Science.gov

Sample records for premature skin aging

  1. Gadd45b deficiency promotes premature senescence and skin aging.

    PubMed

    Magimaidas, Andrew; Madireddi, Priyanka; Maifrede, Silvia; Mukherjee, Kaushiki; Hoffman, Barbara; Liebermann, Dan A

    2016-05-10

    The GADD45 family of proteins functions as stress sensors in response to various physiological and environmental stressors. Here we show that primary mouse embryo fibroblasts (MEFs) from Gadd45b null mice proliferate slowly, accumulate increased levels of DNA damage, and senesce prematurely. The impaired proliferation and increased senescence in Gadd45b null MEFs is partially reversed by culturing at physiological oxygen levels, indicating that Gadd45b deficiency leads to decreased ability to cope with oxidative stress. Interestingly, Gadd45b null MEFs arrest at the G2/M phase of cell cycle, in contrast to other senescent MEFs, which arrest at G1. FACS analysis of phospho-histone H3 staining showed that Gadd45b null MEFs are arrested in G2 phase rather than M phase. H2O2 and UV irradiation, known to increase oxidative stress, also triggered increased senescence in Gadd45b null MEFs compared to wild type MEFs. In vivo evidence for increased senescence in Gadd45b null mice includes the observation that embryos from Gadd45b null mice exhibit increased senescence staining compared to wild type embryos. Furthermore, it is shown that Gadd45b deficiency promotes senescence and aging phenotypes in mouse skin. Together, these results highlight a novel role for Gadd45b in stress-induced senescence and in tissue aging.

  2. Gadd45b deficiency promotes premature senescence and skin aging

    PubMed Central

    Magimaidas, Andrew; Madireddi, Priyanka; Maifrede, Silvia; Mukherjee, Kaushiki; Hoffman, Barbara; Liebermann, Dan A.

    2016-01-01

    The GADD45 family of proteins functions as stress sensors in response to various physiological and environmental stressors. Here we show that primary mouse embryo fibroblasts (MEFs) from Gadd45b null mice proliferate slowly, accumulate increased levels of DNA damage, and senesce prematurely. The impaired proliferation and increased senescence in Gadd45b null MEFs is partially reversed by culturing at physiological oxygen levels, indicating that Gadd45b deficiency leads to decreased ability to cope with oxidative stress. Interestingly, Gadd45b null MEFs arrest at the G2/M phase of cell cycle, in contrast to other senescent MEFs, which arrest at G1. FACS analysis of phospho-histone H3 staining showed that Gadd45b null MEFs are arrested in G2 phase rather than M phase. H2O2 and UV irradiation, known to increase oxidative stress, also triggered increased senescence in Gadd45b null MEFs compared to wild type MEFs. In vivo evidence for increased senescence in Gadd45b null mice includes the observation that embryos from Gadd45b null mice exhibit increased senescence staining compared to wild type embryos. Furthermore, it is shown that Gadd45b deficiency promotes senescence and aging phenotypes in mouse skin. Together, these results highlight a novel role for Gadd45b in stress-induced senescence and in tissue aging. PMID:27105496

  3. Occupational exposure to natural UV radiation and premature skin ageing.

    PubMed

    Lastowiecka-Moras, Elżbieta; Bugajska, Joanna; Młynarczyk, Beata

    2014-01-01

    The skin is the part of the human body most vulnerable to ultraviolet (UV) radiation. The spectrum of the negative effects of UV radiation on the skin ranges from acute erythema to carcinogenesis. Between these extreme conditions, there are other common skin lesions, e.g., photoageing. The aim of this study was to assess the skin for signs of photoageing in a group of 52 men occupationally exposed to natural UV radiation. There were 2 types of examinations: an examination of skin condition (moisture, elasticity, sebum, porosity, smoothness, discolourations and wrinkles) with a device for diagnosing the skin, and a dermatological examination. The results of both examinations revealed a higher percentage of skin characteristics typical for photoageing in outdoor workers compared to the general population.

  4. Secondhand smoke exposure-induced nucleocytoplasmic shuttling of HMGB1 in a rat premature skin aging model.

    PubMed

    Chaichalotornkul, Sirintip; Nararatwanchai, Thamthiwat; Narkpinit, Somphong; Dararat, Pornpen; Kikuchi, Kiyoshi; Maruyama, Ikuro; Tancharoen, Salunya

    2015-01-02

    Secondhand cigarette smoke exposure (SSE) has been linked to carcinogenic, oxidative, and inflammatory reactions. Herein, we investigated whether premature skin aging could be induced by SSE in a rat model, and assessed the cytoplasmic translocation of high mobility group box 1 (HMGB1) protein and collagen loss in skin tissues. Animals were divided into two groups: SSE and controls. Whole body SSE was carried out for 12 weeks. Dorsal skin tissue specimens were harvested for HMGB1 and Mallory's azan staining. Correlations between serum HMGB1 and collagen levels were determined. Rat skin exposed to secondhand smoke lost collagen bundles in the papillary dermis and collagen decreased significantly (p<0.05) compared with control rats. In epidermal keratinocytes, cytoplasmic HMGB1 staining was more diffuse and there were more HMGB1-positive cells after four weeks in SSE compared to control rats. A negative correlation between HMGB1 serum and collagen levels (r=-0.631, p=0.28) was also observed. Therefore, cytoplasmic HMGB1 expression in skin tissues might be associated with skin collagen loss upon the initiation of SSE. Additionally, long-term SSE might affect the appearance of the skin, or could accelerate the skin aging process.

  5. Aging Skin

    MedlinePlus

    ... email address Submit Home > Healthy Aging > Wellness Healthy Aging Aging skin More information on aging skin When it ... treated early. Return to top More information on Aging skin Read more from womenshealth.gov Varicose Veins ...

  6. Premature Aging in Fibromyalgia.

    PubMed

    Hassett, Afton L; Clauw, Daniel J; Williams, David A

    2015-01-01

    Chronic pain is highly prevalent in older adults, and until recently, was considered to be common but relatively "benign." Mounting evidence, however, suggests that some of the 116 million US adults who suffer from chronic pain are also at an increased risk for developing age-related diseases prematurely, suffering earlier cognitive and physical decline, and experiencing earlier mortality. Given the aging US population and the prevalence of chronic pain along with related healthcare consequences, there is a critical need to better understand the relationship between aging and chronic pain. Herein, we focus on one chronic pain state, fibromyalgia, and provide an overview of the evidence suggesting that individuals with this chronic pain condition show signs of premature aging.

  7. Premature aging syndrome.

    PubMed

    Coppedè, Fabio

    2012-01-01

    Hutchinson-Gilford progeria syndrome and Werner syndrome are two of the best characterized human progeroid diseases with clinical features mimicking physiological aging at an early age. Both disorders have been the focus of intense research in recent years since they might provide insights into the pathology of normal human aging. The chapter contains a detailed description of the clinical features of both disorders and then it focuses on the genetics, the resulting biochemical alterations at the protein level and the most recent findings and hypotheses concerning the molecular basis of the premature aging phenotypes. A description of available diagnostic and therapeutic approaches is included.

  8. Skin Aging

    MedlinePlus

    ... heal, too. Sunlight is a major cause of skin aging. You can protect yourself by staying out of ... person has smoked. Many products claim to revitalize aging skin or reduce wrinkles, but the Food and Drug ...

  9. Photo-protective activity of pogostone against UV-induced skin premature aging in mice.

    PubMed

    Wang, Xiu-Fen; Huang, Yan-Feng; Wang, Lan; Xu, Lie-Qiang; Yu, Xiu-Ting; Liu, Yu-Hong; Li, Cai-Lan; Zhan, Janis Ya-Xian; Su, Zi-Ren; Chen, Jian-Nan; Zeng, Hui-Fang

    2016-05-01

    Pogostone, a chemical constituent of patchouli oil, has been confirmed to possess favorable anti-inflammatory property. In the present study, we investigated the possible anti-photoaging potential of pogostone and the underlying mechanism against UV-induced skin damage in mice. The macroscopic and histopathological lesions were significantly ameliorated by pretreatment of pogostone as compared to the VC group. Furthermore, topical application of pogostone markedly increased the activities of the antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and observably decreased malonaldehyde (MDA) level. Analysis of inflammatory cytokines showed obvious down-regulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) in the pogostone groups. In addition, pogostone pretreatment evidently inhibited the abnormal expression of matrix metalloproteinases (MMP-1 and MMP-3). Taken together, pogostone exhibited prominent photo-protective activity mainly by its antioxidative and anti-inflammatory properties, promising it as an effective alternative pharmaceutical therapy for photoaging.

  10. [Skin antisepsis in premature infants].

    PubMed

    Agolini, G; Faldella, G; Janes, E; Raitano, A; Spinelli, M; Vitali, M

    2011-01-01

    In some premature newborns, 7 months old and with less than 1 kg of body wheight, total parenteral nutrition is used for weeks, so that good antiseptics can cooperate to the prevention of nosocomial infections, associating the best biocide effects to the best topical tolerability. Details are reported on the biocide cutaneous properties of some chloro-derivates, as sodium hypochlorite and NaDCC, of ethyl and propyl alcohols, of chlorhexidine, of iodophors and also of triclosan and octenidine (even if these latter biocids are not normally available in Italy as cutaneous antiseptics).

  11. Skin aging and dry skin.

    PubMed

    Hashizume, Hideo

    2004-08-01

    Skin aging appears to be the result of both scheduled and continuous "wear and tear" processes that damage cellular DNA and proteins. Two types of aging, chronological skin aging and photoaging, have distinct clinical and histological features. Chronological skin aging is a universal and inevitable process characterized primarily by physiologic alterations in skin function. In this case, keratinocytes are unable to properly terminally differentiate to form a functional stratum corneum, and the rate of formation of neutral lipids that contribute to the barrier function slows, causing dry, pale skin with fine wrinkles. In contrast, photoaging results from the UVR of sunlight and the damage thus becomes apparent in sun-exposed skin. Characteristics of this aging type are dry and sallow skin displaying fine wrinkles as well as deep furrows, resulting from the disorganization of epidermal and dermal components associated with elastosis and heliodermatitis. Understanding of the functions of the skin and the basic principles of moisturizer use and application is important for the prevention of skin aging. Successful treatment of dry skin with appropriate skin care products gives the impression of eternal youth.

  12. Postnatal maturation of skin barrier function in premature infants.

    PubMed

    Kanti, V; Bonzel, A; Stroux, A; Proquitté, H; Bührer, C; Blume-Peytavi, U; Bartels, N Garcia

    2014-01-01

    In preterm infants, skin barrier maturation entails regional variability. To characterize postnatal skin barrier development in covered, uncovered and diapered regions in healthy premature infants over a longitudinal observation period. Transepidermal water loss (TEWL), stratum corneum hydration (SCH), pH and sebum were measured at postnatal ages of 1-7 days and 2-7 weeks on the forehead, abdomen, thigh and buttock of preterm infants (gestational age 30-37 weeks; n = 48) under monitored ambient conditions. A standard minimal skin care regimen was practised. TEWL increased significantly on the buttock (p = 0.007), while remaining stable on the forehead, abdomen and thigh. SCH and sebum remained stable in all studied body regions with increasing age. On the buttock, pH increased (p = 0.049), while other body regions exhibited a significant decrease (p ≤ 0.019). TEWL (p < 0.001) and SCH (p ≤ 0.002) revealed significantly higher values on the buttock, compared to other body regions. Stable TEWL, SCH and sebum values may indicate a lack of skin barrier maturation. Postnatal decrease in skin pH suggests an adaptation process with acid mantle formation. Differences in skin barrier development were observed between anatomical regions. SCH, TEWL and pH values demonstrated a distinct course in the diaper area, indicating an impaired skin barrier function in this region. © 2014 S. Karger AG, Basel.

  13. Neuromodulators for Aging Skin

    MedlinePlus

    ... Choose the Best Skin Care Products Neuromodulators for Aging Skin Treatment Options Learn more about treatment options for ... MD - Los Angeles, California Why choose neuromodulators for aging skin Non-invasive — does not require surgery. Can be ...

  14. Characteristics of the Aging Skin

    PubMed Central

    Farage, Miranda A.; Miller, Kenneth W.; Elsner, Peter; Maibach, Howard I.

    2013-01-01

    Significance Although most researches into the changes in skin with age focus on the unwelcome aesthetic aspects of the aging skin, skin deterioration with age is more than a merely cosmetic problem. Although mortality from skin disease is primarily restricted to melanoma, dermatological disorders are ubiquitous in older people with a significant impact on quality of life. The structural and functional deterioration of the skin that occurs with age has numerous clinical presentations, ranging from benign but potentially excruciating disorders like pruritus to the more threatening carcinomas and melanomas. Recent Advances The degenerative changes that occur in the aging skin are increasingly understood at both the molecular and cellular level, facilitating a deeper understanding of the structural and functional deterioration that these changes produce. Critical Issues A loss of both function and structural stability in skin proceeds unavoidably as individuals age, which is the result of both intrinsic and extrinsic processes, which contribute simultaneously to a progressive loss of skin integrity. Intrinsic aging proceeds at a genetically determined pace, primarily caused by the buildup of damaging products of cellular metabolism as well as an increasing biological aging of the cells. Estrogen levels strongly influence skin integrity in women as well; falling levels in midlife, therefore, produce premature aging as compared with similarly aged men. Extrinsic insults from the environment add to the dermatological signs of aging. Future Directions A deeper understanding of the physiological basis of skin aging will facilitate progress in the treatment of the unwelcome sequelae of aging skin, both cosmetic and pathogenic. PMID:24527317

  15. Skin Care and Aging

    MedlinePlus

    ... version of this page please turn Javascript on. Skin Care and Aging How Aging Affects Skin Your skin changes with age. It becomes thinner, ... if they bother you. See additional resources on aging skin, including information on treatment options, specific conditions, and ...

  16. Chronic kidney disease and premature ageing.

    PubMed

    Kooman, Jeroen P; Kotanko, Peter; Schols, Annemie M W J; Shiels, Paul G; Stenvinkel, Peter

    2014-12-01

    Chronic kidney disease (CKD) shares many phenotypic similarities with other chronic diseases, including heart failure, chronic obstructive pulmonary disease, HIV infection and rheumatoid arthritis. The most apparent similarity is premature ageing, involving accelerated vascular disease and muscle wasting. We propose that in addition to a sedentary lifestyle and psychosocial and socioeconomic determinants, four major disease-induced mechanisms underlie premature ageing in CKD: an increase in allostatic load, activation of the 'stress resistance response', activation of age-promoting mechanisms and impairment of anti-ageing pathways. The most effective current interventions to modulate premature ageing-treatment of the underlying disease, optimal nutrition, correction of the internal environment and exercise training-reduce systemic inflammation and oxidative stress and induce muscle anabolism. Deeper mechanistic insight into the phenomena of premature ageing as well as early diagnosis of CKD might improve the application and efficacy of these interventions and provide novel leads to combat muscle wasting and vascular impairment in chronic diseases.

  17. Aging changes in skin

    MedlinePlus

    ... changes than people with darker, more heavily pigmented skin. AGING CHANGES With aging, the outer skin layer (epidermis) ... melanocytes) decreases. The remaining melanocytes increase in ... looks thinner, paler, and clear (translucent). Large pigmented ...

  18. Estrogens and aging skin

    PubMed Central

    Thornton, M. Julie

    2013-01-01

    Estrogen deficiency following menopause results in atrophic skin changes and acceleration of skin aging. Estrogens significantly modulate skin physiology, targeting keratinocytes, fibroblasts, melanocytes, hair follicles and sebaceous glands, and improve angiogenesis, wound healing and immune responses. Estrogen insufficiency decreases defense against oxidative stress; skin becomes thinner with less collagen, decreased elasticity, increased wrinkling, increased dryness and reduced vascularity. Its protective function becomes compromised and aging is associated with impaired wound healing, hair loss, pigmentary changes and skin cancer.   Skin aging can be significantly delayed by the administration of estrogen. This paper reviews estrogen effects on human skin and the mechanisms by which estrogens can alleviate the changes due to aging. The relevance of estrogen replacement, selective estrogen receptor modulators (SERMs) and phytoestrogens as therapies for diminishing skin aging is highlighted. Understanding estrogen signaling in skin will provide a basis for interventions in aging pathologies. PMID:24194966

  19. Prognosis of Full-Thickness Skin Defects in Premature Infants

    PubMed Central

    Moon, Hyung Suk; Yang, Won Yong; Kang, Sang Yoon

    2012-01-01

    Background In the extremities of premature infants, the skin and subcutaneous tissue are very pliable due to immaturity and have a greater degree of skin laxity and mobility. Thus, we can expect wounds to heal rapidly by wound contraction. This study investigates wound healing of full-thickness defects in premature infant extremities. Methods The study consisted of 13 premature infants who had a total of 14 cases of full-thickness skin defects of the extremities due to extravasation after total parenteral nutrition. The wound was managed with intensive moist dressings with antibiotic and anti-inflammatory agents. After wound closure, moisturization and mild compression were performed. Results Most of the full-thickness defects in the premature infants were closed by wound contraction without granulation tissue formation on the wound bed. The defects resulted in 3 pinpoint scars, 9 linear scars, and 2 round hypertrophic scars. The wounds with less granulation tissue were healed by contraction and resulted in linear scars parallel to the relaxed skin tension line. The wounds with more granulation tissue resulted in round scars. There was mild contracture without functional abnormality in 3 cases with a defect over two thirds of the longitudinal length of the dorsum of the hand or foot. The patients' parents were satisfied with the outcomes in 12 of 14 cases. Conclusions Full-thickness skin defects in premature infants typically heal by wound contraction with minimal granulation tissue and scar formation probably due to excellent skin mobility. PMID:23094240

  20. Prognosis of full-thickness skin defects in premature infants.

    PubMed

    Moon, Hyung Suk; Burm, Jin Sik; Yang, Won Yong; Kang, Sang Yoon

    2012-09-01

    In the extremities of premature infants, the skin and subcutaneous tissue are very pliable due to immaturity and have a greater degree of skin laxity and mobility. Thus, we can expect wounds to heal rapidly by wound contraction. This study investigates wound healing of full-thickness defects in premature infant extremities. The study consisted of 13 premature infants who had a total of 14 cases of full-thickness skin defects of the extremities due to extravasation after total parenteral nutrition. The wound was managed with intensive moist dressings with antibiotic and anti-inflammatory agents. After wound closure, moisturization and mild compression were performed. Most of the full-thickness defects in the premature infants were closed by wound contraction without granulation tissue formation on the wound bed. The defects resulted in 3 pinpoint scars, 9 linear scars, and 2 round hypertrophic scars. The wounds with less granulation tissue were healed by contraction and resulted in linear scars parallel to the relaxed skin tension line. The wounds with more granulation tissue resulted in round scars. There was mild contracture without functional abnormality in 3 cases with a defect over two thirds of the longitudinal length of the dorsum of the hand or foot. The patients' parents were satisfied with the outcomes in 12 of 14 cases. Full-thickness skin defects in premature infants typically heal by wound contraction with minimal granulation tissue and scar formation probably due to excellent skin mobility.

  1. Inhibition of Mitochondrial Cytochrome c Release and Suppression of Caspases by Gamma-Tocotrienol Prevent Apoptosis and Delay Aging in Stress-Induced Premature Senescence of Skin Fibroblasts

    PubMed Central

    Makpol, Suzana; Abdul Rahim, Norhazira; Kien Hui, Chua; Wan Ngah, Wan Zurinah

    2012-01-01

    In this study, we determined the molecular mechanism of γ-tocotrienol (GTT) in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs). Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal) and promoted G0/G1 cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P < 0.05). GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P < 0.05). Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P < 0.05) in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins. PMID:22919441

  2. Inhibition of mitochondrial cytochrome c release and suppression of caspases by gamma-tocotrienol prevent apoptosis and delay aging in stress-induced premature senescence of skin fibroblasts.

    PubMed

    Makpol, Suzana; Abdul Rahim, Norhazira; Hui, Chua Kien; Ngah, Wan Zurinah Wan

    2012-01-01

    In this study, we determined the molecular mechanism of γ-tocotrienol (GTT) in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs). Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal) and promoted G(0)/G(1) cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P < 0.05). GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P < 0.05). Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P < 0.05) in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.

  3. Genetics and skin aging

    PubMed Central

    Makrantonaki, Evgenia; Bekou, Vassiliki; Zouboulis, Christos C.

    2012-01-01

    Skin aging is a complex process and underlies multiple influences with the probable involvement of heritable and various environmental factors. Several theories have been conducted regarding the pathomechanisms of aged skin, however fundamental mechanisms still remain poorly understood. This article addresses the influence of genetics on skin aging and in particular deals with the differences observed in ethnic populations and between both genders. Recent studies indicate that male and female aged skin differs as far as the type, the consistency and the sensitivity to external factors is concerned. The same has been also documented between elderly people of different origin. Consequently, the aging process taking place in both genders and in diverse ethnic groups should be examined separately and products specialized to each population should be developed in order to satisfy the special needs. PMID:23467395

  4. Quantitation of baby wipes lotion transfer to premature and neonatal skin.

    PubMed

    Hossain, Md Monir; Jones, Jennifer M; Dey, Swatee; Carr, Gregory J; Visscher, Marty O

    2015-10-01

    Exposure to topically applied substances occurs routinely in premature and hospitalized infant care. Safety determinations are most accurate when exposures are based on appropriately designed studies to capture variations in practice patterns and population heterogeneity. Current safety assessments may not reflect actual practice resulting in overly conservative or understated default assumptions for toxicological determinations. We quantified the amount of baby wipes lotion transferred to premature and term neonatal skin as grams/kg body weight/day. We observed the soil type and number of wipes used for skin cleansing and measured lotion transfer from one wipe applied to freshly clean, dry skin. A Bayesian imputation approach was applied to compute lotion exposure and produce summary statistics. Model covariates were age and weight at evaluation, gender, soil type, soil amount, and number of diaper changes per day. Lotion transfer was measured for 66 premature and 55 term neonates with 449 and 254 evaluations, respectively. The wipes per day was 12.52 overall (all infants and soils), 12.78 for premature and 12.21 for term neonates. Lotion transfer was 0.20 g/kg/day (95th percentile) overall, 0.21 for premature and 0.19 for term neonates. The statistical and experimental methodology represents an effective strategy for determining exposure and assessing risk. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. [Environmental pollution and skin aging].

    PubMed

    Vierkötter, A

    2011-08-01

    Extrinsic skin aging is the skin aging process induced by environmental factors. The most prominent environmental factor leading to extrinsic skin aging is the sun; therefore extrinsic skin aging is also known as photoaging. However, numerous studies in recent years have shown that smoking leads to extrinsic skin aging. Further, very recently it has been shown, that environmental pollution by traffic is also associated with the occurrence of signs of extrinsic skin aging. Thus, in preventive skin aging strategies the long-term exposure towards air pollution by traffic must also be considered.

  6. Prematurity Affects Age of Presentation of Pyloric Stenosis.

    PubMed

    Costanzo, Caitlyn M; Vinocur, Charles; Berman, Loren

    2017-02-01

    Term infants with hypertrophic pyloric stenosis (HPS) typically present between 4 and 6 weeks. There is limited consensus, however, regarding age of presentation of premature infants. We aim to determine if there is an association between the degree of prematurity and chronological age of presentation of HPS. A total of 2988 infants who had undergone a pyloromyotomy for HPS were identified from the 2012 and 2013 NSQIP-P Participant Use Files. Two hundred seventeen infants (7.3%) were born prematurely. A greater degree of prematurity was associated with an older chronological age of presentation ( P < .0001). Prematurity was significantly associated with an increase in overall postoperative morbidity, reintubation, readmission, and postoperative length of stay. When clinicians evaluate an infant with nonbilious emesis with a history of prematurity, they should consider pyloric stenosis if the calculated postconceptional age is between 44 and 50 weeks. When counseling families of premature infants, surgeons should discuss the increased incidence of postpyloromyotomy morbidity.

  7. Premature and accelerated aging: HIV or HAART?

    PubMed Central

    Smith, Reuben L.; de Boer, Richard; Brul, Stanley; Budovskaya, Yelena; van Spek, Hans

    2013-01-01

    Highly active antiretroviral therapy (HAART) has significantly increased life expectancy of the human immunodeficiency virus (HIV)-positive population. Nevertheless, the average lifespan of HIV-patients remains shorter compared to uninfected individuals. Immunosenescence, a current explanation for this difference invokes heavily on viral stimulus despite HAART efficiency in viral suppression. We propose here that the premature and accelerated aging of HIV-patients can also be caused by adverse effects of antiretroviral drugs, specifically those that affect the mitochondria. The nucleoside reverse transcriptase inhibitor (NRTI) antiretroviral drug class for instance, is known to cause depletion of mitochondrial DNA via inhibition of the mitochondrial specific DNA polymerase-γ. Besides NRTIs, other antiretroviral drug classes such as protease inhibitors also cause severe mitochondrial damage by increasing oxidative stress and diminishing mitochondrial function. We also discuss important areas for future research and argue in favor of the use of Caenorhabditis elegans as a novel model system for studying these effects. PMID:23372574

  8. Major full thickness skin burn injuries in premature neonate twins.

    PubMed

    Rimdeika, R; Bagdonas, R

    2005-02-01

    Burns in neonates have been reported following the use of pulse oximeters, various electrodes, chemical disinfecting agents and phototherapy blankets. Burn injuries in premature neonates are very rare and there have been no reports on major full skin thickness injuries. This case reports on preterm neonate male twins delivered at a Community Hospital. After the delivery they were placed on water warmers for 15-20 min and then transported into incubators. Burn injuries were noticed 1h after the delivery. Infant One, weight 1500 g, had an injury of 20% TBSA on his dorsum, waist and buttocks. The other infant, weight 1835 g, had an injury of 14% TBSA on the same areas. The infants were transported to the University Hospital. At the seventh day after the injury they recovered from respiratory distress and surgical procedures started. The eschar was excised deep to fascia and wounds were grafted with 0.1mm thickness skin grafts harvested from the thigh and cut into islets. Autografts were protected by overlay with fresh allograft harvested from the twins' father. Surgery procedures were performed in two steps, each second day, not exceeding 10% of total body area during excision. Donor sites healed at the eighth day after the surgery. Burn wounds healed gradually by way of spontaneous replacement of allograft and wound closure by spontaneous epithelization from the autograft islets. Eighteen days after the surgery all the grafted wounds were found epithelized. We conclude that in premature neonates relatively low temperatures may cause deep burn injuries. We recommend the delivery of preterm childbirths at well equipped facilities with staff qualified in nursing of premature neonates.

  9. Healthy Skin Matters

    MedlinePlus

    ... increases the risk of skin cancer and premature skin aging just like too much sun. In fact, most ... is known to lead to signs of premature aging of the skin such as wrinkling and age spots. UVB rays ...

  10. Progeria: a rare genetic premature ageing disorder.

    PubMed

    Sinha, Jitendra Kumar; Ghosh, Shampa; Raghunath, Manchala

    2014-05-01

    Progeria is characterized by clinical features that mimic premature ageing. Although the mutation responsible for this syndrome has been deciphered, the mechanism of its action remains elusive. Progeria research has gained momentum particularly in the last two decades because of the possibility of revealing evidences about the ageing process in normal and other pathophysiological conditions. Various experimental models, both in vivo and in vitro, have been developed in an effort to understand the cellular and molecular basis of a number of clinically heterogeneous rare genetic disorders that come under the umbrella of progeroid syndromes (PSs). As per the latest clinical trial reports, Lonafarnib, a farnesyltranferase inhibitor, is a potent 'drug of hope' for Hutchinson-Gilford progeria syndrome (HGPS) and has been successful in facilitating weight gain and improving cardiovascular and skeletal pathologies in progeroid children. This can be considered as the dawn of a new era in progeria research and thus, an apt time to review the research developments in this area highlighting the molecular aspects, experimental models, promising drugs in trial and their implications to gain a better understanding of PSs.

  11. Premature aging in telomerase-deficient zebrafish

    PubMed Central

    Anchelin, Monique; Alcaraz-Pérez, Francisca; Martínez, Carlos M.; Bernabé-García, Manuel; Mulero, Victoriano; Cayuela, María L.

    2013-01-01

    SUMMARY The study of telomere biology is crucial to the understanding of aging and cancer. In the pursuit of greater knowledge in the field of human telomere biology, the mouse has been used extensively as a model. However, there are fundamental differences between mouse and human cells. Therefore, additional models are required. In light of this, we have characterized telomerase-deficient zebrafish (Danio rerio) as the second vertebrate model for human telomerase-driven diseases. We found that telomerase-deficient zebrafish show p53-dependent premature aging and reduced lifespan in the first generation, as occurs in humans but not in mice, probably reflecting the similar telomere length in fish and humans. Among these aging symptoms, spinal curvature, liver and retina degeneration, and infertility were the most remarkable. Although the second-generation embryos died in early developmental stages, restoration of telomerase activity rescued telomere length and survival, indicating that telomerase dosage is crucial. Importantly, this model also reproduces the disease anticipation observed in humans with dyskeratosis congenita (DC). Thus, telomerase haploinsufficiency leads to anticipation phenomenon in longevity, which is related to telomere shortening and, specifically, with the proportion of short telomeres. Furthermore, p53 was induced by telomere attrition, leading to growth arrest and apoptosis. Importantly, genetic inhibition of p53 rescued the adverse effects of telomere loss, indicating that the molecular mechanisms induced by telomere shortening are conserved from fish to mammals. The partial rescue of telomere length and longevity by restoration of telomerase activity, together with the feasibility of the zebrafish for high-throughput chemical screening, both point to the usefulness of this model for the discovery of new drugs able to reactivate telomerase in individuals with DC. PMID:23744274

  12. [Methods for measuring skin aging].

