysosomal axis, stress-induced premature senescence, biological "garbage" accumulation, etc). This review is intended to summarize and critically discuss the redox mechanisms involved during the ageing process: sources of oxidant agents in ageing (mitochondrial -electron transport chain, nitric oxide synthase reaction- and non-mitochondrial- Fenton reaction, microsomal cytochrome P450 enzymes, peroxisomal beta -oxidation and respiratory burst of phagocytic cells), antioxidant changes in ageing (enzymatic- superoxide dismutase, glutathione-reductase, glutathion peroxidase, catalase- and non-enzymatic glutathione, ascorbate, urate, bilirubine, melatonin, tocopherols, carotenoids, ubiquinol), alteration of oxidative damage repairing mechanisms and the role of free radicals as signaling molecules in ageing.

  1. Molecular Insights into SIRT1 Protection Against UVB-Induced Skin Fibroblast Senescence by Suppression of Oxidative Stress and p53 Acetylation.

    PubMed

    Chung, Ki Wung; Choi, Yeon Ja; Park, Min Hi; Jang, Eun Ji; Kim, Dae Hyun; Park, Byung Hyun; Yu, Byung Pal; Chung, Hae Young

    2015-08-01

    Stresses, such as exposure to ultraviolet radiation and those associated with aging, are known to cause premature cellular senescence that is characterized by growth arrest and morphological and gene expression changes. This study was designed to investigate the protective effect of Sirtuin1 (SIRT1) on the UVB-induced premature senescence. Under in vitro experimental conditions, exposure to a subcytotoxic dose of UVB enhanced human skin fibroblasts senescence, as characterized by increased β-galactosidase activity and increased levels of senescence-associated proteins. However, adenovirus-mediated SIRT1 overexpression significantly protected fibroblasts from UVB-induced cellular deterioration. Exposure to UVB-induced cell senescence was associated with oxidative stress and p38 mitogen-activated protein kinase activation. Molecular analysis demonstrated that deacetylation of Forkhead box O3α (FOXO3α) by SIRT1 changed the transcriptional activity of FOXO3α and increased resistance to the oxidative stress. In addition, SIRT1 suppressed UVB-induced p53 acetylation and its transcriptional activity, which directly affected the cell cycle arrest induced by UVB. Further study demonstrated that SIRT1 activation inhibited cell senescence in the skin of the HR1 hairless mouse exposed to UVB. The study identifies a new role for SIRT1 in the UVB-induced senescence of skin fibroblats and provides a potential target for skin protection through molecuar insights into the mechanisms responsible for UVB-induced photoaging. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Infrastructure SIP Requirements and Guidance

    EPA Pesticide Factsheets

    The Clean Air Act requires states to submit SIPs that implement, maintain, and enforce a new or revised national ambient air quality standard (NAAQS) within 3 years of EPA issuing the standard. The Infrastructure SIP is required for all states.

  3. 75 FR 32190 - Disease, Disability, and Injury Prevention and Control Special Interest Projects (SIPs): SIP 10...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ... Approaches To Preventing Teen Pregnancy Among Underserved Populations and SIP 10-035, Impact of High School... received in response to ``SIP 10-033, Innovative Approaches to Preventing Teen Pregnancy among Underserved...

  4. BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21

    PubMed Central

    Lee, Hyemin; Dai, Fangyan; Zhuang, Li; Xiao, Zhen-Dong; Kim, Jongchan; Zhang, Yilei; Ma, Li; You, M. James; Wang, Zhong; Gan, Boyi

    2016-01-01

    BAF180 (also called PBRM1), a subunit of the SWI/SNF complex, plays critical roles in the regulation of chromatin remodeling and gene transcription, and is frequently mutated in several human cancers. However, the role of mammalian BAF180 in tumor suppression and tissue maintenance in vivo remains largely unknown. Here, using a conditional somatic knockout approach, we explored the cellular and organismal functions of BAF180 in mouse. BAF180 deletion in primary mouse embryonic fibroblasts (MEFs) triggers profound cell cycle arrest, premature cellular senescence, without affecting DNA damage response or chromosomal integrity. While somatic deletion of BAF180 in adult mice does not provoke tumor development, BAF180 deficient mice exhibit defects in hematopoietic system characterized by progressive reduction of hematopoietic stem cells (HSCs), defective long-term repopulating potential, and hematopoietic lineage developmental aberrations. BAF180 deletion results in elevated p21 expression in both MEFs and HSCs. Mechanistically, we showed that BAF180 binds to p21 promoter, and BAF180 deletion enhances the binding of modified histones associated with transcriptional activation on p21 promoter. Deletion of p21 rescues cell cycle arrest and premature senescence in BAF180 deficient MEFs, and partially rescues hematopoietic defects in BAF180 deficient mice. Together, our study identifies BAF180 as a critical regulator of cellular senescence and HSC homeostasis, which is at least partially regulated through BAF180-mediated suppression of p21 expression. Our results also suggest that senescence triggered by BAF180 inactivation may serve as a failsafe mechanism to restrain BAF180 deficiency-associated tumor development, providing a conceptual framework to further understand BAF180 function in tumor biology. PMID:26992241

  5. Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment

    PubMed Central

    Kim, Bong Cho; Lee, Hyung Chul; Lee, Je-Jung; Choi, Chang-Min; Kim, Dong-Kwan; Lee, Jae Cheol; Ko, Young-Gyu; Lee, Jae-Seon

    2012-01-01

    Premature senescence, a key strategy used to suppress carcinogenesis, can be driven by p53/p21 proteins in response to various stresses. Here, we demonstrate that Wig1 plays a critical role in this process through regulation of p21 mRNA stability. Wig1 controls the association of Argonaute2 (Ago2), a central component of the RNA-induced silencing complex (RISC), with target p21 mRNA via binding of the stem-loop structure near the microRNA (miRNA) target site. Depletion of Wig1 prohibited miRNA-mediated p21 mRNA decay and resulted in premature senescence. Wig1 plays an essential role in cell proliferation, as demonstrated in tumour xenografts in mice, and Wig1 and p21 mRNA levels are inversely correlated in human normal and cancer tissues. Together, our data indicate a novel role of Wig1 in RISC target accessibility, which is a key step in RNA-mediated gene silencing. In addition, these findings indicate that fine-tuning of p21 levels by Wig1 is essential for the prevention of cellular senescence. PMID:23085987

  6. Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment.

    PubMed

    Kim, Bong Cho; Lee, Hyung Chul; Lee, Je-Jung; Choi, Chang-Min; Kim, Dong-Kwan; Lee, Jae Cheol; Ko, Young-Gyu; Lee, Jae-Seon

    2012-11-14

    Premature senescence, a key strategy used to suppress carcinogenesis, can be driven by p53/p21 proteins in response to various stresses. Here, we demonstrate that Wig1 plays a critical role in this process through regulation of p21 mRNA stability. Wig1 controls the association of Argonaute2 (Ago2), a central component of the RNA-induced silencing complex (RISC), with target p21 mRNA via binding of the stem-loop structure near the microRNA (miRNA) target site. Depletion of Wig1 prohibited miRNA-mediated p21 mRNA decay and resulted in premature senescence. Wig1 plays an essential role in cell proliferation, as demonstrated in tumour xenografts in mice, and Wig1 and p21 mRNA levels are inversely correlated in human normal and cancer tissues. Together, our data indicate a novel role of Wig1 in RISC target accessibility, which is a key step in RNA-mediated gene silencing. In addition, these findings indicate that fine-tuning of p21 levels by Wig1 is essential for the prevention of cellular senescence.

  7. The Dual Role of Cellular Senescence in Developing Tumors and Their Response to Cancer Therapy

    PubMed Central

    Schosserer, Markus; Grillari, Johannes; Breitenbach, Michael

    2017-01-01

    induce senescence. Among them, oncogene-induced senescence and stress-induced premature senescence are prominent. New findings about the role of senescence in tumor biology are critically reviewed with respect to new suggestions for cancer therapy leveraging genetic and pharmacological methods to prevent senescence or to selectively kill senescent cells in tumors. PMID:29218300

  8. Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1

    PubMed Central

    Kucharewicz, Weronika; Distelfeld, Assaf; Bilger, Wolfgang; Müller, Maren; Munné-Bosch, Sergi; Hensel, Götz

    2017-01-01

    Abstract WHIRLY1 in barley was isolated as a potential regulator of the senescence-associated gene HvS40. In order to investigate whether the plastid–nucleus-located DNA/RNA-binding protein WHIRLY1 plays a role in regulation of leaf senescence, primary foliage leaves from transgenic barley plants with an RNAi-mediated knockdown of the WHIRLY1 gene were characterized by typical senescence parameters, namely pigment contents, function and composition of the photosynthetic apparatus, as well as expression of selected genes known to be either down- or up-regulated during leaf senescence. When the plants were grown at low light intensity, senescence progression was similar between wild-type and RNAi-W1 plants. Likewise, dark-induced senescence of detached leaves was not affected by reduction of WHIRLY1. When plants were grown at high light intensity, however, senescence was induced prematurely in wild-type plants but was delayed in RNAi-W1 plants. This result suggests that WHIRLY1 plays a role in light sensing and/or stress communication between chloroplasts and the nucleus. PMID:28338757

  9. Effects of PSAG12-IPT Gene Expression on Development and Senescence in Transgenic Lettuce1

    PubMed Central

    McCabe, Matthew S.; Garratt, Lee C.; Schepers, Frank; Jordi, Wilco J.R.M.; Stoopen, Geert M.; Davelaar, Evert; van Rhijn, J. Hans A.; Power, J. Brian; Davey, Michael R.

    2001-01-01

    An ipt gene under control of the senescence-specific SAG12 promoter from Arabidopsis (PSAG12-IPT) significantly delayed developmental and postharvest leaf senescence in mature heads of transgenic lettuce (Lactuca sativa L. cv Evola) homozygous for the transgene. Apart from retardation of leaf senescence, mature, 60-d-old plants exhibited normal morphology with no significant differences in head diameter or fresh weight of leaves and roots. Induction of senescence by nitrogen starvation rapidly reduced total nitrogen, nitrate, and growth of transgenic and azygous (control) plants, but chlorophyll was retained in the lower (outer) leaves of transgenic plants. Harvested PSAG12-IPT heads also retained chlorophyll in their lower leaves. During later development (bolting and preflowering) of transgenic plants, the decrease in chlorophyll, total protein, and Rubisco content in leaves was abolished, resulting in a uniform distribution of these components throughout the plants. Homozygous PSAG12-IPT lettuce plants showed a slight delay in bolting (4–6 d), a severe delay in flowering (4–8 weeks), and premature senescence of their upper leaves. These changes correlated with significantly elevated concentrations of cytokinin and hexoses in the upper leaves of transgenic plants during later stages of development, implicating a relationship between cytokinin and hexose concentrations in senescence. PMID:11598225

  10. Growth hormone is a cellular senescence target in pituitary and nonpituitary cells

    PubMed Central

    Chesnokova, Vera; Zhou, Cuiqi; Ben-Shlomo, Anat; Zonis, Svetlana; Tani, Yuji; Ren, Song-Guang; Melmed, Shlomo

    2013-01-01

    Premature proliferative arrest in benign or early-stage tumors induced by oncoproteins, chromosomal instability, or DNA damage is associated with p53/p21 activation, culminating in either senescence or apoptosis, depending on cell context. Growth hormone (GH) elicits direct peripheral metabolic actions as well as growth effects mediated by insulin-like growth factor 1 (IGF1). Locally produced peripheral tissue GH, in contrast to circulating pituitary-derived endocrine GH, has been proposed to be both proapoptotic and prooncogenic. Pituitary adenomas expressing and secreting GH are invariably benign and exhibit DNA damage and a senescent phenotype. We therefore tested effects of nutlin-induced p53-mediated senescence in rat and human pituitary cells. We show that DNA damage senescence induced by nutlin triggers the p53/p21 senescent pathway, with subsequent marked induction of intracellular pituitary GH in vitro. In contrast, GH is not induced in cells devoid of p53. Furthermore we show that p53 binds specific GH promoter motifs and enhances GH transcription and secretion in senescent pituitary adenoma cells and also in nonpituitary (human breast and colon) cells. In vivo, treatment with nutlin results in up-regulation of both p53 and GH in the pituitary gland, as well as increased GH expression in nonpituitary tissues (lung and liver). Intracrine GH acts in pituitary cells as an apoptosis switch for p53-mediated senescence, likely protecting the pituitary adenoma from progression to malignancy. Unlike in the pituitary, in nonpituitary cells GH exerts antiapoptotic properties. Thus, the results show that GH is a direct p53 transcriptional target and fulfills criteria as a p53 target gene. Induced GH is a readily measurable cell marker for p53-mediated cellular senescence. PMID:23940366

  11. Guidance on Streamlining the SIP Process

    EPA Pesticide Factsheets

    EPA collaborated with the The National Association of Clean Air Agencies (NACAA/ECOs) SIP Reform Work Group to minimize federal and state burden in developing SIPs, but ensure the plans effectiveness in complying with the Clean Air Act.

  12. (124)I-L19-SIP for immuno-PET imaging of tumour vasculature and guidance of (131)I-L19-SIP radioimmunotherapy.

    PubMed

    Tijink, Bernard M; Perk, Lars R; Budde, Marianne; Stigter-van Walsum, Marijke; Visser, Gerard W M; Kloet, Reina W; Dinkelborg, Ludger M; Leemans, C René; Neri, Dario; van Dongen, Guus A M S

    2009-08-01

    The human monoclonal antibody (MAb) fragment L19-SIP is directed against extra domain B (ED-B) of fibronectin, a marker of tumour angiogenesis. A clinical radioimmunotherapy (RIT) trial with (131)I-L19-SIP was recently started. In the present study, after GMP production of (124)I and efficient production of (124)I-L19-SIP, we aimed to demonstrate the suitability of (124)I-L19-SIP immuno-PET for imaging of angiogenesis at early-stage tumour development and as a scouting procedure prior to clinical (131)I-L19-SIP RIT. (124)I was produced in a GMP compliant way via (124)Te(p,n)(124)I reaction and using a TERIMO module for radioiodine separation. L19-SIP was radioiodinated by using a modified version of the IODO-GEN method. The biodistribution of coinjected (124)I- and (131)I-L19-SIP was compared in FaDu xenograft-bearing nude mice, while (124)I PET images were obtained from mice with tumours of <50 to approximately 700 mm(3). (124)I was produced highly pure with an average yield of 15.4 +/- 0.5 MBq/microAh, while separation yield was approximately 90% efficient with <0.5% loss of TeO(2). Overall labelling efficiency, radiochemical purity and immunoreactive fraction were for (124)I-L19-SIP: approximately 80 , 99.9 and >90%, respectively. Tumour uptake was 7.3 +/- 2.1, 10.8 +/- 1.5, 7.8 +/- 1.4, 5.3 +/- 0.6 and 3.1 +/- 0.4%ID/g at 3, 6, 24, 48 and 72 h p.i., resulting in increased tumour to blood ratios ranging from 6.0 at 24 h to 45.9 at 72 h p.i.. Fully concordant labelling and biodistribution results were obtained with (124)I- and (131)I-L19-SIP. Immuno-PET with (124)I-L19-SIP using a high-resolution research tomograph PET scanner revealed clear delineation of the tumours as small as 50 mm(3) and no adverse uptake in other organs. (124)I-MAb conjugates for clinical immuno-PET can be efficiently produced. Immuno-PET with (124)I-L19-SIP appeared qualified for sensitive imaging of tumour neovasculature and for predicting (131)I-L19-SIP biodistribution.

  13. The nuclear receptor NR2E1/TLX controls senescence.

    PubMed

    O'Loghlen, Ana; Martin, Nadine; Krusche, Benjamin; Pemberton, Helen; Alonso, Marta M; Chandler, Hollie; Brookes, Sharon; Parrinello, Simona; Peters, Gordon; Gil, Jesús

    2015-07-30

    The nuclear receptor NR2E1 (also known as TLX or tailless) controls the self-renewal of neural stem cells (NSCs) and has been implied as an oncogene which initiates brain tumors including glioblastomas. Despite NR2E1 regulating targets like p21(CIP1) or PTEN we still lack a full explanation for its role in NSC self-renewal and tumorigenesis. We know that polycomb repressive complexes also control stem cell self-renewal and tumorigenesis, but so far, no formal connection has been established between NR2E1 and PRCs. In a screen for transcription factors regulating the expression of the polycomb protein CBX7, we identified NR2E1 as one of its more prominent regulators. NR2E1 binds at the CBX7 promoter, inducing its expression. Notably CBX7 represses NR2E1 as part of a regulatory loop. Ectopic NR2E1 expression inhibits cellular senescence, extending cellular lifespan in fibroblasts via CBX7-mediated regulation of p16(INK4a) and direct repression of p21(CIP1). In addition NR2E1 expression also counteracts oncogene-induced senescence. The importance of NR2E1 to restrain senescence is highlighted through the process of knocking down its expression, which causes premature senescence in human fibroblasts and epithelial cells. We also confirmed that NR2E1 regulates CBX7 and restrains senescence in NSCs. Finally, we observed that the expression of NR2E1 directly correlates with that of CBX7 in human glioblastoma multiforme. Overall we identified control of senescence and regulation of polycomb action as two possible mechanisms that can join those so far invoked to explain the role of NR2E1 in control of NSC self-renewal and cancer.

  14. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression

    PubMed Central

    Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad

    2015-01-01

    Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression. PMID:26583057

  15. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression.

    PubMed

    Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad

    2015-01-01

    Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression.

  16. Clone of EPA Approved Regulations in the Texas SIP

    EPA Pesticide Factsheets

    changed name to EPA Approved Regulations in the Texas SIP, Add links to:Texas Read Me; Texas SIP History;Current/Previous SIP-Approved Regulations; Delete regulations--now in /node/191099, removed tables

  17. Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1.

    PubMed

    Kucharewicz, Weronika; Distelfeld, Assaf; Bilger, Wolfgang; Müller, Maren; Munné-Bosch, Sergi; Hensel, Götz; Krupinska, Karin

    2017-02-01

    WHIRLY1 in barley was isolated as a potential regulator of the senescence-associated gene HvS40. In order to investigate whether the plastid-nucleus-located DNA/RNA-binding protein WHIRLY1 plays a role in regulation of leaf senescence, primary foliage leaves from transgenic barley plants with an RNAi-mediated knockdown of the WHIRLY1 gene were characterized by typical senescence parameters, namely pigment contents, function and composition of the photosynthetic apparatus, as well as expression of selected genes known to be either down- or up-regulated during leaf senescence. When the plants were grown at low light intensity, senescence progression was similar between wild-type and RNAi-W1 plants. Likewise, dark-induced senescence of detached leaves was not affected by reduction of WHIRLY1. When plants were grown at high light intensity, however, senescence was induced prematurely in wild-type plants but was delayed in RNAi-W1 plants. This result suggests that WHIRLY1 plays a role in light sensing and/or stress communication between chloroplasts and the nucleus. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. REDOX REGULATION OF SIRT1 IN INFLAMMATION AND CELLULAR SENESCENCE

    PubMed Central

    Hwang, Jae-woong; Yao, Hongwei; Caito, Samuel; Sundar, Isaac K.; Rahman, Irfan

    2013-01-01

    Sirtuin1 (SIRT1) regulates inflammation, aging (lifespan and healthspan), calorie restriction/energetics, mitochondrial biogenesis, stress resistance, cellular senescence, endothelial functions, apoptosis/autophagy, and circadian rhythms through deacetylation of transcription factors and histones. SIRT1 level and activity are decreased in chronic inflammatory conditions and aging where oxidative stress occurs. SIRT1 is regulated by a NAD+-dependent DNA repair enzyme poly(ADP-ribose)-polymerase-1 (PARP-1), and subsequent NAD+ depletion by oxidative stresses may have consequent effects on inflammatory and stress responses as well as cellular senescence. SIRT1 has been shown to undergo covalent oxidative modifications by cigarette smoke-derived oxidants/aldehydes, leading to post-translational modifications, inactivation, and protein degradation. Furthermore, oxidant/carbonyl stress-mediated reduction of SIRT1 leads to the loss of its control on acetylation of target proteins including p53, RelA/p65 and FOXO3, thereby enhancing the inflammatory, pro-senescent and apoptotic responses, as well as endothelial dysfunction. In this review, the mechanisms of cigarette smoke/oxidant-mediated redox post-translational modifications of SIRT1 and its role in PARP1, NF-κB activation, FOXO3 and eNOS regulation, as well as chromatin remodeling/histone modifications during inflammaging are discussed. Furthermore, we also discussed various novel ways to activate SIRT1 either directly or indirectly, which may have therapeutic potential in attenuating inflammation and premature senescence involved in chronic lung diseases. PMID:23542362

  19. Chronic kidney disease: a clinical model of premature aging.

    PubMed

    Stenvinkel, Peter; Larsson, Tobias E

    2013-08-01

    Premature aging is a process associated with a progressive accumulation of deleterious changes over time, an impairment of physiologic functions, and an increase in the risk of disease and death. Regardless of genetic background, aging can be accelerated by the lifestyle choices and environmental conditions to which our genes are exposed. Chronic kidney disease is a common condition that promotes cellular senescence and premature aging through toxic alterations in the internal milieu. This occurs through several mechanisms, including DNA and mitochondria damage, increased reactive oxygen species generation, persistent inflammation, stem cell exhaustion, phosphate toxicity, decreased klotho expression, and telomere attrition. Because recent evidence suggests that both increased local signaling of growth factors (through the nutrient-sensing mammalian target of rapamycin) and decreased klotho expression are important modulators of aging, interventions that target these should be tested in this prematurely aged population. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  20. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Yingying; Chen, Xi; Yu, Dehai

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phasemore » blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.« less

  1. YB-1 Is Important for Late-Stage Embryonic Development, Optimal Cellular Stress Responses, and the Prevention of Premature Senescence

    PubMed Central

    Lu, Zhi Hong; Books, Jason T.; Ley, Timothy J.

    2005-01-01

    Proteins containing “cold shock” domains belong to the most evolutionarily conserved family of nucleic acid-binding proteins known among bacteria, plants, and animals. One of these proteins, YB-1, is widely expressed throughout development and has been implicated as a cell survival factor that regulates the transcription and/or translation of many cellular growth and death-related genes. For these reasons, YB-1 deficiency has been predicted to be incompatible with cell survival. However, the majority of YB-1−/− embryos develop normally up to embryonic day 13.5 (E13.5). After E13.5, YB-1−/− embryos exhibit severe growth retardation and progressive mortality, revealing a nonredundant role of YB-1 in late embryonic development. Fibroblasts derived from YB-1−/− embryos displayed a normal rate of protein synthesis and minimal alterations in the transcriptome and proteome but demonstrated reduced abilities to respond to oxidative, genotoxic, and oncogene-induced stresses. YB-1−/− cells under oxidative stress expressed high levels of the G1-specific CDK inhibitors p16Ink4a and p21Cip1 and senesced prematurely; this defect was corrected by knocking down CDK inhibitor levels with specific small interfering RNAs. These data suggest that YB-1 normally represses the transcription of CDK inhibitors, making it an important component of the cellular stress response signaling pathway. PMID:15899865

  2. Aged induced pluripotent stem cell (iPSCs) as a new cellular model for studying premature aging.

    PubMed

    Petrini, Stefania; Borghi, Rossella; D'Oria, Valentina; Restaldi, Fabrizia; Moreno, Sandra; Novelli, Antonio; Bertini, Enrico; Compagnucci, Claudia

    2017-05-31

    Nuclear integrity and mechanical stability of the nuclear envelope (NE) are conferred by the nuclear lamina, a meshwork of intermediate filaments composed of A- and B-type lamins, supporting the inner nuclear membrane and playing a pivotal role in chromatin organization and epigenetic regulation. During cell senescence, nuclear alterations also involving NE architecture are widely described. In the present study, we utilized induced pluripotent stem cells (iPSCs) upon prolonged in vitro culture as a model to study aging and investigated the organization and expression pattern of NE major constituents. Confocal and four-dimensional imaging combined with molecular analyses, showed that aged iPSCs are characterized by nuclear dysmorphisms, nucleoskeletal components (lamin A/C-prelamin isoforms, lamin B1, emerin, and nesprin-2) imbalance, leading to impaired nucleo-cytoplasmic MKL1 shuttling, actin polymerization defects, mitochondrial dysfunctions, SIRT7 downregulation and NF-kBp65 hyperactivation. The observed age-related NE features of iPSCs closely resemble those reported for premature aging syndromes (e.g., Hutchinson-Gilford progeria syndrome) and for somatic cell senescence. These findings validate the use of aged iPSCs as a suitable cellular model to study senescence and for investigating therapeutic strategies aimed to treat premature aging.

  3. Aged induced pluripotent stem cell (iPSCs) as a new cellular model for studying premature aging

    PubMed Central

    D'Oria, Valentina; Restaldi, Fabrizia; Moreno, Sandra; Novelli, Antonio; Bertini, Enrico; Compagnucci, Claudia

    2017-01-01

    Nuclear integrity and mechanical stability of the nuclear envelope (NE) are conferred by the nuclear lamina, a meshwork of intermediate filaments composed of A- and B-type lamins, supporting the inner nuclear membrane and playing a pivotal role in chromatin organization and epigenetic regulation. During cell senescence, nuclear alterations also involving NE architecture are widely described. In the present study, we utilized induced pluripotent stem cells (iPSCs) upon prolonged in vitro culture as a model to study aging and investigated the organization and expression pattern of NE major constituents. Confocal and four-dimensional imaging combined with molecular analyses, showed that aged iPSCs are characterized by nuclear dysmorphisms, nucleoskeletal components (lamin A/C-prelamin isoforms, lamin B1, emerin, and nesprin-2) imbalance, leading to impaired nucleo-cytoplasmic MKL1 shuttling, actin polymerization defects, mitochondrial dysfunctions, SIRT7 downregulation and NF-kBp65 hyperactivation. The observed age-related NE features of iPSCs closely resemble those reported for premature aging syndromes (e.g., Hutchinson-Gilford progeria syndrome) and for somatic cell senescence. These findings validate the use of aged iPSCs as a suitable cellular model to study senescence and for investigating therapeutic strategies aimed to treat premature aging. PMID:28562315

  4. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence.

    PubMed

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-10-04

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.

  5. Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization.

    PubMed

    Serova, Tatiana A; Tikhonovich, Igor A; Tsyganov, Viktor E

    2017-05-01

    A delay in the senescence of symbiotic nodules could prolong active nitrogen fixation, resulting in improved crop yield and a reduced need for chemical fertilizers. The molecular genetic mechanisms underlying nodule senescence have not been extensively studied with a view to breeding varieties with delayed nodule senescence. In such studies, plant mutants with the phenotype of premature degradation of symbiotic structures are useful models to elucidate the genetic basis of nodule senescence. Using a dataset from transcriptome analysis of Medicago truncatula Gaertn. nodules and previous studies on pea (Pisum sativum L.) nodules, we developed a set of molecular markers based on genes that are known to be activated during nodule senescence. These genes encode cysteine proteases, a thiol protease, a bZIP transcription factor, enzymes involved in the biosynthesis of ethylene (ACS2 for ACC synthase and ACO1 for ACC oxidase) and ABA (AO3 for aldehyde oxidase), and an enzyme involved in catabolism of gibberellins (GA 2-oxidase). We analyzed the transcript levels of these genes in the nodules of two pea wild-types (cv. Sparkle and line Sprint-2) and two mutant lines, one showing premature nodule senescence (E135F (sym13)) and one showing no morphological signs of symbiotic structure degradation (Sprint-2Fix - (sym31)). Real-time PCR analyses revealed that all of the selected genes showed increased transcript levels during nodule aging in all phenotypes. Remarkably, at 4 weeks after inoculation (WAI), the transcript levels of all analyzed genes were significantly higher in the early senescent nodules of the mutant line E135F (sym13) and in nodules of the mutant Sprint-2Fix - (sym31) than in the active nitrogen-fixing nodules of wild-types. In contrast, the transcript levels of the same genes of both wild-types were significantly increased only at 6 WAI. We evaluated the expression of selected markers in the different histological nodule zones of pea cv. Sparkle and its

  6. 46 CFR 8.540 - Enrollment in SIP.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC VESSEL INSPECTION ALTERNATIVES Streamlined Inspection Program § 8.540 Enrollment in SIP. Upon successful completion of the training and evaluation phase, the Coast Guard SIP Advisor will recommend to the OCMI that the company or...

  7. Downregulation of B-myb promotes senescence via the ROS-mediated p53/p21 pathway, in vascular endothelial cells.

    PubMed

    Zhou, Zhihui; Yin, Yanlin; Chang, Qun; Sun, Guanqun; Lin, Jiahui; Dai, Yalei

    2017-04-01

    To reveal whether B-myb is involved in preventing senescence of vascular endothelial cells, and if so, to identify possible mechanisms for it. C57/BL6 male mice and primary human aortic endothelial cells (HAECs) were used. Bleomycin was applied to induce stress-related premature senescence. B-myb knockdown was achieved using an siRNA technique and cell senescence was assessed using the senescence-associated β-galactosidase (SA-β-gal) assay. Intracellular reactive oxygen species (ROS) production was analysed using an ROS assay kit and cell proliferation was evaluated using KFluor488 EdU kit. Capillary tube network formation was determined by Matrigel assay. Expressions of mRNA and protein levels were detected by real-time PCR and western blotting. B-myb expression significantly decreased, while p53 and p21 expressions increased in the aortas of aged mice. This expression pattern was also found in replicative senescent HAECs and senescent HAECs induced by bleomycin. B-myb knockdown resulted in upregulation of p22 phox , ROS accumulation and cell senescence of HAECs. Downregulation of B-myb significantly inhibited cell proliferation and capillary tube network formation and activated the p53/p21 signalling pathway. Blocking ROS production or inhibiting p53 activation remarkably attenuated SA-β-gal activity and delayed cell senescence induced by B-myb-silencing. Downregulation of B-myb induced senescence by upregulation of p22 phox and activation of the ROS/p53/p21 pathway, in our vascular endothelial cells, suggesting that B-myb may be a novel candidate for regulating cell senescence to protect against endothelial senescence-related cardiovascular diseases. © 2016 John Wiley & Sons Ltd.

  8. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liang; Dong, Chuanming; Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and weremore » associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.« less

  9. CacyBP/SIP promotes the proliferation of colon cancer cells

    PubMed Central

    Chen, Xiong; Wang, Jun; Lu, Yuanyuan; Zhang, Faming; Liu, Zhengxiong; Lei, Ting; Fan, Daiming

    2017-01-01

    CacyBP/SIP is a component of the ubiquitin pathway and is overexpressed in several transformed tumor tissues, including colon cancer, which is one of the most common cancers worldwide. It is unknown whether CacyBP/SIP promotes the proliferation of colon cancer cells. This study examined the expression level, subcellular localization, and binding activity of CacyBP/SIP in human colon cancer cells in the presence and absence of the hormone gastrin. We found that CacyBP/SIP was expressed in a high percentage of colon cancer cells, but not in normal colonic surface epithelium. CacyBP/SIP promoted the cell proliferation of colon cancer cells under both basal and gastrin stimulated conditions as shown by knockdown studies. Gastrin stimulation triggered the translocation of CacyBP/SIP to the nucleus, and enhanced interaction between CacyBP/SIP and SKP1, a key component of ubiquitination pathway which further mediated the proteasome-dependent degradation of p27kip1 protein. The gastrin induced reduction in p27kip1 was prevented when cells were treated with the proteasome inhibitor MG132. These results suggest that CacyBP/SIP may be promoting growth of colon cancer cells by enhancing ubiquitin-mediated degradation of p27kip1. PMID:28196083

  10. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan, E-mail: falawi@upenn.edu

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However,more » the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.« less

  11. Overexpression of CHMP7 from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis.

    PubMed

    Yang, Hongli; Liu, Jing; Lin, Jiulu; Deng, Linbin; Fan, Shihang; Guo, Yan; Sun, Fengming; Hua, Wei

    2016-10-01

    Endosomal sorting complexes required for transport (ESCRT) are well known in mammalians and yeast and plays an essential role in the formation of multi-vesicular bodies. Accumulating evidence has shown that ESCRT proteins contribute to proper plant development. CHMP7 (charged multi-vesicular body protein 7) is an ESCRT-III-related protein and functions in the endosomal sorting pathway in humans. However, its function in plants has not been explored in detail. In this study, we isolate the putative homolog of CHMP7 from rapeseed, BnCHMP7, which contains eight exons and encodes a protein consisting of 423 amino acid residues. Compared with the wild-type, overexpression of BnCHMP7 in Arabidopsis disturbs plant growth and decreases seed yield. Moreover, the transgenic plants also display early leaf senescence and hypersensitivity to dark treatment due to defects in autophagic degradation. Further study showed that BnCHMP7 is highly expressed in leaves and that YFP-BnCHMP7 is predominantly localized in endosome. Compared with human CHMP7, we found that BnCHMP7 not only interacts with ESCRT-III subunits SNF7.2 (CHMP4B), but also with VPS2.2 and CHMP1B. As expected, microarray analysis revealed that the expression of ESCRT transport genes is significantly affected. Additionally, the expression of some genes that are involved in senescence, protein synthesis and protein degradation is also altered in BnCHMP7-overexpressing plants. Taken together, BnCHMP7 encodes an endosome-localized protein, which causes dwarfism and leaf senescence as an ESCRT-III-related component. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Lateral load performance of SIP walls with full bearing

    Treesearch

    Boren Yeh; Tom Skaggs; Xiping Wang; Tom Williamson

    2018-01-01

    The purpose of this study was to develop test data needed to characterize lateral load performance of structural insulated panel (SIP) walls with full bearing (restrained). The research program involved structural testing of 29 full-size SIP walls (8 ft tall by 8 ft long) of various configurations that bracket a range of SIP wall configurations commonly used in the...

  13. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism.

    PubMed

    Wang, Rong; Yu, Zhen; Sunchu, Bharath; Shoaf, James; Dang, Ivana; Zhao, Stephanie; Caples, Kelsey; Bradley, Lynda; Beaver, Laura M; Ho, Emily; Löhr, Christiane V; Perez, Viviana I

    2017-06-01

    Senescent cells contribute to age-related pathology and loss of function, and their selective removal improves physiological function and extends longevity. Rapamycin, an inhibitor of mTOR, inhibits cell senescence in vitro and increases longevity in several species. Nrf2 levels have been shown to decrease with aging and silencing Nrf2 gene induces premature senescence. Therefore, we explored whether Nrf2 is involved in the mechanism by which rapamycin delays cell senescence. In wild-type (WT) mouse fibroblasts, rapamycin increased the levels of Nrf2, and this correlates with the activation of autophagy and a reduction in the induction of cell senescence, as measured by SA-β-galactosidase (β-gal) staining, senescence-associated secretory phenotype (SASP), and p16 and p21 molecular markers. In Nrf2KO fibroblasts, however, rapamycin still decreased β-gal staining and the SASP, but rapamycin did not activate the autophagy pathway or decrease p16 and p21 levels. These observations were further confirmed in vivo using Nrf2KO mice, where rapamycin treatment led to a decrease in β-gal staining and pro-inflammatory cytokines in serum and fat tissue; however, p16 levels were not significantly decreased in fat tissue. Consistent with literature demonstrating that the Stat3 pathway is linked to the production of SASP, we found that rapamycin decreased activation of the Stat3 pathway in cells or tissue samples from both WT and Nrf2KO mice. Our data thus suggest that cell senescence is a complex process that involves at least two arms, and rapamycin uses Nrf2 to regulate cell cycle arrest, but not the production of SASP. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Prevalence and Correlates of Sipping Alcohol in a Prospective Middle School Sample

    PubMed Central

    Jackson, Kristina M.; Colby, Suzanne M.; Barnett, Nancy P.; Abar, Caitlin C.

    2015-01-01

    Research documents an association between early use of alcohol and adverse outcomes. Most studies on drinking initiation exclude sipping or confound sips with consumption of a full drink. Yet, even a few sips of alcohol can constitute a meaningful experience for naïve drinkers. Prior research with this project indicated that sipping prior to middle school predicted subsequent adverse outcomes (at high-school entry), even controlling for child externalizing and sensation seeking and parent alcohol use. The present study extends our prior work by examining the correlates of early sipping and sipping onset. The sample was comprised of 1,023 6th, 7th, and 8th graders (52% female; 24% non-White, 12% Hispanic). Participants completed web-based surveys on five occasions over the course of two years. The prevalence of sipping at Wave 1 was 37%, with 29% of never-sippers initiating sipping within two years. Sipping was associated with stronger alcohol-related cognitions and low school engagement as well as contextual influences in the peer, sibling, and parent domains. Sipping onset among never-sippers was prospectively predicted by sensation seeking and problem behavior as well as parental and sibling influences. Importantly, mere availability of alcohol was a strong correlate both concurrently and prospectively. Further analyses demonstrated that youth who sipped alcohol with parental permission had a lower profile of risk and healthier relationships with parents as compared to youth who reported unsanctioned sipping. Findings point to the importance of considering fine-grained early drinking behavior and call for further attention to sipping in research on initiation of alcohol use. PMID:25938631

  15. The Water SWITCH-ON Spatial Information Platform (SIP)

    NASA Astrophysics Data System (ADS)

    Sala Calero, J., Sr.; Boot, G., Sr.; Dihé, P., Sr.; Arheimer, B.

    2017-12-01

    The amount of hydrological open data is continually growing and providing opportunities to the scientific community. Although the existing data portals (GEOSS Portal, INSPIRE community geoportal and others) enable access to open data, many users still find browsing through them difficult. Moreover, the time spent on gathering and preparing data usually is more significant than the time spent on the experiment itself. Thus, any improvement on searching, understanding, accessing or using open data is greatly beneficial. The Spatial Information Platform (SIP) has been developed to tackle these issues within the SWITCH-ON European Commission funded FP7 project. The SIP has been designed as a set of tools based on open standards that provide to the user all the necessary functionalities as described in the Publish-Find-Bind (PFB) pattern. In other words, this means that the SIP helps users to locate relevant and suitable data for their experiments analysis, to access and transform it (filtering, extraction, selection, conversion, aggregation). Moreover, the SIP can be used to provide descriptive information about the data and to publish it so others can find and use it. The SIP is based on existing open data protocols such as the OGC/CSW, OGC/WMS, OpenDAP and open-source components like PostgreSQL/PostGIS, GeoServer and pyCSW. The SIP is divided in three main user interfaces: the BYOD (Browse your open dataset) web interface, the Expert GUI tool and the Upload Data and Metadata web interface. The BYOD HTML5 client is the main entry point for users that want to browse through open data in the SIP. The BYOD has a map interface based on Leaflet JavaScript libraries so that the users can search more efficiently. The web-based Open Data Registration Tool is a user-friendly upload and metadata description interface (geographical extent, license, DOI generation). The Expert GUI is a desktop application that provides full metadata editing capabilities for the metadata

  16. SIP: A Web-Based Astronomical Image Processing Program

    NASA Astrophysics Data System (ADS)

    Simonetti, J. H.

    1999-12-01

    I have written an astronomical image processing and analysis program designed to run over the internet in a Java-compatible web browser. The program, Sky Image Processor (SIP), is accessible at the SIP webpage (http://www.phys.vt.edu/SIP). Since nothing is installed on the user's machine, there is no need to download upgrades; the latest version of the program is always instantly available. Furthermore, the Java programming language is designed to work on any computer platform (any machine and operating system). The program could be used with students in web-based instruction or in a computer laboratory setting; it may also be of use in some research or outreach applications. While SIP is similar to other image processing programs, it is unique in some important respects. For example, SIP can load images from the user's machine or from the Web. An instructor can put images on a web server for students to load and analyze on their own personal computer. Or, the instructor can inform the students of images to load from any other web server. Furthermore, since SIP was written with students in mind, the philosophy is to present the user with the most basic tools necessary to process and analyze astronomical images. Images can be combined (by addition, subtraction, multiplication, or division), multiplied by a constant, smoothed, cropped, flipped, rotated, and so on. Statistics can be gathered for pixels within a box drawn by the user. Basic tools are available for gathering data from an image which can be used for performing simple differential photometry, or astrometry. Therefore, students can learn how astronomical image processing works. Since SIP is not part of a commercial CCD camera package, the program is written to handle the most common denominator image file, the FITS format.

  17. Design of a SIP device cooperation system on OSGi service platforms

    NASA Astrophysics Data System (ADS)

    Takayama, Youji; Koita, Takahiro; Sato, Kenya

    2007-12-01

    Home networks feature such various technologies as protocols, specifications, and middleware, including HTTP, UPnP, and Jini. A service platform is required to handle such technologies to enable them to cooperate with different devices. The OSGi service platform, which meets the requirements based on service-oriented architecture, is designed and standardized by OSGi Alliance and consists of two parts: one OSGi Framework and bundles. On the OSGi service platform, APIs are defined as services that can handle these technologies and are implemented in the bundle. By using the OSGi Framework with bundles, various technologies can cooperate with each other. On the other hand, in IP networks, Session Initiation Protocol (SIP) is often used in device cooperation services to resolve an IP address, control a session between two or more devices, and easily exchange the statuses of devices. However, since many existing devices do not correspond to SIP, it cannot be used for device cooperation services. A device that does not correspond to SIP is called an unSIP device. This paper proposes and implements a prototype system that enables unSIP devices to correspond to SIP. For unSIP devices, the proposed system provides device cooperation services with SIP.

  18. Inhibition of the K+ channel K(Ca)3.1 reduces TGF-β1-induced premature senescence, myofibroblast phenotype transition and proliferation of mesangial cells.

    PubMed

    Fu, Rong-Guo; Zhang, Tao; Wang, Li; Du, Yan; Jia, Li-Ning; Hou, Jing-Jing; Yao, Gang-Lian; Liu, Xiao-Dan; Zhang, Lei; Chen, Ling; Gui, Bao-Song; Xue, Rong-Liang

    2014-01-01

    K(Ca)3.1 channel participates in many important cellular functions. This study planned to investigate the potential involvement of K(Ca)3.1 channel in premature senescence, myofibroblast phenotype transition and proliferation of mesangial cells. Rat mesangial cells were cultured together with TGF-β1 (2 ng/ml) and TGF-β1 (2 ng/ml) + TRAM-34 (16 nM) separately for specified times from 0 min to 60 min. The cells without treatment served as controls. The location of K(Ca)3.1 channels in mesangial cells was determined with Confocal laser microscope, the cell cycle of mesangial cells was assessed with flow cytometry, the protein and mRNA expression of K(Ca)3.1, α-smooth muscle actin (α-SMA) and fibroblast-specific protein-1 (FSP-1) were detected with Western blot and RT-PCR. One-way analysis of variance (ANOVA) and Student-Newman-Keuls-q test (SNK-q) were used to do statistical analysis. Statistical significance was considered at P<0.05. Kca3.1 channels were located in the cell membranes and/or in the cytoplasm of mesangial cells. The percentage of cells in G0-G1 phase and the expression of K(ca)3.1, α-SMA and FSP-1 were elevated under the induction of TGF-β1 when compared to the control and decreased under the induction of TGF-β1+TRAM-34 when compared to the TGF-β1 induced (P<0.05 or P<0.01). Targeted disruption of K(Ca)3.1 inhibits TGF-β1-induced premature aging, myofibroblast-like phenotype transdifferentiation and proliferation of mesangial cells.

  19. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome.

    PubMed

    Liu, Guang-Hui; Barkho, Basam Z; Ruiz, Sergio; Diep, Dinh; Qu, Jing; Yang, Sheng-Lian; Panopoulos, Athanasia D; Suzuki, Keiichiro; Kurian, Leo; Walsh, Christopher; Thompson, James; Boue, Stephanie; Fung, Ho Lim; Sancho-Martinez, Ignacio; Zhang, Kun; Yates, John; Izpisua Belmonte, Juan Carlos

    2011-04-14

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal human premature ageing disease, characterized by premature arteriosclerosis and degeneration of vascular smooth muscle cells (SMCs). HGPS is caused by a single point mutation in the lamin A (LMNA) gene, resulting in the generation of progerin, a truncated splicing mutant of lamin A. Accumulation of progerin leads to various ageing-associated nuclear defects including disorganization of nuclear lamina and loss of heterochromatin. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts obtained from patients with HGPS. HGPS-iPSCs show absence of progerin, and more importantly, lack the nuclear envelope and epigenetic alterations normally associated with premature ageing. Upon differentiation of HGPS-iPSCs, progerin and its ageing-associated phenotypic consequences are restored. Specifically, directed differentiation of HGPS-iPSCs to SMCs leads to the appearance of premature senescence phenotypes associated with vascular ageing. Additionally, our studies identify DNA-dependent protein kinase catalytic subunit (DNAPKcs, also known as PRKDC) as a downstream target of progerin. The absence of nuclear DNAPK holoenzyme correlates with premature as well as physiological ageing. Because progerin also accumulates during physiological ageing, our results provide an in vitro iPSC-based model to study the pathogenesis of human premature and physiological vascular ageing.

  20. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention

    PubMed Central

    Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention. PMID:28973044

  1. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.

    PubMed

    Wu, Liancheng; Li, Mingna; Tian, Lei; Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping; Chen, Yanhui

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention.

  2. Effect of Absence of Developing Grain on Carbohydrate Content and Senescence of Maize Leaves

    PubMed Central

    Allison, J. C. S.; Weinmann, H.

    1970-01-01

    In maize (Zea mays L.) grown under normal conditions in Rhodesia, prevention of pollination or removal of the ears after flowering caused premature senescence of the leaves above the ear, preceded by the appearance of a purplish red color. In plants from which the ears had been removed the concentration of sugars and starch increased markedly in both upper and lower leaves, the increase being greater in the upper leaves. PMID:16657481

  3. Early nodule senescence is activated in symbiotic mutants of pea (Pisum sativum L.) forming ineffective nodules blocked at different nodule developmental stages.

    PubMed

    Serova, Tatiana A; Tsyganova, Anna V; Tsyganov, Viktor E

    2018-04-03

    Plant symbiotic mutants are useful tool to uncover the molecular-genetic mechanisms of nodule senescence. The pea (Pisum sativum L.) mutants SGEFix - -1 (sym40), SGEFix - -3 (sym26), and SGEFix - -7 (sym27) display an early nodule senescence phenotype, whereas the mutant SGEFix - -2 (sym33) does not show premature degradation of symbiotic structures, but its nodules show an enhanced immune response. The nodules of these mutants were compared with each other and with those of the wild-type SGE line using seven marker genes that are known to be activated during nodule senescence. In wild-type SGE nodules, transcript levels of all of the senescence-associated genes were highest at 6 weeks after inoculation (WAI). The senescence-associated genes showed higher transcript abundance in mutant nodules than in wild-type nodules at 2 WAI and attained maximum levels in the mutant nodules at 4 WAI. Immunolocalization analyses showed that the ethylene precursor 1-aminocyclopropane-1-carboxylate accumulated earlier in the mutant nodules than in wild-type nodules. Together, these results showed that nodule senescence was activated in ineffective nodules blocked at different developmental stages in pea lines that harbor mutations in four symbiotic genes.

  4. Telomere Dynamics in Immune Senescence and Exhaustion Triggered by Chronic Viral Infection.

    PubMed

    Bellon, Marcia; Nicot, Christophe

    2017-10-05

    The progressive loss of immunological memory during aging correlates with a reduced proliferative capacity and shortened telomeres of T cells. Growing evidence suggests that this phenotype is recapitulated during chronic viral infection. The antigenic volume imposed by persistent and latent viruses exposes the immune system to unique challenges that lead to host T-cell exhaustion, characterized by impaired T-cell functions. These dysfunctional memory T cells lack telomerase, the protein capable of extending and stabilizing chromosome ends, imposing constraints on telomere dynamics. A deleterious consequence of this excessive telomere shortening is the premature induction of replicative senescence of viral-specific CD8+ memory T cells. While senescent cells are unable to expand, they can survive for extended periods of time and are more resistant to apoptotic signals. This review takes a closer look at T-cell exhaustion in chronic viruses known to cause human disease: Epstein-Barr virus (EBV), Hepatitis B/C/D virus (HBV/HCV/HDV), human herpesvirus 8 (HHV-8), human immunodeficiency virus (HIV), human T-cell leukemia virus type I (HTLV-I), human papillomavirus (HPV), herpes simplex virus-1/2(HSV-1/2), and Varicella-Zoster virus (VZV). Current literature linking T-cell exhaustion with critical telomere lengths and immune senescence are discussed. The concept that enduring antigen stimulation leads to T-cell exhaustion that favors telomere attrition and a cell fate marked by enhanced T-cell senescence appears to be a common endpoint to chronic viral infections.

  5. Infrastructure State Implementation Plan (SIP) Requirements and Guidance

    EPA Pesticide Factsheets

    The Clean Air Act requires states to submit SIPs that implement, maintain, and enforce a new or revised national ambient air quality standard (NAAQS) within 3 years of EPA issuing the standard. The Infrastructure SIP is required for all states.

  6. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency.

    PubMed

    Estiarte, Marc; Peñuelas, Josep

    2015-03-01

    Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress. © 2014 John Wiley & Sons Ltd.

  7. A methodology of SiP testing based on boundary scan

    NASA Astrophysics Data System (ADS)

    Qin, He; Quan, Haiyang; Han, Yifei; Zhu, Tianrui; Zheng, Tuo

    2017-10-01

    System in Package (SiP) play an important role in portable, aerospace and military electronic with the microminiaturization, light weight, high density, and high reliability. At present, SiP system test has encountered the problem on system complexity and malfunction location with the system scale exponentially increase. For SiP system, this paper proposed a testing methodology and testing process based on the boundary scan technology. Combining the character of SiP system and referencing the boundary scan theory of PCB circuit and embedded core test, the specific testing methodology and process has been proposed. The hardware requirement of the under test SiP system has been provided, and the hardware platform of the testing has been constructed. The testing methodology has the character of high test efficiency and accurate malfunction location.

  8. Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification.

    PubMed

    Srivastava, Sudhakar; Brychkova, Galina; Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya; Sagi, Moshe

    2017-04-01

    The Arabidopsis ( Arabidopsis thaliana ) aldehyde oxidases are a multigene family of four oxidases (AAO1-AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. Amadori products promote cellular senescence activating insulin-like growth factor-1 receptor and down-regulating the antioxidant enzyme catalase.

    PubMed

    Del Nogal-Ávila, María; Troyano-Suárez, Nuria; Román-García, Pablo; Cannata-Andía, Jorge B; Rodriguez-Puyol, Manuel; Rodriguez-Puyol, Diego; Kuro-O, Makoto; Ruiz-Torres, María P

    2013-07-01

    Activation of the insulin growth factor receptor-1 signaling pathways has been largely related to the aging process. Amadori products are produced in pathological conditions such as diabetes and aging, and are potentially involved in diabetic nephropathy or age-associated decline of renal function. We hypothesize that Amadori products induce senescence in primary human mesangial cells through the activation of IGF-1 receptor and investigate, in the present work, the intracellular mechanism involved after this activation. We treated cultured human mesangial cells with glycated albumin, one of the most abundant Amadori product, and senescence was assessed by determining the senescence associated β-galactosidase activity and the expression of the cell cycle regulators p53 and p21. We demonstrated that prolonged exposition (more than 24h) to glycated albumin induced senescence and, in parallel, incremented the release of IGF-1 and the activation of the IGF-1 receptor. Inhibition of the IGF-1 activation prevented the GA induced senescence. Activation of IGF-1R, after GA addition, promoted a reduction in the catalase content through the constitutive activation of Ras and erk1/2 proteins which were, in turn, responsible of the observed GA-induced senescence. In conclusion, we propose that the Amadori product, glycated albumin, promotes premature cell senescence in mesangial cells through the activation of the IGF-1 receptor and the subsequent reduction in the antioxidant enzyme catalase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The potential role of CacyBP/SIP in tumorigenesis.

    PubMed

    Ning, Xiaoxuan; Chen, Yang; Wang, Xiaosu; Li, Qiaoneng; Sun, Shiren

    2016-08-01

    Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) was initially described as a binding partner of S100A6 in the Ehrlich ascites tumor cells and later as a Siah-1-interacting protein. This 30 kDa protein includes three domains and is involved in cell proliferation, differentiation, cytoskeletal rearrangement, and transcriptional regulation via binding to various proteins. Studies have also shown that the CacyBP/SIP is a critical protein in tumorigenesis. But, its promotion or suppression of cancer progression may depend on the cell type. In this review, the biological characteristics and target proteins of CacyBP/SIP have been described. Moreover, the exact role of CacyBP/SIP in various cancers is discussed.

  11. CacyBP/SIP as a regulator of transcriptional responses in brain cells

    PubMed Central

    Kilanczyk, Ewa; Filipek, Anna; Hetman, Michal

    2014-01-01

    Summary The Calcyclin-Binding Protein/Siah-1-Interacting Protein (CacyBP/SIP) is highly expressed in the brain and was shown to regulate the β-catenin-driven transcription in thymocytes. Therefore, it was investigated whether in brain cells CacyBP/SIP might play a role as a transcriptional regulator. In BDNF- or forskolin-stimulated rat primary cortical neurons, overexpression of CacyBP/SIP enhanced transcriptional activity of the cAMP-response element (CRE). In addition, overexpressed CacyBP/SIP enhanced BDNF-mediated activation of the Nuclear Factor of Activated T-cells (NFAT) but not the Serum Response Element (SRE). These stimulatory effects required an intact C-terminal domain of CacyBP/SIP. Moreover, in C6 rat glioma cells, the overexpressed CacyBP/SIP enhanced activation of CRE- or NFAT- following forskolin- or serum stimulation, respectively. Conversely, knockdown of endogenous CacyBP/SIP reduced activation of CRE- and NFAT but not SRE. Taken together, these results indicate that CacyBP/SIP is a novel regulator of CRE- and NFAT-driven transcription. PMID:25163685

  12. DNA stable-isotope probing (DNA-SIP).

    PubMed

    Dunford, Eric A; Neufeld, Josh D

    2010-08-02

    DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.

  13. Piper betle L. Modulates Senescence-Associated Genes Expression in Replicative Senescent Human Diploid Fibroblasts

    PubMed Central

    Durani, Lina Wati; Tan, Jen Kit; Chua, Kien Hui

    2017-01-01

    Piper betle (PB) is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs) was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%), presenescent (127.3%), and senescent (157.3%) HDFs. Increased expressions of PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1, PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways. PMID:28596968

  14. Piper betle L. Modulates Senescence-Associated Genes Expression in Replicative Senescent Human Diploid Fibroblasts.

    PubMed

    Durani, Lina Wati; Khor, Shy Cian; Tan, Jen Kit; Chua, Kien Hui; Mohd Yusof, Yasmin Anum; Makpol, Suzana

    2017-01-01

    Piper betle (PB) is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs) was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%), presenescent (127.3%), and senescent (157.3%) HDFs. Increased expressions of PRDX6 , TP53 , CDKN2A , PAK2 , and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1 , PRDX6 , TP53 , CDKN2A , PAK2 , and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways.