    PubMed

    Zieger, M; Kaatz, M

    2016-02-01

    Aging affects human skin and is becoming increasingly important with regard to medical, social and aesthetic issues. Detection of intrinsic and extrinsic components of skin aging requires reliable measurement methods. Modern techniques, e.g., based on direct imaging, spectroscopy or skin physiological measurements, provide a broad spectrum of parameters for different applications.

  13. Impact of Prematurity on Language Skills at School Age

    ERIC Educational Resources Information Center

    Smith, Jamie Mahurin; DeThorne, Laura Segebart; Logan, Jessica A. R.; Channell, Ron W.; Petrill, Stephen A.

    2014-01-01

    Purpose: The existing literature on language outcomes in children born prematurely focuses almost exclusively on standardized test scores rather than discourse-level abilities. The authors of this study looked longitudinally at school-age language outcomes and potential moderating variables for a group of twins born prematurely versus a control…

  14. Impact of Prematurity on Language Skills at School Age

    ERIC Educational Resources Information Center

    Smith, Jamie Mahurin; DeThorne, Laura Segebart; Logan, Jessica A. R.; Channell, Ron W.; Petrill, Stephen A.

    2014-01-01

    Purpose: The existing literature on language outcomes in children born prematurely focuses almost exclusively on standardized test scores rather than discourse-level abilities. The authors of this study looked longitudinally at school-age language outcomes and potential moderating variables for a group of twins born prematurely versus a control…

  15. A premature infant with skin injury successfully treated with bilayered cellular matrix.

    PubMed

    Stephens, Rockne; Wilson, Kenna; Silverstein, Paul

    2002-04-01

    The immature skin of premature infants is functionally less effective than the skin of full-term infants and therefore more vulnerable to injury. This article discusses the use of a biologic wound healing agent--bilayered cellular matrix--to heal a denuded hip wound in a premature infant. The treatment involved a compassionate use, single application of an investigational biologic wound healing agent to a 2.0-cm x 1.5-cm hip wound in a 23-week gestational age premature infant. A sterile, nonadherent dressing containing 3% bismuth tribromophenate in a special petrolatum blend on a fine mesh gauze also was applied over the biologic dressing and changed as needed. Wound closure was evaluated by photographs taken before and after the application of the bilayered cellular matrix. Wound measurements were reduced to 1.0 cm x 0.5 cm by day 4 post application of the bilayered cellular matrix, and clean granulation tissue was present. The wound was healed 10 days later. No signs or symptoms of infection were evident during the follow-up period and no adverse events were recorded. Comparative studies are warranted to fully evaluate the utility of bilayered cellular matrix in this clinical setting.

  16. Skin connective tissue and ageing.

    PubMed

    Calleja-Agius, Jean; Brincat, Mark; Borg, Marika

    2013-10-01

    Collagen atrophy is a major factor in skin ageing. A strong correlation exists between skin collagen loss and oestrogen deficiency caused by the menopause. Skin ageing is associated with a progressive increase in extensibility and a reduction in elasticity. With increasing age, the skin also becomes more fragile and susceptible to trauma, leading to more lacerations and bruising. Furthermore, wound healing is impaired in older women. Oestrogen use after the menopause increases collagen content, dermal thickness and elasticity, and it decreases the likelihood of senile dry skin. Large-scale clinical trials are necessary to help make informed recommendations about postmenopausal oestrogen use and its role in preventing skin ageing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. [Fluorine as a factor in premature aging].

    PubMed

    Machoy-Mokrzyńska, Anna

    2004-01-01

    osteoblasts, stimulate fibroblasts to produce collagenase, and trigger toxic reactions in osteocytes and chondrocytes of trabecular bone. Growing deformations of the skeleton reduce mobility and result in permanent crippling of the patient. Fluoride increases the mass of non-collagen proteins such as proteoglycans and glucosaminoglycans, accelerating skin aging even though protein biosynthesis is generally suppressed. The final outcome includes progressive vascular lesions and disorders of energy metabolism in muscles. In conclusions, the use of fluoride, particularly by dentists and pediatricians, must be controlled and adapted to individual needs. It is worth remembering that fluoride: is the cause of disability due to bone deformations and abnormalities in the musculoskeletal system; reduces the incidence of caries but do not protect against tooth loss; exerts an adverse effect of metabolic processes in the skin; accelerates calcification of vessels and thus reduces their elasticity; inhibits bioenergetic reactions, in particular oxidative phosphorylation, reducing physical activity of muscles. These findings suggest that fluorine may be yet another factor in accelerated aging and revive the dispute started more than two and half thousand years ago whether aging is a physiologic or pathologic process. The understanding of factors modifying the process of aging is the basis for preventive measures aimed at extending life and maintaining full psychosocial activity.

  18. Bioactive compounds from natural resources against skin aging.

    PubMed

    Mukherjee, Pulok K; Maity, Niladri; Nema, Neelesh K; Sarkar, Birendra K

    2011-12-15

    Skin aging involves degradation of extracellular matrix (ECM) in both the epidermal and dermal layers, it leaves visible signs on the surface of skin and the physical properties of the skin are modified. Chronological aging is due to passage of time, whereas premature aging occurred due to some environmental factors on skin produces visible signs such as irregular dryness, dark/light pigmentation, sallowness, severe atrophy, telangiectases, premalignant lesions, laxity, leathery appearance and deep wrinkling. There are several synthetic skincare cosmetics existing in the market to treat premature aging and the most common adverse reactions of those include allergic contact dermatitis, irritant contact dermatitis, phototoxic and photo-allergic reactions. Recent trends in anti-aging research projected the use of natural products derived from ancient era after scientific validation. Ample varieties of phytomolecules such as aloin, ginsenoside, curcumin, epicatechin, asiaticoside, ziyuglycoside I, magnolol, gallic acid, hydroxychavicol, hydroxycinnamic acids, hydroxybenzoic acids, etc. scavenges free radicals from skin cells, prevent trans-epidermal water loss, include a sun protection factor (SPF) of 15 or higher contribute to protect skin from wrinkles, leading to glowing and healthy younger skin. Present era of treating aging skin has become technologically more invasive; but herbal products including botanicals are still relevant and combining them with molecular techniques outlined throughout this review will help to maximize the results and maintain the desired anti-skin aging benefits.

  19. DNA-related pathways defective in human premature aging.

    PubMed

    Bohr, Vilhelm A

    2002-05-07

    One of the major issues in studies on aging is the choice of biological model system. The human premature aging disorders represent excellent model systems for the study of the normal aging process, which occurs at a much earlier stage in life in these individuals than in normals. The patients with premature aging also get the age associated diseases at an early stage in life, and thus age associated disease can be studied as well. It is thus of great interest to understand the molecular pathology of these disorders.

  20. Aging Differences in Ethnic Skin

    PubMed Central

    Buainain De Castro Maymone, Mayra; Kundu, Roopal V.

    2016-01-01

    Aging is an inevitable and complex process that can be described clinically as features of wrinkles, sunspots, uneven skin color, and sagging skin. These cutaneous effects are influenced by both intrinsic and extrinsic factors and often are varied based on ethnic origin given underlying structural and functional differences. The authors sought to provide updated information on facets of aging and how it relates to ethnic variation given innate differences in skin structure and function. Publications describing structural and functional principles of ethnic and aging skin were primarily found through a PubMed literature search and supplemented with a review of textbook chapters. The most common signs of skin aging despite skin type are dark spots, loss of elasticity, loss of volume, and rhytides. Skin of color has many characteristics that make its aging process unique. Those of Asian, Hispanic, and African American descent have distinct facial structures. Differences in the concentration of epidermal melanin makes darkly pigmented persons more vulnerable to dyspigmentation, while a thicker and more compact dermis makes facial lines less noticeable. Ethnic skin comprises a large portion of the world population. Therefore, it is important to understand the unique structural and functional differences among ethnicities to adequately treat the signs of aging. PMID:26962390

  1. Chronic kidney disease: a clinical model of premature aging.

    PubMed

    Stenvinkel, Peter; Larsson, Tobias E

    2013-08-01

    Premature aging is a process associated with a progressive accumulation of deleterious changes over time, an impairment of physiologic functions, and an increase in the risk of disease and death. Regardless of genetic background, aging can be accelerated by the lifestyle choices and environmental conditions to which our genes are exposed. Chronic kidney disease is a common condition that promotes cellular senescence and premature aging through toxic alterations in the internal milieu. This occurs through several mechanisms, including DNA and mitochondria damage, increased reactive oxygen species generation, persistent inflammation, stem cell exhaustion, phosphate toxicity, decreased klotho expression, and telomere attrition. Because recent evidence suggests that both increased local signaling of growth factors (through the nutrient-sensing mammalian target of rapamycin) and decreased klotho expression are important modulators of aging, interventions that target these should be tested in this prematurely aged population. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  2. Specific premature epigenetic aging of cartilage in osteoarthritis

    PubMed Central

    Vidal-Bralo, Laura; Lopez-Golan, Yolanda; Mera-Varela, Antonio; Rego-Perez, Ignacio; Horvath, Steve; Zhang, Yuhua; del Real, Álvaro; Zhai, Guangju; Blanco, Francisco J; Riancho, Jose A.; Gomez-Reino, Juan J; Gonzalez, Antonio

    2016-01-01

    Osteoarthritis (OA) is a disease affecting multiple tissues of the joints in the elderly, but most notably articular cartilage. Premature biological aging has been described in this tissue and in blood cells, suggesting a systemic component of premature aging in the pathogenesis of OA. Here, we have explored epigenetic aging in OA at the local (cartilage and bone) and systemic (blood) levels. Two DNA methylation age-measures (DmAM) were used: the multi-tissue age estimator for cartilage and bone; and a blood-specific biomarker for blood. Differences in DmAM between OA patients and controls showed an accelerated aging of 3.7 years in articular cartilage (95 % CI = 1.1 to 6.3, P = 0.008) of OA patients. By contrast, no difference in epigenetic aging was observed in bone (0.04 years; 95 % CI = −1.8 to 1.9, P = 0.3) and in blood (−0.6 years; 95 % CI = −1.5 to 0.3, P = 0.2) between OA patients and controls. Therefore, premature epigenetic aging according to DNA methylation changes was specific of OA cartilage, adding further evidence and insight on premature aging of cartilage as a component of OA pathogenesis that reflects damage and vulnerability. PMID:27689435

  3. To Correct or Not to Correct: Age Adjustment for Prematurity.

    ERIC Educational Resources Information Center

    Aylward, Glen P.; And Others

    To evaluate whether conceptional or chronologic age should be used to determine scores in developmental follow-up studies, a study was made of 236 normal and 66 neurologically abnormal infants who were similar with respect to conceptional age but different with respect to degree of prematurity. Assessments of possible differences in cognitive and…

  4. Ovarian aging and premature ovarian failure

    PubMed Central

    Şükür, Yavuz Emre; Kıvançlı, İçten Balık; Özmen, Batuhan

    2014-01-01

    Physiological reproductive aging occurs as a result of a decrease in the number and quality of oocytes in ovarian cortex follicles. Although the reason for the decrease in the quality of the pool and follicular oocytes is not fully understood, endocrine, paracrine, genetic, and metabolic factors are thought to be effective. Nowadays, in order to understand the mechanisms of ovarian aging, genomic research has gained importance. The effect of co-factors, such as telomerase and ceramide, in the ovarian aging process is only getting ascertained with new research studies. The most important tests in the assessment of ovarian aging are antral follicle count and anti-Mullerian hormone. PMID:25317048

  5. Skin anti-aging strategies.

    PubMed

    Ganceviciene, Ruta; Liakou, Aikaterini I; Theodoridis, Athanasios; Makrantonaki, Evgenia; Zouboulis, Christos C

    2012-07-01

    Skin aging is a complex biological process influenced by a combination of endogenous or intrinsic and exogenous or extrinsic factors. Because of the fact that skin health and beauty is considered one of the principal factors representing overall "well-being" and the perception of "health" in humans, several anti-aging strategies have been developed during the last years. It is the intention of this article to review the most important anti-aging strategies that dermatologists have nowadays in hand, including including preventive measurements, cosmetological strategies, topical and systemic therapeutic agents and invasive procedures.

  6. Skin anti-aging strategies

    PubMed Central

    Ganceviciene, Ruta; Liakou, Aikaterini I.; Theodoridis, Athanasios; Makrantonaki, Evgenia; Zouboulis, Christos C.

    2012-01-01

    Skin aging is a complex biological process influenced by a combination of endogenous or intrinsic and exogenous or extrinsic factors. Because of the fact that skin health and beauty is considered one of the principal factors representing overall “well-being” and the perception of “health” in humans, several anti-aging strategies have been developed during the last years. It is the intention of this article to review the most important anti-aging strategies that dermatologists have nowadays in hand, including including preventive measurements, cosmetological strategies, topical and systemic therapeutic agents and invasive procedures. PMID:23467476

  7. Premature birth and age at onset of puberty.

    PubMed

    Hui, Lai Ling; Leung, Gabriel M; Lam, Tai Hing; Schooling, C Mary

    2012-05-01

    Premature birth is associated with poor metabolic health in both sexes, potentially via earlier pubertal timing. We examined the associations of gestational age and premature birth (< 37 weeks gestation) with age at onset of puberty (Tanner stage II for breast or genitalia development). We used interval-censored survival analyses in 3963 boys and 3403 girls (93% follow-up) in a population-representative Chinese birth cohort, "Children of 1997," comprising 88% of births in Hong Kong in April and May 1997. We also examined whether the associations varied with sex or with height or body mass index (BMI) at 7 years. Premature girls reached puberty about 4 months later than girls with ≥ 41 weeks' gestation (time ratio = 1.04 [95% confidence interval = 1.01-1.06]), adjusted for mother' age of menarche, mother's place of birth, and smoking during pregnancy. Gestational age was not associated with onset of puberty in boys (test for interaction by sex, P < 0.01). None of these associations was altered by adjustment for socioeconomic position or varied with childhood height or BMI. Premature birth was not related to earlier onset of puberty; instead, premature girls had later onset of puberty. Thus, the association between premature birth and subsequent cardiovascular risk is probably not mediated through the timing of pubertal onset. It is unclear whether onset, duration, or tempo of puberty is more relevant to the detrimental consequences of early puberty. Further studies investigating intrauterine, infant, and childhood influences on the duration and tempo of puberty may help unravel the early origins of cardiovascular diseases.

  8. Oxidation events and skin aging.

    PubMed

    Kammeyer, A; Luiten, R M

    2015-05-01

    The rate of skin aging, or that of tissue in general, is determined by a variable predominance of tissue degeneration over tissue regeneration. This review discusses the role of oxidative events of tissue degeneration and aging in general, and for the skin in particular. The mechanisms involved in intrinsic and extrinsic (photo-) aging are described. Since photoaging is recognized as an important extrinsic aging factor, we put special emphasize on the effects of UV exposure on aging, and its variable influence according to global location and skin type. We here summarise direct photochemical effects of UV on DNA, RNA, proteins and vitamin D, the factors contributing to UV-induced immunosuppression, which may delay aging, the nature and origin of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as indirect contributors for aging, and the consequences of oxidative events for extracellular matrix (ECM) degradation, such as that of collagen. We conclude that conflicting data on studies investigating the validity of the free radical damage theory of aging may reflect variations in the level of ROS induction which is difficult to quantify in vivo, and the lack of targeting of experimental ROS to the relevant cellular compartment. Also mitohormesis, an adaptive response, may arise in vivo to moderate ROS levels, further complicating interpretation of in vivo results. We here describes how skin aging is mediated both directly and indirectly by oxidative degeneration.This review indicates that skin aging events are initiated and often propagated by oxidation events, despite recently recognized adaptive responses to oxidative stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The role of peroxisome proliferator-activated receptor-coactivator-1 gene in skin aging.

    PubMed

    Aghaei, Shahrzad; Nilforoushzadeh, Mohammad Ali; Aghaei, Maryam

    2016-01-01

    Skin aging is a continuous process that exhibits fine and deep wrinkles, thin and transparent skin, loss of underlying fat, dry skin and itch, following decreased collagen and elastin synthesis. Both extrinsic and intrinsic agents are considered in the pathogenesis on skin aging. Extrinsic factors such as sun exposure, windy and dry weather, nutrition, and lifestyle may induce premature aging, toxic-free radicals, and reactive oxygen species due to decreasing normal function of mitochondria which play the major intrinsic factors in premature skin aging. One of the major genetic factors in mitochondrial function is peroxisome proliferator-activated receptor-coactivator-1 (PGC-1) gene. This factor could delay skin aging by increasing the mitochondrial biogenesis and replication and oxidative phosphorylation and so may induce free radical scavenging. This review is focused on intrinsic skin aging and the role of PGC-1 protein in decreasing effect of aging causes.

  10. The role of peroxisome proliferator-activated receptor-coactivator-1 gene in skin aging

    PubMed Central

    Aghaei, Shahrzad; Nilforoushzadeh, Mohammad Ali; Aghaei, Maryam

    2016-01-01

    Skin aging is a continuous process that exhibits fine and deep wrinkles, thin and transparent skin, loss of underlying fat, dry skin and itch, following decreased collagen and elastin synthesis. Both extrinsic and intrinsic agents are considered in the pathogenesis on skin aging. Extrinsic factors such as sun exposure, windy and dry weather, nutrition, and lifestyle may induce premature aging, toxic-free radicals, and reactive oxygen species due to decreasing normal function of mitochondria which play the major intrinsic factors in premature skin aging. One of the major genetic factors in mitochondrial function is peroxisome proliferator-activated receptor-coactivator-1 (PGC-1) gene. This factor could delay skin aging by increasing the mitochondrial biogenesis and replication and oxidative phosphorylation and so may induce free radical scavenging. This review is focused on intrinsic skin aging and the role of PGC-1 protein in decreasing effect of aging causes. PMID:27904582

  11. Aging syndrome genes and premature coronary artery disease

    PubMed Central

    Low, Adrian F; O'Donnell, Christopher J; Kathiresan, Sekar; Everett, Brendan; Chae, Claudia U; Shaw, Stanley Y; Ellinor, Patrick T; MacRae, Calum A

    2005-01-01

    Background Vascular disease is a feature of aging, and coronary vascular events are a major source of morbidity and mortality in rare premature aging syndromes. One such syndrome is caused by mutations in the lamin A/C (LMNA) gene, which also has been implicated in familial insulin resistance. A second gene related to premature aging in man and in murine models is the KLOTHO gene, a hypomorphic variant of which (KL-VS) is significantly more common in the first-degree relatives of patients with premature coronary artery disease (CAD). We evaluated whether common variants at the LMNA or KLOTHO genes are associated with rigorously defined premature CAD. Methods We identified 295 patients presenting with premature acute coronary syndromes confirmed by angiography. A control group of 145 patients with no evidence of CAD was recruited from outpatient referral clinics. Comprehensive haplotyping of the entire LMNA gene, including the promoter and untranslated regions, was performed using a combination of TaqMan® probes and direct sequencing of 14 haplotype-tagging single nucleotide polymorphisms (SNPs). The KL-VS variant of the KLOTHO gene was typed using restriction digest of a PCR amplicon. Results Two SNPs that were not in Hardy Weinberg equilibrium were excluded from analysis. We observed no significant differences in allele, genotype or haplotype frequencies at the LMNA or KLOTHO loci between the two groups. In addition, there was no evidence of excess homozygosity at the LMNA locus. Conclusion Our data do not support the hypothesis that premature CAD is associated with common variants in the progeroid syndrome genes LMNA and KLOTHO. PMID:16262891

  12. Melatonin and human skin aging

    PubMed Central

    Kleszczynski, Konrad; Fischer, Tobias W.

    2012-01-01

    Like the whole organism, skin follows the process of aging during life-time. Additional to internal factors, several environmental factors, such as solar radiation, considerably contribute to this process. While fundamental mechanisms regarding skin aging are known, new aspects of anti-aging agents such as melatonin are introduced. Melatonin is a hormone produced in the glandula pinealis that follows a circadian light-dependent rhythm of secretion. It has been experimentally implicated in skin functions such as hair cycling and fur pigmentation, and melatonin receptors are expressed in many skin cell types including normal and malignant keratinocytes, melanocytes and fibroblasts. It possesses a wide range of endocrine properties as well as strong antioxidative activity. Regarding UV-induced solar damage, melatonin distinctly counteracts massive generation of reactive oxygen species, mitochondrial and DNA damage. Thus, there is considerable evidence for melatonin to be an effective anti-skin aging compound, and its various properties in this context are described in this review. PMID:23467217

  13. Impact of prematurity on language skills at school age.

    PubMed

    Smith, Jamie Mahurin; DeThorne, Laura Segebart; Logan, Jessica A R; Channell, Ron W; Petrill, Stephen A

    2014-06-01

    The existing literature on language outcomes in children born prematurely focuses almost exclusively on standardized test scores rather than discourse-level abilities. The authors of this study looked longitudinally at school-age language outcomes and potential moderating variables for a group of twins born prematurely versus a control group of twins born at full term, analyzing both standardized test results and language sample data from the population-based Western Reserve Reading Project (WRRP; Petrill, Deater-Deckard, Thompson, DeThorne, & Schatschneider, 2006). Fifty-seven children born prematurely, at ≤32 weeks or <1,500 g, were compared with 57 children born at full term and were matched for age, gender, race, and parental education. Data included discourse-level language samples and standardized test results, collected at average ages 7, 8, and 10 years. The language samples were analyzed to yield a number of semantic and syntactic measures that were consolidated via factor analysis. Regression models showed significant differences between the 2 groups for standardized test results, although the mean score for both groups fell in the normal range. For the discourse-level language measures, however, differences never reached statistical significance. Parental education was significantly associated with improved standardized test scores. These findings suggest that in the absence of frank neurological impairment, sophisticated semantic and syntactic skills may be relatively intact in the discourse-level language of children born prematurely. Implications for assessment, particularly the potential role of attention and executive function in standardized testing tasks, are reviewed.

  14. [Skin ageing and its prevention].

    PubMed

    Passeron, Thierry; Ortonne, Jean-Paul

    2003-09-27

    INTRINSIC AND EXTRINSIC FACTORS: Skin ageing is due to the conjunction of intrinsic (chronological ageing) and extrinsic factors (fundamentally photo-ageing). The physiopathological mechanisms of intrinsic ageing rejoin those of the ageing of all the other organs. Among the intrinsic causes, tobacco and above all ultra-violet radiation, UVB and also UVA, play a preponderant role. Photo-ageing is secondary to complex mechanisms that are increasingly known. The UVB directly interact with the DNA of the cutaneous cells. The deleterious effects of UVA are principally due to the formation of free radical oxygen, which result in an alteration in the nuclear and also mitochondrial DNA, but also an activation of the enzymes, metalloproteinase, capable of damaging the extra-cellular matrix. DELETERIOUS CONSEQUENCES: The phenomena of ageing provoke the decline in defence, healing and perception mechanisms and in the thermoregulation of the skin tissue. There are numerous and often unsightly clinical manifestations. Photo-ageing can be considered as a marker of risk of photo-carcinogenesis requiring increased clinical surveillance. PREVENTIVE AND CURATIVE MEASURES: The prevention of skin ageing must be based on the use of sunscreens protecting against both UVB and UVA, but, in order for them to be effective, they require a change in general life style. There are many efficient therapeutic means, but the possible side effects must be known and explained to the patient. Retinoids, in view of their innocuousness and efficacy not only in prevention but also treatment of skin ageing, should be considered as a therapeutic option of choice.

  15. Human premature aging, DNA repair and RecQ helicases.

    PubMed

    Brosh, Robert M; Bohr, Vilhelm A

    2007-01-01

    Genomic instability leads to mutations, cellular dysfunction and aberrant phenotypes at the tissue and organism levels. A number of mechanisms have evolved to cope with endogenous or exogenous stress to prevent chromosomal instability and maintain cellular homeostasis. DNA helicases play important roles in the DNA damage response. The RecQ family of DNA helicases is of particular interest since several human RecQ helicases are defective in diseases associated with premature aging and cancer. In this review, we will provide an update on our understanding of the specific roles of human RecQ helicases in the maintenance of genomic stability through their catalytic activities and protein interactions in various pathways of cellular nucleic acid metabolism with an emphasis on DNA replication and repair. We will also discuss the clinical features of the premature aging disorders associated with RecQ helicase deficiencies and how they relate to the molecular defects.

  16. DNA damage in normally and prematurely aged mice

    PubMed Central

    Maslov, Alexander Y.; Ganapathi, Shireen; Westerhof, Maaike; Quispe, Wilber; White, Ryan R.; Van Houten, Bennett; Reiling, Erwin; Dollé, Martijn E.T.; van Steeg, Harry; Hasty, Paul; Hoeijmakers, Jan H.J.; Vijg, Jan

    2013-01-01

    Summary Steady-state levels of spontaneous DNA damage, the by-product of normal metabolism and environmental exposure, are controlled by DNA repair pathways. Incomplete repair or an age-related increase in damage production and/or decline in repair could lead to an accumulation of DNA damage, increasing mutation rate, affecting transcription and/or activating programmed cell death or senescence. These consequences of DNA damage metabolism are highly conserved and the accumulation of lesions in the DNA of the genome could, therefore, provide a universal cause of aging. An important corollary of this hypothesis is that defects in DNA repair cause both premature aging and accelerated DNA damage accumulation. While the former has been well-documented, the reliable quantification of the various lesions thought to accumulate in DNA during aging has been a challenge. Here, we quantified inhibition of long distance PCR as a measure of DNA damage in liver and brain of both normal and prematurely aging, DNA repair defective mice. The results indicate a marginal, but statistically significant, increase of spontaneous DNA damage with age in normal mouse liver but not in brain. Increased levels of DNA damage were not observed in the DNA repair defective mice. We also show that oxidative lesions do not increase with age. These results indicate that neither normal nor premature aging is accompanied by a dramatic increase in DNA damage. This suggests that factors other than DNA damage per se, e.g., cellular responses to DNA damage, are responsible for the aging phenotype in mice. PMID:23496256

  17. Inflammation and premature aging in advanced chronic kidney disease.

    PubMed

    Kooman, Jeroen; Dekker, Marijke; Usvyat, Len A; Kotanko, Peter; Van der Sande, Frank; Schalkwijk, Casper G; Shiels, Paul G; Stenvinkel, Peter

    2017-07-12

    Systemic inflammation in end-stage renal disease (ESRD) is an established risk factor for mortality and a catalyst for other complications which are related to a premature aging phenotype, including muscle wasting, vascular calcification and other forms of premature vascular disease, depression, osteoporosis and frailty. Uremic inflammation is also mechanistically related to mechanisms involved in the aging process, such as telomere shortening, mitochondrial dysfunction, and altered nutrient sensing, which can have direct effect on cellular and tissue function. In addition to uremia-specific causes such as abnormalities in the phosphate- Klotho axis, there are remarkable similarities between the pathophysiology of uremic inflammation and so-called "inflammaging" in the general population. Potentially relevant, but still somewhat unexplored in this respect are abnormal or misplaced protein structures as well as abnormalities in tissue homeostasis, which evoke danger signals through damage associated molecular patters (DAMPS) as well as the senescence associated secretory phenotype (SASP). Systemic inflammation, in combination with the loss of kidney function, can impair the resilience of the body to external and internal stressors by reduced functional and structural tissue reserve, and by impairing normal organ crosstalk, thus providing an explanation for the greatly increased risk of homeostatic breakdown in this population. In this review, the relation between uremic inflammation and a premature aging phenotype, as well as potential causes and consequences are discussed. Copyright © 2017, American Journal of Physiology-Renal Physiology.

  18. [Experimental models of human skin aging].

    PubMed

    Nikolakis, G; Zoschke, C; Makrantonaki, E; Hausmann, C; Schäfer-Korting, M; Zouboulis, C C

    2016-02-01

    The skin is a representative model for the study of human aging. Despite the high regenerative capacity of the skin, skin physiology changes over the course of life. Medical and cosmetic research is trying to prevent aging, to slow, to stop, or to reverse it. Effects of age-related DNA damage and of changing skin structure on pharmacological parameters are largely unknown. This review article summarizes the state of scientific knowledge in the field of experimental models of human skin aging and shows approaches to improve organotypic skin models, to develop predictive models of aging, and improve aging research.