  15. Oxygen effects on senescence in chondrocytes and mesenchymal stem cells: consequences for tissue engineering.

    PubMed

    Moussavi-Harami, Farid; Duwayri, Yazan; Martin, James A; Moussavi-Harami, Farshid; Buckwalter, Joseph A

    2004-01-01

    Primary isolates of chondrocytes and mesenchymal stem cells are often insufficient for cell-based autologous grafting procedures, necessitating in vitro expansion of cell populations. However, the potential for expansion is limited by cellular senescence, a form of irreversible cell cycle arrest regulated by intrinsic and extrinsic factors. Intrinsic mechanisms common to most somatic cells enforce senescence at the so-called "Hayflick limit" of 60 population doublings. Termed "replicative senescence", this mechanism prevents cellular immortalization and suppresses oncogenesis. Although it is possible to overcome the Hayflick limit by genetically modifying cells, such manipulations are regarded as prohibitively dangerous in the context of tissue engineering. On the other hand, senescence associated with extrinsic factors, often called "stress-induced" senescence, can be avoided simply by modifying culture conditions. Because stress-induced senescence is "premature" in the sense that it can halt growth well before the Hayflick limit is reached, growth potential can be significantly enhanced by minimizing culture related stress. Standard culture techniques were originally developed to optimize the growth of fibroblasts but these conditions are inherently stressful to many other cell types. In particular, the 21% oxygen levels used in standard incubators, though well tolerated by fibroblasts, appear to induce oxidative stress in other cells. We reasoned that chondrocytes and MSCs, which are adapted to relatively low oxygen levels in vivo, might be sensitive to this form of stress. To test this hypothesis we compared the growth of MSC and chondrocyte strains in 21% and 5% oxygen. We found that incubation in 21% oxygen significantly attenuated growth and was associated with increased oxidant production. These findings indicated that sub-optimal standard culture conditions sharply limited the expansion of MSC and chondrocyte populations and suggest that cultures for

  16. Oxygen Effects on Senescence in Chondrocytes and Mesenchymal Stem Cells: Consequences for Tissue Engineering

    PubMed Central

    Moussavi-Harami, Farid; Duwayri, Yazan; Martin, James A; Moussavi-Harami, Farshid; Buckwalter, Joseph A

    2004-01-01

    Primary isolates of chondrocytes and mesenchymal stem cells are often insufficient for cell-based autologous grafting procedures, necessitating in vitro expansion of cell populations. However, the potential for expansion is limited by cellular senescence, a form of irreversible cell cycle arrest regulated by intrinsic and extrinsic factors. Intrinsic mechanisms common to most somatic cells enforce senescence at the so-called "Hayflick limit" of 60 population doublings. Termed "replicative senescence", this mechanism prevents cellular immortalization and suppresses oncogenesis. Although it is possible to overcome the Hayflick limit by genetically modifying cells, such manipulations are regarded as prohibitively dangerous in the context of tissue engineering. On the other hand, senescence associated with extrinsic factors, often called "stress-induced" senescence, can be avoided simply by modifying culture conditions. Because stress-induced senescence is "premature" in the sense that it can halt growth well before the Hayflick limit is reached, growth potential can be significantly enhanced by minimizing culture related stress. Standard culture techniques were originally developed to optimize the growth of fibroblasts but these conditions are inherently stressful to many other cell types. In particular, the 21% oxygen levels used in standard incubators, though well tolerated by fibroblasts, appear to induce oxidative stress in other cells. We reasoned that chondrocytes and MSCs, which are adapted to relatively low oxygen levels in vivo, might be sensitive to this form of stress. To test this hypothesis we compared the growth of MSC and chondrocyte strains in 21% and 5% oxygen. We found that incubation in 21% oxygen significantly attenuated growth and was associated with increased oxidant production. These findings indicated that sub-optimal standard culture conditions sharply limited the expansion of MSC and chondrocyte populations and suggest that cultures for

  17. The Immortal Senescence.

    PubMed

    Bianchi-Smiraglia, Anna; Lipchick, Brittany C; Nikiforov, Mikhail A

    2017-01-01

    Activation of oncogenic signaling paradoxically results in the permanent withdrawal from cell cycle and induction of senescence (oncogene-induced senescence (OIS)). OIS is a fail-safe mechanism used by the cells to prevent uncontrolled tumor growth, and, as such, it is considered as the first barrier against cancer. In order to progress, tumor cells thus need to first overcome the senescent phenotype. Despite the increasing attention gained by OIS in the past 20 years, this field is still rather young due to continuous emergence of novel pathways and processes involved in OIS. Among the many factors contributing to incomplete understanding of OIS are the lack of unequivocal markers for senescence and the complexity of the phenotypes revealed by senescent cells in vivo and in vitro. OIS has been shown to play major roles at both the cellular and organismal levels in biological processes ranging from embryonic development to barrier to cancer progression. Here we will briefly outline major advances in methodologies that are being utilized for induction, identification, and characterization of molecular processes in cells undergoing oncogene-induced senescence. The full description of such methodologies is provided in the corresponding chapters of the book.

  18. Photobiomodulation on senescence

    NASA Astrophysics Data System (ADS)

    Liu, Timon Cheng-Yi; Cheng, Lei; Rong, Dong-Liang; Xu, Xiao-Yang; Cui, Li-Ping; Lu, Jian; Deng, Xiao-Yuan; Liu, Song-Hao

    2006-09-01

    Photobiomodulation (PBM) is an effect oflow intensity monochromatic light or laser irradiation (LIL) on biological systems. which stimulates or inhibits biological functions but does not result in irreducible damage. It has been observed that PBM can suppress cellular senescence, reverse skin photoageing and improve fibromyalgia. In this paper, the biological information model of photobiomodulation (BIMP) is used to discuss its mechanism. Cellular senescence can result from short, dysfunctional telomeres, oxidative stress, or oncogene expression, and may contribute to aging so that it can be seen as a decline of cellular function in which cAMP plays an important role, which provide a foundation for PBM on senescence since cellular senescence is a reasonable model of senescence and PBM is a cellular rehabilitation in which cAMP also plays an important role according to BIMP. The PBM in reversing skin photoageing and improving fibromyalgia are then discussed in detail.

  19. Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification1[OPEN

    PubMed Central

    Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya

    2017-01-01

    The Arabidopsis (Arabidopsis thaliana) aldehyde oxidases are a multigene family of four oxidases (AAO1–AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. PMID:28188272

  20. Impact of 50% Synthesized Iso-Paraffins (SIP) on F-76 Fuel Coalescence

    DTIC Science & Technology

    2013-12-16

    petroleum JP-5 and Synthesized Iso-Paraffins (SIP). SIP fuels are made from direct fermentation of sugar into olefinic hydrocarbons. The olefinic...manufactured scaled down filter/coalescer and separator to simulate the performance of a full-scale filter separator system. This test is designed to predict...5 and Synthesized Iso-Paraffins (SIP). SIP fuels are made from direct fermentation of sugar into olefinic hydrocarbons. The olefinic hydrocarbons

  1. Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells

    PubMed Central

    2012-01-01

    Background Various by-products of the cellular metabolism, such as reactive carbonyl species (RCS) are potentially harmful to cells and tissues, and play a role in many physiological and pathological processes. Among various RCS is the highly reactive dicarbonyl glyoxal (GO), which is a natural physiological metabolite produced by the auto-oxidation of glucose, and can form covalent adducts known as advanced glycation endproducts (AGE). We have previously reported that GO accelerates ageing and causes premature senescence in normal human skin fibroblasts. Results Using a bone marrow-derived telomerase-immortalised mesenchymal stem cell line hMSC-TERT we have observed that an exposure of cells to 0.75 mM and 1 mM GO induces irreversible cellular senescence within 3 days. Induction of senescence in hMSC-TERT was demonstrated by a variety of markers, including characteristic cell morphology and enlargement, vacuolisation, multinucleation, induction of senescence associated β-galactosidase, cell cycle arrest, and increased levels of a cell cycle inhibitor p16. These changes were accompanied by increased extent of DNA breaks as measured by the comet assay, and increased levels of the AGE product, carboxymethyl-lysine (CML). Furthermore, the in vitro differentiation potential of hMSC-TERT to become functional osteoblasts was highly reduced in GO-treated stem cells, as determined by alkaline phosphatase (ALP) activity and mineralized matrix (MM) formation. Conclusions The results of our study imply that an imbalanced glucose metabolism can reduce the functioning ability of stem cells in vivo both during ageing and during stem cell-based therapeutic interventions. PMID:22424056

  2. Heterologous Protein Secretion in Lactobacilli with Modified pSIP Vectors

    PubMed Central

    Karlskås, Ingrid Lea; Maudal, Kristina; Axelsson, Lars; Rud, Ida; Eijsink, Vincent G. H.; Mathiesen, Geir

    2014-01-01

    We describe new variants of the modular pSIP-vectors for inducible gene expression and protein secretion in lactobacilli. The basic functionality of the pSIP system was tested in Lactobacillus strains representing 14 species using pSIP411, which harbors the broad-host-range Lactococcus lactis SH71rep replicon and a β-glucuronidase encoding reporter gene. In 10 species, the inducible gene expression system was functional. Based on these results, three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus. All recombinant strains secreted the target protein NucA, albeit with varying production levels and secretion efficiencies. The Lp_3050 derived signal peptide generally resulted in the highest levels of secreted NucA. These modified pSIP vectors are useful tools for engineering a wide variety of Lactobacillus species. PMID:24614815

  3. The Spectral Image Processing System (SIPS): Software for integrated analysis of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.

    1992-01-01

    The Spectral Image Processing System (SIPS) is a software package developed by the Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, in response to a perceived need to provide integrated tools for analysis of imaging spectrometer data both spectrally and spatially. SIPS was specifically designed to deal with data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the High Resolution Imaging Spectrometer (HIRIS), but was tested with other datasets including the Geophysical and Environmental Research Imaging Spectrometer (GERIS), GEOSCAN images, and Landsat TM. SIPS was developed using the 'Interactive Data Language' (IDL). It takes advantage of high speed disk access and fast processors running under the UNIX operating system to provide rapid analysis of entire imaging spectrometer datasets. SIPS allows analysis of single or multiple imaging spectrometer data segments at full spatial and spectral resolution. It also allows visualization and interactive analysis of image cubes derived from quantitative analysis procedures such as absorption band characterization and spectral unmixing. SIPS consists of three modules: SIPS Utilities, SIPS_View, and SIPS Analysis. SIPS version 1.1 is described below.

  4. 46 CFR 8.570 - Interim approval of prototype SIP company or vessel plans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Interim approval of prototype SIP company or vessel... of prototype SIP company or vessel plans. (a) A company operating under an approved prototype SIP... continue operating under the plans while revisions are developed to bring the prototype SIP company or...

  5. A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging.

    PubMed

    Nelson, David M; McBryan, Tony; Jeyapalan, Jessie C; Sedivy, John M; Adams, Peter D

    2014-06-01

    Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway, the senescence-associated secretory phenotype. However, cellular senescence is initiated by diverse molecular triggers, such as activated oncogenes and shortened telomeres, and is associated with varied and complex physiological endpoints, such as tumor suppression and tissue aging. The extent to which distinct triggers activate divergent modes of senescence that might be associated with different physiological endpoints is largely unknown. To begin to address this, we performed gene expression profiling to compare the senescence programs associated with two different modes of senescence, oncogene-induced senescence (OIS) and replicative senescence (RS [in part caused by shortened telomeres]). While both OIS and RS are associated with many common changes in gene expression compared to control proliferating cells, they also exhibit substantial differences. These results are discussed in light of potential physiological consequences, tumor suppression and aging.

  6. CacyBP/SIP nuclear translocation induced by gastrin promotes gastric cancer cell proliferation

    PubMed Central

    Zhai, Hui-Hong; Meng, Juan; Wang, Jing-Bo; Liu, Zhen-Xiong; Li, Yuan-Fei; Feng, Shan-Shan

    2014-01-01

    AIM: To investigate the role of nuclear translocation of calcyclin binding protein, also called Siah-1 interacting protein (CacyBP/SIP), in gastric carcinogenesis. METHODS: The expression of CacyBP/SIP protein in gastric cancer cell lines was detected by Western blot. Immunofluorescence experiments were performed on gastric cancer cell lines that had been either unstimulated or stimulated with gastrin. To confirm the immunofluorescence findings, the relative abundance of CacyBP/SIP in nuclear and cytoplasmic compartments was assessed by Western blot. The effect of nuclear translocation of CacyBP/SIP on cell proliferation was examined using MTT assay. The colony formation assay was used to measure clonogenic cell survival. The effect of CacyBP/SIP nuclear translocation on cell cycle progression was investigated. Two CacyBP/SIP-specific siRNA vectors were designed and constructed to inhibit CacyBP/SIP expression in order to reduce the nuclear translocation of CacyBP/SIP, and the expression of CacyBP/SIP in stably transfected cells was determined by Western blot. The effect of inhibiting CacyBP/SIP nuclear translocation on cell proliferation was then assessed. RESULTS: CacyBP/SIP protein was present in most of gastric cancer cell lines. In unstimulated cells, CacyBP/SIP was distributed throughout the cytoplasm; while in stimulated cells, CacyBP/SIP was found mainly in the perinuclear region. CacyBP/SIP nuclear translocation generated a growth-stimulatory effect on cells. The number of colonies in the CacyBP/SIP nuclear translocation group was significantly higher than that in the control group. The percentage of stimulated cells in G1 phase was significantly lower than that of control cells (69.70% ± 0.46% and 65.80% ± 0.60%, control cells and gastrin-treated SGC7901 cells, P = 0.008; 72.99% ± 0.46% and 69.36% ± 0.51%, control cells and gastrin-treated MKN45 cells, P = 0.022). CacyBP/SIPsi1 effectively down-regulated the expression of CacyBP/SIP, and cells stably

  7. CacyBP/SIP nuclear translocation induced by gastrin promotes gastric cancer cell proliferation.

    PubMed

    Zhai, Hui-Hong; Meng, Juan; Wang, Jing-Bo; Liu, Zhen-Xiong; Li, Yuan-Fei; Feng, Shan-Shan

    2014-08-07

    To investigate the role of nuclear translocation of calcyclin binding protein, also called Siah-1 interacting protein (CacyBP/SIP), in gastric carcinogenesis. The expression of CacyBP/SIP protein in gastric cancer cell lines was detected by Western blot. Immunofluorescence experiments were performed on gastric cancer cell lines that had been either unstimulated or stimulated with gastrin. To confirm the immunofluorescence findings, the relative abundance of CacyBP/SIP in nuclear and cytoplasmic compartments was assessed by Western blot. The effect of nuclear translocation of CacyBP/SIP on cell proliferation was examined using MTT assay. The colony formation assay was used to measure clonogenic cell survival. The effect of CacyBP/SIP nuclear translocation on cell cycle progression was investigated. Two CacyBP/SIP-specific siRNA vectors were designed and constructed to inhibit CacyBP/SIP expression in order to reduce the nuclear translocation of CacyBP/SIP, and the expression of CacyBP/SIP in stably transfected cells was determined by Western blot. The effect of inhibiting CacyBP/SIP nuclear translocation on cell proliferation was then assessed. CacyBP/SIP protein was present in most of gastric cancer cell lines. In unstimulated cells, CacyBP/SIP was distributed throughout the cytoplasm; while in stimulated cells, CacyBP/SIP was found mainly in the perinuclear region. CacyBP/SIP nuclear translocation generated a growth-stimulatory effect on cells. The number of colonies in the CacyBP/SIP nuclear translocation group was significantly higher than that in the control group. The percentage of stimulated cells in G1 phase was significantly lower than that of control cells (69.70% ± 0.46% and 65.80% ± 0.60%, control cells and gastrin-treated SGC7901 cells, P = 0.008; 72.99% ± 0.46% and 69.36% ± 0.51%, control cells and gastrin-treated MKN45 cells, P = 0.022). CacyBP/SIPsi1 effectively down-regulated the expression of CacyBP/SIP, and cells stably transfected by Cacy

  8. Consumption with Large Sip Sizes Increases Food Intake and Leads to Underestimation of the Amount Consumed

    PubMed Central

    Bolhuis, Dieuwerke P.; Lakemond, Catriona M. M.; de Wijk, Rene A.; Luning, Pieternel A.; de Graaf, Cees

    2013-01-01

    Background A number of studies have shown that bite and sip sizes influence the amount of food intake. Consuming with small sips instead of large sips means relatively more sips for the same amount of food to be consumed; people may believe that intake is higher which leads to faster satiation. This effect may be disturbed when people are distracted. Objective The objective of the study is to assess the effects of sip size in a focused state and a distracted state on ad libitum intake and on the estimated amount consumed. Design In this 3×2 cross-over design, 53 healthy subjects consumed ad libitum soup with small sips (5 g, 60 g/min), large sips (15 g, 60 g/min), and free sips (where sip size was determined by subjects themselves), in both a distracted and focused state. Sips were administered via a pump. There were no visual cues toward consumption. Subjects then estimated how much they had consumed by filling soup in soup bowls. Results Intake in the small-sip condition was ∼30% lower than in both the large-sip and free-sip conditions (P<0.001). In addition, subjects underestimated how much they had consumed in the large-sip and free-sip conditions (P<0.03). Distraction led to a general increase in food intake (P = 0.003), independent of sip size. Distraction did not influence sip size or estimations. Conclusions Consumption with large sips led to higher food intake, as expected. Large sips, that were either fixed or chosen by subjects themselves led to underestimations of the amount consumed. This may be a risk factor for over-consumption. Reducing sip or bite sizes may successfully lower food intake, even in a distracted state. PMID:23372657

  9. Senescence responsive transcriptional element

    DOEpatents

    Campisi, Judith; Testori, Alessandro

    1999-01-01

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  10. Silica-Induced Protein (Sip) in Thermophilic Bacterium Thermus thermophilus Responds to Low Iron Availability

    PubMed Central

    Fujino, Yasuhiro; Nagayoshi, Yuko; Iwase, Makoto; Yokoyama, Takushi; Ohshima, Toshihisa

    2016-01-01

    ABSTRACT Thermus thermophilus HB8 expresses silica-induced protein (Sip) when cultured in medium containing supersaturated silicic acids. Using genomic information, Sip was identified as a Fe3+-binding ABC transporter. Detection of a 1-kb hybridized band in Northern analysis revealed that sip transcription is monocistronic and that sip has its own terminator and promoter. The sequence of the sip promoter showed homology with that of the σA-dependent promoter, which is known as a housekeeping promoter in HB8. Considering that sip is transcribed when supersaturated silicic acids are added, the existence of a repressor is presumed. DNA microarray analysis suggested that supersaturated silicic acids and iron deficiency affect Thermus cells similarly, and enhanced sip transcription was detected under both conditions. This suggested that sip transcription was initiated by iron deficiency and that the ferric uptake regulator (Fur) controlled the transcription. Three Fur gene homologues (TTHA0255, TTHA0344, and TTHA1292) have been annotated in the HB8 genome, and electrophoretic mobility shift assays revealed that the TTHA0344 product interacts with the sip promoter region. In medium containing supersaturated silicic acids, free Fe3+ levels were decreased due to Fe3+ immobilization on colloidal silica. This suggests that, because Fe3+ ions are captured by colloidal silica in geothermal water, Thermus cells are continuously exposed to the risk of iron deficiency. Considering that Sip is involved in iron acquisition, Sip production may be a strategy to survive under conditions of low iron availability in geothermal water. IMPORTANCE The thermophilic bacterium Thermus thermophilus HB8 produces silica-induced protein (Sip) in the presence of supersaturated silicic acids. Sip has homology with iron-binding ABC transporter; however, the mechanism by which Sip expression is induced by silicic acids remains unexplained. We demonstrate that Sip captures iron and its transcription

  11. Cellular senescence and organismal aging.

    PubMed

    Jeyapalan, Jessie C; Sedivy, John M

    2008-01-01

    Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age-related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging.

  12. Cellular senescence and organismal aging

    PubMed Central

    Jeyapalan, Jessie C.; Sedivy, John M.

    2012-01-01

    Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging. PMID:18502472

  13. ICESat Science Investigator led Processing System (I-SIPS)

    NASA Astrophysics Data System (ADS)

    Bhardwaj, S.; Bay, J.; Brenner, A.; Dimarzio, J.; Hancock, D.; Sherman, M.

    2003-12-01

    The ICESat Science Investigator-led Processing System (I-SIPS) generates the GLAS standard data products. It consists of two main parts the Scheduling and Data Management System (SDMS) and the Geoscience Laser Altimeter System (GLAS) Science Algorithm Software. The system has been operational since the successful launch of ICESat. It ingests data from the GLAS instrument, generates GLAS data products, and distributes them to the GLAS Science Computing Facility (SCF), the Instrument Support Facility (ISF) and the National Snow and Ice Data Center (NSIDC) ECS DAAC. The SDMS is the Planning, Scheduling and Data Management System that runs the GLAS Science Algorithm Software (GSAS). GSAS is based on the Algorithm Theoretical Basis Documents provided by the Science Team and is developed independently of SDMS. The SDMS provides the processing environment to plan jobs based on existing data, control job flow, data distribution, and archiving. The SDMS design is based on a mission-independent architecture that imposes few constraints on the science code thereby facilitating I-SIPS integration. I-SIPS currently works in an autonomous manner to ingest GLAS instrument data, distribute this data to the ISF, run the science processing algorithms to produce the GLAS standard products, reprocess data when new versions of science algorithms are released, and distributes the products to the SCF, ISF, and NSIDC. I-SIPS has a proven performance record, delivering the data to the SCF within hours after the initial instrument activation. The I-SIPS design philosophy gives this system a high potential for reuse in other science missions.

  14. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) New Mexico § 52.1638 Bernalillo County particulate matter (PM10) Group II SIP commitments. (a) On December 7, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan (SIP... SIPs. The City of Albuquerque and Bernalillo County Air Quality Control Board adopted this SIP revision...

  15. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) New Mexico § 52.1638 Bernalillo County particulate matter (PM10) Group II SIP commitments. (a) On December 7, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan (SIP... SIPs. The City of Albuquerque and Bernalillo County Air Quality Control Board adopted this SIP revision...

  16. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells.

    PubMed

    Haendeler, Judith; Hoffmann, Jörg; Diehl, J Florian; Vasa, Mariuca; Spyridopoulos, Ioakim; Zeiher, Andreas M; Dimmeler, Stefanie

    2004-04-02

    Aging is associated with a rise in intracellular reactive oxygen species (ROS) and a loss of telomerase reverse transcriptase activity. Incubation with H2O2 induced the nuclear export of telomerase reverse transcriptase (TERT) into the cytosol in a Src-family kinase-dependent manner. Therefore, we investigated the hypothesis that age-related increase in reactive oxygen species (ROS) may induce the nuclear export of TERT and contribute to endothelial cell senescence. Continuous cultivation of endothelial cells resulted in an increased endogenous formation of ROS starting after 29 population doublings (PDL). This increase was accompanied by mitochondrial DNA damage and preceded the onset of replicative senescence at PDL 37. Along with the enhanced formation of ROS, we detected an export of nuclear TERT protein from the nucleus into the cytoplasm and an activation of the Src-kinase. Moreover, the induction of premature senescence by low concentrations of H2O2 was completely blocked with the Src-family kinase inhibitor PP2, suggesting a crucial role for Src-family kinases in the induction of endothelial cell aging. Incubation with the antioxidant N-acetylcysteine, from PDL 26, reduced the intracellular ROS formation and prevented mitochondrial DNA damage. Likewise, nuclear export of TERT protein, loss in the overall TERT activity, and the onset of replicative senescence were delayed by incubation with N-acetylcysteine. Low doses of the statin, atorvastatin (0.1 micromol/L), had also effects similar to those of N-acetylcysteine. We conclude that both antioxidants and statins can delay the onset of replicative senescence by counteracting the increased ROS production linked to aging of endothelial cells.

  17. Testing Dialog-Verification of SIP Phones with Single-Message Denial-of-Service Attacks

    NASA Astrophysics Data System (ADS)

    Seedorf, Jan; Beckers, Kristian; Huici, Felipe

    The Session Initiation Protocol (SIP) is widely used for signaling in multimedia communications. However, many SIP implementations are still in their infancy and vulnerable to malicious messages. We investigate flaws in the SIP implementations of eight phones, showing that the deficient verification of SIP dialogs further aggravates the problem by making it easier for attacks to succeed. Our results show that the majority of the phones we tested are susceptible to these attacks.

  18. SIPSim: A Modeling Toolkit to Predict Accuracy and Aid Design of DNA-SIP Experiments

    PubMed Central

    Youngblut, Nicholas D.; Barnett, Samuel E.; Buckley, Daniel H.

    2018-01-01

    DNA Stable isotope probing (DNA-SIP) is a powerful method that links identity to function within microbial communities. The combination of DNA-SIP with multiplexed high throughput DNA sequencing enables simultaneous mapping of in situ assimilation dynamics for thousands of microbial taxonomic units. Hence, high throughput sequencing enabled SIP has enormous potential to reveal patterns of carbon and nitrogen exchange within microbial food webs. There are several different methods for analyzing DNA-SIP data and despite the power of SIP experiments, it remains difficult to comprehensively evaluate method accuracy across a wide range of experimental parameters. We have developed a toolset (SIPSim) that simulates DNA-SIP data, and we use this toolset to systematically evaluate different methods for analyzing DNA-SIP data. Specifically, we employ SIPSim to evaluate the effects that key experimental parameters (e.g., level of isotopic enrichment, number of labeled taxa, relative abundance of labeled taxa, community richness, community evenness, and beta-diversity) have on the specificity, sensitivity, and balanced accuracy (defined as the product of specificity and sensitivity) of DNA-SIP analyses. Furthermore, SIPSim can predict analytical accuracy and power as a function of experimental design and community characteristics, and thus should be of great use in the design and interpretation of DNA-SIP experiments. PMID:29643843

  19. SIPSim: A Modeling Toolkit to Predict Accuracy and Aid Design of DNA-SIP Experiments.

    PubMed

    Youngblut, Nicholas D; Barnett, Samuel E; Buckley, Daniel H

    2018-01-01

    DNA Stable isotope probing (DNA-SIP) is a powerful method that links identity to function within microbial communities. The combination of DNA-SIP with multiplexed high throughput DNA sequencing enables simultaneous mapping of in situ assimilation dynamics for thousands of microbial taxonomic units. Hence, high throughput sequencing enabled SIP has enormous potential to reveal patterns of carbon and nitrogen exchange within microbial food webs. There are several different methods for analyzing DNA-SIP data and despite the power of SIP experiments, it remains difficult to comprehensively evaluate method accuracy across a wide range of experimental parameters. We have developed a toolset (SIPSim) that simulates DNA-SIP data, and we use this toolset to systematically evaluate different methods for analyzing DNA-SIP data. Specifically, we employ SIPSim to evaluate the effects that key experimental parameters (e.g., level of isotopic enrichment, number of labeled taxa, relative abundance of labeled taxa, community richness, community evenness, and beta-diversity) have on the specificity, sensitivity, and balanced accuracy (defined as the product of specificity and sensitivity) of DNA-SIP analyses. Furthermore, SIPSim can predict analytical accuracy and power as a function of experimental design and community characteristics, and thus should be of great use in the design and interpretation of DNA-SIP experiments.

  20. Selective insulin resistance in hepatocyte senescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied inmore » three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.« less

  1. Creep Behavior of Structural Insulated Panels (SIPS): Results from a Pilot Study

    Treesearch

    Dwight McDonald; Marshall Begel; C. Adam Senalik; Robert Ross; Thomas D. Skaggs; Borjen Yeh; Thomas Williamson

    2014-01-01

    Structural insulated panels (SIPs) have been recognized as construction materials in the International Residential Code (IRC) since 2009. Although most SIPs are used in wall applications, they can also be used as roof or floor panels that are subjected to long-term transverse loading, for which SIP creep performance may be critical in design. However, limited...

  2. SENESCENCE (AGEING) @ 2011

    PubMed Central

    Nigam, Anjana

    2011-01-01

    Ageing, also called as senescence, is one of the most complex, intrinsic, biological processes of growing older and resulting into reduced functional ability of the organism. Telomerase, environment, low calorie diets, free radicals, etc., are all believed to affect this ageing process. A number of genetic components of ageing have been identified using model organisms. Genes, mainly the sirtuins, regulate the ageing speed by indirection and controlling organism resistance to damages by exogenous and endogenous stresses. In higher organisms, ageing is likely to be regulated, in part, through the insulin/insulin-like growth factor 1 pathway. Besides this, the induction of apoptosis in stem and progenitor cells, increased p53 activity, and autophagy is also thought to trigger premature organismal ageing. Ageing has also been shown to upregulate expression of inflammatory mediators in mouse adipose tissue. The understanding of pathophysiology of ageing over the past few years has posed tremendous challenges for the development of anti-ageing medicine for targeted therapy. Future research areas must include targeted role of systemic inflammatory markers such as C-reactive protein and interleukin 6 and other biochemical and genetic studies including gene signaling pathways, gene microarray analysis, gene modulation, gene therapy, and development of animal/human models for potential therapeutic measures and evaluations. PMID:22345758

  3. Selenium preserves keratinocyte stemness and delays senescence by maintaining epidermal adhesion

    PubMed Central

    Jobeili, Lara; Rousselle, Patricia; Béal, David; Blouin, Eric; Roussel, Anne-Marie; Damour, Odile; Rachidi, Walid

    2017-01-01

    Skin is constantly exposed to environmental factors such as pollutants, chemicals and ultra violet radiation (UV), which can induce premature skin aging and increase the risk of skin cancer. One strategy to reduce the effect of oxidative stress produced by environmental exposure is the application of antioxidant molecules. Among the endogenous antioxidants, selenoproteins play a key role in antioxidant defense and in maintaining a reduced cellular environment. Selenium, essential for the activity of selenoproteins, is a trace element that is not synthesized by organisms and must be supplied by diet or supplementation. The aim of this study is to evaluate the effect of Selenium supplementation on skin aging, especially on keratinocytes, the main cells of the epidermis. Our results demonstrate for the first time to our knowledge, the major role of Selenium on the replicative life span of keratinocytes and on aging skin. Selenium protects keratinocyte stem cells (KSCs) against senescence via preservation of their stemness phenotype through adhesion to the basement membrane. Additionally, Selenium supplementation maintains the homeostasis of skin during chronological aging in our senescent skin equivalent model. Controlled supplementation with Selenium could be a new strategy to protect skin against aging. PMID:29176034

  4. Senescence and cancer: an evolving inflammatory paradox

    PubMed Central

    Ruhland, Megan; Coussens, Lisa M.; Stewart, Sheila

    2015-01-01

    The senescent phenotype was first describe in 1961 as a phenomenon characterized by the cessation of cellular division. After years of debate as to whether it represented a tissue culture artifact or an important biological process, it is now appreciated that senescence plays an important role in tumorigenesis. Further, senescence is integral to normal biological processes such as embryogenesis and the maintenance of tissue homeostasis. Now with defined roles in development, wound healing, tumor promotion and tumor suppression, it is not surprising that attention has turned to refining our understanding of the mechanisms behind, and consequences of, the induction of senescence. One emerging role for senescence lies in the ability of senescence to orchestrate an inflammatory responses: factors secreted by senescent cells have been identifed in multiple contexts to modulate various aspects of immune response. As with many of the previously described roles for senescence, the type of inflammation established by the senescence phenotype is varied and dependent on context. In this review, we discuss the current state of the field with a focus on the paradoxical outcomes of the senescence-induced inflammatory responses in the context of cancer. A more complete understanding of senescence and an appreciation for its complexities will be important for eventual development of senescence-targeted therapies. PMID:26453912

  5. Nationwide SIP Telephony Network Design to Prevent Congestion Caused by Disaster

    NASA Astrophysics Data System (ADS)

    Satoh, Daisuke; Ashitagawa, Kyoko

    We present a session initiation protocol (SIP) network design for a voice-over-IP network to prevent congestion caused by people calling friends and family after a disaster. The design increases the capacity of SIP servers in a network by using all of the SIP servers equally. It takes advantage of the fact that equipment for voice data packets is different from equipment for signaling packets in SIP networks. Furthermore, the design achieves simple routing on the basis of telephone numbers. We evaluated the performance of our design in preventing congestion through simulation. We showed that the proposed design has roughly 20 times more capacity, which is 57 times the normal load, than the conventional design if a disaster were to occur in Niigata Prefecture struck by the Chuetsu earthquake in 2004.

  6. 78 FR 21281 - Approval and Promulgation of Implementation Plans; State of Missouri; Infrastructure SIP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ...EPA is proposing action on four Missouri State Implementation Plan (SIP) submissions. First, EPA is proposing to approve portions of two SIP submissions from the State of Missouri addressing the applicable requirements of Clean Air Act (CAA) for the 1997 and 2006 National Ambient Air Quality Standards (NAAQS) for fine particulate matter (PM2.5). The CAA requires that each state adopt and submit a SIP to support implementation, maintenance, and enforcement of each new or revised NAAQS promulgated by EPA. These SIPs are commonly referred to as ``infrastructure'' SIPs. The infrastructure requirements are designed to ensure that the structural components of each state's air quality management program are adequate to meet the state's responsibilities under the CAA. EPA is also proposing to approve two additional SIP submissions from Missouri, one addressing the Prevention of Significant Deterioration (PSD) program in Missouri, and another addressing the requirements applicable to any board or body which approves permits or enforcement orders of the CAA, both of which support requirements associated with infrastructure SIPs.

  7. Senescence-like Phenotypes in Human Nevi

    PubMed Central

    Joselow, Andrew; Lynn, Darren; Terzian, Tamara; Box, Neil F.

    2016-01-01

    Summary Cellular senescence is an irreversible arrest of cell proliferation at the G1 stage of the cell cycle in which cells become refractory to growth stimuli. Senescence is a critical and potent defense mechanism that mammalian cells have to suppress tumors. While there are many ways to induce a senescence response, oncogene-induced senescence (OIS) remains key to inhibiting progression of cells that have acquired oncogenic mutations. In primary cells in culture, OIS induces a set of measurable phenotypic and behavioral changes, in addition to cell cycle exit. Senescence-associated β-Galactosidase (SA-β-Gal) activity is a main hallmark of senescent cells, along with morphological changes that may depend on the oncogene that is activated, or on the primary cell type. Characteristic cellular changes of senescence include increased size, flattening, multi-nucleation, and extensive vacuolation. At the molecular level, tumor suppressor genes such as p53 and p16INK4a may play a role in initiation or maintenance of OIS. Activation of a DNA damage response and a senescence-associated secretory phenotype could delineate the onset of senescence. Despite advances in our understanding of how OIS suppresses some tumor types, the in vivo role of OIS in melanocytic nevi and melanoma remains poorly understood and not validated. In an effort to stimulate research in this field, we review in this chapter the known markers of senescence and provide experimental protocols for their identification by immunofluorescent staining in melanocytic nevi and malignant melanoma. PMID:27812879

  8. Senescence-associated reprogramming promotes cancer stemness.

    PubMed

    Milanovic, Maja; Fan, Dorothy N Y; Belenki, Dimitri; Däbritz, J Henry M; Zhao, Zhen; Yu, Yong; Dörr, Jan R; Dimitrova, Lora; Lenze, Dido; Monteiro Barbosa, Ines A; Mendoza-Parra, Marco A; Kanashova, Tamara; Metzner, Marlen; Pardon, Katharina; Reimann, Maurice; Trumpp, Andreas; Dörken, Bernd; Zuber, Johannes; Gronemeyer, Hinrich; Hummel, Michael; Dittmar, Gunnar; Lee, Soyoung; Schmitt, Clemens A

    2018-01-04

    Cellular senescence is a stress-responsive cell-cycle arrest program that terminates the further expansion of (pre-)malignant cells. Key signalling components of the senescence machinery, such as p16 INK4a , p21 CIP1 and p53, as well as trimethylation of lysine 9 at histone H3 (H3K9me3), also operate as critical regulators of stem-cell functions (which are collectively termed 'stemness'). In cancer cells, a gain of stemness may have profound implications for tumour aggressiveness and clinical outcome. Here we investigated whether chemotherapy-induced senescence could change stem-cell-related properties of malignant cells. Gene expression and functional analyses comparing senescent and non-senescent B-cell lymphomas from Eμ-Myc transgenic mice revealed substantial upregulation of an adult tissue stem-cell signature, activated Wnt signalling, and distinct stem-cell markers in senescence. Using genetically switchable models of senescence targeting H3K9me3 or p53 to mimic spontaneous escape from the arrested condition, we found that cells released from senescence re-entered the cell cycle with strongly enhanced and Wnt-dependent clonogenic growth potential compared to virtually identical populations that had been equally exposed to chemotherapy but had never been senescent. In vivo, these previously senescent cells presented with a much higher tumour initiation potential. Notably, the temporary enforcement of senescence in p53-regulatable models of acute lymphoblastic leukaemia and acute myeloid leukaemia was found to reprogram non-stem bulk leukaemia cells into self-renewing, leukaemia-initiating stem cells. Our data, which are further supported by consistent results in human cancer cell lines and primary samples of human haematological malignancies, reveal that senescence-associated stemness is an unexpected, cell-autonomous feature that exerts its detrimental, highly aggressive growth potential upon escape from cell-cycle blockade, and is enriched in relapse

  9. Inflammation and premature aging in advanced chronic kidney disease.

    PubMed

    Kooman, Jeroen P; Dekker, Marijke J; Usvyat, Len A; Kotanko, Peter; van der Sande, Frank M; Schalkwijk, Casper G; Shiels, Paul G; Stenvinkel, Peter

    2017-10-01

    Systemic inflammation in end-stage renal disease is an established risk factor for mortality and a catalyst for other complications, which are related to a premature aging phenotype, including muscle wasting, vascular calcification, and other forms of premature vascular disease, depression, osteoporosis, and frailty. Uremic inflammation is also mechanistically related to mechanisms involved in the aging process, such as telomere shortening, mitochondrial dysfunction, and altered nutrient sensing, which can have a direct effect on cellular and tissue function. In addition to uremia-specific causes, such as abnormalities in the phosphate-Klotho axis, there are remarkable similarities between the pathophysiology of uremic inflammation and so-called "inflammaging" in the general population. Potentially relevant, but still somewhat unexplored in this respect, are abnormal or misplaced protein structures, as well as abnormalities in tissue homeostasis, which evoke danger signals through damage-associated molecular patterns, as well as the senescence-associated secretory phenotype. Systemic inflammation, in combination with the loss of kidney function, can impair the resilience of the body to external and internal stressors by reduced functional and structural tissue reserves, and by impairing normal organ crosstalk, thus providing an explanation for the greatly increased risk of homeostatic breakdown in this population. In this review, the relationship between uremic inflammation and a premature aging phenotype, as well as potential causes and consequences, are discussed. Copyright © 2017 the American Physiological Society.

  10. Programmed cell senescence during mammalian embryonic development.

    PubMed

    Muñoz-Espín, Daniel; Cañamero, Marta; Maraver, Antonio; Gómez-López, Gonzalo; Contreras, Julio; Murillo-Cuesta, Silvia; Rodríguez-Baeza, Alfonso; Varela-Nieto, Isabel; Ruberte, Jesús; Collado, Manuel; Serrano, Manuel

    2013-11-21

    Cellular senescence disables proliferation in damaged cells, and it is relevant for cancer and aging. Here, we show that senescence occurs during mammalian embryonic development at multiple locations, including the mesonephros and the endolymphatic sac of the inner ear, which we have analyzed in detail. Mechanistically, senescence in both structures is strictly dependent on p21, but independent of DNA damage, p53, or other cell-cycle inhibitors, and it is regulated by the TGF-β/SMAD and PI3K/FOXO pathways. Developmentally programmed senescence is followed by macrophage infiltration, clearance of senescent cells, and tissue remodeling. Loss of senescence due to the absence of p21 is partially compensated by apoptosis but still results in detectable developmental abnormalities. Importantly, the mesonephros and endolymphatic sac of human embryos also show evidence of senescence. We conclude that the role of developmentally programmed senescence is to promote tissue remodeling and propose that this is the evolutionary origin of damage-induced senescence. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. CacyBP/SIP nuclear translocation regulates p27Kip1 stability in gastric cancer cells

    PubMed Central

    Niu, Ying-Lin; Li, Ya-Jun; Wang, Jing-Bo; Lu, Yuan-Yuan; Liu, Zhen-Xiong; Feng, Shan-Shan; Hu, Jian-Guo; Zhai, Hui-Hong

    2016-01-01

    AIM: To investigate the mechanism of calcyclin binding protein/Siah-1 interacting protein (CacyBP/SIP) nuclear translocation in promoting the proliferation of gastric cancer (GC) cells. METHODS: The effect of CacyBP/SIP nuclear translocation on cell cycle was investigated by cell cycle analysis. Western blot analysis was used to assess the change in expression of cell cycle regulatory proteins and proteasome-mediated degradation of p27Kip1. Co-immunoprecipitation (co-IP) analysis was performed to examine the binding of CacyBP/SIP with Skp1. A CacyBP/SIP truncation mutant which lacked the Skp1 binding site was constructed and fused to a fluorescent protein. Subsequently, the effect on Skp1 binding with the fusion protein was examined by co-IP, while localization of fluorescent fusion protein observed by confocal laser microscopy, and change in p27Kip1 protein expression assessed by Western blot analysis. RESULTS: CacyBP/SIP nuclear translocation induced by gastrin promoted progression of GC cells from G1 phase. However, while CacyBP/SIP nuclear translocation was inhibited using siRNA to suppress CacyBP/SIP expression, cell cycle was clearly inhibited. CacyBP/SIP nuclear translocation significantly decreased the level of cell cycle inhibitor p27Kip1, increased Cyclin E protein expression whereas the levels of Skp1, Skp2, and CDK2 were not affected. Upon inhibition of CacyBP/SIP nuclear translocation, there were no changes in protein levels of p27Kip1 and Cyclin E, while p27Kip1 decrease could be prevented by the proteasome inhibitor MG132. Moreover, CacyBP/SIP was found to bind to Skp1 by immunoprecipitation, an event that was abolished by mutant CacyBP/SIP, which also failed to stimulate p27Kip1 degradation, even though the mutant could still translocate into the nucleus. CONCLUSION: CacyBP/SIP nuclear translocation contributes to the proliferation of GC cells, and CacyBP/SIP exerts this effect, at least in part, by stimulating ubiquitin-mediated degradation of p27

  12. 40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... submitted a revision to the State Implementation Plan (SIP) for Casa Grande, Show Low, Safford, Flagstaff... Implementation Plan (SIP) requirements for Casa Grande, Show Low, Safford, Flagstaff and Joseph City as provided...

  13. Irradiation induces glioblastoma cell senescence and senescence-associated secretory phenotype.

    PubMed

    Jeon, Hee-Young; Kim, Jun-Kyum; Ham, Seok Won; Oh, Se-Yeong; Kim, Jaebong; Park, Jae-Bong; Lee, Jae-Yong; Kim, Sung-Chan; Kim, Hyunggee

    2016-05-01

    Glioblastoma multiforme (GBM) is one of the most aggressive and fatal primary brain tumors in humans. The standard therapy for the treatment of GBM is surgical resection, followed by radiotherapy and/or chemotherapy. However, the frequency of tumor recurrence in GBM patients is very high, and the survival rate remains poor. Delineating the mechanisms of GBM recurrence is essential for therapeutic advances. Here, we demonstrate that irradiation rendered 17-20 % of GBM cells dead, but resulted in 60-80 % of GBM cells growth-arrested with increases in senescence markers, such as senescence-associated beta-galactosidase-positive cells, H3K9me3-positive cells, and p53-p21(CIP1)-positive cells. Moreover, irradiation induced expression of senescence-associated secretory phenotype (SASP) mRNAs and NFκB transcriptional activity in GBM cells. Strikingly, compared to injection of non-irradiated GBM cells into immune-deficient mice, the co-injection of irradiated and non-irradiated GBM cells resulted in faster growth of tumors with the histological features of human GBM. Taken together, our findings suggest that the increases in senescent cells and SASP in GBM cells after irradiation is likely one of main reasons for tumor recurrence in post-radiotherapy GBM patients.

  14. Transgenic plants with altered senescence characteristics

    DOEpatents

    Amasino, Richard M.; Gan, Susheng; Noh, Yoo-Sun

    2002-03-19

    The identification of senescence-specific promoters from plants is described. Using information from the first senescence-specific promoter, SAG12 from Arabidopsis, other homologous promoters from another plant have been identified. Such promoters may be used to delay senescence in commercially important plants.

  15. A Secured Authentication Protocol for SIP Using Elliptic Curves Cryptography

    NASA Astrophysics Data System (ADS)

    Chen, Tien-Ho; Yeh, Hsiu-Lien; Liu, Pin-Chuan; Hsiang, Han-Chen; Shih, Wei-Kuan

    Session initiation protocol (SIP) is a technology regularly performed in Internet Telephony, and Hyper Text Transport Protocol (HTTP) as digest authentication is one of the major methods for SIP authentication mechanism. In 2005, Yang et al. pointed out that HTTP could not resist server spoofing attack and off-line guessing attack and proposed a secret authentication with Diffie-Hellman concept. In 2009, Tsai proposed a nonce based authentication protocol for SIP. In this paper, we demonstrate that their protocol could not resist the password guessing attack and insider attack. Furthermore, we propose an ECC-based authentication mechanism to solve their issues and present security analysis of our protocol to show that ours is suitable for applications with higher security requirement.

  16. Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development.

    PubMed

    Manthey, Abby L; Lachke, Salil A; FitzGerald, Paul G; Mason, Robert W; Scheiblin, David A; McDonald, John H; Duncan, Melinda K

    2014-02-01

    SIP1 encodes a DNA-binding transcription factor that regulates multiple developmental processes, as highlighted by the pleiotropic defects observed in Mowat-Wilson syndrome, which results from mutations in this gene. Further, in adults, dysregulated SIP1 expression has been implicated in both cancer and fibrotic diseases, where it functionally links TGFβ signaling to the loss of epithelial cell characteristics and gene expression. In the ocular lens, an epithelial tissue important for vision, Sip1 is co-expressed with epithelial markers, such as E-cadherin, and is required for the complete separation of the lens vesicle from the head ectoderm during early ocular morphogenesis. However, the function of Sip1 after early lens morphogenesis is still unknown. Here, we conditionally deleted Sip1 from the developing mouse lens shortly after lens vesicle closure, leading to defects in coordinated fiber cell tip migration, defective suture formation, and cataract. Interestingly, RNA-Sequencing analysis on Sip1 knockout lenses identified 190 differentially expressed genes, all of which are distinct from previously described Sip1 target genes. Furthermore, 34% of the genes with increased expression in the Sip1 knockout lenses are normally downregulated as the lens transitions from the lens vesicle to early lens, while 49% of the genes with decreased expression in the Sip1 knockout lenses are normally upregulated during early lens development. Overall, these data imply that Sip1 plays a major role in reprogramming the lens vesicle away from a surface ectoderm cell fate towards that necessary for the development of a transparent lens and demonstrate that Sip1 regulates distinctly different sets of genes in different cellular contexts. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development

    PubMed Central

    Manthey, Abby L.; Lachke, Salil A.; FitzGerald, Paul G.; Mason, Robert W.; Scheiblin, David A.; McDonald, John H.; Duncan, Melinda K.

    2014-01-01

    SIP1 encodes a DNA-binding transcription factor that regulates multiple developmental processes, as highlighted by the pleiotropic defects observed in Mowat-Wilson Syndrome, which results from mutations in this gene. Further, in adults, dysregulated SIP1 expression has been implicated in both cancer and fibrotic diseases, where it functionally links TGFβ signaling to the loss of epithelial cell characteristics and gene expression. In the ocular lens, an epithelial tissue important for vision, Sip1 is co-expressed with epithelial markers, such as E-cadherin, and is required for the complete separation of the lens vesicle from the head ectoderm during early ocular morphogenesis. However, the function of Sip1 after early lens morphogenesis is still unknown. Here, we conditionally deleted Sip1 from the developing mouse lens shortly after lens vesicle closure, leading to defects in coordinated fiber cell tip migration, defective suture formation, and cataract. Interestingly, RNA-Sequencing analysis on Sip1 knockout lenses identified 190 differentially expressed genes, all of which are distinct from previously described Sip1 target genes. Furthermore, 34% of the genes with increased expression in the Sip1 knockout lenses are normally downregulated as the lens transitions from the lens vesicle to early lens, while 49% of the genes with decreased expression in the Sip1 knockout lenses are normally upregulated during early lens development. Overall, these data imply that Sip1 plays a major role in reprogramming the lens vesicle away from a surface ectoderm cell fate towards that necessary for the development of a transparent lens and demonstrate that Sip1 regulates distinctly different sets of genes in different cellular contexts. PMID:24161570

  18. Evaluating the effectiveness of the Safety Investment Program (SIP) policies for Oregon.

    DOT National Transportation Integrated Search

    2009-10-01

    The Safety Investment Program (SIP) was originally called the Statewide Transportation Improvement Program - : Safety Investment Program (STIP-SIP). The concept of the program was first discussed in October 1997 and the : program was adopted by the O...

  19. Quantitative identification of senescent cells in aging and disease.

    PubMed

    Biran, Anat; Zada, Lior; Abou Karam, Paula; Vadai, Ezra; Roitman, Lior; Ovadya, Yossi; Porat, Ziv; Krizhanovsky, Valery

    2017-08-01

    Senescent cells are present in premalignant lesions and sites of tissue damage and accumulate in tissues with age. In vivo identification, quantification and characterization of senescent cells are challenging tasks that limit our understanding of the role of senescent cells in diseases and aging. Here, we present a new way to precisely quantify and identify senescent cells in tissues on a single-cell basis. The method combines a senescence-associated beta-galactosidase assay with staining of molecular markers for cellular senescence and of cellular identity. By utilizing technology that combines flow cytometry with high-content image analysis, we were able to quantify senescent cells in tumors, fibrotic tissues, and tissues of aged mice. Our approach also yielded the finding that senescent cells in tissues of aged mice are larger than nonsenescent cells. Thus, this method provides a basis for quantitative assessment of senescent cells and it offers proof of principle for combination of different markers of senescence. It paves the way for screening of senescent cells for identification of new senescence biomarkers, genes that bypass senescence or senolytic compounds that eliminate senescent cells, thus enabling a deeper understanding of the senescent state in vivo. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. Relationship between pore geometric characteristics and SIP/NMR parameters observed for mudstones

    NASA Astrophysics Data System (ADS)

    Robinson, J.; Slater, L. D.; Keating, K.; Parker, B. L.; Robinson, T.

    2017-12-01

    The reliable estimation of permeability remains one of the most challenging problems in hydrogeological characterization. Cost effective, non-invasive geophysical methods such as spectral induced polarization (SIP) and nuclear magnetic resonance (NMR) offer an alternative to traditional sampling methods as they are sensitive to the mineral surfaces and pore spaces that control permeability. We performed extensive physical characterization, SIP and NMR geophysical measurements on fractured rock cores extracted from a mudstone site in an effort to compare 1) the pore size characterization determined from traditional and geophysical methods and 2) the performance of permeability models based on these methods. We focus on two physical characterizations that are well-correlated with hydraulic properties: the pore volume normalized surface area (Spor) and an interconnected pore diameter (Λ). We find the SIP polarization magnitude and relaxation time are better correlated with Spor than Λ, the best correlation of these SIP measures for our sample dataset was found with Spor divided by the electrical formation factor (F). NMR parameters are, similarly, better correlated with Spor than Λ. We implement previously proposed mechanistic and empirical permeability models using SIP and NMR parameters. A sandstone-calibrated SIP model using a polarization magnitude does not perform well while a SIP model using a mean relaxation time performs better in part by more sufficiently accounting for the effects of fluid chemistry. A sandstone-calibrated NMR permeability model using an average measure of the relaxation time does not perform well, presumably due to small pore sizes which are either not connected or contain water of limited mobility. An NMR model based on the laboratory determined portions of the bound versus mobile portions of the relaxation distribution performed reasonably well. While limitations exist, there are many opportunities to use geophysical data to predict

  1. Biomarkers of cell senescence

    DOEpatents

    Dimri, Goberdhan P.; Campisi, Judith; Peacocke, Monica

    1998-01-01

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in vitro cell cultures or in vivo.

  2. Biomarkers of cell senescence

    DOEpatents

    Dirmi, Goberdhan P.; Campisi, Judith; Peacocke, Monica

    1996-01-01

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo.

  3. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter (PM-10) Group III SIP. (a) On September 14, 1988, the Governor of Hawaii submitted a revision to the... necessary to satisfy the requirements of the PM-10 Group III SIP. (b) The Hawaii Department of Health has...

  4. Comparison of artificial intelligence classifiers for SIP attack data

    NASA Astrophysics Data System (ADS)

    Safarik, Jakub; Slachta, Jiri

    2016-05-01

    Honeypot application is a source of valuable data about attacks on the network. We run several SIP honeypots in various computer networks, which are separated geographically and logically. Each honeypot runs on public IP address and uses standard SIP PBX ports. All information gathered via honeypot is periodically sent to the centralized server. This server classifies all attack data by neural network algorithm. The paper describes optimizations of a neural network classifier, which lower the classification error. The article contains the comparison of two neural network algorithm used for the classification of validation data. The first is the original implementation of the neural network described in recent work; the second neural network uses further optimizations like input normalization or cross-entropy cost function. We also use other implementations of neural networks and machine learning classification algorithms. The comparison test their capabilities on validation data to find the optimal classifier. The article result shows promise for further development of an accurate SIP attack classification engine.

  5. 76 FR 28437 - Disease, Disability, and Injury Prevention and Control Special Interest Projects (SIPs): Initial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... Preventive Services for Older Adults SIP11-045, and Measuring Impact of Multi-Component Interventions to Prevent Older Adult Falls and Assessing Sustainability and Scalability, SIP 11-046, Panel D,'' initial... SIP11-045, and Measuring Impact of Multi- Component Interventions to Prevent Older Adult Falls and...

  6. Biomarkers of cell senescence

    DOEpatents

    Dimri, G.P.; Campisi, J.; Peacocke, M.

    1998-08-18

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, {beta}-galactosidase activity is utilized as a means by which cell senescence may be assessed either in vitro cell cultures or in vivo. 1 fig.

  7. Biomarkers of cell senescence

    DOEpatents

    Dirmi, G.P.; Campisi, J.; Peacocke, M.

    1996-02-13

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, {beta}-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo. 1 fig.

  8. Cellular Senescence, Neurological Function, and Redox State.

    PubMed

    Maciel-Barón, Luis Ángel; Moreno-Blas, Daniel; Morales-Rosales, Sandra Lizbeth; González-Puertos, Viridiana Yazmín; López-Díazguerrero, Norma Edith; Torres, Claudio; Castro-Obregón, Susana; Königsberg, Mina

    2018-06-20

    Cellular senescence, characterized by permanent cell cycle arrest, has been extensively studied in mitotic cells such as fibroblasts. However, senescent cells have also been observed in the brain. Even though it is recognized that cellular energetic metabolism and redox homeostasis are perturbed in the aged brain and neurodegenerative diseases (NDDs), it is still unknown which alterations in the overall physiology can stimulate cellular senescence induction and their relationship with the former events. Recent Advances: Recent findings have shown that during prolonged inflammatory and pathologic events, the blood-brain barrier could be compromised and immune cells might enter the brain; this fact along with the brain's high oxygen dependence might result in oxidative damage to macromolecules and therefore senescence induction. Thus, cellular senescence in different brain cell types is revised here. Most information related to cellular senescence in the brain has been obtained from research in glial cells since it has been assumed that the senescent phenotype is a feature exclusive to mitotic cells. Nevertheless, neurons with senescence hallmarks have been observed in old mouse brains. Therefore, although this is a controversial topic in the field, here we summarize and integrate the observations from several studies and propose that neurons indeed senesce. It is still unknown which alterations in the overall metabolism can stimulate senescence induction in the aged brain, what are the mechanisms and signaling pathways, and what is their relationship to NDD development. The understanding of these processes will expose new targets to intervene age-associated pathologies.-Antioxid. Redox Signal. 28, 1704-1723.

  9. Spectral induced polarization (SIP) response of mine tailings.

    PubMed

    Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi

    2015-02-01

    Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Spectral induced polarization (SIP) response of mine tailings

    NASA Astrophysics Data System (ADS)

    Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi

    2015-02-01

    Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000 Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers.

  11. Evaluating the Role of p38 MAPK in the Accelerated Cell Senescence of Werner Syndrome Fibroblasts

    PubMed Central

    Davis, Terence; Brook, Amy J. C.; Rokicki, Michal J.; Bagley, Mark C.; Kipling, David

    2016-01-01

    Progeroid syndromes show features of accelerated ageing and are used as models for human ageing, of which Werner syndrome (WS) is one of the most widely studied. WS fibroblasts show accelerated senescence that may result from p38 MAP kinase activation since it is prevented by the p38 inhibitor SB203580. Thus, small molecule inhibition of p38-signalling may be a therapeutic strategy for WS. To develop this approach issues such as the in vivo toxicity and kinase selectivity of existing p38 inhibitors need to be addressed, so as to strengthen the evidence that p38 itself plays a critical role in mediating the effect of SB203580, and to find an inhibitor suitable for in vivo use. In this work we used a panel of different p38 inhibitors selected for: (1) having been used successfully in vivo in either animal models or human clinical trials; (2) different modes of binding to p38; and (3) different off-target kinase specificity profiles, in order to critically address the role of p38 in the premature senescence seen in WS cells. Our findings confirmed the involvement of p38 in accelerated cell senescence and identified p38 inhibitors suitable for in vivo use in WS, with BIRB 796 the most effective. PMID:27136566

  12. EPA Approved Regulations in the California SIP

    EPA Pesticide Factsheets

    EPA approved California statutes and regulations incorporated by reference in the applicable State Implementation Plan (SIP), as well as approved test procedures, methods and specifications that are cited in certain regulations listed.

  13. The SHIP: A SIP to HTTP Interaction Protocol

    NASA Astrophysics Data System (ADS)

    Zeiß, Joachim; Gabner, Rene; Bessler, Sandford; Happenhofer, Marco

    IMS is capable of providing a wide range of services. As a result, terminal software becomes more and more complex to deliver network intelligence to user applications. Currently mobile terminal software needs to be permanently updated so that the latest network services and functionality can be delivered to the user. In the Internet, browser based user interfaces assure that an interface is made available to the user which offers the latest services in the net immediately. Our approach combines the benefits of the Session Initiation Protocol (SIP) and those of the HTTP protocol to bring the same type of user interfacing to IMS. SIP (IMS) realizes authentication, session management, charging and Quality of Service (QoS), HTTP provides access to Internet services and allows the user interface of an application to run on a mobile terminal while processing and orchestration is done on the server. A SHIP enabled IMS client only needs to handle data transport and session management via SIP, HTTP and RTP and render streaming media, HTML and Javascript. SHIP allows new kinds of applications, which combine audio, video and data within a single multimedia session.

  14. Comparison of H.323 and SIP for IP telephony signaling

    NASA Astrophysics Data System (ADS)

    Dalgic, Ismail; Fang, Hanlin

    1999-11-01

    Two standards currently compete for the dominance of IP telephony signaling: the H.323 protocol suite by ITU-T, and the Session Initiation Protocol (SIP) by IETF. Both of these signaling protocols provide mechanisms for call establishment and teardown, call control and supplementary services, and capability exchange. We investigate and compare these two protocols in terms of Functionality, Quality of Service (QoS), Scalability, Flexibility, Interoperability, and Ease of Implementation. For fairness of comparison, we consider similar scenarios for both protocols. In particular, we focus on scenarios that involve a gatekeeper for H.323, and a Proxy/Redirect server for SIP. The reason is that medium-to-large IP Telephony systems are not manageable without a gatekeeper or proxy server. We consider all three versions of H.323. In terms of functionality and services that can be supported, H.323 version 2 and SIP are very similar. However, supplementary services in H.323 are more rigorously defined, and therefore fewer interoperability issues are expected among its implementations. Furthermore, H.323 has taken more steps to ensure compatibility among its different versions, and to interoperate with PSTN. The two protocols are comparable in their QoS support [similar call setup delays, no support for resource reservation or class of service (CoS) setting], but H.323 version 3 will allow signaling of the requested CoS. SIP's primary advantages are (1) flexibility to add new features, and (2) relative ease of implementation and debugging. Finally, we note that H.323 and SIP are improving themselves by learning from each other, and the differences between them are diminishing with each new version.

  15. Tetraploidization or autophagy: The ultimate fate of senescent human endometrial stem cells under ATM or p53 inhibition.

    PubMed

    Borodkina, Aleksandra V; Shatrova, Alla N; Deryabin, Pavel I; Grukova, Anastasiya A; Nikolsky, Nikolay N; Burova, Elena B

    2016-01-01

    Previously we demonstrated that endometrium-derived human mesenchymal stem cells (hMESCs) via activation of the ATM/p53/p21/Rb pathway enter the premature senescence in response to oxidative stress. Down regulation effects of the key components of this signaling pathway, particularly ATM and p53, on a fate of stressed hMESCs have not yet been investigated. In the present study by using the specific inhibitors Ku55933 and Pifithrin-α, we confirmed implication of both ATM and p53 in H(2)O(2)-induced senescence of hMESCs. ATM or p53 down regulation was shown to modulate differently the cellular fate of H(2)O(2)-treated hMESCs. ATM inhibition allowed H(2)O(2)-stimulated hMESCs to escape the permanent cell cycle arrest due to loss of the functional ATM/p53/p21/Rb pathway, and induced bypass of mitosis and re-entry into S phase, resulting in tetraploid cells. On the contrary, suppression of the p53 transcriptional activity caused a pronounced cell death of H(2)O(2)-treated hMESCs via autophagy induction. The obtained data clearly demonstrate that down regulation of ATM or p53 shifts senescence of human endometrial stem cells toward tetraploidization or autophagy.

  16. Concepts and Types of Senescence in Plants.

    PubMed

    Gan, Susheng

    2018-01-01

    Concepts, classification, and the relationship between different types of senescence are discussed in this chapter. Senescence-related terminology frequently used in yeast, animal, and plant systems and senescence processes at cellular, organ, and organismal levels are clarified.

  17. Mitochondrial peptides modulate mitochondrial function during cellular senescence.

    PubMed

    Kim, Su-Jeong; Mehta, Hemal H; Wan, Junxiang; Kuehnemann, Chisaka; Chen, Jingcheng; Hu, Ji-Fan; Hoffman, Andrew R; Cohen, Pinchas

    2018-06-10

    Cellular senescence is a complex cell fate response that is thought to underlie several age-related pathologies. Despite a loss of proliferative potential, senescent cells are metabolically active and produce energy-consuming effectors, including senescence-associated secretory phenotypes (SASPs). Mitochondria play crucial roles in energy production and cellular signaling, but the key features of mitochondrial physiology and particularly of mitochondria-derived peptides (MDPs), remain underexplored in senescence responses. Here, we used primary human fibroblasts made senescent by replicative exhaustion, doxorubicin or hydrogen peroxide treatment, and examined the number of mitochondria and the levels of mitochondrial respiration, mitochondrial DNA methylation and the mitochondria-encoded peptides humanin, MOTS-c, SHLP2 and SHLP6. Senescent cells showed increased numbers of mitochondria and higher levels of mitochondrial respiration, variable changes in mitochondrial DNA methylation, and elevated levels of humanin and MOTS-c. Humanin and MOTS-c administration modestly increased mitochondrial respiration and selected components of the SASP in doxorubicin-induced senescent cells partially via JAK pathway. Targeting metabolism in senescence cells is an important strategy to reduce SASP production for eliminating the deleterious effects of senescence. These results provide insight into the role of MDPs in mitochondrial energetics and the production of SASP components by senescent cells.

  18. Autocrine IL-6 mediates pituitary tumor senescence

    PubMed Central

    Fuertes, Mariana; Ajler, Pablo; Carrizo, Guillermo; Cervio, Andrés; Sevlever, Gustavo; Stalla, Günter K.; Arzt, Eduardo

    2017-01-01

    Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence. PMID:27902467

  19. Multiple climate drivers accelerate Arctic plant community senescence

    NASA Astrophysics Data System (ADS)

    Livensperger, C.; Steltzer, H.; Wallenstein, M. D.; Weintraub, M. N.

    2015-12-01

    Alteration of seasonal phenology cues due to climate change has led to changes in the onset and duration of the growing season. While photoperiod often acts as an ultimate control on phenological events, recent studies have shown that environmental cues such as temperature and soil water content can modify the direction and rate of senescence processes. Warmer temperatures have resulted in an observed trend towards delayed senescence across temperate latitudes. However, Arctic regions are characterized by extreme seasonality and rapidly decreasing photoperiod, and consequently senescence may not shift as climate warms. We monitored the timing of Arctic plant community senescence for three years under the framework of an experimental manipulation that altered seasonal phenological cues through warming and earlier snowmelt. Alternative models of senescence were tested to determine if microclimate (air temperature, soil temperature, and soil moisture) or start of season phenology affect the timing and rate of community senescence. We found that all three microclimate predictors contributed to explaining variation in timing of senescence, suggesting that photoperiod is not the sole control on timing of senescence in Arctic plant communities. Rather, increased air and soil temperatures along with drier soil conditions, led to acceleration in the onset of senescence at a community level. Our data suggest that (1) multiple climate drivers predict timing of plant community senescence, and (2) climate change could result in a shorter peak season due to earlier onset of senescence, which would decrease the potential carbon uptake in moist acidic tundra.

  20. New concept: cellular senescence in pathophysiology of cholangiocarcinoma.

    PubMed

    Sasaki, Motoko; Nakanuma, Yasuni

    2016-01-01

    Cholangiocarcinoma, a malignant tumor arising in the hepatobiliary system, presents with poor prognosis because of difficulty in its early detection/diagnosis. Recent progress revealed that cellular senescence may be involved in the pathophysiology of cholangiocarcinoma. Cellular senescence is defined as permanent growth arrest caused by several cellular injuries, such as oncogenic mutations and oxidative stress. "Oncogene-induced" and/or stress-induced senescence may occur in the process of multi-step cholangiocarcinogenesis, and overexpression of a polycomb group protein EZH2 may play a role in the escape from, and/or bypassing of, senescence. Furthermore, senescent cells may play important roles in tumor development and progression via the production of senescence-associated secretory phenotypes. Cellular senescence may be a new target for the prevention, early diagnosis, and therapy of cholangiocarcinoma in the near future.

  1. Micafungin in Premature and Non-premature Infants

    PubMed Central

    Wu, Chunzhang; Tweddle, Lorraine; Roilides, Emmanuel

    2014-01-01

    Background: Invasive fungal infections cause excessive morbidity and mortality in premature neonates and severely ill infants. Methods: Safety and efficacy outcomes of micafungin were compared between prematurely and non-prematurely born infants <2 years of age. Data were obtained from all completed phase I–III clinical trials with micafungin that had enrolled infants (<2 years of age) that were listed in the Astellas Clinical Study Database. Demographics, adverse events, hepatic function tests and treatment success data were extracted and validated by the Astellas biostatistical group for all micafungin-treated patients, <2 years of age, using the unique patient identifier. Results: One-hundred and sixteen patients included in 9 clinical trials, 48% premature [birth weight (BW) <2500 g and/or gestational age <37 weeks], 52% non-premature, received ≥1 dose of micafungin. Among premature patients, 14.5% were low BW (1500–2499 g), 36.4% very low BW (1000–1499 g) and 49.1% extremely low BW (<1000 g). Ninety patients (78%) completed the studies; 13 [11% (4 premature)] died. Significantly more non-premature than premature patients discontinued treatment (P = 0.003). Treatment-related adverse events were recorded in 23% of patients with no difference between groups. More extremely low BW (n = 4, 15%) and very low BW (n = 8, 40%) infants experienced treatment-related adverse events than low BW (n = 0) and there was no relation to micafungin dose or duration. For a subgroup of 30 patients with invasive candidiasis, treatment success was achieved in 73% in both premature and non-premature groups. Prophylaxis was successful in 4/5 non-premature hematopoietic stem cell transplant patients. Conclusion: Micafungin has a safe profile in premature and non-premature infants with substantial efficacy. PMID:24892849

  2. Hypobaric Control of Ethylene-Induced Leaf Senescence in Intact Plants of Phaseolus vulgaris L. 1

    PubMed Central

    Nilsen, Karl N.; Hodges, Clinton F.

    1983-01-01

    A controlled atmospheric-environment system (CAES) designed to sustain normal or hypobaric ambient growing conditions was developed, described, and evaluated for its effectiveness as a research tool capable of controlling ethylene-induced leaf senescence in intact plants of Phaseolus vulgaris L. Senescence was prematurely-induced in primary leaves by treatment with 30 parts per million ethephon. Ethephon-derived endogenous ethylene reached peak levels within 6 hours at 26°C. Total endogenous ethylene levels then temporarily stabilized at approximately 1.75 microliters per liter from 6 to 24 hours. Thereafter, a progressive rise in ethylene resulted from leaf tissue metabolism and release. Throughout the study, the endogenous ethylene content of ethephon-treated leaves was greater than that of nontreated leaves. Subjecting ethephon-treated leaves to atmospheres of 200 millibars, with O2 and CO2 compositions set to approximate normal atmospheric partial pressures, prevented chlorophyll loss. Alternately, subjecting ethephon-treated plants to 200 millibars of air only partially prevented chlorophyll loss. Hypobaric conditions (200 millibars), with O2 and CO2 at normal atmospheric availability, could be delayed until 48 hours after ethephon treatment and still prevent most leaf senescence. In conclusion, hypobaric conditions established and maintained within the CAES prevented ethylene-induced senescence (chlorosis) in intact plants, provided O2 and CO2 partial pressures were maintained at levels approximating normal ambient availability. An unexpected increase in endogenous ethylene was detected within nontreated control leaves 48 hours subsequent to relocation from winter greenhouse conditions (latitude, 42°00″ N) to the CAES operating at normal ambient pressure. The longer photoperiod and/or higher temperature utilized within the CAES are hypothesized to influence ethylene metabolism directly and growth-promotive processes (e.g. response thresholds) indirectly

  3. MicroRNA-34a regulation of endothelial senescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Takashi; Yagi, Shusuke; Yamakuchi, Munekazu, E-mail: munekazu_yamakuchi@urmc.rochester.edu

    2010-08-06

    Research highlights: {yields} MicroRNA-34a (miR-34a) regulates senescence and cell cycle progression in endothelial cells. {yields} MiR-34a expression increases during endothelial cell senescence and in older mice. {yields} SIRT1 is a miR-34a target gene in endothelial cells. {yields} SIRT1 mediates the effects of miR-34a upon cell senescence in endothelial cells. -- Abstract: Endothelial senescence is thought to play a role in cardiovascular diseases such as atherosclerosis. We hypothesized that endothelial microRNAs (miRNAs) regulate endothelial survival and senescence. We found that miR-34a is highly expressed in primary endothelial cells. We observed that miR-34a expression increases in senescent human umbilical cord vein endothelialmore » cells (HUVEC) and in heart and spleen of older mice. MiR-34a over-expression induces endothelial cell senescence and also suppresses cell proliferation by inhibiting cell cycle progression. Searching for how miR-34a affects senescence, we discovered that SIRT1 is a target of miR-34a. Over-expressing miR-34a inhibits SIRT1 protein expression, and knocking down miR-34a enhances SIRT1 expression. MiR-34a triggers endothelial senescence in part through SIRT1, since forced expression of SIRT1 blocks the ability of miR-34a to induce senescence. Our data suggest that miR-34a contributes to endothelial senescence through suppression of SIRT1.« less

  4. Possible Roles of Strigolactones during Leaf Senescence

    PubMed Central

    Yamada, Yusuke; Umehara, Mikihisa

    2015-01-01

    Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence. PMID:27135345

  5. Octopus senescence: the beginning of the end.

    PubMed

    Anderson, Roland C; Wood, James B; Byrne, Ruth A

    2002-01-01

    Senescence is a normal stage of an octopus's life cycle that often occurs before death. Some of the following symptoms typify it: lack of feeding, retraction of skin around the eyes, uncoordinated movement, increased undirected activity, and white unhealing lesions on the body. There is inter- and intraspecific variability. Senescence is not a disease or a result of disease, although diseases can also be a symptom of it. Both males and females go through a senescent stage before dying-the males after mating, the females while brooding eggs and after the eggs hatch. There are many aspects of octopus senescence that have not yet been studied. This study discusses the ecological implications of senescence.

  6. Senescence from glioma stem cell differentiation promotes tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouchi, Rie; Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550; Okabe, Sachiko

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such asmore » IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.« less

  7. Ginsenoside Rg1 improves fertility and reduces ovarian pathological damages in premature ovarian failure model of mice.

    PubMed

    He, Lianli; Ling, Li; Wei, Tianqin; Wang, Yaping; Xiong, Zhengai

    2017-04-01

    This study aims to investigate the effect as well as mechanism of ginsenoside Rg1 (Rg1) on premature ovarian failure (POF) induced by d-galactose (d-gal) in mice. C57BL/6 female mice were divided into four groups randomly, which were the saline group, the d-gal group, the d-gal + Rg1 group, and the Rg1 group. Body weight was recorded. Overall ovarian function including estrous cycles, sex hormone secretion, ovarian follicle development, and ovarian morphology was analyzed by H&E staining and ELISA. Effect of Rg1 on aging was determined by analyzing the activities of oxidation-associated biomarkers, pro-inflammatory cytokine secretion, expression of senescence-associated proteins, and fertility. Compared with the d-gal group, in Rg1 + d-gal group, body weight was increased significantly, estrous cycle block was released, and fertility and the morphology of ovaries were restored. And, Rg1 treatment after d-gal administration significantly reduced senescence-associated protein expression, increased the activity of total superoxide dismutase and glutathione peroxidase from bovine erythrocyte, and induced higher follicle stimulating hormone receptor protein expression. Additionally, the expression levels of malondialdehyde, interleukin-1β, tumor necrosis factor-α, and interleukin-6 were significantly decreased. Together, Rg1 improves mouse fertility and reduces ovarian pathological damage in d-gal-induced POF model possibly through enhancing anti-inflammatory and antioxidant capacities and reducing expression of senescence signal pathway proteins. Impact statement Ginsenoside Rg1 (Rg1) is a kind of natural estrogen and it has antioxidation and antiaging effects. However, whether Rg1 has effects on premature ovarian failure (POF) is still not clear. In this study, aging model induced by d-galactose was used to mimic POF. The effect and possible mechanism of Rg1 on ovary aging was investigated. We found that Rg1 treatment up-regulated the expression of follicle

  8. PML, SUMOylation, and Senescence

    PubMed Central

    Ivanschitz, Lisa; De Thé, Hugues; Le Bras, Morgane

    2013-01-01

    Since its discovery, 25 years ago, promyelocytic leukemia (PML) has been an enigma. Implicated in the oncogenic PML/RARA fusion, forming elusive intranuclear domains, triggering cell death or senescence, controlled by and perhaps controlling SUMOylation… there are multiple PML-related issues. Here we review the reciprocal interactions between PML, senescence, and SUMOylation, notably in the context of cellular transformation. PMID:23847762

  9. Stable knockdown of PASG enhances DNA demethylation but does not accelerate cellular senescence in TIG-7 human fibroblasts

    PubMed Central

    Suzuki, Toshikazu; Farrar, Jason E.; Yegnasubramanian, Srinivasan; Zahed, Muhammed; Suzuki, Nobuo; Arceci, Robert J.

    2009-01-01

    Demethylation of 5-methylcytosine in genomic DNA is believed to be one of the mechanisms underlying replicative life-span of mammalian cells. Both proliferation associated SNF2-like gene (PASG, also termed Lsh) and DNA methyltransferase 3B (Dnmt3b) knockout mice result in embryonic genomic hypomethylation and a replicative senescent phenotype. However, it is unclear whether gradual demethylation of DNA during somatic cell division is directly involved in senescence. In this study, we retrovirally transduced TIG-7 human fibroblasts with a shRNA against PASG and compared the rate of change in DNA methylation as well as the replicative life-span to control cells under low (3%) and ambient (20%) oxygen. Expression of PASG protein was decreased by approximately 80% compared to control cells following transduction of PASG shRNA gene. The rate of cell growth was the same in both control and PASG-suppressed cells. The rate of demethylation of DNA was significantly increased in PASG-suppressed cells as compared control cells. However, decreased PASG expression did not shorten the replicative life-span of TIG-7 cells. Culture under low oxygen extended the life-span of TIG-7 cells but did not alter the rate of DNA demethylation. While knockout of PASG during development results in genomic hypomethylation and premature senescence, our results show that while downregulation of PASG expression in a somatic cell also leads to DNA hypomethylation, there is no associated senescent phenotype. These results suggest differences in cellular consequences of hypomethylation mediated by PASG during development compared to that in somatic cells. PMID:18948754

  10. Stable knockdown of PASG enhances DNA demethylation but does not accelerate cellular senescence in TIG-7 human fibroblasts.

    PubMed

    Suzuki, Toshikazu; Farrar, Jason E; Yegnasubramanian, Srinivasan; Zahed, Muhammed; Suzuki, Nobuo; Arceci, Robert J

    2008-09-01

    Demethylation of 5-methylcytosine in genomic DNA is believed to be one of the mechanisms underlying replicative life-span of mammalian cells. Both proliferation associated SNF2-like gene (PASG, also termed Lsh) and DNA methyltransferase 3B (Dnmt3b) knockout mice result in embryonic genomic hypomethylation and a replicative senescent phenotype. However, it is unclear whether gradual demethylation of DNA during somatic cell division is directly involved in senescence. In this study, we retrovirally transduced TIG-7 human fibroblasts with a shRNA against PASG and compared the rate of change in DNA methylation as well as the replicative life-span to control cells under low (3%) and ambient (20%) oxygen. Expression of PASG protein was decreased by approximately 80% compared to control cells following transduction of PASG shRNA gene. The rate of cell growth was the same in both control and PASG-suppressed cells. The rate of demethylation of DNA was significantly increased in PASG-suppressed cells as compared control cells. However, decreased PASG expression did not shorten the replicative life-span of TIG-7 cells. Culture under low oxygen extended the life-span of TIG-7 cells but did not alter the rate of DNA demethylation. While knockout of PASG during development results in genomic hypomethylation and premature senescence, our results show that while downregulation of PASG expression in a somatic cell also leads to DNA hypomethylation, there is no associated senescent phenotype. These results suggest differences in cellular consequences of hypomethylation mediated by PASG during development compared to that in somatic cells.

  11. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.2306 Section 52.2306 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a...

  12. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.2306 Section 52.2306 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a...

  13. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.1637 Section 52.1637 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico...

  14. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.1637 Section 52.1637 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico...

  15. Real space flight travel is associated with ultrastructural changes, cytoskeletal disruption and premature senescence of HUVEC.

    PubMed

    Kapitonova, M Y; Muid, S; Froemming, G R A; Yusoff, W N W; Othman, S; Ali, A M; Nawawi, H M

    2012-12-01

    Microgravity, hypergravity, vibration, ionizing radiation and temperature fluctuations are major factors of outer space flight affecting human organs and tissues. There are several reports on the effect of space flight on different human cell types of mesenchymal origin while information regarding changes to vascular endothelial cells is scarce. Ultrastructural and cytophysiological features of macrovascular endothelial cells in outer space flight and their persistence during subsequent culturing were demonstrated in the present investigation. At the end of the space flight, endothelial cells displayed profound changes indicating cytoskeletal lesions and increased cell membrane permeability. Readapted cells of subsequent passages exhibited persisting cytoskeletal changes, decreased metabolism and cell growth indicating cellular senescence.

  16. Identification of Group B Streptococcal Sip Protein, Which Elicits Cross-Protective Immunity

    PubMed Central

    Brodeur, Bernard R.; Boyer, Martine; Charlebois, Isabelle; Hamel, Josée; Couture, France; Rioux, Clément R.; Martin, Denis

    2000-01-01

    A protein of group B streptococci (GBS), named Sip for surface immunogenic protein, which is distinct from previously described surface proteins, was identified after immunological screening of a genomic library. Immunoblots using a Sip-specific monoclonal antibody indicated that a protein band with an approximate molecular mass of 53 kDa which did not vary in size was present in every GBS strain tested. Representatives of all nine GBS serotypes were included in the panel of strains. Cloning and sequencing of the sip gene revealed an open reading frame of 1,305 nucleotides coding for a polypeptide of 434 amino acid residues, with a calculated pI of 6.84 and molecular mass of 45.5 kDa. Comparison of the nucleotide sequences from six different strains confirmed with 98% identity that the sip gene is highly conserved among GBS isolates. N-terminal amino acid sequencing also indicated the presence of a 25-amino-acid signal peptide which is cleaved in the mature protein. More importantly, immunization with the recombinant Sip protein efficiently protected CD-1 mice against deadly challenges with six GBS strains of serotypes Ia/c, Ib, II/R, III, V, and VI. The data presented in this study suggest that this highly conserved protein induces cross-protective immunity against GBS infections and emphasize its potential as a universal vaccine candidate. PMID:10992461

  17. E-cigarettes and flavorings induce inflammatory and pro-senescence responses in oral epithelial cells and periodontal fibroblasts.

    PubMed

    Sundar, Isaac K; Javed, Fawad; Romanos, Georgios E; Rahman, Irfan

    2016-11-22

    Electronic-cigarettes (e-cigs) represent a significant and increasing proportion of tobacco product consumption, which may pose an oral health concern. Oxidative/carbonyl stress via protein carbonylation is an important factor in causing inflammation and DNA damage. This results in stress-induced premature senescence (a state of irreversible growth arrest which re-enforces chronic inflammation) in gingival epithelium, which may contribute to the pathogenesis of oral diseases. We show that e-cigs with flavorings cause increased oxidative/carbonyl stress and inflammatory cytokine release in human periodontal ligament fibroblasts, Human Gingival Epithelium Progenitors pooled (HGEPp), and epigingival 3D epithelium. We further show increased levels of prostaglandin-E2 and cycloxygenase-2 are associated with upregulation of the receptor for advanced glycation end products (RAGE) by e-cig exposure-mediated carbonyl stress in gingival epithelium/tissue. Further, e-cigs cause increased oxidative/carbonyl and inflammatory responses, and DNA damage along with histone deacetylase 2 (HDAC2) reduction via RAGE-dependent mechanisms in gingival epithelium. A greater response is elicited by flavored e-cigs. Increased oxidative stress, pro-inflammatory and pro-senescence responses (DNA damage and HDAC2 reduction) can result in dysregulated repair due to proinflammatory and pro-senescence responses in periodontal cells. These data highlight the pathologic role of e-cig aerosol and its flavoring to cells and tissues of the oral cavity in compromised oral health.

  18. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses.

    PubMed

    Du, William W; Yang, Weining; Chen, Yu; Wu, Zhong-Kai; Foster, Francis Stuart; Yang, Zhenguo; Li, Xiangmin; Yang, Burton B

    2017-05-07

    Circular RNAs are a subclass of non-coding RNAs detected within mammalian cells. This study was designed to test the roles of a circular RNA circ-Foxo3 in senescence using in vitro and in vivo approaches. Using the approaches of molecular and cellular biology, we show that a circular RNA generated from a member of the forkhead family of transcription factors, Foxo3, namely circ-Foxo3, was highly expressed in heart samples of aged patients and mice, which was correlated with markers of cellular senescence. Doxorubicin-induced cardiomyopathy was aggravated by ectopic expression of circ-Foxo3 but was relieved by silencing endogenous circ-Foxo3. We also found that silencing circ-Foxo3 inhibited senescence of mouse embryonic fibroblasts and that ectopic expression of circ-Foxo3 induced senescence. We found that circ-Foxo3 was mainly distributed in the cytoplasm, where it interacted with the anti-senescent protein ID-1 and the transcription factor E2F1, as well as the anti-stress proteins FAK and HIF1α. We conclude that ID-1, E2F1, FAK, and HIF1α interact with circ-Foxo3 and are retained in the cytoplasm and could no longer exert their anti-senescent and anti-stress roles, resulting in increased cellular senescence. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  19. Synergistic regulation of the acute phase protein SIP24/24p3 by glucocorticoid and pro-inflammatory cytokines.

    PubMed

    Liu, Quan-Sheng; Nilsen-Hamilton, Marit; Xiong, Si-Dong

    2003-10-25

    SIP24/24p3 is a secreted murine acute phase protein which has been speculated to play an anti-inflammatory role in vivo. Recently SIP24/24p3 has been found to be able to specifically induce apoptosis in leukocytes. By using (35)S metabolic labeling method, we studied the regulation of SIP24/24p3 by glucocorticoid and pro-inflammatory cytokines IL-6 and TNF-alpha in cultured Balb/c 3T3 and BNL cells. The following results were observed: (1) dexamethasone induced the expression of SIP24/24p3 in both Balb/c 3T3 and BNL cells, the induction was more significant in BNL cells; (2) dexamethasone and IL-6 synergistically induced the expression of SIP24/24p3 in both Balb/c 3T3 and BNL cells; (3) in Balb/c 3T3 cells dexamethasone and TNF-alpha acted synergistically to induce the expression of SIP24/24p3, whereas in BNL cells dexamethasone and TNF-alpha induced the expression of SIP24/24p3 in an additive manner; (4) dexamethasone and IL-6/TNF-alpha acted synergistically in Balb/c 3T3 cells and additively in BNL cells to induce the expression of SIP24/24p3. The inducibility of SIP24/24p3 by multiple factors will help to explain its highly specific expression in vivo. The difference in the expression patterns of SIP24/24p3 in different cell types is also suggestive to its expression and regulation in hepatic and extrahepatic tissues. Finally, the fact that SIP24/24p3 protein can be induced by both pro-inflammatory as well as anti-inflammatory factors is indicative of the important role of SIP24/24p3 in the entire acute phase response process.

  20. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate matter (PM-10) Group II SIP commitments. 52.1489 Section 52.1489 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the...

  1. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group II SIP commitments. 52.1489 Section 52.1489 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the...

  2. Endothelial Microparticles From Acute Coronary Syndrome Patients Induce Premature Coronary Artery Endothelial Cell Aging and Thrombogenicity: Role of the Ang II/AT1 Receptor/NADPH Oxidase-Mediated Activation of MAPKs and PI3-Kinase Pathways.

    PubMed

    Abbas, Malak; Jesel, Laurence; Auger, Cyril; Amoura, Lamia; Messas, Nathan; Manin, Guillaume; Rumig, Cordula; León-González, Antonio J; Ribeiro, Thais P; Silva, Grazielle C; Abou-Merhi, Raghida; Hamade, Eva; Hecker, Markus; Georg, Yannick; Chakfe, Nabil; Ohlmann, Patrick; Schini-Kerth, Valérie B; Toti, Florence; Morel, Olivier

    2017-01-17

    Microparticles (MPs) have emerged as a surrogate marker of endothelial dysfunction and cardiovascular risk. This study examined the potential of MPs from senescent endothelial cells (ECs) or from patients with acute coronary syndrome (ACS) to promote premature EC aging and thrombogenicity. Primary porcine coronary ECs were isolated from the left circumflex coronary artery. MPs were prepared from ECs and venous blood from patients with ACS (n=30) and from healthy volunteers (n=4) by sequential centrifugation. The level of endothelial senescence was assessed as senescence-associated β-galactosidase activity using flow cytometry, oxidative stress using the redox-sensitive probe dihydroethidium, tissue factor activity using an enzymatic Tenase assay, the level of target protein expression by Western blot analysis, platelet aggregation using an aggregometer, and shear stress using a cone-and-plate viscometer. Senescence, as assessed by senescence-associated β-galactosidase activity, was induced by the passaging of porcine coronary artery ECs from passage P1 to P4, and was associated with a progressive shedding of procoagulant MPs. Exposure of P1 ECs to MPs shed from senescent P3 cells or circulating MPs from ACS patients induced increased senescence-associated β-galactosidase activity, oxidative stress, early phosphorylation of mitogen-activated protein kinases and Akt, and upregulation of p53, p21, and p16. Ex vivo, the prosenescent effect of circulating MPs from ACS patients was evidenced only under conditions of low shear stress. Depletion of endothelial-derived MPs from ACS patients reduced the induction of senescence. Prosenescent MPs promoted EC thrombogenicity through tissue factor upregulation, shedding of procoagulant MPs, endothelial nitric oxide synthase downregulation, and reduced nitric oxide-mediated inhibition of platelet aggregation. These MPs exhibited angiotensin-converting enzyme activity and upregulated AT1 receptors and angiotensin

  3. Spatial variation in senescence rates in a bird metapopulation.

    PubMed

    Holand, H; Kvalnes, T; Gamelon, M; Tufto, J; Jensen, H; Pärn, H; Ringsby, T H; Sæther, B-E

    2016-07-01

    Investigating factors which affect the decline in survival with age, i.e. actuarial senescence, is important in order to understand how demographic rates vary in wild populations. Although the evidence for the occurrence of actuarial senescence in wild populations is growing, very few studies have compared actuarial senescence rates between wild populations of the same species. We used data from a long-time study of demography of house sparrows (Passer domesticus) to investigate differences in rates of actuarial senescence between habitats and sub-populations. We also investigated whether rates of actuarial senescence differed between males and females. We found that rates of actuarial senescence showed large spatial variation. We also found that the onset of actuarial senescence varied between sub-populations. However, these differences were not significantly explained by a general difference in habitat type. We also found no significant difference in actuarial senescence rates between males and females. This study shows that senescence rates in natural populations may vary significantly between sub-populations and that failing to account for such differences may give a biased estimate of senescence rates of a species.

  4. The effect of S100A6 on nuclear translocation of CacyBP/SIP in colon cancer cells

    PubMed Central

    Yang, Bo; Li, Qianqian; Liu, Aiqin; Zhao, Yingying; Qiu, Changqing; Ge, Jun

    2018-01-01

    Background Calcyclin Binding Protein/(Siah-1 interacting protein) (CacyBP/SIP) acts as an oncogene in colorectal cancer. The nuclear accumulation of CacyBP/SIP has been linked to the proliferation of cancer cells. It has been reported that intracellular Ca2+ induces the nuclear translocation of CacyBP/SIP. However, the molecular mechanism of CacyBP/SIP nuclear translocation has yet to be elucidated. The purpose of this study was to test whether the Ca2+-dependent binding partner S100 protein is involved in CacyBP/SIP nuclear translocation in colon cancer SW480 cells. Methods The subcellular localization of endogenous CacyBP/SIP was observed following the stimulation of ionomycin or BAPTA/AM by immunofluorescence staining in SW480 cells. S100A6 small interfering RNAs (siRNA) were transfected into SW480 cells. Immunoprecipitation assays detected whether S100 protein is relevant to the nuclear translocation of CacyBP/SIP in response to changes in [Ca2+]i. Results We observed that endogenous CacyBP/SIP is translocated from the cytosol to the nucleus following the elevation of [Ca2+]i by ionomycin in SW480 cells. Co-immunoprecipitation experiments showed that the interaction between S100A6 and CacyBP/SIP was increased simultaneously with elevated Ca2+. Knockdown of S100A6 abolished the Ca2+ effect on the subcellular translocation of CacyBP/SIP. Conclusion Thus, we demonstrated that S100A6 is required for the Ca2+-dependent nuclear translocation of CacyBP/SIP in colon cancer SW480 cells. PMID:29534068

  5. Cellular and molecular aspects of quinoa leaf senescence.

    PubMed

    López-Fernández, María Paula; Burrieza, Hernán Pablo; Rizzo, Axel Joel; Martínez-Tosar, Leandro Julián; Maldonado, Sara

    2015-09-01

    During leaf senescence, degradation of chloroplasts precede to changes in nuclei and other cytoplasmic organelles, RuBisCO stability is progressively lost, grana lose their structure, plastidial DNA becomes distorted and degraded, the number of plastoglobuli increases and abundant senescence-associated vesicles containing electronically dense particles emerge from chloroplasts pouring their content into the central vacuole. This study examines quinoa leaf tissues during development and senescence using a range of well-established markers of programmed cell death (PCD), including: morphological changes in nuclei and chloroplasts, degradation of RuBisCO, changes in chlorophyll content, DNA degradation, variations in ploidy levels, and changes in nuclease profiles. TUNEL reaction and DNA electrophoresis demonstrated that DNA fragmentation in nuclei occurs at early senescence, which correlates with induction of specific nucleases. During senescence, metabolic activity is high and nuclei endoreduplicate, peaking at 4C. At this time, TEM images showed some healthy nuclei with condensed chromatin and nucleoli. We have found that DNA fragmentation, induction of senescence-associated nucleases and endoreduplication take place during leaf senescence. This provides a starting point for further research aiming to identify key genes involved in the senescence of quinoa leaves. Published by Elsevier Ireland Ltd.

  6. Multiple-sip temporal dominance of sensations associated with acceptance test: a study on special beers.

    PubMed

    Corrêa Simioni, Síntia Carla; Ribeiro, Michele Nayara; de Souza, Vanessa Rios; Nunes, Cleiton Antônio; Pinheiro, Ana Carla Marques

    2018-03-01

    In this study, we proposed the use of a multiple-sip temporal dominance of sensations (TDS) test alongside with an acceptance test over repeated consumption for the analysis of special beers, with the aim of contributing to a deeper understanding of consumer behavior regarding temporal descriptions and sensory acceptance. Consumers of special beers sequentially evaluated six sips of a particular type of beer by TDS analysis and an acceptance test was performed for each sip. Four different kinds of specialty beers were evaluated [Bohemian Pilsner (BP), Witbier (WB), Belgian Strong Ale Dubbel (BD), and Russian Imperial Stout (RS)]. In general, the descriptive profile of beers varied temporally, i.e., there was an increased dominance of bitterness and a decreased dominance of fruity, floral, toffee, and coffee attributes. Concurrently, a reduction in sensory acceptance with an increased number of sips, especially the last sip, was observed in two kinds of beers that possessed a strong flavor, BD and RS. BP and WB presented smooth attributes and low notable characteristics, which could have contributed to the maintenance of the acceptance grades as the number of sips increased. The combination of TDS and acceptance over repeated sips can be useful for obtaining detailed descriptions of products that are closer to real time consumption by consumers, and thus aids in ensuring good product performance once released. The information obtained can also help product development scientists to fine-tune product formulations and ensure acceptability.

  7. Forging a signature of in vivo senescence.

    PubMed

    Sharpless, Norman E; Sherr, Charles J

    2015-07-01

    'Cellular senescence', a term originally defining the characteristics of cultured cells that exceed their replicative limit, has been broadened to describe durable states of proliferative arrest induced by disparate stress factors. Proposed relationships between cellular senescence, tumour suppression, loss of tissue regenerative capacity and ageing suffer from lack of uniform definition and consistently applied criteria. Here, we highlight caveats in interpreting the importance of suboptimal senescence-associated biomarkers, expressed either alone or in combination. We advocate that more-specific descriptors be substituted for the now broadly applied umbrella term 'senescence' in defining the suite of diverse physiological responses to cellular stress.

  8. Senescence-Induced Serotonin Biosynthesis and Its Role in Delaying Senescence in Rice Leaves1[C][W][OA

    PubMed Central

    Kang, Kiyoon; Kim, Young-Soon; Park, Sangkyu; Back, Kyoungwhan

    2009-01-01

    Serotonin, which is well known as a pineal hormone in mammals, plays a key role in conditions such as mood, eating disorders, and alcoholism. In plants, although serotonin has been suggested to be involved in several physiological roles, including flowering, morphogenesis, and adaptation to environmental changes, its regulation and functional roles are as yet not characterized at the molecular level. In this study, we found that serotonin is greatly accumulated in rice (Oryza sativa) leaves undergoing senescence induced by either nutrient deprivation or detachment, and its synthesis is closely coupled with transcriptional and enzymatic induction of the tryptophan biosynthetic genes as well as tryptophan decarboxylase (TDC). Transgenic rice plants that overexpressed TDC accumulated higher levels of serotonin than the wild type and showed delayed senescence of rice leaves. However, transgenic rice plants, in which expression of TDC was suppressed through an RNA interference (RNAi) system, produced less serotonin and senesced faster than the wild type, suggesting that serotonin is involved in attenuating leaf senescence. The senescence-retarding activity of serotonin is associated with its high antioxidant activity compared to either tryptophan or chlorogenic acid. Results of TDC overexpression and TDC RNAi plants suggest that TDC plays a rate-limiting role for serotonin accumulation, but the synthesis of serotonin depends on an absolute amount of tryptophan accumulation by the coordinate induction of the tryptophan biosynthetic genes. In addition, immunolocalization analysis revealed that serotonin was abundant in the vascular parenchyma cells, including companion cells and xylem-parenchyma cells, suggestive of its involvement in maintaining the cellular integrity of these cells for facilitating efficient nutrient recycling from senescing leaves to sink tissues during senescence. PMID:19439571

  9. Transcriptional profile of genes involved in ascorbate glutathione cycle in senescing leaves for an early senescence leaf (esl) rice mutant.

    PubMed

    Li, Zhaowei; Su, Da; Lei, Bingting; Wang, Fubiao; Geng, Wei; Pan, Gang; Cheng, Fangmin

    2015-03-15

    To clarify the complex relationship between ascorbate-glutathione (AsA-GSH) cycle and H2O2-induced leaf senescence, the genotype-dependent difference in some senescence-related physiological parameters and the transcript levels and the temporal patterns of genes involved in the AsA-GSH cycle during leaf senescence were investigated using two rice genotypes, namely, the early senescence leaf (esl) mutant and its wild type. Meanwhile, the triggering effect of exogenous H2O2 on the expression of OsAPX genes was examined using detached leaves. The results showed that the esl mutant had higher H2O2 level than its wild type at the initial stage of leaf senescence. At transcriptional level, the association of expression of various genes involved in the AsA-GSH cycle with leaf senescence was isoform dependent. For OsAPXs, the transcripts of two cytosolic OsAPX genes (OsAPX1 and OsAPX2), thylakoid-bound OsAPX8, chloroplastic OsAPX7 and peroxisomal OsAPX4 exhibited remarkable genotype-dependent variation in their expression levels and temporal patterns during leaf senescence, there were significantly increasing transcripts of OsAXP1 and OsAPX7, severely repressed transcripts of OsAPX4 and OsAPX8 for the esl rice at the initial leaf senescence. In contrast, the repressing transcript of OsAPX8 was highly sensitive to the increasing H2O2 level in the senescing rice leaves, while higher H2O2 concentration resulted in the enhancing transcripts of two cytosolic OsAPX genes, OsAPX7 transcript was greatly variable with different H2O2 concentrations and incubating duration, suggesting that the different OsAPXs isoforms played a complementary role in perceiving and scavenging H2O2 accumulation at various H2O2 concentrations during leaf senescence. Higher H2O2 level, increased AsA level, higher activities of APX and glutathione reductase (GR), and relatively stable GSH content during the entire sampling period in the leaves of esl mutant implied that a close interrelationship existed

  10. The WRKY transcription factor family and senescence in switchgrass.

    PubMed

    Rinerson, Charles I; Scully, Erin D; Palmer, Nathan A; Donze-Reiner, Teresa; Rabara, Roel C; Tripathi, Prateek; Shen, Qingxi J; Sattler, Scott E; Rohila, Jai S; Sarath, Gautam; Rushton, Paul J

    2015-11-09

    Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. All potential WRKY genes present in the version 1.0 of the switchgrass genome were identified and curated using manual and bioinformatic methods. Expression profiles of WRKY genes in switchgrass flag leaf RNA-Seq datasets were analyzed using clustering and network analyses tools to identify both WRKY and WRKY-associated gene co-expression networks during leaf development and senescence onset. We identified 240 switchgrass WRKY genes including members of the RW5 and RW6 families of resistance proteins. Weighted gene co-expression network analysis of the flag leaf transcriptomes across development readily separated clusters of co-expressed genes into thirteen modules. A visualization highlighted separation of modules associated with the early and senescence-onset phases of flag leaf growth. The senescence-associated module contained 3000 genes including 23 WRKYs. Putative promoter regions of senescence-associated WRKY genes contained several cis-element-like sequences suggestive of responsiveness to both senescence and stress signaling pathways. A phylogenetic comparison of senescence-associated WRKY genes from switchgrass flag leaf with senescence-associated WRKY genes from other plants revealed notable hotspots in Group I, IIb, and IIe of the phylogenetic tree. We have identified and named 240 WRKY genes in the switchgrass genome. Twenty three of these genes show elevated mRNA levels during the onset of flag leaf senescence. Eleven of the WRKY genes were found in hotspots of related senescence-associated genes from multiple species and thus represent promising targets for future switchgrass genetic improvement. Overall, individual WRKY gene expression profiles could be readily linked to developmental stages of flag leaves.

  11. Age, stage and senescence in plants

    PubMed Central

    Caswell, Hal; Salguero-Gómez, Roberto

    2013-01-01

    1. Senescence (an increase in the mortality rate or force of mortality, or a decrease in fertility, with increasing age) is a widespread phenomenon. Theories about the evolution of senescence have long focused on the age trajectories of the selection gradients on mortality and fertility. In purely age-classified models, these selection gradients are non-increasing with age, implying that traits expressed early in life have a greater impact on fitness than traits expressed later in life. This pattern leads inevitably to the evolution of senescence if there are trade-offs between early and late performance. 2. It has long been suspected that the stage- or size-dependent demography typical of plants might change these conclusions. In this paper, we develop a model that includes both stage- and age-dependence and derive the age-dependent, stage-dependent and age×stage-dependent selection gradients on mortality and fertility. 3. We applied this model to stage-classified population projection matrices for 36 species of plants, from a wide variety of growth forms (from mosses to trees) and habitats. 4. We found that the age-specific selection gradients within a life cycle stage can exhibit increases with age (we call these contra-senescent selection gradients). In later stages, often large size classes in plant demography, the duration of these contra-senescent gradients can exceed the life expectancy by several fold. 5. Synthesis. The interaction of age- and stage-dependence in plants leads to selection pressures on senescence fundamentally different from those found in previous, age-classified theories. This result may explain the observation that large plants seem less subject to senescence than most kinds of animals. The methods presented here can lead to improved analysis of both age-dependent and stage-dependent demographic properties of plant populations. PMID:23741075

  12. 76 FR 28437 - Disease, Disability, and Injury Prevention and Control Special Interest Project (SIP): Initial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... announced below concerns ``Validation of Self-Reported Sleep Surveillance Measures, SIP11-047, Panel E..., discussion, and evaluation of ``Validation of Self-Reported Sleep Surveillance Measures, SIP11-047, Panel E...

  13. Exposure of human melanocytes to UVB twice and subsequent incubation leads to cellular senescence and senescence-associated pigmentation through the prolonged p53 expression.

    PubMed

    Choi, Suh-Yeon; Bin, Bum-Ho; Kim, Wanil; Lee, Eunkyung; Lee, Tae Ryong; Cho, Eun-Gyung

    2018-06-01

    Ultraviolet radiation (UVR) is a well-known factor in skin aging and pigmentation, and daily exposure to subcytotoxic doses of UVR might accelerate senescence and senescence-associated phenomena in human melanocytes. To establish an in vitro melanocyte model to mimic the conditions of repeated exposure to subcytotoxic doses of UVB irradiation and to investigate key factor(s) for melanocyte senescence and senescence-associated phenomena. Human epidermal melanocytes were exposed twice with 20 mJ/cm 2 UVB over a 24-h interval and subsequently cultivated for 2 weeks. Senescent phenotypes were addressed morphologically, and by measuring the senescence-associated β-galactosidase (SA-β-Gal) activity, cell proliferation capacity with cell cycle analysis, and melanin content. The established protocol successfully induced melanocyte senescence, and senescent melanocytes accompanied hyperpigmentation. Prolonged expression of p53 was responsible for melanocyte senescence and hyperpigmentation, and treatment with the p53-inhibitor pifithrin-α at 2-weeks post-UVB irradiation, but not at 48 h, significantly reduced melanin content along with decreases in tyrosinase levels. Melanocyte senescence model will be useful for studying the long-term effects of UVB irradiation and pigmentation relevant to physiological photoaging, and screening compounds effective for senescence-associated p53-mediated pigmentation. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  14. The "multiple hormone deficiency" theory of aging: is human senescence caused mainly by multiple hormone deficiencies?

    PubMed

    Hertoghe, T

    2005-12-01

    In the human body, the productions, levels and cell receptors of most hormones progressively decline with age, gradually putting the body into various states of endocrine deficiency. The circadian cycles of these hormones also change, sometimes profoundly, with time. In aging individuals, the well-balanced endocrine system can fall into a chaotic condition with losses, phase-advancements, phase delays, unpredictable irregularities of nycthemeral hormone cycles, in particular in very old or sick individuals. The desynchronization makes hormone activities peak at the wrong times and become inefficient, and in certain cases health threatening. The occurrence of multiple hormone deficits and spilling through desynchronization may constitute the major causes of human senescence, and they are treatable causes. Several arguments can be put forward to support the view that senescence is mainly a multiple hormone deficiency syndrome: First, many if not most of the signs, symptoms and diseases (including cardiovascular diseases, cancer, obesity, diabetes, osteoporosis, dementia) of senescence are similar to physical consequences of hormone deficiencies and may be caused by hormone deficiencies. Second, most of the presumed causes of senescence such as excessive free radical formation, glycation, cross-linking of proteins, imbalanced apoptosis system, accumulation of waste products, failure of repair systems, deficient immune system, may be caused or favored by hormone deficiencies. Even genetic causes such as limits to cell proliferation (such as the Hayflick limit of cell division), poor gene polymorphisms, premature telomere shortening and activation of possible genetic "dead programs" may have links with hormone deficiencies, being either the consequence, the cause, or the major favoring factor of hormone deficiencies. Third, well-dosed and -balanced hormone supplements may slow down or stop the progression of signs, symptoms, or diseases of senescence and may often

  15. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype.

    PubMed

    Ngo, Kevin; Patil, Prashanti; McGowan, Sara J; Niedernhofer, Laura J; Robbins, Paul D; Kang, James; Sowa, Gwendolyn; Vo, Nam

    2017-09-01

    Aging greatly increases the risk for intervertebral disc degeneration (IDD) as a result of proteoglycan loss due to reduced synthesis and enhanced degradation of the disc matrix proteoglycan (PG). How disc matrix PG homeostasis becomes perturbed with age is not known. The goal of this study is to determine whether cellular senescence is a source of this perturbation. We demonstrated that disc cellular senescence is dramatically increased in the DNA repair-deficient Ercc1 -/Δ mouse model of human progeria. In these accelerated aging mice, increased disc cellular senescence is closely associated with the rapid loss of disc PG. We also directly examine PG homeostasis in oxidative damage-induced senescent human cells using an in vitro cell culture model system. Senescence of human disc cells treated with hydrogen peroxide was confirmed by growth arrest, senescence-associated β-galactosidase activity, γH2AX foci, and acquisition of senescence-associated secretory phenotype. Senescent human disc cells also exhibited perturbed matrix PG homeostasis as evidenced by their decreased capacity to synthesize new matrix PG and enhanced degradation of aggrecan, a major matrix PG. of the disc. Our in vivo and in vitro findings altogether suggest that disc cellular senescence is an important driver of PG matrix homeostatic perturbation and PG loss. Published by Elsevier B.V.

  16. [The role of cellular senescence in carcinogenesis and antitumor therapy].

    PubMed

    Mosieniak, Grazyna; Strzeszewska, Anna

    2014-01-01

    Cellular senescence is the process that lead to terminal growth arrest induced by unrepairable double strand DNA damage (DSB). Moreover, activation of the oncogenes as well as inhibition of the tumor suppressor genes were shown to contribute to senescence induction and the senescent cells were identified in the premalignant lesions. Thus senescence is considered as an natural antitumor barrier that act at the early stages of cancerogenesis to stop the proliferation of transformed cells. Interestingly, the premalignant cells that escaped senescence and progress into full blown tumor cells still remain sensitive to induction of senescence, for example during chemio- or radiotherapy. Thus, induction of cancer cell senescence, similarly to apoptosis, is considered to restrain tumor growth and thus contribute to effectiveness of anticancer therapy. The senescent cells, although do not proliferate, remain viable and metabolically active. They secret a lot of cytokines, mitogens as well as enzymes degrading extracellular matrix. These factors can have opposing effect on neighboring cells, leading to senescence induction or stimulation of proliferation. Thus, senescence can act as an double edge sword that inhibit the propagation of potentially dangerous, transformed cells on one hand or induce cell division of the same cell on the other. Presently a lot of work is focused on finding new therapeutic strategies that would involve the tumor targeted senescence induction in both early late stages of cancer development. Nevertheless, the unwanted influence of the senescent cells on the microenvironment, requires careful monitoring the effects of pro-senescent therapies in each case.

  17. Molecular genetic approaches to the study of cellular senescence.

    PubMed

    Goletz, T J; Smith, J R; Pereira-Smith, O M

    1994-01-01

    Cellular senescence is an inability of cells to synthesize DNA and divide, which results in a terminal loss of proliferation despite the maintenance of basic metabolic processes. Senescence has been proposed as a model for the study of aging at the cellular level, and the basis for this model system and its features have been summarized. Although strong experimental evidence exists to support the hypothesis that cellular senescence is a dominant active process, the mechanisms responsible for this phenomenon remain a mystery. Investigators have taken several approaches to gain a better understanding of senescence. Several groups have documented the differences between young and senescent cells, and others have identified changes that occur during the course of a cell's in vitro life span. Using molecular and biochemical approaches, important changes in gene expression and function of cell-cycle-associated products have been identified. The active production of an inhibitor of DNA synthesis has been demonstrated. This may represent the final step in a cascade of events governing senescence. The study of immortal cells which have escaped senescence has also provided useful information, particularly with regard to the genes governing the senescence program. These studies have identified four complementation groups for indefinite division, which suggests that there are at least four genes or gene pathways in the senescence program. Through the use of microcell-mediated chromosome transfer, chromosomes encoding senescence genes have been identified; efforts to clone these genes are ongoing.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. SIP-ing the elixir of youth.

    PubMed

    Mair, William; Steffen, Kristan K; Dillin, Andrew

    2011-09-16

    AMP-activated protein kinase (AMPK) is a conserved cellular fuel gauge previously implicated in aging. In this issue, Lu et al. (2011) describe how age-related deacetylation of Sip2, a subunit of the AMPK homolog in yeast, acts as a life span clock that can be wound backward or forward to modulate longevity. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. The Early Psychosis Screener (EPS): Quantitative validation against the SIPS using machine learning.

    PubMed

    Brodey, B B; Girgis, R R; Favorov, O V; Addington, J; Perkins, D O; Bearden, C E; Woods, S W; Walker, E F; Cornblatt, B A; Brucato, G; Walsh, B; Elkin, K A; Brodey, I S

    2018-01-18

    Machine learning techniques were used to identify highly informative early psychosis self-report items and to validate an early psychosis screener (EPS) against the Structured Interview for Psychosis-risk Syndromes (SIPS). The Prodromal Questionnaire-Brief Version (PQ-B) and 148 additional items were administered to 229 individuals being screened with the SIPS at 7 North American Prodrome Longitudinal Study sites and at Columbia University. Fifty individuals were found to have SIPS scores of 0, 1, or 2, making them clinically low risk (CLR) controls; 144 were classified as clinically high risk (CHR) (SIPS 3-5) and 35 were found to have first episode psychosis (FEP) (SIPS 6). Spectral clustering analysis, performed on 124 of the items, yielded two cohesive item groups, the first mostly related to psychosis and mania, the second mostly related to depression, anxiety, and social and general work/school functioning. Items within each group were sorted according to their usefulness in distinguishing between CLR and CHR individuals using the Minimum Redundancy Maximum Relevance procedure. A receiver operating characteristic area under the curve (AUC) analysis indicated that maximal differentiation of CLR and CHR participants was achieved with a 26-item solution (AUC=0.899±0.001). The EPS-26 outperformed the PQ-B (AUC=0.834±0.001). For screening purposes, the self-report EPS-26 appeared to differentiate individuals who are either CLR or CHR approximately as well as the clinician-administered SIPS. The EPS-26 may prove useful as a self-report screener and may lead to a decrease in the duration of untreated psychosis. A validation of the EPS-26 against actual conversion is underway. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) for Bernalillo County that contained commitments, from the Director of the Albuquerque Environmental... SIPs. The City of Albuquerque and Bernalillo County Air Quality Control Board adopted this SIP revision on November 9, 1988. (b) The Albuquerque Environmental Health Department has committed to comply with...

  1. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) for Bernalillo County that contained commitments, from the Director of the Albuquerque Environmental... SIPs. The City of Albuquerque and Bernalillo County Air Quality Control Board adopted this SIP revision on November 9, 1988. (b) The Albuquerque Environmental Health Department has committed to comply with...

  2. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) for Bernalillo County that contained commitments, from the Director of the Albuquerque Environmental... SIPs. The City of Albuquerque and Bernalillo County Air Quality Control Board adopted this SIP revision on November 9, 1988. (b) The Albuquerque Environmental Health Department has committed to comply with...

  3. 40 CFR 57.205 - Submission of supplementary information upon relaxation of an SO2 SIP emission limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... upon relaxation of an SO2 SIP emission limitation. 57.205 Section 57.205 Protection of Environment... Application and the NSO Process § 57.205 Submission of supplementary information upon relaxation of an SO2 SIP emission limitation. (a) In the event an SO2 SIP limit is relaxed subsequent to EPA approval or issuance of...

  4. SIP Shear Walls: Cyclic Performance of High-Aspect-Ratio Segments and Perforated Walls

    Treesearch

    Vladimir Kochkin; Douglas R. Rammer; Kevin Kauffman; Thomas Wiliamson; Robert J. Ross

    2015-01-01

    Increasing stringency of energy codes and the growing market demand for more energy efficient buildings gives structural insulated panel (SIP) construction an opportunity to increase its use in commercial and residential buildings. However, shear wall aspect ratio limitations and lack of knowledge on how to design SIPs with window and door openings are barriers to the...

  5. Pirin Inhibits Cellular Senescence in Melanocytic Cells

    PubMed Central

    Licciulli, Silvia; Luise, Chiara; Scafetta, Gaia; Capra, Maria; Giardina, Giuseppina; Nuciforo, Paolo; Bosari, Silvano; Viale, Giuseppe; Mazzarol, Giovanni; Tonelli, Chiara; Lanfrancone, Luisa; Alcalay, Myriam

    2011-01-01

    Cellular senescence has been widely recognized as a tumor suppressing mechanism that acts as a barrier to cancer development after oncogenic stimuli. A prominent in vivo model of the senescence barrier is represented by nevi, which are composed of melanocytes that, after an initial phase of proliferation induced by activated oncogenes (most commonly BRAF), are blocked in a state of cellular senescence. Transformation to melanoma occurs when genes involved in controlling senescence are mutated or silenced and cells reacquire the capacity to proliferate. Pirin (PIR) is a highly conserved nuclear protein that likely functions as a transcriptional regulator whose expression levels are altered in different types of tumors. We analyzed the expression pattern of PIR in adult human tissues and found that it is expressed in melanocytes and has a complex pattern of regulation in nevi and melanoma: it is rarely detected in mature nevi, but is expressed at high levels in a subset of melanomas. Loss of function and overexpression experiments in normal and transformed melanocytic cells revealed that PIR is involved in the negative control of cellular senescence and that its expression is necessary to overcome the senescence barrier. Our results suggest that PIR may have a relevant role in melanoma progression. PMID:21514450

  6. In vitro senescence of immune cells.

    PubMed

    Effros, Rita B; Dagarag, Mirabelle; Valenzuela, Hector F

    2003-01-01

    Immune cells are eminently suitable model systems in which to address the possible role of replicative senescence during in vivo aging. Since there are more than 10(8) unique antigen specificities present within the total T lymphocyte population of each individual, the immune response to any single antigen requires massive clonal expansion of the small proportion of T cells whose receptors recognize that antigen. The Hayflick Limit may, therefore, constitute a barrier to effective immune function, at least for those T cells that encounter their specific antigen more than once over the life course. Application of the fibroblast replicative senescence model to the so-called cytotoxic or CD8 T cell, the class of T cells that controls viral infection and cancer, has revealed certain features in common with other cell types as well as several characteristics that are unique to T cells. One senescence-associated change that is T cell-specific is the complete loss of expression of the activation signaling surface molecule, CD28, an alteration that enabled the documentation of high proportions of senescent T cells in vivo. The T cell model has also provided the unique opportunity to analyze telomere dynamics in a cell type that has the ability to upregulate telomerase yet nevertheless undergoes senescence. The intimate involvement of the immune system in the control of pathogens and cancer as well as in modulation of bone homeostasis suggests that more extensive analysis of the full range of characteristics of senescent T cells may help elucidate a broad spectrum of age-associated physiological changes.