  19. Skin-to-Skin Contact (Kangaroo Care) Promotes Self-Regulation in Premature Infants: Sleep-Wake Cyclicity, Arousal Modulation, and Sustained Exploration.

    ERIC Educational Resources Information Center

    Feldman, Ruth; Weller, Aron; Sirota, Lea; Eidelman, Arthur I.

    2002-01-01

    Investigated the effect of mother-infant skin-to-skin contact on self-regulatory processes of premature infants. Found that infants treated with prolonged skin-to-skin contact showed improvements in state distribution, sleep-wake cyclicity, emotionality thresholds, arousal modulation, mother-infant shared attention, and infant sustained…

  20. Skin-to-Skin Contact (Kangaroo Care) Promotes Self-Regulation in Premature Infants: Sleep-Wake Cyclicity, Arousal Modulation, and Sustained Exploration.

    ERIC Educational Resources Information Center

    Feldman, Ruth; Weller, Aron; Sirota, Lea; Eidelman, Arthur I.

    2002-01-01

    Investigated the effect of mother-infant skin-to-skin contact on self-regulatory processes of premature infants. Found that infants treated with prolonged skin-to-skin contact showed improvements in state distribution, sleep-wake cyclicity, emotionality thresholds, arousal modulation, mother-infant shared attention, and infant sustained…

  1. Premature ageing prevention: limitations and perspectives of pharmacological interventions.

    PubMed

    Anisimov, Vladimir N

    2006-11-01

    A significant increase of the elderly in populations of developed countries is followed by increase morbidity and mortality from main age-related diseases--cardiovascular and neuro-degenerative, cancer, diabetes mellitus, declining in a resistance to infections. Obviously, the development of means of the prevention of the premature ageing and these diseases in humans are crucial at present. However, data on such type means rather scarce, contradictory and often not reliable from the points of view of the adequacy of the experiments to current scientific requirements, as well as the interpretation of the results and safety. Available data on the life span extension and adverse effects of chemical compounds and drugs suggested as geroprotectors are critically analyzed: antidiabetic drugs, growth and thyroid hormones, glucocorticoids, DHEA, sex steroids and contraceptives, melatonin and peptide preparations modulating the pineal gland, antioxidants, chelate agents and lathyrogens, adaptogens and herbs, neurotropic drugs, inhibitors of monoamine oxidase, immunomodulators and some other. Most of the results could not convincingly evidence the life span extension and safety of the suggested geroprotectors. We believe that it is necessary to establish an international program for the expert evaluation of the life span extension potential of pharmacological interventions for humans. The scope of the program should be to evaluate chemical, immunological, dietary and behavioural interventions that may lead to life span extension or retard premature ageing and the objective--preparation of critical reviews and evaluations on evidence of the life span extending properties of a wide range of potential geroprotectors and strategies by international groups of working experts. The program may assist national and international authorities in devising programs of health promotion and premature ageing prevention.

  2. Repression of the Antioxidant NRF2 Pathway in Premature Aging.

    PubMed

    Kubben, Nard; Zhang, Weiqi; Wang, Lixia; Voss, Ty C; Yang, Jiping; Qu, Jing; Liu, Guang-Hui; Misteli, Tom

    2016-06-02

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare, invariably fatal premature aging disorder. The disease is caused by constitutive production of progerin, a mutant form of the nuclear architectural protein lamin A, leading, through unknown mechanisms, to diverse morphological, epigenetic, and genomic damage and to mesenchymal stem cell (MSC) attrition in vivo. Using a high-throughput siRNA screen, we identify the NRF2 antioxidant pathway as a driver mechanism in HGPS. Progerin sequesters NRF2 and thereby causes its subnuclear mislocalization, resulting in impaired NRF2 transcriptional activity and consequently increased chronic oxidative stress. Suppressed NRF2 activity or increased oxidative stress is sufficient to recapitulate HGPS aging defects, whereas reactivation of NRF2 activity in HGPS patient cells reverses progerin-associated nuclear aging defects and restores in vivo viability of MSCs in an animal model. These findings identify repression of the NRF2-mediated antioxidative response as a key contributor to the premature aging phenotype.

  3. Premature aging in mice deficient in DNA repair and transcription.

    PubMed

    de Boer, Jan; Andressoo, Jaan Olle; de Wit, Jan; Huijmans, Jan; Beems, Rudolph B; van Steeg, Harry; Weeda, Geert; van der Horst, Gijsbertus T J; van Leeuwen, Wibeke; Themmen, Axel P N; Meradji, Morteza; Hoeijmakers, Jan H J

    2002-05-17

    One of the factors postulated to drive the aging process is the accumulation of DNA damage. Here, we provide strong support for this hypothesis by describing studies of mice with a mutation in XPD, a gene encoding a DNA helicase that functions in both repair and transcription and that is mutated in the human disorder trichothiodystrophy (TTD). TTD mice were found to exhibit many symptoms of premature aging, including osteoporosis and kyphosis, osteosclerosis, early greying, cachexia, infertility, and reduced life-span. TTD mice carrying an additional mutation in XPA, which enhances the DNA repair defect, showed a greatly accelerated aging phenotype, which correlated with an increased cellular sensitivity to oxidative DNA damage. We hypothesize that aging in TTD mice is caused by unrepaired DNA damage that compromises transcription, leading to functional inactivation of critical genes and enhanced apoptosis.

  4. Cellular senescence in normal and premature lung aging.

    PubMed

    Bartling, B

    2013-10-01

    The incidence of chronic respiratory diseases (e.g., chronic obstructive pulmonary disease, COPD) and interstitial lung diseases (e.g., pneumonia and lung fibrosis) increases with age. In addition to immune senescence, the accumulation of senescent cells directly in lung tissue might play a critical role in the increased prevalence of these pulmonary diseases. In the last couple of years, detailed studies have identified the presence of senescent cells in the aging lung and in diseased lungs of patients with COPD and lung fibrosis. Cellular senescence has been shown for epithelial cells of bronchi and alveoli as well as mesenchymal and vascular cells. Known risk factors for pulmonary diseases (cigarette smoke, air pollutions, bacterial infections, etc.) were identified in experimental studies as being possible mediators in the development of cellular senescence. The present findings indicate the importance of cellular senescence in normal lung aging and in premature aging of the lung in patients with COPD, lung fibrosis, and probably other respiratory diseases.

  5. Molecular insights into the premature aging disease progeria.

    PubMed

    Vidak, Sandra; Foisner, Roland

    2016-04-01

    Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare premature aging disease presenting many features resembling the normal aging process. HGPS patients die before the age of 20 years due to cardiovascular problems and heart failure. HGPS is linked to mutations in the LMNA gene encoding the intermediate filament protein lamin A. Lamin A is a major component of the nuclear lamina, a scaffold structure at the nuclear envelope that defines mechanochemical properties of the nucleus and is involved in chromatin organization and epigenetic regulation. Lamin A is also present in the nuclear interior where it fulfills lamina-independent functions in cell signaling and gene regulation. The most common LMNA mutation linked to HGPS leads to mis-splicing of the LMNA mRNA and produces a mutant lamin A protein called progerin that tightly associates with the inner nuclear membrane and affects the dynamic properties of lamins. Progerin expression impairs many important cellular processes providing insight into potential disease mechanisms. These include changes in mechanosignaling, altered chromatin organization and impaired genome stability, and changes in signaling pathways, leading to impaired regulation of adult stem cells, defective extracellular matrix production and premature cell senescence. In this review, we discuss these pathways and their potential contribution to the disease pathologies as well as therapeutic approaches used in preclinical and clinical tests.

  6. Risk factors for premature death in middle aged men

    PubMed Central

    Petersson, Bo; Trell, Erik; Henningsen, Nels-Christian; Hood, Bertil

    1984-01-01

    The causes of premature death and the associated risk factors were analysed in a cohort of 7935 middle aged men participating in a preventive population programme in Malmö. They were screened when aged 46-48 and then followed up for 3½-8 years. Two hundred and eighteen died, of whom 181 (83%) underwent necropsy. Three major causes of death were established: cancer in 61 (28%), deaths related to consumption of alcohol in 55 (25%), and coronary heart disease in 50 (23%). Distinctly different patterns of risk factors were found to be associated with each of the three main causes of premature death. In death due to coronary heart disease smoking (p=0·0062), serum cholesterol concentration (p=0·00014), serum triglyceride concentration (p=0·00013), systolic blood pressure (p=0·000012), and diastolic blood pressure (p=0·0021) were the strongest single determinants but diastolic blood pressure ceased to be a predictive factor in a multivariate analysis whereas all the other variables could be combined in a highly predictive logistic model. In death related to consumption of alcohol equal or even stronger associations were found for serum γ glutamyltransferase activity (p<0·0001), points scored in a questionnaire screening for alcoholism (p<0·0001), and, inversely, serum cholesterol (p=0·0046) and serum creatinine (p<0·0001) concentrations both when applied independently and when combined in a logistic model. In death due to cancer significant associations were found for serum urate concentration (p=0·023) and, inversely, serum cholesterol concentration (p=0·056-0·031). Malignant diseases and diseases related to consumption of alcohol were at least as prominent as cardiovascular disorders in causing premature death in the cohort of men studied. All three types of conditions are potentially avoidable and seem to be associated with significant and distinctive patterns of risk factors. These patterns should be used, as blood pressure and serum lipid

  7. ART outcome in young women with premature ovarian aging.

    PubMed

    Dua, Meenakshi; Bhatia, Vandana; Malik, Sonia; Prakash, Ved

    2013-10-01

    Young women with signs of ovarian aging are a matter of concern as far as their reproductive performance is concerned. With more women approaching infertility centers with this problem, it becomes necessary to understand what reproductive outcomes are possible in such cases. Female age and basal Follicle stimulating hormone (FSH) level, both are strong independent predictors of In Vitro Fertilization (IVF) outcome. To correlate age-related basal FSH with IVF outcome in women with premature ovarian aging in gonadotropins-induced cycles. Between January 2011 and October 2012, a total of 135 women undergoing IVF and ICSI cycles with antagonist protocol were included in this retrospective cohort study. Basal FSH concentrations were measured and the women's ages were calculated before they were undergoing pituitary desensitization and its correlation with assisted reproduction technique (ART) outcome was evaluated. Increasing FSH was associated significantly with reduced number of oocytes retrieved, and embryos obtained. Young women with high FSH up to 20 produced less but good quality embryo's resulting in sound pregnancy rate. FSH is a quantitative and age is a qualitative measure of ovarian reserve. Both are equally important in predicting IVF outcome. Basal FSH concentration should be restricted to counseling of patients on probability of achieving pregnancy, but should not be used to exclude them from fertility treatment.

  8. Glycosaminoglycan and proteoglycan in skin aging.

    PubMed

    Lee, Dong Hun; Oh, Jang-Hee; Chung, Jin Ho

    2016-09-01

    Glycosaminoglycans (GAGs) and proteoglycans (PGs) are abundant structural components of the extracellular matrix in addition to collagen fibers. Hyaluronic acid (HA), one of GAGs, forms proteoglycan aggregates, which are large complexes of HA and HA-binding PGs. Their crosslinking to other matrix proteins such as the collagen network results in the formation of supermolecular structures and functions to increase tissue stiffness. Skin aging can be classified as intrinsic aging and photoaging based on the phenotypes and putative mechanism. While intrinsic aging is characterized by a thinned epidermis and fine wrinkles caused by advancing age, photoaging is characterized by deep wrinkles, skin laxity, telangiectasias, and appearance of lentigines and is mainly caused by chronic sun exposure. The major molecular mechanism governing skin aging processes has been attributed to the loss of mature collagen and increased matrix metalloproteinase expression. However, various strategies focusing on collagen turnover remain unsatisfactory for the reversal or prevention of skin aging. Although the expression of GAGs and PGs in the skin and their regulatory mechanisms are not fully understood, we and others have elucidated various changes in GAGs and PGs in aged skin, suggesting that these molecules are important contributors to skin aging. In this review, we focus on skin-abundant GAGs and PGs and their changes in human skin during the skin aging process. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Blood Cell Mitochondrial DNA Content and Premature Ovarian Aging

    PubMed Central

    Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca; Arosio, M.; Beck-Peccoz, P.; Biondi, M.; Bione, S.; Bruni, V.; Brigante, C.; Cannavo`, S.; Cavallo, L.; Cisternino, M.; Colombo, I.; Corbetta, S.; Crosignani, P.G.; D'Avanzo, M.G.; Dalpra, L.; Danesino, C.; Di Battista, E.; Di Prospero, F.; Donti, E.; Einaudi, S.; Falorni, A.; Foresta, C.; Fusi, F.; Garofalo, N.; Giotti, I.; Lanzi, R.; Larizza, D.; Locatelli, N.; Loli, P.; Madaschi, S.; Maghnie, M.; Maiore, S.; Mantero, F.; Marozzi, A.; Marzotti, S.; Migone, N.; Nappi, R.; Palli, D.; Patricelli, M.G.; Pisani, C.; Prontera, P.; Petraglia, F.; Radetti, G.; Renieri, A.; Ricca, I.; Ripamonti, A.; Rossetti, R.; Russo, G.; Russo, S.; Tonacchera, M.; Toniolo, D.; Torricelli, F.; Vegetti, W.; Villa, N.; Vineis, P.; Wasniewsk, M.; Zuffardi, O.

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction. PMID:22879975

  10. Blood cell mitochondrial DNA content and premature ovarian aging.

    PubMed

    Bonomi, Marco; Somigliana, Edgardo; Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction.

  11. Premature aging and immune senescence in HIV-infected children

    PubMed Central

    Gianesin, Ketty; Noguera-Julian, Antoni; Zanchetta, Marisa; Del Bianco, Paola; Petrara, Maria Raffaella; Freguja, Riccardo; Rampon, Osvalda; Fortuny, Clàudia; Camós, Mireia; Mozzo, Elena; Giaquinto, Carlo; De Rossi, Anita

    2016-01-01

    Objective: Several pieces of evidence indicate that HIV-infected adults undergo premature aging. The effect of HIV and antiretroviral therapy (ART) exposure on the aging process of HIV-infected children may be more deleterious since their immune system coevolves from birth with HIV. Design: Seventy-one HIV-infected (HIV+), 65 HIV-exposed-uninfected (HEU), and 56 HIV-unexposed-uninfected (HUU) children, all aged 0–5 years, were studied for biological aging and immune senescence. Methods: Telomere length and T-cell receptor rearrangement excision circle levels were quantified in peripheral blood cells by real-time PCR. CD4+ and CD8+ cells were analysed for differentiation, senescence, and activation/exhaustion markers by flow cytometry. Results: Telomere lengths were significantly shorter in HIV+ than in HEU and HUU children (overall, P < 0.001 adjusted for age); HIV+ ART-naive (42%) children had shorter telomere length compared with children on ART (P = 0.003 adjusted for age). T-cell receptor rearrangement excision circle levels and CD8+ recent thymic emigrant cells (CD45RA+CD31+) were significantly lower in the HIV+ than in control groups (overall, P = 0.025 and P = 0.005, respectively). Percentages of senescent (CD28−CD57+), activated (CD38+HLA-DR+), and exhausted (PD1+) CD8+ cells were significantly higher in HIV+ than in HEU and HUU children (P = 0.004, P < 0.001, and P < 0.001, respectively). Within the CD4+ cell subset, the percentage of senescent cells did not differ between HIV+ and controls, but programmed cell death receptor-1 expression was upregulated in the former. Conclusions: HIV-infected children exhibit premature biological aging with accelerated immune senescence, which particularly affects the CD8+ cell subset. HIV infection per se seems to influence the aging process, rather than exposure to ART for prophylaxis or treatment. PMID:26990630

  12. [Physiological features of skin ageing in human].

    PubMed

    Tikhonova, I V; Tankanag, A V; Chemeris, N K

    2013-01-01

    The issue deals with the actual problem of gerontology, notably physiological features of human skin ageing. In the present review the authors have considered the kinds of ageing, central factors, affected on the ageing process (ultraviolet radiation and oxidation stress), as well as the research guidelines of the ageing changes in the skin structure and fuctions: study of mechanical properties, microcirculation, pH and skin thickness. The special attention has been payed to the methods of assessment of skin blood flow, and to results of investigations of age features of peripheral microhemodynamics. The laser Doppler flowmetry technique - one of the modern, noninvasive and extensively used methods for the assessmant of skin blood flow microcirculation system has been expanded in the review. The main results of the study of the ageing changes of skin blood perfusion using this method has been also presented.

  13. Cognitive outcomes in school-age children born prematurely.

    PubMed

    Davis, Deborah Winders

    2003-01-01

    The purpose of this article is to discuss findings in the literature regarding long-term developmental outcomes of infants born prematurely, to examine potential causes of individual differences in these outcomes, and to explore directions for future research. An extensive table summarizes recent (1996-2002) international studies of developmental outcomes among children of school age and older who were born with low birth weight, especially as the studies relate to cognitive development and academic performance. The discussion then examines how characteristics of the child and the environment may interact to produce individual differences in outcomes. Processes of attention regulation within the context of the psychosocial environment are examined as an important possible direction for future research. When designing and implementing interventions aimed at improving outcomes in this and other groups of children at risk for delays and deficits, it is important to consider how various factors affect development.

  14. RecQ helicases: suppressors of tumorigenesis and premature aging.

    PubMed Central

    Bachrati, Csanád Z; Hickson, Ian D

    2003-01-01

    The RecQ helicases represent a subfamily of DNA helicases that are highly conserved in evolution. Loss of RecQ helicase function leads to a breakdown in the maintenance of genome integrity, in particular hyper-recombination. Germ-line defects in three of the five known human RecQ helicases give rise to defined genetic disorders associated with cancer predisposition and/or premature aging. These are Bloom's syndrome, Werner's syndrome and Rothmund-Thomson syndrome, which are caused by defects in the genes BLM, WRN and RECQ4 respectively. Here we review the properties of RecQ helicases in organisms from bacteria to humans, with an emphasis on the biochemical functions of these enzymes and the range of protein partners that they operate with. We will discuss models in which RecQ helicases are required to protect against replication fork demise, either through prevention of fork breakdown or restoration of productive DNA synthesis. PMID:12803543

  15. Semipermeable polyurethane membrane as an artificial skin for the premature neonate.

    PubMed

    Knauth, A; Gordin, M; McNelis, W; Baumgart, S

    1989-06-01

    A thin and semipermeable polyurethane membrane adherently applied to premature neonates as an artificial skin was investigated as an atraumatic surface barrier sufficient to reduce transepidermal water loss without inhibiting natural infant skin development during the first few days of life. A sample group of 18 neonates (birth weight [mean +/- SEM] 1.39 +/- 0.12 kg, gestation [mean +/- SEM] 31 +/- 1 weeks) received two 3 X 3-cm polyurethane patches adherent over the chest and abdomen. Transepidermal water loss was measured before and after application and after membrane removal. During longitudinal study, seven infants were treated day 1 through day 4 of life and were evaluated for skin integrity 24 hours after patch removal on day 5. Polyurethane membranes produced an acute and significant reduction in transepidermal water loss for the 18 subjects: 21.1 +/- 2.0 g/m2/h before application v 10.5 +/- 1.4 g/m2/h with membranes in place (P less than .001). Immediately after patch removal, transepidermal loss returned to 22.8 +/- 3.0 g/m2/h. Throughout the first four days of life, daily measurements of water loss were significantly less: 53% to as much as 72% reduction from polyurethane-covered sites when compared with adjacent naked skin. After polyurethane membrane removal, skin development of transepidermal barrier function was comparable over both sites. Dressings did not lose adhesive or plastic properties during an extended time in either radiant warmer or incubator environments, electronic monitoring through membranes was not impeded, and adhesive injuries were not observed. An adherent, semipermeable polyurethane membrane may be effective as an atraumatic artificial barrier to prevent large transepidermal water loss and protect the skin of the premature neonate.

  16. [Gait characteristics of women with fibromyalgia: a premature aging pattern].

    PubMed

    Góes, Suelen M; Leite, Neiva; de Souza, Ricardo M; Homann, Diogo; Osiecki, Ana C V; Stefanello, Joice M F; Rodacki, André L F

    2014-01-01

    Fibromyalgia is a condition which involves chronic pain. Middle-aged individuals with fibromyalgia seem to exhibit changes in gait pattern, which may prematurely expose them to a gait pattern which resembles that found in the elderly population. To determine the 3D spatial (linear and angular) gait parameters of middle-aged women with fibromyalgia and compare to elderly women without this condition. 25 women (10 in the fibromyalgia group and 15 in the elderly group) volunteered to participate in the study. Kinematics was performed using an optoelectronic system, and linear and angular kinematic variables were determined. There was no difference in walking speed, stride length, cadence, hip, knee and ankle joints range of motion between groups, except the pelvic rotation, in which the fibromyalgia group showed greater rotation (P<0.05) compared to the elderly group. Also, there was a negative correlation with pelvic rotation and gluteus pain (r = -0.69; P<0.05), and between pelvic obliquity and greater trochanter pain (r = -0.69; P<0.05) in the fibromyalgia group. Middle-aged women with fibromyalgia showed gait pattern resemblances to elderly, women, which is characterized by reduced lower limb ROM, stride length and walking speed. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  17. Airborne particle exposure and extrinsic skin aging.

    PubMed

    Vierkötter, Andrea; Schikowski, Tamara; Ranft, Ulrich; Sugiri, Dorothea; Matsui, Mary; Krämer, Ursula; Krutmann, Jean

    2010-12-01

    For decades, extrinsic skin aging has been known to result from chronic exposure to solar radiation and, more recently, to tobacco smoke. In this study, we have assessed the influence of air pollution on skin aging in 400 Caucasian women aged 70-80 years. Skin aging was clinically assessed by means of SCINEXA (score of intrinsic and extrinsic skin aging), a validated skin aging score. Traffic-related exposure at the place of residence was determined by traffic particle emissions and by estimation of soot in fine dust. Exposure to background particle concentration was determined by measurements of ambient particles at fixed monitoring sites. The impact of air pollution on skin aging was analyzed by linear and logistic regression and adjusted for potential confounding variables. Air pollution exposure was significantly correlated to extrinsic skin aging signs, in particular to pigment spots and less pronounced to wrinkles. An increase in soot (per 0.5 × 10(-5) per m) and particles from traffic (per 475  kg per year and square km) was associated with 20% more pigment spots on forehead and cheeks. Background particle pollution, which was measured in low residential areas of the cities without busy traffic and therefore is not directly attributable to traffic but rather to other sources of particles, was also positively correlated to pigment spots on face. These results indicate that particle pollution might influence skin aging as well.

  18. Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging

    PubMed Central

    Panich, Uraiwan; Sittithumcharee, Gunya; Rathviboon, Natwarath

    2016-01-01

    Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells. PMID:27148370

  19. [Intrinsic factors, genes, and skin aging].

    PubMed

    Makrantonaki, E; Pfeifer, G P; Zouboulis, C C

    2016-02-01

    Skin aging is determined by a combination of endogenous and environmental influences, including epigenetic, posttranslational, microbial, and lifestyle factors. In particular genetic changes, programmed or not, play a pivotal role and understanding of these complex mechanisms may contribute to the prevention of age-related diseases and extension of healthy lifespan. In this article, new knowledge about genes and biological processes that can significantly affect skin homeostasis in old age and can lead to the typical morphological and physiological characteristics of aging skin are summarized.

  20. Helicobacter pylori-induced premature senescence of extragastric cells may contribute to chronic skin diseases.

    PubMed

    Lewinska, Anna; Wnuk, Maciej

    2017-04-01

    Helicobacter pylori, one of the most frequently observed bacterium in the human intestinal flora, has been widely studied since Marshall and Warren documented a link between the presence of H. pylori in the gastrointestinal tract and gastritis and gastric ulcers. Interestingly, H. pylori has also been found in several other epithelial tissues, including the eyes, ears, nose and skin that may have direct or indirect effects on host physiology and may contribute to extragastric diseases, e.g. chronic skin diseases. More recently, it has been shown that H. pylori cytotoxin CagA expression induces cellular senescence of human gastric nonpolarized epithelial cells that may lead to gastrointestinal disorders and systemic inflammation. Here, we hypothesize that also chronic skin diseases may be promoted by stress-induced premature senescence (SIPS) of skin cells, namely fibroblasts and keratinocytes, stimulated with H. pylori cytotoxins. Future studies involving cell culture models and clinical specimens are needed to verify the involvement of H. pylori in SIPS-based chronic skin diseases.

  1. Skin aging: are adipocytes the next target?

    PubMed

    Kruglikov, Ilja L; Scherer, Philipp E

    2016-07-01

    Dermal white adipose tissue (dWAT) is increasingly appreciated as a special fat depot. The adipocytes in this depot exert a variety of unique effects on their surrounding cells and can undergo massive phenotypic changes. Significant modulation of dWAT content can be observed both in intrinsically and extrinsically aged skin. Specifically, skin that has been chronically photo-damaged displays a reduction of the dWAT volume, caused by the replacement of adipocytes by fibrotic structures. This is likely to be caused by the recently uncovered process described as "adipocyte-myofibroblast transition" (AMT). In addition, contributions of dermal adipocytes to the skin aging processes are also indirectly supported by spatial correlations between the prevalence of hypertrophic scarring and the appearance of signs of skin aging in different ethnic groups. These observations could elevate dermal adipocytes to prime targets in strategies aimed at counteracting skin aging.

  2. Skin aging: are adipocytes the next target?

    PubMed Central

    Kruglikov, Ilja L.; Scherer, Philipp E.

    2016-01-01

    Dermal white adipose tissue (dWAT) is increasingly appreciated as a special fat depot. The adipocytes in this depot exert a variety of unique effects on their surrounding cells and can undergo massive phenotypic changes. Significant modulation of dWAT content can be observed both in intrinsically and extrinsically aged skin. Specifically, skin that has been chronically photo-damaged displays a reduction of the dWAT volume, caused by the replacement of adipocytes by fibrotic structures. This is likely to be caused by the recently uncovered process described as “adipocyte-myofibroblast transition” (AMT). In addition, contributions of dermal adipocytes to the skin aging processes are also indirectly supported by spatial correlations between the prevalence of hypertrophic scarring and the appearance of signs of skin aging in different ethnic groups. These observations could elevate dermal adipocytes to prime targets in strategies aimed at counteracting skin aging. PMID:27434510

  3. Skin care in old age.

    PubMed

    Smoker, A

    Older people face many problems in terms of skin care and can suffer from a number of distressing conditions. Annabel Smoker describes the management of the most common chronic conditions and suggests ways that nurses can assist older patients or their carers to alleviate or prevent these conditions.

  4. Pigmentary changes of the ageing skin.

    PubMed

    Ortonne, J P

    1990-04-01

    In subjects older than 25-30 years the number of enzymatically active melanocytes detectable by the dopa reaction decreases by about 10-20% per decade, with exposed skin having approximately twice as many pigment cells as unexposed skin. Chronic exposure to sunlight may stimulate the epidermal melanocyte system rather than accelerating chronological ageing. The number of melanocytic naevi declines with age. Despite the decreased melanocyte density, photoaged skin has irregular pigmentation and, frequently, there is hyperpigmentation. This may be due to greater positivity of dopa of chronically irradiated melanocytes. Heterogeneity in skin colour in exposed areas of skin is due to uneven distribution of pigment cells, a local loss of melanocytes, and a modification in the interactions between melanocytes and keratinocytes. The most common pigmented lesions in sun-exposed skin include ephelides, actinic lentigo, pigmented solar keratoses and seborrhoeic keratoses, and lentigo maligna. The white spots in aged skin are usually stellate pseudoscars or idiopathic guttate hypomelanosis. Greying of the hair is due to progressive loss of melanocytes from the hair follicles. In vivo and in vitro studies are necessary to increase overall understanding of the processes involved and to improve treatment of the pigmentary changes in ageing skin.

  5. Relation between skin micro-topography, roughness, and skin age.

    PubMed

    Trojahn, C; Dobos, G; Schario, M; Ludriksone, L; Blume-Peytavi, U; Kottner, J

    2015-02-01

    The topography of the skin surface consists of lines, wrinkles, and scales. Primary and secondary lines form a network like structure that may be identified as polygons. Skin surface roughness measurements are widely applied in dermatological research and practice but the relation between roughness parameters and their anatomical equivalents are unclear. This study aimed to investigate whether the number of closed polygons (NCP) per measurement field can be used as a reliable parameter to measure skin surface topography. For this purpose, we analysed the relation between skin surface roughness parameters and NCP in different age groups. Images of the volar forearm skin of 38 subjects (14 children, 12 younger, and 12 older adults) were obtained with the VisioScan VC98. The NCP was counted by three independent researchers and selected roughness parameters were measured. Interrater reliability of counting the number of closed polygons and correlations between NCP, roughness parameters, and age were calculated. The mean NCP/mm² in children was 3.1 (SD 1.1), in younger adults 1.0 (SD 0.7), and in older adults 1.0 (SD 0.9). The interrater reliability was 0.9. A negative correlation of NCP/mm² with age was observed, whereas measured roughness parameters were positively associated with age. NCP/mm² was weakly related to skin roughness. The NCP/mm² is a reproducible parameter for characterizing the skin surface topography. It is proposed as an additional parameter in dermatological research and practice because it represents distinct aspects of the cutaneous profile not covered by established roughness parameters. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging.