  7. Apoptotic transition of senescent cells accompanied with mitochondrial hyper-function

    PubMed Central

    Wang, Danli; Liu, Yang; Zhang, Rui; Zhang, Fen; Sui, Weihao; Chen, Li; Zheng, Ran; Chen, Xiaowen; Wen, Feiqiu; Ouyang, Hong-Wei; Ji, Junfeng

    2016-01-01

    Defined as stable cell-cycle arrest, cellular senescence plays an important role in diverse biological processes including tumorigenesis, organismal aging, and embryonic development. Although increasing evidence has documented the metabolic changes in senescent cells, mitochondrial function and its potential contribution to the fate of senescent cells remain largely unknown. Here, using two in vitro models of cellular senescence induced by doxorubicin treatment and prolonged passaging of neonatal human foreskin fibroblasts, we report that senescent cells exhibited high ROS level and augmented glucose metabolic rate concomitant with both morphological and quantitative changes of mitochondria. Furthermore, mitochondrial membrane potential depolarized at late stage of senescent cells which eventually led to apoptosis. Our study reveals that mitochondrial hyper-function contributes to the implementation of cellular senescence and we propose a model in which the mitochondrion acts as the key player in promoting fate-determination in senescent cells. PMID:27056883

  8. Biomarkers of Cell Senescence Assessed by Imaging Cytometry

    PubMed Central

    Zhao, Hong; Darzynkiewicz, Zbigniew

    2012-01-01

    The characteristic features of senescent cells such as their “flattened” appearance, enlarged nuclei and low saturation density at the plateau phase of cell growth, can be conveniently measured by image-assisted d cytometry such as provided by the laser scanning cytometry (LSC). The “flattening” of senescent cells is reflected by the decline in local density of staining (intensity of maximal pixel) of DNA-associated fluorescence [4,6-diamidino-2- phenylindole (DAPI)] paralleled by an increase in nuclear size (area). Thus, the ratio of the maximal pixel of DAPI fluorescence per nucleus to the nuclear area provides a very sensitive morphometric biomarker of “depth” of senescence, which progressively declines during induction of senescence. Also recorded is cellular DNA content revealing cell cycle phase, as well as the saturation cell density at plateau phase of growth, which is dramatically decreased in cultures of senescent cells. Concurrent immunocytochemical analysis of expression of p21WAF1, p16INK4a or p27KIP1 cyclin kinase inhibitor provides additional markers of senescence. These biomarker indices can be expressed in quantitative terms (“senescence indices”) as a fraction of the same markers of the exponentially growing cells in control cultures. PMID:23296652

  9. The Identification of Zebrafish Mutants Showing Alterations in Senescence-Associated Biomarkers

    PubMed Central

    Uchiyama, Junzo; Koshimizu, Eriko; Qi, Jie; Nanjappa, Purushothama; Imamura, Shintaro; Islam, Asiful; Neuberg, Donna; Amsterdam, Adam; Roberts, Thomas M.

    2008-01-01

    There is an interesting overlap of function in a wide range of organisms between genes that modulate the stress responses and those that regulate aging phenotypes and, in some cases, lifespan. We have therefore screened mutagenized zebrafish embryos for the altered expression of a stress biomarker, senescence-associated β-galactosidase (SA-β-gal) in our current study. We validated the use of embryonic SA-β-gal production as a screening tool by analyzing a collection of retrovirus-insertional mutants. From a pool of 306 such mutants, we identified 11 candidates that showed higher embryonic SA-β-gal activity, two of which were selected for further study. One of these mutants is null for a homologue of Drosophila spinster, a gene known to regulate lifespan in flies, whereas the other harbors a mutation in a homologue of the human telomeric repeat binding factor 2 (terf2) gene, which plays roles in telomere protection and telomere-length regulation. Although the homozygous spinster and terf2 mutants are embryonic lethal, heterozygous adult fish are viable and show an accelerated appearance of aging symptoms including lipofuscin accumulation, which is another biomarker, and shorter lifespan. We next used the same SA-β-gal assay to screen chemically mutagenized zebrafish, each of which was heterozygous for lesions in multiple genes, under the sensitizing conditions of oxidative stress. We obtained eight additional mutants from this screen that, when bred to homozygosity, showed enhanced SA-β-gal activity even in the absence of stress, and further displayed embryonic neural and muscular degenerative phenotypes. Adult fish that are heterozygous for these mutations also showed the premature expression of aging biomarkers and the accelerated onset of aging phenotypes. Our current strategy of mutant screening for a senescence-associated biomarker in zebrafish embryos may thus prove to be a useful new tool for the genetic dissection of vertebrate stress response and

  10. Premature menopause.

    PubMed

    Okeke, Tc; Anyaehie, Ub; Ezenyeaku, Cc

    2013-01-01

    Premature menopause affects 1% of women under the age of 40 years. The women are at risk of premature death, neurological diseases, psychosexual dysfunction, mood disorders, osteoporosis, ischemic heart disease and infertility. There is need to use simplified protocols and improved techniques in oocyte donation to achieve pregnancy and mother a baby in those women at risk. Review of the pertinent literature on premature menopause, selected references, internet services using the PubMed and Medline databases were included in this review. In the past, pregnancy in women with premature menopause was rare but with recent advancement in oocyte donation, women with premature menopause now have hoped to mother a child. Hormone replacement therapy is beneficial to adverse consequences of premature menopause. Women with premature menopause are at risk of premature death, neurological diseases, psychosexual dysfunction, mood disorders, osteoporosis, ischemic heart disease and infertility. Public enlightenment and education is important tool to save those at risk.

  11. Premature Menopause

    PubMed Central

    Okeke, TC; Anyaehie, UB; Ezenyeaku, CC

    2013-01-01

    Premature menopause affects 1% of women under the age of 40 years. The women are at risk of premature death, neurological diseases, psychosexual dysfunction, mood disorders, osteoporosis, ischemic heart disease and infertility. There is need to use simplified protocols and improved techniques in oocyte donation to achieve pregnancy and mother a baby in those women at risk. Review of the pertinent literature on premature menopause, selected references, internet services using the PubMed and Medline databases were included in this review. In the past, pregnancy in women with premature menopause was rare but with recent advancement in oocyte donation, women with premature menopause now have hoped to mother a child. Hormone replacement therapy is beneficial to adverse consequences of premature menopause. Women with premature menopause are at risk of premature death, neurological diseases, psychosexual dysfunction, mood disorders, osteoporosis, ischemic heart disease and infertility. Public enlightenment and education is important tool to save those at risk. PMID:23634337

  12. 40 CFR 52.331 - Committal SIP for the Colorado Group II PM10 areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PM10 areas. 52.331 Section 52.331 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.331 Committal SIP for the Colorado Group II PM10 areas. On April 14, 1989, the Governor submitted a Committal SIP...

  13. 40 CFR 52.331 - Committal SIP for the Colorado Group II PM10 areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PM10 areas. 52.331 Section 52.331 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.331 Committal SIP for the Colorado Group II PM10 areas. On April 14, 1989, the Governor submitted a Committal SIP...

  14. 40 CFR 52.331 - Committal SIP for the Colorado Group II PM10 areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PM10 areas. 52.331 Section 52.331 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.331 Committal SIP for the Colorado Group II PM10 areas. On April 14, 1989, the Governor submitted a Committal SIP...

  15. 40 CFR 52.331 - Committal SIP for the Colorado Group II PM10 areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PM10 areas. 52.331 Section 52.331 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.331 Committal SIP for the Colorado Group II PM10 areas. On April 14, 1989, the Governor submitted a Committal SIP...

  16. 40 CFR 52.331 - Committal SIP for the Colorado Group II PM10 areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PM10 areas. 52.331 Section 52.331 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.331 Committal SIP for the Colorado Group II PM10 areas. On April 14, 1989, the Governor submitted a Committal SIP...

  17. An Item Response Theory (IRT) analysis of the Short Inventory of Problems-Alcohol and Drugs (SIP-AD) among non-treatment seeking men-who-have-sex-with-men: evidence for a shortened 10-item SIP-AD.

    PubMed

    Hagman, Brett T; Kuerbis, Alexis N; Morgenstern, Jon; Bux, Donald A; Parsons, Jeffrey T; Heidinger, Bram E

    2009-11-01

    The Short Inventory of Problems-Alcohol and Drugs (SIP-AD) is a 15-item measure that assesses concurrently negative consequences associated with alcohol and illicit drug use. Current psychometric evaluation has been limited to classical test theory (CTT) statistics, and it has not been validated among non-treatment seeking men-who-have-sex-with-men (MSM). Methods from Item Response Theory (IRT) can improve upon CTT by providing an in-depth analysis of how each item performs across the underlying latent trait that it is purported to measure. The present study examined the psychometric properties of the SIP-AD using methods from both IRT and CTT among a non-treatment seeking MSM sample (N=469). Participants were recruited from the New York City area and were asked to participate in a series of studies examining club drug use. Results indicated that five items on the SIP-AD demonstrated poor item misfit or significant differential item functioning (DIF) across race/ethnicity and HIV status. These five items were dropped and two-parameter IRT analyses were conducted on the remaining 10 items, which indicated a restricted range of item location parameters (-.15 to -.99) plotted at the lower end of the latent negative consequences severity continuum, and reasonably high discrimination parameters (1.30 to 2.22). Additional CTT statistics were compared between the original 15-item SIP-AD and the refined 10-item SIP-AD and suggest that the differences were negligible with the refined 10-item SIP-AD indicating a high degree of reliability and validity. Findings suggest the SIP-AD can be shortened to 10 items and appears to be a non-biased reliable and valid measure among non-treatment seeking MSM.

  18. The Social Interaction Phobia Scale: Continued support for the psychometric validity of the SIPS using clinical and non-clinical samples.

    PubMed

    Menatti, Alison R; Weeks, Justin W; Carleton, R Nicholas; Morrison, Amanda S; Heimberg, Richard G; Hope, Debra A; Blanco, Carlos; Schneier, Franklin R; Liebowitz, Michael R

    2015-05-01

    The present study sought to extend findings supporting the psychometric validity of a promising measure of social anxiety (SA) symptoms, the Social Interaction Phobia Scale (SIPS; Carleton et al., 2009). Analyses were conducted using three samples: social anxiety disorder (SAD) patients, generalized anxiety disorder (GAD) patients, and healthy controls. SIPS scores of SAD patients demonstrated internal consistency and construct validity, and the previously demonstrated three-factor structure of the SIPS was replicated. Further, the SIPS total score uniquely predicted SA symptoms, and SIPS scores were significantly higher for SAD patients than GAD patients or controls. Two cut-off scores that discriminated SAD patients from GAD patients and from healthy controls were identified. The current study is the first to replicate the SIPS three-factor model in a large, treatment-seeking sample of SAD patients and establish a cut-off score discriminating SAD from GAD patients. Findings support the SIPS as a valid, SAD-specific assessment instrument. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Potential of iPSCs for the Treatment of Premature Aging Disorders

    PubMed Central

    Compagnucci, Claudia; Bertini, Enrico

    2017-01-01

    Premature aging disorders including Hutchinson-Gilford progeria syndrome (HGPS) and Werner syndrome, are a group of rare monogenic diseases leading to reduced lifespan of the patients. Importantly, these disorders mimic several features of physiological aging. Despite the interest on the study of these diseases, the underlying biological mechanisms remain unknown and no treatment is available. Recent studies on HGPS (due to mutations of the LMNA gene encoding for the nucleoskeletal proteins lamin A/C) have reported disruptions in cellular and molecular mechanisms modulating genomic stability and stem cell populations, thus giving the nuclear lamina a relevant function in nuclear organization, epigenetic regulation and in the maintenance of the stem cell pool. In this context, modeling premature aging with induced pluripotent stem cells (iPSCs) offers the possibility to study these disorders during self-renewal and differentiation into relevant cell types. iPSCs generated by cellular reprogramming from adult somatic cells allows researchers to understand pathophysiological mechanisms and enables the performance of drug screenings. Moreover, the recent development of precision genome editing offers the possibility to study the complex mechanisms underlying senescence and the possibility to correct disease phenotypes, paving the way for future therapeutic interventions. PMID:29112121

  20. PTTG1 Attenuates Drug-Induced Cellular Senescence

    PubMed Central

    Tong, Yunguang; Zhao, Weijiang; Zhou, Cuiqi; Wawrowsky, Kolja; Melmed, Shlomo

    2011-01-01

    As PTTG1 (pituitary tumor transforming gene) abundance correlates with adverse outcomes in cancer treatment, we determined mechanisms underlying this observation by assessing the role of PTTG1 in regulating cell response to anti-neoplastic drugs. HCT116 cells devoid of PTTG1 (PTTG1−/−) exhibited enhanced drug sensitivity as assessed by measuring BrdU incorporation in vitro. Apoptosis, mitosis catastrophe or DNA damage were not detected, but features of senescence were observed using low doses of doxorubicin and TSA. The number of drug-induced PTTG1−/− senescent cells increased ∼4 fold as compared to WT PTTG1-replete cells (p<0.001). p21, an important regulator of cell senescence, was induced ∼3 fold in HCT116 PTTG1−/− cells upon doxorubicin or Trichostatin A treatment. Binding of Sp1, p53 and p300 to the p21 promoter was enhanced in PTTG1−/− cells after treatment, suggesting transcriptional regulation of p21. p21 knock down abrogated the observed senescent effects of these drugs, indicating that PTTG1 likely suppresses p21 to regulate drug-induced senescence. PTTG1 also regulated SW620 colon cancer cells response to doxorubicin and TSA mediated by p21. Subcutaneously xenografted PTTG1−/− HCT116 cells developed smaller tumors and exhibited enhanced responses to doxorubicin. PTTG1−/− tumor tissue derived from excised tumors exhibited increased doxorubicin-induced senescence. As senescence is a determinant of cell responses to anti-neoplastic treatments, these findings suggest PTTG1 as a tumor cell marker to predict anti-neoplastic treatment outcomes. PMID:21858218

  1. Nonattainment and Ozone Transport Region (OTR) SIP Requirements

    EPA Pesticide Factsheets

    The Clean Air Act (CAA) requires a group of northeast states, which make up the Ozone Transport Region (OTR), to submit a SIP and install a certain level of controls for the pollutants that form ozone, even if they meet ozone standards.

  2. Proposed Approval of Kentucky 2008 Transport SIP Submission

    EPA Pesticide Factsheets

    The Environmental Protection Agency (EPA) is proposing to approve Kentucky’s February 28, 2018, draft State Implementation Plan (SIP) submission pertaining to the “good neighbor” provision of the Clean Air Act (CAA or Act) for the 2008 8-hour ozone Nationa

  3. Energy Efficiency and Renewable Energy in SIPs and TIPs

    EPA Pesticide Factsheets

    Tools and guides to encourage state, tribal and local agencies to consider incorporating Energy Efficiency (EE) and Renewable Energy (RE) policies and programs in their State and Tribal Implementation Plans (SIPs/TIPs).

  4. 76 FR 28437 - Disease, Disability, and Injury Prevention and Control Special Interest Project (SIP): Initial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Disease, Disability, and Injury Prevention and Control Special Interest Project (SIP): Initial Review The meeting... Disease or Treated by Assisted Reproductive Technology, SIP11-048, Panel F,'' initial review In accordance...

  5. 75 FR 30410 - Disease, Disability, and Injury Prevention and Control Special Interest Project (SIP): Provider...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ..., Disability, and Injury Prevention and Control Special Interest Project (SIP): Provider and Public Health... and Public Health Input for Vaccine Policy Decisions, SIP 10-036.'' Contact Person for More Information: Michelle Mathieson, Public Health Analyst, National Center for Chronic Disease and Health...

  6. The WRKY transcription factor family and senescence in switchgrass

    USDA-ARS?s Scientific Manuscript database

    Background: Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. Methods: All potential WRKY genes present in the version 1.0 of the...

  7. Flow-through SIP - A novel stable isotope probing approach limiting cross-feeding

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Kitzinger, Katharina; Schintlmeister, Arno; Kjedal, Henrik; Nielsen, Jeppe Lund; Nielsen, Per; Wagner, Michael

    2017-04-01

    Stable isotope probing (SIP) is a widely applied tool to link specific microbial populations to metabolic processes in the environment without the prerequisite of cultivation, which has greatly advanced our understanding of the role of microorganisms in biogeochemical cycling. SIP relies on tracing specific isotopically labeled substrates (e.g., 13C, 15N, 18O) into cellular biomarkers, such as DNA, RNA or phospholipid fatty acids, and is considered to be a robust technique to identify microbial populations that assimilate the labeled substrate. However, cross-feeding can occur when labeled metabolites are released from a primary consumer and then used by other microorganisms. This leads to erroneous identification of organisms that are not directly responsible for the process of interest, but are rather connected to primary consumers via a microbial food web. Here, we introduce a new approach that has the potential to eliminate the effect of cross-feeding in SIP studies and can thus also be used to distinguish primary consumers from other members of microbial food webs. In this approach, a monolayer of microbial cells are placed on a filter membrane, and labeled substrates are supplied by a continuous flow. By means of flow-through, labeled metabolites and degradation products are constantly removed, preventing secondary consumption of the substrate. We present results from a proof-of-concept experiment using nitrifiers from activated sludge as model system, in which we used fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes for identification of nitrifiers in combination with nanoscale secondary ion mass spectrometry (NanoSIMS) for visualization of isotope incorporation at the single-cell level. Our results show that flow-through SIP is a promising approach to significantly reduce cross-feeding and secondary substrate consumption in SIP experiments.

  8. Design of SIP transformation server for efficient media negotiation

    NASA Astrophysics Data System (ADS)

    Pack, Sangheon; Paik, Eun Kyoung; Choi, Yanghee

    2001-07-01

    Voice over IP (VoIP) is one of the advanced services supported by the next generation mobile communication. VoIP should support various media formats and terminals existing together. This heterogeneous environment may prevent diverse users from establishing VoIP sessions among them. To solve the problem an efficient media negotiation mechanism is required. In this paper, we propose the efficient media negotiation architecture using the transformation server and the Intelligent Location Server (ILS). The transformation server is an extended Session Initiation Protocol (SIP) proxy server. It can modify an unacceptable session INVITE message into an acceptable one using the ILS. The ILS is a directory server based on the Lightweight Directory Access Protocol (LDAP) that keeps userí*s location information and available media information. The proposed architecture can eliminate an unnecessary response and re-INVITE messages of the standard SIP architecture. It takes only 1.5 round trip times to negotiate two different media types while the standard media negotiation mechanism takes 2.5 round trip times. The extra processing time in message handling is negligible in comparison to the reduced round trip time. The experimental results show that the session setup time in the proposed architecture is less than the setup time in the standard SIP. These results verify that the proposed media negotiation mechanism is more efficient in solving diversity problems.

  9. Predatory senescence in ageing wolves.

    PubMed

    MacNulty, Daniel R; Smith, Douglas W; Vucetich, John A; Mech, L David; Stahler, Daniel R; Packer, Craig

    2009-12-01

    It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics.

  10. Predatory senescence in aging wolves

    USGS Publications Warehouse

    MacNulty, Daniel R.; Smith, Douglas W.; Vucetich, John A.; Mech, L. David; Stahler, Daniel R.; Packer, Craig

    2009-01-01

    It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics.

  11. The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.

    1993-01-01

    The Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, has developed a prototype interactive software system called the Spectral Image Processing System (SIPS) using IDL (the Interactive Data Language) on UNIX-based workstations. SIPS is designed to take advantage of the combination of high spectral resolution and spatial data presentation unique to imaging spectrometers. It streamlines analysis of these data by allowing scientists to rapidly interact with entire datasets. SIPS provides visualization tools for rapid exploratory analysis and numerical tools for quantitative modeling. The user interface is X-Windows-based, user friendly, and provides 'point and click' operation. SIPS is being used for multidisciplinary research concentrating on use of physically based analysis methods to enhance scientific results from imaging spectrometer data. The objective of this continuing effort is to develop operational techniques for quantitative analysis of imaging spectrometer data and to make them available to the scientific community prior to the launch of imaging spectrometer satellite systems such as the Earth Observing System (EOS) High Resolution Imaging Spectrometer (HIRIS).

  12. Arabidopsis AGAMOUS Regulates Sepal Senescence by Driving Jasmonate Production

    PubMed Central

    Jibran, Rubina; Tahir, Jibran; Cooney, Janine; Hunter, Donald A.; Dijkwel, Paul P.

    2017-01-01

    The signal that initiates the age-regulated senescence program in flowers is still unknown. Here we propose for the ephemeral Arabidopsis thaliana flower that it dies because of continued expression of the MADS-box transcription factor AGAMOUS (AG). AG is necessary for specifying the reproductive structures of the flower. Flowers of ag-1, which lack AG, exhibited delayed sepal senescence and abscission. The flowers also had reduced jasmonic acid (JA) content. Other anther-defective sterile mutants deficient in JA, defective in anther dehiscence 1 (dad1) and delayed dehiscence 2 (dde2), exhibited delayed sepal senescence and abscission as well. Manually pollinated dad1 flowers produced siliques but still had delayed senescence, demonstrating that absence of pollination does not cause delayed senescence. When ag-1, dad1 and dde2 flowers were sprayed with 100 μM methyl jasmonate, the sepal senescence and abscission phenotypes were rescued, suggesting that JA has a role in these processes. Our study uncovers a novel role for AG in determining the timing of death of the flower it helps develop and highlights a role for JA in sepal senescence. PMID:29312374

  13. Proline dehydrogenase promotes senescence through the generation of reactive oxygen species.

    PubMed

    Nagano, Taiki; Nakashima, Akio; Onishi, Kengo; Kawai, Kosuke; Awai, Yuto; Kinugasa, Mizuki; Iwasaki, Tetsushi; Kikkawa, Ushio; Kamada, Shinji

    2017-04-15

    Cellular senescence is a complex stress response characterized by permanent loss of proliferative capacity and is implicated in age-related disorders. Although the transcriptional activity of p53 (encoded by TP53 ) is known to be vital for senescence induction, the downstream effector genes critical for senescence remain unsolved. Recently, we have identified the proline dehydrogenase gene ( PRODH ) to be upregulated specifically in senescent cells in a p53-dependent manner, and the functional relevance of this to senescence is yet to be defined. Here, we conducted functional analyses to explore the relationship between PRODH and the senescence program. We found that genetic and pharmacological inhibition of PRODH suppressed senescent phenotypes induced by DNA damage. Furthermore, ectopic expression of wild-type PRODH, but not enzymatically inactive forms, induced senescence associated with the increase in reactive oxygen species (ROS) and the accumulation of DNA damage. Treatment with N-acetyl-L-cysteine, a ROS scavenger, prevented senescence induced by PRODH overexpression. These results indicate that PRODH plays a causative role in DNA damage-induced senescence through the enzymatic generation of ROS. © 2017. Published by The Company of Biologists Ltd.

  14. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.

    PubMed

    Ueda, Hiroaki; Kusaba, Makoto

    2015-09-01

    Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant development, including repression of branching. Although strigolactone is implicated in the regulation of leaf senescence, little is known about its molecular mechanism of action. In this study, strigolactone biosynthesis mutant strains of Arabidopsis (Arabidopsis thaliana) showed a delayed senescence phenotype during dark incubation. The strigolactone biosynthesis genes MORE AXIALLY GROWTH3 (MAX3) and MAX4 were drastically induced during dark incubation and treatment with the senescence-promoting phytohormone ethylene, suggesting that strigolactone is synthesized in the leaf during leaf senescence. This hypothesis was confirmed by a grafting experiment using max4 as the stock and Columbia-0 as the scion, in which the leaves from the Columbia-0 scion senesced earlier than max4 stock leaves. Dark incubation induced the synthesis of ethylene independent of strigolactone. Strigolactone biosynthesis mutants showed a delayed senescence phenotype during ethylene treatment in the light. Furthermore, leaf senescence was strongly accelerated by the application of strigolactone in the presence of ethylene and not by strigolactone alone. These observations suggest that strigolactone promotes leaf senescence by enhancing the action of ethylene. Thus, dark-induced senescence is regulated by a two-step mechanism: induction of ethylene synthesis and consequent induction of strigolactone synthesis in the leaf. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. T CELL REPLICATIVE SENESCENCE IN HUMAN AGING

    PubMed Central

    Chou, Jennifer P.; Effros, Rita B.

    2013-01-01

    The decline of the immune system appears to be an intractable consequence of aging, leading to increased susceptibility to infections, reduced effectiveness of vaccination and higher incidences of many diseases including osteoporosis and cancer in the elderly. These outcomes can be attributed, at least in part, to a phenomenon known as T cell replicative senescence, a terminal state characterized by dysregulated immune function, loss of the CD28 costimulatory molecule, shortened telomeres and elevated production of pro-inflammatory cytokines. Senescent CD8 T cells, which accumulate in the elderly, have been shown to frequently bear antigen specificity against cytomegalovirus (CMV), suggesting that this common and persistent infection may drive immune senescence and result in functional and phenotypic changes to the T cell repertoire. Senescent T cells have also been identified in patients with certain cancers, autoimmune diseases and chronic infections, such as HIV. This review discusses the in vivo and in vitro evidence for the contribution of CD8 T cell replicative senescence to a plethora of age-related pathologies and a few possible therapeutic avenues to delay or prevent this differentiative end-state in T cells. The age-associated remodeling of the immune system, through accumulation of senescent T cells has far-reaching consequences on the individual and society alike, for the current healthcare system needs to meet the urgent demands of the increasing proportions of the elderly in the US and abroad. PMID:23061726

  16. Senescence and the pro-tumorigenic stroma.

    PubMed

    Alspach, Elise; Fu, Yujie; Stewart, Sheila A

    2013-01-01

    Hayflick and Moorhead first described senescence in the late 1960's as a permanent growth arrest that primary cells underwent after a defined number of cellular divisions in culture. This observation gave rise to the hypothesis that cells contained an internal counting mechanism that limited cellular division and that this limit was an important barrier to cellular transformation. What began as an in vitro observation has led to an immense body of work that reaches into all fields of biology and is of particular interest in the areas of aging, tissue regeneration, and tumorigenesis. The initially simplistic view that senescence limits cellular division and contributes to aging while stymying tumorigenesis has now evolved into an important and complex biological process that has numerous caveats and often opposing effects on tumorigenesis. In this review, we limit our discussion to the complex role senescence plays in tumorigenesis. Throughout the review we attempt to draw many parallels to other systems including the role senescent cells play in the tumor microenvironment and their significant molecular and phenotypic similarities to cancer associated fibroblasts (CAFs).

  17. 76 FR 27649 - Disease, Disability, and Injury Prevention and Control Special Interest Projects (SIPs): Initial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... Disadvantaged Communities, SIP11-041, Feasibility Study to Link Data from the National Breast and Cervical..., Management Analysis and Services Office, CDC, pursuant to Public Law 92-463. Matters To Be Discussed: The... Promote Colorectal Cancer Screening in Disadvantaged Communities, SIP11-041, Feasibility Study to Link...

  18. Use of NAP gene to manipulate leaf senescence in plants

    DOEpatents

    Gan, Susheng; Guo, Yongfeng

    2013-04-16

    The present invention discloses transgenic plants having an altered level of NAP protein compared to that of a non-transgenic plant, where the transgenic plants display an altered leaf senescence phenotype relative to a non-transgenic plant, as well as mutant plants comprising an inactivated NAP gene, where mutant plants display a delayed leaf senescence phenotype compared to that of a non-mutant plant. The present invention also discloses methods for delaying leaf senescence in a plant, as well as methods of making a mutant plant having a decreased level of NAP protein compared to that of a non-mutant plant, where the mutant plant displays a delayed leaf senescence phenotype relative to a non-mutant plant. Methods for causing precocious leaf senescence or promoting leaf senescence in a plant are also disclosed. Also disclosed are methods of identifying a candidate plant suitable for breeding that displays a delayed leaf senescence and/or enhanced yield phenotype.

  19. Bridged HPSi and Linear HSiP as Probes of the SiP Radical in Astrophysical/Interstellar Media

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Francisco, Joseph S.

    2017-07-01

    The SiP radical has a \\tilde{X}{}2{{\\Pi }} ground state and a low-lying A{}2{{{Σ }}}+ state with a transition wavelength of greater than 20 μm. However, this transition has a near-zero oscillator strength making it all but unobservable. Addition of a hydrogen atom to the system creates the strangely bent HPSi molecule and also the linear HSiP isomer, lying 0.50 eV above the bent. The electron-deficient P-Si π cloud in \\tilde{X}{}2{{\\Pi }} SiP is stabilized by the addition of the hydrogen atom, making this isomer the preferred form of HPSi. The HSiP linear isomer can be formed from A{}2{{{Σ }}}+ SiP. As a result, the [HPSi]/[HSiP] ratio could serve as tracer of the otherwise unobservable but low-lying A{}2{{{Σ }}}+≤ftarrow \\tilde{X}{}2{{\\Pi }} electronic transition of SiP. The high-level quantum chemical computations employed here imply that the rotational lines of HPSi and HSiP will overlap extensively, but the vibrational frequencies, especially the hydride stretch, are significantly separated. The hydride stretches are in the 5 μm range, making them excellent candidates for mid-IR observations with the Stratsopheric Observatory for Infrared Astronomy or with the James Webb Space Telescope. Furthermore, the rotational constants and vibrational frequencies of \\tilde{X}{}2{{\\Pi }} SiP, A{}2{{{Σ }}}+ SiP, and \\tilde{X}{}1{{{Σ }}}+ SiP- are also provided in addition to the relative energies of all five species.

  20. Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype.

    PubMed

    Wiley, Christopher D; Schaum, Nicholas; Alimirah, Fatouma; Lopez-Dominguez, Jose Alberto; Orjalo, Arturo V; Scott, Gary; Desprez, Pierre-Yves; Benz, Christopher; Davalos, Albert R; Campisi, Judith

    2018-02-05

    Processes that have been linked to aging and cancer include an inflammatory milieu driven by senescent cells. Senescent cells lose the ability to divide, essentially irreversibly, and secrete numerous proteases, cytokines and growth factors, termed the senescence-associated secretory phenotype (SASP). Senescent cells that lack p53 tumor suppressor function show an exaggerated SASP, suggesting the SASP is negatively controlled by p53. Here, we show that increased p53 activity caused by small molecule inhibitors of MDM2, which promotes p53 degradation, reduces inflammatory cytokine production by senescent cells. Upon treatment with the MDM2 inhibitors nutlin-3a or MI-63, human cells acquired a senescence-like growth arrest, but the arrest was reversible. Importantly, the inhibitors reduced expression of the signature SASP factors IL-6 and IL-1α by cells made senescent by genotoxic stimuli, and suppressed the ability of senescent fibroblasts to stimulate breast cancer cell aggressiveness. Our findings suggest that MDM2 inhibitors could reduce cancer progression in part by reducing the pro-inflammatory environment created by senescent cells.

  1. Louisiana SIP: LAC 33:III Ch. 14 Subchap A, 1401 to 1415--Determining Conformity of General Federal Actions to State or Federal Implementation Plans; SIP effective 1996-11-12 (LAc67) and 1998-05-08 (LAc75)

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch. 14 Subchap A, 1401 to 1415--Determining Conformity of General Federal Actions to State or Federal Implementation Plans; SIP effective 1996-11-12 (LAc67) and 1998-05-08 (LAc75)

  2. Louisiana SIP: LAC 33:III Ch 2147. Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 2011-08-04 (LAd34) to 2017-09-27

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch 2147. Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 2011-08-04 (LAd34) to 2017-09-27

  3. 77 FR 31358 - Disease, Disability, and Injury Prevention and Control Special Interest Projects (SIPs): Initial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... announced below concerns Research to Enhance Community- Based Fall Prevention among Older Adults, SIP12-058, and Developing a Compendium of Measures and Questions to Assess Mobility: A Focus on Older Adult... Older Adults, SIP12-058, and Developing a Compendium of Measures and Questions to Assess Mobility: A...

  4. Predatory senescence in ageing wolves

    USGS Publications Warehouse

    MacNulty, D.R.; Smith, D.W.; Vucetich, J.A.; Mech, L.D.; Stahler, D.R.; Packer, C.

    2009-01-01

    It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics. ?? 2009 Blackwell Publishing Ltd/CNRS.

  5. Molecular aspects of flower senescence and strategies to improve flower longevity

    PubMed Central

    Shibuya, Kenichi

    2018-01-01

    Flower longevity is one of the most important traits for ornamental plants. Ethylene plays a crucial role in flower senescence in some plant species. In several species that show ethylene-dependent flower senescence, genetic modification targeting genes for ethylene biosynthesis or signaling has improved flower longevity. Although little is known about regulatory mechanisms of petal senescence in flowers that show ethylene-independent senescence, a recent study of Japanese morning glory revealed that a NAC transcription factor, EPHEMERAL1 (EPH1), is a key regulator in ethylene-independent petal senescence. EPH1 is induced in an age-dependent manner irrespective of ethylene signal, and suppression of EPH1 expression dramatically delays petal senescence. In ethylene-dependent petal senescence, comprehensive transcriptome analyses revealed the involvement of transcription factors, a basic helix-loop-helix protein and a homeodomain-leucine zipper protein, in the transcriptional regulation of the ethylene biosynthesis enzymes. This review summarizes molecular aspects of flower senescence and discusses strategies to improve flower longevity by molecular breeding. PMID:29681752

  6. Delay of iris flower senescence by cytokinins and jasmonates.

    PubMed

    van Doorn, Wouter G; Çelikel, Fisun G; Pak, Caroline; Harkema, Harmannus

    2013-05-01

    It is not known whether tepal senescence in Iris flowers is regulated by hormones. We applied hormones and hormone inhibitors to cut flowers and isolated tepals of Iris × hollandica cv. Blue Magic. Treatments with ethylene or ethylene antagonists indicated lack of ethylene involvement. Auxins or auxin inhibitors also did not change the time to senescence. Abscisic acid (ABA) hastened senescence, but an inhibitor of ABA synthesis (norflurazon) had no effect. Gibberellic acid (GA3 ) slightly delayed senescence in some experiments, but in other experiments it was without effect, and gibberellin inhibitors [ancymidol or 4-hydroxy-5-isopropyl-2-methylphenyltrimethyl ammonium chloride-1-piperidine carboxylate (AMO-1618)] were ineffective as well. Salicylic acid (SA) also had no effect. Ethylene, auxins, GA3 and SA affected flower opening, therefore did reach the flower cells. Jasmonates delayed senescence by about 2.0 days. Similarly, cytokinins delayed senescence by about 1.5-2.0 days. Antagonists of the phosphatidylinositol signal transduction pathway (lithium), calcium channels (niguldipine and verapamil), calmodulin action [fluphenazine, trifluoroperazine, phenoxybenzamide and N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide hydrochloride (W-7)] or protein kinase activity [1-(5-isoquinolinesulfonyl)-2-methylpiperazine hydrochloride (H-7), N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-8) and N-(2-aminoethyl)-5-isoquinolinesulfonamide dihydrochloride (H-9)] had no effect on senescence, indicating no role of a few common signal transduction pathways relating to hormone effects on senescence. The results indicate that tepal senescence in Iris cv. Blue Magic is not regulated by endogenous ethylene, auxin, gibberellins or SA. A role of ABA can at present not be excluded. The data suggest the hypothesis that cytokinins and jasmonates are among the natural regulators. Copyright © Physiologia Plantarum 2012.

  7. Towards a Standard Psychometric Diagnostic Interview for Subjects at Ultra High Risk of Psychosis: CAARMS versus SIPS

    PubMed Central

    Fusar-Poli, P.; Cappucciati, M.; Rutigliano, G.; Lee, T. Y.; Beverly, Q.; Bonoldi, I.; Lelli, J.; Kaar, S. J.; Gago, E.; Rocchetti, M.; Patel, R.; Bhavsar, V.; Tognin, S.; Badger, S.; Calem, M.; Lim, K.; Kwon, J. S.; Perez, J.; McGuire, P.

    2016-01-01

    Background. Several psychometric instruments are available for the diagnostic interview of subjects at ultra high risk (UHR) of psychosis. Their diagnostic comparability is unknown. Methods. All referrals to the OASIS (London) or CAMEO (Cambridgeshire) UHR services from May 13 to Dec 14 were interviewed for a UHR state using both the CAARMS 12/2006 and the SIPS 5.0. Percent overall agreement, kappa, the McNemar-Bowker χ 2 test, equipercentile methods, and residual analyses were used to investigate diagnostic outcomes and symptoms severity or frequency. A conversion algorithm (CONVERT) was validated in an independent UHR sample from the Seoul Youth Clinic (Seoul). Results. There was overall substantial CAARMS-versus-SIPS agreement in the identification of UHR subjects (n = 212, percent overall agreement = 86%; kappa = 0.781, 95% CI from 0.684 to 0.878; McNemar-Bowker test = 0.069), with the exception of the brief limited intermittent psychotic symptoms (BLIPS) subgroup. Equipercentile-linking table linked symptoms severity and frequency across the CAARMS and SIPS. The conversion algorithm was validated in 93 UHR subjects, showing excellent diagnostic accuracy (CAARMS to SIPS: ROC area 0.929; SIPS to CAARMS: ROC area 0.903). Conclusions. This study provides initial comparability data between CAARMS and SIPS and will inform ongoing multicentre studies and clinical guidelines for the UHR psychometric diagnostic interview. PMID:27314005

  8. 40 CFR 51.125 - Emissions reporting requirements for SIP revisions relating to budgets for SO2 and NOX emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SIP revisions relating to budgets for SO2 and NOX emissions. 51.125 Section 51.125 Protection of... SIP revisions relating to budgets for SO2 and NOX emissions. (a) For its transport SIP revision under § 51.123 and/or 51.124, each State must submit to EPA SO2 and/or NOX emissions data as described in...

  9. Proteomic analysis of pollination-induced corolla senescence in petunia.

    PubMed

    Bai, Shuangyi; Willard, Belinda; Chapin, Laura J; Kinter, Michael T; Francis, David M; Stead, Anthony D; Jones, Michelle L

    2010-02-01

    Senescence represents the last phase of petal development during which macromolecules and organelles are degraded and nutrients are recycled to developing tissues. To understand better the post-transcriptional changes regulating petal senescence, a proteomic approach was used to profile protein changes during the senescence of Petuniaxhybrida 'Mitchell Diploid' corollas. Total soluble proteins were extracted from unpollinated petunia corollas at 0, 24, 48, and 72 h after flower opening and at 24, 48, and 72 h after pollination. Two-dimensional gel electrophoresis (2-DE) was used to identify proteins that were differentially expressed in non-senescing (unpollinated) and senescing (pollinated) corollas, and image analysis was used to determine which proteins were up- or down-regulated by the experimentally determined cut-off of 2.1-fold for P <0.05. One hundred and thirty-three differentially expressed protein spots were selected for sequencing. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the identity of these proteins. Searching translated EST databases and the NCBI non-redundant protein database, it was possible to assign a putative identification to greater than 90% of these proteins. Many of the senescence up-regulated proteins were putatively involved in defence and stress responses or macromolecule catabolism. Some proteins, not previously characterized during flower senescence, were identified, including an orthologue of the tomato abscisic acid stress ripening protein 4 (ASR4). Gene expression patterns did not always correlate with protein expression, confirming that both proteomic and genomic approaches will be required to obtain a detailed understanding of the regulation of petal senescence.

  10. California State Implementation Plan (SIP); Proposed Mobile Source Regulations

    EPA Pesticide Factsheets

    EPA is proposing to approve a submittal by the California to revise its SIP establishing standards and other requirements relating to the control of emissions from certain new and in-use on-road and off-road vehicles and engines.

  11. Louisiana SIP: LAC 33:III Ch 21 Subchap J, 2147--Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 1998-02-02 (LAc74) to more..

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch 21 Subchap J, 2147--Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 1998-02-02 (LAc74) more...

  12. Polymeric microsphere-facilitated site-specific delivery of quercetin prevents senescence of pancreatic islets in vivo and improves transplantation outcomes in mouse model of diabetes.

    PubMed

    Pathak, Shiva; Regmi, Shobha; Nguyen, Tiep Tien; Gupta, Biki; Gautam, Milan; Yong, Chul Soon; Kim, Jong Oh; Son, Youlim; Kim, Jae-Ryong; Park, Min Hui; Bae, Young Kyung; Park, So Young; Jeong, Daewon; Yook, Simmyung; Jeong, Jee-Heon

    2018-06-05

    Attenuation of senescence progression may be attractive way to preserve the functionality of pancreatic islets (PI) after transplantation. In this study, we developed a model for in vitro induction of premature senescence in rat PI and showed the effectiveness of quercetin (QU) to prevent the senescence. To provide targeted-delivery of QU to the PI after transplantation, we prepared the hybrid clusters (HC) of islet single cells (ISC) and QU-loaded polymeric microspheres (QU; ∼7.55 ng HC -1 ). Long-term culture of the HC revealed reduced levels of reactive oxygen species and decreased expression of senescence-associated beta galactosidase, Rb, p53, p16, and p21 compared to that of the control islets. Transplantation of HC into subcutaneous space of the immune-deficient mice produced better glycemic control compared to the control islets or the ICC-transplanted mice. SA-β-Gal staining of the in vivo transplanted HC sample showed lower intensity compared to that of the control islets or the islet cell clusters. Thus, in situ delivery of therapeutic agent may be a promising approach to improve therapeutic outcomes in cell therapy. In this study, we aimed to improve outcomes in islet transplantation using in situ delivery of quercetin to pancreatic islets, using polymeric microspheres. We prepared prolonged release-type microspheres and constructed hybrid clusters of pancreatic islets and the microspheres using hanging drop method. The presence of quercetin in the cellular microenvironment attenuated the progression of senescence in the pancreatic islets in a long-term in vitro culture. Moreover, transplantation of the hybrid clusters in the diabetic mice produced better glycemic control compared to that of the control islets. In addition, quercetin delayed the progression of senescence in the pancreatic islets after in vivo transplantation. Thus, local delivery of antioxidants like quercetin may be an attractive way to improve outcomes in cell therapy

  13. Premature cell senescence and T cell receptor-independent activation of CD8T cells in Juvenile Idiopathic Arthritis*

    PubMed Central

    Dvergsten, Jeffrey A.; Mueller, Robert G.; Griffin, Patricia; Abedin, Sameem; Pishko, Allyson; Michel, Joshua J.; Rosenkranz, Margalit E.; Reed, Ann M.; Kietz, Daniel A.; Vallejo, Abbe N.

    2013-01-01

    Objectives CD8T cells lacking CD28 were originally reported by Wedderburn and colleagues as a characteristic feature of JIA, but the relevance of these unusual cells to JIA remains to be elucidated. Because of recent evidence that CD28 loss is typical of terminally differentiated lymphocytes, we examined for functional subsets of CD8T cells in JIA. Methods Following informed consent/assent, blood and/or waste synovial fluid were collected from children with definite diagnosis of JIA (n = 98). De-identified blood (n = 33) and cord blood (n = 13) samples from healthy donors were also collected. CD8T and CD4T cells were screened for novel receptors, and where indicated, bioassays were performed to determine functional relevance of the identified receptor. Results Patients had a naïve T cell compartment with shortened telomeres, and their entire T cell pool had reduced proliferative capacity. They had an over abundance of CD31+CD28null CD8T cells, which was a significant feature of oligoarticular JIA (n = 62) compared to polyarticular JIA (n = 36). CD31+CD28null CD8T cells had limited mitotic capacity, and expressed high levels of the senescence antigens γH2Ax and/or p16. Ligation of CD31, independent of the TCR, sufficiently induced tyrosine phosphorylation, vesicle exocytosis, and production of IFN-γ and IL-10. Conclusion These data provide the first evidence for cell senescence, represented by CD31+CD28null CD8T cells, in the pathophysiology of JIA. Activation of these unusual cells in a TCR-independent manner suggests they are maladaptive, and could be potential targets for immunotherapy. PMID:23686519

  14. Aging tumour cells to cure cancer: "pro-senescence" therapy for cancer.

    PubMed

    Calcinotto, Arianna; Alimonti, Andrea

    2017-01-19

    Robust scientific evidence demonstrates that senes-cence induction in cancer works as a potent weapon to eradicate tumorigenesis. Therapies that enhance senescence not only promote a stable cell growth arrest but also work as a strong stimulus for the acti-vation of the antitumour immune response. However, recent advances suggest that if senescent tumour cells are not cleared from the tumours, they may promote tumour progression and metastasis. In this article, we focus on concepts that are relevant to a pro-senescence therapeutic approach, including caveats, and we propose therapeutic strategies that involve the combined use of pro-senescence therapies with im-munotherapies to promote the clearance of senescent tumour cells. In our opinion, these approaches may avoid potential negative effects of pro-senescence therapies and may also enhance the efficacy of cur-rently available immunotherapies.

  15. A recombinant truncated surface immunogenic protein (tSip) plus adjuvant FIA confers active protection against Group B streptococcus infection in tilapia.

    PubMed

    He, Yang; Wang, Kai-Yu; Xiao, Dan; Chen, De-Fang; Huang, Lingyuan; Liu, Tianqiang; Wang, Jun; Geng, Yi; Wang, Er-Long; Yang, Qian

    2014-12-05

    Tilapia is an important agricultural fish that has been plagued by Group B streptococcus (GBS) infections in recent years, some of them severe. It is well-known that surface immunogenicity protein (Sip) is an effective vaccine against GBS. Since Sip was not expressed in either E. coli BL21 or E. coli Rosetta, we removed the N-terminal signal peptide and LysM of the virus to produce purified truncated Sip (tSip(1)), which multiplied easily in an E. coli host. The antibody's ability to recognize and combine with GBS was determined by Western-blot and specific staining in vitro. The relative percentage of survival (RPS), antibody titers, bacterial recovery, and pathologic morphology were monitored in vivo to evaluate the immune effects. Freund's incomplete adjuvant (FIA) plus tSip and aluminum hydroxide gel (AH) plus tSip were also evaluated. It revealed that tSip mixed with FIA was an effective vaccine against GBS in tilapia, while AH is toxic to tilapia. Copyright © 2014. Published by Elsevier Ltd.

  16. SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment

    PubMed Central

    Eyice, Özge; Namura, Motonobu; Chen, Yin; Mead, Andrew; Samavedam, Siva; Schäfer, Hendrik

    2015-01-01

    Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP). Microbial communities involved in DMS degradation were analysed by denaturing gradient gel electrophoresis, high-throughput sequencing of SIP gradient fractions and metagenomic sequencing of phi29-amplified community DNA. Labelling patterns of time course SIP experiments identified members of the Methylophilaceae family, not previously implicated in DMS degradation, as dominant DMS-degrading populations in soil and lake sediment. Thiobacillus spp. were also detected in 13C-DNA from SIP incubations. Metagenomic sequencing also suggested involvement of Methylophilaceae in DMS degradation and further indicated shifts in the functional profile of the DMS-assimilating communities in line with methylotrophy and oxidation of inorganic sulphur compounds. Overall, these data suggest that unlike in the marine environment where gammaproteobacterial populations were identified by SIP as DMS degraders, betaproteobacterial Methylophilaceae may have a key role in DMS cycling in terrestrial environments. PMID:25822481

  17. Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT

    PubMed Central

    Rogers, Crystal D.; Saxena, Ankur

    2013-01-01

    The neural crest, an embryonic stem cell population, initially resides within the dorsal neural tube but subsequently undergoes an epithelial-to-mesenchymal transition (EMT) to commence migration. Although neural crest and cancer EMTs are morphologically similar, little is known regarding conservation of their underlying molecular mechanisms. We report that Sip1, which is involved in cancer EMT, plays a critical role in promoting the neural crest cell transition to a mesenchymal state. Sip1 transcripts are expressed in premigratory/migrating crest cells. After Sip1 loss, the neural crest specifier gene FoxD3 was abnormally retained in the dorsal neuroepithelium, whereas Sox10, which is normally required for emigration, was diminished. Subsequently, clumps of adherent neural crest cells remained adjacent to the neural tube and aberrantly expressed E-cadherin while lacking N-cadherin. These findings demonstrate two distinct phases of neural crest EMT, detachment and mesenchymalization, with the latter involving a novel requirement for Sip1 in regulation of cadherin expression during completion of neural crest EMT. PMID:24297751

  18. The small serine-threonine protein SIP2 interacts with STE12 and is involved in ascospore germination in Sordaria macrospora.

    PubMed

    Elleuche, Skander; Bernhards, Yasmine; Schäfers, Christian; Varghese, Jans Manjali; Nolting, Nicole; Pöggeler, Stefanie

    2010-12-01

    In fungi, the homoeodomain protein STE12 controls diverse developmental processes, and derives its regulatory specificity from different protein interactions. We recently showed that in the homothallic ascomycete Sordaria macrospora, STE12 is essential for ascospore development, and is able to interact with the alpha-domain mating-type protein SMTA-1 and the MADS box protein MCM1. To further evaluate the functional roles of STE12, we used the yeast two-hybrid approach to identify new STE12-interacting partners. Using STE12 as bait, a small, serine-threonine-rich protein (designated STE12-interacting protein 2, SIP2) was identified. SIP2 is conserved among members of the fungal class Sordariomycetes. In vivo localization studies revealed that SIP2 was targeted to the nucleus and cytoplasm. The STE12/SIP2 interaction was further confirmed in vivo by bimolecular fluorescence complementation. Nuclear localization of SIP2 was apparently mediated by STE12. Unlike deletion of ste12, deletion of sip2 in S. macrospora led to only a slight decrease in ascospore germination, and no other obvious morphological phenotype. In comparison to the Δste12 single knockout strain, ascospore germination was significantly increased in a Δsip2/ste12 double knockout strain. Our data provide evidence for a regulatory role of the novel fungal protein SIP2 in ascospore germination. Copyright © 2010 Elsevier GmbH. All rights reserved.

  19. ATF6α regulates morphological changes associated with senescence in human fibroblasts

    PubMed Central

    Martin, Nathalie; Saas, Laure; Cormenier, Johanna; Malaquin, Nicolas; Huot, Ludovic; Slomianny, Christian; Bouali, Fatima; Vercamer, Chantal; Hot, David; Pourtier, Albin; Chevet, Eric; Abbadie, Corinne; Pluquet, Olivier

    2016-01-01

    Cellular senescence is known as an anti-tumor barrier and is characterized by a number of determinants including cell cycle arrest, senescence associated β-galactosidase activity and secretion of pro-inflammatory mediators. Senescent cells are also subjected to enlargement, cytoskeleton-mediated shape changes and organelle alterations. However, the underlying molecular mechanisms responsible for these last changes remain still uncharacterized. Herein, we have identified the Unfolded Protein Response (UPR) as a player controlling some morphological aspects of the senescent phenotype. We show that senescent fibroblasts exhibit ER expansion and mild UPR activation, but conserve an ER stress adaptive capacity similar to that of exponentially growing cells. By genetically invalidating the three UPR sensors in senescent fibroblasts, we demonstrated that ATF6α signaling dictates senescence-associated cell shape modifications. We also show that ER expansion and increased secretion of the pro-inflammatory mediator IL6 were partly reversed by silencing ATF6α in senescent cells. Moreover, ATF6α drives the increase of senescence associated-β-galactosidase activity. Collectively, these findings unveil a novel and central role for ATF6α in the establishment of morphological features of senescence in normal human primary fibroblasts. PMID:27563820

  20. ATF6α regulates morphological changes associated with senescence in human fibroblasts.

    PubMed

    Druelle, Clémentine; Drullion, Claire; Deslé, Julie; Martin, Nathalie; Saas, Laure; Cormenier, Johanna; Malaquin, Nicolas; Huot, Ludovic; Slomianny, Christian; Bouali, Fatima; Vercamer, Chantal; Hot, David; Pourtier, Albin; Chevet, Eric; Abbadie, Corinne; Pluquet, Olivier

    2016-10-18

    Cellular senescence is known as an anti-tumor barrier and is characterized by a number of determinants including cell cycle arrest, senescence associated β-galactosidase activity and secretion of pro-inflammatory mediators. Senescent cells are also subjected to enlargement, cytoskeleton-mediated shape changes and organelle alterations. However, the underlying molecular mechanisms responsible for these last changes remain still uncharacterized. Herein, we have identified the Unfolded Protein Response (UPR) as a player controlling some morphological aspects of the senescent phenotype. We show that senescent fibroblasts exhibit ER expansion and mild UPR activation, but conserve an ER stress adaptive capacity similar to that of exponentially growing cells. By genetically invalidating the three UPR sensors in senescent fibroblasts, we demonstrated that ATF6α signaling dictates senescence-associated cell shape modifications. We also show that ER expansion and increased secretion of the pro-inflammatory mediator IL6 were partly reversed by silencing ATF6α in senescent cells. Moreover, ATF6α drives the increase of senescence associated-β-galactosidase activity. Collectively, these findings unveil a novel and central role for ATF6α in the establishment of morphological features of senescence in normal human primary fibroblasts.