    PubMed

    Ngan, Cheng Loong; Basri, Mahiran; Tripathy, Minaketan; Abedi Karjiban, Roghayeh; Abdul-Malek, Emilia

    2015-04-05

    Despite the fact that intrinsic oxidative stress is inevitable, the extrinsic factor such as ultraviolet radiation enhances reactive oxygen species (ROS) generation resulting in premature skin aging. Nanoemulsion was loaded with fullerene, a strong free radical scavenger, and its efficacy to provide protection and regenerative effect against ROS-induced collagen breakdown in human skin was studied. Stable fullerene nanoemulsions were formulated using high shear homogenization and ultrasonic dispersion technique. An open trial was conducted using fullerene nanoemulsion on skin twice a day for 28 days. The mean collagen score significantly increased (P<0.05) from 36.53±4.39 to 48.69±5.46 with 33.29% increment at the end of the treatment. Biophysical characteristics of skin revealed that skin hydration was increased significantly (P<0.05) from 40.91±7.01 to 58.55±6.08 corneometric units (43.12% increment) and the water was able to contain within the stratum corneum without any increased in transepidermal water loss. In the in vitro safety evaluation, fullerene nanoemulsion showed no acute toxicity on 3T3 fibroblast cell line for 48h and no indication of potential dermal irritation. Hence, the fullerene nanoemulsion may assist in protecting collagen from breakdown with cosmeceutical benefit.

  7. HGPS and related premature aging disorders: from genomic identification to the first therapeutic approaches.

    PubMed

    Pereira, Sandrine; Bourgeois, Patrice; Navarro, Claire; Esteves-Vieira, Vera; Cau, Pierre; De Sandre-Giovannoli, Annachiara; Lévy, Nicolas

    2008-01-01

    Progeroid syndromes are heritable human disorders displaying features that recall premature ageing. In these syndromes, premature aging is defined as "segmental" since only some of its features are accelerated. A number of cellular biological pathways have been linked to aging, including regulation of the insulin/growth hormone axis, pathways involving ROS metabolism, caloric restriction, and DNA repair. The number of identified genes associated with progeroid syndromes has increased in recent years, possibly shedding light as well on mechanisms underlying ageing in general. Among these, premature aging syndromes related to alterations of the LMNA gene have recently been identified. This review focuses on Hutchinson-Gilford Progeria syndrome and Restrictive Dermopathy, two well-characterized Lamin-associated premature aging syndromes, pointing out the current knowledge concerning their pathophysiology and the development of possible therapeutic approaches.

  8. Age-Related Effect of Viral-Induced Wheezing in Severe Prematurity.

    PubMed

    Perez, Geovanny F; Jain, Amisha; Kurdi, Bassem; Megalaa, Rosemary; Pancham, Krishna; Huseni, Shehlanoor; Isaza, Natalia; Rodriguez-Martinez, Carlos E; Rose, Mary C; Pillai, Dinesh; Nino, Gustavo

    2016-10-20

    Premature children are prone to severe viral respiratory infections in early life, but the age at which susceptibility peaks and disappears for each pathogen is unclear. Methods: A retrospective analysis was performed of the age distribution and clinical features of acute viral respiratory infections in full-term and premature children, aged zero to seven years. Results: The study comprised of a total of 630 hospitalizations (n = 580 children). Sixty-seven percent of these hospitalizations occurred in children born full-term (>37 weeks), 12% in preterm (32-37 weeks) and 21% in severely premature children (<32 weeks). The most common viruses identified were rhinovirus (RV; 60%) and respiratory syncytial virus (RSV; 17%). Age-distribution analysis of each virus identified that severely premature children had a higher relative frequency of RV and RSV in their first three years, relative to preterm or full-term children. Additionally, the probability of RV- or RSV-induced wheezing was higher overall in severely premature children less than three years old. Conclusions: Our results indicate that the vulnerability to viral infections in children born severely premature is more specific for RV and RSV and persists during the first three years of age. Further studies are needed to elucidate the age-dependent molecular mechanisms that underlie why premature infants develop RV- and RSV-induced wheezing in early life.

  9. Age-Related Effect of Viral-Induced Wheezing in Severe Prematurity

    PubMed Central

    Perez, Geovanny F.; Jain, Amisha; Kurdi, Bassem; Megalaa, Rosemary; Pancham, Krishna; Huseni, Shehlanoor; Isaza, Natalia; Rodriguez-Martinez, Carlos E.; Rose, Mary C.; Pillai, Dinesh; Nino, Gustavo

    2016-01-01

    Premature children are prone to severe viral respiratory infections in early life, but the age at which susceptibility peaks and disappears for each pathogen is unclear. Methods: A retrospective analysis was performed of the age distribution and clinical features of acute viral respiratory infections in full-term and premature children, aged zero to seven years. Results: The study comprised of a total of 630 hospitalizations (n = 580 children). Sixty-seven percent of these hospitalizations occurred in children born full-term (>37 weeks), 12% in preterm (32–37 weeks) and 21% in severely premature children (<32 weeks). The most common viruses identified were rhinovirus (RV; 60%) and respiratory syncytial virus (RSV; 17%). Age-distribution analysis of each virus identified that severely premature children had a higher relative frequency of RV and RSV in their first three years, relative to preterm or full-term children. Additionally, the probability of RV- or RSV-induced wheezing was higher overall in severely premature children less than three years old. Conclusions: Our results indicate that the vulnerability to viral infections in children born severely premature is more specific for RV and RSV and persists during the first three years of age. Further studies are needed to elucidate the age-dependent molecular mechanisms that underlie why premature infants develop RV- and RSV-induced wheezing in early life. PMID:27775602

  10. Soybean-fragmented proteoglycans against skin aging.

    PubMed

    Barba, Clara; Alonso, Cristina; Sánchez, Isabel; Suñer, Elisa; Sáez-Martín, L C; Coderch, Luisa

    2017-08-01

    The majority of age-dependent skin changes happen in the dermis layer inducing changes in skin collagen and in the proteoglycans. The main aim of this work is to study the efficacy of a Proteum serum, containing soybean-fragmented proteoglycans, against skin aging. In vitro tests were performed to evaluate the Proteum serum ability on activating the production of collagen and proteoglycans. An in vivo long-term study was performed to determine the efficacy of the Proteum serum when applied on skin. Protection of healthy skin against detergent-induced dermatitis and the antioxidant properties of the applied Proteum serum were also studied. The in vitro tests demonstrated that the Proteum serum was able to elevate the production of molecules which are essential for supporting the dermal extracellular matrix organization. These results were correlated by the in vivo measurements where a clear trend on improving the measured skin parameters due to the Proteum serum application was found. A beneficial effect of the Proteum serum was demonstrated with an improvement in the skin roughness and a reinforcement of the skin barrier function. Moreover, a significant protector effect on human stratum corneum against lipids peroxides (LPO) was demonstrated.

  11. LMNA-associated cardiocutaneous progeria: an inherited autosomal dominant premature aging syndrome with late onset.

    PubMed

    Kane, Megan S; Lindsay, Mark E; Judge, Daniel P; Barrowman, Jemima; Ap Rhys, Colette; Simonson, Lisa; Dietz, Harry C; Michaelis, Susan

    2013-07-01

    Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disorder caused by mutations in LMNA, which encodes the nuclear scaffold proteins lamin A and C. In HGPS and related progerias, processing of prelamin A is blocked at a critical step mediated by the zinc metalloprotease ZMPSTE24. LMNA-linked progerias can be grouped into two classes: (1) the processing-deficient, early onset "typical" progerias (e.g., HGPS), and (2) the processing-proficient "atypical" progeria syndromes (APS) that are later in onset. Here we describe a previously unrecognized progeria syndrome with prominent cutaneous and cardiovascular manifestations belonging to the second class. We suggest the name LMNA-associated cardiocutaneous progeria syndrome (LCPS) for this disorder. Affected patients are normal at birth but undergo progressive cutaneous changes in childhood and die in middle age of cardiovascular complications, including accelerated atherosclerosis, calcific valve disease, and cardiomyopathy. In addition, the proband demonstrated cancer susceptibility, a phenotype rarely described for LMNA-based progeria disorders. The LMNA mutation that caused LCPS in this family is a heterozygous c.899A>G (p.D300G) mutation predicted to alter the coiled-coil domain of lamin A/C. In skin fibroblasts isolated from the proband, the processing and levels of lamin A and C are normal. However, nuclear morphology is aberrant and rescued by treatment with farnesyltransferase inhibitors, as is also the case for HGPS and other laminopathies. Our findings advance knowledge of human LMNA progeria syndromes, and raise the possibility that typical and atypical progerias may converge upon a common mechanism to cause premature aging disease.

  12. Pigmentation in African American skin decreases with skin aging.

    PubMed

    Chien, Anna L; Suh, Jean; Cesar, Sabrina Sisto Alessi; Fischer, Alexander H; Cheng, Nancy; Poon, Flora; Rainer, Barbara; Leung, Sherry; Martin, Jo; Okoye, Ginette A; Kang, Sewon

    2016-10-01

    Tristimulus colorimetry, which uses the Commission Internationale de l'Eclairage L*a*b* model to quantify color, has previously been used to analyze pigmentation and erythema in human skin; however, colorimetry of African American skin is not well characterized. We sought to analyze skin color patterns in African Americans and compare them with those of Caucasians. Colorimetry readings of the sun-protected buttock and sun-exposed back of forearm were taken from 40 Caucasian and 43 African American participants from March 2011 through August 2015. African American participants also completed a lifestyle questionnaire. Correlation coefficients, paired t tests, and multivariable linear regression analyses were used for statistical comparisons. Forearm skin was lighter in African Americans ages 65 years and older versus 18 to 30 years (P = .02) but darker in Caucasians ages 65 years or older versus 18 to 30 years (P = .03). In African Americans ages 18 to 30 years, the buttock was darker than the forearm (P < .001), whereas in Caucasians the buttock was lighter than the forearm (P < .001). A lighter forearm than buttock was correlated with supplement use, smoking (ages 18-30 years), and less recreational sun exposure (ages ≥65 years) in African Americans. Our study was limited by the sample size and focal geographic source. Pigmentation patterns regarding sun-protected and sun-exposed areas in African Americans may differ from that of Caucasians, suggesting that other factors may contribute to skin pigmentation in African Americans. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  13. Skin aging, gene expression and calcium.

    PubMed

    Rinnerthaler, Mark; Streubel, Maria Karolin; Bischof, Johannes; Richter, Klaus

    2015-08-01

    The human epidermis provides a very effective barrier function against chemical, physical and microbial insults from the environment. This is only possible as the epidermis renews itself constantly. Stem cells located at the basal lamina which forms the dermoepidermal junction provide an almost inexhaustible source of keratinocytes which differentiate and die during their journey to the surface where they are shed off as scales. Despite the continuous renewal of the epidermis it nevertheless succumbs to aging as the turnover rate of the keratinocytes is slowing down dramatically. Aging is associated with such hallmarks as thinning of the epidermis, elastosis, loss of melanocytes associated with an increased paleness and lucency of the skin and a decreased barrier function. As the differentiation of keratinocytes is strictly calcium dependent, calcium also plays an important role in the aging epidermis. Just recently it was shown that the epidermal calcium gradient in the skin that facilitates the proliferation of keratinocytes in the stratum basale and enables differentiation in the stratum granulosum is lost in the process of skin aging. In the course of this review we try to explain how this calcium gradient is built up on the one hand and is lost during aging on the other hand. How this disturbed calcium homeostasis is affecting the gene expression in aged skin and is leading to dramatic changes in the composition of the cornified envelope will also be discussed. This loss of the epidermal calcium gradient is not only specific for skin aging but can also be found in skin diseases such as Darier disease, Hailey-Hailey disease, psoriasis and atopic dermatitis, which might be very helpful to get a deeper insight in skin aging.

  14. Congenital Heart Disease in Premature Infants 25-32 Weeks' Gestational Age.

    PubMed

    Chu, Patricia Y; Li, Jennifer S; Kosinski, Andrzej S; Hornik, Christoph P; Hill, Kevin D

    2017-02-01

    To determine the birth prevalence of congenital heart defects (CHDs) across the spectrum of common defects in very/extremely premature infants and to compare mortality rates between premature infants with and without CHDs. The Kids' Inpatient Databases (2003-2012) were used to estimate the birth prevalence of CHDs (excluding patent ductus arteriosus) in very/extremely premature infants born between 25 and 32 weeks' gestational age. Birth prevalence was compared with term infants for a subset of "severe" defects expected to be near universally diagnosed in the neonatal period. Weighted multivariable logistic regression was used to calculate aORs of mortality comparing very and extremely premature infants with vs without CHDs. We identified 249 011 very/extremely premature infants, including 28 806 with CHDs. The overall birth prevalence of CHDs was 116 per 1000 very/extremely premature births. Severe CHDs had significantly higher birth prevalence in very/extremely premature infants when compared with term infants (7.4 per 1000 very/premature births vs 1.5 per 1000 term births; P < .001). Very/extremely premature infants with severe CHDs had an overall 26.3% in-hospital mortality and a 7.5-fold increased adjusted odds of death compared with those without CHDs. Mortality varied widely by defect in very/extremely premature infants, ranging from 12% for interrupted aortic arch to 67% for truncus arteriosus. Given the increased birth prevalence of severe CHDs in very/extremely premature infants, and significantly higher mortality, there is justification for intensive interventions aimed at decreasing the likelihood of premature delivery for patients where CHD is diagnosed in utero. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Factors of skin ageing share common mechanisms.

    PubMed

    Giacomoni, P U; Rein, G

    2001-01-01

    Ageing has been defined as the accumulation of molecular modifications which manifest as macroscopic clinical changes. Human skin, unique among mammalians insofar as it is deprived of fur, is particularly sensitive to environmental stress. Major environmental factors have been recognized to induce modifications of the morphological and biophysical properties of the skin. Metabolites from ingested or inhaled substances do affect skin, which is also sensitive to endogenous hormone levels. Factors as diverse as ultraviolet radiation, atmospheric pollution, wounds, infections, traumatisms, anoxya, cigarette smoke, and hormonal status have a role in increasing the rate of accumulation of molecular modifications and have thus been termed 'factors of ageing'. All these factors share as a common feature, the capability to directly or indirectly induce one of the steps of the micro-inflammatory cycle, which includes the expression of ICAM-1 in endothelial cells. This triggers a process leading to the accumulation of damages in the skin resulting in skin ageing since ICAM-1 expression provokes recruitment and diapedesis of circulating immune cells, which digest the extracellular matrix (ECM) by secreting collagenases, myeloperoxidases and reactive oxygen species. The activation of these lytic processes provokes random damage to resident cells, which in turn secrete prostaglandines and leukotrienes. These signaling molecules induce the degranulation of resident mast cells which release the autacoid histamine and the cytokine TNF-alpha thus activating endothelial cells lining adjacent capillaries which release P-selectin and synthesize ICAM-1. This closes a self-maintained micro-inflammatory cycle, which results in the accumulation of ECM damage, i.e. skin aging. In this paper we review the evidence that two factors able to induce macroscopical and molecular modifications in the skin, protein glycation and stretch, activate the micro-inflammatory cycle. We further present

  16. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome.

    PubMed

    Liu, Guang-Hui; Barkho, Basam Z; Ruiz, Sergio; Diep, Dinh; Qu, Jing; Yang, Sheng-Lian; Panopoulos, Athanasia D; Suzuki, Keiichiro; Kurian, Leo; Walsh, Christopher; Thompson, James; Boue, Stephanie; Fung, Ho Lim; Sancho-Martinez, Ignacio; Zhang, Kun; Yates, John; Izpisua Belmonte, Juan Carlos

    2011-04-14

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal human premature ageing disease, characterized by premature arteriosclerosis and degeneration of vascular smooth muscle cells (SMCs). HGPS is caused by a single point mutation in the lamin A (LMNA) gene, resulting in the generation of progerin, a truncated splicing mutant of lamin A. Accumulation of progerin leads to various ageing-associated nuclear defects including disorganization of nuclear lamina and loss of heterochromatin. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts obtained from patients with HGPS. HGPS-iPSCs show absence of progerin, and more importantly, lack the nuclear envelope and epigenetic alterations normally associated with premature ageing. Upon differentiation of HGPS-iPSCs, progerin and its ageing-associated phenotypic consequences are restored. Specifically, directed differentiation of HGPS-iPSCs to SMCs leads to the appearance of premature senescence phenotypes associated with vascular ageing. Additionally, our studies identify DNA-dependent protein kinase catalytic subunit (DNAPKcs, also known as PRKDC) as a downstream target of progerin. The absence of nuclear DNAPK holoenzyme correlates with premature as well as physiological ageing. Because progerin also accumulates during physiological ageing, our results provide an in vitro iPSC-based model to study the pathogenesis of human premature and physiological vascular ageing.

  17. [Variations of the skin permeability in premature newborn infants. Value of the skin vasoconstriction test with neosynephrine].

    PubMed

    Plantin, P; Jouan, N; Karangwa, A; Gavanou, J; Cauvin, J M; Schollhammer, M; Sizun, J; Guillois, B; Sassolas, B; Collet, M

    1992-01-01

    The skin of preterm infants is defective as a barrier and does not function like that of mature until about 2 weeks of age. Percutaneous drug absorption was studied by observing the blanching response to aqueous solutions of 10% Neosynephrin applied to a small area of skin on the internal surface of the thigh. The subjects, 10 preterm infants born at gestational ages 29 to 32 weeks (mean: 31 weeks 2 days), were tested when they were aged from day 0 to 7. The controls were 8 normal newborns aged 2 days. All preterm infants were tested a second time at the age 7 to 17 days (mean: 10 days). The blanching response was measured after 5 minutes, and graded on a scale of 0 to 4. The first test was positive grade 2 to 4 in all the preterm babies, while it was negative in the normal newborns. The second test was negative in 7 of the 10 preterm infants; in other 3, the grade was at least 50% lower. Infants nursed under radiant heaters were not different from the other infants. Skin permeability is increased in immature infants, but falls steadily until about the age of 10 days. The results of the Neosynephrin test could be useful in predicting the response to topically administered drug.

  18. Aberrant DNA methylation profiles in the premature aging disorders Hutchinson-Gilford Progeria and Werner syndrome.

    PubMed

    Heyn, Holger; Moran, Sebastian; Esteller, Manel

    2013-01-01

    DNA methylation gradiently changes with age and is likely to be involved in aging-related processes with subsequent phenotype changes and increased susceptibility to certain diseases. The Hutchinson-Gilford Progeria (HGP) and Werner Syndrome (WS) are two premature aging diseases showing features of common natural aging early in life. Mutations in the LMNA and WRN genes were associated to disease onset; however, for a subset of patients the underlying causative mechanisms remain elusive. We aimed to evaluate the role of epigenetic alteration on premature aging diseases by performing comprehensive DNA methylation profiling of HGP and WS patients. We observed profound changes in the DNA methylation landscapes of WRN and LMNA mutant patients, which were narrowed down to a set of aging related genes and processes. Although of low overall variance, non-mutant patients revealed differential DNA methylation at distinct loci. Hence, we propose DNA methylation to have an impact on premature aging diseases.

  19. Nutrition and aging skin: sugar and glycation.

    PubMed

    Danby, F William

    2010-01-01

    The effect of sugars on aging skin is governed by the simple act of covalently cross-linking two collagen fibers, which renders both of them incapable of easy repair. Glucose and fructose link the amino acids present in the collagen and elastin that support the dermis, producing advanced glycation end products or "AGEs." This process is accelerated in all body tissues when sugar is elevated and is further stimulated by ultraviolet light in the skin. The effect on vascular, renal, retinal, coronary, and cutaneous tissues is being defined, as are methods of reducing the glycation load through careful diet and use of supplements. Copyright 2010. Published by Elsevier Inc.

  20. Skin Ageing: Natural Weapons and Strategies

    PubMed Central

    Binic, Ivana; Lazarevic, Viktor; Ljubenovic, Milanka; Mojsa, Jelena; Sokolovic, Dusan

    2013-01-01

    The fact that the skin is the most visible organ makes us aware of the ageing process every minute. The use of plant extracts and herbs has its origins in ancient times. Chronological and photo-ageing can be easily distinguished clinically, but they share important molecular features. We tried to gather the most interesting evidence based on facts about plants and plant extracts used in antiaging products. Our main idea was to emphasize action mechanisms of these plant/herbal products, that is, their “strategies” in fighting skin ageing. Some of the plant extracts have the ability to scavenge free radicals, to protect the skin matrix through the inhibition of enzymatic degradation, or to promote collagen synthesis in the skin. There are some plants that can affect skin elasticity and tightness. Certainly, there is a place for herbal principles in antiaging cosmetics. On the other hand, there is a constant need for more evaluation and more clinical studies in vivo with emphasis on the ingredient concentration of the plant/herbal products, its formulation, safety, and duration of the antiaging effect. PMID:23431351

  1. Premature aging in chronic kidney disease and chronic obstructive pulmonary disease: similarities and differences.

    PubMed

    Kooman, Jeroen P; Shiels, Paul G; Stenvinkel, Peter

    2015-11-01

    There is increasing clinical and pathophysiological evidence that a premature aging process is involved in the pathogenesis of systemic complications of many chronic organ diseases, which result in analogous phenotypes, including premature vascular aging, osteoporosis and muscle wasting. Novel developments from research into the aging process will, therefore, have relevance for understanding complications of organ diseases, such as chronic kidney disease and chronic obstructive pulmonary disease. The aim of the present article is to combine recent literature on aging mechanisms with evidence on the pathogenesis of systemic complications of these two chronic debilitating disorders. Recently, nine hallmarks of aging have been identified. In this review, we argue that all of these hallmarks are relevant for the pathogenesis of premature aging processes in chronic obstructive pulmonary disease and chronic kidney disease. Additionally, organ-specific alterations in proaging mechanisms, which reveal differences in phenotype against a generic background of premature aging, will be addressed. However, within patient populations who share a common diagnosis, clusters of patients with different phenotypes may be identified, which may show overlap with patients with other chronic diseases. An increased understanding of the premature aging process as well as its systemic consequences may pave the way for 'precision' intervention as well as shared treatment opportunities between chronic debilitating diseases of various causes.

  2. Biological effects of rutin on skin aging.

    PubMed

    Choi, Seong Jin; Lee, Sung-Nae; Kim, Karam; Joo, Da Hye; Shin, Shanghun; Lee, Jeongju; Lee, Hyun Kyung; Kim, Jihyun; Kwon, Seung Bin; Kim, Min Jung; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Cha, Hwa Jun

    2016-07-01

    Rutin, a quercetin glycoside is a member of the bioflavonoid family which is known to possess antioxidant properties. In the present study, we aimed to confirm the anti‑aging effects of rutin on human dermal fibroblasts (HDFs) and human skin. We examined the effects of rutin using a cell viability assay, senescence-associated-β-galactosidase assay, reverse transcription-quantitative polymerase chain reaction, and by measuring reactive oxygen species (ROS) scavenging activity in vitro. To examine the effects of rutin in vivo, rutin‑containing cream was applied to human skin. A double-blind clinical study was conducted in 40 subjects aged between 30-50 years and divided into control and experimental groups. The test material was applied for 4 weeks. After 2 and 4 weeks, dermal density, skin elasticity, the length and area of crow's feet, and number of under-eye wrinkles following the application of either the control or the rutin-containing cream were analyzed. Rutin increased the mRNA expression of collagen, type I, alpha 1 (COL1A1) and decreased the mRNA expression of matrix metallopeptidase 1 (MMP1) in HDFs. We verified that ROS scavenging activity was stimulated by rutin in a dose‑dependent manner and we identified that rutin exerted protective effects under conditions of oxidative stress. Furthermore, rutin increased skin elasticity and decreased the length, area and number of wrinkles. The consequences of human aging are primarily visible on the skin, such as increased wrinkling, sagging and decreased elasticity. Overall, this study demonstrated the biological effects of rutin on ROS-induced skin aging.

  3. Age-related crosslink in skin collagen

    SciTech Connect

    Yamauchi, M.; Mechanic, G.

    1986-05-01

    A stable crosslinking amino acid was isolated from mature bovine skin collagen and its structure was identified as histidinohydroxylysinonorleucine (HHL) using fast atom bombardment mass spectrometry and /sup 1/H, /sup 13/C-NMR. This newly identified crosslink has a linkage between C-2 histidine and C-6 of lysine in the latter's portion of hydroxylysinonorleucine. Quantitative studies using various aged samples of cow and human skin collagen indicated that this acid-heat stable nonreducible compound was the major age-related crosslink. In case of cow skin collagen, for example, during early embryonic development (3 and 5 month old embryos) the content of HHL stayed less than 0.01 residue/mole of collagen, however from the middle of gestation period (7 month old embryo) through the maturation stage it showed rapid increase with age and reached approximately 0.5 residues/mole of collagen in the 3 year old animal. Small increments (up to 0.65 res/mole of collagen) were observed in the 9 year old cow. The amounts of the crosslink unlike pyridinoline do not decrease with aging. Similar patterns were observed in human skin collagen.

  4. Premature aging in RecQ helicase-deficient human syndromes.

    PubMed

    Mohaghegh, Payam; Hickson, Ian D

    2002-11-01

    The RecQ family of DNA helicases have potential roles in DNA repair, replication and/or recombination pathways. In humans, a defect in the RecQ family helicases encoded by the BLM, WRN and RECQ4 genes gives rise to Bloom's (BS), Werner's (WS) and Rothmund-Thomson (RTS) syndromes, respectively. These disorders are associated with cancer predisposition and/or premature aging. In Bloom's syndrome, affected individuals are predisposed to many types of cancer at an early age. Werner's syndrome is a premature aging disorder with a complex phenotype, which includes many age-related disorders that develop from puberty, including greying and thinning of the hair, bilateral cataract formation, type II diabetes mellitus, osteoporosis and atherosclerosis. The phenotype of Rothmund-Thomson syndrome patients also consists of some features associated with premature aging, as well as predispositon to certain cancers. Here, we discuss the molecular basis of these RecQ helicase-deficient disorders.

  5. Analyses of changes on skin by aging.

    PubMed

    Kazanci, A; Kurus, M; Atasever, A

    2017-02-01

    This study aimed to evaluate the histological changes occurring in rat skin with increasing age, starting from the intrauterine period. Thirty-two healthy female Sprague-Dawley rats were evaluated in four groups: group 1 - intrauterine day 19, group 2 - postpartum day 21, group 3 - postpartum day 60, and group 4 - postpartum month 19. Skin samples from the back, abdomen, head, and upper and lower limbs were obtained from each subject under anesthesia. Tissue specimens were evaluated statistically and morphologically for the thicknesses of the epidermis, dermis, and basement membrane; the number, height, and width of dermal papillae; and the mast cell and pilosebaceous counts per group. The changes in collagen/elastic fibers and glycosaminoglycans were also assessed. Epidermal thickness was the highest in the intrauterine group; it decreased in the postpartum period and increased again in the aged group. Basal membrane thickness increased steadily with age. The number, height, and width of dermal papillae and dermal thickness increased up to day 60 after birth although these decreased in the aged group. Mast cell count also reached the maximum in the intrauterine group and gradually decreased with age. Pilosebaceous units of the dermis were fewer in intrauterine specimens; they showed an increase during the postpartum period and a decrease in the aged group. Skin specimens obtained from rats showed striking differences between the intrauterine and postpartum groups. Moreover, the postpartum group showed considerable intra-group differences. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Oxidative stress in aging human skin.

    PubMed

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-04-21

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis.

  7. Oxidative Stress in Aging Human Skin

    PubMed Central

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-01-01

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis. PMID:25906193

  8. A-type lamins and cardiovascular disease in premature aging syndromes.

    PubMed

    Dorado, Beatriz; Andrés, Vicente

    2017-01-10

    Lamin A is a nuclear intermediate filament protein with important structural and regulatory roles in most differentiated mammalian cells. Excessive accumulation of its precursor prelamin A or the mutant form called 'progerin' causes premature aging syndromes. Progeroid 'laminopathies' are characterized by severe cardiovascular problems (cardiac electrical defects, vascular calcification and stiffening, atherosclerosis, myocardial infarction, and stroke) and premature death. Here, we review studies in cell and mouse models and patients that are unraveling how abnormal prelamin A and progerin accumulation accelerates cardiovascular disease and aging. This knowledge is essential for developing effective therapies to treat progeria and may help identify new mechanisms underlying normal aging.

  9. Anticedants and natural prevention of environmental toxicants induced accelerated aging of skin.

    PubMed

    Tanuja Yadav; Mishra, Shivangi; Das, Shefali; Aggarwal, Shikha; Rani, Vibha

    2015-01-01

    Skin is frequently exposed to a variety of environmental and chemical agents that accelerate ageing. External stress such as UV radiations (UVR) and environmental pollutants majorly deteriorate the skin morphology, by activating certain intrinsic factors such as Reactive Oxygen Species (ROS) which trigger the activation of Matrix Metalloproteinases (MMPs) and inflammatory responses hence damaging the extracellular matrix (ECM) components. To counter this, an exogenous supply of anti-oxidants, is required since the endogenous anti-oxidant system cannot alone suffice the need. Bio-prospecting of natural resources for anti-oxidants has hence been intensified. Immense research is being carried out to identify potential plants with potent anti-oxidant activity against skin ageing. This review summarizes the major factors responsible for premature skin ageing and the plants being targeted to lessen the impact of those.

  10. Role of antioxidants in the skin: anti-aging effects.

    PubMed

    Masaki, Hitoshi

    2010-05-01

    Intracellular and extracellular oxidative stress initiated by reactive oxygen species (ROS) advance skin aging, which is characterized by wrinkles and atypical pigmentation. Because UV enhances ROS generation in cells, skin aging is usually discussed in relation to UV exposure. The use of antioxidants is an effective approach to prevent symptoms related to photo-induced aging of the skin. In this review, the mechanisms of ROS generation and ROS elimination in the body are summarized. The effects of ROS generated in the skin and the roles of ROS in altering the skin are also discussed. In addition, the effects of representative antioxidants on the skin are summarized with a focus on skin aging.

  11. Aging skin is functionally anaerobic: importance of coenzyme Q10 for anti aging skin care.

    PubMed

    Prahl, S; Kueper, T; Biernoth, T; Wöhrmann, Y; Münster, A; Fürstenau, M; Schmidt, M; Schulze, C; Wittern, K-P; Wenck, H; Muhr, G-M; Blatt, T

    2008-01-01

    The functional loss of mitochondria represents an inherent part in modern theories trying to explain the cutaneous aging process. The present study shows significant age-dependent differences in mitochondrial function of keratinocytes isolated from skin biopsies of young and old donors. Our data let us postulate that energy metabolism shifts to a predominantly non-mitochondrial pathway and is therefore functionally anaerobic with advancing age. CoQ10 positively influences the age-affected cellular metabolism and enables to combat signs of aging starting at the cellular level. As a consequence topical application of CoQ10 is beneficial for human skin as it rapidly improves mitochondrial function in skin in vivo.

  12. Intrinsic skin aging: the role of oxidative stress.

    PubMed

    Poljšak, Borut; Dahmane, Raja G; Godić, Aleksandar

    2012-01-01

    Skin aging appears to be the result of two overlapping processes, intrinsic and extrinsic. It is well accepted that oxidative stress contributes significantly to extrinsic skin aging, although findings point towards reactive oxygen species (ROS) as one of the major causes of and single most important contributor; not only does ROS production increase with age, but human skin cells' ability to repair DNA damage steadily decreases over the years. We extrapolated mechanisms of intrinsic oxidative stress in tissues other than skin to the skin cells in order to provide effective anti-aging strategies and reviewed the literature on intrinsic skin aging and the role of oxidative stress.

  13. Elevated cysteine-rich protein 61 (CCN1) promotes skin aging via upregulation of IL-1β in chronically sun-exposed human skin.

    PubMed

    Qin, Zhaoping; Okubo, Toru; Voorhees, John J; Fisher, Gary J; Quan, Taihao

    2014-02-01

    Chronic exposure of human skin to solar ultraviolet (UV) irradiation causes premature skin aging, which is characterized by reduced type I collagen production and increased fragmentation of the dermal collagenous extracellular matrix. This imbalance of collagen homeostasis is mediated, in part, by elevated expression of the matricellular protein cysteine-rich protein 61 (CCN1), in dermal fibroblasts, the primary collagen producing cell type in human skin. Here, we report that the actions of CCN1 are mediated by induction of interleukin 1β (IL-1β). CCN1 and IL-1β are strikingly induced by acute UV irradiation, and constitutively elevated in sun-exposed prematurely aged human skin. Elevated CCN1 rapidly induces IL-1β, inhibits type I collagen production, and upregulates matrix metalloproteinase-1, which degrades collagen fibrils. Blockade of IL-1β actions by IL-1 receptor antagonist largely prevents the deleterious effects of CCN1 on collagen homeostasis. Furthermore, knockdown of CCN1 significantly reduces induction of IL-1β by UV irradiation, and thereby partially prevents collagen loss. These data demonstrate that elevated CCN1promotes inflammaging and collagen loss via induction of IL-1β and thereby contributes to the pathophysiology of premature aging in chronically sun-exposed human skin.

  14. [Products of bee-keeping and prophylaxis of premature aging].

    PubMed

    Dubtsova, E A; Kas'ianenko, V I; Komissarenko, I A; Lazebnik, L B

    2008-01-01

    Natural bee honey is one of compound natural products in which structure more than four hundred various components are revealed, including enzymes, organic acids, vitamins and microelements. One of the basic biological properties of honey is the ability to slow down processes of aging, because there are vitamins E, C, enzymes with antioxidative properties and a succinic acid in its structure. Examination of 193 beekeepers daily using honey in quantity of 57.2 +/- 8.6 gram with definition of their biological age was carried out. The received results have been compared to results of examination of 35 workers who are doing manual labour in the same degree, as the beekeepers, but do not use products of beekeeping. The research has shown that the biological age of 70% of beekeepers is lower than that of the average in population, 15% of beekeepers are of the same and 15% are of higher biological age than that of the average in population. The biological age of people in the group of comparison is lower than the average in population only in 28.6% of cases, corresponds in 31.4% and is higher than the average in population in 40.0% of cases. The biological age of beekeepers appeared not only less, than of the persons who are not using products of beekeeping, but it also is less than biological age of the population as a whole.

  15. [Medical and psychological prevention of stress-induced premature aging].

    PubMed

    Tsaregorodtseva, S A

    2007-01-01

    We studied the efficiency of the method complex for psychotherapy (psychocorrection) of those who suffer from post-traumatic stress disorders (PTSD) with the purpose of prevention and reduction of psychovegetative disorders and aging pace which would prevent from early disability and death. We studied 82 male patients suffering from post-traumatic stress disorder aged from 22 to 35 who endured combat psychologic traumatic experience. In our study we used 4 method approaches enabling to assess a functional state of an organism sequentially and fully. Those included: 1) a clinical psychopathological approach; 2) an experimental psychological approach; 3) a spectral analysis of the heart rate variability; 4) assessment of biological age dimensions. It was ascertained that PTSD can be seen as one of the factors increasing BA (biological age) and aging pace of people who experienced extreme situations. Our study proved that combined methods of psychotherapeutic rehabilitation also normalize parameters of vegetative heart rate regulation circuit. It is shown that positive changes in psychovegetative sphere achieved in people suffering from PTSD decrease an organism's aging pace.

  16. Premature Menopause

    PubMed Central

    Okeke, TC; Anyaehie, UB; Ezenyeaku, CC

    2013-01-01

    Premature menopause affects 1% of women under the age of 40 years. The women are at risk of premature death, neurological diseases, psychosexual dysfunction, mood disorders, osteoporosis, ischemic heart disease and infertility. There is need to use simplified protocols and improved techniques in oocyte donation to achieve pregnancy and mother a baby in those women at risk. Review of the pertinent literature on premature menopause, selected references, internet services using the PubMed and Medline databases were included in this review. In the past, pregnancy in women with premature menopause was rare but with recent advancement in oocyte donation, women with premature menopause now have hoped to mother a child. Hormone replacement therapy is beneficial to adverse consequences of premature menopause. Women with premature menopause are at risk of premature death, neurological diseases, psychosexual dysfunction, mood disorders, osteoporosis, ischemic heart disease and infertility. Public enlightenment and education is important tool to save those at risk. PMID:23634337

  17. Non-invasive, investigative methods in skin aging.

    PubMed

    Longo, C; Ciardo, S; Pellacani, G

    2015-12-01

    A precise and noninvasive quantification of aging is of outmost importance for in vivo assessment of the skin aging "stage", and thus acts to minimize it. Several bioengineering methods have been proposed to objectively, precisely, and non-invasively measure skin aging, and to detect early skin damage, that is sub-clinically observable. In this review we have described the most relevant methods that have emerged from recently introduced technologies, aiming at quantitatively assessing the effects of aging on the skin.

  18. Brain-Skin Connection: Stress, Inflammation and Skin Aging

    PubMed Central

    Chen, Ying; Lyga, John

    2014-01-01

    The intricate relationship between stress and skin conditions has been documented since ancient times. Recent clinical observations also link psychological stress to the onset or aggravation of multiple skin diseases. However, the exact underlying mechanisms have only been studied and partially revealed in the past 20 years or so. In this review, the authors will discuss the recent discoveries in the field of “Brain-Skin Connection”, summarizing findings from the overlapping fields of psychology, endocrinology, skin neurobiology, skin inflammation, immunology, and pharmacology. PMID:24853682

  19. Leaving College Prematurely: The Experiences of Nontraditional-Age College Students With Depression

    ERIC Educational Resources Information Center

    Thompson-Ebanks, Valerie

    2017-01-01

    This qualitative study examines the experiences of former nontraditional-age students with depression and reasons that led them to leave college prematurely. Constant comparative methods were used to illuminate themes within and across participants' stories. The findings showcase eight complex interlocking factors that these former students…

  20. Leaving College Prematurely: The Experiences of Nontraditional-Age College Students With Depression

    ERIC Educational Resources Information Center

    Thompson-Ebanks, Valerie

    2017-01-01

    This qualitative study examines the experiences of former nontraditional-age students with depression and reasons that led them to leave college prematurely. Constant comparative methods were used to illuminate themes within and across participants' stories. The findings showcase eight complex interlocking factors that these former students…

  1. Muscle wasting in myotonic dystrophies: a model of premature aging.

    PubMed

    Mateos-Aierdi, Alba Judith; Goicoechea, Maria; Aiastui, Ana; Fernández-Torrón, Roberto; Garcia-Puga, Mikel; Matheu, Ander; López de Munain, Adolfo

    2015-01-01

    Myotonic dystrophy type 1 (DM1 or Steinert's disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3' untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9 (CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular

  2. [Utilization of Werner syndrome mouse model in studying premature aging and tumor].

    PubMed

    Jia, Shu-Ting; Yang, Shi-Hua; Luo, Ying

    2009-08-01

    Werner syndrome (WS) is a rare autosomal recessive genetic disease in human. It is considered as a good model disease in studying human premature syndrome. Werner protein (WRN) is a nuclear protein mutated in WS. Recent biochemical and genetic studies indicated that WRN plays important roles in DNA replication, DNA repair, and telomere maintenance. Here, we reviewed the molecular genetics of WS and the importance of telomere and WRN in the development of WS. Knocking out both telomerase and Wrn genes in mouse faithfully manifests human WS. The mouse model provides a unique genetic platform to explore the crosstalk of premature aging and tumor.

  3. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates

    PubMed Central

    Olm, Matthew R.; Brown, Christopher T.; Brooks, Brandon; Firek, Brian; Baker, Robyn; Burstein, David; Soenjoyo, Karina; Thomas, Brian C.; Morowitz, Michael; Banfield, Jillian F.

    2017-01-01

    The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth, and gut of two hospitalized premature infants during the first month of life. Seven bacterial populations, considered to be identical given whole-genome average nucleotide identity of >99.9%, colonized multiple body sites, yet none were shared between infants. Gut-associated Citrobacter koseri genomes harbored 47 polymorphic sites that we used to define 10 subpopulations, one of which appeared in the gut after 1 wk but did not spread to other body sites. Differential genome coverage was used to measure bacterial population replication rates in situ. In all cases where the same bacterial population was detected in multiple body sites, replication rates were faster in mouth and skin compared to the gut. The ability of identical strains to colonize multiple body sites underscores the habit flexibility of initial colonists, whereas differences in microbial replication rates between body sites suggest differences in host control and/or resource availability. Population genomic analyses revealed microdiversity within bacterial populations, implying initial inoculation by multiple individual cells with distinct genotypes. Overall, however, the overlap of strains across body sites implies that the premature infant microbiome can exhibit very low microbial diversity. PMID:28073918

  4. From the rarest to the most common: insights from progeroid syndromes into skin cancer and aging.

    PubMed

    Capell, Brian C; Tlougan, Brook E; Orlow, Seth J

    2009-10-01

    Despite their rarity, diseases of premature aging, or "progeroid" syndromes, have provided important insights into basic mechanisms that may underlie cancer and normal aging. In this review, we highlight these recent developments in Hutchinson-Gilford progeria syndrome (HGPS), Werner syndrome, Bloom syndrome, Cockayne syndrome, trichothiodystrophy, ataxia-telangiectasia, Rothmund-Thomson syndrome, and xeroderma pigmentosum. Though they are caused by different mutations in various genes and often result in quite disparate phenotypes, deciphering the molecular bases of these conditions has served to highlight their underlying basic similarities. Studies of progeroid syndromes, particularly HGPS, the most dramatic form of premature aging, have contributed to our knowledge of fundamental processes of importance to skin biology, including DNA transcription, replication, and repair, genome instability, cellular senescence, and stem-cell differentiation.

  5. Psychological Stress and skin aging: a review of possible mechanisms and potential therapies.

    PubMed

    Dunn, Jeffrey H; Koo, John

    2013-06-15

    The link between psychological stress and aging is intuitive although the underlying mechanisms are not well defined. Evidence suggests that chronic psychological stress stimulates the autonomic nervous system, renin-angiotensin system, and the hypothalamic-pituitary-adrenal axis when the body attempts to resolve perceived threats to homeostasis. Prolonged activation of these pathways can result in chronic immune dysfunction, increased production of reactive oxygen species, and DNA damage, which are known to contribute to the again of skin and other tissues. Despite the lack of conclusive evidence directly linking psychological stress to skin aging, mechanisms by which stress leads to immune dysfunction, oxidative radicals, and ultimately DNA damage via neuronal, endocrine, and immune modulation may present a possible intervention for skin aging. In addition to the wide array of anti-oxidant therapies being developed to combat aging, the topical use of beta-blockers such as timolol, angiotensin receptor blockers such as valsartan, glucocorticoid blockers such as mifepristone, and cholinergic modulators including botulinum toxin, might be potential therapeutic strategies to prevent skin aging. Given the current understanding of these pathways, it would be premature to utilize such modalities for prevention of skin aging at this time, but future research into this type of topical pharmacologic anti-aging intervention may be promising.

  6. Natural and sun-induced aging of human skin.

    PubMed

    Rittié, Laure; Fisher, Gary J

    2015-01-05

    With worldwide expansion of the aging population, research on age-related pathologies is receiving growing interest. In this review, we discuss current knowledge regarding the decline of skin structure and function induced by the passage of time (chronological aging) and chronic exposure to solar UV irradiation (photoaging). Nearly every aspect of skin biology is affected by aging. The self-renewing capability of the epidermis, which provides vital barrier function, is diminished with age. Vital thermoregulation function of eccrine sweat glands is also altered with age. The dermal collagenous extracellular matrix, which comprises the bulk of skin and confers strength and resiliency, undergoes gradual fragmentation, which deleteriously impacts skin mechanical properties and dermal cell functions. Aging also affects wound repair, pigmentation, innervation, immunity, vasculature, and subcutaneous fat homeostasis. Altogether, age-related alterations of skin lead to age-related skin fragility and diseases.

  7. Natural and Sun-Induced Aging of Human Skin

    PubMed Central

    Rittié, Laure; Fisher, Gary J.

    2015-01-01

    With worldwide expansion of the aging population, research on age-related pathologies is receiving growing interest. In this review, we discuss current knowledge regarding the decline of skin structure and function induced by the passage of time (chronological aging) and chronic exposure to solar UV irradiation (photoaging). Nearly every aspect of skin biology is affected by aging. The self-renewing capability of the epidermis, which provides vital barrier function, is diminished with age. Vital thermoregulation function of eccrine sweat glands is also altered with age. The dermal collagenous extracellular matrix, which comprises the bulk of skin and confers strength and resiliency, undergoes gradual fragmentation, which deleteriously impacts skin mechanical properties and dermal cell functions. Aging also affects wound repair, pigmentation, innervation, immunity, vasculature, and subcutaneous fat homeostasis. Altogether, age-related alterations of skin lead to age-related skin fragility and diseases. PMID:25561721

  8. Relationship between arsenic skin lesions and the age of natural menopause

    PubMed Central

    2014-01-01

    Background Chronic exposure to arsenic is associated with neoplastic, cardiovascular, endocrine, neuro-developmental disorders and can have an adverse effect on women’s reproductive health outcomes. This study examined the relationship between arsenic skin lesions (a hallmark sign of chronic arsenic poisoning) and age of natural menopause (final menopausal period) in populations with high levels of arsenic exposure in Bangladesh. Methods We compared menopausal age in two groups of women – with and without arsenic skin lesions; and presence of arsenic skin lesions was used as an indicator for chronic arsenic exposure. In a cross-sectional study, a total of 210 participants were randomly identified from two ongoing studies— participants with arsenic skin lesions were identified from an ongoing clinical trial and participants with no arsenic skin lesions were identified from an ongoing cohort study. Mean age of menopause between these two groups were calculated and compared. Multivariable linear regression was used to estimate the relationship between the status of the arsenic skin lesions and age of natural menopause in women. Results Women with arsenic skin lesions were 1.5 years younger (p <0.001) at the time of menopause compared to those without arsenic skin lesions. After adjusting with contraceptive use, body mass index, urinary arsenic level and family history of premature menopause, the difference between the groups’ age at menopause was 2.1 years earlier (p <0.001) for respondents with arsenic skin lesions. Conclusions The study showed a statistically significant association between chronic exposure to arsenic and age at menopause. Heavily exposed women experienced menopause two years earlier than those with lower or no exposure. PMID:24886424

  9. Relationship between arsenic skin lesions and the age of natural menopause.

    PubMed

    Yunus, Fakir Md; Rahman, Musarrat Jabeen; Alam, Md Zahidul; Hore, Samar Kumar; Rahman, Mahfuzar

    2014-05-02

    Chronic exposure to arsenic is associated with neoplastic, cardiovascular, endocrine, neuro-developmental disorders and can have an adverse effect on women's reproductive health outcomes. This study examined the relationship between arsenic skin lesions (a hallmark sign of chronic arsenic poisoning) and age of natural menopause (final menopausal period) in populations with high levels of arsenic exposure in Bangladesh. We compared menopausal age in two groups of women--with and without arsenic skin lesions; and presence of arsenic skin lesions was used as an indicator for chronic arsenic exposure. In a cross-sectional study, a total of 210 participants were randomly identified from two ongoing studies--participants with arsenic skin lesions were identified from an ongoing clinical trial and participants with no arsenic skin lesions were identified from an ongoing cohort study. Mean age of menopause between these two groups were calculated and compared. Multivariable linear regression was used to estimate the relationship between the status of the arsenic skin lesions and age of natural menopause in women. Women with arsenic skin lesions were 1.5 years younger (p <0.001) at the time of menopause compared to those without arsenic skin lesions. After adjusting with contraceptive use, body mass index, urinary arsenic level and family history of premature menopause, the difference between the groups' age at menopause was 2.1 years earlier (p <0.001) for respondents with arsenic skin lesions. The study showed a statistically significant association between chronic exposure to arsenic and age at menopause. Heavily exposed women experienced menopause two years earlier than those with lower or no exposure.

  10. Premature menarche

    PubMed Central

    Murram, D; Dewhurst, John; Grant, D B

    1983-01-01

    Follow-up information was obtained from 12 women aged 16-34 years who had been seen previously because of premature isolated menstrual bleeding (premature menarche) starting between ages 9 months and 9 years. All the women reported normal regular menses and fertility was normal in the 6 women who had married. PMID:6830291

  11. Controlling reactive oxygen species in skin at their source to reduce skin aging.

    PubMed

    Kern, Dale G; Draelos, Zoe D; Meadows, Christiaan; James Morré, D; Morré, Dorothy M

    2010-01-01

    Activity of an age-related, superoxide-forming, cell-surface oxidase (arNOX) comparing dermis, epidermis, serum, and saliva from female and male subjects ages 28-72 years measured spectrophotometrically using reduction of ferricytochrome c correlated with oxidative skin damage as estimated from autofluoresence of skin using an Advanced Glycation End products Reader (AGE-Reader; DiagnOptics B.V., Netherlands). By reducing arNOX activity in skin with arNOX-inhibitory ingredients (NuSkin's ageLOC technology), skin appearance was improved through decreased protein cross-linking and an accelerated increase in collagen.

  12. GDF11 administration does not extend lifespan in a mouse model of premature aging

    PubMed Central

    Freitas-Rodríguez, Sandra; Rodríguez, Francisco; Folgueras, Alicia R.

    2016-01-01

    GDF11 has recently emerged as a powerful anti-aging candidate, found in young blood, capable of rejuvenating a number of aged tissues, such as heart, skeletal muscle and brain. However, recent reports have shown contradictory data questioning its capacity to reverse age-related tissue dysfunction. The availability of a mouse model of accelerated aging, which shares most of the features occurring in physiological aging, gives us an excellent opportunity to test in vivo therapies aimed at extending lifespan both in pathological and normal aging. On this basis, we wondered whether the proposed anti-aging functions of GDF11 would have an overall effect on longevity. We first confirmed the existence of a reduction in GDF11/8 levels in our mouse model of accelerated aging compared with wild-type littermates. However, we show herein that GDF11 daily administration does not extend lifespan of premature-aged mice. PMID:27507054

  13. Premature ageing of the immune system underlies immunodeficiency in ataxia telangiectasia.

    PubMed

    Exley, Andrew Robert; Buckenham, Samantha; Hodges, Elizabeth; Hallam, Robert; Byrd, Phil; Last, James; Trinder, Claire; Harris, Susan; Screaton, Nicholas; Williams, Anthony P; Taylor, A Malcolm R; Shneerson, John M

    2011-07-01

    ATM kinase modulates pathways implicated in premature ageing and ATM genotype predicts survival, yet immunodeficiency in ataxia telangiectasia is regarded as mild and unrelated to age. We address this paradox in a molecularly characterised sequential adult cohort with classical and mild variant ataxia telangiectasia. Immunodeficiency has the characteristics of premature ageing across multiple cellular and molecular immune parameters. This immune ageing occurs without previous CMV infection. Age predicts immunodeficiency in genetically homogeneous ataxia telangiectasia, and in comparison with controls, calendar age is exceeded by immunological age defined by thymic naïve CD4+ T cell levels. Applying ataxia telangiectasia as a model of immune ageing, pneumococcal vaccine responses, characteristically deficient in physiological ageing, are predicted by thymic naïve CD4+ T cell levels. These data suggest inherited defects of DNA repair may provide valuable insight into physiological ageing. Thymic naïve CD4+ T cells may provide a biomarker for vaccine responsiveness in elderly cohorts. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Unravelling of hidden secrets: The role of vitamin D in skin aging

    PubMed Central

    Reichrath, Jörg

    2012-01-01

    The skin is the only tissue in the human body that represents both a target tissue for biologically active vitamin D compounds including 1,25-dihydroxyvitamin D [1,25(OH)2D] and has the capacity for the synthesis of 1,25(OH)2D from 7-dehydrocholesterol (7-DHC). Recent findings indicate that the vitamin D endocrine system (VDES), besides multiple other important functions, regulates aging in many tissues, including skin. This concept is strongly supported by several independent studies in genetically modified mice (including FGF23−/− and Klotho−/− mice) that are characterized by altered mineral homeostasis caused by a high vitamin D activity. These mice typically have phenotypic features of premature aging that include, besides short lifespan, retarded growth, ectopic calcification, immunological deficiency, osteoporosis, atherosclerosis, hypogonadism, skin and general organ atrophy. Notably, it has been demonstrated that these phenotypic features can be reversed by normalizing mineral homeostasis and/or vitamin D status. Interestingly, the aging phenotypes of mice suffering from hypovitaminosis D (VDR−/− and CYP27B1−/− mice) are quite similar to those suffering from hypervitaminosis D (including FGF-23−/− and Klotho−/− mice). Consequently, it has been hypothesized that thus, both hypo- and hypervitaminosis D may enhance aging. Aging seems to show a U-shaped response curve to vitamin D status, and, therefore normovitaminosis D seems to be important for preventing premature aging. Additionally, laboratory investigations have now convincingly shown that vitamin D compounds protect the skin against the hazardous effects of various skin aging-inducing agents, including ultraviolet (UV) radiation. In conclusion, these findings support the concept that UV-radiation exerts both skin aging -promoting and -inhibiting effects, the latter via induction of cutaneous vitamin D synthesis. Future studies will clarify the effect of vitamin D compounds on

  15. Unravelling of hidden secrets: The role of vitamin D in skin aging.

    PubMed

    Reichrath, Jörg

    2012-07-01

    The skin is the only tissue in the human body that represents both a target tissue for biologically active vitamin D compounds including 1,25-dihydroxyvitamin D [1,25(OH)2D] and has the capacity for the synthesis of 1,25(OH)2D from 7-dehydrocholesterol (7-DHC). Recent findings indicate that the vitamin D endocrine system (VDES), besides multiple other important functions, regulates aging in many tissues, including skin. This concept is strongly supported by several independent studies in genetically modified mice (including FGF23(-/-) and Klotho(-/-) mice) that are characterized by altered mineral homeostasis caused by a high vitamin D activity. These mice typically have phenotypic features of premature aging that include, besides short lifespan, retarded growth, ectopic calcification, immunological deficiency, osteoporosis, atherosclerosis, hypogonadism, skin and general organ atrophy. Notably, it has been demonstrated that these phenotypic features can be reversed by normalizing mineral homeostasis and/or vitamin D status. Interestingly, the aging phenotypes of mice suffering from hypovitaminosis D (VDR(-/-) and CYP27B1(-/-) mice) are quite similar to those suffering from hypervitaminosis D (including FGF-23(-/-) and Klotho(-/-) mice). Consequently, it has been hypothesized that thus, both hypo- and hypervitaminosis D may enhance aging. Aging seems to show a U-shaped response curve to vitamin D status, and, therefore normovitaminosis D seems to be important for preventing premature aging. Additionally, laboratory investigations have now convincingly shown that vitamin D compounds protect the skin against the hazardous effects of various skin aging-inducing agents, including ultraviolet (UV) radiation. In conclusion, these findings support the concept that UV-radiation exerts both skin aging -promoting and -inhibiting effects, the latter via induction of cutaneous vitamin D synthesis. Future studies will clarify the effect of vitamin D compounds on expression and

  16. Anti-aging Effect of Transplanted Amniotic Membrane Mesenchymal Stem Cells in a Premature Aging Model of Bmi-1 Deficiency

    PubMed Central

    Xie, Chunfeng; Jin, Jianliang; Lv, Xianhui; Tao, Jianguo; Wang, Rong; Miao, Dengshun

    2015-01-01

    To determine whether transplanted amniotic membrane mesenchymal stem cells (AMSCs) ameliorated the premature senescent phenotype of Bmi-1-deficient mice, postnatal 2-day-old Bmi-1−/− mice were injected intraperitoneally with the second-passage AMSCs from amniotic membranes of β-galactosidase (β-gal) transgenic mice or wild-type (WT) mice labeled with DiI. Three reinjections were given, once every seven days. Phenotypes of 5-week-old β-gal+ AMSC-transplanted or 6-week-old DiI+ AMSC-transplanted Bmi-1−/− mice were compared with vehicle-transplanted Bmi-1−/− and WT mice. Vehicle-transplanted Bmi-1−/− mice displayed growth retardation and premature aging with decreased cell proliferation and increased cell apoptosis; a decreased ratio and dysmaturity of lymphocytic series; premature osteoporosis with reduced osteogenesis and increased adipogenesis; redox imbalance and DNA damage in multiple organs. Transplanted AMSCs carried Bmi-1 migrated into multiple organs, proliferated and differentiated into multiple tissue cells, promoted growth and delayed senescence in Bmi-1−/− transplant recipients. The dysmaturity of lymphocytic series were ameliorated, premature osteoporosis were rescued by promoting osteogenesis and inhibiting adipogenesis, the oxidative stress and DNA damage in multiple organs were inhibited by the AMSC transplantation in Bmi-1−/− mice. These findings indicate that AMSC transplantation ameliorated the premature senescent phenotype of Bmi-1-deficient mice and could be a novel therapy to delay aging and prevent aging-associated degenerative diseases. PMID:26370922

  17. Stomatognathic evaluation at five years of age in children born premature and at term.

    PubMed

    Guedes, Kíldane Maria Almeida; Guimarães, Alzira Maria D'Avila Nery; Bastos, Alliny de Souza; Salviano, Karoline Guedes Mesquita; Sales, Neuza Josina; Almeida, Maria Luiza Dória; Gurgel, Ricardo Queiroz

    2015-03-29

    The high frequency of alterations of the stomatognathic system associated with premature birth may suggest that prematurity is an important risk factor in the development of this system. Prematurity has an incidence between 6-11% of births and is associated with factors such as genetic, maternal conditions (obstetric problems, nutritional status, infections) and antenatal care. In addition, undesirable situations, such as changes in enamel and the development of the skeletal structure, also appears to be associated with prematurity. This study aimed to look for changes in the stomatognathic system at five years of age associated with premature birth. We estimated the prevalence of developmental disorders of the stomatognathic system in the primary dentition of preschool children at five years of age. Changes in preterm infants (n = 32) compared with term born (n = 381) were evaluated . Clinical examinations and questionnaire with sociodemographic and health of mothers and children information. Gestational age, birth weight, head circumference, Apgar score and mechanical ventilation, were collected from the medical records to birth records. The explanatory variable was preterm (<37 weeks gestational age). Prevalence of 7.7% of preterm infants was found. Of these, 40.6% had atresic palate, 56.2% malocclusion and 21.8% enamel hypoplasia. Forty (9.6%) children were not breastfed at the breast, and 26 (65.0%) had some type of malocclusion, showing association between not breastfeeding with an abnormal development of the stomatognathic system. The group of preterm infants showed five times more changes in head circumference and three times more mechanical ventilation use at birth. Change in head circumference at birth and mechanical ventilation has a significant association between groups of preterm and term infants. Mechanical ventilation at birth directly contributed to an increased risk of developmental disorders of the stomatognathic system in preterm infants

  18. ALA-PDT elicits oxidative damage and apoptosis in UVB-induced premature senescence of human skin fibroblasts.

    PubMed

    Zhou, Bing-Rong; Zhang, Li-Chao; Permatasari, Felicia; Liu, Juan; Xu, Yang; Luo, Dan

    2016-06-01

    5-Aminolevulinic acid photodynamic therapy (ALA-PDT) has been used for the treatment of skin photoaging. It can significantly improve the appearance of fine lines, dotted pigmentation, and roughness of photoaged skin. However, the mechanisms by which ALA-PDT yields rejuvenating effects on photoaged skin have not been well elucidated. Thus, in this study we explored the effects of ALA-PDT in photoaged fibroblasts. We established a stress-induced premature senescence (SIPS) model by repeated exposures of human dermal fibroblasts (HDFs) to ultraviolet B (UVB) irradiation. Cells were irradiated by red light laser at 635nm wavelength (50mW/cm(2)). Intracellular protoporphyrin IX (PpIX) was detected by confocal microscopy. Intracellular reactive oxygen species (ROS) level and mitochondrial membrane potential (MMP) change were detected by fluorescence microscopy and flow cytometry. Morphological changes were observed by optical microscopy. Proliferative activity was measured by a cell counting kit-8 (CCK-8). Cell apoptosis was detected by fluorescence microscopy using Hoechst staining and flow cytometry using annexin V/propidium Iodide double staining. Intracellular PpIX fluorescence in UVB-induced premature senescent HDFs (UVB-SIPS-HDFs) reached the highest intensity after incubation with 1.00mmol/L ALA for 6h (P<0.05). Compared with control group, intracellular ROS level, MMP, and apoptotic rate were increased (P<0.05) and proliferative activity was decreased (P<0.05) in UVB-SIPS-HDFs treated with ALA-PDT, which were positively correlated to ALA incubation time and red light laser dose. Our study demonstrated that ALA-PDT elicits oxidative damage and apoptosis in photoaged fibroblasts in vitro, which may be the basis for the rejuvenating effects on photoaged skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Gestational age, sex and maternal parity correlate with bone turnover in premature infants.