  1. Retinopathy of prematurity and neurodevelopmental disabilities in premature infants.

    PubMed

    Beligere, Nagamani; Perumalswamy, Vijayalaksmi; Tandon, Manish; Mittal, Amit; Floora, Jayasheele; Vijayakumar, B; Miller, Marilyn T

    2015-10-01

    Prematurity is a major global health issue leading to high mortality and morbidity among the survivors. Neurodevelopmental disability (NDD) and retinopathy of prematurity (ROP) are the most common complications of prematurity. In fact, ROP is the second leading cause of childhood blindness in the world. Although there is much information regarding the occurrence of ROP and of NDD in premature infants, there have been few studies on ROP and its association with NDD. The objectives of this article are to review the current literature on the subject and to publish our own findings concerning the association between ROP and NDD in premature infants. The review suggests that although NDDs are related to degree of prematurity, NDD could also be the result of visual impairments resulting from ROP. Our own study shows a close association between NDD and zonal involvement of ROP: higher NDD if zone 1 is involved and less if zone 3 is involved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. S100A6 Protein Negatively Regulates CacyBP/SIP-Mediated Inhibition of Gastric Cancer Cell Proliferation and Tumorigenesis

    PubMed Central

    Zhang, Kun; Liang, Jie; Chuai, Yucai; Li, Yuan; Wang, Xiaoming

    2012-01-01

    Calcyclin-binding protein (CacyBP/SIP), identified on the basis of its ability to interact with S100 proteins in a calcium-dependent manner, was previously found to inhibit the proliferation and tumorigenesis of gastric cancer cells in our laboratory. Importantly, the effects of S100 proteins on the biological behavior of CacyBP/SIP in gastric cancer remain unclear. Herein, we report the construction of eukaryotic expression vectors for wild-type CacyBP/SIP and a truncated mutant lacking the S100 protein binding domain (CacyBP/SIPΔS100). The expressions of the wild-type and truncated recombinant proteins were demonstrated by transfection of MKN45 gastric cancer cells. Co-immunoprecipitation assays demonstrated interaction between S100A6 and wild-type CacyBP/SIP in MKN45 cells. Removal of the S100 protein binding domain dramatically reduced the affinity of CacyBP/SIP for S100 proteins as indicated by reduced co-immunoprecipitation of S100A6 by CacyBP/SIPΔS100. The MTT assay, FACS assay, clonogenic assay and tumor xenograft experiment were performed to assess the effect of CacyBP/SIP on cell growth and tumorigenesis in vitro and in vivo. Overexpression of CacyBP/SIP inhibited the proliferation and tumorigenesis of MKN45 gastric cancer cells; the proliferation and tumorigenesis rates were even further reduced by the expression of CacyBP/SIPΔS100. We also showed that S100 proteins negatively regulate CacyBP/SIP-mediated inhibition of gastric cancer cell proliferation, through an effect on β-catenin protein expression and transcriptional activation of Tcf/LEF. Although the underlying mechanism of action requires further investigation, this study provides new insight into the interaction between S100 proteins and CacyBP/SIP, which might enrich our knowledge of S100 proteins and be helpful for our understanding of the development of gastric cancer. PMID:22295074

  3. 3′ UTR lengthening as a novel mechanism in regulating cellular senescence

    PubMed Central

    Chen, Meng; Lyu, Guoliang; Han, Miao; Nie, Hongbo; Shen, Ting; Chen, Wei; Niu, Yichi; Song, Yifan; Li, Xueping; Li, Huan; Chen, Xinyu; Wang, Ziyue; Xia, Zheng; Li, Wei; Tian, Xiao-Li; Ding, Chen; Gu, Jun; Zheng, Yufang; Liu, Xinhua; Hu, Jinfeng; Wei, Gang; Tao, Wei

    2018-01-01

    Cellular senescence has been viewed as a tumor suppression mechanism and also as a contributor to individual aging. Widespread shortening of 3′ untranslated regions (3′ UTRs) in messenger RNAs (mRNAs) by alternative polyadenylation (APA) has recently been discovered in cancer cells. However, the role of APA in the process of cellular senescence remains elusive. Here, we found that hundreds of genes in senescent cells tended to use distal poly(A) (pA) sites, leading to a global lengthening of 3′ UTRs and reduced gene expression. Genes that harbor longer 3′ UTRs in senescent cells were enriched in senescence-related pathways. Rras2, a member of the Ras superfamily that participates in multiple signal transduction pathways, preferred longer 3′ UTR usage and exhibited decreased expression in senescent cells. Depletion of Rras2 promoted senescence, while rescue of Rras2 reversed senescence-associated phenotypes. Mechanistically, splicing factor TRA2B bound to a core “AGAA” motif located in the alternative 3′ UTR of Rras2, thereby reducing the RRAS2 protein level and causing senescence. Both proximal and distal poly(A) signals showed strong sequence conservation, highlighting the vital role of APA regulation during evolution. Our results revealed APA as a novel mechanism in regulating cellular senescence. PMID:29440281

  4. Louisiana SIP: LAC 33:III Ch. 7 Section 701. Purpose and Information Regarding Standards for PM10, SO2, CO, Atmospheric Oxidants, NOx and Pb; SIP effective 1989-05-08 (LAc49) to 2011-08-03 (LAd34 - Revised)

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch. 7 Section 701. Purpose and Information Regarding Standards for PM10, SO2, CO, Atmospheric Oxidants, NOx and Pb; SIP effective 1989-05-08 (LAc49) to 2011-08-03 (LAd34 - Revised)

  5. Louisiana SIP: LAC 33:III Ch 2132. Stage II Vapor Recovery Systems for Control of Vehicle Refuelling Emissions at Gasoline Dispensing Facilities; SIP effective 2011-08-04 (LAd34) and 2016-02-29 (LAd47) to 2017-09-27

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch 2132. Stage II Vapor Recovery Systems for Control of Vehicle Refuelling Emissions at Gasoline Dispensing Facilities; SIP effective 2011-08-04 (LAd34) and 2016-02-29 (LAd47) to 2017-09-27

  6. Reorganization of chromosome architecture in replicative cellular senescence.

    PubMed

    Criscione, Steven W; De Cecco, Marco; Siranosian, Benjamin; Zhang, Yue; Kreiling, Jill A; Sedivy, John M; Neretti, Nicola

    2016-02-01

    Replicative cellular senescence is a fundamental biological process characterized by an irreversible arrest of proliferation. Senescent cells accumulate a variety of epigenetic changes, but the three-dimensional (3D) organization of their chromatin is not known. We applied a combination of whole-genome chromosome conformation capture (Hi-C), fluorescence in situ hybridization, and in silico modeling methods to characterize the 3D architecture of interphase chromosomes in proliferating, quiescent, and senescent cells. Although the overall organization of the chromatin into active (A) and repressive (B) compartments and topologically associated domains (TADs) is conserved between the three conditions, a subset of TADs switches between compartments. On a global level, the Hi-C interaction matrices of senescent cells are characterized by a relative loss of long-range and gain of short-range interactions within chromosomes. Direct measurements of distances between genetic loci, chromosome volumes, and chromatin accessibility suggest that the Hi-C interaction changes are caused by a significant reduction of the volumes occupied by individual chromosome arms. In contrast, centromeres oppose this overall compaction trend and increase in volume. The structural model arising from our study provides a unique high-resolution view of the complex chromosomal architecture in senescent cells.

  7. Nucleases activities during French bean leaf aging and dark-induced senescence.

    PubMed

    Lambert, Rocío; Quiles, Francisco Antonio; Gálvez-Valdivieso, Gregorio; Piedras, Pedro

    2017-11-01

    During leaf senescence resources are managed, with nutrients mobilized from older leaves to new sink tissues. The latter implies a dilemma in terms of resource utilization, the leaf senescence should increase seed quality whereas delay in senescence should improve the seed yield. Increased knowledge about nutrient recycling during leaf senescence could lead to advances in agriculture and improved seed quality. Macromolecules mobilized during leaf senescence include proteins and nucleic acids. Although nucleic acids have been less well studied than protein degradation, they are possible reservoirs of nitrogen and phosphorous. The present study investigated nuclease activities and gene expression patterns of five members of the S1/P1 family in French bean (Phaseolus vulgaris L. cv.)Page: 2 during leaf senescence. An in-gel assay was used to detect nuclease activity during natural and dark-induced senescence, with single-stranded DNA (ssDNA) used as a substrate. The results revealed two nucleases (glycoproteins), with molecular masses of 34 and 39kDa in the senescent leaves. The nuclease activities were higher at a neutral than at an acidic pH. EDTA treatment inhibited the activities of the nucleases, and the addition of zinc resulted in the recovery of these activities. Both the 34 and 39kDa nucleases were able to use RNA and double-stranded DNA (dsDNA) as substrates, although their activities were low when dsDNA was used as a substrate. In addition, two ribonucleases with molecular masses of 14 and 16kDa, both of which could only utilize RNA as a substrate, were detected in the senescent leaves. Two members of the S1/P1 family, PVN2 and PVN5, were expressed under the experimental conditions, suggesting that these two genes were involved in senescence. The nuclease activity of the glycoproteins and gene expression were similar under both natural senescence and dark-induced senescence conditions. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights

  8. Epigenetic alteration to activate Bmp2-Smad signaling in Raf-induced senescence

    PubMed Central

    Fujimoto, Mai; Mano, Yasunobu; Anai, Motonobu; Yamamoto, Shogo; Fukuyo, Masaki; Aburatani, Hiroyuki; Kaneda, Atsushi

    2016-01-01

    AIM: To investigate epigenomic and gene expression alterations during cellular senescence induced by oncogenic Raf. METHODS: Cellular senescence was induced into mouse embryonic fibroblasts (MEFs) by infecting retrovirus to express oncogenic Raf (RafV600E). RNA was collected from RafV600E cells as well as MEFs without infection and MEFs with mock infection, and a genome-wide gene expression analysis was performed using microarray. The epigenomic status for active H3K4me3 and repressive H3K27me3 histone marks was analyzed by chromatin immunoprecipitation-sequencing for RafV600E cells on day 7 and for MEFs without infection. These data for Raf-induced senescence were compared with data for Ras-induced senescence that were obtained in our previous study. Gene knockdown and overexpression were done by retrovirus infection. RESULTS: Although the expression of some genes including secreted factors was specifically altered in either Ras- or Raf-induced senescence, many genes showed similar alteration pattern in Raf- and Ras-induced senescence. A total of 841 commonly upregulated 841 genes and 573 commonly downregulated genes showed a significant enrichment of genes related to signal and secreted proteins, suggesting the importance of alterations in secreted factors. Bmp2, a secreted protein to activate Bmp2-Smad signaling, was highly upregulated with gain of H3K4me3 and loss of H3K27me3 during Raf-induced senescence, as previously detected in Ras-induced senescence, and the knockdown of Bmp2 by shRNA lead to escape from Raf-induced senescence. Bmp2-Smad inhibitor Smad6 was strongly repressed with H3K4me3 loss in Raf-induced senescence, as detected in Ras-induced senescence, and senescence was also bypassed by Smad6 induction in Raf-activated cells. Different from Ras-induced senescence, however, gain of H3K27me3 did not occur in the Smad6 promoter region during Raf-induced senescence. When comparing genome-wide alteration between Ras- and Raf-induced senescence, genes

  9. Ionizing Radiation-Induced Responses in Human Cells with Differing TP53 Status

    PubMed Central

    Mirzayans, Razmik; Andrais, Bonnie; Scott, April; Wang, Ying W.; Murray, David

    2013-01-01

    Ionizing radiation triggers diverse responses in human cells encompassing apoptosis, necrosis, stress-induced premature senescence (SIPS), autophagy, and endopolyploidy (e.g., multinucleation). Most of these responses result in loss of colony-forming ability in the clonogenic survival assay. However, not all modes of so-called clonogenic cell “death” are necessarily advantageous for therapeutic outcome in cancer radiotherapy. For example, the crosstalk between SIPS and autophagy is considered to influence the capacity of the tumor cells to maintain a prolonged state of growth inhibition that unfortunately can be succeeded by tumor regrowth and disease recurrence. Likewise, endopolyploid giant cells are able to segregate into near diploid descendants that continue mitotic activities. Herein we review the current knowledge on the roles that the p53 and p21WAF1 tumor suppressors play in determining the fate of human fibroblasts (normal and Li-Fraumeni syndrome) and solid tumor-derived cells after exposure to ionizing radiation. In addition, we discuss the important role of WIP1, a p53-regulated oncogene, in the temporal regulation of the DNA damage response and its contribution to p53 dynamics post-irradiation. This article highlights the complexity of the DNA damage response and provides an impetus for rethinking the nature of cancer cell resistance to therapeutic agents. PMID:24232458

  10. Reversal of hepatocyte senescence after continuous in vivo cell proliferation.

    PubMed

    Wang, Min-Jun; Chen, Fei; Li, Jian-Xiu; Liu, Chang-Cheng; Zhang, Hai-Bin; Xia, Yong; Yu, Bing; You, Pu; Xiang, Dao; Lu, Lian; Yao, Hao; Borjigin, Uyunbilig; Yang, Guang-Shun; Wangensteen, Kirk J; He, Zhi-Ying; Wang, Xin; Hu, Yi-Ping

    2014-07-01

    A better understanding of hepatocyte senescence could be used to treat age-dependent disease processes of the liver. Whether continuously proliferating hepatocytes could avoid or reverse senescence has not yet been fully elucidated. We confirmed that the livers of aged mice accumulated senescent and polyploid hepatocytes, which is associated with accumulation of DNA damage and activation of p53-p21 and p16(ink4a)-pRB pathways. Induction of multiple rounds continuous cell division is hard to apply in any animal model. Taking advantage of serial hepatocyte transplantation assays in the fumarylacetoacetate hydrolase-deficient (Fah(-/-)) mouse, we studied the senescence of hepatocytes that had undergone continuous cell proliferation over a long time period, up to 12 rounds of serial transplantations. We demonstrated that the continuously proliferating hepatocytes avoided senescence and always maintained a youthful state. The reactivation of telomerase in hepatocytes after serial transplantation correlated with reversal of senescence. Moreover, senescent hepatocytes harvested from aged mice became rejuvenated upon serial transplantation, with full restoration of proliferative capacity. The same findings were also true for human hepatocytes. After serial transplantation, the high initial proportion of octoploid hepatocytes decreased to match the low level of youthful liver. These findings suggest that the hepatocyte "ploidy conveyer" is regulated differently during aging and regeneration. The findings of reversal of hepatocyte senescence could enable future studies on liver aging and cell therapy. © 2014 by the American Association for the Study of Liver Diseases.

  11. A novel role for the condensin II complex in cellular senescence.

    PubMed

    Yokoyama, Yuhki; Zhu, Hengrui; Zhang, Rugang; Noma, Ken-ichi

    2015-01-01

    Although cellular senescence is accompanied by global alterations in genome architecture, how the genome is restructured during the senescent processes is not well understood. Here, we show that the hCAP-H2 subunit of the condensin II complex exists as either a full-length protein or an N-terminus truncated variant (ΔN). While the full-length hCAP-H2 associates with mitotic chromosomes, the ΔN variant exists as an insoluble nuclear structure. When overexpressed, both hCAP-H2 isoforms assemble this nuclear architecture and induce senescence-associated heterochromatic foci (SAHF). The hCAP-H2ΔN protein accumulates as cells approach senescence, and hCAP-H2 knockdown inhibits oncogene-induced senescence. This study identifies a novel mechanism whereby condensin drives senescence via nuclear/genomic reorganization.

  12. Evasion of cell senescence in SHH medulloblastoma.

    PubMed

    Tamayo-Orrego, Lukas; Swikert, Shannon M; Charron, Frédéric

    2016-08-17

    The mechanisms leading to brain tumor formation are poorly understood. Using Ptch1 +/- mice as a medulloblastoma model, sequential mutations were found to shape tumor evolution. Initially, medulloblastoma preneoplastic lesions display loss of heterozygosity of the Ptch1 wild-type allele, an event associated with cell senescence in preneoplasia. Subsequently, p53 mutations lead to senescence evasion and progression from preneoplasia to medulloblastoma. These findings are consistent with a model where high levels of Hedgehog signaling caused by the loss of the tumor suppressor Ptch1 lead to oncogene-induced senescence and drive p53 mutations. Thus, cell senescence is an important characteristic of a subset of SHH medulloblastoma and might explain the acquisition of somatic TP53 mutations in human medulloblastoma. This mode of medulloblastoma formation contrasts with the one characterizing Li-Fraumeni patients with medulloblastoma, where TP53 germ-line mutations cause chromothriptic genomic instability and lead to mutations in Hedgehog signaling genes, which drive medulloblastoma growth. Here we discuss in detail these 2 alternative mechanisms leading to medulloblastoma tumorigenesis.

  13. Evasion of cell senescence in SHH medulloblastoma

    PubMed Central

    Tamayo-Orrego, Lukas; Swikert, Shannon M.; Charron, Frédéric

    2016-01-01

    ABSTRACT The mechanisms leading to brain tumor formation are poorly understood. Using Ptch1+/− mice as a medulloblastoma model, sequential mutations were found to shape tumor evolution. Initially, medulloblastoma preneoplastic lesions display loss of heterozygosity of the Ptch1 wild-type allele, an event associated with cell senescence in preneoplasia. Subsequently, p53 mutations lead to senescence evasion and progression from preneoplasia to medulloblastoma. These findings are consistent with a model where high levels of Hedgehog signaling caused by the loss of the tumor suppressor Ptch1 lead to oncogene-induced senescence and drive p53 mutations. Thus, cell senescence is an important characteristic of a subset of SHH medulloblastoma and might explain the acquisition of somatic TP53 mutations in human medulloblastoma. This mode of medulloblastoma formation contrasts with the one characterizing Li-Fraumeni patients with medulloblastoma, where TP53 germ-line mutations cause chromothriptic genomic instability and lead to mutations in Hedgehog signaling genes, which drive medulloblastoma growth. Here we discuss in detail these 2 alternative mechanisms leading to medulloblastoma tumorigenesis. PMID:27229128

  14. Sipping at the Straw: Planning for Sustainable Water Supplies for U.S. Army Installations

    DTIC Science & Technology

    2011-05-01

    Thermoelectric power • Geothermal • Biofuels • Solar-hot water • Hydropower • Carbon Capture • “ Fracking ” Regional Water Balance?  Supply  Rivers...Sipping at the Straw: Planning for Sustainable Water Supplies for U.S. Army Installations Marc Kodack Senior Fellow, Army Environmental Policy...00-00-2011 4. TITLE AND SUBTITLE Sipping at the Straw: Planning for Sustainable Water Supplies for U.S. Army Installations 5a. CONTRACT NUMBER 5b

  15. Osteopenia - premature infants

    MedlinePlus

    Neonatal rickets; Brittle bones - premature infants; Weak bones - premature infants; Osteopenia of prematurity ... of calcium and phosphorus needed to form strong bones. While in the womb, fetal activity increases during ...

  16. Scientific Instrument Package for the large space telescope (SIP)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The feasibility of a scientific instrument package (SIP) that will satisfy the requirements of the large space telescope was established. A reference configuration serving as a study model and data which will aid in the trade-off studies leading to the final design configuration are reported.

  17. Ring-like distribution of constitutive heterochromatin in bovine senescent cells.

    PubMed

    Pichugin, Andrey; Beaujean, Nathalie; Vignon, Xavier; Vassetzky, Yegor

    2011-01-01

    Cells that reach "Hayflick limit" of proliferation, known as senescent cells, possess a particular type of nuclear architecture. Human senescent cells are characterized by the presence of highly condensed senescent associated heterochromatin foci (SAHF) that can be detected both by immunostaining for histone H3 three-methylated at lysine 9 (H3K9me3) and by DAPI counterstaining. We have studied nuclear architecture in bovine senescent cells using a combination of immunofluorescence and 3D fluorescent in-situ hybridization (FISH). Analysis of heterochromatin distribution in bovine senescent cells using fluorescent in situ hybridization for pericentric chromosomal regions, immunostaining of H3K9me3, centromeric proteins CENP A/B and DNA methylation showed a lower level of heterochromatin condensation as compared to young cells. No SAHF foci were observed. Instead, we observed fibrous ring-like or ribbon-like heterochromatin patterns that were undetectable with DAPI counterstaining. These heterochromatin fibers were associated with nucleoli. Constitutive heterochromatin in bovine senescent cells is organized in ring-like structures.

  18. Accumulation of senescent cells in mitotic tissue of aging primates.

    PubMed

    Jeyapalan, Jessie C; Ferreira, Mark; Sedivy, John M; Herbig, Utz

    2007-01-01

    Cellular senescence, a stress induced growth arrest of somatic cells, was first documented in cell cultures over 40 years ago, however its physiological significance has only recently been demonstrated. Using novel biomarkers of cellular senescence we examined whether senescent cells accumulate in tissues from baboons of ages encompassing the entire lifespan of this species. We show that dermal fibroblasts, displaying markers of senescence such as telomere damage, active checkpoint kinase ATM, high levels of heterochromatin proteins and elevated levels of p16, accumulate in skin biopsies from baboons with advancing age. The number of dermal fibroblasts containing damaged telomeres reaches a value of over 15% of total fibroblasts, whereas 80% of cells contain high levels of the heterochromatin protein HIRA. In skeletal muscle, a postmitotic tissue, only a small percentage of myonuclei containing damaged telomeres were detected regardless of animal age. The presence of senescent cells in mitotic tissues might therefore be a contributing factor to aging and age related pathology and provides further evidence that cellular senescence is a physiological event.

  19. Accumulation of Senescent Cells in Mitotic Tissue of Aging Primates

    PubMed Central

    Jeyapalan, Jessie C.; Ferreira, Mark; Sedivy, John M.; Herbig, Utz

    2013-01-01

    Cellular senescence, a stress induced growth arrest of somatic cells, was first documented in cell cultures over forty years ago, however its physiological significance has only recently been demonstrated. Using novel biomarkers of cellular senescence we examined whether senescent cells accumulate in tissues from baboons of ages encompassing the entire lifespan of this species. We show that dermal fibroblasts, displaying markers of senescence such as telomere damage, active checkpoint kinase ATM, high levels of heterochromatin proteins and elevated levels of p16, accumulate in skin biopsies from baboons with advancing age. The number of dermal fibroblasts containing damaged telomeres reaches a value of over 15% of total fibroblasts, whereas 80% of cells contain high levels of the heterochromatin protein HIRA. In skeletal muscle, a postmitotic tissue, only a small percentage of myonuclei containing damaged telomeres were detected regardless of animal age. The presence of senescent cells in mitotic tissues might therefore be a contributing factor to aging and age related pathology and provides further evidence that cellular senescence is a physiological event. PMID:17116315

  20. Endothelial sirtuin 1 deficiency perpetrates nephrosclerosis through downregulation of matrix metalloproteinase-14: relevance to fibrosis of vascular senescence.

    PubMed

    Vasko, Radovan; Xavier, Sandhya; Chen, Jun; Lin, Chi Hua Sarah; Ratliff, Brian; Rabadi, May; Maizel, Julien; Tanokuchi, Rina; Zhang, Frank; Cao, Jian; Goligorsky, Michael S

    2014-02-01

    Sirtuin 1 (SIRT1) depletion in vascular endothelial cells mediates endothelial dysfunction and premature senescence in diverse cardiovascular and renal diseases. However, the molecular mechanisms underlying these pathologic effects remain unclear. Here, we examined the phenotype of a mouse model of vascular senescence created by genetically ablating exon 4 of Sirt1 in endothelial cells (Sirt1(endo-/-)). Under basal conditions, Sirt1(endo-/-) mice showed impaired endothelium-dependent vasorelaxation and angiogenesis, and fibrosis occurred spontaneously at low levels at an early age. In contrast, induction of nephrotoxic stress (acute and chronic folic acid-induced nephropathy) in Sirt1(endo-/-) mice resulted in robust acute renal functional deterioration followed by an exaggerated fibrotic response compared with control animals. Additional studies identified matrix metalloproteinase-14 (MMP-14) as a target of SIRT1. In the kidneys of Sirt1(endo-/-) mice, impaired angiogenesis, reduced matrilytic activity, and retention of the profibrotic cleavage substrates tissue transglutaminase and endoglin accompanied MMP-14 suppression. Furthermore, restoration of MMP-14 expression in SIRT1-depeleted mice improved angiogenic and matrilytic functions of the endothelium, prevented renal dysfunction, and attenuated nephrosclerosis. Our findings establish a novel mechanistic molecular link between endothelial SIRT1 depletion, downregulation of MMP-14, and the development of nephrosclerosis.

  1. Covert Channels in SIP for VoIP Signalling

    NASA Astrophysics Data System (ADS)

    Mazurczyk, Wojciech; Szczypiorski, Krzysztof

    In this paper, we evaluate available steganographic techniques for SIP (Session Initiation Protocol) that can be used for creating covert channels during signaling phase of VoIP (Voice over IP) call. Apart from characterizing existing steganographic methods we provide new insights by introducing new techniques. We also estimate amount of data that can be transferred in signalling messages for typical IP telephony call.

  2. Fluorescence-based detection and quantification of features of cellular senescence.

    PubMed

    Cho, Sohee; Hwang, Eun Seong

    2011-01-01

    Cellular senescence is a spontaneous organismal defense mechanism against tumor progression which is raised upon the activation of oncoproteins or other cellular environmental stresses that must be circumvented for tumorigenesis to occur. It involves growth-arrest state of normal cells after a number of active divisions. There are multiple experimental routes that can drive cells into a state of senescence. Normal somatic cells and cancer cells enter a state of senescence upon overexpression of oncogenic Ras or Raf protein or by imposing certain kinds of stress such as cellular tumor suppressor function. Both flow cytometry and confocal imaging analysis techniques are very useful in quantitative analysis of cellular senescence phenomenon. They allow quantitative estimates of multiple different phenotypes expressed in multiple cell populations simultaneously. Here we review the various types of fluorescence methodologies including confocal imaging and flow cytometry that are frequently utilized to study a variety of senescence. First, we discuss key cell biological changes occurring during senescence and review the current understanding on the mechanisms of these changes with the goal of improving existing protocols and further developing new ones. Next, we list specific senescence phenotypes associated with each cellular trait along with the principles of their assay methods and the significance of the assay outcomes. We conclude by selecting appropriate references that demonstrate a typical example of each method. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Age, state, environment, and season dependence of senescence in body mass.

    PubMed

    Kroeger, Svenja B; Blumstein, Daniel T; Armitage, Kenneth B; Reid, Jane M; Martin, Julien G A

    2018-02-01

    Senescence is a highly variable process that comprises both age-dependent and state-dependent components and can be greatly affected by environmental conditions. However, few studies have quantified the magnitude of age-dependent and state-dependent senescence in key life-history traits across individuals inhabiting different spatially structured and seasonal environments. We used longitudinal data from wild female yellow-bellied marmots ( Marmota flaviventer ), living in two adjacent environments that differ in elevation and associated phenology, to quantify how age and individual state, measured as "time to death," affect body mass senescence in different environments. Further, we quantified how patterns of senescence differed between two biologically distinct seasons, spring, and late summer. Body mass senescence had an age-dependent component, expressed as a decrease in mass in old age. Overall, estimated age-dependent senescence was greater in females living in the more favorable lower elevation environment, than in the harsher higher elevation environment, and greater in late summer than in spring. Body mass senescence also had a state-dependent component, captured by effects of time to death, but only in the more favorable lower elevation environment. In spring, body mass gradually decreased from 2 years before death, whereas in late summer, state-dependent effects were expressed as a terminal decrease in body mass in the last year of life. Contrary to expectations, we found that senescence was more likely to be observed under more favorable environmental conditions, rather than under harsher conditions. By further demonstrating that senescence patterns differ among seasons, our results imply that within-year temporal environmental variation must be considered alongside spatial environmental variation in order to characterize and understand the pattern and magnitude of senescence in wild populations.

  4. Kids SIP smartER: A Feasibility Study to Reduce Sugar-Sweetened Beverage Consumption Among Middle School Youth in Central Appalachia.

    PubMed

    Lane, Hannah; Porter, Kathleen J; Hecht, Erin; Harris, Priscilla; Kraak, Vivica; Zoellner, Jamie

    2017-01-01

    To test the feasibility of Kids SIP smartER, a school-based intervention to reduce consumption of sugar-sweetened beverages (SSBs). Matched-contact randomized crossover study with mixed-methods analysis. One middle school in rural, Appalachian Virginia. Seventy-four sixth and seventh graders (5 classrooms) received Kids SIP smartER in random order over 2 intervention periods. Feasibility outcomes were assessed among 2 teachers. Kids SIP smartER consisted of 6 lessons grounded in the Theory of Planned Behavior, media literacy, and public health literacy and aimed to improve individual SSB behaviors and understanding of media literacy and prevalent regional disparities. The matched-contact intervention promoted physical activity. Beverage Intake Questionnaire-15 (SSB consumption), validated theory questionnaires, feasibility questionnaires (student and teacher), student focus groups, teacher interviews, and process data (eg, attendance). Repeated measures analysis of variances across 3 time points, descriptive statistics, and deductive analysis of qualitative data. During the first intervention period, students receiving Kids SIP smartER (n = 43) significantly reduced SSBs by 11 ounces/day ( P = .01) and improved media ( P < .001) and public health literacy ( P < .01) understanding; however, only media literacy showed between-group differences ( P < .01). Students and teachers found Kids SIP smartER acceptable, in-demand, practical, and implementable within existing resources. Kids SIP smartER is feasible in an underresourced, rural school setting. Results will inform further development and large-scale testing of Kids SIP smartER to reduce SSBs among rural adolescents.

  5. In vivo inhibition of cysteine proteases provides evidence for the involvement of 'senescence-associated vacuoles' in chloroplast protein degradation during dark-induced senescence of tobacco leaves.

    PubMed

    Carrión, Cristian A; Costa, María Lorenza; Martínez, Dana E; Mohr, Christina; Humbeck, Klaus; Guiamet, Juan J

    2013-11-01

    Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescence-associated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, suggesting that SAVs might be involved in chloroplast protein degradation. SAVs were undetectable in mature, non-senescent tobacco leaves. Their abundance, visualized either with the acidotropic marker Lysotracker Red or by green fluorescent protein (GFP) fluorescence in a line expressing the senescence-associated cysteine protease SAG12 fused to GFP, increased during senescence induction in darkness, and peaked after 2-4 d, when chloroplast dismantling was most intense. Increased abundance of SAVs correlated with higher levels of SAG12 mRNA. Activity labelling with a biotinylated derivative of the cysteine protease inhibitor E-64 was used to detect active cysteine proteases. The two apparently most abundant cysteine proteases of senescing leaves, of 40kDa and 33kDa were detected in isolated SAVs. Rubisco degradation in isolated SAVs was completely blocked by E-64. Treatment of leaf disks with E-64 in vivo substantially reduced degradation of Rubisco and leaf proteins. Overall, these results indicate that SAVs contain most of the cysteine protease activity of senescing cells, and that SAV cysteine proteases are at least partly responsible for the degradation of stromal proteins of the chloroplast.

  6. Cooper Screening of Information Processing (C-SIP). Administrator's Manual.

    ERIC Educational Resources Information Center

    Cooper, Richard

    This document is designed to assist individuals administering the Cooper Screening of Information Processing (C-SIP), which is intended as a diagnostic teaching tool that allows teachers or others to determine, in a conversational setting, whether a person manifests any common characteristics of learning problems. After a brief introduction, a…

  7. Senescent Cells: A Novel Therapeutic Target for Aging and Age-Related Diseases

    PubMed Central

    Naylor, RM; Baker, DJ; van Deursen, JM

    2014-01-01

    Aging is the main risk factor for most chronic diseases, disabilities, and declining health. It has been proposed that senescent cells—damaged cells that have lost the ability to divide—drive the deterioration that underlies aging and age-related diseases. However, definitive evidence for this relationship has been lacking. The use of a progeroid mouse model (which expresses low amounts of the mitotic checkpoint protein BubR1) has been instrumental in demonstrating that p16Ink4a-positive senescent cells drive age-related pathologies and that selective elimination of these cells can prevent or delay age-related deterioration. These studies identify senescent cells as potential therapeutic targets in the treatment of aging and age-related diseases. Here, we describe how senescent cells develop, the experimental evidence that causally implicates senescent cells in age-related dysfunction, the chronic diseases and disorders that are characterized by the accumulation of senescent cells at sites of pathology, and the therapeutic approaches that could specifically target senescent cells. PMID:23212104

  8. Are There Roles for Brain Cell Senescence in Aging and Neurodegenerative Disorders?

    PubMed Central

    Tan, Florence C. C.; Hutchison, Emmette R.; Eitan, Erez; Mattson, Mark P.

    2014-01-01

    The term cellular senescence was introduced more than five decades ago to describe the state of growth arrest observed in aging cells. Since this initial discovery, the phenotypes associated with cellular senescence have expanded beyond growth arrest to include alterations in cellular metabolism, secreted cytokines, epigenetic regulation and protein expression. Recently, senescence has been shown to play an important role in vivo not only in relation to aging, but also during embryonic development. Thus, cellular senescence serves different purposes and comprises a wide range of distinct phenotypes across multiple cell types. Whether all cell types, including post-mitotic neurons, are capable of entering into a senescent state remains unclear. In this review we examine recent data that suggest that cellular senescence plays a role in brain aging and, notably, may not be limited to glia but also neurons. We suggest that there is a high level of similarity between some of the pathological changes that occur in the brain in Alzheimer’s and Parkinson’s diseases and those phenotypes observed in cellular senescence, leading us to propose that neurons and glia can exhibit hallmarks of senescence previously documented in peripheral tissues. PMID:25305051

  9. Are there roles for brain cell senescence in aging and neurodegenerative disorders?

    PubMed

    Tan, Florence C C; Hutchison, Emmette R; Eitan, Erez; Mattson, Mark P

    2014-12-01

    The term cellular senescence was introduced more than five decades ago to describe the state of growth arrest observed in aging cells. Since this initial discovery, the phenotypes associated with cellular senescence have expanded beyond growth arrest to include alterations in cellular metabolism, secreted cytokines, epigenetic regulation and protein expression. Recently, senescence has been shown to play an important role in vivo not only in relation to aging, but also during embryonic development. Thus, cellular senescence serves different purposes and comprises a wide range of distinct phenotypes across multiple cell types. Whether all cell types, including post-mitotic neurons, are capable of entering into a senescent state remains unclear. In this review we examine recent data that suggest that cellular senescence plays a role in brain aging and, notably, may not be limited to glia but also neurons. We suggest that there is a high level of similarity between some of the pathological changes that occur in the brain in Alzheimer's and Parkinson's diseases and those phenotypes observed in cellular senescence, leading us to propose that neurons and glia can exhibit hallmarks of senescence previously documented in peripheral tissues.

  10. Development and implementation of the Caribbean Laboratory Quality Management Systems Stepwise Improvement Process (LQMS-SIP) Towards Accreditation.

    PubMed

    Alemnji, George; Edghill, Lisa; Guevara, Giselle; Wallace-Sankarsingh, Sacha; Albalak, Rachel; Cognat, Sebastien; Nkengasong, John; Gabastou, Jean-Marc

    2017-01-01

    Implementing quality management systems and accrediting laboratories in the Caribbean has been a challenge. We report the development of a stepwise process for quality systems improvement in the Caribbean Region. The Caribbean Laboratory Stakeholders met under a joint Pan American Health Organization/US Centers for Disease Control and Prevention initiative and developed a user-friendly framework called 'Laboratory Quality Management System - Stepwise Improvement Process (LQMS-SIP) Towards Accreditation' to support countries in strengthening laboratory services through a stepwise approach toward fulfilling the ISO 15189: 2012 requirements. This approach consists of a three-tiered framework. Tier 1 represents the minimum requirements corresponding to the mandatory criteria for obtaining a licence from the Ministry of Health of the participating country. The next two tiers are quality improvement milestones that are achieved through the implementation of specific quality management system requirements. Laboratories that meet the requirements of the three tiers will be encouraged to apply for accreditation. The Caribbean Regional Organisation for Standards and Quality hosts the LQMS-SIP Secretariat and will work with countries, including the Ministry of Health and stakeholders, including laboratory staff, to coordinate and implement LQMS-SIP activities. The Caribbean Public Health Agency will coordinate and advocate for the LQMS-SIP implementation. This article presents the Caribbean LQMS-SIP framework and describes how it will be implemented among various countries in the region to achieve quality improvement.

  11. 40 CFR 57.205 - Submission of supplementary information upon relaxation of an SO2 SIP emission limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Submission of supplementary information upon relaxation of an SO2 SIP emission limitation. 57.205 Section 57.205 Protection of Environment... Application and the NSO Process § 57.205 Submission of supplementary information upon relaxation of an SO2 SIP...

  12. Senescence in the wild: Insights from a long-term study on Seychelles warblers.

    PubMed

    Hammers, Martijn; Kingma, Sjouke A; Bebbington, Kat; van de Crommenacker, Janske; Spurgin, Lewis G; Richardson, David S; Burke, Terry; Dugdale, Hannah L; Komdeur, Jan

    2015-11-01

    Senescence--the progressive age-dependent decline in performance--occurs in most organisms. There is considerable variation in the onset and rate of senescence between and within species. Yet the causes of this variation are still poorly understood, despite being central to understanding the evolution of senescence. Long-term longitudinal studies on wild animals are extremely well-suited to studying the impact of environmental and individual characteristics (and the interaction between the two) on senescence, and can help us to understand the mechanisms that shape the evolution of senescence. In this review, we summarize and discuss the insights gained from our comprehensive long-term individual-based study of the Seychelles warbler (Acrocephalus sechellensis). This species provides an excellent model system in which to investigate the evolution of senescence in the wild. We found that Seychelles warblers show senescent declines in survival and reproduction, and discuss how individual characteristics (body condition, body size) and environmental effects (low- versus high-quality environments) may affect the onset and rate of senescence. Further, we highlight the evidence for trade-offs between early-life investment and senescence. We describe how key cellular and physiological processes (oxidative stress and telomere shortening) underpinning senescence are affected by individual and environmental characteristics in the Seychelles warbler (e.g. food availability, reproductive investment, disease) and we discuss how such physiological variation may mediate the relationship between environmental characteristics and senescence. Based on our work using Seychelles warblers as a model system, we show how insights from long-term studies of wild animals may help unravel the causes of the remarkable variation in senescence observed in natural systems, and highlight areas for promising future research.

  13. Proteomic Investigations of Proteases Involved in Cotyledon Senescence: A Model to Explore the Genotypic Variability of Proteolysis Machinery Associated with Nitrogen Remobilization Efficiency during the Leaf Senescence of Oilseed Rape.

    PubMed

    Poret, Marine; Chandrasekar, Balakumaran; van der Hoorn, Renier A L; Coquet, Laurent; Jouenne, Thierry; Avice, Jean-Christophe

    2017-11-02

    Oilseed rape is characterized by a low nitrogen remobilization efficiency during leaf senescence, mainly due to a lack of proteolysis. Because cotyledons are subjected to senescence, it was hypothesized that contrasting protease activities between genotypes may be distinguishable early in the senescence of cotyledons. To verify this assumption, our goals were to (i) characterize protease activities in cotyledons between two genotypes with contrasting nitrogen remobilization efficiency (Ténor and Samouraï) under limiting or ample nitrate supply; and (ii) test the role of salicylic acid (SA) and abscisic acid (ABA) in proteolysis regulation. Protease activities were measured and identified by a proteomics approach combining activity-based protein profiling with LC-MS/MS. As in senescing leaves, chlorophyll and protein contents decrease in senescing cotyledons and are correlated with an increase in serine and cysteine protease activities. Two RD21-like and SAG-12 proteases previously associated with an efficient proteolysis in senescing leaves of Ténor are also detected in senescing cotyledons. The infiltration of ABA and SA provokes the induction of senescence and several cysteine and serine protease activities. The study of protease activities during the senescence of cotyledons seems to be a promising experimental model to investigate the regulation and genotypic variability of proteolysis associated with efficient N remobilization.

  14. Technical Data and Reports on Nitrogen Dioxide Measurements and SIP Status

    EPA Pesticide Factsheets

    EPA collects data from the states and regions on their air quality and state implementation plan (SIP) progress. This information is compiled in a database, and used to create reports, trend charts, and maps.

  15. Technical Data and Reports on Carbon Monoxide Measurements and SIP Status

    EPA Pesticide Factsheets

    EPA collects data from the states and regions on their air quality and state implementation plan (SIP) progress. This information is compiled in a database, and used to create reports, trend charts, and maps.

  16. Non-senescent Hydra tolerates severe disturbances in the nuclear lamina.

    PubMed

    Klimovich, Alexander; Rehm, Arvid; Wittlieb, Jörg; Herbst, Eva-Maria; Benavente, Ricardo; Bosch, Thomas C G

    2018-05-10

    The cnidarian Hydra is known for its unlimited lifespan and non-senescence, due to the indefinite self-renewal capacity of its stem cells. While proteins of the Lamin family are recognized as critical factors affecting senescence and longevity in human and mice, their putative role in the extreme longevity and non-senescence in long-living animals remains unknown. Here we analyze the role of a single lamin protein in non-senescence of Hydra . We demonstrate that proliferation of stem cells in Hydra is robust against the disturbance of Lamin expression and localization. While Lamin is indispensable for Hydra , the stem cells tolerate overexpression, downregulation and mislocalization of Lamin, and disturbances in the nuclear envelope structure. This extraordinary robustness may underlie the indefinite self-renewal capacity of stem cells and the non-senescence of Hydra . A relatively low complexity of the nuclear envelope architecture in basal Metazoa might allow for their extreme lifespans, while an increasing complexity of the nuclear architecture in bilaterians resulted in restricted lifespans.

  17. Increasing leaf longevity and disease resistance by altering salicylic acid catabolism

    DOEpatents

    Gan, Susheng; Zhang, Kewei

    2018-01-23

    The present invention relates to a transgenic plant having an altered level of salicylic acid 3-hydroxylase ("S3H") protein, compared to that of a non-transgenic plant, where the transgenic plant displays an altered leaf senescence phenotype, relative to a non-transgenic plant. The present invention relates to a mutant plant comprising an inactivated gene encoding S3H protein, where the mutant plant displays a premature or precocious leaf senescence phenotype, relative to a non-mutant plant. The present invention also relates to methods for promoting premature or precocious leaf senescence in a plant, delaying leaf senescence in a plant, and making a mutant plant having a decreased level of S3H protein compared to that of a non-mutant plant, where the mutant plant displays a premature or precocious leaf senescence phenotype relative to a non-mutant plant. The present invention also relates to inducing or promoting pathogen resistance in plants.

  18. Plant senescence and proteolysis: two processes with one destiny

    PubMed Central

    Diaz-Mendoza, Mercedes; Velasco-Arroyo, Blanca; Santamaria, M. Estrella; González-Melendi, Pablo; Martinez, Manuel; Diaz, Isabel

    2016-01-01

    Abstract Senescence-associated proteolysis in plants is a complex and controlled process, essential for mobilization of nutrients from old or stressed tissues, mainly leaves, to growing or sink organs. Protein breakdown in senescing leaves involves many plastidial and nuclear proteases, regulators, different subcellular locations and dynamic protein traffic to ensure the complete transformation of proteins of high molecular weight into transportable and useful hydrolysed products. Protease activities are strictly regulated by specific inhibitors and through the activation of zymogens to develop their proteolytic activity at the right place and at the proper time. All these events associated with senescence have deep effects on the relocation of nutrients and as a consequence, on grain quality and crop yield. Thus, it can be considered that nutrient recycling is the common destiny of two processes, plant senescence and, proteolysis. This review article covers the most recent findings about leaf senescence features mediated by abiotic and biotic stresses as well as the participants and steps required in this physiological process, paying special attention to C1A cysteine proteases, their specific inhibitors, known as cystatins, and their potential targets, particularly the chloroplastic proteins as source for nitrogen recycling. PMID:27505308

  19. Plant senescence and proteolysis: two processes with one destiny.

    PubMed

    Diaz-Mendoza, Mercedes; Velasco-Arroyo, Blanca; Santamaria, M Estrella; González-Melendi, Pablo; Martinez, Manuel; Diaz, Isabel

    2016-01-01

    Senescence-associated proteolysis in plants is a complex and controlled process, essential for mobilization of nutrients from old or stressed tissues, mainly leaves, to growing or sink organs. Protein breakdown in senescing leaves involves many plastidial and nuclear proteases, regulators, different subcellular locations and dynamic protein traffic to ensure the complete transformation of proteins of high molecular weight into transportable and useful hydrolysed products. Protease activities are strictly regulated by specific inhibitors and through the activation of zymogens to develop their proteolytic activity at the right place and at the proper time. All these events associated with senescence have deep effects on the relocation of nutrients and as a consequence, on grain quality and crop yield. Thus, it can be considered that nutrient recycling is the common destiny of two processes, plant senescence and, proteolysis. This review article covers the most recent findings about leaf senescence features mediated by abiotic and biotic stresses as well as the participants and steps required in this physiological process, paying special attention to C1A cysteine proteases, their specific inhibitors, known as cystatins, and their potential targets, particularly the chloroplastic proteins as source for nitrogen recycling.

  20. The role of groundwater discharge fluxes on Si:P ratios in a major tributary to Lake Erie.

    PubMed

    Maavara, Taylor; Slowinski, Stephanie; Rezanezhad, Fereidoun; Van Meter, Kimberly; Van Cappellen, Philippe

    2018-05-01

    Groundwater discharge can be a major source of nutrients to river systems. Although quantification of groundwater nitrate loading to streams is common, the dependence of surface water silicon (Si) and phosphorus (P) concentrations on groundwater sources has rarely been determined. Additionally, the ability of groundwater discharge to drive surface water Si:P ratios has not been contextualized relative to riverine inputs or in-stream transformations. In this study, we quantify the seasonal dynamics of Si and P cycles in the Grand River (GR) watershed, the largest Canadian watershed draining into Lake Erie, to test our hypothesis that regions of Si-rich groundwater discharge increase surface water Si:P ratios. Historically, both the GR and Lake Erie have been considered stoichiometrically P-limited, where the molar Si:P ratio is greater than the ~16:1 phytoplankton uptake ratio. However, recent trends suggest that eastern Lake Erie may be approaching Si-limitation. We sampled groundwater and surface water for dissolved and reactive particulate Si as well as total dissolved P for 12months within and downstream of a 50-km reach of high groundwater discharge. Our results indicate that groundwater Si:P ratios are lower than the corresponding surface water and that groundwater is a significant source of bioavailable P to surface water. Despite these observations, the watershed remains P-limited for the majority of the year, with localized periods of Si-limitation. We further find that groundwater Si:P ratios are a relatively minor driver of surface water Si:P, but that the magnitude of Si and P loads from groundwater represent a large proportion of the overall fluxes to Lake Erie. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Enhanced endothelial cell senescence by lithium-induced matrix metalloproteinase-1 expression.

    PubMed

    Struewing, Ian T; Durham, Samuel N; Barnett, Corey D; Mao, Catherine D

    2009-06-26

    Endothelial cell (EC) senescence and dysfunction occurring after chronic injury and inflammation are highly associated with the development and progression of cardiovascular diseases. However, the factors involved in the establishment of EC senescence remain poorly understood. We have previously shown that lithium, an inhibitor of glycogen synthase kinase (GSK)-3beta and activator of the Wnt/beta-catenin signaling pathway, induces an EC senescent-like phenotype. Herein, we show that lithium induces a rapid and pronounced up-regulation of the matrix metalloproteinase (MMP)-1, an inflammation and senescent cell marker, at the mRNA and protein levels, whereas the induction of two other senescent cell markers is either weak (interleukin-8) or delayed (plasminogen activator inhibitor-1). Lithium effect on MMP-1 expression is also specific among other MMPs and not mediated by GSK3beta inhibition. Lithium affects MMP-1 expression mainly at the transcriptional level but neither the AP1/Ets regulatory sites nor the redox sensitive (-1607/2G) site in MMP-1 promoter are involved in lithium-dependent MMP-1 regulation. However, down-regulation of p53, a target of lithium in EC, dampens both basal and lithium-induced MMP-1 expression, which further links MMP-1 up-regulation with the establishment of cell senescence. Although increased MMP-1 levels are usually associated with angiogenesis in enabled proliferative EC, the exogenous addition of activated MMP-1 on lithium- arrested EC increases the number of EC positive for the senescent-associated-beta-galactosidase marker. Conversely, down-regulation of MMP-1 expression by small interfering RNAs blunts the lithium-dependent increase in senescent-associated-beta-galactosidase positive cells. Altogether our data indicate that lithium-induced MMP-1 may participate in the reinforcement of EC senescence and reveal a novel mechanism for lithium-induced tissue remodeling.

  2. Sustained Endocannabinoid Signaling Compromises Decidual Function and Promotes Inflammation-induced Preterm Birth.

    PubMed

    Sun, Xiaofei; Deng, Wenbo; Li, Yingju; Tang, Shuang; Leishman, Emma; Bradshaw, Heather B; Dey, Sudhansu K

    2016-04-08

    Recent studies provide evidence that premature maternal decidual senescence resulting from heightened mTORC1 signaling is a cause of preterm birth (PTB). We show here that mice devoid of fatty acid amide hydrolase (FAAH) with elevated levels ofN-arachidonyl ethanolamide (anandamide), a major endocannabinoid lipid mediator, were more susceptible to PTB upon lipopolysaccharide (LPS) challenge. Anandamide is degraded by FAAH and primarily works by activating two G-protein-coupled receptors CB1 and CB2, encoded by Cnr1 and Cnr2, respectively. We found thatFaah(-/-)decidual cells progressively underwent premature senescence as marked by increased senescence-associated β-galactosidase (SA-β-Gal) staining and γH2AX-positive decidual cells. Interestingly, increased endocannabinoid signaling activated MAPK p38, but not p42/44 or mTORC1 signaling, inFaah(-/-)deciduae, and inhibition of p38 halted premature decidual senescence. We further showed that treatment of a long-acting anandamide in wild-type mice at midgestation triggered premature decidual senescence utilizing CB1, since administration of a CB1 antagonist greatly reduced the rate of PTB inFaah(-/-)females exposed to LPS. These results provide evidence that endocannabinoid signaling is critical in regulating decidual senescence and parturition timing. This study identifies a previously unidentified pathway in decidual senescence, which is independent of mTORC1 signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Change and aging senescence as an adaptation.

    PubMed

    Martins, André C R

    2011-01-01

    Understanding why we age is a long-lived open problem in evolutionary biology. Aging is prejudicial to the individual, and evolutionary forces should prevent it, but many species show signs of senescence as individuals age. Here, I will propose a model for aging based on assumptions that are compatible with evolutionary theory: i) competition is between individuals; ii) there is some degree of locality, so quite often competition will be between parents and their progeny; iii) optimal conditions are not stationary, and mutation helps each species to keep competitive. When conditions change, a senescent species can drive immortal competitors to extinction. This counter-intuitive result arises from the pruning caused by the death of elder individuals. When there is change and mutation, each generation is slightly better adapted to the new conditions, but some older individuals survive by chance. Senescence can eliminate those from the genetic pool. Even though individual selection forces can sometimes win over group selection ones, it is not exactly the individual that is selected but its lineage. While senescence damages the individuals and has an evolutionary cost, it has a benefit of its own. It allows each lineage to adapt faster to changing conditions. We age because the world changes.

  4. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence.

    PubMed

    Wiley, Christopher D; Flynn, James M; Morrissey, Christapher; Lebofsky, Ronald; Shuga, Joe; Dong, Xiao; Unger, Marc A; Vijg, Jan; Melov, Simon; Campisi, Judith

    2017-10-01

    Senescent cells play important roles in both physiological and pathological processes, including cancer and aging. In all cases, however, senescent cells comprise only a small fraction of tissues. Senescent phenotypes have been studied largely in relatively homogeneous populations of cultured cells. In vivo, senescent cells are generally identified by a small number of markers, but whether and how these markers vary among individual cells is unknown. We therefore utilized a combination of single-cell isolation and a nanofluidic PCR platform to determine the contributions of individual cells to the overall gene expression profile of senescent human fibroblast populations. Individual senescent cells were surprisingly heterogeneous in their gene expression signatures. This cell-to-cell variability resulted in a loss of correlation among the expression of several senescence-associated genes. Many genes encoding senescence-associated secretory phenotype (SASP) factors, a major contributor to the effects of senescent cells in vivo, showed marked variability with a subset of highly induced genes accounting for the increases observed at the population level. Inflammatory genes in clustered genomic loci showed a greater correlation with senescence compared to nonclustered loci, suggesting that these genes are coregulated by genomic location. Together, these data offer new insights into how genes are regulated in senescent cells and suggest that single markers are inadequate to identify senescent cells in vivo. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Louisiana SIP: LAC 33:III Ch 23 Subchap B, §2303--Aluminum Plants, §2303 Standards for Horizontal Stud Soderberg Primary Aluminum Plants and Prebake Primary Aluminum Plants; SIP effective 1989-05-08 (LAc49) to 2011-08-03 (LAad34 - Revised)

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch 23 Subchap B, §2303--Aluminum Plants, §2303 Standards for Horizontal Stud Soderberg Primary Aluminum Plants and Prebake Primary Aluminum Plants; SIP effective 1989-05-08 (LAc49) to 2011-08-03 (LAad34 - Revised)

  6. Actuarial senescence in a long-lived orchid challenges our current understanding of ageing.

    PubMed

    Dahlgren, Johan Petter; Colchero, Fernando; Jones, Owen R; Øien, Dag-Inge; Moen, Asbjørn; Sletvold, Nina

    2016-11-16

    The dominant evolutionary theory of actuarial senescence-an increase in death rate with advancing age-is based on the concept of a germ cell line that is separated from the somatic cells early in life. However, such a separation is not clear in all organisms. This has been suggested to explain the paucity of evidence for actuarial senescence in plants. We used a 32 year study of Dactylorhiza lapponica that replaces its organs each growing season, to test whether individuals of this tuberous orchid senesce. We performed a Bayesian survival trajectory analysis accounting for reproductive investment, for individuals under two types of land use, in two climatic regions. The mortality trajectory was best approximated by a Weibull model, showing clear actuarial senescence. Rates of senescence in this model declined with advancing age, but were slightly higher in mown plots and in the more benign climatic region. At older ages, senescence was evident only when accounting for a positive effect of reproductive investment on mortality. Our results demonstrate actuarial senescence as well as a survival-reproduction trade-off in plants, and indicate that environmental context may influence senescence rates. This knowledge is crucial for understanding the evolution of demographic senescence and for models of plant population dynamics. © 2016 The Author(s).

  7. Synthetic Lethal Metabolic Targeting of Senescent Cells After Androgen Deprivation Therapy

    DTIC Science & Technology

    2017-07-01

    and improved cell killing. 15. SUBJECT TERMS prostate cancer, androgen deprivation therapy, senescence, proteotoxic stress , xenograft models...these persistent senescent cells is characterized by increased protein synthesis and notably an amplified proteotoxic stress response (PSR), a...experience high levels of proteotoxic stress . In Aim 1 we will examine the activity of metformin in eradicating senescent PCs following ADT in

  8. Networking Senescence-Regulating Pathways by Using Arabidopsis Enhancer Trap Lines1

    PubMed Central

    He, Yuehui; Tang, Weining; Swain, Johnnie D.; Green, Anthony L.; Jack, Thomas P.; Gan, Susheng

    2001-01-01

    The last phase of leaf development, generally referred to as leaf senescence, is an integral part of plant development that involves massive programmed cell death. Due to a sharp decline of photosynthetic capacity in a leaf, senescence limits crop yield and forest plant biomass production. However, the biochemical components and regulatory mechanisms underlying leaf senescence are poorly characterized. Although several approaches such as differential cDNA screening, differential display, and cDNA subtraction have been employed to isolate senescence-associated genes (SAGs), only a limited number of SAGs have been identified, and information regarding the regulation of these genes is fragmentary. Here we report on the utilization of enhancer trap approach toward the identification and analysis of SAGs. We have developed a sensitive large-scale screening method and have screened 1,300 Arabidopsis enhancer trap lines and have identified 147 lines in which the reporter gene GUS (β-glucuronidase) is expressed in senescing leaves but not in non-senescing ones. We have systematically analyzed the regulation of β-glucuronidase expression in 125 lines (genetically, each contains single T-DNA insertion) by six senescence-promoting factors, namely abscisic acid, ethylene, jasmonic acid, brassinosteroid, darkness, and dehydration. This analysis not only reveals the complexity of the regulatory circuitry but also allows us to postulate the existence of a network of senescence-promoting pathways. We have also cloned three SAGs from randomly selected enhancer trap lines, demonstrating that reporter expression pattern reflects the expression pattern of the endogenous gene. PMID:11402199

  9. Proteomic responses of switchgrass and prairie cordgrass to senescence

    USDA-ARS?s Scientific Manuscript database

    Senescence in biofuel grasses is a critical issue because early senescence decreases potential biomass production by limiting aerial growth and development. 2-Dimensional,differential in-gel electrophoresis (2D-DIGE) followed by mass spectrometry of selected protein spots was used to evaluate differ...

  10. Development and implementation of the Caribbean Laboratory Quality Management Systems Stepwise Improvement Process (LQMS-SIP) Towards Accreditation

    PubMed Central

    Alemnji, George; Edghill, Lisa; Wallace-Sankarsingh, Sacha; Albalak, Rachel; Cognat, Sebastien; Nkengasong, John; Gabastou, Jean-Marc

    2017-01-01

    Background Implementing quality management systems and accrediting laboratories in the Caribbean has been a challenge. Objectives We report the development of a stepwise process for quality systems improvement in the Caribbean Region. Methods The Caribbean Laboratory Stakeholders met under a joint Pan American Health Organization/US Centers for Disease Control and Prevention initiative and developed a user-friendly framework called ‘Laboratory Quality Management System – Stepwise Improvement Process (LQMS-SIP) Towards Accreditation’ to support countries in strengthening laboratory services through a stepwise approach toward fulfilling the ISO 15189: 2012 requirements. Results This approach consists of a three-tiered framework. Tier 1 represents the minimum requirements corresponding to the mandatory criteria for obtaining a licence from the Ministry of Health of the participating country. The next two tiers are quality improvement milestones that are achieved through the implementation of specific quality management system requirements. Laboratories that meet the requirements of the three tiers will be encouraged to apply for accreditation. The Caribbean Regional Organisation for Standards and Quality hosts the LQMS-SIP Secretariat and will work with countries, including the Ministry of Health and stakeholders, including laboratory staff, to coordinate and implement LQMS-SIP activities. The Caribbean Public Health Agency will coordinate and advocate for the LQMS-SIP implementation. Conclusion This article presents the Caribbean LQMS-SIP framework and describes how it will be implemented among various countries in the region to achieve quality improvement. PMID:28879149

  11. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis.

    PubMed

    Mishina, Tatiana E; Lamb, Chris; Zeier, Jürgen

    2007-01-01

    Nitric oxide (NO) has been proposed to act as a factor delaying leaf senescence and fruit maturation in plants. Here we show that expression of a NO degrading dioxygenase (NOD) in Arabidopsis thaliana initiates a senescence-like phenotype, an effect that proved to be more pronounced in older than in younger leaves. This senescence phenotype was preceded by a massive switch in gene expression in which photosynthetic genes were down-regulated, whereas many senescence-associated genes (SAGs) and the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene ACS6 involved in ethylene synthesis were up-regulated. External fumigation of NOD plants with NO as well as environmental conditions known to stimulate endogenous NO production attenuated the induced senescence programme. For instance, both high light conditions and nitrate feeding reduced the senescence phenotype and attenuated the down-regulation of photosynthetic genes as well as the up-regulation of SAGs. Treatment of plants with the cytokinin 6-benzylaminopurin (BAP) reduced the down-regulation of photosynthesis, although it had no consistent effect on SAG expression. Metabolic changes during NOD-induced senescence comprehended increases in salicylic acid (SA) levels, accumulation of the phytoalexin camalexin and elevation of leaf gamma-tocopherol contents, all of which occurred during natural senescence in Arabidopsis leaves as well. Moreover, NO fumigation delayed the senescence process induced by darkening individual Arabidopsis Columbia-0 (Col-0) leaves. Our data thus support the notion that NO acts as a negative regulator of leaf senescence.