    PubMed

    Aly, Hany; Moustafa, Mohamed F; Amer, Hanna A; Hassanein, Sahar; Keeves, Christine; Patel, Kantilal

    2005-05-01

    Factors affecting bone turnover in premature infants are not entirely clear but certainly are different from those influencing bones of adults and children. To identify fetal and maternal factors that might influence bone turnover, we prospectively studied 50 infants (30 preterm and 20 full-term) born at Ain Shams University Obstetric Hospital in Cairo, Egypt. Maternal parity and medical history and infant's weight, gestational age, gender and anthropometrical measurements were recorded. Cord blood samples were collected and serum type I collagen C-terminal propeptide (PICP) was assessed as a marker for fetal bone formation. First morning urine samples were collected and pyridinoline cross-links of collagen (Pyd) were measured as an index for bone resorption. Serum PICP was higher in premature infants when compared with full-term infants (73.30 +/- 15.1 versus 64.3 +/- 14.7, p = 0.022) and was higher in male premature infants when compared with females (81.64 +/- 9.06 versus 66.0 +/- 15.7, p = 0.018). In a multiple regression model using PICP as the dependent variable and controlling for different infant and maternal conditions, PICP significantly correlated with infant gender (r = 8.26 +/- 4.1, p = 0.05) maternal parity (r = -2.106 +/- 0.99, p = 0.041) and diabetes (r = 22.488 +/- 8.73, p = 0.041). Urine Pyd tended to increase in premature infants (612 +/- 308 versus 434 +/- 146, p = 0.057) and correlated significantly with gestational age (r = -63.93 +/- 19.55, p = 0.002). Therefore, bone formation (PICP) is influenced by fetal age and gender, as well as maternal parity and diabetes. Bone resorption (Pyd) is mostly dependent on gestational age only. Further in-depth studies are needed to enrich management of this vulnerable population.

  20. CCR researchers identify pathway critical for preventing premature aging | Center for Cancer Research

    Cancer.gov

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare, fatal disease in which patients age prematurely. To identify primary HGPS driver mechanisms, Nard Kubben, Ph.D., a Research Fellow in the laboratory of Tom Misteli, Ph.D., in CCR’s Laboratory of Receptor Biology and Gene Expression, and colleagues in the NCI High-throughput Imaging Facility developed an imaging-based high-throughput small interfering RNA (siRNA) screen.

  1. DPOAE suppression tuning: Cochlear immaturity in premature neonates or auditory aging in normal-hearing adults?

    NASA Astrophysics Data System (ADS)

    Abdala, Carolina

    2001-12-01

    Previous work has shown that distortion product otoacoustic emission (DPOAE) suppression tuning curves (STCs) recorded from premature neonates are narrower than adult STCs at both low and high frequencies. This has been interpreted to indicate an immaturity in cochlear function prior to term birth. However, an alternative explanation for this finding is that adult DPOAE STCs are broadened and reflect cochlear hair cell loss in normal-hearing adults due to aging, and natural exposure to noise and ototoxins. This alternative hypothesis can be tested by studying suppression tuning in normal-hearing school-aged children. If normal-hearing children, who have not aged significantly or been exposed to noise/ototoxins, have DPOAE suppression tuning similar to adults, the auditory aging hypothesis can be ruled out. However, if children have tuning similar to premature neonates and dissimilar from adults, it implicates aging or other factors intrinsic to the adult cochlea. DPOAE STCs were recorded at 1500, 3000, and 6000 Hz using optimal parameters in normal-hearing children and adults. DPOAE STCs collected previously from premature neonates were used for age comparisons. In general, results indicate that tuning curves from children are comparable to adult STCs and significantly different from neonatal STCS at 1500 and 6000 Hz. Only the growth of suppression was not adultlike in children and only at 6000 Hz. These findings do not strongly support the auditory aging hypothesis as a primary explanation for previously observed neonatal-adult differences in DPOAE suppression tuning. It suggests that these age differences are most likely due to immaturities in the neonatal cochlea. However, nonadultlike suppression growth observed in children at 6000 Hz warrants further attention and may be indicative of subtle alternations in the adult cochlea at high frequencies.

  2. Discovering the link between nutrition and skin aging

    PubMed Central

    Schagen, Silke K.; Zampeli, Vasiliki A.; Makrantonaki, Evgenia; Zouboulis, Christos C.

    2012-01-01

    Skin has been reported to reflect the general inner-health status and aging. Nutrition and its reflection on skin has always been an interesting topic for scientists and physicians throughout the centuries worldwide. Vitamins, carotenoids, tocopherols, flavonoids and a variety of plant extracts have been reported to possess potent anti-oxidant properties and have been widely used in the skin care industry either as topically applied agents or oral supplements in an attempt to prolong youthful skin appearance. This review will provide an overview of the current literature “linking” nutrition with skin aging. PMID:23467449

  3. The maximal cumulative solar UVB dose allowed to maintain healthy and young skin and prevent premature photoaging.

    PubMed

    Ichihashi, Masamitsu; Ando, Hideya

    2014-10-01

    The young facial skin of children with a smooth healthy appearance changes over time to photoaged skin having mottled pigmentation, solar lentigines, wrinkles, dry and rough skin, leathery texture, and benign and malignant tumors after exposure to chronic, repeated solar radiation. The first sign of photoaging in Japanese subjects is usually solar lentigines appearing around 20 years of age on the face. Fine wrinkles can then appear after 30 years of age, and benign skin tumors, seborrhoeic keratoses, can occur after 35 years of age in sun-exposed skin. We theoretically calculated the maximal daily exposure time to solar radiation, which could prevent the development of photoaged skin until 60 and 80 years of age, based on published data of personal solar UVB doses in sun-exposed skin. One MED (minimal erythema dose) was determined to be 20 mJ/cm(2) , and 200 MED was used as the average yearly dose of Japanese children. Further, we hypothesized that the annual dose of Japanese adults is the same as that of the children. The cumulative UVB dose at 20 years of age was thus calculated to be 4000 MED, and 22 MED was used as the maximal daily UVB dose based on data measured in Kobe, located in the central area of Japan. We used the solar UVB dose from 10:00 a.m. to 14:00 p.m. which occupies 60% of the total daily UV dose, to obtain the maximal UVB per hour in a day, and calculated the maximal daily UV exposure time that would delay the onset of solar lentigines until 60 or 80 years of age. The mean daily sun exposure time to maintain healthy skin until 80 years of age in the summer was calculated to be 2.54 min (0.14 MED) for unprotected skin and 127 min with the use of a sunscreen of SPF (sun protection factor) of 50. In this study, we did not evaluate the photoaging effect of UVA radiation, but findings of the adverse effects of UVA radiation on the skin have accumulated in the last decade. Therefore, it will be important to estimate the maximal dose of solar

  4. Homeostatic imbalance between apoptosis and cell renewal in the liver of premature aging Xpd mice.

    PubMed

    Park, Jung Yoon; Cho, Mi-Ook; Leonard, Shanique; Calder, Brent; Mian, I Saira; Kim, Woo Ho; Wijnhoven, Susan; van Steeg, Harry; Mitchell, James; van der Horst, Gijsbertus T J; Hoeijmakers, Jan; Cohen, Pinchas; Vijg, Jan; Suh, Yousin

    2008-06-11

    Unrepaired or misrepaired DNA damage has been implicated as a causal factor in cancer and aging. Xpd(TTD) mice, harboring defects in nucleotide excision repair and transcription due to a mutation in the Xpd gene (R722W), display severe symptoms of premature aging but have a reduced incidence of cancer. To gain further insight into the molecular basis of the mutant-specific manifestation of age-related phenotypes, we used comparative microarray analysis of young and old female livers to discover gene expression signatures distinguishing Xpd(TTD) mice from their age-matched wild type controls. We found a transcription signature of increased apoptosis in the Xpd(TTD) mice, which was confirmed by in situ immunohistochemical analysis and found to be accompanied by increased proliferation. However, apoptosis rate exceeded the rate of proliferation, resulting in homeostatic imbalance. Interestingly, a metabolic response signature was observed involving decreased energy metabolism and reduced IGF-1 signaling, a major modulator of life span. We conclude that while the increased apoptotic response to endogenous DNA damage contributes to the accelerated aging phenotypes and the reduced cancer incidence observed in the Xpd(TTD) mice, the signature of reduced energy metabolism is likely to reflect a compensatory adjustment to limit the increased genotoxic stress in these mutants. These results support a general model for premature aging in DNA repair deficient mice based on cellular responses to DNA damage that impair normal tissue homeostasis.

  5. Modulation of skin collagen metabolism in aged and photoaged human skin in vivo.

    PubMed

    Chung, J H; Seo, J Y; Choi, H R; Lee, M K; Youn, C S; Rhie, G; Cho, K H; Kim, K H; Park, K C; Eun, H C

    2001-11-01

    To the best of our knowledge, no study has been conducted to date to directly compare the collagen metabolism of photoaged and naturally aged human skin. In this study, we compared collagen synthesis, matrix metalloproteinase-1 levels, and gelatinase activity of sun-exposed and sun-protected skin of both young and old subjects. Using northern blot analysis, immunohistochemical stain, and Western blot analysis, we demonstrated that the levels of procollagen type I mRNA and protein in photoaged and naturally aged human skin in vivo are significantly lower than those of young skin. Furthermore, we demonstrated, by northern blot analysis, that the procollagen alpha1(I) mRNA expression of photoaged skin is much greater than that of sun-protected skin in the same individual. In situ hybridization and immunohistochemical stain were used to show that the expression of type I procollagen mRNA and protein in the fibroblasts of photoaged skin is greater than for naturally aged skin. In addition, it was found, by Western blot analysis using protein extracted from the dermal tissues, that the level of procollagen type I protein in photoaged skin is lower than that of naturally aged skin. The level of matrix metalloproteinase-1 protein and the activity of matrix metalloproteinase-2 were higher in the dermis of photoaged skin than in naturally aged skin. Our results suggest that the natural aging process decreases collagen synthesis and increases the expression of matrix metalloproteinases, whereas photoaging results in an increase of collagen synthesis and greater matrix metalloproteinase expression in human skin in vivo. Thus, the balance between collagen synthesis and degradation leading to collagen deficiency is different in photoaged and naturally aged skin.

  6. Photoaging and chronological aging profile: Understanding oxidation of the skin.

    PubMed

    Peres, P S; Terra, V A; Guarnier, F A; Cecchini, R; Cecchini, A L

    2011-05-03

    The impact of chronological aging and photoaging on the skin is particularly concerning, especially when oxidative stress is involved. This article provides evidence of quantitative and qualitative differences in the oxidative stress generated by chronological aging and photoaging of the skin in HRS/J hairless mice. Analysis of the results revealed an increase in lipid peroxides as the skin gets older and in photoaged skin (10.086 ± 0.70 η MDA/mg and 14.303 ± 1.81 η MDA/mg protein, respectively), although protein oxidation was only verified in chronological aged skin (15.449 ± 0.99 η protein/mg protein). The difference between both skin types is the decay in the capacity of lipid membrane turnover revealed by the dislocation of older skin to the left in the chemiluminescence curve. Imbalance between antioxidant and oxidation processes was verified by the decrease in total antioxidant capacity of chronological and photoaged skins. Although superoxide dismutase remained unchanged, catalase increased in the 18 and 48-week-old skin groups and decreased in irradiated mice, demonstrating that neither enzyme is a good parameter to determine oxidative stress. The differences observed between chronological and photoaging skin represent a potential new approach to understanding the phenomenon of skin aging and a new target for therapeutic intervention. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Factors influencing the motor development of prematurely born school-aged children in Brazil.

    PubMed

    Moreira, Rafaela S; Magalhães, Lívia C; Dourado, Jordana S; Lemos, Stela M A; Alves, Claudia R L

    2014-09-01

    Despite technological advances in neonatology, premature children are still susceptible to disruptions in neurological development. The current study aimed to analyze the factors that influence motor development in prematurely born school-aged children in Brazil. This cross-sectional study involved 100 "apparently normal" children, aged 8-10 years, born at less than 35 weeks of gestation or with birth weight< 1500 g. Their motor development was assessed using the Movement Assessment Battery for Children (MABC-2). The children's neuropsychological and academic performance was assessed with the Token Test (TT) and Teste de Desempenho Escolar (TDE), respectively. Parents answered questions regarding the child's clinical history and behavior using the Strengths and Difficulties Questionnaire (SDQ) and family environment resources (RAF). Hierarchical multivariate analyses revealed that 39% of the children scored lower on the MABC-2, as compared to that expected for their age (manual dexterity: 49%; balance: 35%; throwing/catching a ball: 26%). Multivariate analysis indicated that the lower the birth weight, the maternal age at childbirth, and the RAF score, the greater was the chance of impairment on the MABC-2 scores. The probability of having an impairment MABC-2 scores was four times higher when the mother was not employed. We also found associations between MABC-2 scores and the tasks of tying shoes and opening/closing zippers and buttons. Factors related to children's home environments and birth weight are associated with deficient motor performance in prematurely born Brazilian school-aged children. Deficient motor skills were also associated with difficulty in performing functional tasks requiring greater manual dexterity.

  8. Bone fragility and decline in stem cells in prematurely aging DNA repair deficient trichothiodystrophy mice.

    PubMed

    Diderich, Karin E M; Nicolaije, Claudia; Priemel, Matthias; Waarsing, Jan H; Day, Judd S; Brandt, Renata M C; Schilling, Arndt F; Botter, Sander M; Weinans, Harrie; van der Horst, Gijsbertus T J; Hoeijmakers, Jan H J; van Leeuwen, Johannes P T M

    2012-08-01

    Trichothiodystrophy (TTD) is a rare, autosomal recessive nucleotide excision repair (NER) disorder caused by mutations in components of the dual functional NER/basal transcription factor TFIIH. TTD mice, carrying a patient-based point mutation in the Xpd gene, strikingly resemble many features of the human syndrome and exhibit signs of premature aging. To examine to which extent TTD mice resemble the normal process of aging, we thoroughly investigated the bone phenotype. Here, we show that female TTD mice exhibit accelerated bone aging from 39 weeks onwards as well as lack of periosteal apposition leading to reduced bone strength. Before 39 weeks have passed, bones of wild-type and TTD mice are identical excluding a developmental defect. Albeit that bone formation is decreased, osteoblasts in TTD mice retain bone-forming capacity as in vivo PTH treatment leads to increased cortical thickness. In vitro bone marrow cell cultures showed that TTD osteoprogenitors retain the capacity to differentiate into osteoblasts. However, after 13 weeks of age TTD females show decreased bone nodule formation. No increase in bone resorption or the number of osteoclasts was detected. In conclusion, TTD mice show premature bone aging, which is preceded by a decrease in mesenchymal stem cells/osteoprogenitors and a change in systemic factors, identifying DNA damage and repair as key determinants for bone fragility by influencing osteogenesis and bone metabolism.

  9. Maintaining skin integrity in the aged: a systematic review.

    PubMed

    Kottner, J; Lichterfeld, A; Blume-Peytavi, U

    2013-09-01

    Ageing is associated with structural and functional changes of the skin that result in increased vulnerability. The aim of this systematic review is to synthesize empirical evidence about the efficacy and effectiveness of basic skin care interventions for maintaining skin integrity in the aged. The databases Medline, EMBASE, CINAHL (1990-2012), Scopus, SCI (February 2013) and reference lists were searched. Inclusion criteria were primary intervention studies using skin care products in physiologically aged skin (lower age limit 50 years). Study and sample characteristics, interventions and outcomes were extracted. The methodological quality was assessed and a level of evidence was assigned. From 1535 screened articles 188 were read in full text. From these, 33 articles were included reporting results on treating dry skin conditions, and preventing incontinence-associated dermatitis and superficial ulcerations. Most studies had lower levels of evidence of 3 or 4. Skin-cleansing products containing syndets or amphoteric surfactants compared with standard soap and water washing improved skin dryness and demonstrated skin-protecting effects. Moisturizers containing humectants consistently showed statistically significant improvements in skin dryness. Skin barrier products containing occlusives reduced the occurrence of skin injuries compared with standard or no treatment. Owing to methodological limitations the current evidence base for basic skin care in the aged is weak. Using low-irritating cleansing products and humectant- or occlusive-containing moisturizers seems to be the best strategy for maintaining the skin barrier function and integrity. We know little about the effects of cleansing regimens and about the benefits of moisturizers when compared with each other.

  10. Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety

    PubMed Central

    Mukherjee, Siddharth; Date, Abhijit; Patravale, Vandana; Korting, Hans Christian; Roeder, Alexander; Weindl, Günther

    2006-01-01

    Aging of skin is an intricate biological process consisting of two types. While intrinsic or chronological aging is an inevitable process, photoaging involves the premature aging of skin occurring due to cumulative exposure to ultraviolet radiation. Chronological and photoaging both have clinically differentiable manifestations. Various natural and synthetic retinoids have been explored for the treatment of aging and many of them have shown histological and clinical improvement, but most of the studies have been carried out in patients presenting with photoaged skin. Amongst the retinoids, tretinoin possibly is the most potent and certainly the most widely investigated retinoid for photoaging therapy. Although retinoids show promise in the treatment of skin aging, irritant reactions such as burning, scaling or dermatitis associated with retinoid therapy limit their acceptance by patients. This problem is more prominent with tretinoin and tazarotene whereas other retinoids mainly represented by retinaldehyde and retinol are considerably less irritating. In order to minimize these side effects, various novel drug delivery systems have been developed. In particular, nanoparticles have shown a good potential in improving the stability, tolerability and efficacy of retinoids like tretinoin and retinol. However, more elaborate clinical studies are required to confirm their advantage in the delivery of topical retinoids. PMID:18046911

  11. Sun’s effect on skin

    MedlinePlus

    The skin uses sunlight to help manufacture vitamin D, which is important for normal bone formation. But sometimes its ultraviolet light can be ... to age prematurely. Suntanning occurs because exposure to sunlight causes the skin to produce more melanin and ...

  12. Impact of prematurity on exercise capacity and agility of children and youth aged 8 to 18.

    PubMed

    Robič Pikel, Tatjana; Starc, Gregor; Strel, Janko; Kovač, Marjeta; Babnik, Janez; Golja, Petra

    2017-07-01

    Preterm (PT) birth and low birth mass (LBW) can impair growth and development of children and may therefore affect their physical performance up to adulthood. Our aim was to evaluate long-term consequences of prematurity, especially (an)aerobic exercise capacity and agility up to adulthood, by comparing premature and full-term (FT) individuals. From 474 subjects born in 1987, who were enrolled into a longitudinal study, 396 (178 PT and 218 FT (with 127 of them LBW)) were followed-up into their early adulthood. Their mass, respiratory status at birth, and results of SLOfit monitoring system (i.e. results of exercise capacity and agility) were monitored on a yearly basis from their age of 8 to 18years. Data were compared statistically with Student t-test or ANOVA. PT (or LBW) individuals performed aerobic (time of 600-meter run of females) and the majority of anaerobic tests (sit-ups, standing broad jump, and time of 60-meter run, but not bent arm hang) worse (p<0.05) than FT individuals. Before puberty, however, the agility and fine motor tests (arm plate tapping, polygon backwards, and standing reach touch) were performed better (p<0.05) by PT (or LBW) females, as compared to their FT peers, with no similar results in males. Our results clearly demonstrate that prematurity (especially extreme prematurity) diminishes exercise capacity and agility on the long-term scale, therefore, PT children should be encouraged towards more regular participation in physical activities from early childhood onwards. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Prematurely aged children: molecular alterations leading to Hutchinson-Gilford progeria and Werner syndromes.

    PubMed

    Domínguez-Gerpe, Lourdes; Araújo-Vilar, David

    2008-12-01

    Ageing is thought to be a polygenic and stochastic process in which multiple mechanisms operate at the same time. At the level of the individual organism ageing is associated with a progressive deterioration of health and quality of life, sharing common features such as: alopecia and grey hair, loss of audition, macular degeneration, neurodegeneration, cardiovascular diseases, osteoporosis, cataract formation, type-2 diabetes, lipodystrophies; a generally increased susceptibility to infection, autoimmune disorders and diseases such as cancer; and an impaired ability to cope with stress. Recent studies of mechanisms involved in the ageing process are contributing to the identification of genes involved in longevity. Monogenic heritable disorders causing premature ageing, and animal models have contributed to the understanding of some of the characteristic organism-level features associated with human ageing. Werner syndrome and Hutchinson-Gilford progeria syndrome are the best characterized human disorders. Werner syndrome patients have a median life expectancy of 47 years with clinical conditions from the second decade of life. Hutchinson-Gilford progeria syndrome patients die at a median age of 11-13 years with clinical conditions appearing soon after birth. In both syndromes, alterations in specific genes have been identified, with mutations in the WRN and LMNA genes respectively being the most closely associated with each syndrome. Results from molecular studies strongly suggest an increase in DNA damage and cell senescence as the underlying mechanism of pathological premature ageing in these two human syndromes. The same general mechanism has also been observed in human cells undergoing the normal ageing process. In the present article the molecular mechanisms currently proposed for explaining these two syndromes, which may also partly explain the normal ageing process, are reviewed.

  14. The assessment of multifocal ERG responses in school-age children with history of prematurity.

    PubMed

    Michalczuk, Marta; Urban, Beata; Chrzanowska-Grenda, Beata; Oziębło-Kupczyk, Monika; Bakunowicz-Łazarczyk, Alina; Krętowska, Małgorzata

    2016-02-01

    The authors examined macular function in preterm-born children, using multifocal ERG (mfERG). Possible alterations in P1 amplitudes, P1 amplitudes density and P1 implicit time between school-age children with history of prematurity and their peers were researched. The correlations between parameters of mfERG responses and birth weight, gestational age, macular volume and central macular thickness were verified. A group of 18 preterm-born school-age children were analyzed (mean age 10.18 ± 1.21 years). The study group was compared to the group of 15 peers born appropriate for gestational age (mean age 10.8 ± 1.52 years). The mfERG was evaluated in all children. There were statistically significant differences for P1 amplitudes from ring 1 (p = 0.0001) and P1 amplitudes density from ring 1 (p = 0.0001). Calculating the correlation coefficients, we receive significant results for P1 amplitudes from ring 1 versus gestational age (r = 0.54; p = 0.026), birth weight (r = 0.54; p = 0.026) and central macular thickness (r = -0.62; p = 0.008), and for P1 amplitudes density from ring 1 versus central macular thickness (r = -0.51; p = 0.034). The study suggests that P1 amplitudes and P1 amplitudes density vary in preterm-born children in comparison with their peers born appropriate for gestational age, which might suggest discreet macular dysfunction. The correlation between low birth weight, early gestational age, central macular thickness and mFERG components from ring 1 might evidence that decreased bipolar cells density caused by premature birth is the result of altered development of central retina reflecting in structural anomalies of the fovea.

  15. Hutchinson-Gilford Progeria Syndrome: A premature aging disease caused by LMNA gene mutations.

    PubMed

    Gonzalo, Susana; Kreienkamp, Ray; Askjaer, Peter

    2017-01-01

    Products of the LMNA gene, primarily lamin A and C, are key components of the nuclear lamina, a proteinaceous meshwork that underlies the inner nuclear membrane and is essential for proper nuclear architecture. Alterations in lamin A and C that disrupt the integrity of the nuclear lamina affect a whole repertoire of nuclear functions, causing cellular decline. In humans, hundreds of mutations in the LMNA gene have been identified and correlated with over a dozen degenerative disorders, referred to as laminopathies. These diseases include neuropathies, muscular dystrophies, lipodystrophies, and premature aging diseases. This review focuses on one of the most severe laminopathies, Hutchinson-Gilford Progeria Syndrome (HGPS), which is caused by aberrant splicing of the LMNA gene and expression of a mutant product called progerin. Here, we discuss current views about the molecular mechanisms that contribute to the pathophysiology of this devastating disease, as well as the strategies being tested in vitro and in vivo to counteract progerin toxicity. In particular, progerin accumulation elicits nuclear morphological abnormalities, misregulated gene expression, defects in DNA repair, telomere shortening, and genomic instability, all of which limit cellular proliferative capacity. In patients harboring this mutation, a severe premature aging disease develops during childhood. Interestingly, progerin is also produced in senescent cells and cells from old individuals, suggesting that progerin accumulation might be a factor in physiological aging. Deciphering the molecular mechanisms whereby progerin expression leads to HGPS is an emergent area of research, which could bring us closer to understanding the pathology of aging.

  16. Skin texture aging trend analysis using dermoscopy images.

    PubMed

    Choi, Y-H; Kim, D; Hwang, E; Kim, B J

    2014-11-01

    To date, the degree of skin damage caused by diverse factors, such as aging and persistent sunlight exposure, has been evaluated based on the personal experience and knowledge of dermatologists because there is no standard method for objective evaluation. If a standard method were available, patients could obtain more consistent information about their skin condition, and hence perform more effective treatment of the skin damage. In this paper, we demonstrate how to establish a standard method using dermoscopy images of subjects of various ages. We focus on three body parts, specifically the face, neck, and hands, and extract various skin texture features to quantitatively and objectively represent the skin condition. We construct a model for skin damage evaluation based on various skin texture features. To accomplish this objective, we consider various features from face, neck, and hand dermoscopy images, including texture length, width and depth, cell area, the number of cells in a fixed region, radius ratio of inscribed and circumscribed circles of a wrinkle cell, and average perimeter of a wrinkle cell. In this study, a wrinkle cell represents the smallest skin region enclosed by textures. We then perform a linear regression for texture features based on subject age. A dermoscopy image can be automatically analyzed by extracting skin texture features. We demonstrate aging trends by performing linear regression on these features. Based on this result, a quantitative and objective evaluation of the skin condition can be provided. We proposed several new skin texture features and developed algorithms to accurately extract them. We analyzed these features and demonstrated their age-related change trends by using graphs and charts. We believe that our result can be used as a standard method for evaluating degrees of skin damage. Moreover, we believe that our proposed method can be applied in various areas, such as performance evaluation of certain skin products.