  12. Do age-specific survival patterns of wild boar fit current evolutionary theories of senescence?

    PubMed

    Gamelon, Marlène; Focardi, Stefano; Gaillard, Jean-Michel; Gimenez, Olivier; Bonenfant, Christophe; Franzetti, Barbara; Choquet, Rémi; Ronchi, Francesca; Baubet, Eric; Lemaître, Jean-François

    2014-12-01

    Actuarial senescence is widespread in age-structured populations. In growing populations, the progressive decline of Hamiltonian forces of selection with age leads to decreasing survival. As actuarial senescence is overcompensated by a high fertility, actuarial senescence should be more intense in species with high reproductive effort, a theoretical prediction that has not been yet explicitly tested across species. Wild boar (Sus scrofa) females have an unusual life-history strategy among large mammals by associating both early and high reproductive effort with potentially long lifespan. Therefore, wild boar females should show stronger actuarial senescence than similar-sized related mammals. Moreover, being polygynous and much larger than females, males should display higher senescence rates than females. Using a long-term monitoring (18 years) of a wild boar population, we tested these predictions. We provided clear evidence of actuarial senescence in both sexes. Wild boar females had earlier but not stronger actuarial senescence than similar-sized ungulates. Both sexes displayed similar senescence rates. Our study indicates that the timing of senescence, not the rate, is associated with the magnitude of fertility in ungulates. This demonstrates the importance of including the timing of senescence in addition to its rate to understand variation in senescence patterns in wild populations. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  13. Retinopathy of Prematurity

    ERIC Educational Resources Information Center

    Steinweg, Sue Byrd; Griffin, Harold C.; Griffin, Linda W.; Gingras, Happy

    2005-01-01

    The eyes of premature infants are especially vulnerable to injury after birth. A serious complication is called retinopathy of prematurity (ROP), which is abnormal growth of the blood vessels in an infant's eye. Retinopathy of prematurity develops when abnormal blood vessels grow and spread throughout the retina, which is the nerve tissue at the…

  14. Study into the correlation of dominant pore throat size and SIP relaxation frequency

    NASA Astrophysics Data System (ADS)

    Kruschwitz, Sabine; Prinz, Carsten; Zimathies, Annett

    2016-12-01

    There is currently a debate within the SIP community about the characteristic textural length scale controlling relaxation time of consolidated porous media. One idea is that the relaxation time is dominated by the pore throat size distribution or more specifically the modal pore throat size as determined in mercury intrusion capillary pressure tests. Recently new studies on inverting pore size distributions from SIP data were published implying that the relaxation mechanisms and controlling length scale are well understood. In contrast new analytical model studies based on the Marshall-Madden membrane polarization theory suggested that two relaxation processes might compete: the one along the short narrow pore (the throat) with one across the wider pore in case the narrow pores become relatively long. This paper presents a first systematically focused study into the relationship of pore throat sizes and SIP relaxation times. The generality of predicted trends is investigated across a wide range of materials differing considerably in chemical composition, specific surface and pore space characteristics. Three different groups of relaxation behaviors can be clearly distinguished. The different behaviors are related to clay content and type, carbonate content, size of the grains and the wide pores in the samples.

  15. Regulatory RNA binding proteins contribute to the transcriptome-wide splicing alterations in human cellular senescence.

    PubMed

    Dong, Qiongye; Wei, Lei; Zhang, Michael Q; Wang, Xiaowo

    2018-06-24

    Dysregulation of mRNA splicing has been observed in certain cellular senescence process. However, the common splicing alterations on the whole transcriptome shared by various types of senescence are poorly understood. In order to systematically identify senescence-associated transcriptomic changes in genome-wide scale, we collected RNA sequencing datasets of different human cell types with a variety of senescence-inducing methods from public databases and performed meta-analysis. First, we discovered that a group of RNA binding proteins were consistently down-regulated in diverse senescent samples and identified 406 senescence-associated common differential splicing events. Then, eight differentially expressed RNA binding proteins were predicted to regulate these senescence-associated splicing alterations through an enrichment analysis of their RNA binding information, including motif scanning and enhanced cross-linking immunoprecipitation data. In addition, we constructed the splicing regulatory modules that might contribute to senescence-associated biological processes. Finally, it was confirmed that knockdown of the predicted senescence-associated potential splicing regulators through shRNAs in HepG2 cell line could result in senescence-like splicing changes. Taken together, our work demonstrated a broad range of common changes in mRNA splicing switches and detected their central regulatory RNA binding proteins during senescence. These findings would help to better understand the coordinating splicing alterations in cellular senescence.

  16. Non-senescent Hydra tolerates severe disturbances in the nuclear lamina

    PubMed Central

    Rehm, Arvid; Wittlieb, Jörg; Herbst, Eva-Maria; Benavente, Ricardo

    2018-01-01

    The cnidarian Hydra is known for its unlimited lifespan and non-senescence, due to the indefinite self-renewal capacity of its stem cells. While proteins of the Lamin family are recognized as critical factors affecting senescence and longevity in human and mice, their putative role in the extreme longevity and non-senescence in long-living animals remains unknown. Here we analyze the role of a single lamin protein in non-senescence of Hydra. We demonstrate that proliferation of stem cells in Hydra is robust against the disturbance of Lamin expression and localization. While Lamin is indispensable for Hydra, the stem cells tolerate overexpression, downregulation and mislocalization of Lamin, and disturbances in the nuclear envelope structure. This extraordinary robustness may underlie the indefinite self-renewal capacity of stem cells and the non-senescence of Hydra. A relatively low complexity of the nuclear envelope architecture in basal Metazoa might allow for their extreme lifespans, while an increasing complexity of the nuclear architecture in bilaterians resulted in restricted lifespans. PMID:29754147

  17. Role of senescence and mitotic catastrophe in cancer therapy

    PubMed Central

    2010-01-01

    Senescence and mitotic catastrophe (MC) are two distinct crucial non-apoptotic mechanisms, often triggered in cancer cells and tissues in response to anti-cancer drugs. Chemotherapeuticals and myriad other factors induce cell eradication via these routes. While senescence drives the cells to a state of quiescence, MC drives the cells towards death during the course of mitosis. The senescent phenotype distinguishes tumor cells that survived drug exposure but lost the ability to form colonies from those that recover and proliferate after treatment. Although senescent cells do not proliferate, they are metabolically active and may secrete proteins with potential tumor-promoting activities. The other anti-proliferative response of tumor cells is MC that is a form of cell death that results from abnormal mitosis and leads to the formation of interphase cells with multiple micronuclei. Different classes of cytotoxic agents induce MC, but the pathways of abnormal mitosis differ depending on the nature of the inducer and the status of cell-cycle checkpoints. In this review, we compare the two pathways and mention that they are activated to curb the growth of tumors. Altogether, we have highlighted the possibilities of the use of senescence targeting drugs, mitotic kinases and anti-mitotic agents in fabricating novel strategies in cancer control. PMID:20205872

  18. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes

    NASA Technical Reports Server (NTRS)

    Romanov, S. R.; Kozakiewicz, B. K.; Holst, C. R.; Stampfer, M. R.; Haupt, L. M.; Tlsty, T. D.

    2001-01-01

    Senescence and genomic integrity are thought to be important barriers in the development of malignant lesions. Human fibroblasts undergo a limited number of cell divisions before entering an irreversible arrest, called senescence. Here we show that human mammary epithelial cells (HMECs) do not conform to this paradigm of senescence. In contrast to fibroblasts, HMECs exhibit an initial growth phase that is followed by a transient growth plateau (termed selection or M0; refs 3-5), from which proliferative cells emerge to undergo further population doublings (approximately 20-70), before entering a second growth plateau (previously termed senescence or M1; refs 4-6). We find that the first growth plateau exhibits characteristics of senescence but is not an insurmountable barrier to further growth. HMECs emerge from senescence, exhibit eroding telomeric sequences and ultimately enter telomere-based crisis to generate the types of chromosomal abnormalities seen in the earliest lesions of breast cancer. Growth past senescent barriers may be a pivotal event in the earliest steps of carcinogenesis, providing many genetic changes that predicate oncogenic evolution. The differences between epithelial cells and fibroblasts provide new insights into the mechanistic basis of neoplastic transformation.

  19. The Potential Role of Senescence As a Modulator of Platelets and Tumorigenesis

    PubMed Central

    Valenzuela, Claudio A.; Quintanilla, Ricardo; Moore-Carrasco, Rodrigo; Brown, Nelson E.

    2017-01-01

    In addition to thrombus formation, alterations in platelet function are frequently observed in cancer patients. Importantly, both thrombus and tumor formation are influenced by age, although the mechanisms through which physiological aging modulates these processes remain poorly understood. In this context, the potential effects of senescent cells on platelet function represent pathophysiological mechanisms that deserve further exploration. Cellular senescence has traditionally been viewed as a barrier to tumorigenesis. However, far from being passive bystanders, senescent cells are metabolically active and able to secrete a variety of soluble and insoluble factors. This feature, known as the senescence-associated secretory phenotype (SASP), may provide senescent cells with the capacity to modify the tissue environment and, paradoxically, promote proliferation and neoplastic transformation of neighboring cells. In fact, the SASP-dependent ability of senescent cells to enhance tumorigenesis has been confirmed in cellular systems involving epithelial cells and fibroblasts, leaving open the question as to whether similar interactions can be extended to other cellular contexts. In this review, we discuss the diverse functions of platelets in tumorigenesis and suggest the possibility that senescent cells might also influence tumorigenesis through their ability to modulate the functional status of platelets through the SASP. PMID:28894697

  20. The Short Inventory of Problems – Revised (SIP-R): Psychometric properties within a large, diverse sample of substance use disorder treatment seekers

    PubMed Central

    Kiluk, Brian D.; Dreifuss, Jessica A.; Weiss, Roger D.; Morgenstern, Jon; Carroll, Kathleen M.

    2012-01-01

    Assessment of the adverse consequences of substance use serves an important function in both clinical and research settings, yet there is no universally agreed upon measure of consequences relevant to multiple types of substance use disorders. One of the most commonly used measures, the Short Inventory of Problems (SIP), has been adapted and evaluated in several specific populations, but evidence of its reliability and validity across broader samples of persons with substance use disorders is needed. This study evaluated the psychometric properties of a revised version of the SIP (SIP-R) in a large combined sample of alcohol and drug use disorder treatment-seekers, with participants pooled from two national, multisite randomized clinical trials. A total of 886 participants across 10 outpatient treatment facilities completed a common assessment battery that included the SIP-R, Addiction Severity Index (ASI), University of Rhode Island Change Assessment (URICA), HIV Risk Behavior Scale (HRBS), and a substance use calendar. Results supported the SIP-R’s internal reliability (α=.95). Confirmatory factor analysis demonstrated that the hypothesized 5-factor model with one higher-order factor produced the best fit. Convergent validity was evident through the SIP-R’s correlation with several composite scores from the ASI and the URICA, and analyses supported its conceptual distinction from quantity indices of drug/alcohol use. The SIP-R also demonstrated an ability to predict treatment retention, with higher scores associated with poorer retention. These results provide support for the SIP-R’s psychometric properties as a measure of consequences across a broad sample of treatment-seeking drug and alcohol users. PMID:22642856

  1. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy.

    PubMed

    Chang, Tzu-Ching; Hsu, Min-Fen; Wu, Kenneth K

    2015-01-01

    Hyperglycemia was reported to cause bone marrow hematopoietic niche dysfunction, and high glucose (HG) in the cultured medium induces MSC senescence. The underlying mechanism is unclear. Here, we investigated the role of HG-induced autophagy in bone-marrow-derived mesenchymal stem cell (BMSC) senescence. HG (25 mM) increased expression of Beclin-1, Atg 5, 7 and 12, generation of LC3-II and autophagosome formation which was correlated with development of cell senescence. Pretreatment of HG-MSC with 3-methyladenine (3-MA) prevented senescence but increased apoptosis. N-acetylcysteine (NAC) was effective in abrogating HG-induced autophagy accompanied by prevention of senescence. Diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, blocked autophagy and senescence in a manner comparable to NAC. 3-MA, NAC and DPI inhibited HG-induced interleukin-6 production in BMSCs. These results suggest that hyperglycemia induces MSC senescence and local inflammation via a novel oxidant-mediated autophagy which contributes to bone marrow niche dysfunction and hematopoietic impairment.

  2. The p53/p21(WAF/CIP) pathway mediates oxidative stress and senescence in dyskeratosis congenita cells with telomerase insufficiency.

    PubMed

    Westin, Erik R; Aykin-Burns, Nukhet; Buckingham, Erin M; Spitz, Douglas R; Goldman, Frederick D; Klingelhutz, Aloysius J

    2011-03-15

    Telomere attrition is a natural process that occurs due to inadequate telomere maintenance. Once at a critically short threshold, telomeres signal growth arrest, leading to senescence. Telomeres can be elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Mutations in genes for telomere binding proteins or components of telomerase give rise to the premature aging disorder dyskeratosis congenita (DC), which is characterized by extremely short telomeres and an aging phenotype. The current study demonstrates that DC cells signal a DNA damage response through p53 and its downstream mediator, p21(WAF/CIP), which is accompanied by an elevation in steady-state levels of superoxide and percent glutathione disulfide, both indicators of oxidative stress. Poor proliferation of DC cells can be partially overcome by reducing O(2) tension from 21% to 4%. Further, restoring telomerase activity or inhibiting p53 or p21(WAF/CIP) significantly mitigated growth inhibition as well as caused a significant decrease in steady-state levels of superoxide. Our results support a model in which telomerase insufficiency in DC leads to p21(WAF/CIP) signaling, via p53, to cause increased steady-state levels of superoxide, metabolic oxidative stress, and senescence.

  3. NMR Model of PrgI-SipD Interaction and its Implications in the Needle-Tip Assembly of the Salmonella Type III Secretion System

    PubMed Central

    Rathinavelan, Thenmalarchelvi; Lara-Tejero, Maria; Lefebre, Matthew; Chatterjee, Srirupa; McShan, Andrew C.; Guo, Da-Chuan; Tang, Chun; Galan, Jorge E.; De Guzman, Roberto N.

    2014-01-01

    Salmonella and other pathogenic bacteria use the type III secretion system (T3SS) to inject virulence proteins into human cells to initiate infections. The structural component of the T3SS contains a needle and a needle tip. The needle is assembled from PrgI needle protomers and the needle tip is capped with several copies of the SipD tip protein. How a tip protein docks on the needle is unclear. A crystal structure of a PrgI-SipD fusion protein docked on the PrgI needle results in steric clash of SipD at the needle tip when modeled on the recent atomic structure of the needle. Thus, there is currently no good model of how SipD is docked on the PrgI needle tip. Previously, we showed by NMR paramagnetic relaxation enhancement (PRE) methods that a specific region in the SipD coiled-coil is the binding site for PrgI. Others have hypothesized that a domain of the tip protein – the N-terminal α-helical hairpin, has to swing away during the assembly of the needle apparatus. Here, we show by PRE methods that a truncated form of SipD lacking the α-helical hairpin domain binds more tightly to PrgI. Further, PRE-based structure calculations revealed multiple PrgI binding sites on the SipD coiled-coil. Our PRE results together with the recent NMR-derived atomic structure of the Salmonella needle suggest a possible model of how SipD might dock at the PrgI needle tip. SipD and PrgI are conserved in other bacterial T3SSs, thus our results have wider implication in understanding other needle-tip complexes. PMID:24951833

  4. Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit.

    PubMed

    Puvvula, Pavan Kumar; Desetty, Rohini Devi; Pineau, Pascal; Marchio, Agnés; Moon, Anne; Dejean, Anne; Bischof, Oliver

    2014-11-19

    Cellular senescence is a stable cell cycle arrest that limits the proliferation of pre-cancerous cells. Here we demonstrate that scaffold-attachment-factor A (SAFA) and the long noncoding RNA PANDA differentially interact with polycomb repressive complexes (PRC1 and PRC2) and the transcription factor NF-YA to either promote or suppress senescence. In proliferating cells, SAFA and PANDA recruit PRC complexes to repress the transcription of senescence-promoting genes. Conversely, the loss of SAFA-PANDA-PRC interactions allows expression of the senescence programme. Accordingly, we find that depleting either SAFA or PANDA in proliferating cells induces senescence. However, in senescent cells where PANDA sequesters transcription factor NF-YA and limits the expression of NF-YA-E2F-coregulated proliferation-promoting genes, PANDA depletion leads to an exit from senescence. Together, our results demonstrate that PANDA confines cells to their existing proliferative state and that modulating its level of expression can cause entry or exit from senescence.

  5. Regulation of cellular senescence by the essential caveolar component PTRF/Cavin-1

    PubMed Central

    Bai, Lin; Deng, Xiaoli; Li, Juanjuan; Wang, Miao; Li, Qian; An, Wei; A, Deli; Cong, Yu-Sheng

    2011-01-01

    Polymerase I and transcript release factor (PTRF, also known as Cavin-1) is an essential component in the biogenesis and function of caveolae. Here, we show that PTRF expression is increased in senescent human fibroblasts. Importantly, overexpression of PTRF induced features characteristic of cellular senescence, whereas reduced PTRF expression extended the cellular replicative lifespan. Interestingly, we found that PTRF localized primarily to the nuclei of young and quiescent WI-38 human fibroblasts, but translocated to the cytosol and plasma membrane during cellular senescence. Furthermore, electron microscopic analysis demonstrated an increased number of caveolar structures in senescent and PTRF-transfected WI-38 cells. Our data suggest that the role of PTRF in cellular senescence is dependent on its targeting to caveolae and its interaction with caveolin-1, which appeared to be regulated by the phosphorylation of PTRF. Taken together, our findings identify PTRF as a novel regulator of cellular senescence that acts through the p53/p21 and caveolar pathways. PMID:21445100

  6. Cellular senescence in the Penna model of aging

    NASA Astrophysics Data System (ADS)

    Periwal, Avikar

    2013-11-01

    Cellular senescence is thought to play a major role in age-related diseases, which cause nearly 67% of all human deaths worldwide. Recent research in mice showed that exercising mice had higher levels of telomerase, an enzyme that helps maintain telomere length, than nonexercising mice. A commonly used model for biological aging was proposed by Penna. I propose a modification of the Penna model that incorporates cellular senescence and find an analytical steady-state solution following Coe, Mao, and Cates [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.89.288103 89, 288103 (2002)]. I find that models corresponding to delayed cellular senescence have younger populations that live longer. I fit the model to the United Kingdom's death distribution, which the original Penna model cannot do.

  7. Plants do not count… or do they? New perspectives on the universality of senescence

    PubMed Central

    Salguero-Gómez, Roberto; Shefferson, Richard P; Hutchings, Michael J

    2013-01-01

    1. Senescence, the physiological decline that results in decreasing survival and/or reproduction with age, remains one of the most perplexing topics in biology. Most theories explaining the evolution of senescence (i.e. antagonistic pleiotropy, accumulation of mutations, disposable soma) were developed decades ago. Even though these theories have implicitly focused on unitary animals, they have also been used as the foundation from which the universality of senescence across the tree of life is assumed. 2. Surprisingly, little is known about the general patterns, causes and consequences of whole-individual senescence in the plant kingdom. There are important differences between plants and most animals, including modular architecture, the absence of early determination of cell lines between the soma and gametes, and cellular division that does not always shorten telomere length. These characteristics violate the basic assumptions of the classical theories of senescence and therefore call the generality of senescence theories into question. 3. This Special Feature contributes to the field of whole-individual plant senescence with five research articles addressing topics ranging from physiology to demographic modelling and comparative analyses. These articles critically examine the basic assumptions of senescence theories such as age-specific gene action, the evolution of senescence regardless of the organism's architecture and environmental filtering, and the role of abiotic agents on mortality trajectories. 4. Synthesis. Understanding the conditions under which senescence has evolved is of general importance across biology, ecology, evolution, conservation biology, medicine, gerontology, law and social sciences. The question ‘why is senescence universal or why is it not?’ naturally calls for an evolutionary perspective. Senescence is a puzzling phenomenon, and new insights will be gained by uniting methods, theories and observations from formal demography

  8. A single sip of a strong alcoholic beverage causes exposure to carcinogenic concentrations of acetaldehyde in the oral cavity.

    PubMed

    Linderborg, Klas; Salaspuro, Mikko; Väkeväinen, Satu

    2011-09-01

    The aim of this study was to explore oral exposure to carcinogenic (group 1) acetaldehyde after single sips of strong alcoholic beverages containing no or high concentrations of acetaldehyde. Eight volunteers tasted 5 ml of ethanol diluted to 40 vol.% with no acetaldehyde and 40 vol.% calvados containing 2400 μM acetaldehyde. Salivary acetaldehyde and ethanol concentrations were measured by gas chromatography. The protocol was repeated after ingestion of ethanol (0.5 g/kg body weight). Salivary acetaldehyde concentration was significantly higher after sipping calvados than after sipping ethanol at 30s both with (215 vs. 128 μmol/l, p<0.05) and without (258 vs. 89 μmol/l, p<0.05) alcohol ingestion. From 2 min onwards there were no significant differences in the decreasing salivary acetaldehyde concentration, which remained above the level of carcinogenicity still at 10 min. The systemic alcohol distribution from blood to saliva had no additional effect on salivary acetaldehyde after sipping of the alcoholic beverages. Carcinogenic concentrations of acetaldehyde are produced from ethanol in the oral cavity instantly after a small sip of strong alcoholic beverage, and the exposure continues for at least 10 min. Acetaldehyde present in the beverage has a short-term effect on total acetaldehyde exposure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Sip and spit or sip and swallow: Choice of method differentially alters taste intensity estimates across stimuli.

    PubMed

    Running, Cordelia A; Hayes, John E

    2017-11-01

    While the myth of the tongue map has been consistently and repeatedly debunked in controlled studies, evidence for regional differences in suprathreshold intensity has been noted by multiple research groups. Given differences in physiology between the anterior and posterior tongue (fungiform versus foliate and circumvallate papillae) and differences in total area stimulated (anterior only versus whole tongue, pharynx, and epiglottis), small methodological changes (sip and spit versus sip and swallow) have the potential to substantially influence data. We hypothesized instructing participants to swallow solutions would result in greater intensity ratings for taste versus expectorating the solutions, particularly for umami and bitter, as these qualities were previously found to elicit regional differences in perceived intensity. Two experiments were conducted: one with model taste solutions [sucrose (sweet), a monosodium glutamate/inosine monophosphate (MSG/IMP) mixture (savory/umami), isolone (a bitter hop extract), and quinine HCl (bitter)], and a second with actual food products (grapefruit juice, salty vegetable stock, savory vegetable stock, iced coffee, and a green tea sweetened with acesulfame-potassium and sucralose). In a counterbalanced crossover design, participants (n=66 in experiment 1 and 64 in experiment 2) rated the stimuli for taste intensities both when swallowing and when spitting out the stimuli. Results suggest swallowing may lead to greater reported bitterness versus spitting out the stimulus, but that this effect was not consistent across all samples. Thus, explicit instructions to spit out or swallow samples should be given to participants in studies investigating differences in taste intensities, as greater intensity may sometimes, but not always, be observed when swallowing various taste stimuli. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence.

    PubMed

    Cui, Huachun; Ge, Jing; Xie, Na; Banerjee, Sami; Zhou, Yong; Antony, Veena B; Thannickal, Victor J; Liu, Gang

    2017-02-01

    Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease. In this study, we found that miR-34a demonstrated greater expression in the lungs of patients with idiopathic pulmonary fibrosis and in mice with experimental pulmonary fibrosis, with its primary localization in lung fibroblasts. More importantly, miR-34a was up-regulated significantly in both human and mouse lung myofibroblasts. We found that mice with miR-34a ablation developed more severe pulmonary fibrosis than did wild-type animals after fibrotic lung injury. Mechanistically, we found that miR-34a induced a senescent phenotype in lung fibroblasts because this microRNA increased senescence-associated β-galactosidase activity, enhanced expression of senescence markers, and decreased cell proliferative capacities. Consistently, we found that primary lung fibroblasts from fibrotic lungs of miR-34a-deficient mice had a diminished senescent phenotype and enhanced resistance to apoptosis as compared with those from wild-type animals. We also identified multiple miR-34a targets that likely mediated its activities in inducing senescence in lung fibroblasts. In conclusion, our data suggest that miR-34a functions through a negative feedback mechanism to restrain fibrotic response in the lungs by promoting senescence of pulmonary fibroblasts.

  11. SipA Activation of Caspase-3 Is a Decisive Mediator of Host Cell Survival at Early Stages of Salmonella enterica Serovar Typhimurium Infection

    PubMed Central

    McIntosh, Anne; Meikle, Lynsey M.; Ormsby, Michael J.; McCormick, Beth A.; Christie, John M.; Brewer, James M.; Roberts, Mark

    2017-01-01

    ABSTRACT Salmonella invasion protein A (SipA) is a dual-function effector protein that plays roles in both actin polymerization and caspase-3 activation in intestinal epithelial cells. To date its function in other cell types has remained largely unknown despite its expression in multiple cell types and its extracellular secretion during infection. Here we show that in macrophages SipA induces increased caspase-3 activation early in infection. This activation required a threshold level of SipA linked to multiplicity of infection and may be a limiting factor controlling bacterial numbers in infected macrophages. In polymorphonuclear leukocytes, SipA or other Salmonella pathogenicity island 1 effectors had no effect on induction of caspase-3 activation either alone or in the presence of whole bacteria. Tagging of SipA with the small fluorescent phiLOV tag, which can pass through the type three secretion system, allowed visualization and quantification of caspase-3 activation by SipA-phiLOV in macrophages. Additionally, SipA-phiLOV activation of caspase-3 could be tracked in the intestine through multiphoton laser scanning microscopy in an ex vivo intestinal model. This allowed visualization of areas where the intestinal epithelium had been compromised and demonstrated the potential use of this fluorescent tag for in vivo tracking of individual effectors. PMID:28630067

  12. Identifying organism involved in new and regenerated production using TAG-SIP

    NASA Astrophysics Data System (ADS)

    Morando, M.; Capone, D. G.

    2016-02-01

    The coupling of stable isotope probing (SIP) with high throughput sequencing (TAG-SIP), allows examination of DNA from individual taxa for the incorporation of a specific isotopically labeled substrate, facilitating an in-depth investigation of the activity and functional diversity of in situ microbial communities. This approach was applied to the monthly San Pedro Ocean Time-series (SPOT), during April of 2014 in order to characterize the organisms involved in new and regenerated production by investigating the assimilation of 15N-NO3-, 15N-NH4+, and 15N-urea at several light depths throughout the euphotic zone. Overall, very little variation was seen between the DNA banding patterns and density of each discrete OTU compared over multiple control treatments, i.e. unlabeled substrate was added to each control and so any disparity between the DNA banding of these OTU replicates reflects methodological variation. The lack of disparity found here further demonstrates TAG-SIP's high precision, accuracy, and more importantly validates the TAG-SIP's reproducibility in both gradient formation and DNA sedimentation with respect to density. The mean density of these discrete control OTU DNA bands (n=7) were then compared to those of their isotopically treated equivalent OTU after a 24h incubation in order to accurately assess and identify significant shifts in DNA density. Therefore we are confident that differences in density between control and treated sample DNA greater than the variation quantified among the controls themselves, is direct evidence of `heavy' isotope incorporation, i.e. metabolic activity and growth. Direct evidence of activity was found in a broad range of taxa, thought not every treatment yielded positive results. As expected the majority of the organisms identified as assimilators were found within the 15N-NH4+ treatments. Many taxa displayed evidence of uptake in one or more but not all treatments providing evidence on which taxa are metabolizing a

  13. Role of T3SS-1 SipD Protein in Protecting Mice against Non-typhoidal Salmonella Typhimurium

    PubMed Central

    Jneid, Bakhos; Moreau, Karine; Plaisance, Marc; Rouaix, Audrey; Dano, Julie

    2016-01-01

    Background Salmonella enterica species are enteric pathogens that cause severe diseases ranging from self-limiting gastroenteritis to enteric fever and sepsis in humans. These infectious diseases are still the major cause of morbidity and mortality in low-income countries, especially in children younger than 5 years and immunocompromised adults. Vaccines targeting typhoidal diseases are already marketed, but none protect against non-typhoidal Salmonella. The existence of multiple non-typhoidal Salmonella serotypes as well as emerging antibiotic resistance highlight the need for development of a broad-spectrum protective vaccine. All Salmonella spp. utilize two type III Secretion Systems (T3SS 1 and 2) to initiate infection, allow replication in phagocytic cells and induce systemic disease. T3SS-1, which is essential to invade epithelial cells and cross the barrier, forms an extracellular needle and syringe necessary to inject effector proteins into the host cell. PrgI and SipD form, respectively, the T3SS-1 needle and the tip complex at the top of the needle. Because they are common and highly conserved in all virulent Salmonella spp., they might be ideal candidate antigens for a subunit-based, broad-spectrum vaccine. Principal Findings We investigated the immunogenicity and protective efficacy of PrgI and SipD administered by subcutaneous, intranasal and oral routes, alone or combined, in a mouse model of Salmonella intestinal challenge. Robust IgG (in all immunization routes) and IgA (in intranasal and oral immunization routes) antibody responses were induced against both proteins, particularly SipD. Mice orally immunized with SipD alone or SipD combined with PrgI were protected against lethal intestinal challenge with Salmonella Typhimurium (100 Lethal Dose 50%) depending on antigen, route and adjuvant. Conclusions and Significance Salmonella T3SS SipD is a promising antigen for the development of a protective Salmonella vaccine, and could be developed for

  14. Larger temperature response of autumn leaf senescence than spring leaf-out phenology.

    PubMed

    Fu, Yongshuo H; Piao, Shilong; Delpierre, Nicolas; Hao, Fanghua; Hänninen, Heikki; Liu, Yongjie; Sun, Wenchao; Janssens, Ivan A; Campioli, Matteo

    2018-05-01

    Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated environmental drivers remain poorly understood. In this study, experiments with temperature gradients imposed during the summer and autumn were conducted on saplings of European beech to explore the temperature responses of leaf senescence. An additional warming experiment during winter enabled us to assess the differences in temperature responses of spring leaf-out and autumn leaf senescence. We found that warming significantly delayed the dates of leaf senescence both during summer and autumn warming, with similar temperature sensitivities (6-8 days delay per °C warming), suggesting that, in the absence of water and nutrient limitation, temperature may be a dominant factor controlling the leaf senescence in European beech. Interestingly, we found a significantly larger temperature response of autumn leaf senescence than of spring leaf-out. This suggests a possible larger contribution of delays in autumn senescence, than of the advancement in spring leaf-out, to extending the growing season under future warmer conditions. © 2017 John Wiley & Sons Ltd.

  15. NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence.

    PubMed

    Parry, Aled J; Hoare, Matthew; Bihary, Dóra; Hänsel-Hertsch, Robert; Smith, Stephen; Tomimatsu, Kosuke; Mannion, Elizabeth; Smith, Amy; D'Santos, Paula; Russell, I Alasdair; Balasubramanian, Shankar; Kimura, Hiroshi; Samarajiwa, Shamith A; Narita, Masashi

    2018-05-09

    Senescent cells interact with the surrounding microenvironment achieving diverse functional outcomes. We have recently identified that NOTCH1 can drive 'lateral induction' of a unique senescence phenotype in adjacent cells by specifically upregulating the NOTCH ligand JAG1. Here we show that NOTCH signalling can modulate chromatin structure autonomously and non-autonomously. In addition to senescence-associated heterochromatic foci (SAHF), oncogenic RAS-induced senescent (RIS) cells exhibit a massive increase in chromatin accessibility. NOTCH signalling suppresses SAHF and increased chromatin accessibility in this context. Strikingly, NOTCH-induced senescent cells, or cancer cells with high JAG1 expression, drive similar chromatin architectural changes in adjacent cells through cell-cell contact. Mechanistically, we show that NOTCH signalling represses the chromatin architectural protein HMGA1, an association found in multiple human cancers. Thus, HMGA1 is involved not only in SAHFs but also in RIS-driven chromatin accessibility. In conclusion, this study identifies that the JAG1-NOTCH-HMGA1 axis mediates the juxtacrine regulation of chromatin architecture.

  16. Actuarial senescence in a long-lived orchid challenges our current understanding of ageing

    PubMed Central

    Colchero, Fernando; Jones, Owen R.; Øien, Dag-Inge; Moen, Asbjørn; Sletvold, Nina

    2016-01-01

    The dominant evolutionary theory of actuarial senescence—an increase in death rate with advancing age—is based on the concept of a germ cell line that is separated from the somatic cells early in life. However, such a separation is not clear in all organisms. This has been suggested to explain the paucity of evidence for actuarial senescence in plants. We used a 32 year study of Dactylorhiza lapponica that replaces its organs each growing season, to test whether individuals of this tuberous orchid senesce. We performed a Bayesian survival trajectory analysis accounting for reproductive investment, for individuals under two types of land use, in two climatic regions. The mortality trajectory was best approximated by a Weibull model, showing clear actuarial senescence. Rates of senescence in this model declined with advancing age, but were slightly higher in mown plots and in the more benign climatic region. At older ages, senescence was evident only when accounting for a positive effect of reproductive investment on mortality. Our results demonstrate actuarial senescence as well as a survival–reproduction trade-off in plants, and indicate that environmental context may influence senescence rates. This knowledge is crucial for understanding the evolution of demographic senescence and for models of plant population dynamics. PMID:27852801

  17. The impact of cellular senescence in skin ageing: A notion of mosaic and therapeutic strategies.

    PubMed

    Toutfaire, Marie; Bauwens, Emilie; Debacq-Chainiaux, Florence

    2017-10-15

    Cellular senescence is now recognized as one of the nine hallmarks of ageing. Recent data show the involvement of senescent cells in tissue ageing and some age-related diseases. Skin represents an ideal model for the study of ageing. Indeed, skin ageing varies between individuals depending on their chronological age but also on their exposure to various exogenous factors (mainly ultraviolet rays). If senescence traits can be detected with ageing in the skin, the senescent phenotype varies among the various skin cell types. Moreover, the origin of cellular senescence in the skin is still unknown, and multiple origins are possible. This reflects the mosaic of skin ageing. Senescent cells can interfere with their microenvironment, either via the direct secretion of factors (the senescence-associated secretory phenotype) or via other methods of communication, such as extracellular vesicles. Knowledge regarding the impact of cellular senescence on skin ageing could be integrated into dermatology research, especially to limit the appearance of senescent cells after photo(chemo)therapy or in age-related skin diseases. Therapeutic approaches include the clearance of senescent cells via the use of senolytics or via the cooperation with the immune system. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Roles of GSK3 in metabolic shift toward abnormal anabolism in cell senescence.

    PubMed

    Kim, You-Mie; Seo, Yong-Hak; Park, Chan-Bae; Yoon, Soo-Han; Yoon, Gyesoon

    2010-07-01

    Diverse metabolic alterations, including mitochondrial dysfunction, have often been reported as characteristic phenotypes of senescent cells. However, the overall consequence of senescent metabolic features, how they develop, and how they are linked to other senescent phenotypes, such as enlarged cell volume, increased granularity, and oxidative stress, is not clear. We investigated the potential roles of glycogen synthase kinase 3 (GSK3), a multifunctional kinase, in the development of the metabolic phenotypes in cell senescence. The inactivation of GSK3 via phosphorylation is commonly observed in diverse cell senescences. Furthermore, subcytotoxic concentration of GSK3 inhibitor was sufficient to induce cellular senescence, accompanied by augmented anabolism, such as enhanced protein synthesis, and increased glycogenesis and lipogenesis, in addition to mitochondrial dysfunction. Anabolism was accomplished through glycogen synthase, eIF2B, and SREBP1. These metabolic features seem to contribute to an increase in cellular mass by increasing glycogen granules, protein mass, and organelles. Taken together, our results suggest that GSK3 is one of the key modulators of metabolic alteration, leading the cells to senescence.

  19. The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence

    PubMed Central

    Boylan, Michael; Achall, Rajesh; Shirras, Alan; Broughton, Susan J.

    2015-01-01

    The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan. PMID:26020640

  20. The evolution of senescence through decelerating selection for system reliability.

    PubMed

    Laird, R A; Sherratt, T N

    2009-05-01

    Senescence is a universal phenomenon in organisms, characterized by increasing mortality and decreasing fecundity with advancing chronological age. Most proximate agents of senescence, such as reactive oxygen species and UV radiation, are thought to operate by causing a gradual build-up of bodily damage. Yet most current evolutionary theories of senescence emphasize the deleterious effects of functioning genes in late life, leaving a gap between proximate and ultimate explanations. Here, we present an evolutionary model of senescence based on reliability theory, in which beneficial genes or gene products gradually get damaged and thereby fail, rather than actively cause harm. Specifically, the model allows organisms to evolve multiple redundant copies of a gene product (or gene) that performs a vital function, assuming that organisms can avoid condition-dependent death so long as at least one copy remains undamaged. We show that organisms with low levels of extrinsic mortality, and high levels of genetic damage, tend to evolve high levels of redundancy, and that mutation-selection balance results in a stable population distribution of the number of redundant elements. In contrast to previous evolutionary models of senescence, the mortality curves that emerge from such populations match empirical senescence patterns in three key respects: they exhibit: (1) an initially low, but rapidly increasing mortality rate at young ages, (2) a plateau in mortality at advanced ages and (3) 'mortality compensation', whereby the height of the mortality plateau is independent of the environmental conditions under which different populations evolved.

  1. Telomeres and replicative senescence: Is it only length that counts?

    PubMed

    von Zglinicki, T

    2001-07-26

    Telomeres are well established as a major 'replicometer', counting the population doublings in primary human cell cultures and ultimately triggering replicative senescence. However, neither is the pace of this biological clock inert, nor is there a fixed threshold telomere length acting as the universal trigger of replicative senescence. The available data suggest that opening of the telomeric loop and unscheduled exposure of the single-stranded G-rich telomeric overhang might act like a semaphore to signal senescent cell cycle arrest. Short telomere length, telomeric single-strand breaks, low levels of loop-stabilizing proteins, or other factors may trigger this opening of the loop. Thus, both telomere shortening and the ultimate signalling into senescence are able to integrate different environmental and genetic factors, especially oxidative stress-mediated damage, which might otherwise become a thread to genomic stability.

  2. The Autophagy-Senescence Connection in Chemotherapy: Must Tumor Cells (Self) Eat Before They Sleep?

    PubMed Central

    Goehe, Rachel W.; Di, Xu; Sharma, Khushboo; Bristol, Molly L.; Henderson, Scott C.; Valerie, Kristoffer; Rodier, Francis; Davalos, Albert R.

    2012-01-01

    Exposure of MCF-7 breast tumor cells or HCT-116 colon carcinoma cells to clinically relevant concentrations of doxorubicin (Adriamycin; Farmitalia Research Laboratories, Milan, Italy) or camptothecin results in both autophagy and senescence. To determine whether autophagy is required for chemotherapy-induced senescence, reactive oxygen generation induced by Adriamycin was suppressed by N-acetyl cysteine and glutathione, and the induction of ataxia telangiectasia mutated, p53, and p21 was modulated pharmacologically and/or genetically. In all cases, autophagy and senescence were collaterally suppressed. The close association between autophagy and senescence indicated by these experiments reflects their collateral regulation via common signaling pathways. The potential relationship between autophagy and senescence was further examined through pharmacologic inhibition of autophagy with chloroquine and 3-methyl-adenine and genetic ablation of the autophagy-related genes ATG5 and ATG7. However, inhibition of autophagy by pharmacological and genetic approaches could not entirely abrogate the senescence response, which was only reduced and/or delayed. Taken together, our findings suggest that autophagy and senescence tend to occur in parallel, and furthermore that autophagy accelerates the development of the senescent phenotype. However, these responses are not inexorably linked or interdependent, as senescence can occur when autophagy is abrogated. PMID:22927544

  3. Major Cys protease activities are not essential for senescence in individually darkened Arabidopsis leaves.

    PubMed

    Pružinská, Adriana; Shindo, Takayuki; Niessen, Sherry; Kaschani, Farnusch; Tóth, Réka; Millar, A Harvey; van der Hoorn, Renier A L

    2017-01-06

    Papain-like Cys Proteases (PLCPs) and Vacuolar Processing Enzymes (VPEs) are amongst the most highly expressed proteases during leaf senescence in Arabidopsis. Using activity-based protein profiling (ABPP), a method that enables detection of active enzymes within a complex sample using chemical probes, the activities of PLCPs and VPEs were investigated in individually darkened leaves of Arabidopsis, and their role in senescence was tested in null mutants. ABPP and mass spectrometry revealed an increased activity of several PLCPs, particularly RD21A and AALP. By contrast, despite increased VPE transcript levels, active VPE decreased in individually darkened leaves. Eight protease knock-out lines and two protease over expressing lines were subjected to senescence phenotype analysis to determine the importance of individual protease activities to senescence. Unexpectedly, despite the absence of dominating PLCP activities in these plants, the rubisco and chlorophyll decline in individually darkened leaves and the onset of whole plant senescence were unaltered. However, a significant delay in progression of whole plant senescence was observed in aalp-1 and rd21A-1/aalp-1 mutants, visible in the reduced number of senescent leaves. Major Cys protease activities are not essential for dark-induced and developmental senescence and only a knock out line lacking AALP shows a slight but significant delay in plant senescence.

  4. Louisiana SIP: LAC 33:III Ch. 5 Section 509. Prevention of Significant Deterioration; SIP effective 1989-05-08 (LAc49) and 1989-08-14 (LAc50) and 1991-07-01 (LAc57) and 1996-12-16 (LAc69) to 2011-08-17 (LAd36 - Revised)

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch. 5 Section 509. Prevention of Significant Deterioration; SIP effective 1989-05-08 (LAc49) and 1989-08-14 (LAc50) and 1991-07-01 (LAc57) and 1996-12-16 (LAc69) to 2011-08-17 (LAd36 - Revised)

  5. Louisiana SIP: LAC 33:III Ch. 7 - Table 2 - Ambient Air--Methods of Contaminant Measurements; SIP effective 1989-05-08 (LAc49) and 1989-08-14 (LAc50) to 2011-08-03 (LAd34 - Moved to Section 711 and revised [adds PM-2.5])

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch. 7 - Table 2 - Ambient Air--Methods of Contaminant Measurements; SIP effective 1989-05-08 (LAc49) and 1989-08-14 (LAc50) to 2011-08-03 (LAd34 - Moved to Section 711 and revised [adds PM-2.5])

  6. Louisiana SIP: LAC 33:III Ch. 7 Section 709. Measurement of Concentrations PM10, SO2, Carbon Monoxide, Atmospheric Oxidants, Nitrogen Oxides, and Lead; SIP effective 1989-05-08 (LAc49) and 1989-08-14 (LAc50) to 2011-08-03 (LAd34 - Revised)

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch. 7 Section 709. Measurement of Concentrations PM10, SO2, Carbon Monoxide, Atmospheric Oxidants, Nitrogen Oxides, and Lead; SIP effective 1989-05-08 (LAc49) and 1989-08-14 (LAc50) to 2011-08-03 (LAd34 - Revised)

  7. F4/80+ Macrophages Contribute to Clearance of Senescent Cells in the Mouse Postpartum Uterus.

    PubMed

    Egashira, Mahiro; Hirota, Yasushi; Shimizu-Hirota, Ryoko; Saito-Fujita, Tomoko; Haraguchi, Hirofumi; Matsumoto, Leona; Matsuo, Mitsunori; Hiraoka, Takehiro; Tanaka, Tomoki; Akaeda, Shun; Takehisa, Chiaki; Saito-Kanatani, Mayuko; Maeda, Kei-Ichiro; Fujii, Tomoyuki; Osuga, Yutaka

    2017-07-01

    Cellular senescence, defined as an irreversible cell cycle arrest, exacerbates the tissue microenvironment. Our previous study demonstrated that mouse uterine senescent cells were physiologically increased according to gestational days and that their abnormal accumulation was linked to the onset of preterm delivery. We hypothesized that there is a mechanism for removal of senescent cells after parturition to maintain uterine function. In the current study, we noted abundant uterine senescent cells and their gradual disappearance in wild-type postpartum mice. F4/80+ macrophages were present specifically around the area rich in senescent cells. Depletion of macrophages in the postpartum mice using anti-F4/80 antibody enlarged the area of senescent cells in the uterus. We also found excessive uterine senescent cells and decreased second pregnancy success rate in a preterm birth model using uterine p53-deleted mice. Furthermore, a decrease in F4/80+ cells and an increase in CD11b+ cells with a senescence-associated inflammatory microenvironment were observed in the p53-deleted uterus, suggesting that uterine p53 deficiency affects distribution of the macrophage subpopulation, interferes with senescence clearance, and promotes senescence-induced inflammation. These findings indicate that the macrophage is a key player in the clearance of uterine senescent cells to maintain postpartum uterine function. Copyright © 2017 Endocrine Society.

  8. The intrinsic stiffness of human trabecular meshwork cells increases with senescence

    PubMed Central

    Chang, Yow-Ren; Murphy, Christopher J.; Russell, Paul

    2015-01-01

    Dysfunction of the human trabecular meshwork (HTM) plays a central role in the age-associated disease glaucoma, a leading cause of irreversible blindness. The etiology remains poorly understood but cellular senescence, increased stiffness of the tissue, and the expression of Wnt antagonists such as secreted frizzled related protein-1 (SFRP1) have been implicated. However, it is not known if senescence is causally linked to either stiffness or SFRP1 expression. In this study, we utilized in vitro HTM senescence to determine the effect on cellular stiffening and SFRP1 expression. Stiffness of cultured cells was measured using atomic force microscopy and the morphology of the cytoskeleton was determined using immunofluorescent analysis. SFRP1 expression was measured using qPCR and immunofluorescent analysis. Senescent cell stiffness increased 1.88±0.14 or 2.57±0.14 fold in the presence or absence of serum, respectively. This was accompanied by increased vimentin expression, stress fiber formation, and SFRP1 expression. In aggregate, these data demonstrate that senescence may be a causal factor in HTM stiffening and elevated SFRP1 expression, and contribute towards disease progression. These findings provide insight into the etiology of glaucoma and, more broadly, suggest a causal link between senescence and altered tissue biomechanics in aging-associated diseases. PMID:25915531

  9. State Implementation Plans (SIP): Submissions that EPA has Found Adequate or Inadequate

    EPA Pesticide Factsheets

    EPA/OTAQ’s State and Local Transportation Resources are for air quality and transportation government and community leaders. Information on state implementation plans (SIPs) that EPA has found either adequate or inadequate is provided here.

  10. Increased storage and secretion of phosphatidylcholines by senescent human peritoneal mesothelial cells.

    PubMed

    Bartosova, Maria; Rudolf, Andras; Pichl, Sebastian; Schmidt, Kathrin; Okun, Jürgen G; Straub, Beate K; Rutkowski, Rafael; Witowski, Janusz; Schmitt, Claus P

    2016-08-01

    Human peritoneal mesothelial cells (HPMC) secrete phosphatidylcholines (PC) which form a lipid bilayer lining the peritoneum. They prevent frictions and adhesions and act as a barrier to the transport of water-soluble solutes while permitting water flux. PC may play an essential role in peritoneal integrity and function, the role of PD induced HPMC senescence on PC homeostasis, however, is unknown. HPMC cell lines were isolated from four non-uremic patients. Expression of the three PC synthesis genes (rt-PCR), and cellular storage and secretion of PC (ESI-mass-spectrometry) were analyzed in young and senescent HPMC (>Hayflick-limit). Senescent cells displayed significantly altered morphology; flow cytometry demonstrated extensive staining for senescence-associated beta galactosidase. Nine different PC were detected in HPMC with palmitoyl-myristoyl phosphatidylcholine (PMPC) being most abundant. In senescent HPMC mRNA expression of the three key PC synthesis genes was 1.5-, 2.4- and 6-fold increased as compared to young HPMC, with the latter, phosphatidylcholine cytidylyltransferase, being rate limiting. Intracellular storage of the nine PC was 75-450 % higher in senescent vs. young HPMC, PC secretion rates were 100-300 % higher. Intracellular PC concentrations were not correlated with the PC secretion rates. Electron microscopy demonstrated lamellar bodies, the primary storage site of PC, in senescent but not in young cells. Senescent HPMC store and secrete substantially more PC than young cells. Our findings indicate a novel protective mechanism, which should counteract peritoneal damage induced by chronic exposure to PD fluids.

  11. An Ethylene-Induced Regulatory Module Delays Flower Senescence by Regulating Cytokinin Content.

    PubMed

    Wu, Lin; Ma, Nan; Jia, Yangchao; Zhang, Yi; Feng, Ming; Jiang, Cai-Zhong; Ma, Chao; Gao, Junping

    2017-01-01

    In many plant species, including rose (Rosa hybrida), flower senescence is promoted by the gaseous hormone ethylene and inhibited by the cytokinin (CTK) class of hormones. However, the molecular mechanisms underlying these antagonistic effects are not well understood. In this study, we characterized the association between a pathogenesis-related PR-10 family gene from rose (RhPR10.1) and the hormonal regulation of flower senescence. Quantitative reverse transcription PCR analysis showed that RhPR10.1 was expressed at high levels during senescence in different floral organs, including petal, sepal, receptacle, stamen, and pistil, and that expression was induced by ethylene treatment. Silencing of RhPR10.1 expression in rose plants by virus-induced gene silencing accelerated flower senescence, which was accompanied by a higher ion leakage rate in the petals, as well as increased expression of the senescence marker gene RhSAG12 CTK content and the expression of three CTK signaling pathway genes were reduced in RhPR10.1-silenced plants, and the accelerated rate of petal senescence that was apparent in the RhPR10.1-silenced plants was restored to normal levels by CTK treatment. Finally, RhHB6, a homeodomain-Leu zipper I transcription factor, was observed to bind to the RhPR10.1 promoter, and silencing of its expression also promoted flower senescence. Our results reveal an ethylene-induced RhHB6-RhPR10.1 regulatory module that functions as a brake of ethylene-promoted senescence through increasing the CTK content. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. STAT3-mediated SMAD3 activation underlies Oncostatin M-induced Senescence

    PubMed Central

    Junk, Damian J.; Cipriano, Rocky; Jackson, Mark W.

    2017-01-01

    ABSTRACT Cytokines in the developing tumor microenvironment (TME) can drive transformation and subsequent progression toward metastasis. Elevated levels of the Interleukin-6 (IL-6) family cytokine Oncostatin M (OSM) in the breast TME correlate with aggressive, metastatic cancers, increased tumor recurrence, and poor patient prognosis. Paradoxically, OSM engages a tumor-suppressive, Signal Transducer and Activator of Transcription 3 (STAT3)-dependent senescence response in normal and non-transformed human mammary epithelial cells (HMEC). Here, we identify a novel link between OSM-activated STAT3 signaling and the Transforming Growth Factor-β (TGF-β) signaling pathway that engages senescence in HMEC. Inhibition of functional TGF-β/SMAD signaling by expressing a dominant-negative TGF-β receptor, treating with a TGF-β receptor inhibitor, or suppressing SMAD3 expression using a SMAD3-shRNA prevented OSM-induced senescence. OSM promoted a protein complex involving activated-STAT3 and SMAD3, induced the nuclear localization of SMAD3, and enhanced SMAD3-mediated transcription responsible for senescence. In contrast, expression of MYC (c-MYC) from a constitutive promoter abrogated senescence and strikingly, cooperated with OSM to promote a transformed phenotype, epithelial-mesenchymal transition (EMT), and invasiveness. Our findings suggest that a novel STAT3/SMAD3-signaling axis is required for OSM-mediated senescence that is coopted during the transformation process to confer aggressive cancer cell properties. Understanding how developing cancer cells bypass OSM/STAT3/SMAD3-mediated senescence may help identify novel targets for future “pro-senescence” therapies aiming to reengage this hidden tumor-suppressive response. PMID:27892764

  13. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    PubMed

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat

  14. Ejaculate components delay reproductive senescence while elevating female reproductive rate in an insect

    PubMed Central

    Reinhardt, Klaus; Naylor, Richard A.; Siva-Jothy, Michael T.

    2009-01-01

    Increased female reproductive rates usually result in accelerated senescence. This correlation provides a link between the evolutionary conflict of the sexes and aging when ejaculate components elevate female reproductive rates at the cost of future reproduction. It is not clear whether this female cost is manifest as shorter lifespan or an earlier onset or a steeper rate of reproductive senescence. It also is unclear whether beneficial ejaculates release females from reproductive trade-offs and, if so, which senescence parameters are affected. We examined these issues in the bedbug, Cimex lectularius, a long-lived insect that shows reduced female lifespan as well as female reproductive senescence at the male-determined mating frequency. We demonstrate experimentally that, independently of the mating frequency, females receiving more ejaculate show increased reproductive rates and enter reproductive senescence later than females receiving less ejaculate. The rate of reproductive senescence did not differ between treatments, and reproductive rates did not predict mortality. The ejaculate effects were consistent in inter- and intra-population crosses, suggesting they have not evolved recently and are not caused by inbreeding. Our results suggest that ejaculate components compensate for the costs of elevated female reproductive rates in bedbugs by delaying the onset of reproductive senescence. Ejaculate components that are beneficial to polyandrous females could have arisen because male traits that protect the ejaculate have positive pleiotropic effects and/or because female counteradaptations to antagonistic male traits exceed the neutralization of those traits. That males influence female reproductive senescence has important consequences for trade-offs between reproduction and longevity and for studies of somatic senescence. PMID:19996174

  15. Dysregulation of YAP by the Hippo pathway is involved in intervertebral disc degeneration, cell contact inhibition, and cell senescence.

    PubMed

    Zhang, Cong; Wang, Feng; Xie, Zhiyang; Chen, Lu; Sinkemani, Arjun; Yu, Haomin; Wang, Kun; Mao, Lu; Wu, Xiaotao

    2018-01-05

    The Hippo pathway plays important roles in wound healing, tissue repair and regeneration, and in the treatment of degenerative diseases, by regulating cell proliferation and apoptosis in mammals. Intervertebral disc degeneration (IDD) is one of the major causes of low back pain, a widespread issue associated with a heavy economic burden. However, the mechanism underlying how the Hippo pathway regulates IDD is not well understood. Here, we demonstrate that the Hippo pathway is involved in natural IDD. Activation and dephosphorylation of yes-associated protein (YAP) were observed in younger rat discs, and decreased gradually with age. Surprisingly, Hippo pathway suppression was accompanied by overexpression of YAP, caused by acute disc injury, suggesting a limited ability for self-repair in IDD. We also demonstrated that YAP is inhibited by cell-to-cell contact via the Hippo pathway in vitro . Phosphorylation by large tumor suppressor kinases 1/2 (LATS1/2) led to cytoplasmic translocation and inactivation of YAP. YAP dephosphorylation was mainly localized in the nucleus and regulated by the Hippo pathway, whereas YAP dephosphorylation occurred in the cytoplasm and was associated with nucleus pulposus cell (NPC) senescence. Moreover, NPCs were transfected with shYAP and it accelerates the premature senescence of cells by interfered Hippo pathway through YAP. Therefore, our results indicate that the Hippo pathway plays an important role in maintaining the homeostasis of intervertebral discs and controlling NPC proliferation.

  16. microRNA-145 modulates epithelial-mesenchymal transition and suppresses proliferation, migration and invasion by targeting SIP1 in human cervical cancer cells.

    PubMed

    Sathyanarayanan, Anusha; Chandrasekaran, Karthik Subramanian; Karunagaran, Devarajan

    2017-04-01

    Previously, it has been reported that microRNA-145 (miR-145) is lowly expressed in human cervical cancers and that its putative tumour suppressive role may be attributed to epithelial-mesenchymal transition (EMT) regulation. Here, we aimed to assess whether miR-145 may affect EMT-associated markers/genes and suppress cervical cancer growth and motility, and to provide a mechanistic basis for these phenomena. The identification of the SMAD-interacting protein 1 (SIP1) mRNA as putative miR-145 target was investigated using a 3' untranslated region (3'UTR) luciferase assay and Western blotting, respectively. The functional effects of exogenous miR-145 expression, miR-145 suppression or siRNA-mediated SIP1 expression down-regulation in cervical cancer-derived C33A and SiHa cells were analysed using Western blotting, BrdU incorporation (proliferation), transwell migration and invasion assays. In addition, the expression levels of miR-145 and SIP1 were determined in primary human cervical cancer and non-cancer tissue samples using qRT-PCR. We found that miR-145 binds to the wild-type 3'UTR of SIP1, but not to its mutant counterpart, and that, through this binding, miR-145 can effectively down-regulate SIP1 expression. In addition, we found that exogenous miR-145 expression or siRNA-mediated down-regulation of SIP1 expression attenuates the proliferation, migration and invasion of C33A and SiHa cells and alters the expression of the EMT-associated markers CDH1, VIM and SNAI1, whereas inhibition of endogenous miR-145 expression elicited the opposite effects. The expression of miR-145 in cervical cancer tissue samples was found to be low, while that of SIP1 was found to be high compared to non-cancerous cervical tissues. An inverse expression correlation between the two was substantiated through the anlaysis of data deposited in the TCGA database. Our data indicate that low miR-145 expression levels in conjunction with elevated SIP1 expression levels may contribute to

  17. Functional age as an indicator of reservoir senescence

    USGS Publications Warehouse

    Miranda, Leandro E.; Krogman, R. M.