  17. Prevention of oxidative damage that contributes to the loss of bioenergetic capacity in ageing skin.

    PubMed

    Corstjens, H; Declercq, L; Hellemans, L; Sente, I; Maes, D

    2007-09-01

    Skin ageing is a complex biological process related to a decline in physiological and biochemical performance. A decline in the mitochondrial energy production is a feature of ageing at the cellular level. This is partially attributed to excessive production of reactive oxygen species such as superoxide and hydrogen peroxide in aged individuals. We have investigated the effect of (glyc)oxidative stress on two biochemical targets relevant for the energy metabolism of the skin. First, we showed an age dependent decline in the activity of the hydrogen peroxide detoxifying antioxidant catalase in stratum corneum on a chronically sun-exposed site. Furthermore catalase was sensitive to peroxynitrite-induced in vitro inactivation. Catalase mimetics as well as peroxynitrite scavengers are proposed to maintain hydrogen peroxide detoxification pathways. The second target was creatine kinase, an enzyme that controls the creatine-creatine phosphate shuttle. Creatine kinase lost activity after in vitro glycation by methylglyoxal. This activity loss could be prevented by antiglycation actives. These data suggest that biomolecules involved in energy homeostasis become damaged by different sources of stress. Actives specifically selected for optimal protection against these stress situations will decrease skin vulnerability and prevent the premature loss of skin function.

  18. Skin care product evaluation in a group of critically ill, premature neonates: a descriptive study.

    PubMed

    Young, Daniel L; Chakravarthy, Debashish; Drower, Edward; Reyna, Roxana

    2014-01-01

    Cleansing, moisturizing, and protecting neonatal skin is important, but literature evaluating specific product lines is limited. The purpose of this study was to measure the influence of a skin care product line on overall skin condition, perineal erythema, and pain when applied to neonates in a neonatal intensive care unit (NICU). This was an open label, descriptive study. Comparisons were made between measurements taken at the beginning of the study to those at the end, on the same subjects. The study was conducted in a 41-bed NICU at Driscoll Children's Hospital in Corpus Christi, Texas, that serves 31 counties in the region. This NICU treats children needing level 2 and 3 care, with a 1:1 or 2:1 nurse staffing ratio. This is not a birthing center; patients come from other community hospitals. Twenty-nine neonates participated in the study; their average body weight was 1.39 kg (3.06 lb) and their average gestation was 31.7 weeks. A skin care product line was introduced into a neonatal intensive care unit for 14 days. The products included 2 cleansers, 2 moisturizers, and a skin protectant with zinc oxide. Three outcome measures were tracked: Neonatal Skin Condition Score (NSCS), Skin Erythema Scale (SES), and pain. Nurses were also given a product evaluation survey. Descriptive statistics were used to report percentages and trends. Paired t tests were used to compare the mean NSCS, SES, and pain scores from the first 2 days a subject was in the study to the mean of the scores from the last 2 days they were in the study. Subjects experienced approximately 1774 exposures to individual products during data collection. No differences were found in pain scores (P = .132), SES score (P = .059), or NSCS (P = .603) when mean values were compared at the beginning and end of the study. Analysis of the product evaluation survey for questions on cleaning, moisturizing, and reducing discomfort found that more than 90% of nurses ranked the new products as better than or

  19. Observational study on external social and lifestyle related factors and their role in pathogenesis of premature ageing and stress.

    PubMed

    Deole, Yogesh S; Thakar, Anup B; Chandola, Harimohan; Ravishankar, B

    2012-07-01

    In the present era of stress, when lifestyle disorders are high on rise, premature ageing is also one of the most prevalent disorders. It is needed to study the external environmental psychological causative factors in premature ageing and stress. An observational study was carried out to evaluate the relationship of lifestyle, occupational and social factors and mental makeup in individuals diagnosed with premature ageing. A total of 108 patients of premature ageing and stress fulfilling the criteria of inclusion as per ageing scale were selected from outpatient Department of Panchakarma and Manasa Roga, Institute for Post Graduate Teaching and Research in Ayurveda, Gujarat Ayurved University, Jamnagar. The diagnosed patients of premature ageing were subjected to specialized proforma enlisting all the factors as well as ageing scale, Manasa Bhava Pariksha, and Manasa Vibhrama Pariksha. The method of survey was by a questionnaire about the points regarding the lifestyle causative factors. Maximum patients had shown signs of premature ageing with Mana-Buddhi-Smriti-Bhakti Vibhrama (100% each) and involvement of negative Manasa Bhava. The 78.70% patients in this study felt of having excess responsibility on them in family. The 52.77% patients had average good relationship with their family members, while remaining 47.22% narrated history of disturbed relationship. The center of stress was found to be at personal level in all patients; at family level in 73.14%; at professional or work level in 64.81%. Various external, occupational, social and familial factors play significant role in the pathology of premature ageing by disturbing the overall psychological status. This proves the link of Manasa affecting Sharira and vice versa with reference to modern contemporary concept of psycho-neuro endocrinology.

  20. Observational study on external social and lifestyle related factors and their role in pathogenesis of premature ageing and stress

    PubMed Central

    Deole, Yogesh S.; Thakar, Anup B.; Chandola, Harimohan; Ravishankar, B.

    2012-01-01

    In the present era of stress, when lifestyle disorders are high on rise, premature ageing is also one of the most prevalent disorders. It is needed to study the external environmental psychological causative factors in premature ageing and stress. An observational study was carried out to evaluate the relationship of lifestyle, occupational and social factors and mental makeup in individuals diagnosed with premature ageing. A total of 108 patients of premature ageing and stress fulfilling the criteria of inclusion as per ageing scale were selected from outpatient Department of Panchakarma and Manasa Roga, Institute for Post Graduate Teaching and Research in Ayurveda, Gujarat Ayurved University, Jamnagar. The diagnosed patients of premature ageing were subjected to specialized proforma enlisting all the factors as well as ageing scale, Manasa Bhava Pariksha, and Manasa Vibhrama Pariksha. The method of survey was by a questionnaire about the points regarding the lifestyle causative factors. Maximum patients had shown signs of premature ageing with Mana-Buddhi-Smriti-Bhakti Vibhrama (100% each) and involvement of negative Manasa Bhava. The 78.70% patients in this study felt of having excess responsibility on them in family. The 52.77% patients had average good relationship with their family members, while remaining 47.22% narrated history of disturbed relationship. The center of stress was found to be at personal level in all patients; at family level in 73.14%; at professional or work level in 64.81%. Various external, occupational, social and familial factors play significant role in the pathology of premature ageing by disturbing the overall psychological status. This proves the link of Manasa affecting Sharira and vice versa with reference to modern contemporary concept of psycho-neuro endocrinology. PMID:23723645

  1. Behavioral, endocrine and immunological characteristics of a murine model of premature aging.

    PubMed

    Pérez-Alvarez, Laura; Baeza, Isabel; Arranz, Lorena; Marco, Eva M; Borcel, Erika; Guaza, Carmen; Viveros, Maria P; De la Fuente, Mónica

    2005-01-01

    We have previously shown that differences in life span among members of Swiss mouse populations appear to be related to their exploration of a T-maze, with a slow exploration ('slow mice') being linked to alteration of spontaneous behavior and monoaminergic systems, impaired immune function and shorter life span. In general these traits resemble some of the characteristics of chronologically old animals. Thus, we proposed the 'slow mice' as a model of prematurely aging mice (PAM). Now, we have compared female PAM with non-prematurely aging mice (NPAM) as regards a number of behavioral, endocrine and immunological parameters which were studied under both basal and stress conditions. In the present study the animals were chronologically younger than those used in our previous work. When compared to NPAM, the PAM showed increased anxiogenic-like responses in the plus-maze, increased basal corticosterone levels and decreased corticosterone responses to stress. The PAM also showed a decreased natural killer activity as well as decreased lymphoproliferative responses to mitogens. Moreover, the mitogen-induced lymphoproliferative responses of the PAM appeared to be more susceptible to stress. The data indicate that certain characteristics of the PAM are already present in animals of very young chronological age and provide new information for a more complete characterization of the PAM from a neuroimmunoendocrine viewpoint.

  2. Chronologic and actinically induced aging in human facial skin

    SciTech Connect

    Gilchrest, B.A.; Szabo, G.; Flynn, E.; Goldwyn, R.M.

    1983-06-01

    Clinical and histologic stigmata of aging are much more prominent in habitually sun-exposed skin than in sun-protected skin, but other possible manifestations of actinically induced aging are almost unexplored. We have examined the interrelation of chronologic and actinic aging using paired preauricular (sun-exposed) and postauricular (sun-protected) skin specimens. Keratinocyte cultures derived from sun-exposed skin consistently had a shorter in vitro lifespan but increased plating efficiency compared with cultures derived from adjacent sun-protected skin of the same individual, confirming a previous study of different paired body sites. Electron microscopic histologic sections revealed focal abnormalities of keratinocyte proliferation and alignment in vitro especially in those cultures derived from sun-exposed skin and decreased intercellular contact in stratified colonies at late passage, regardless of donor site. One-micron histologic sections of the original biopsy specimens revealed no striking site-related keratinocyte alterations, but sun-exposed specimens had fewer epidermal Langerhans cells (p less than 0.001), averaging approximately 50 percent the number in sun-protected skin, a possible exaggeration of the previously reported age-associated decrease in this cell population. These data suggest that sun exposure indeed accelerates aging by several criteria and that, regardless of mechanism, environmental factors may adversely affect the appearance and function of aging skin in ways amenable to experimental quantitation.

  3. [Skin aging and evidence-based topical strategies].

    PubMed

    Bayerl, C

    2016-02-01

    Anti-aging in dermatology primarily focuses on the prevention of skin aging with UV protection (clothing and sunsceens), free radical scavengers (synthetic or botanic), and cell-protecting agents such as vitamin B3. For the correction of signs of early skin aging, retinoic acid derivatives in dermatological prescriptions are the best studied substances. Topical hormonal prescriptions are also an option if UV damage has not been the leading culprit for aging. Chemical peeling leads to a marked increase in collagen formation, the deaper the better. Ingredients in cream preparations can reduce superficial skin folds (polyphenols, amino acid peptides). Modulators of regular pigmentation are important for anti-aging preparations. Growth factors (plant extracts, recombinant growth factors) are not thoroughly studied regarding the cost-benefit and risk ratio. Complex precedures such as photodynamic therapy have an impact on the appearance of aged skin.

  4. Automatic measurement of skin textures of the dorsal hand in evaluating skin aging.

    PubMed

    Gao, Qian; Yu, Jiaming; Wang, Fang; Ge, Tiantian; Hu, Liwen; Liu, Yang

    2013-05-01

    Changes in skin textures have been used to evaluate skin aging in many studies. In our previous study, we built some skin texture parameters, which can be used to evaluate skin aging of human dorsal hand. However, it will take too much time and need to work arduously to get the information from digital skin image by manual work. So, we want to build a simple and effective method to automatically count some of those skin texture parameters by using digital image-processing technology. A total of 100 subjects aged 30 years and above were involved. Sun exposure history and demographic information were collected by using a questionnaire. The skin image of subjects' dorsal hand was obtained by using a portable skin detector. The number of grids, which is one of skin texture parameters built in our previous study, was measured manually and automatically. Automated image analysis program was developed by using Matlab 7.1 software. The number of grids counted automatically (NGA) was significantly correlated with the number of grids counted manually (NGM) (r = 0.9287, P < 0.0001). And in each age group, there were no significant differences between NGA and NGM. The NGA was negatively correlated with age and lifetime sun exposure, and decreased with increasing Beagley-Gibson score from 3 to 6. In addition, even after adjusting for NGA, the standard deviation of grid areas for each image was positively correlated with age, sun exposure, and Bealey-Gibson score. The method introduced in present study can be used to measure some skin aging parameters automatically and objectively. And it will save much time, reduce labor, and avoid measurement errors of deferent investigators when evaluating a great deal of skin images in a short time. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  5. Determinants of Indices of Cerebral Volume in Former Very Premature Infants at Term Equivalent Age

    PubMed Central

    Wirth, Maelle

    2017-01-01

    Conventional magnetic resonance imaging (MRI) at term equivalent age (TEA) is suggested to be a reliable tool to predict the outcome of very premature infants. The objective of this study was to determine simple reproducible MRI indices, in premature infants and to analyze their neonatal determinants at TEA. A cohort of infants born before 32 weeks gestational age (GA) underwent a MRI at TEA in our center. Two axial images (T2 weighted), were chosen to realize nine measures. We defined 4 linear indices (MAfhlv: thickness of lateral ventricle; CSI: cortex-skull index; VCI: ventricular-cortex index; BOI: bi occipital index) and 1 surface index (VS.A: volume slice area). Perinatal data were recorded. Sixty-nine infants had a GA (median (interquartile range)) of 30.0 weeks GA (27.0; 30.0) and a birth weight of 1240 grams (986; 1477). MRI was done at 41.0 (40.0; 42.0) weeks post menstrual age (PMA). The inter-investigator reproducibility was good. Twenty one MRI (30.5%) were quoted abnormal. We observed an association with retinopathy of prematurity (OR [95CI] = 4.205 [1.231–14.368]; p = 0.017), surgery for patent ductus arteriosus (OR = 4.688 [1.01–21.89]; p = 0.036), early onset infection (OR = 4.688 [1.004–21.889]; p = 0.036) and neonatal treatment by cefotaxime (OR = 3.222 [1.093–9.497]; p = 0.03). There was a difference for VCI between normal and abnormal MRI (0.412 (0.388; 0.429) vs. 0.432 (0.418; 0.449); p = 0,019); BOI was higher when fossa posterior lesions were observed; VS.A seems to be the best surrogate for cerebral volume, 80% of VS.As’ variance being explained by a multiple linear regression model including 7 variables (head circumference at birth and at TEA, PMA, dopamine, ibuprofen treatment, blood and platelets transfusions). These indices, easily and rapidly achievable, seem to be useful but need to be validated in a large population to allow generalization for diagnosis and follow-up of former premature infants. PMID:28125676

  6. Determinants of Indices of Cerebral Volume in Former Very Premature Infants at Term Equivalent Age.

    PubMed

    Naud, Aurelie; Schmitt, Emmanuelle; Wirth, Maelle; Hascoet, Jean-Michel

    2017-01-01

    Conventional magnetic resonance imaging (MRI) at term equivalent age (TEA) is suggested to be a reliable tool to predict the outcome of very premature infants. The objective of this study was to determine simple reproducible MRI indices, in premature infants and to analyze their neonatal determinants at TEA. A cohort of infants born before 32 weeks gestational age (GA) underwent a MRI at TEA in our center. Two axial images (T2 weighted), were chosen to realize nine measures. We defined 4 linear indices (MAfhlv: thickness of lateral ventricle; CSI: cortex-skull index; VCI: ventricular-cortex index; BOI: bi occipital index) and 1 surface index (VS.A: volume slice area). Perinatal data were recorded. Sixty-nine infants had a GA (median (interquartile range)) of 30.0 weeks GA (27.0; 30.0) and a birth weight of 1240 grams (986; 1477). MRI was done at 41.0 (40.0; 42.0) weeks post menstrual age (PMA). The inter-investigator reproducibility was good. Twenty one MRI (30.5%) were quoted abnormal. We observed an association with retinopathy of prematurity (OR [95CI] = 4.205 [1.231-14.368]; p = 0.017), surgery for patent ductus arteriosus (OR = 4.688 [1.01-21.89]; p = 0.036), early onset infection (OR = 4.688 [1.004-21.889]; p = 0.036) and neonatal treatment by cefotaxime (OR = 3.222 [1.093-9.497]; p = 0.03). There was a difference for VCI between normal and abnormal MRI (0.412 (0.388; 0.429) vs. 0.432 (0.418; 0.449); p = 0,019); BOI was higher when fossa posterior lesions were observed; VS.A seems to be the best surrogate for cerebral volume, 80% of VS.As' variance being explained by a multiple linear regression model including 7 variables (head circumference at birth and at TEA, PMA, dopamine, ibuprofen treatment, blood and platelets transfusions). These indices, easily and rapidly achievable, seem to be useful but need to be validated in a large population to allow generalization for diagnosis and follow-up of former premature infants.

  7. Relationship between skin color and solar elastosis in aged Asian skin: A colorimetric-pathologic correlation.

    PubMed

    Kim, Dai Hyun; Oh, Ga Na; Kwon, In Hyuk; Seo, Soo Hong; Kye, Young Chul; Ahn, Hyo Hyun

    2017-10-01

    Aged skin is reported to be associated with unattractive skin color changes and solar elastosis. However, comparative studies have not documented the possible correlation between the two factors. This study investigated the plausible relationship between the facial skin color of elderly Asians and solar elastosis. A total of 22 skin specimens were collected from 22 Korean patients who underwent cheek skin biopsies. Skin color was quantitatively measured using colorimetric photography techniques to produce CIE L*a*b* values; the degree of solar elastosis was quantifiably assessed using a histologic grading scale. These values were used to investigate a correlation between the CIE L*a*b* coordinates and solar elastosis grade. The solar elastosis grade increased according to patient age (r = 0.67, p = .0006). However, the extent of solar elastosis was not statistically correlated with the CIE L*a*b* values, including L*, a*, and b* (r = 0.02, p = .95; r = 0.15, p = 0.50; r = -0.07, p = 0.76, respectively). The results showed that the solar elastosis grade increased, according to patient age, because of cumulative actinic damage. However, colorimetric skin color data did not correlate with the degree of solar elastosis. Therefore, cutaneous color changes and solar elastosis are separate, age-related phenomena. Physicians should be aware of the possible histologic changes in actinically damaged facial skin, regardless of the skin color. © 2017 Wiley Periodicals, Inc.

  8. Potential role of natural compounds against skin aging.

    PubMed

    Tundis, R; Loizzo, M R; Bonesi, M; Menichini, F

    2015-01-01

    Skin aging is an inevitable biological phenomenon of human life. Advancing age brings changes to all components of the integumentary system with consequent signs on the skin. Skin aging is mainly due to intrinsic (chronologic) and extrinsic aging (photo-aging). Photo-aging is a consequence of exposure to ultraviolet radiations. Despite variable economic conditions, the skin care market based on natural products continues to see strong growth. In this context, the research of naturally occurring anti-aging agents is greatly expanding and in recent years numerous plant-derived products have been investigated. This review article focuses on highlighting recent advances in current knowledge on anti-aging natural products grouped and presented according to their family origin. Plants from 35 families were reviewed. A variety of phytomolecules, derived in particular from polyphenols, triterpenes and sterols classes, demonstrated a promising activity. Among them carnosic acid, curculigoside, curcumin, glycyrrhizic acid, mangiferin, mirkoin, asiaticoside, rosmarinic acid, tectorigenin, tyrosol etc., able to inhibit tyrosinase, hyaluronidase, elastase, and collagenase, to scavenge free radicals from skin cells, to prevent trans-epidermal water loss, and to contribute to protect skin from wrinkles, were largely investigated and herein discussed. Extracts and pure compounds from Fabaceae, Asperaceae and Zingiberaceae families have shown particular interest and appear most promising in the development of anti-aging products.

  9. Murine models of premature ageing for the study of diet-induced immune changes: improvement of leucocyte functions in two strains of old prematurely ageing mice by dietary supplementation with sulphur-containing antioxidants.

    PubMed

    De la Fuente, Mónica

    2010-11-01

    Several immune functions are markers of health, biological age and predictors of longevity. A chronic oxidative and inflammatory state is the main cause of ageing and the immune system is involved in the rate of ageing. Thus, several murine models of premature ageing have been proposed owing to their early immunosenescence and oxidative stress, such as ovariectomised rats and mice, obese rats and anxious mice. In the last model, the most extensively studied by us, mice showing anxiety have an aged immune function and redox status as well as a shorter longevity in comparison with animals without anxiety of the same chronological age, being denominated prematurely ageing mice. A confirmation of the above is that the administration of diets supplemented with antioxidants improves the redox status and immune functions and increases the longevity of prematurely ageing mice. Antioxidant precursors of glutathione such as thioproline or N-acetylcysteine, which have a relevant role in ageing, have been the most widely investigated in adult prematurely ageing mice in our laboratory. In the present work, we have studied the effects of the ingestion for 5 weeks of a diet supplemented with 0·1% (w/w) thioproline+N-acetylcysteine on several functions of leucocytes from chronological old (69-73 weeks of age) prematurely ageing mice of two strains (Swiss and BALB/c). The results show an improvement of the immune functions, with their values becoming closer to those in adult animals (24±2 weeks). Thus, an adequate nutrition with antioxidants, even in aged subjects, could be a good strategy to retard ageing.

  10. Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome.

    PubMed

    Scaffidi, Paola; Misteli, Tom

    2005-04-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a childhood premature aging disease caused by a spontaneous point mutation in lamin A (encoded by LMNA), one of the major architectural elements of the mammalian cell nucleus. The HGPS mutation activates an aberrant cryptic splice site in LMNA pre-mRNA, leading to synthesis of a truncated lamin A protein and concomitant reduction in wild-type lamin A. Fibroblasts from individuals with HGPS have severe morphological abnormalities in nuclear envelope structure. Here we show that the cellular disease phenotype is reversible in cells from individuals with HGPS. Introduction of wild-type lamin A protein does not rescue the cellular disease symptoms. The mutant LMNA mRNA and lamin A protein can be efficiently eliminated by correction of the aberrant splicing event using a modified oligonucleotide targeted to the activated cryptic splice site. Upon splicing correction, HGPS fibroblasts assume normal nuclear morphology, the aberrant nuclear distribution and cellular levels of lamina-associated proteins are rescued, defects in heterochromatin-specific histone modifications are corrected and proper expression of several misregulated genes is reestablished. Our results establish proof of principle for the correction of the premature aging phenotype in individuals with HGPS.

  11. [A clinical follow-up study of premature thelarche in infants under two years of age].

    PubMed

    Wang, Ying-Min; Liang, Li; Fang, Yan-Lan; Fu, Jun-Fen; Dong, Guan-Ping; Wang, Chun-Lin

    2013-04-01

    To investigate the clinical status and natural course of premature thelarche (PT) in infants under 2 years of age and to analyze the predictive factors for regression of thelarche. The clinical and laboratory data of 863 infants under 2 years of age, who visited the department of endocrinology in our hospital due to PT between October 2009 and September 2010, were analyzed. A a longitudinal follow-up study was performed. Of the infants under 2 years of age with isolated PT, 89.3% showed a regression before the age of 3 years (mean 17±5.6 months), 10.7% had recurrent or persistent thelarche, with no regression after the age of 3 years, and some even developed into central precocious puberty. The independent predictive factors for regression of thelarche were Tanner stage at the first visit and whether baseline estradiol level had increased. PT in infants under 2 years of age is not rare in the clinical setting, and it usually runs a self-limited course, subsiding before the age of 3 years. However, regular follow-ups should be performed for infants aged over 2 years with persistent thelarche.

  12. REGγ deficiency promotes premature aging via the casein kinase 1 pathway

    PubMed Central

    Li, Lei; Zhao, Dengpan; Wei, Haibin; Yao, Liangfang; Dang, Yongyan; Amjad, Ali; Xu, Jinjin; Liu, Jiang; Guo, Linjie; Li, Dongqing; Li, Zhen; Zuo, Di; Zhang, Yuanyuan; Liu, Jian; Huang, Shixia; Jia, Caifeng; Wang, Lu; Wang, Ying; Xie, Yifan; Luo, Jian; Zhang, Bianhong; Luo, Honglin; Donehower, Lawrence A.; Moses, Robb E.; Xiao, Jianru; O’Malley, Bert W.; Li, Xiaotao

    2013-01-01

    Our recent studies suggest a role for the proteasome activator REG (11S regulatory particles, 28-kDa proteasome activator)γ in the regulation of tumor protein 53 (p53). However, the molecular details and in vivo biological significance of REGγ-p53 interplay remain elusive. Here, we demonstrate that REGγ-deficient mice develop premature aging phenotypes that are associated with abnormal accumulation of casein kinase (CK) 1δ and p53. Antibody array analysis led us to identify CK1δ as a direct target of REGγ. Silencing CK1δ or inhibition of CK1δ activity prevented decay of murine double minute (Mdm)2. Interestingly, a massive increase of p53 in REGγ−/− tissues is associated with reduced Mdm2 protein levels despite that Mdm2 transcription is enhanced. Allelic p53 haplodeficiency in REGγ-deficient mice attenuated premature aging features. Furthermore, introducing exogenous Mdm2 to REGγ−/− MEFs significantly rescues the phenotype of cellular senescence, thereby establishing a REGγ-CK1-Mdm2-p53 regulatory pathway. Given the conflicting evidence regarding the “antiaging” and “proaging” effects of p53, our results indicate a key role for CK1δ-Mdm2-p53 regulation in the cellular aging process. These findings reveal a unique model that mimics acquired aging in mammals and indicates that modulating the activity of the REGγ-proteasome may be an approach for intervention in aging-associated disorders. PMID:23766372

  13. Mechanisms of vascular calcification in CKD-evidence for premature ageing?

    PubMed

    Shanahan, Catherine M

    2013-11-01

    Ageing is a potent, independent risk factor for cardiovascular disease. Calcification of the vascular smooth muscle cell (VSMC) layer of the vessel media is a hallmark of vascular ageing. Young patients with chronic kidney disease (CKD) exhibit an extremely high cardiovascular mortality, equivalent to that seen in octogenarians in the general population. Even children on dialysis develop accelerated medial vascular calcification and arterial stiffening, leading to the suggestion that patients with CKD exhibit a 'premature ageing' phenotype. It is now well documented that uraemic toxins, particularly those associated with dysregulated mineral metabolism, can drive VSMC damage and phenotypic changes that promote vascular calcification; epidemiological data suggest that some of these same risk factors associate with cardiovascular mortality in the aged general population. Importantly, emerging evidence suggests that uraemic toxins may promote DNA damage, a key factor driving cellular ageing, and moreover, that these ageing mechanisms may reiterate some of those seen in patients with genetically induced progeric syndromes caused by nuclear lamina disruption. This new knowledge should pave the way for the development of novel therapies that target tissue-specific ageing mechanisms to treat vascular decline in CKD.

  14. [The role of oxidative stress in skin aging].

    PubMed

    Kozina, L S; Borzova, I V; Arutiunov, V A; Ryzhak, G A

    2012-01-01

    The review covers the literature proving that ROS formation in aging overbalances the antioxidant defense system potential of the skin structure (horny layer, epidermis and dermis). It has been shown that ROS are involved in the pathogenesis of inflammatory processes and allergic responses in the skin. The role of ROS and antioxidant systems in the cell-mediated responses associated with the MAP kinase activity in the skin is discussed. Special attention is paid to the ultraviolet irradiation exposure, which accounts for its genotoxic, immunosuppressive and carcinogenic effects on the skin.

  15. Assessing the impacts of lifetime sun exposure on skin damage and skin aging using a non-invasive method.

    PubMed

    Kimlin, Michael G; Guo, Yuming

    2012-05-15

    Ultraviolet radiation exposure during an individuals' lifetime is a known risk factor for the development of skin cancer. However, less evidence is available on assessing the relationship between lifetime sun exposure and skin damage and skin aging. This study aims to assess the relationship between lifetime sun exposure and skin damage and skin aging using a non-invasive measure of exposure. We recruited 180 participants (73 males, 107 females) aged 18-83 years. Digital imaging of skin hyperpigmentation (skin damage) and skin wrinkling (skin aging) on the facial region was measured. Lifetime sun exposure (presented as hours) was calculated from the participants' age multiplied by the estimated annual time outdoors for each year of life. We analyzed the effects of lifetime sun exposure on skin damage and skin aging. We adjust for the influence of age, sex, occupation, history of skin cancer, eye color, hair color, and skin color. There were non-linear relationships between lifetime sun exposure and skin damage and skin aging. Younger participant's skin is much more sensitive to sun exposure than those who were over 50 years of age. As such, there were negative interactions between lifetime sun exposure and age. Age had linear effects on skin damage and skin aging. The data presented showed that self reported lifetime sun exposure was positively associated with skin damage and skin aging, in particular, the younger people. Future health promotion for sun exposure needs to pay attention to this group for skin cancer prevention messaging. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Premature Birth and Large for Gestational Age Are Associated with Risk of Barrett's Esophagus in Adults.