    2015-01-01

    It has been conjectured that reservoirs differ in the rate at which they manifest senescence, but no attempt has been made to find an indicator of senescence that performs better than chronological age. We assembled an indicator of functional age by creating a multimetric scale consisting of 10 metrics descriptive of reservoir environments that were expected to change directionally with reservoir senescence. In a sample of 1,022 U.S. reservoirs, chronological age was not correlated with functional age. Functional age was directly related to percentage of cultivated land in the catchment and inversely related to reservoir depth. Moreover, aspects of reservoir fishing quality and fish population characteristics were related to functional age. A multimetric scale to indicate reservoir functional age presents the possibility for management intervention from multiple angles. If a reservoir is functionally aging at an accelerated rate, action may be taken to remedy the conditions contributing most to functional age. Intervention to reduce scores of selected metrics in the scale can potentially reduce the rate of senescence and increase the life expectancy of the reservoir. This leads to the intriguing implication that steps can be taken to reduce functional age and actually make the reservoir grow younger.

  18. TERRA and the histone methyltransferase Dot1 cooperate to regulate senescence in budding yeast

    PubMed Central

    Wanat, Jennifer J.; Logsdon, Glennis A.; Driskill, Jordan H.; Deng, Zhong; Lieberman, Paul M.

    2018-01-01

    The events underlying senescence induced by critical telomere shortening are not fully understood. Here we provide evidence that TERRA, a non-coding RNA transcribed from subtelomeres, contributes to senescence in yeast lacking telomerase (tlc1Δ). Levels of TERRA expressed from multiple telomere ends appear elevated at senescence, and expression of an artificial RNA complementary to TERRA (anti-TERRA) binds TERRA in vivo and delays senescence. Anti-TERRA acts independently from several other mechanisms known to delay senescence, including those elicited by deletions of EXO1, TEL1, SAS2, and genes encoding RNase H enzymes. Further, it acts independently of the senescence delay provided by RAD52-dependent recombination. However, anti-TERRA delays senescence in a fashion epistatic to inactivation of the conserved histone methyltransferase Dot1. Dot1 associates with TERRA, and anti-TERRA disrupts this interaction in vitro and in vivo. Surprisingly, the anti-TERRA delay is independent of the C-terminal methyltransferase domain of Dot1 and instead requires only its N-terminus, which was previously found to facilitate release of telomeres from the nuclear periphery. Together, these data suggest that TERRA and Dot1 cooperate to drive senescence. PMID:29649255

  19. Senescence as a novel mechanism involved in β-adrenergic receptor mediated cardiac hypertrophy

    PubMed Central

    Sun, Rongrong; Zhu, Baoling; Sun, Yan; Shi, Dandan; Chen, Li; Zhang, Youyi; Li, Zijian; Xue, Lixiang

    2017-01-01

    Pathological cardiac hypertrophy used to be elucidated by biomechanical, stretch-sensitive or neurohumoral mechanisms. However, a series of hints have indicated that hypertrophy process simulates senescence program. However, further evidence need to be pursued. To verify this hypothesis and examine whether cardiac senescence is a novel mechanism of hypertrophy induced by isoproterenol, 2-month-old male Sprague Dawley rats were subjected to isoproterenol infusion (0.25mg/kg/day) for 7 days by subcutaneous injection). Key characteristics of senescence (senescence-associated β-galactosidase activity, lipofuscin, expression of cyclin-dependent kinase inhibitors) were examined in cardiac hypertrophy model. Senescence-like phenotype, such as increased senescence-associated β-galactosidase activity, accumulation of lipofuscin and high levels of cyclin-dependent kinase inhibitors (e.g. p16, p19, p21 and p53) was found along the process of cardiac hypertrophy. Cardiac-specific transcription factor GATA4 increased in isoproterenol-treated cardiomyocytes as well. We further found that myocardial hypertrophy could be inhibited by resveratrol, an anti-aging compound, in a dose-dependent manner. Our results showed for the first time that cardiac senescence is involved in the process of pathological cardiac hypertrophy induced by isoproterenol. PMID:28783759

  20. An OFF-ON Two-Photon Fluorescent Probe for Tracking Cell Senescence in Vivo.

    PubMed

    Lozano-Torres, Beatriz; Galiana, Irene; Rovira, Miguel; Garrido, Eva; Chaib, Selim; Bernardos, Andrea; Muñoz-Espín, Daniel; Serrano, Manuel; Martínez-Máñez, Ramón; Sancenón, Félix

    2017-07-05

    A naphthalimide-based two-photon probe (AHGa) for the detection of cell senescence is designed. The probe contains a naphthalimide core, an l-histidine methyl ester linker, and an acetylated galactose bonded to one of the aromatic nitrogen atoms of the l-histidine through a hydrolyzable N-glycosidic bond. Probe AHGa is transformed into AH in senescent cells resulting in an enhanced fluorescent emission intensity. In vivo detection of senescence is validated in mice bearing tumor xenografts treated with senescence-inducing chemotherapy.

  1. Incorporating Voluntary Mobile Source Emission Reduction Programs in State Implementation Plans (SIPs)

    EPA Pesticide Factsheets

    This EPA memorandum provides guidance and sets forth policy and interpretation regarding the granting of explicit State Implementation Plan (SIP) credit for Voluntary Mobile Source Emission Reduction Programs (VMEPs) under section 110 of the Clean Air Act.

  2. [Laser treatment for retinopathy of prematurity in neonatal intensive care units. Premature Eye Rescue Program].

    PubMed

    Maka, Erika; Imre, László; Somogyvári, Zsolt; Németh, János

    2015-02-01

    Retinopathy of prematurity is a leading cause of childhood blindness around the world. The Department of Ophthalmology at the Semmelweis University and the Peter Cerny Neonatal Emergency and Ambulance Service started an innovative Premature Eye Rescue Program to reduce the non-essential transport of premature babies suffering from retinopathy of prematurity. During the first 5 years 186 eyes of 93 premature babies were treated at the bedside with stage 3 retinopathy of prematurity in the primary hospitals. In this first 5-years period the authors reduced the number of transports of premature babies for laser treatment; 93 children avoided the unnecessary transport, saving altogether a distance of 21,930 kilometers for children, as well as the ambulance service. The Premature Eye Rescue Program offers a good and effective alternative for treatment of retinopathy in the primary hospitals. The authors propose the national extension of this program.

  3. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group III SIP. 52.634 Section 52.634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter...

  4. Retinopathy of prematurity

    PubMed Central

    Hellström, Ann; Smith, Lois E H; Dammann, Olaf

    2015-01-01

    The immature retinas of preterm neonates are susceptible to insults that disrupt neurovascular growth, leading to retinopathy of prematurity. Suppression of growth factors due to hyperoxia and loss of the maternal–fetal interaction result in an arrest of retinal vascularisation (phase 1). Subsequently, the increasingly metabolically active, yet poorly vascularised, retina becomes hypoxic, stimulating growth factor-induced vasoproliferation (phase 2), which can cause retinal detachment. In very premature infants, controlled oxygen administration reduces but does not eliminate retinopathy of prematurity. Identification and control of factors that contribute to development of retinopathy of prematurity is essential to prevent progression to severe sight-threatening disease and to limit comorbidities with which the disease shares modifiable risk factors. Strategies to prevent retinopathy of prematurity will depend on optimisation of oxygen saturation, nutrition, and normalisation of concentrations of essential factors such as insulin-like growth factor 1 and ω-3 polyunsaturated fatty acids, as well as curbing of the effects of infection and inflammation to promote normal growth and limit suppression of neurovascular development. PMID:23782686

  5. Inactivation of the FoxO3a transcription factor is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated senescence in human colon cancer and breast cancer cells.

    PubMed

    Park, Seong-Yeol; Bae, Young-Seuk

    2016-09-09

    We previously showed that protein kinase CK2 downregulation mediates senescence through the reactive oxygen species (ROS)-p53-p21(Cip1/WAF1) pathway in various human cells. In the present study, we investigated whether the FoxO3a transcription factor is associated with ROS production during CK2 downregulation-induced senescence in human colon cancer HCT116 and breast cancer MCF-7 cells. FoxO3a overexpression suppressed ROS production and p53 stabilization induced by a CK2α knockdown. CK2α downregulation induced nuclear export of FoxO3a through stimulation of AKT-mediated phosphorylation of FoxO3a and decreased transcription of its target genes (Cu/ZnSOD, MnSOD, and catalase). In contrast, CK2α overexpression inhibited AKT-mediated FoxO3a phosphorylation. This resulted in nuclear accumulation of FoxO3a, and elevated expression of its target genes. Therefore, these data indicate for the first time that CK2 downregulation stimulates ROS generation by inhibiting FoxO3a during premature senescence in human colon and breast cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Regulation of replicative senescence by NADP+ -dependent isocitrate dehydrogenase.

    PubMed

    Kil, In Sup; Huh, Tae Lin; Lee, Young Sup; Lee, You Mie; Park, Jeen-Woo

    2006-01-01

    The free radical hypothesis of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species that are produced as by-products of normal metabolic processes. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic (IDPc) and mitochondrial NADP+ -dependent isocitrate dehydrogenase (IDPm) by supplying NADPH for antioxidant systems. In this paper, we demonstrate that modulation of IDPc or IDPm activity in IMR-90 cells regulates cellular redox status and replicative senescence. When we examined the regulatory role of IDPc and IDPm against the aging process with IMR-90 cells transfected with cDNA for IDPc or IDPm in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc or IDPm expressed in target cells and their susceptibility to senescence, which was reflected by changes in replicative potential, cell cycle, senescence-associated beta-galactosidase activity, expression of p21 and p53, and morphology of cells. Furthermore, lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher and cellular redox status shifted to a prooxidant condition in the cell lines expressing the lower level of IDPc or IDPm. The results suggest that IDPc and IDPm play an important regulatory role in cellular defense against oxidative stress and in the senescence of IMR-90 cells.

  7. Hydra as a tractable, long-lived model system for senescence

    PubMed Central

    Bellantuono, Anthony J.; Bridge, Diane; Martínez, Daniel E.

    2015-01-01

    Hydra represents a unique model system for the study of senescence, with the opportunity for the comparison of non-aging and induced senescence. Hydra maintains three stem cell lineages, used for continuous tissue morphogenesis and replacement. Recent work has elucidated the roles of the insulin/IGF-1 signaling target FoxO, of Myc proteins, and of PIWI proteins in Hydra stem cells. Under laboratory culture conditions, Hydra vulgaris show no signs of aging even under long-term study. In contrast, Hydra oligactis can be experimentally induced to undergo reproduction-associated senescence. This provides a powerful comparative system for future studies. PMID:26136619

  8. Hydra as a tractable, long-lived model system for senescence.

    PubMed

    Bellantuono, Anthony J; Bridge, Diane; Martínez, Daniel E

    2015-01-30

    Hydra represents a unique model system for the study of senescence, with the opportunity for the comparison of non-aging and induced senescence. Hydra maintains three stem cell lineages, used for continuous tissue morphogenesis and replacement. Recent work has elucidated the roles of the insulin/IGF-1 signaling target FoxO, of Myc proteins, and of PIWI proteins in Hydra stem cells. Under laboratory culture conditions, Hydra vulgaris show no signs of aging even under long-term study. In contrast, Hydra oligactis can be experimentally induced to undergo reproduction-associated senescence. This provides a powerful comparative system for future studies.

  9. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence

    PubMed Central

    Stigter, Kyla A.; Plaxton, William C.

    2015-01-01

    Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P), are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi), the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters. PMID:27135351

  10. Arginase-I enhances vascular endothelial inflammation and senescence through eNOS-uncoupling.

    PubMed

    Zhu, Cuicui; Yu, Yi; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong

    2017-02-02

    Augmented arginase-II (Arg-II) is implicated in endothelial senescence and inflammation through a mutual positive regulatory circuit with S6K1. This study was conducted to investigate whether Arg-I, another isoform of arginase that has been also reported to play a role in vascular endothelial dysfunction, promotes endothelial senescence through similar mechanisms. The non-senescent human endothelial cells from umbilical veins (passage 2 to 4) were transduced with empty recombinant adenovirus vector (rAd/CMV) as control or rAd/CMV-Arg-I to overexpress Arg-I. Overexpressing Arg-I promoted eNOS-uncoupling, enhanced senescence markers including p53-S15, p21 and senescence-associated β-galactosidase (SA-β-gal) staining, and increased inflammatory vascular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) as well as monocyte adhesion to endothelial cells without activating S6K1. All the effects of Arg-I were inhibited by the anti-oxidant N-acetylcysteine (NAC). Our study demonstrates that Arg-I promotes endothelial senescence and inflammatory responses through eNOS-uncoupling unrelated to activation of the S6K1 pathway.

  11. Targeting Unknowns Just Underfoot: Microbial Ecology and Community Genomics of C Cycling in Soil Informed and Enabled with DNA-SIP

    NASA Astrophysics Data System (ADS)

    Pepe-Ranney, C. P.; Campbell, A.; Buckley, D. H.

    2015-12-01

    Microorganisms drive biogeochemical cycles and because soil is a large global carbon (C) reservoir (soil contains more C than plants and the atmosphere combined), soil microorganisms are important players in the global C-cycle. Frustratingly, however, many soil microorganisms resist cultivation and soil communities are astoundingly complex. This makes soil microbiology difficult to study and without a solid understanding of soil microbial ecology, models of soil C feedbacks to climate change are under-informed. Stable isotope probing (SIP) is a useful approach for establishing identity-function connections in microbial communities but has been challenging to employ in soil due to the inadequate resolution of microbial community fingerprinting techniques. High throughput DNA sequencing improves SIP resolving power transforming it into a powerful tool for studying the soil C cycle. We conducted a DNA-SIP experiment to track flow of xylose-C, a labile component of plant biomass, and cellulose-C, the most abundant global biopolymer, through a soil microbial community. We could track 13C into microbial DNA even when added 13C amounted to less than 5% of native C and found Spartobacteria, Chloroflexi, and Planctomycetes taxa were among those that assimilated 13C cellulose. These lineages are cosmopolitan in soil but little is known of their ecophysiology. By profiling SSU rRNA genes across entire DNA-SIP density gradients, we assessed relative DNA atom % 13C per taxon in 13C treatments and found cellulose degraders exhibited signal consistent with a specialist lifestyle with respect to C preference. Further, DNA-SIP enriches DNA of targeted microorganisms (Verrucomicrobia cellulose degraders were enriched by nearly two orders of magnitude) and this enriched DNA can serve as template for community genomics. We produced draft genomes from soil cellulose degraders including microorganisms belonging to Verrucomicrobia, Chloroflexi, and Planctomycetes from SIP enriched DNA

  12. Telomere length profiles in primary human peritoneal mesothelial cells are consistent with senescence.

    PubMed

    Lopez-Anton, Melisa; Rudolf, András; Baird, Duncan M; Roger, Laureline; Jones, Rhiannon E; Witowski, Janusz; Fraser, Donald J; Bowen, Timothy

    2017-06-01

    Mesothelial cell (MC) senescence contributes to malignancy and tissue fibrosis. The role of telomere erosion in MC senescence remains controversial, with evidence for both telomere-dependent and telomere-independent mechanisms reported. Single telomere length analysis revealed considerable telomere length heterogeneity in freshly isolated human peritoneal MCs, reflecting a heterogeneous proliferative history and providing high-resolution evidence for telomere-dependent senescence. By contrast the attenuated replicative lifespan, lack of telomere erosion and induction of p16 expression in in vitro-aged cells was consistent with stress-induced senescence. Given the potential pathophysiological impact of senescence in mesothelial tissues, high-resolution MC telomere length analysis may provide clinically useful information. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Sipping From a Melt Pond

    NASA Image and Video Library

    2017-12-08

    On July 19, 2011, Zachary Brown of Stanford University sipped freshwater from a melt pond on sea ice in the Arctic ocean. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Senescence in chronic liver disease: Is the future in aging?

    PubMed

    Aravinthan, Aloysious D; Alexander, Graeme J M

    2016-10-01

    Cellular senescence is a fundamental, complex mechanism with an important protective role present from embryogenesis to late life across all species. It limits the proliferative potential of damaged cells thus protecting against malignant change, but at the expense of substantial alterations to the microenvironment and tissue homeostasis, driving inflammation, fibrosis and paradoxically, malignant disease if the process is sustained. Cellular senescence has attracted considerable recent interest with recognition of pathways linking aging, malignancy and insulin resistance and the current focus on therapeutic interventions to extend health-span. There are major implications for hepatology in the field of fibrosis and cancer, where cellular senescence of hepatocytes, cholangiocytes, stellate cells and immune cells has been implicated in chronic liver disease progression. This review focuses on cellular senescence in chronic liver disease and explores therapeutic opportunities. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  15. Manipulation of a Senescence-Associated Gene Improves Fleshy Fruit Yield1[OPEN

    PubMed Central

    Gramegna, Giovanna; Trench, Bruna A.; Alves, Frederico R.R.; Silva, Eder M.; Silva, Geraldo F.F.; Thirumalaikumar, Venkatesh P.; Lupi, Alessandra C.D.; Demarco, Diego; Nogueira, Fabio T.S.; Freschi, Luciano

    2017-01-01

    Senescence is the process that marks the end of a leaf’s lifespan. As it progresses, the massive macromolecular catabolism dismantles the chloroplasts and, consequently, decreases the photosynthetic capacity of these organs. Thus, senescence manipulation is a strategy to improve plant yield by extending the leaf’s photosynthetically active window of time. However, it remains to be addressed if this approach can improve fleshy fruit production and nutritional quality. One way to delay senescence initiation is by regulating key transcription factors (TFs) involved in triggering this process, such as the NAC TF ORESARA1 (ORE1). Here, three senescence-related NAC TFs from tomato (Solanum lycopersicum) were identified, namely SlORE1S02, SlORE1S03, and SlORE1S06. All three genes were shown to be responsive to senescence-inducing stimuli and posttranscriptionally regulated by the microRNA miR164. Moreover, the encoded proteins interacted physically with the chloroplast maintenance-related TF SlGLKs. This characterization led to the selection of a putative tomato ORE1 as target gene for RNA interference knockdown. Transgenic lines showed delayed senescence and enhanced carbon assimilation that, ultimately, increased the number of fruits and their total soluble solid content. Additionally, the fruit nutraceutical composition was enhanced. In conclusion, these data provide robust evidence that the manipulation of leaf senescence is an effective strategy for yield improvement in fleshy fruit-bearing species. PMID:28710129

  16. Technical Data and Reports on Particulate Matter (PM) Measurements and SIP Status

    EPA Pesticide Factsheets

    EPA collects data from the states and regions on their air quality, including levels of pollutants such as PM, and state implementation plan (SIP) progress. This information is compiled in a database, and used to create reports, trend charts, and maps.

  17. Joint inversion of NMR and SIP data to estimate pore size distribution of geomaterials

    NASA Astrophysics Data System (ADS)

    Niu, Qifei; Zhang, Chi

    2018-03-01

    There are growing interests in using geophysical tools to characterize the microstructure of geomaterials because of the non-invasive nature and the applicability in field. In these applications, multiple types of geophysical data sets are usually processed separately, which may be inadequate to constrain the key feature of target variables. Therefore, simultaneous processing of multiple data sets could potentially improve the resolution. In this study, we propose a method to estimate pore size distribution by joint inversion of nuclear magnetic resonance (NMR) T2 relaxation and spectral induced polarization (SIP) spectra. The petrophysical relation between NMR T2 relaxation time and SIP relaxation time is incorporated in a nonlinear least squares problem formulation, which is solved using Gauss-Newton method. The joint inversion scheme is applied to a synthetic sample and a Berea sandstone sample. The jointly estimated pore size distributions are very close to the true model and results from other experimental method. Even when the knowledge of the petrophysical models of the sample is incomplete, the joint inversion can still capture the main features of the pore size distribution of the samples, including the general shape and relative peak positions of the distribution curves. It is also found from the numerical example that the surface relaxivity of the sample could be extracted with the joint inversion of NMR and SIP data if the diffusion coefficient of the ions in the electrical double layer is known. Comparing to individual inversions, the joint inversion could improve the resolution of the estimated pore size distribution because of the addition of extra data sets. The proposed approach might constitute a first step towards a comprehensive joint inversion that can extract the full pore geometry information of a geomaterial from NMR and SIP data.

  18. Senescence of nickel-transformed cells by an X chromosome: Possible epigenetic control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, C.B.; Xin Wei Wang; Bhamra, R.K.

    1991-02-15

    Transfer of a normal Chinese hamster X chromosome (carried in a mouse A9 donor cell line) to a nickel-transformed Chinese hamster cell line with an Xq chromosome deletion resulted in senescense of these previously immortal cells. At early passages of the A9/CX donor cells, the hamster X chromosome was highly active, inducing senescence in 100% of the colonies obtained after its transfer into the nickel-transformed cells. However, senescence was reduced to 50% when Chinese hamster X chromosomes were transferred from later passage A9 cells. Full senescing activity of the intact hamster X chromosome was restored by treatment of the donormore » mouse cells with 5-azacytidine, which induced demethylation of DMA. These results suggest that a senescence gene or genes, which may be located on the Chinese hamster X chromosome, can be regulated by DNA methylation, and that escape from senescence and possibly loss of tumor suppressor gene activity can occur by epigenetic mechanisms.« less

  19. A second gene for type I signal peptidase in Bradyrhizobium japonicum, sipF, is located near genes involved in RNA processing and cell division.

    PubMed

    Bairl, A; Müller, P

    1998-11-01

    The TnphoA-induced Bradyrhizobium japonicum mutant 184 shows slow growth and aberrant colonization of soybean nodules. Using a DNA fragment adjacent to the transposon insertion site as a probe, a 3.4-kb BglII fragment of B. japonicum 110spc4 DNA was identified and cloned. Sequence analysis indicated that two truncated ORFs and three complete ORFs were encoded on this fragment. A database search revealed homologies to several other prokaryotic proteins: PdxJ (an enzyme involved in vitamin B6 biosynthesis), AcpS (acyl carrier protein synthase), Lep or Sip (prokaryotic type I signal peptidase), RNase III (an endoribonuclease which processes double-stranded rRNA precursors and mRNA) and Era (a GTP-binding protein required for cell division). The mutation in strain 184 was found to lie within the signal peptidase gene, which was designated sipF. Therefore, sipF is located in a region that encodes gene products involved in posttranscriptional and posttranslational processing processes. By complementation of the lep(ts) E. coli mutant strain IT41 it was demonstrated that sipF indeed encodes a functional signal peptidase, and genetic complementation of B. japonicum mutant 184 by a 2.8-kb SalI fragment indicated that sipF is expressed from a promoter located directly upstream of sipF. Using a non-polar kanamycin resistance cassette, a specific sipF mutant was constructed which exhibited defects in symbiosis similar to those of the original mutant 184.

  20. Louisiana SIP: LAC 33:III Ch 61 Subchap A, §6121 to § 6131--Method 43 - Capture Efficiency Test Procedures; SIP effective 1994-06-06 (LAc60) to to 2011-08-03 (LAd34 - Moved to Chap 21 Subchap N §§ 2155-2160 and revised)

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch 61 Subchap A, §6121 to § 6131--Method 43 - Capture Efficiency Test Procedures; SIP effective 1994-06-06 (LAc60) to to 2011-08-03 (LAd34 - Moved to Chap 21 Subchap N §§ 2155-2160 and revised)

  1. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the presentmore » study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.« less

  2. Redox-Dependent Calcium-Mediated Signaling Networks that Control the Senescence-Associated Secretory Phenotype

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Akshaya

    Cellular senescence has evolved as a protective mechanism to arrest growth of cells with oncogenic potential. While senescent cells have lost the ability to divide, they remain metabolically active and adapt a deleterious senescence associated secretory phenotype (SASP) central to the progression of several age-associated disease pathologies. The SASP is mechanistically regulated by the pro-inflammatory cytokine interleukin-1 alpha (IL-1alpha) whose expression and activity is responsive to the senescence associated (SA) oxidant production and the accompanying disruption of calcium (Ca2+) homeostasis. Using primary IMR-90 human fetal lung fibroblasts as a model of replicative senescence, we explored the molecular underpinnings driving Ca2+ dysregulation in senescent cells. We establish that the redox-responsive Transient Receptor Potential TRPC6 channel is compromised due to desensitization owing to SA increases in steady state hydrogen peroxide (H2O2) production. SA dysregulation of Ca2+ is also accompanied by loss of response to H2O2-induced Ca2+ influx that can be rescued with catalase pre-treatments. Senescent cells are also insensitive to Ca2+ entry induced by hyperforin, a specific activator of TRPC6, that can be restored by catalase pre-treatments, further suggesting redox regulation of TRPC6 in senescence. Inhibition of TRPC6 channel activity restores the ability of senescent cells to respond to peroxide-induced Ca2+ in addition to suppressing SASP gene expression. Furthermore, mammalian target of rapamycin (mTOR) signaling regulates SASP by means of modulating TRPC6 channel expression. Together, our findings provide compelling evidence that redox and mTOR-mediated regulation of TRPC6 channel modulate SASP gene expression. Further, the gain-of-function mutation of TRPC6 has pathological implications in several chronic pathologies and renders it a viable target in age-associated diseases.

  3. Comparing chemolithoautotrophic subseafloor communities across geochemical gradients using meta-omics and RNA-SIP

    NASA Astrophysics Data System (ADS)

    Fortunato, C. S.; Huber, J. A.

    2015-12-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. Past studies have shown that the taxonomic structure of subseafloor communities differs based on the geochemical signatures of individual vents. In this study, we expanded beyond phylogeny and used a combination of metagenomic, metatranscriptomic, and RNA-based stable isotope probing (RNA-SIP) analyses to identify the metabolic potential, expression patterns, and the active autotrophic players and genomic pathways present in venting fluids from Axial Seamount, an active submarine volcano off the coast of Oregon, USA. Low-temperature diffuse vent fluids from three hydrothermal vents, Marker 113, Marker 33, and Anemone, were filtered and preserved on the seafloor for metagenome and metatranscriptome analyses. Fluid for RNA-SIP was also collected and incubated shipboard with 13C-labeled sodium bicarbonate at 30ºC, 55ºC, and 80ºC for each vent. Taxonomically, Epsilonproteobacteria comprised a significant proportion of the community at all three vents, but each vent also had distinct groups that were abundant including SUP05 at Anemone and Methanococcus at Marker 113. Functionally, vents shared many metabolic processes including genes for denitrification, sulfur reduction and sulfur, hydrogen, and ammonium oxidation, which were present and expressed in similar abundance across all three vents. One metabolic difference between vents was the presence and expression of genes for methanogenesis, which were highly abundant and expressed at Marker 113, in lower abundance and expression at Marker 33, and not present at Anemone. RNA-SIP analysis is ongoing but initial results from Marker 113 revealed that at mesophilic, thermophilic, or hyperthemophilic temperatures, different genera and autotrophic metabolisms dominated

  4. Proteomic and Biochemical Changes during Senescence of Phalaenopsis 'Red Dragon' Petals.

    PubMed

    Chen, Cong; Zeng, Lanting; Ye, Qingsheng

    2018-04-28

    Phalaenopsis flowers are some of the most popular ornamental flowers in the world. For most ornamental plants, petal longevity determines postharvest quality and garden performance. Therefore, it is important to have insight into the senescence mechanism of Phalaenopsis . In the present study, a proteomic approach combined with ultrastructural observation and activity analysis of antioxidant enzymes was used to profile the molecular and biochemical changes during pollination-induced petal senescence in Phalaenopsis “Red Dragon”. Petals appeared to be visibly wilting at 24 h after pollination, accompanied by the mass degradation of macromolecules and organelles during senescence. In addition, 48 protein spots with significant differences in abundance were found by two-dimensional electrophoresis (2-DE) and subjected to matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS). There were 42 protein spots successfully identified and homologous to known functional protein species involved in key biological processes, including antioxidant pathways, stress response, protein metabolism, cell wall component metabolism, energy metabolism, cell structure, and signal transduction. The activity of all reactive oxygen species (ROS)-scavenging enzymes was increased, keeping the content of ROS at a low level at the early stage of senescence. These results suggest that two processes, a counteraction against increased levels of ROS and the degradation of cellular constituents for maintaining nutrient recycling, are activated during pollination-induced petal senescence in Phalaenopsis . The information provides a basis for understanding the mechanism regulating petal senescence and prolonging the florescence of Phalaenopsis .

  5. Technical Data and Reports on Sulfur Dioxide (SO2) Measurements and SIP Status

    EPA Pesticide Factsheets

    EPA collects data from the states and regions on their air quality and state implementation plan (SIP) progress. This information is compiled in a database, and used to create reports, trend charts, and maps.

  6. Genome-Wide Transcriptional Reorganization Associated with Senescence-to-Immortality Switch during Human Hepatocellular Carcinogenesis

    PubMed Central

    Konu, Ozlen; Yuzugullu, Haluk; Gursoy-Yuzugullu, Ozge; Ozturk, Nuri; Ozen, Cigdem; Ozdag, Hilal; Erdal, Esra; Karademir, Sedat; Sagol, Ozgul; Mizrak, Dilsa; Bozkaya, Hakan; Ilk, Hakki Gokhan; Ilk, Ozlem; Bilen, Biter; Cetin-Atalay, Rengul; Akar, Nejat; Ozturk, Mehmet

    2013-01-01

    Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become “immortal”) by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene

  7. 1997 SOUTH CAROLINA EPA/EPSCOR PROGRAM—STRATEGIC IMPROVEMENT PLAN (SIP) AND MANAGEMENT

    EPA Science Inventory

    The SIP of the 1997 South Carolina EPA/EPSCoR Program encompasses the educational programs and management components.  The educational activities are addressed in terms of pre-college, undergraduate, graduate, and public science programs.  These results are summarized bel...

  8. A ‘synthetic-sickness’ screen for senescence re-engagement targets in mutant cancer backgrounds

    PubMed Central

    Godwin, Lauren S.; Bilsland, Alan E.; Stevenson, Katrina H.; Moore, Jon D.; Wiggins, Ceri M.; Collinson, Rebecca S.; Mudd, Clare; Sadaie, Mahito; Bennett, Dorothy C.; Torrance, Christopher J.; Keith, W. Nicol

    2017-01-01

    Senescence is a universal barrier to immortalisation and tumorigenesis. As such, interest in the use of senescence-induction in a therapeutic context has been gaining momentum in the past few years; however, senescence and immortalisation remain underserved areas for drug discovery owing to a lack of robust senescence inducing agents and an incomplete understanding of the signalling events underlying this complex process. In order to address this issue we undertook a large-scale morphological siRNA screen for inducers of senescence phenotypes in the human melanoma cell line A375P. Following rescreen and validation in a second cancer cell line, HCT116 colorectal carcinoma, a panel of 16 of the most robust hits were selected for further validation based on significance and the potential to be targeted by drug-like molecules. Using secondary assays for detection of senescence biomarkers p21, 53BP1 and senescence associated beta-galactosidase (SAβGal) in a panel of HCT116 cell lines carrying cancer-relevant mutations, we show that partial senescence phenotypes can be induced to varying degrees in a context dependent manner, even in the absence of p21 or p53 expression. However, proliferation arrest varied among genetic backgrounds with predominantly toxic effects in p21 null cells, while cells lacking PI3K mutation failed to arrest. Furthermore, we show that the oncogene ECT2 induces partial senescence phenotypes in all mutant backgrounds tested, demonstrating a dependence on activating KRASG13D for growth suppression and a complete senescence response. These results suggest a potential mechanism to target mutant KRAS signalling through ECT2 in cancers that are reliant on activating KRAS mutations and remain refractory to current treatments. PMID:28806777

  9. Using Bayes factors to evaluate evidence for no effect: examples from the SIPS project.

    PubMed

    Dienes, Zoltan; Coulton, Simon; Heather, Nick

    2018-02-01

    To illustrate how Bayes factors are important for determining the effectiveness of interventions. We consider a case where inappropriate conclusions were drawn publicly based on significance testing, namely the SIPS project (Screening and Intervention Programme for Sensible drinking), a pragmatic, cluster-randomized controlled trial in each of two health-care settings and in the criminal justice system. We show how Bayes factors can disambiguate the non-significant findings from the SIPS project and thus determine whether the findings represent evidence of absence or absence of evidence. We show how to model the sort of effects that could be expected, and how to check the robustness of the Bayes factors. The findings from the three SIPS trials taken individually are largely uninformative but, when data from these trials are combined, there is moderate evidence for a null hypothesis (H0) and thus for a lack of effect of brief intervention compared with simple clinical feedback and an alcohol information leaflet (B = 0.24, P = 0.43). Scientists who find non-significant results should suspend judgement-unless they calculate a Bayes factor to indicate either that there is evidence for a null hypothesis (H0) over a (well-justified) alternative hypothesis (H1), or that more data are needed. © 2017 Society for the Study of Addiction.

  10. Material-induced Senescence (MIS): Fluidity Induces Senescent Type Cell Death of Lung Cancer Cells via Insulin-Like Growth Factor Binding Protein 5.

    PubMed

    Mano, Sharmy Saimon; Uto, Koichiro; Ebara, Mitsuhiro

    2017-01-01

    Objective: We propose here material-induced senescence (MIS) as a new therapeutic concept that limits cancer progression by stable cell cycle arrest. This study examined for the first time the effect of material fluidity on cellular senescence in lung carcinoma using poly(ε-caprolactone- co -D, L-lactide) (P(CL- co -DLLA)) with tunable elasticity and fluidity. Methods: The fluidity was varied by chemically crosslinking the polymer networks: the crosslinked P(CL- co -DLLA) shows solid-like properties with a stiffness of 260 kPa, while the non-crosslinked polymer exists in a quasi-liquid state with loss and storage moduli of 33 kPa and 11 kPa, respectively. Results: We found that cancer cells growing on the non-crosslinked, fluidic substrate undergo a non-apoptotic form of cell death and the cell cycle was accumulated in a G0/G1 phase. Next, we investigated the expression of biomarkers that are associated with cancer pathways. The cancer cells on the fluidic substrate expressed several biomarkers associated with senescence such as insulin-like growth factor binding protein 5 (IGFBP5). This result indicates that when cancer cells sense fluidity in their surroundings, the cells express IGFBP5, which in turn triggers the expression of tumor suppressor protein 53 and initiates cell cycle arrest at the G1 phase followed by cellular senescence. Furthermore, the cancer cells on the fluidic substrate maintained their epithelial phenotype, suggesting that the cancer cells do not undergo epithelial to mesenchymal transition. Conclusion: By considering these results as the fundamental information for MIS, our system could be applied to induce senescence in treatment-resistant cancers such as metastatic cancer or cancer stem cells.

  11. Premature aging induced by radiation exhibits pro-atherosclerotic effects mediated by epigenetic activation of CD44 expression

    PubMed Central

    Lowe, Donna; Raj, Kenneth

    2014-01-01

    Age is undoubtedly a major risk factor for heart disease. However, the reason for this is not entirely clear. In the course of our investigation into the mechanism of radiation-induced cardiovascular disease, we made several unexpected findings that inform us on this question. We observed that human coronary endothelial cells, while being able to initiate repair of radiation-induced DNA damage, often fail to complete the repair and become senescent. Such radiation-induced cellular aging occurs through a mutation-independent route. Endothelial cells that aged naturally through replication or as a result of radiation exhibited indistinguishable characteristics. The promoter regions of the CD44 gene in aging endothelial cells become demethylated, and the proteins are highly expressed on the cell surface, making the cells adhesive for monocytes. Adhesion is a cardinal feature that recruits monocytes to the endothelium, allowing them to infiltrate the vessel wall and initiate atherosclerosis. The epigenetic activation of CD44 expression is particularly significant as it causes persistent elevated CD44 protein expression, making senescent endothelial cells chronically adhesive. In addition to understanding why cardiovascular disease increases with age, these observations provide insights into the puzzling association between radiation and cardiovascular disease and highlight the need to consider premature aging as an additional risk of radiation to human health. PMID:25059316

  12. Functional characterization of PhGR and PhGRL1 during flower senescence in the petunia.

    PubMed

    Yang, Weiyuan; Liu, Juanxu; Tan, Yinyan; Zhong, Shan; Tang, Na; Chen, Guoju; Yu, Yixun

    2015-09-01

    Petunia PhGRL1 suppression accelerated flower senescence and increased the expression of the genes downstream of ethylene signaling, whereas PhGR suppression did not. Ethylene plays an important role in flowers senescence. Homologous proteins Green-Ripe and Reversion to Ethylene sensitivity1 are positive regulators of ethylene responses in tomato and Arabidopsis, respectively. The petunia flower has served as a model for the study of ethylene response during senescence. In this study, petunia PhGR and PhGRL1 expression was analyzed in different organs, throughout floral senescence, and after exogenous ethylene treatment; and the roles of PhGR and PhGRL1 during petunia flower senescence were investigated. PhGRL1 suppression mediated by virus-induced gene silencing accelerated flower senescence and increased ethylene production; however, the suppression of PhGR did not. Taken together, these data suggest that PhGRL1 is involved in negative regulation of flower senescence, possibly via ethylene production inhibition and consequently reduced ethylene signaling activation.

  13. Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Rumi; En, Atsuki; Ukekawa, Ryo

    2016-05-13

    5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.

  14. Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy.

    PubMed

    Masaldan, Shashank; Clatworthy, Sharnel A S; Gamell, Cristina; Smith, Zoe M; Francis, Paul S; Denoyer, Delphine; Meggyesy, Peter M; Fontaine, Sharon La; Cater, Michael A

    2018-06-01

    Cellular senescence is characterized by irreversible growth arrest incurred through either replicative exhaustion or by pro-oncogenic cellular stressors (radioactivity, oxidative stress, oncogenic activation). The enrichment of senescent cells in tissues with age has been associated with tissue dyshomeostasis and age-related pathologies including cancers, neurodegenerative disorders (e.g. Alzheimer's, Parkinson's, etc.) and metabolic disorders (e.g. diabetes). We identified copper accumulation as being a universal feature of senescent cells [mouse embryonic fibroblasts (MEF), human prostate epithelial cells and human diploid fibroblasts] in vitro. Elevated copper in senescent MEFs was accompanied by elevated levels of high-affinity copper uptake protein 1 (Ctr1), diminished levels of copper-transporting ATPase 1 (Atp7a) (copper export) and enhanced antioxidant defence reflected by elevated levels of glutathione (GSH), superoxide dismutase 1 (SOD1) and glutaredoxin 1 (Grx1). The levels of intracellular copper were further increased in senescent MEFs cultured in copper supplemented medium and in senescent Mottled Brindled (Mo br ) MEFs lacking functional Atp7a. Finally, we demonstrated that the restoration/preservation of autophagic-lysosomal degradation in senescent MEFs following rapamycin treatment correlated with attenuation of copper accumulation in these cells despite a further decrease in Atp7a levels. This study for the first time establishes a link between Atp7a and the autophagic-lysosomal pathway, and a requirement for both to effect efficient copper export. Such a connection between cellular autophagy and copper homeostasis is significant, as both have emerged as important facets of age-associated degenerative disease. Copyright © 2018. Published by Elsevier B.V.

  15. Detection of the ubiquitinome in cells undergoing oncogene-induced senescence

    PubMed Central

    Zhu, Hengrui; Le, Linh; Tang, Hsin-Yao; Speicher, David W.; Zhang, Rugang

    2017-01-01

    Summary Senescent cells exhibit dramatic changes in protein post-translational modifications. Here, we describe a method, stable isotope labeling with amino acids in cell culture (SILAC) coupled to liquid chromatography tandem mass spectrometry (LC-MS/MS), to identify changes in the ubiquitinome in cells that have undergone oncogene-induced senescence. PMID:27812874

  16. Activities of Vacuolar Cysteine Proteases in Plant Senescence.

    PubMed

    Martínez, Dana E; Costa, Lorenza; Guiamét, Juan José

    2018-01-01

    Plant senescence is accompanied by a marked increase in proteolytic activities, and cysteine proteases (Cys-protease) represent the prevailing class among the responsible proteases. Cys-proteases predominantly locate to lytic compartments, i.e., to the central vacuole (CV) and to senescence-associated vacuoles (SAVs), the latter being specific to the photosynthetic cells of senescing leaves. Cellular fractionation of vacuolar compartments may facilitate Cys-proteases purification and their concentration for further analysis. Active Cys-proteases may be analyzed by different, albeit complementary approaches: (1) in vivo examination of proteolytic activity by fluorescence microscopy using specific substrates which become fluorescent upon cleavage by Cys-proteases, (2) protease labeling with specific probes that react irreversibly with the active enzymes, and (3) zymography, whereby protease activities are detected in polyacrylamide gels copolymerized with a substrate for proteases. Here we describe the three methods mentioned above for detection of active Cys-proteases and a cellular fractionation technique to isolate SAVs.

  17. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age

    PubMed Central

    Xu, Ming; Tchkonia, Tamara; Ding, Husheng; Ogrodnik, Mikolaj; Lubbers, Ellen R.; Pirtskhalava, Tamar; White, Thomas A.; Johnson, Kurt O.; Stout, Michael B.; Mezera, Vojtech; Giorgadze, Nino; Jensen, Michael D.; LeBrasseur, Nathan K.; Kirkland, James L.

    2015-01-01

    Chronic, low grade, sterile inflammation frequently accompanies aging and age-related diseases. Cellular senescence is associated with the production of proinflammatory chemokines, cytokines, and extracellular matrix (ECM) remodeling proteases, which comprise the senescence-associated secretory phenotype (SASP). We found a higher burden of senescent cells in adipose tissue with aging. Senescent human primary preadipocytes as well as human umbilical vein endothelial cells (HUVECs) developed a SASP that could be suppressed by targeting the JAK pathway using RNAi or JAK inhibitors. Conditioned medium (CM) from senescent human preadipocytes induced macrophage migration in vitro and inflammation in healthy adipose tissue and preadipocytes. When the senescent cells from which CM was derived had been treated with JAK inhibitors, the resulting CM was much less proinflammatory. The administration of JAK inhibitor to aged mice for 10 wk alleviated both adipose tissue and systemic inflammation and enhanced physical function. Our findings are consistent with a possible contribution of senescent cells and the SASP to age-related inflammation and frailty. We speculate that SASP inhibition by JAK inhibitors may contribute to alleviating frailty. Targeting the JAK pathway holds promise for treating age-related dysfunction. PMID:26578790

  18. Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis.

    PubMed

    Qin, Guozheng; Meng, Xianghong; Wang, Qing; Tian, Shiping

    2009-05-01

    Oxidative damage to mitochondria caused by reactive oxygen species (ROS) has been implicated in the process of senescence as well as a number of senescence-related disorders in a variety of organisms. Whereas mitochondrial DNA was shown to be oxidatively modified during cellular senescence, mitochondrial protein oxidation is not well-understood. With the use of high-resolution, two-dimensional gel electrophoresis coupled with immunoblotting, we show here that protein carbonylation, a widely used marker of protein oxidation, increased in mitochondria during the senescence of peach fruit. Specific mitochondrial proteins including outer membrane transporter (voltage-dependent anion-selective channel, VDAC), tricarboxylic acid cycle enzymes (malate dehydrogenase and aconitase), and antioxidant proteins (manganese superoxide dismutase, MnSOD) were found as the targets. The oxidative modification was concomitant with a change of VDAC function and loss of catalytic activity of malate dehydrogenase and MnSOD, which in turn facilitated the release of superoxide radicals in mitochondria. Reduction of ROS content by lowering the environmental temperature prevented the accumulation of protein carbonylation in mitochondria and retarded fruit senescence, whereas treatment of fruit with H2O2 had the opposite effect. Our data suggest that oxidative damage of specific mitochondrial proteins may be responsible for impairment of mitochondrial function, thus, leading to fruit senescence. Proteomics analysis of mitochondrial redox proteins provides considerable information on the molecular mechanisms involved in the progression of fruit senescence.

  19. Inhibition of phosphatidylcholine-specific phospholipase C prevents bone marrow stromal cell senescence in vitro.

    PubMed

    Sun, Chunhui; Wang, Nan; Huang, Jie; Xin, Jie; Peng, Fen; Ren, Yinshi; Zhang, Shangli; Miao, Junying

    2009-10-01

    Bone marrow stromal cells (BMSCs) can proliferate in vitro and can be transplanted for treating many kinds of diseases. However, BMSCs become senescent with long-term culture, which inhibits their application. To understand the mechanism underlying the senescence, we investigated the activity of phosphatidylcholine-specific phospholipase C (PC-PLC) and levels of integrin beta4, caveolin-1 and ROS with BMSC senescence. The activity of PC-PLC and levels of integrin beta4, caveolin-1 and ROS increased greatly during cell senescence. Selective inhibition of increased PC-PLC activity with D609 significantly decreased the number of senescence-associated beta galactosidase positive cells in BMSCs. Furthermore, D609 restored proliferation of BMSCs and their differentiation into adipocytes. Moreover, D609 suppressed the elevated levels of integrin beta4, caveolin-1 and ROS. The data suggest that PC-PLC is involved in senescence of BMSCs, and its function is associated with integrin beta4, caveolin-1 and ROS. (c) 2009 Wiley-Liss, Inc.

  20. Safety and immunogenicity of an oral DNA vaccine encoding Sip of Streptococcus agalactiae from Nile tilapia Oreochromis niloticus delivered by live attenuated Salmonella typhimurium.

    PubMed

    Huang, L Y; Wang, K Y; Xiao, D; Chen, D F; Geng, Y; Wang, J; He, Y; Wang, E L; Huang, J L; Xiao, G Y

    2014-05-01

    Attenuated Salmonella typhimurium SL7207 was used as a carrier for a reconstructed DNA vaccine against Streptococcus agalactiae. A 1.02 kb DNA fragment, encoding for a portion of the surface immunogenic protein (Sip) of S. agalactiae was inserted into pVAX1. The recombinant plasmid pVAX1-sip was transfected in EPC cells to detect the transient expression by an indirect immunofluorescence assay, together with Western blot analysis. The pVAX1-sip was transformed by electroporation into SL7207. The stability of pVAX1-sip into Salmonella was over 90% after 50 generations with antibiotic selection in vitro while remained stable over 80% during 35 generations under antibiotic-free conditions. The LD50 of SL/pVAX1-sip was 1.7 × 10(11) CFU/fish by intragastric administration which indicated a quite low virulence. Tilapias were inoculated orally at 10(8) CFU/fish, the recombinant bacteria were found present in intestinal tract, spleens and livers and eventually eliminated from the tissues 4 weeks after immunization. Fish immunized at 10(7), 10(8) and 10(9) CFU/fish with different immunization times caused various levels of serum antibody and an effective protection against lethal challenge with the wild-type strain S. agalactiae. Integration studies showed that the pVAX1-sip did not integrate with tilapia chromosomes. The DNA vaccine SL/pVAX1-sip was proved to be safe and effective in protecting tilapias against S. agalactiae infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Mushroom extract inhibits ultraviolet B-induced cellular senescence in human keratinocytes.

    PubMed

    Chong, Zhao; Matsuo, Haruka; Kuroda, Mai; Yamashita, Shuntaro; Parajuli, Gopal Prasad; Manandhar, Hira Kaji; Shimizu, Kuniyoshi; Katakura, Yoshinori

    2018-06-02

    Mushrooms possess various bioactivities and are used as nutritional supplements and medicinal products. Twenty-nine bioactive components have been extracted recently from mushrooms grown in Nepal. In this study, we evaluated the ability of these mushroom extracts to augment SIRT1, a mammalian SIR2 homologue localized in cytosol and nuclei. We established a system for screening food ingredients that augment the SIRT1 promoter in HaCaT cells, and identified a SIRT1-augmenting mushroom extract (number 28, Trametes versicolor). UVB irradiation induced cellular senescence in HaCaT cells, as evidenced by increased activity and expression of cellular senescence markers including senescence-associated β-galactosidase, p21, p16, phosphorylated p38, and γH2AX. Results clearly showed that the mushroom extract (No. 28) suppressed the ultraviolet B irradiation-induced cellular senescence in HaCaT cells possibly through augmenting SIRT1 expression.

  2. Identification of senescence-associated genes in human bone marrow mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Eunsook; Hong, Su; Kang, Jaeku

    2008-07-04

    Human bone marrow mesenchymal stem cells (hBMMSCs) are multipotent stem cells that can differentiate into several specialized cell types, including bone, cartilage, and fat cells. The proliferative capacity of hBMMSCs paves the way for the development of regenerative medicine and tissue engineering. However, long-term in vitro culture of hBMMSCs leads to a reduced life span of the cells due to senescence, which leads eventually to growth arrest. To investigate the molecular mechanism behind the cellular senescence of hBMMSCs, microarray analysis was used to compare the expression profiles of early passage hBMMSCs, late passage hBMMSCs and hBMMSCs ectopically expressing human telomerasemore » reverse transcriptase (hTERT). Using an intersection analysis of 3892 differentially expressed genes (DEGs) out of 27,171 total genes analyzed, we identified 338 senescence-related DEGs. GO term categorization and pathway network analysis revealed that the identified genes are strongly related to known senescence pathways and mechanisms. The genes identified using this approach will facilitate future studies of the mechanisms underlying the cellular senescence of hBMMSCs.« less

  3. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases

    PubMed Central

    Davalli, Pierpaola; Mitic, Tijana; Caporali, Andrea; Lauriola, Angela; D'Arca, Domenico

    2016-01-01

    The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS) and/or Reactive Nitrosative Species (RNS). Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging. PMID:27247702

  4. Early Life Exposure to Endocrine-Disrupting Chemicals Causes Lifelong Molecular Reprogramming of the Hypothalamus and Premature Reproductive Aging

    PubMed Central

    Walker, Deena M.; Zama, Aparna M.; Armenti, AnnMarie E.; Uzumcu, Mehmet

    2011-01-01

    Gestational exposure to the estrogenic endocrine disruptor methoxychlor (MXC) disrupts the female reproductive system at the molecular, physiological, and behavioral levels in adulthood. The current study addressed whether perinatal exposure to endocrine disruptors reprograms expression of a suite of genes expressed in the hypothalamus that control reproductive function and related these molecular changes to premature reproductive aging. Fischer rats were exposed daily for 12 consecutive days to vehicle (dimethylsulfoxide), estradiol benzoate (EB) (1 mg/kg), and MXC (low dose, 20 μg/kg or high dose, 100 mg/kg), beginning on embryonic d 19 through postnatal d 7. The perinatally exposed females were aged to 16–17 months and monitored for reproductive senescence. After euthanasia, hypothalamic regions [preoptic area (POA) and medial basal hypothalamus] were dissected for real-time PCR of gene expression or pyrosequencing to assess DNA methylation of the Esr1 gene. Using a 48-gene PCR platform, two genes (Kiss1 and Esr1) were significantly different in the POA of endocrine-disrupting chemical-exposed rats compared with vehicle-exposed rats after Bonferroni correction. Fifteen POA genes were up-regulated by at least 50% in EB or high-dose MXC compared with vehicle. To understand the epigenetic basis of the increased Esr1 gene expression, we performed bisulfite conversion and pyrosequencing of the Esr1 promoter. EB-treated rats had significantly higher percentage of methylation at three CpG sites in the Esr1 promoter compared with control rats. Together with these molecular effects, perinatal MXC and EB altered estrous cyclicity and advanced reproductive senescence. Thus, early life exposure to endocrine disruptors has lifelong effects on neuroendocrine gene expression and DNA methylation, together with causing the advancement of reproductive senescence. PMID:22016562

  5. Senescence-associated microRNAs target cell cycle regulatory genes in normal human lung fibroblasts.

    PubMed

    Markopoulos, Georgios S; Roupakia, Eugenia; Tokamani, Maria; Vartholomatos, George; Tzavaras, Theodore; Hatziapostolou, Maria; Fackelmayer, Frank O; Sandaltzopoulos, Raphael; Polytarchou, Christos; Kolettas, Evangelos

    2017-10-01

    Senescence recapitulates the ageing process at the cell level. A senescent cell stops dividing and exits the cell cycle. MicroRNAs (miRNAs) acting as master regulators of transcription, have been implicated in senescence. In the current study we investigated and compared the expression of miRNAs in young versus senescent human fibroblasts (HDFs), and analysed the role of mRNAs expressed in replicative senescent HFL-1 HDFs. Cell cycle analysis confirmed that HDFs accumulated in G 1 /S cell cycle phase. Nanostring analysis of isolated miRNAs from young and senescent HFL-1 showed that a distinct set of 15 miRNAs were significantly up-regulated in senescent cells including hsa-let-7d-5p, hsa-let-7e-5p, hsa-miR-23a-3p, hsa-miR-34a-5p, hsa-miR-122-5p, hsa-miR-125a-3p, hsa-miR-125a-5p, hsa-miR-125b-5p, hsa-miR-181a-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-503-5p, hsa-miR-574-3p, hsa-miR-574-5p and hsa-miR-4454. Importantly, pathway analysis of miRNA target genes down-regulated during replicative senescence in a public RNA-seq data set revealed a significant high number of genes regulating cell cycle progression, both G 1 /S and G 2 /M cell cycle phase transitions and telomere maintenance. The reduced expression of selected miRNA targets, upon replicative and oxidative-stress induced senescence, such as the cell cycle effectors E2F1, CcnE, Cdc6, CcnB1 and Cdc25C was verified at the protein and/or RNA levels. Induction of G1/S cell cycle phase arrest and down-regulation of cell cycle effectors correlated with the up-regulation of miR-221 upon both replicative and oxidative stress-induced senescence. Transient expression of miR-221/222 in HDFs promoted the accumulation of HDFs in G1/S cell cycle phase. We propose that miRNAs up-regulated during replicative senescence may act in concert to induce cell cycle phase arrest and telomere erosion, establishing a senescent phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. 40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group II SIP commitments. 52.146 Section 52.146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.146 Particulate matter...

  7. Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis.

    PubMed

    Pérez-Amador, M A; Abler, M L; De Rocher, E J; Thompson, D M; van Hoof, A; LeBrasseur, N D; Lers, A; Green, P J

    2000-01-01

    Nuclease I enzymes are responsible for the degradation of RNA and single-stranded DNA during several plant growth and developmental processes, including senescence. However, in the case of senescence the corresponding genes have not been reported. We describe the identification and characterization of BFN1 of Arabidopsis, and demonstrate that it is a senescence-associated nuclease I gene. BFN1 nuclease shows high similarity to the sequence of a barley nuclease induced during germination and a zinnia (Zinnia elegans) nuclease induced during xylogenesis. In transgenic plants overexpressing the BFN1 cDNA, a nuclease activity of about 38 kD was detected on both RNase and DNase activity gels. Levels of BFN1 mRNA were extremely low or undetectable in roots, leaves, and stems. In contrast, relatively high BFN1 mRNA levels were detected in flowers and during leaf and stem senescence. BFN1 nuclease activity was also induced during leaf and stem senescence. The strong response of the BFN1 gene to senescence indicated that it would be an excellent tool with which to study the mechanisms of senescence induction, as well as the role of the BFN1 enzyme in senescence using reverse genetic approaches in Arabidopsis.

  8. A decrease in cyclin B1 levels leads to polyploidization in DNA damage-induced senescence.

    PubMed

    Kikuchi, Ikue; Nakayama, Yuji; Morinaga, Takao; Fukumoto, Yasunori; Yamaguchi, Naoto

    2010-05-04

    Adriamycin, an anthracycline antibiotic, has been used for the treatment of various types of tumours. Adriamycin induces at least two distinct types of growth repression, such as senescence and apoptosis, in a concentration-dependent manner. Cellular senescence is a condition in which cells are unable to proliferate further, and senescent cells frequently show polyploidy. Although abrogation of cell division is thought to correlate with polyploidization, the mechanisms underlying induction of polyploidization in senescent cells are largely unclear. We wished, therefore, to explore the role of cyclin B1 level in polyploidization of Adriamycin-induced senescent cells. A subcytotoxic concentration of Adriamycin induced polyploid cells having the features of senescence, such as flattened and enlarged cell shape and activated beta-galactosidase activity. In DNA damage-induced senescent cells, the levels of cyclin B1 were transiently increased and subsequently decreased. The decrease in cyclin B1 levels occurred in G2 cells during polyploidization upon treatment with a subcytotoxic concentration of Adriamycin. In contrast, neither polyploidy nor a decrease in cyclin B1 levels was induced by treatment with a cytotoxic concentration of Adriamycin. These results suggest that a decrease in cyclin B1 levels is induced by DNA damage, resulting in polyploidization in DNA damage-induced senescence.

  9. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2

    PubMed Central

    Takasugi, Masaki; Okada, Ryo; Takahashi, Akiko; Virya Chen, David; Watanabe, Sugiko; Hara, Eiji

    2017-01-01

    Cellular senescence prevents the proliferation of cells at risk for neoplastic transformation. However, the altered secretome of senescent cells can promote the growth of the surrounding cancer cells. Although extracellular vesicles (EVs) have emerged as new players in intercellular communication, their role in the function of senescent cell secretome has been largely unexplored. Here, we show that exosome-like small EVs (sEVs) are important mediators of the pro-tumorigenic function of senescent cells. sEV-associated EphA2 secreted from senescent cells binds to ephrin-A1, that is, highly expressed in several types of cancer cells and promotes cell proliferation through EphA2/ephrin-A1 reverse signalling. sEV sorting of EphA2 is increased in senescent cells because of its enhanced phosphorylation resulting from oxidative inactivation of PTP1B phosphatase. Our results demonstrate a novel mechanism of reactive oxygen species (ROS)-regulated cargo sorting into sEVs, which is critical for the potentially deleterious growth-promoting effect of the senescent cell secretome. PMID:28585531

  10. Oncogene-induced senescence results in marked metabolic and bioenergetic alterations

    PubMed Central

    Quijano, Celia; Cao, Liu; Fergusson, Maria M; Romero, Hector; Liu, Jie; Gutkind, Sarah; Rovira, Ilsa I; Mohney, Robert P; Karoly, Edward D

    2012-01-01

    Oncogene-induced senescence (OIS) is characterized by permanent growth arrest and the acquisition of a secretory, pro-inflammatory state. Increasingly, OIS is viewed as an important barrier to tumorgenesis. Surprisingly, relatively little is known about the metabolic changes that accompany and therefore may contribute to OIS. Here, we have performed a metabolomic and bioenergetic analysis of Ras-induced senescence. Profiling approximately 300 different intracellular metabolites reveals that cells that have undergone OIS develop a unique metabolic signature that differs markedly from cells undergoing replicative senescence. A number of lipid metabolites appear uniquely increased in OIS cells, including a marked increase in the level of certain intracellular long chain fatty acids. Functional studies reveal that this alteration in the metabolome reflects substantial changes in overall lipid metabolism. In particular, Ras-induced senescent cells manifest a decline in lipid synthesis and a significant increase in fatty acid oxidation. Increased fatty acid oxidation results in an unexpectedly high rate of basal oxygen consumption in cells that have undergone OIS. Pharmacological or genetic inhibition of carnitine palmitoyltransferase 1, the rate-limiting step in mitochondrial fatty acid oxidation, restores a presenescent metabolic rate and, surprisingly, selectively inhibits the secretory, pro-inflammatory state that accompanies OIS. Thus, Ras-induced senescent cells demonstrate profound alterations in their metabolic and bioenergetic profiles, particularly with regards to the levels, synthesis and oxidation of free fatty acids. Furthermore, the inflammatory phenotype that accompanies OIS appears to be related to these underlying changes in cellular metabolism. PMID:22421146

  11. Pore-scale spectral induced polarization (SIP) signaturesassociated with FeS biomineral transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Lee; Ntarlagiannis, Dimitrios; Personna, Yves R.

    2007-10-01

    The authors measured Spectral Induced Polarization (SIP) signatures in sand columns during (1) FeS biomineralization produced by sulfate reducing bacteria (D. vulgaris) under anaerboci conditions, and (2) subsequent biomineral dissolution upon return to an aerobic state. The low-frequency (0.1-10 Hz peak) relaxations produced during biomineralization can be modeled with a Cole-Cole formulation, from which the evolution of the polarization magnitude and relaxation length scale can be estimated. They find that the modeled time constant is consistent with the polarizable elements being biomineral encrused pores. Evolution of the model parameters is consistent with FeS surface area increases and pore-size reduction duringmore » biomineral growth, and subsequent biomineral dissolution (FeS surface area decreases and pore expansion) upon return to the aerobic state. They conclude that SIP signatures are diagnostic of pore-scale geometrical changes associated with FeS biomineralization by sulfate reducing bacteria.« less

  12. 75 FR 32190 - Disease, Disability, and Injury Prevention and Control Special Interest Projects (SIPs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ... Cognitive Impairment on Co-Occurring Chronic Conditions SIP 10-037 and Epidemiologic Follow- Up Study of... received in response to ``Examining the Impact of Cognitive Impairment on Co- Occurring Chronic Conditions...

  13. Retinopathy of Prematurity.

    ERIC Educational Resources Information Center

    Trief, E.; And Others

    1989-01-01

    Retinopathy of prematurity (ROP) has increased due to a high incidence of premature, low birthweight infants. Stages of severity range from no visual damage to total blindness, and educational problems of ROP children parallel those of other visually impaired children, early intervention being crucial. Treatments are either pharmacological or…

  14. Role of p53 in Mammary Epithelial Cell Senescence

    DTIC Science & Technology

    2009-05-01

    Cellular Senescence and Skin Aging . In Skin Aging Handbook: Market Perspectives, Pharmacology, Formulation, and Evaluation Techniques, ed., N. Dayan...identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A, 1995. 92(20): p. 9363-7. 12. Dimri, G.P., et al...NIH): ZAI1- BDP- I(J2), RFA-AI-08-012 ( Rejuvenating the Aged Immune System) 2009: Online Reviewer USAMRMC BCRP Concept

  15. Modulation of the Senescence-Associated Inflammatory Phenotype in Human Fibroblasts by Olive Phenols

    PubMed Central

    Menicacci, Beatrice; Cipriani, Caterina; Margheri, Francesca

    2017-01-01

    Senescent cells display an increase in the secretion of growth factors, inflammatory cytokines and proteolytic enzymes, termed the “senescence-associated-secretory-phenotype” (SASP), playing a major role in many age-related diseases. The phenolic compounds present in extra-virgin olive oil are inhibitors of oxidative damage and have been reported to play a protective role in inflammation-related diseases. Particularly, hydroxytyrosol and oleuropein are the most abundant and more extensively studied. Pre-senescent human lung (MRC5) and neonatal human dermal (NHDF) fibroblasts were used as cellular model to evaluate the effect of chronic (4–6 weeks) treatment with 1 μM hydroxytyrosol (HT) or 10 μM oleuropein aglycone (OLE) on senescence/inflammation markers. Both phenols were effective in reducing β-galactosidase-positive cell number and p16 protein expression. In addition, senescence/inflammation markers such as IL-6 and metalloprotease secretion, and Ciclooxigenase type 2 (COX-2) and α-smooth-actin levels were reduced by phenol treatments. In NHDF, COX-2 expression, Nuclear Factor κ-light-chain-enhancer of activated B cells (NFκB) protein level and nuclear localization were augmented with culture senescence and decreased by OLE and HT treatment. Furthermore, the inflammatory effect of Tumor Necrosis Factor α (TNFα) exposure was almost completely abolished in OLE- and HT-pre-treated NHDF. Thus, the modulation of the senescence-associated inflammatory phenotype might be an important mechanism underlying the beneficial effects of olive oil phenols. PMID:29084133

  16. Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology

    PubMed Central

    Nussey, Daniel H.; Froy, Hannah; Lemaitre, Jean-François; Gaillard, Jean-Michel; Austad, Steve N.

    2014-01-01

    That senescence is rarely, if ever, observed in natural populations is an oft-quoted fallacy within bio-gerontology. We identify the roots of this fallacy in the otherwise seminal works of Medawar and Comfort, and explain that under antagonistic pleiotropy or disposable soma explanations for the evolution of senescence there is no reason why senescence cannot evolve to be manifest within the life expectancies of wild organisms. The recent emergence of long-term field studies presents irrefutable evidence that senescence is commonly detected in nature. We found such evidence in 175 different animal species from 340 separate studies. Although the bulk of this evidence comes from birds and mammals, we also found evidence for senescence in other vertebrates and insects. We describe how high-quality longitudinal field data allow us to test evolutionary explanations for differences in senescence between the sexes and among traits and individuals. Recent studies indicate that genes, prior environment and investment in growth and reproduction influence aging rates in the wild. We argue that – with the fallacy that wild animals do not senesce finally dead and buried – collaborations between bio-gerontologists and field biologists can begin to test the ecological generality of purportedly ‘public’ mechanisms regulating aging in laboratory models. PMID:22884974

  17. Proteomic Analysis of Differentially Expressed Proteins Involved in Peel Senescence in Harvested Mandarin Fruit

    PubMed Central

    Li, Taotao; Zhang, Jingying; Zhu, Hong; Qu, Hongxia; You, Shulin; Duan, Xuewu; Jiang, Yueming

    2016-01-01

    Mandarin (Citrus reticulata), a non-climacteric fruit, is an economically important fruit worldwide. The mechanism underlying senescence of non-climacteric fruit is poorly understood. In this study, a gel-based proteomic study followed by LC-ESI-MS/MS analysis was carried out to investigate the proteomic changes involved in peel senescence in harvested mandarin “Shatangju” fruit stored for 18 days. Over the course of the storage period, the fruit gradually senesced, accompanied by a decreased respiration rate and increased chlorophyll degradation and disruption of membrane integrity. Sixty-three proteins spots that showed significant differences in abundance were identified. The up-regulated proteins were mainly associated with cell wall degradation, lipid degradation, protein degradation, senescence-related transcription factors, and transcription-related proteins. In contrast, most proteins associated with ATP synthesis and scavenging of reactive oxygen species were significantly down-regulated during peel senescence. Three thioredoxin proteins and three Ca2+ signaling-related proteins were significantly up-regulated during peel senescence. It is suggested that mandarin peel senescence is associated with energy supply efficiency, decreased antioxidant capability, and increased protein and lipid degradation. In addition, activation of Ca2+ signaling and transcription factors might be involved in cell wall degradation and primary or secondary metabolism. PMID:27303420

  18. Senescence-associated SIN3B promotes inflammation and pancreatic cancer progression

    PubMed Central

    Rielland, Maïté; Cantor, David J.; Graveline, Richard; Hajdu, Cristina; Mara, Lisa; de Diego Diaz, Beatriz; Miller, George; David, Gregory

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is strikingly resistant to conventional therapeutic approaches. We previously demonstrated that the histone deacetylase–associated protein SIN3B is essential for oncogene-induced senescence in cultured cells. Here, using a mouse model of pancreatic cancer, we have demonstrated that SIN3B is required for activated KRAS-induced senescence in vivo. Surprisingly, impaired senescence as the result of genetic inactivation of Sin3B was associated with delayed PDAC progression and correlated with an impaired inflammatory response. In murine and human pancreatic cells and tissues, levels of SIN3B correlated with KRAS-induced production of IL-1α. Furthermore, evaluation of human pancreatic tissue and cancer cells revealed that Sin3B was decreased in control and PDAC samples, compared with samples from patients with pancreatic inflammation. These results indicate that senescence-associated inflammation positively correlates with PDAC progression and suggest that SIN3B has potential as a therapeutic target for inhibiting inflammation-driven tumorigenesis. PMID:24691445

  19. The Impact of Dopant Segregation on the Maximum Carrier Density in Si:P Multilayers.

    PubMed

    Keizer, Joris G; McKibbin, Sarah R; Simmons, Michelle Y

    2015-07-28

    Abrupt dopant profiles and low resistivity are highly sought after qualities in the silicon microelectronics industry and, more recently, in the development of an all epitaxial Si:P based quantum computer. If we increase the active carrier density in silicon to the point where the material becomes superconducting, while maintaining a low thermal budget, it will be possible to fabricate nanoscale superconducting devices using the highly successful technique of depassivation lithography. In this work, we investigate the dopant profile and activation in multiple high density Si:P δ-layers fabricated by stacking individual layers with intervening silicon growth. We determine that dopant activation is ultimately limited by the formation of P-P dimers due to the segregation of dopants between multilayers. By increasing the encapsulation thickness between subsequent layers, thereby minimizing the formation of these deactivating defects, we are able to achieve an active carrier density of ns = 4.5 ×10(14) cm(-2) for a triple layer. The results of electrical characterization are combined with those of secondary ion mass spectroscopy to construct a model that accurately describes the impact of P segregation on the final active carrier density in Si:P multilayers. Our model predicts that a 3D active carrier density of 8.5 × 10(20) cm(-3) (1.7 atom %) can be achieved.

  20. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging.

    PubMed

    Baar, Marjolein P; Brandt, Renata M C; Putavet, Diana A; Klein, Julian D D; Derks, Kasper W J; Bourgeois, Benjamin R M; Stryeck, Sarah; Rijksen, Yvonne; van Willigenburg, Hester; Feijtel, Danny A; van der Pluijm, Ingrid; Essers, Jeroen; van Cappellen, Wiggert A; van IJcken, Wilfred F; Houtsmuller, Adriaan B; Pothof, Joris; de Bruin, Ron W F; Madl, Tobias; Hoeijmakers, Jan H J; Campisi, Judith; de Keizer, Peter L J

    2017-03-23

    The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging Xpd TTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. 78 FR 68005 - Approval and Promulgation of Implementation Plans; Mississippi; Transportation Conformity SIP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... this Federal Register, EPA is approving the State's implementation plan revision as a direct final rule...] Approval and Promulgation of Implementation Plans; Mississippi; Transportation Conformity SIP--Memorandum... proposing to approve a State Implementation Plan revision submitted by the Mississippi Department of...

  2. The inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells.

    PubMed

    Liu, Ailing; Wu, Jinxiang; Li, Aijun; Bi, Wenxiang; Liu, Tian; Cao, Liuzhao; Liu, Yahui; Dong, Liang

    2016-01-01

    Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence) or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE) induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence. Human bronchial epithelial cells (16HBE cells) cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS), PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway. Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence. CSE can induce cellular senescence in human bronchial epithelial cells, and ROS/PI3K/AKT/mTOR signaling pathway may play an important role in this process. C. sinensis can inhibit the CSE-induced senescence.

  3. A Genome-Wide siRNA Screen Implicates Spire1/2 in SipA-Driven Salmonella Typhimurium Host Cell Invasion

    PubMed Central

    Andritschke, Daniel; Dilling, Sabrina; Emmenlauer, Mario; Welz, Tobias; Schmich, Fabian; Misselwitz, Benjamin; Rämö, Pauli; Rottner, Klemens; Kerkhoff, Eugen; Wada, Teiji; Penninger, Josef M.; Beerenwinkel, Niko; Horvath, Peter; Dehio, Christoph; Hardt, Wolf-Dietrich

    2016-01-01

    Salmonella Typhimurium (S. Tm) is a leading cause of diarrhea. The disease is triggered by pathogen invasion into the gut epithelium. Invasion is attributed to the SPI-1 type 3 secretion system (T1). T1 injects effector proteins into epithelial cells and thereby elicits rearrangements of the host cellular actin cytoskeleton and pathogen invasion. The T1 effector proteins SopE, SopB, SopE2 and SipA are contributing to this. However, the host cell factors contributing to invasion are still not completely understood. To address this question comprehensively, we used Hela tissue culture cells, a genome-wide siRNA library, a modified gentamicin protection assay and S. TmSipA, a sopBsopE2sopE mutant which strongly relies on the T1 effector protein SipA to invade host cells. We found that S. TmSipA invasion does not elicit membrane ruffles, nor promote the entry of non-invasive bacteria "in trans". However, SipA-mediated infection involved the SPIRE family of actin nucleators, besides well-established host cell factors (WRC, ARP2/3, RhoGTPases, COPI). Stage-specific follow-up assays and knockout fibroblasts indicated that SPIRE1 and SPIRE2 are involved in different steps of the S. Tm infection process. Whereas SPIRE1 interferes with bacterial binding, SPIRE2 influences intracellular replication of S. Tm. Hence, these two proteins might fulfill non-redundant functions in the pathogen-host interaction. The lack of co-localization hints to a short, direct interaction between S. Tm and SPIRE proteins or to an indirect effect. PMID:27627128

  4. CREG1 enhances p16INK4a-induced cellular senescence

    PubMed Central

    Moolmuang, Benchamart

    2011-01-01

    Cellular senescence is an irreversible growth arrest that is activated in normal cells upon shortening of telomere and other cellular stresses. Bypassing cellular senescence is a necessary step for cells to become immortal during oncogenic transformation. During the spontaneous immortalization of Li-Fraumeni Syndrome (LFS) fibroblasts, we found that CREG1 (Cellular Repressor of E1A-stimulated Genes 1) expression was decreased during immortalization and increased in senescence. Moreover, we found that repression of CREG1 expression occurs via an epigenetic mechanism, promoter DNA methylation. Ectopic expression of CREG1 in the immortal LFS cell lines decreases cell proliferation but does not directly induce senescence. We confirmed this in osteosarcoma and fibrosarcoma cancer cell lines, cancers commonly seen in Li-Fraumeni Syndrome. In addition, we found that p16INK4a is also downregulated in immortal cells and that coexpression of CREG1 and p16INK4a, an inhibitor of CDK4/6 and Rb phosphorylation, has a greater effect than either CREG1 and p16INK4a alone to reduce cell growth, induce cell cycle arrest and cellular senescence in immortal LFS fibroblasts, osteosarcoma and fibrosarcoma cell lines. Moreover, cooperation of CREG1 and p16INK4a inhibits the expression of cyclin A and cyclin B by inhibiting promoter activity, thereby decreasing mRNA and protein levels; these proteins are required for S-phase entry and G2/M transition. In conclusion, this is the first evidence to demonstrate that CREG1 enhances p16INK4a-induced senescence by transcriptional repression of cell cycle-regulated genes. PMID:21263217

  5. Delayed animal aging through the recovery of stem cell senescence by platelet rich plasma.

    PubMed

    Liu, Hen-Yu; Huang, Chiung-Fang; Lin, Tzu-Chieh; Tsai, Ching-Yu; Tina Chen, Szu-Yu; Liu, Alice; Chen, Wei-Hong; Wei, Hong-Jian; Wang, Ming-Fu; Williams, David F; Deng, Win-Ping

    2014-12-01

    Aging is related to loss of functional stem cell accompanying loss of tissue and organ regeneration potentials. Previously, we demonstrated that the life span of ovariectomy-senescence accelerated mice (OVX-SAMP8) was significantly prolonged and similar to that of the congenic senescence-resistant strain of mice after platelet rich plasma (PRP)/embryonic fibroblast transplantation. The aim of this study is to investigate the potential of PRP for recovering cellular potential from senescence and then delaying animal aging. We first examined whether stem cells would be senescent in aged mice compared to young mice. Primary adipose derived stem cells (ADSCs) and bone marrow derived stem cells (BMSCs) were harvested from young and aged mice, and found that cell senescence was strongly correlated to animal aging. Subsequently, we demonstrated that PRP could recover cell potential from senescence, such as promote cell growth (cell proliferation and colony formation), increase osteogenesis, decrease adipogenesis, restore cell senescence related markers and resist the oxidative stress in stem cells from aged mice. The results also showed that PRP treatment in aged mice could delay mice aging as indicated by survival, body weight and aging phenotypes (behavior and gross morphology) in term of recovering the cellular potential of their stem cells compared to the results on aged control mice. In conclusion these findings showed that PRP has potential to delay aging through the recovery of stem cell senescence and could be used as an alternative medicine for tissue regeneration and future rejuvenation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Quantifying the Onset and Progression of Plant Senescence by Color Image Analysis for High Throughput Applications

    PubMed Central

    Cai, Jinhai; Okamoto, Mamoru; Atieno, Judith; Sutton, Tim; Li, Yongle; Miklavcic, Stanley J.

    2016-01-01

    Leaf senescence, an indicator of plant age and ill health, is an important phenotypic trait for the assessment of a plant’s response to stress. Manual inspection of senescence, however, is time consuming, inaccurate and subjective. In this paper we propose an objective evaluation of plant senescence by color image analysis for use in a high throughput plant phenotyping pipeline. As high throughput phenotyping platforms are designed to capture whole-of-plant features, camera lenses and camera settings are inappropriate for the capture of fine detail. Specifically, plant colors in images may not represent true plant colors, leading to errors in senescence estimation. Our algorithm features a color distortion correction and image restoration step prior to a senescence analysis. We apply our algorithm to two time series of images of wheat and chickpea plants to quantify the onset and progression of senescence. We compare our results with senescence scores resulting from manual inspection. We demonstrate that our procedure is able to process images in an automated way for an accurate estimation of plant senescence even from color distorted and blurred images obtained under high throughput conditions. PMID:27348807

  7. Keeping Control: The Role of Senescence and Development in Plant Pathogenesis and Defense

    PubMed Central

    Häffner, Eva; Konietzki, Sandra; Diederichsen, Elke

    2015-01-01

    Many plant pathogens show interactions with host development. Pathogens may modify plant development according to their nutritional demands. Conversely, plant development influences pathogen growth. Biotrophic pathogens often delay senescence to keep host cells alive, and resistance is achieved by senescence-like processes in the host. Necrotrophic pathogens promote senescence in the host, and preventing early senescence is a resistance strategy of plants. For hemibiotrophic pathogens both patterns may apply. Most signaling pathways are involved in both developmental and defense reactions. Increasing knowledge about the molecular components allows to distinguish signaling branches, cross-talk and regulatory nodes that may influence the outcome of an infection. In this review, recent reports on major molecular players and their role in senescence and in pathogen response are reviewed. Examples of pathosystems with strong developmental implications illustrate the molecular basis of selected control strategies. A study of gene expression in the interaction between the hemibiotrophic vascular pathogen Verticillium longisporum and its cruciferous hosts shows processes that are fine-tuned to counteract early senescence and to achieve resistance. The complexity of the processes involved reflects the complex genetic control of quantitative disease resistance, and understanding the relationship between disease, development and resistance will support resistance breeding. PMID:27135337

  8. Ablation of XP-V gene causes adipose tissue senescence and metabolic abnormalities

    PubMed Central

    Chen, Yih-Wen; Harris, Robert A.; Hatahet, Zafer; Chou, Kai-ming

    2015-01-01

    Obesity and the metabolic syndrome have evolved to be major health issues throughout the world. Whether loss of genome integrity contributes to this epidemic is an open question. DNA polymerase η (pol η), encoded by the xeroderma pigmentosum (XP-V) gene, plays an essential role in preventing cutaneous cancer caused by UV radiation-induced DNA damage. Herein, we demonstrate that pol η deficiency in mice (pol η−/−) causes obesity with visceral fat accumulation, hepatic steatosis, hyperleptinemia, hyperinsulinemia, and glucose intolerance. In comparison to WT mice, adipose tissue from pol η−/− mice exhibits increased DNA damage and a greater DNA damage response, indicated by up-regulation and/or phosphorylation of ataxia telangiectasia mutated (ATM), phosphorylated H2AX (γH2AX), and poly[ADP-ribose] polymerase 1 (PARP-1). Concomitantly, increased cellular senescence in the adipose tissue from pol η−/− mice was observed and measured by up-regulation of senescence markers, including p53, p16Ink4a, p21, senescence-associated (SA) β-gal activity, and SA secretion of proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) as early as 4 wk of age. Treatment of pol η−/− mice with a p53 inhibitor, pifithrin-α, reduced adipocyte senescence and attenuated the metabolic abnormalities. Furthermore, elevation of adipocyte DNA damage with a high-fat diet or sodium arsenite exacerbated adipocyte senescence and metabolic abnormalities in pol η−/− mice. In contrast, reduction of adipose DNA damage with N-acetylcysteine or metformin ameliorated cellular senescence and metabolic abnormalities. These studies indicate that elevated DNA damage is a root cause of adipocyte senescence, which plays a determining role in the development of obesity and insulin resistance. PMID:26240351

  9. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence.

    PubMed

    Jiang, Peng; Du, Wenjing; Mancuso, Anthony; Wellen, Kathryn E; Yang, Xiaolu

    2013-01-31

    Cellular senescence both protects multicellular organisms from cancer and contributes to their ageing. The pre-eminent tumour suppressor p53 has an important role in the induction and maintenance of senescence, but how it carries out this function remains poorly understood. In addition, although increasing evidence supports the idea that metabolic changes underlie many cell-fate decisions and p53-mediated tumour suppression, few connections between metabolic enzymes and senescence have been established. Here we describe a new mechanism by which p53 links these functions. We show that p53 represses the expression of the tricarboxylic-acid-cycle-associated malic enzymes ME1 and ME2 in human and mouse cells. Both malic enzymes are important for NADPH production, lipogenesis and glutamine metabolism, but ME2 has a more profound effect. Through the inhibition of malic enzymes, p53 regulates cell metabolism and proliferation. Downregulation of ME1 and ME2 reciprocally activates p53 through distinct MDM2- and AMP-activated protein kinase-mediated mechanisms in a feed-forward manner, bolstering this pathway and enhancing p53 activation. Downregulation of ME1 and ME2 also modulates the outcome of p53 activation, leading to strong induction of senescence, but not apoptosis, whereas enforced expression of either malic enzyme suppresses senescence. Our findings define physiological functions of malic enzymes, demonstrate a positive-feedback mechanism that sustains p53 activation, and reveal a connection between metabolism and senescence mediated by p53.

  10. Proteomic and Biochemical Changes during Senescence of Phalaenopsis ‘Red Dragon’ Petals

    PubMed Central

    Chen, Cong; Zeng, Lanting; Ye, Qingsheng

    2018-01-01

    Phalaenopsis flowers are some of the most popular ornamental flowers in the world. For most ornamental plants, petal longevity determines postharvest quality and garden performance. Therefore, it is important to have insight into the senescence mechanism of Phalaenopsis. In the present study, a proteomic approach combined with ultrastructural observation and activity analysis of antioxidant enzymes was used to profile the molecular and biochemical changes during pollination-induced petal senescence in Phalaenopsis “Red Dragon”. Petals appeared to be visibly wilting at 24 h after pollination, accompanied by the mass degradation of macromolecules and organelles during senescence. In addition, 48 protein spots with significant differences in abundance were found by two-dimensional electrophoresis (2-DE) and subjected to matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS). There were 42 protein spots successfully identified and homologous to known functional protein species involved in key biological processes, including antioxidant pathways, stress response, protein metabolism, cell wall component metabolism, energy metabolism, cell structure, and signal transduction. The activity of all reactive oxygen species (ROS)-scavenging enzymes was increased, keeping the content of ROS at a low level at the early stage of senescence. These results suggest that two processes, a counteraction against increased levels of ROS and the degradation of cellular constituents for maintaining nutrient recycling, are activated during pollination-induced petal senescence in Phalaenopsis. The information provides a basis for understanding the mechanism regulating petal senescence and prolonging the florescence of Phalaenopsis. PMID:29710804

  11. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    PubMed

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  12. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis.

    PubMed

    Zhang, Kewei; Xia, Xiuying; Zhang, Yanyan; Gan, Su-Sheng

    2012-02-01

    It is known that a senescing leaf loses water faster than a non-senescing leaf and that ABA has an important role in promoting leaf senescence. However, questions such as why water loss is faster, how water loss is regulated, and how ABA functions in leaf senescence are not well understood. Here we report on the identification and functional analysis of a leaf senescence associated gene called SAG113. The RNA blot and GUS reporter analyses all show that SAG113 is expressed in senescing leaves and is induced by ABA in Arabidopsis. The SAG113 expression levels are significantly reduced in aba2 and abi4 mutants. A GFP fusion protein analysis revealed that SAG113 protein is localized in the Golgi apparatus. SAG113 encodes a protein phosphatase that belongs to the PP2C family and is able to functionally complement a yeast PP2C-deficient mutant TM126 (ptc1Δ). Leaf senescence is delayed in the SAG113 knockout mutant compared with that in the wild type, stomatal movement in the senescing leaves of SAG113 knockouts is more sensitive to ABA than that of the wild type, and the rate of water loss in senescing leaves of SAG113 knockouts is significantly reduced. In contrast, inducible over-expression of SAG113 results in a lower sensitivity of stomatal movement to ABA treatment, more rapid water loss, and precocious leaf senescence. No other aspects of growth and development, including seed germination, were observed. These findings suggest that SAG113, a negative regulator of ABA signal transduction, is specifically involved in the control of water loss during leaf senescence. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  13. Cell Electrical Impedance as a Novel Approach for Studies on Senescence Not Based on Biomarkers

    PubMed Central

    Cha, Jung-Joon; Park, Yangkyu; Yun, Joho; Kim, Hyeon Woo; Park, Chang-Ju; Kang, Giseok; Jung, Minhyun; Pak, Boryeong; Jin, Suk-Won

    2016-01-01

    Senescence of cardiac myocytes is frequently associated with heart diseases. To analyze senescence in cardiac myocytes, a number of biomarkers have been isolated. However, due to the complex nature of senescence, multiple markers are required for a single assay to accurately depict complex physiological changes associated with senescence. In single cells, changes in both cytoplasm and cell membrane during senescence can affect the changes in electrical impedance. Based on this phenomenon, we developed MEDoS, a novel microelectrochemical impedance spectroscopy for diagnosis of senescence, which allows us to precisely measure quantitative changes in electrical properties of aging cells. Using cardiac myocytes isolated from 3-, 6-, and 18-month-old isogenic zebrafish, we examined the efficacy of MEDoS and showed that MEDoS can identify discernible changes in electrical impedance. Taken together, our data demonstrated that electrical impedance in cells at different ages is distinct with quantitative values; these results were comparable with previously reported ones. Therefore, we propose that MEDoS be used as a new biomarker-independent methodology to obtain quantitative data on the biological senescence status of individual cells. PMID:27812531

  14. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    DOE PAGES

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.; ...

    2017-05-24

    13C metabolic flux analysis ( 13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant ofmore » 13C MFA known as 2-Scale 13C metabolic flux analysis (2S- 13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a

  15. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.

    13C metabolic flux analysis ( 13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant ofmore » 13C MFA known as 2-Scale 13C metabolic flux analysis (2S- 13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a

  16. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    PubMed Central

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.; Gin, Jennifer; Apel, Amanda Reider; Mukhopadhyay, Aindrila; García Martín, Héctor; Keasling, Jay D.

    2017-01-01

    13C metabolic flux analysis (13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant of 13C MFA known as 2-Scale 13C metabolic flux analysis (2S-13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical

  17. The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells.

    PubMed

    Raz, Vered; Vermolen, Bart J; Garini, Yuval; Onderwater, Jos J M; Mommaas-Kienhuis, Mieke A; Koster, Abraham J; Young, Ian T; Tanke, Hans; Dirks, Roeland W

    2008-12-15

    Ex vivo, human mesenchymal stem cells (hMSCs) undergo spontaneous cellular senescence after a limited number of cell divisions. Intranuclear structures of the nuclear lamina were formed in senescent hMSCs, which are identified by the presence of Hayflick-senescence-associated factors. Notably, spatial changes in lamina shape were observed before the Hayflick senescence-associated factors, suggesting that the lamina morphology can be used as an early marker to identify senescent cells. Here, we applied quantitative image-processing tools to study the changes in nuclear architecture during cell senescence. We found that centromeres and telomeres colocalised with lamina intranuclear structures, which resulted in a preferred peripheral distribution in senescent cells. In addition, telomere aggregates were progressively formed during cell senescence. Once formed, telomere aggregates showed colocalization with gamma-H2AX but not with TERT, suggesting that telomere aggregates are sites of DNA damage. We also show that telomere aggregation is associated with lamina intranuclear structures, and increased telomere binding to lamina proteins is found in cells expressing lamina mutants that lead to increases in lamina intranuclear structures. Moreover, three-dimensional image processing revealed spatial overlap between telomere aggregates and lamina intranuclear structures. Altogether, our data suggest a mechanical link between changes in lamina spatial organization and the formation of telomere aggregates during senescence of hMSCs, which can possibly contribute to changes in nuclear activity during cell senescence.

  18. EPA Approved Nonregulatory Provisions and Quasi-Regulatory Measures in the New Jersey SIP

    EPA Pesticide Factsheets

    This section sets forth the applicable State Implementation Plan (SIP) for New Jersey under section 110 of the Clean Air Act, as amended, 42 U.S.C. 7401 et seq., and 40 CFR part 51 to meet National Ambient Air Quality Standards.

  19. Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1

    PubMed Central

    Smykowski, Anja; Fischer, Stefan M.; Zentgraf, Ulrike

    2015-01-01

    Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII. PMID:27135347

  20. Photo-oxidative stress in emerging and senescing leaves: a mirror image?

    PubMed

    Juvany, Marta; Müller, Maren; Munné-Bosch, Sergi

    2013-08-01

    The life cycle of a leaf can be characterized as consisting of different stages: from primordial leaf initiation in the shoot apical meristem (SAM) to leaf senescence. Leaf development, from early leaf growth to senescence, is tightly controlled by plant development and the environment. Here, we primarily focus on summarizing current evidence indicating that photo-oxidative stress occurs at the two extremes of a leaf's lifespan. Some recent studies clearly indicate that--as happens in senescing leaves--emerging new leaves suffer from photo-oxidative stress, which suggests that oxidative stress plays a key role at both ends of the leaf life cycle. We discuss the causes and consequences of suffering from photo-oxidative stress during leaf development, paying attention to the particularities of this process at the two extremes of leaf development. Of particular importance is the current evidence showing mechanisms that maintain an adequate cellular reactive oxygen species/antioxidant (redox) balance that allows growth and prevents oxidative damage in young emerging leaves, while later on photo-oxidative stress induces cell death in senescing leaves. Also of interest is the fact that reductions in the efficiency of photosystem II photochemistry may not necessarily indicate photo-oxidative stress in emerging leaves. In this review, we summarize current knowledge of photoinhibition, photoprotection, and photo-oxidative stress at the two ends of the leaf life cycle: early leaf growth and leaf senescence.

  1. The inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells

    PubMed Central

    Liu, Ailing; Wu, Jinxiang; Li, Aijun; Bi, Wenxiang; Liu, Tian; Cao, Liuzhao; Liu, Yahui; Dong, Liang

    2016-01-01

    Objectives Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence) or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE) induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence. Methods Human bronchial epithelial cells (16HBE cells) cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS), PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway. Results Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence. Conclusion CSE can induce cellular senescence in human bronchial epithelial cells, and ROS/PI3K/AKT/mTOR signaling pathway may play an important role in this process. C. sinensis can inhibit the CSE-induced senescence. PMID:27555762

  2. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max).

    PubMed

    Marquez-Garcia, Belén; Shaw, Daniel; Cooper, James William; Karpinska, Barbara; Quain, Marian Dorcas; Makgopa, Eugene Matome; Kunert, Karl; Foyer, Christine Helen

    2015-09-01

    Water is an increasingly scarce resource that limits crop productivity in many parts of the world, and the frequency and severity of drought are predicted to increase as a result of climate change. Improving tolerance to drought stress is therefore important for maximizing future crop yields. The aim of this study was to compare the effects of drought on soybean (Glycine max) leaves and nodules in order to define phenotypic markers and changes in cellular redox state that characterize the stress response in different organs, and to characterize the relationships between leaf and nodule senescence during drought. Leaf and crown nodule metabolite pools were measured together with leaf and soil water contents, and leaf chlorophyll, total protein contents and chlorophyll a fluorescence quenching parameters in nodulated soybeans that were grown under either well-watered conditions or deprived of water for up to 21 d. Ureides, ascorbate, protein, chlorophyll and the ratios of variable chlorophyll a fluorescence (Fv') to maximal chlorophyll a fluorescence (Fm') fell to levels below detection in the oldest leaves after 21 d of drought. While these drought-induced responses were not observed in the youngest leaf ranks, the Fv'/Fm' ratios, pyridine nucleotide levels and the reduction state of the ascorbate pool were lower in all leaf ranks after 21 d of drought. In contrast to leaves, total nodule protein, pyridine nucleotides, ureides, ascorbate and glutathione contents increased as a result of the drought treatment. However, the nodule ascorbate pool was significantly less reduced as a result of drought. Higher levels of transcripts encoding two peroxiredoxins were detected in nodules exposed to drought stress but senescence-associated transcripts and other mRNAs encoding redox-related proteins were similar under both conditions. While the physiological impact of the drought was perceived throughout the shoot, stress-induced senescence occurred only in the oldest

  3. eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration

    PubMed Central

    Butzlaff, Malte; Weigel, Arwed; Ponimaskin, Evgeni; Zeug, Andre

    2015-01-01

    Fluorescence confocal microscopy represents one of the central tools in modern sciences. Correspondingly, a growing amount of research relies on the development of novel microscopic methods. During the last decade numerous microscopic approaches were developed for the investigation of various scientific questions. Thereby, the former qualitative imaging methods became replaced by advanced quantitative methods to gain more and more information from a given sample. However, modern microscope systems being as complex as they are, require very precise and appropriate calibration routines, in particular when quantitative measurements should be compared over longer time scales or between different setups. Multispectral beads with sub-resolution size are often used to describe the point spread function and thus the optical properties of the microscope. More recently, a fluorescent layer was utilized to describe the axial profile for each pixel, which allows a spatially resolved characterization. However, fabrication of a thin fluorescent layer with matching refractive index is technically not solved yet. Therefore, we propose a novel type of calibration concept for sectioned image property (SIP) measurements which is based on fluorescent solution and makes the calibration concept available for a broader number of users. Compared to the previous approach, additional information can be obtained by application of this extended SIP chart approach, including penetration depth, detected number of photons, and illumination profile shape. Furthermore, due to the fit of the complete profile, our method is less susceptible to noise. Generally, the extended SIP approach represents a simple and highly reproducible method, allowing setup independent calibration and alignment procedures, which is mandatory for advanced quantitative microscopy. PMID:26244982

  4. The emerging role of alternative splicing in senescence and aging.

    PubMed

    Deschênes, Mathieu; Chabot, Benoit

    2017-10-01

    Deregulation of precursor mRNA splicing is associated with many illnesses and has been linked to age-related chronic diseases. Here we review recent progress documenting how defects in the machinery that performs intron removal and controls splice site selection contribute to cellular senescence and organismal aging. We discuss the functional association linking p53, IGF-1, SIRT1, and ING-1 splice variants with senescence and aging, and review a selection of splicing defects occurring in accelerated aging (progeria), vascular aging, and Alzheimer's disease. Overall, it is becoming increasingly clear that changes in the activity of splicing factors and in the production of key splice variants can impact cellular senescence and the aging phenotype. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. 77 FR 31358 - Disease, Disability, and Injury Prevention and Control Special Interest Projects (SIPs): Initial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Obesity Counseling for Primary Prevention of Cancer, SIP12-053, Panel C, initial review. In accordance... Resident Knowledge and Practice in Physical Activity, Nutrition, and Obesity Counseling for Primary...

  6. Interaction of plant growth regulators and reactive oxygen species to regulate petal senescence in wallflowers (Erysimum linifolium).

    PubMed

    Salleh, Faezah Mohd; Mariotti, Lorenzo; Spadafora, Natasha D; Price, Anna M; Picciarelli, Piero; Wagstaff, Carol; Lombardi, Lara; Rogers, Hilary

    2016-04-02

    In many species floral senescence is coordinated by ethylene. Endogenous levels rise, and exogenous application accelerates senescence. Furthermore, floral senescence is often associated with increased reactive oxygen species, and is delayed by exogenously applied cytokinin. However, how these processes are linked remains largely unresolved. Erysimum linifolium (wallflower) provides an excellent model for understanding these interactions due to its easily staged flowers and close taxonomic relationship to Arabidopsis. This has facilitated microarray analysis of gene expression during petal senescence and provided gene markers for following the effects of treatments on different regulatory pathways. In detached Erysimum linifolium (wallflower) flowers ethylene production peaks in open flowers. Furthermore senescence is delayed by treatments with the ethylene signalling inhibitor silver thiosulphate, and accelerated with ethylene released by 2-chloroethylphosphonic acid. Both treatments with exogenous cytokinin, or 6-methyl purine (which is an inhibitor of cytokinin oxidase), delay petal senescence. However, treatment with cytokinin also increases ethylene biosynthesis. Despite the similar effects on senescence, transcript abundance of gene markers is affected differentially by the treatments. A significant rise in transcript abundance of WLS73 (a putative aminocyclopropanecarboxylate oxidase) was abolished by cytokinin or 6-methyl purine treatments. In contrast, WFSAG12 transcript (a senescence marker) continued to accumulate significantly, albeit at a reduced rate. Silver thiosulphate suppressed the increase in transcript abundance both of WFSAG12 and WLS73. Activity of reactive oxygen species scavenging enzymes changed during senescence. Treatments that increased cytokinin levels, or inhibited ethylene action, reduced accumulation of hydrogen peroxide. Furthermore, although auxin levels rose with senescence, treatments that delayed early senescence did not affect

  7. Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis.

    PubMed

    Malaquin, Nicolas; Vercamer, Chantal; Bouali, Fatima; Martien, Sébastien; Deruy, Emeric; Wernert, Nicolas; Chwastyniak, Maggy; Pinet, Florence; Abbadie, Corinne; Pourtier, Albin

    2013-01-01

    The incidence of carcinoma increases greatly with aging, but the cellular and molecular mechanisms underlying this correlation are only partly known. It is established that senescent fibroblasts promote the malignant progression of already-transformed cells through secretion of inflammatory mediators. We investigated here whether the senescent fibroblast secretome might have an impact on the very first stages of carcinogenesis. We chose the cultured normal primary human epidermal keratinocyte model, because after these cells reach the senescence plateau, cells with transformed and tumorigenic properties systematically and spontaneously emerge from the plateau. In the presence of medium conditioned by autologous senescent dermal fibroblasts, a higher frequency of post-senescence emergence was observed and the post-senescence emergent cells showed enhanced migratory properties and a more marked epithelial-mesenchymal transition. Using pharmacological inhibitors, siRNAs, and blocking antibodies, we demonstrated that the MMP-1 and MMP-2 matrix metalloproteinases, known to participate in late stages of cancer invasion and metastasis, are responsible for this enhancement of early migratory capacity. We present evidence that MMPs act by activating the protease-activated receptor 1 (PAR-1), whose expression is specifically increased in post-senescence emergent keratinocytes. The physiopathological relevance of these results was tested by analyzing MMP activity and PAR-1 expression in skin sections. Both were higher in skin sections from aged subjects than in ones from young subjects. Altogether, our results suggest that during aging, the dermal and epidermal skin compartments might be activated coordinately for initiation of skin carcinoma, via a paracrine axis in which MMPs secreted by senescent fibroblasts promote very early epithelial-mesenchymal transition of keratinocytes undergoing transformation and oversynthesizing the MMP-activatable receptor PAR-1.

  8. Pseudolaric Acid B Induced Cell Cycle Arrest, Autophagy and Senescence in Murine Fibrosarcoma L929 Cell

    PubMed Central

    hua Yu, Jing; yu Liu, Chun; bin Zheng, Gui; Zhang, Li Ying; hui Yan, Ming; yan Zhang, Wen; ying Meng, Xian; fang Yu, Xiao

    2013-01-01

    Objective: PAB induced various cancer cell apoptosis, cell cycle arrest and senescence. But in cell line murine fibrosarcoma L929, PAB did not induce apoptosis, but autophagy, therefore it was thought by us as a good model to research the relationship of cell cycle arrest, autophagy and senescence bypass apoptosis. Methods: Inhibitory ratio was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Phase contrast microscopy visualized cell morphology. Hoechst 33258 staining for nuclear change, propidium iodode (PI) staining for cell cycle, monodansylcadaverine (MDC) staining for autophagy, and rodanmine 123 staining for mitochondrial membrane potential (MMP) were measured by fluorescence microscopy or flowcytometry. Apoptosis was determined by DNA ladder test. Protein kinase C (PKC) activity was detected by PKC assay kit. SA-β-galactosidase assay was used to detect senescence. Protein expression was examined by western blot. Results: PAB inhibited L929 cell growth in time-and dose-dependent manner. At 12 h, 80 μmol/L PAB induced obvious mitotic arrest; at 24 h, PAB began to induce autophagy; at 36 h, cell-treated with PAB slip into G1 cell cycle; and 3 d PAB induced senescence. In time sequence PAB induced firstly cell cycle arrest, then autophagy, then slippage into G1 phase, lastly senescence. Senescent cells had high level of autophagy, inhibiting autophagy led to apoptosis, and no senescence. PAB activated PKC activity to induce cell cycle arrest, autophagy and senescence, inhibiting PKC activity suppressed cell cycle arrest, autophagy and senescence. Conclusion: PAB induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma L929 cell through PKC. PMID:23630435

  9. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content

    PubMed Central

    Anderson, Rachel; Ryser, Peter

    2015-01-01

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season. PMID:27135339

  10. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content.

    PubMed

    Anderson, Rachel; Ryser, Peter

    2015-08-05

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season.

  11. Prematures with and without Regressed Retinopathy of Prematurity: Comparison of Long-Term (6-10 Years) Ophthalmological Morbidity.

    ERIC Educational Resources Information Center

    Cats, Bernard P.; Tan, Karel E. W. P.

    Reporting long-term ophthalmologic sequelae among ex-prematures at 6 to 10 years of age, this study compares 42 ex-premature infants who had had regressed forms of retinopathy of prematurity (ROP) during the neonatal period with 42 matched non-ROP ex-premature controls at 6 to 10 years of age. Subjects were subdivided into four groups: (1) ROP…

  12. Genomic deletion of GIT2 induces a premature age-related thymic dysfunction and systemic immune system disruption

    PubMed Central

    Siddiqui, Sana; Lustig, Ana; Carter, Arnell; Sankar, Mathavi; Daimon, Caitlin M.; Premont, Richard T.; Etienne, Harmonie; van Gastel, Jaana; Azmi, Abdelkrim; Janssens, Jonathan; Becker, Kevin G.; Zhang, Yongqing; Wood, William; Lehrmann, Elin; Martin, James G.; Martin, Bronwen; Taub, Dennis D.; Maudsley, Stuart

    2017-01-01

    Recent research has proposed that GIT2 (G protein-coupled receptor kinase interacting protein 2) acts as an integrator of the aging process through regulation of ‘neurometabolic’ integrity. One of the commonly accepted hallmarks of the aging process is thymic involution. At a relatively young age, 12 months old, GIT2−/− mice present a prematurely distorted thymic structure and dysfunction compared to age-matched 12 month-old wild-type control (C57BL/6) mice. Disruption of thymic structure in GIT2−/− (GIT2KO) mice was associated with a significant reduction in the expression of the cortical thymic marker, Troma-I (cytokeratin 8). Double positive (CD4+CD8+) and single positive CD4+ T cells were also markedly reduced in 12 month-old GIT2KO mice compared to age-matched control wild-type mice. Coincident with this premature thymic disruption in GIT2KO mice was the unique generation of a novel cervical ‘organ’, i.e. ‘parathymic lobes’. These novel organs did not exhibit classical peripheral lymph node-like characteristics but expressed high levels of T cell progenitors that were reflexively reduced in GIT2KO thymi. Using signaling pathway analysis of GIT2KO thymus and parathymic lobe transcriptomic data we found that the molecular signaling functions lost in the dysfunctional GIT2KO thymus were selectively reinstated in the novel parathymic lobe – suggestive of a compensatory effect for the premature thymic disruption. Broader inspection of high-dimensionality transcriptomic data from GIT2KO lymph nodes, spleen, thymus and parathymic lobes revealed a systemic alteration of multiple proteins (Dbp, Tef, Per1, Per2, Fbxl3, Ddit4, Sin3a) involved in the multidimensional control of cell cycle clock regulation, cell senescence, cellular metabolism and DNA damage. Altered cell clock regulation across both immune and non-immune tissues therefore may be responsible for the premature ‘aging’ phenotype of GIT2KO mice. PMID:28260693

  13. HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia

    PubMed Central

    Cole, John J.; Nelson, David M.; Dikovskaya, Dina; Faller, William J.; Vizioli, Maria Grazia; Hewitt, Rachael N.; Anannya, Orchi; McBryan, Tony; Manoharan, Indrani; van Tuyn, John; Morrice, Nicholas; Pchelintsev, Nikolay A.; Ivanov, Andre; Brock, Claire; Drotar, Mark E.; Nixon, Colin; Clark, William; Sansom, Owen J.; Anderson, Kurt I.; King, Ayala; Blyth, Karen

    2014-01-01

    Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. Expression of canonical histones is linked to alternative mRNA splicing to eliminate signals that confer mRNA instability in nonproliferating cells. Deposition of newly synthesized histones H3.3 and H4 into chromatin of senescent cells depends on HIRA. HIRA and newly deposited H3.3 colocalize at promoters of expressed genes, partially redistributing between proliferating and senescent cells to parallel changes in expression. In senescent cells, but not proliferating cells, promoters of active genes are exceptionally enriched in H4K16ac, and HIRA is required for retention of H4K16ac. HIRA is also required for retention of H4K16ac in vivo and suppression of oncogene-induced neoplasia. These results show that HIRA controls a specialized, dynamic H4K16ac-decorated chromatin landscape in senescent cells and enforces tumor suppression. PMID:25512559

  14. HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia.

    PubMed

    Rai, Taranjit Singh; Cole, John J; Nelson, David M; Dikovskaya, Dina; Faller, William J; Vizioli, Maria Grazia; Hewitt, Rachael N; Anannya, Orchi; McBryan, Tony; Manoharan, Indrani; van Tuyn, John; Morrice, Nicholas; Pchelintsev, Nikolay A; Ivanov, Andre; Brock, Claire; Drotar, Mark E; Nixon, Colin; Clark, William; Sansom, Owen J; Anderson, Kurt I; King, Ayala; Blyth, Karen; Adams, Peter D

    2014-12-15

    Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. Expression of canonical histones is linked to alternative mRNA splicing to eliminate signals that confer mRNA instability in nonproliferating cells. Deposition of newly synthesized histones H3.3 and H4 into chromatin of senescent cells depends on HIRA. HIRA and newly deposited H3.3 colocalize at promoters of expressed genes, partially redistributing between proliferating and senescent cells to parallel changes in expression. In senescent cells, but not proliferating cells, promoters of active genes are exceptionally enriched in H4K16ac, and HIRA is required for retention of H4K16ac. HIRA is also required for retention of H4K16ac in vivo and suppression of oncogene-induced neoplasia. These results show that HIRA controls a specialized, dynamic H4K16ac-decorated chromatin landscape in senescent cells and enforces tumor suppression. © 2014 Rai et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Dynamics of ARF regulation that control senescence and cancer.

    PubMed

    Ko, Aram; Han, Su Yeon; Song, Jaewhan

    2016-11-01

    ARF is an alternative reading frame product of the INK4a/ARF locus, inactivated in numerous human cancers. ARF is a key regulator of cellular senescence, an irreversible cell growth arrest that suppresses tumor cell growth. It functions by sequestering MDM2 (a p53 E3 ligase) in the nucleolus, thus activating p53. Besides MDM2, ARF has numerous other interacting partners that induce either cellular senescence or apoptosis in a p53-independent manner. This further complicates the dynamics of the ARF network. Expression of ARF is frequently disrupted in human cancers, mainly due to epigenetic and transcriptional regulation. Vigorous studies on various transcription factors that either positively or negatively regulate ARF transcription have been carried out. However, recent focus on posttranslational modifications, particularly ubiquitination, indicates wider dynamic controls of ARF than previously known. In this review, we discuss the role and dynamic regulation of ARF in senescence and cancer. [BMB Reports 2016; 49(11): 598-606].

  16. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice.

    PubMed

    Yang, Yaolong; Xu, Jie; Huang, Lichao; Leng, Yujia; Dai, Liping; Rao, Yuchun; Chen, Long; Wang, Yuqiong; Tu, Zhengjun; Hu, Jiang; Ren, Deyong; Zhang, Guangheng; Zhu, Li; Guo, Longbiao; Qian, Qian; Zeng, Dali

    2016-03-01

    Chlorophyll (Chl) b is a ubiquitous accessory pigment in land plants, green algae, and prochlorophytes. This pigment is synthesized from Chl a by chlorophyllide a oxygenase and plays a key role in adaptation to various environments. This study characterizes a rice mutant, pale green leaf (pgl), and isolates the gene PGL by using a map-based cloning approach. PGL, encoding chlorophyllide a oxygenase 1, is mainly expressed in the chlorenchyma and activated in the light-dependent Chl synthesis process. Compared with wild-type plants, pgl exhibits a lower Chl content with a reduced and disorderly thylakoid ultrastructure, which decreases the photosynthesis rate and results in reduced grain yield and quality. In addition, pgl exhibits premature senescence in both natural and dark-induced conditions and more severe Chl degradation and reactive oxygen species accumulation than does the wild-type. Moreover, pgl is sensitive to heat stress. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. HIV and drug abuse mediate astrocyte senescence in a β-catenin-dependent manner leading to neuronal toxicity.

    PubMed

    Yu, Chunjiang; Narasipura, Srinivas D; Richards, Maureen H; Hu, Xiu-Ti; Yamamoto, Bryan; Al-Harthi, Lena

    2017-10-01

    Emerging evidence suggests that cell senescence plays an important role in aging-associated diseases including neurodegenerative diseases. HIV leads to a spectrum of neurologic diseases collectively termed HIV-associated neurocognitive disorders (HAND). Drug abuse, particularly methamphetamine (meth), is a frequently abused psychostimulant among HIV+ individuals and its abuse exacerbates HAND. The mechanism by which HIV and meth lead to brain cell dysregulation is not entirely clear. In this study, we evaluated the impact of HIV and meth on astrocyte senescence using in vitro and several animal models. Astrocytes constitute up to 50% of brain cells and play a pivotal role in marinating brain homeostasis. We show here that HIV and meth induce significant senescence of primary human fetal astrocytes, as evaluated by induction of senescence markers (β-galactosidase and p16 INK 4A ), senescence-associated morphologic changes, and cell cycle arrest. HIV- and meth-mediated astrocyte senescence was also demonstrated in three small animal models (humanized mouse model of HIV/NSG-huPBMCs, HIV-transgenic rats, and in a meth administration rat model). Senescent astrocytes in turn mediated neuronal toxicity. Further, we show that β-catenin, a pro-survival/proliferation transcriptional co-activator, is downregulated by HIV and meth in human astrocytes and this downregulation promotes astrocyte senescence while induction of β-catenin blocks HIV- and meth-mediated astrocyte senescence. These studies, for the first time, demonstrate that HIV and meth induce astrocyte senescence and implicate the β-catenin pathway as potential therapeutic target to overcome astrocyte senescence. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Assessment of SIP Buildings for Sustainable Development in Rural China Using AHP-Grey Correlation Analysis.

    PubMed

    Bai, Libiao; Wang, Hailing; Shi, Chunming; Du, Qiang; Li, Yi

    2017-10-25

    Traditional rural residential construction has the problems of high energy consumption and severe pollution. In general, with sustainable development in the construction industry, rural residential construction should be aimed towards low energy consumption and low carbon emissions. To help achieve this objective, in this paper, we evaluated four different possible building structures using AHP-Grey Correlation Analysis, which consists of the Analytic Hierarchy Process (AHP) and the Grey Correlation Analysis. The four structures included the traditional and currently widely used brick and concrete structure, as well as structure insulated panels (SIPs). Comparing the performances of economic benefit and carbon emission, the conclusion that SIPs have the best overall performance can be obtained, providing a reference to help builders choose the most appropriate building structure in rural China.

  19. Delayed senescence in soybean: Terminology, research update, and survey results from growers

    USDA-ARS?s Scientific Manuscript database

    The terms used to describe symptoms of delayed senescence in soybean often are used inconsistently or interchangeably and do not adequately distinguish the observed symptoms in the field. Various causes have been proposed to explain the development of delayed senescence symptoms. In this article, we...

  20. Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy.

    PubMed

    Estrada, J C; Torres, Y; Benguría, A; Dopazo, A; Roche, E; Carrera-Quintanar, L; Pérez, R A; Enríquez, J A; Torres, R; Ramírez, J C; Samper, E; Bernad, A

    2013-06-27

    In most clinical trials, human mesenchymal stem cells (hMSCs) are expanded in vitro before implantation. The genetic stability of human stem cells is critical for their clinical use. However, the relationship between stem-cell expansion and genetic stability is poorly understood. Here, we demonstrate that within the normal expansion period, hMSC cultures show a high percentage of aneuploid cells that progressively increases until senescence. Despite this accumulation, we show that in a heterogeneous culture the senescence-prone hMSC subpopulation has a lower proliferation potential and a higher incidence of aneuploidy than the non-senescent subpopulation. We further show that senescence is linked to a novel transcriptional signature that includes a set of genes implicated in ploidy control. Overexpression of the telomerase catalytic subunit (human telomerase reverse transcriptase, hTERT) inhibited senescence, markedly reducing the levels of aneuploidy and preventing the dysregulation of ploidy-controlling genes. hMSC-replicative senescence was accompanied by an increase in oxygen consumption rate (OCR) and oxidative stress, but in long-term cultures that overexpress hTERT, these parameters were maintained at basal levels, comparable to unmodified hMSCs at initial passages. We therefore propose that hTERT contributes to genetic stability through its classical telomere maintenance function and also by reducing the levels of oxidative stress, possibly, by controlling mitochondrial physiology. Finally, we propose that aneuploidy is a relevant factor in the induction of senescence and should be assessed in hMSCs before their clinical use.