    PubMed

    Shiota, Seiji; El-Serag, Hashem B; Thrift, Aaron P

    2016-04-01

    Birth characteristics, including weight and gestational age, may be associated with risk of Barrett's esophagus (BE), the only known precursor for esophageal adenocarcinoma; however, data are limited. To examine associations between various birth characteristics and BE, and whether these associations are mediated by known risk factors for BE. Data were obtained from a cross-sectional study among eligible Veterans Affairs patients scheduled for an upper endoscopy, and a sample identified from primary care clinics. Participants underwent an esophagogastroduodenoscopy and completed a survey that captured information on sociodemographic and clinical factors, as well as birth information. We compared 263 patients with histologically confirmed BE to 1416 controls without BE on endoscopy. Odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated using multivariate logistic regression. Premature birth was independently associated with risk of BE after adjusted by age, sex, race, and other birth characteristics (OR 3.28, 95 % CI 1.22-8.79). On the other hand, large for gestational age was inversely associated with risk of BE (OR 0.46, 95 % CI 0.21-0.98). These effects were stronger for patients with long-segment BE than with short-segment BE. The associations were not mediated by gastroesophageal reflux disease symptoms, use of proton pump inhibitors, Helicobacter Pylori infection, waist-hip-ratio, height or the presence of hiatus hernia. Premature birth and large for gestational age may be associated with risk of BE in adults. These associations do not appear to be mediated through known risk factors for BE; however, additional studies are required to confirm our findings.

  17. A long-standing hyperglycaemic condition impairs skin barrier by accelerating skin ageing process.

    PubMed

    Park, Hwa-Young; Kim, Jae-Hong; Jung, Minyoung; Chung, Choon Hee; Hasham, Rosnani; Park, Chang Seo; Choi, Eung Ho

    2011-12-01

    Uncontrolled chronic hyperglycaemia including type 2 diabetes mellitus (DM) induces many skin problems related to chronic impaired skin barrier state. However, little is known about the skin barrier state of chronic hyperglycaemia patients, the dysfunction of which may be a major cause of their skin problems. In this study, we investigated whether a long-standing hyperglycaemic condition including type 2 DM impairs skin barrier homoeostasis in proportion to the duration and its pathomechanism. We utilized the Otsuka Long-Evans Tokushima Fatty (OLETF) rats as an animal model of long-standing hyperglycaemia and Long-Evans Tokushima Otsuka rats as a control strain. We confirmed that a long-standing hyperglycaemia delayed skin barrier homoeostasis, which correlated with haemoglobin A1c levels. OLETF rats as a long-standing hyperglycaemia model exhibited decreased epidermal lipid synthesis and antimicrobial peptide expression with increasing age. Decreased epidermal lipid synthesis accounted for decreased lamellar body production. In addition, OLETF rats had significantly higher serum levels of advanced glycation end products (AGEs) and elevated levels of the receptor for AGE in the epidermis. A long-standing hyperglycaemic condition impairs skin barrier function including permeability and antimicrobial barriers by accelerating skin ageing process in proportion to the duration of hyperglycaemia, which could be a major pathophysiology underlying cutaneous complications of DM.

  18. Glycated Reconstructed Human Skin as a Platform to Study the Pathogenesis of Skin Aging.

    PubMed

    Pennacchi, Paula Comune; de Almeida, Maíra Estanislau Soares; Gomes, Octávio Luís Alves; Faião-Flores, Fernanda; de Araújo Crepaldi, Maria Clara; Dos Santos, Marinilce Fagundes; de Moraes Barros, Silvia Berlanga; Maria-Engler, Silvya Stuchi

    2015-09-01

    The advanced glycation end products (AGEs) of proteins are common factors in the pathophysiology of a number of disorders related to aging. The skin generation of AGEs occurs mainly through nonenzymatic glycation reactions of extracellular matrix (ECM) proteins in the dermis. The AGEs have been touted as one of the factors responsible for healing impairment and loss of elasticity of healing skin, affecting growth, differentiation, and cellular motility, as well as cytokines response, metalloproteinases expression, and vascular hemostasis. In this study, we generated an in vitro full-thickness reconstructed skin based on a glycated collagen matrix dermal compartment to evaluate the effects of glycation on dermal ECM and ultimately on the epidermis. Epidermal differentiation and stratification patterns and the glycation-induced ECM changes were evaluated by histology, immunohistochemistry, and mRNA levels. In this study, we reported for the first time that changes in the dermal matrix caused by collagen I in vitro glycation processes also affect the epidermal compartment. We demonstrated that glycation of collagen induces expression of carboxymethyllysine in dermal and epidermal compartments and, consequently, an aging phenotype consisting of poor stratification of epidermal layers and vacuolization of keratinocyte cytoplasm. Increased expression of cell-cell adhesion markers, such as desmoglein and E-cadherin in glycated skins, is observed in the stratum spinosum, as well as an increased compression of dermal collagen matrix. We also submitted our 3D model of reconstructed glycated skin to screening of anti-AGE molecules, such as aminoguanidine, which prevented the glycated morphological status. Controlled human studies investigating the effects of anti-AGE strategies against skin aging are largely missing. In this context, we proposed the use of skin equivalents as an efficient model to investigate cellular interactions and ECM changes in the aging skin, and to

  19. Atypical perceptual narrowing in prematurely born infants is associated with compromised language acquisition at 2 years of age.

    PubMed

    Jansson-Verkasalo, Eira; Ruusuvirta, Timo; Huotilainen, Minna; Alku, Paavo; Kushnerenko, Elena; Suominen, Kalervo; Rytky, Seppo; Luotonen, Mirja; Kaukola, Tuula; Tolonen, Uolevi; Hallman, Mikko

    2010-07-30

    Early auditory experiences are a prerequisite for speech and language acquisition. In healthy children, phoneme discrimination abilities improve for native and degrade for unfamiliar, socially irrelevant phoneme contrasts between 6 and 12 months of age as the brain tunes itself to, and specializes in the native spoken language. This process is known as perceptual narrowing, and has been found to predict normal native language acquisition. Prematurely born infants are known to be at an elevated risk for later language problems, but it remains unclear whether these problems relate to early perceptual narrowing. To address this question, we investigated early neurophysiological phoneme discrimination abilities and later language skills in prematurely born infants and in healthy, full-term infants. Our follow-up study shows for the first time that perceptual narrowing for non-native phoneme contrasts found in the healthy controls at 12 months was not observed in very prematurely born infants. An electric mismatch response of the brain indicated that whereas full-term infants gradually lost their ability to discriminate non-native phonemes from 6 to 12 months of age, prematurely born infants kept on this ability. Language performance tested at the age of 2 years showed a significant delay in the prematurely born group. Moreover, those infants who did not become specialized in native phonemes at the age of one year, performed worse in the communicative language test (MacArthur Communicative Development Inventories) at the age of two years. Thus, decline in sensitivity to non-native phonemes served as a predictor for further language development. Our data suggest that detrimental effects of prematurity on language skills are based on the low degree of specialization to native language early in development. Moreover, delayed or atypical perceptual narrowing was associated with slower language acquisition. The results hence suggest that language problems related to

  20. How to Select Anti-Aging Skin Care Products

    MedlinePlus

    ... de12", ]; for (var c = 0; c How to select anti-aging skin care products Dermatologists share their ... make a noticeable difference. When shopping for sunscreen, select one that offers all of the following: Broad ...

  1. Consequences of Correcting Intelligence Quotient for Prematurity at Age 5 Years.

    PubMed

    van Veen, Sarit; Aarnoudse-Moens, Cornelieke S H; van Kaam, Anton H; Oosterlaan, Jaap; van Wassenaer-Leemhuis, Aleid G

    2016-06-01

    To determine the effects of correcting for prematurity on full scale IQ (FSIQ), verbal IQ (VIQ), performance IQ (PIQ), and processing speed quotient (PSQ) scores, and to investigate whether differences between corrected and uncorrected FSIQ are associated with gestational age (GA), FSIQ, and age at assessment. Single-center consecutive cohort study. Data were analyzed from 275 very preterm children (GA <30 weeks), born between January 2006 and December 2009 and assessed at 5 years corrected age as part of the neonatal long-term follow-up program, at the Emma Children's Hospital in Amsterdam, The Netherlands. Outcome measures were FSIQ, VIQ, PIQ, and PSQ, calculated for uncorrected and corrected age. Paired sample t tests, repeated measures ANOVA, and ANCOVA were performed to explore differences between corrected and uncorrected IQ. Differences between corrected and uncorrected FSIQ, VIQ, PIQ, and PSQ ranged from 0-15 IQ points. All corrected IQ scores were significantly higher than uncorrected IQ scores (all P values <.001). Differences were larger at lower GAs, for higher IQ scores, and if time of assessment lay near the starting point of a 3-month age band of the Wechsler Preschool and Primary Scale of Intelligence-Third Edition-Dutch Version. Given the great variation observed in differences between corrected and uncorrected IQ scores, an international standard as to what age correction is appropriate should be pursued. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. ALPS: The Age-Layered Population Structure for Reducing the Problem of Premature Convergence

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2006-01-01

    To reduce the problem of premature convergence we define a new attribute of an individual, its age, and propose the Age-Layered Population Structure (ALPS), in which age is used to restrict competition and breeding between members of the population. ALPS differs from a typical EA by segregating individuals into different age-layers by their age - a measure of how long the genetic material has been in the population - and by regularly replacing all individuals in the bottom layer with randomly generated ones. The introduction of new, randomly generated individuals at regular intervals results in an EA that is never completely converged and is always looking at new parts of the fitness landscape. By using age to restrict competition and breeding search is able to develop promising young individuals without them being dominated by older ones. We demonstrate the effectiveness of the ALPS algorithm on an antenna design problem in which evolution with ALPS produces antennas more than twice as good as does evolution with two other types of EAs. Further analysis shows that the ALPS model does allow the offspring of newly generated individuals to move the population out of mediocre local-optima to better parts of the fitness landscape.

  3. ALPS: The Age-Layered Population Structure for Reducing the Problem of Premature Convergence

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2006-01-01

    To reduce the problem of premature convergence we define a new attribute of an individual, its age, and propose the Age-Layered Population Structure (ALPS), in which age is used to restrict competition and breeding between members of the population. ALPS differs from a typical EA by segregating individuals into different age-layers by their age - a measure of how long the genetic material has been in the population - and by regularly replacing all individuals in the bottom layer with randomly generated ones. The introduction of new, randomly generated individuals at regular intervals results in an EA that is never completely converged and is always looking at new parts of the fitness landscape. By using age to restrict competition and breeding search is able to develop promising young individuals without them being dominated by older ones. We demonstrate the effectiveness of the ALPS algorithm on an antenna design problem in which evolution with ALPS produces antennas more than twice as good as does evolution with two other types of EAs. Further analysis shows that the ALPS model does allow the offspring of newly generated individuals to move the population out of mediocre local-optima to better parts of the fitness landscape.

  4. Premature aging in mice activates a systemic metabolic response involving autophagy induction.

    PubMed

    Mariño, Guillermo; Ugalde, Alejandro P; Salvador-Montoliu, Natalia; Varela, Ignacio; Quirós, Pedro M; Cadiñanos, Juan; van der Pluijm, Ingrid; Freije, José M P; López-Otín, Carlos

    2008-07-15

    Autophagy is a highly regulated intracellular process involved in the turnover of most cellular constituents and in the maintenance of cellular homeostasis. It is well-established that the basal autophagic activity of living cells decreases with age, thus contributing to the accumulation of damaged macromolecules during aging. Conversely, the activity of this catabolic pathway is required for lifespan extension in animal models such as Caenorhabditis elegans and Drosophila melanogaster. In this work, we describe the unexpected finding that Zmpste24-null mice, which show accelerated aging and are a reliable model of human Hutchinson-Gilford progeria, exhibit an extensive basal activation of autophagy instead of the characteristic decline in this process occurring during normal aging. We also show that this autophagic increase is associated with a series of changes in lipid and glucose metabolic pathways, which resemble those occurring in diverse situations reported to prolong lifespan. These Zmpste24(-/-) mice metabolic alterations are also linked to substantial changes in circulating blood parameters, such as leptin, glucose, insulin or adiponectin which in turn lead to peripheral LKB1-AMPK activation and mTOR inhibition. On the basis of these results, we propose that nuclear abnormalities causing premature aging in Zmpste24(-/-) mice trigger a metabolic response involving the activation of autophagy. However, the chronic activation of this catabolic pathway may turn an originally intended pro-survival strategy into a pro-aging mechanism and could contribute to the systemic degeneration and weakening observed in these progeroid mice.

  5. Expanding Our Understanding of Human Skin Aging.

    PubMed

    Chang, Anne Lynn S

    2016-05-01

    Two very different studies expand our understanding of human skin aging. In the first study, Hüls et al. show an association between nitrogen dioxide levels in outdoor air and number of lentigines on the cheek. In the second study, Bowman and Birch-Machin show that mitochondrial complex II activity in human skin fibroblasts decreases with age. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  6. Photoprotective and anti-skin-aging effects of eicosapentaenoic acid in human skin in vivo.

    PubMed

    Kim, Hyeon Ho; Cho, Soyun; Lee, Serah; Kim, Kyu Han; Cho, Kwang Hyun; Eun, Hee Chul; Chung, Jin Ho

    2006-05-01

    Skin aging can be attributed to photoaging (extrinsic) and chronological (intrinsic) aging. Photoaging and intrinsic aging are induced by damage to human skin attributable to repeated exposure to ultraviolet (UV) irradiation and to the passage of time, respectively. In our previous report, eicosapentaenoic acid (EPA) was found to inhibit UV-induced matrix metalloproteinase-1 (MMP-1) expression in human dermal fibroblasts. Therefore, we investigated the effects of EPA on UV-induced skin damage and intrinsic aging by applying EPA topically to young and aged human skin, respectively. By immunohistochemical analysis and Western blotting, we found that topical application of EPA reduced UV-induced epidermal thickening and inhibited collagen decrease induced by UV light. It was also found that EPA attenuated UV-induced MMP-1 and MMP-9 expression by inhibiting UV-induced c-Jun phosphorylation, which is closely related to UV-induced activator protein-1 activation, and by inhibiting JNK and p38 activation. EPA also inhibited UV-induced cyclooxygenase-2 (COX-2) expression without altering COX-1 expression. Moreover, it was found that EPA increased collagen and elastic fibers (tropoelastin and fibrillin-1) expression by increasing transformin growth factor-beta expression in aged human skin. Together, these results demonstrate that topical EPA has potential as an anti-skin-aging agent.

  7. Premature aging/senescence in cancer cells facing therapy: good or bad?

    PubMed

    Gonzalez, Llilians Calvo; Ghadaouia, Sabrina; Martinez, Aurélie; Rodier, Francis

    2016-02-01

    Normal and cancer cells facing their demise following exposure to radio-chemotherapy can actively participate in choosing their subsequent fate. These programmed cell fate decisions include true cell death (apoptosis-necroptosis) and therapy-induced cellular senescence (TIS), a permanent "proliferative arrest" commonly portrayed as premature cellular aging. Despite a permanent loss of proliferative potential, senescent cells remain viable and are highly bioactive at the microenvironment level, resulting in a prolonged impact on tissue architecture and functions. Cellular senescence is primarily documented as a tumor suppression mechanism that prevents cellular transformation. In the context of normal tissues, cellular senescence also plays important roles in tissue repair, but contributes to age-associated tissue dysfunction when senescent cells accumulate. Theoretically, in multi-step cancer progression models, cancer cells have already bypassed cellular senescence during their immortalization step (see hallmarks of cancer). It is then perhaps surprising to find that cancer cells often retain the ability to undergo TIS, or premature aging. This occurs because cellular senescence results from multiple signalling pathways, some retained in cancer cells, aiming to prevent cell cycle progression in damaged cells. Since senescent cancer cells persist after therapy and secrete an array of cytokines and growth factors that can modulate the tumor microenvironment, these cells may have beneficial and detrimental effects regarding immune modulation and survival of remaining proliferation-competent cancer cells. Similarly, while normal cells undergoing senescence are believed to remain indefinitely growth arrested, whether this is true for senescent cancer cells remains unclear, raising the possibility that these cells may represent a reservoir for cancer recurrence after treatment. This review discusses our current knowledge on cancer cell senescence and highlight questions

  8. Topical retinoids in the treatment of aging of the skin.

    PubMed

    Katsambas, A D; Katoulis, A C

    1999-01-01

    Aging of the skin is a complex phenomenon resulting from the interaction of several intrinsic and extrinsic factors [1]. Due to the cosmetic disfigurement it produces and its psychological impact, especially to women, aging of the skin has become an issue of great social significance and concern. Intrinsic aging is an inevitable, genetically programmed process, the underlying mechanisms of which remain largely unknown. No prevention or effective treatment is currently available [1]. Among extrinsic influences (wind, heat, cigarette smoke, chemicals, etc.), ultraviolet radiation appears to be the single most important factor associated with aging of the skin [2]. Photoaging refers to gross and microscopic cutaneous changes induced by cumulative exposure to ultraviolet radiation (UVR). These changes are superimposed on the background of intrinsic aging [2]. Increased recreational sun exposure, including excessive sunbathing, the depletion of stratospheric ozone, the use of UVR in the treatment of various skin diseases, are some of the causes that have led to increased prevalence of photoaging during the last decades. The clinical importance of photoaging lies mostly on the potential for the development of precancerous lesions or skin cancer [3]. In contrast to intrinsic aging, photodamage can be prevented by sun avoidance and proper sun protection [2]. Furthermore, overwhelming clinical and histological evidence indicate that skin changes of photoaging can be reversed by the use of topical retinoids [4].

  9. Mechanisms of premature vascular aging in children with Hutchinson-Gilford progeria syndrome.

    PubMed

    Gerhard-Herman, Marie; Smoot, Leslie B; Wake, Nicole; Kieran, Mark W; Kleinman, Monica E; Miller, David T; Schwartzman, Armin; Giobbie-Hurder, Anita; Neuberg, Donna; Gordon, Leslie B

    2012-01-01

    Hutchinson-Gilford progeria syndrome is a rare, segmental premature aging syndrome of accelerated atherosclerosis and early death from myocardial infarction or stroke. This study sought to establish comprehensive characterization of the fatal vasculopathy in Hutchinson-Gilford progeria syndrome and its relevance to normal aging. We performed cardiovascular assessments at a single clinical site on the largest prospectively studied cohort to date. Carotid-femoral pulse wave velocity was dramatically elevated (mean: 13.00±3.83 m/s). Carotid duplex ultrasound echobrightness, assessed in predefined tissue sites as a measure of arterial wall density, was significantly greater than age- and sex-matched controls in the intima-media (P<0.02), near adventitia (P<0.003), and deep adventitia (P<0.01), as was internal carotid artery mean flow velocity (P<0.0001). Ankle-brachial indices were abnormal in 78% of patients. Effective disease treatments may be heralded by normalizing trends of these noninvasive cardiovascular measures. The data demonstrate that, along with peripheral vascular occlusive disease, accelerated vascular stiffening is an early and pervasive mechanism of vascular disease in Hutchinson-Gilford progeria syndrome. There is considerable overlap with cardiovascular changes of normal aging, which reinforces the view that defining mechanisms of cardiovascular disease in Hutchinson-Gilford progeria syndrome provides a unique opportunity to isolate a subset of factors influencing cardiovascular disease in the general aging population.

  10. Sunscreen and prevention of skin aging: a randomized trial.

    PubMed

    Hughes, Maria Celia B; Williams, Gail M; Baker, Peter; Green, Adèle C

    2013-06-04

    Sunscreen use and dietary antioxidants are advocated as preventives of skin aging, but supporting evidence is lacking. To determine whether regular use of sunscreen compared with discretionary use or β-carotene supplements compared with placebo retard skin aging, measured by degree of photoaging. Randomized, controlled, community-based intervention. (Australian New Zealand Clinical Trials Registry: ACTRN12610000086066). Nambour, Australia (latitude 26° S). 903 adults younger than 55 years out of 1621 adults randomly selected from a community register. Random assignment into 4 groups: daily use of broad-spectrum sunscreen and 30 mg of β-carotene, daily use of sunscreen and placebo, discretionary use of sunscreen and 30 mg of β-carotene, and discretionary use of sunscreen and placebo. Change in microtopography between 1992 and 1996 in the sunscreen and β-carotene groups compared with controls, graded by assessors blinded to treatment allocation. The daily sunscreen group showed no detectable increase in skin aging after 4.5 years. Skin aging from baseline to the end of the trial was 24% less in the daily sunscreen group than in the discretionary sunscreen group (relative odds, 0.76 [95% CI, 0.59 to 0.98]). β-Carotene supplementation had no overall effect on skin aging, although contrasting associations were seen in subgroups with different severity of aging at baseline. Some outcome data were missing, and power to detect moderate treatment effects was modest. Regular sunscreen use retards skin aging in healthy, middle-aged men and women. No overall effect of β-carotene on skin aging was identified, and further study is required to definitively exclude potential benefit or potential harm. National Health and Medical Research Council of Australia.

  11. Loss of HtrA2/Omi activity in non-neuronal tissues of adult mice causes premature aging.

    PubMed

    Kang, S; Louboutin, J-P; Datta, P; Landel, C P; Martinez, D; Zervos, A S; Strayer, D S; Fernandes-Alnemri, T; Alnemri, E S

    2013-02-01

    mnd2 mice die prematurely as a result of neurodegeneration 30-40 days after birth due to loss of the enzymatic activity of the mitochondrial quality control protease HtrA2/Omi. Here, we show that transgenic expression of human HtrA2/Omi in the central nervous system of mnd2 mice rescues them from neurodegeneration and prevents their premature death. Interestingly, adult transgenic mnd2 mice develop accelerated aging phenotypes, such as premature weight loss, hair loss, reduced fertility, curvature of the spine, heart enlargement, increased autophagy, and death by 12-17 months of age. These mice also have elevated levels of clonally expanded mitochondrial DNA (mtDNA) deletions in their tissues. Our results provide direct genetic evidence linking mitochondrial protein quality control to mtDNA deletions and aging in mammals.

  12. CCN1 contributes to skin connective tissue aging by inducing age-associated secretory phenotype in human skin dermal fibroblasts.

    PubMed

    Quan, Taihao; Qin, Zhaoping; Robichaud, Patrick; Voorhees, John J; Fisher, Gary J

    2011-08-01

    Dermal connective tissue collagen is the major structural protein in skin. Fibroblasts within the dermis are largely responsible for collagen production and turnover. We have previously reported that dermal fibroblasts, in aged human skin in vivo, express elevated levels of CCN1, and that CCN1 negatively regulates collagen homeostasis by suppressing collagen synthesis and increasing collagen degradation (Quan et al. Am J Pathol 169:482-90, 2006, J Invest Dermatol 130:1697-706, 2010). In further investigations of CCN1 actions, we find that CCN1 alters collagen homeostasis by promoting expression of specific secreted proteins, which include matrix metalloproteinases and proinflammatory cytokines. We also find that CCN1-induced secretory proteins are elevated in aged human skin in vivo. We propose that CCN1 induces an "Age-Associated Secretory Phenotype", in dermal fibroblasts, which mediates collagen reduction and fragmentation in aged human skin.

  13. Trends in aging and skin care: Ayurvedic concepts

    PubMed Central

    Datta, Hema Sharma; Paramesh, Rangesh

    2010-01-01

    The association between Ayurveda, anti-aging and cosmeceuticals is gaining importance in the beauty, health and wellness sector. Ayurvedic cosmeceuticals date back to the Indus Valley Civilization. Modern research trends mainly revolve around principles of anti-aging activity described in Ayurveda: Vayasthapana (age defying), Varnya (brighten skin-glow), Sandhaniya (cell regeneration), Vranaropana (healing), Tvachya (nurturing), Shothahara (anti-inflammatory), Tvachagnivardhani (strengthening skin metabolism) and Tvagrasayana (retarding aging). Many rasayana plants such as Emblica officinalis (Amla) and Centella asiatica (Gotukola) are extensively used. PMID:21836797

  14. Aging skin: the role of diet: facts and controversies.

    PubMed

    Draelos, Zoe Diana

    2013-01-01

    The role of diet in aging skin is highly controversial with limited available scientific data. There are recommended daily allowances for vitamins and other essential nutrients necessary for the maintenance of health, but these allowances were arrived at by consensus rather than science. These nutritional allowances are set at the minimum required for health, providing little advice as to the optimal nutritional intake for a given age. We now know that the requirements set for vitamin D intake were too low and not properly age adjusted. This contribution examines the role of nutrition, glycation, and oxidation in skin aging. © 2013 Elsevier Inc. All rights reserved.

  15. Cytokinetic Failure-induced Tetraploidy Develops into Aneuploidy, Triggering Skin Aging in Phosphovimentin-deficient Mice.

    PubMed

    Tanaka, Hiroki; Goto, Hidemasa; Inoko, Akihito; Makihara, Hiroyuki; Enomoto, Atsushi; Horimoto, Katsuhisa; Matsuyama, Makoto; Kurita, Kenichi; Izawa, Ichiro; Inagaki, Masaki

    2015-05-22

    Tetraploidy, a state in which cells have doubled chromosomal sets, is observed in ∼20% of solid tumors and is considered to frequently precede aneuploidy in carcinogenesis. Tetraploidy is also detected during terminal differentiation and represents a hallmark of aging. Most tetraploid cultured cells are arrested by p53 stabilization. However, the fate of tetraploid cells in vivo remains largely unknown. Here, we analyze the ability to repair wounds in the skin of phosphovimentin-deficient (VIM(SA/SA)) mice. Early into wound healing, subcutaneous fibroblasts failed to undergo cytokinesis, resulting in binucleate tetraploidy. Accordingly, the mRNA level of p21 (a p53-responsive gene) was elevated in a VIM(SA/SA)-specific manner. Disappearance of tetraploidy coincided with an increase in aneuploidy. Thereafter, senescence-related markers were significantly elevated in VIM(SA/SA) mice. Because our tetraploidy-prone mouse model also exhibited subcutaneous fat loss at the age of 14 months, another premature aging phenotype, our data suggest that following cytokinetic failure, a subset of tetraploid cells enters a new cell cycle and develops into aneuploid cells in vivo, which promote premature aging.

  16. Skin surface electrical potential as an indicator of skin condition: observation of surfactant-induced dry skin and middle-aged skin.

    PubMed

    Kawai, Eriko; Kumazawa, Noriyuki; Ozawa, Koichiro; Denda, Mitsuhiro

    2011-09-01

    We previously reported that skin surface electrical potential might be a good parameter of skin pathophysiology. To examine the potential availability of skin surface electrical potential measurement for diagnostic purposes, we measured the change of the potential in surfactant-induced dry skin and we compared the values of the potential in volunteers of different age groups. We also measured trans-epidermal water loss (TEWL) in the same groups. The skin surface electrical potential was significantly increased after sodium dodecyl sulphate treatment, and the alteration was much more marked than that of TEWL. Further, a significant difference in skin surface electrical potential was observed between young- and middle-aged volunteers, although there was no significant difference in TEWL between the two groups. These results suggest that skin surface electrical potential may be a good indicator of the pathophysiological state of the living layer of epidermis. © 2011 John Wiley & Sons A/S.

  17. Functional and physiological characteristics of the aging skin.

    PubMed

    Farage, Miranda A; Miller, Kenneth W; Elsner, Peter; Maibach, Howard I

    2008-06-01

    As life expectancy in the U.S. increases - and with it the proportion of the aged in the population - appropriate care of elderly skin becomes a medical concern of increasing importance. As skin ages, the intrinsic structural changes that are a natural consequence of passing time are inevitably followed by subsequent physiological changes that affect the skin's ability to function as the interface between internal and external environments. The pH of the skin surface increases with age, increasing its susceptibility to infection. Neurosensory perception of superficial pain is diminished both in intensity and speed of perception (increasing the risk of thermal injury); deep tissue pain, however, may be enhanced. A decline in lipid content as the skin ages inhibits the permeability of nonlipophilic compounds, reducing the efficacy of some topical medications. Allergic and irritant reactions are blunted, as is the inflammatory response, compromising the ability of the aged skin to affect wound repair. These functional impairments (although a predictable consequence of intrinsic structural changes) have the potential to cause significant morbidity in the elderly patient and may, as well, be greatly exacerbated by extrinsic factors like photodamage. As numbers of the elderly increase, medical as well as cosmetic dermatological interventions will be necessary to optimize the quality of life for this segment of the population.

  18. Ataxia-telangiectasia (A-T): An emerging dimension of premature ageing.

    PubMed

    Shiloh, Yosef; Lederman, Howard M

    2017-01-01

    A-T is a prototype genome instability syndrome and a multifaceted disease. A-T leads to neurodegeneration - primarily cerebellar atrophy, immunodeficiency, oculocutaneous telangiectasia (dilated blood vessels), vestigial thymus and gonads, endocrine abnormalities, cancer predisposition and varying sensitivity to DNA damaging agents, particularly those that induce DNA double-strand breaks. With the recent increase in life expectancy of A-T patients, the premature ageing component of this disease is gaining greater awareness. The complex A-T phenotype reflects the ever growing number of functions assigned to the protein encoded by the responsible gene - the homeostatic protein kinase, ATM. The quest to thoroughly understand the complex A-T phenotype may reveal yet elusive ATM functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Premature aging in bone of fish from a highly polluted marine area.

    PubMed

    Scopelliti, Giovanna; Di Leonardo, Rossella; Tramati, Cecilia D; Mazzola, Antonio; Vizzini, Salvatrice

    2015-08-15

    Fish species have attracted considerable interest in studies assessing biological responses to environmental contaminants. In this study, the attention has been focussed on fishbone of selected fish species from a highly polluted marine area, Augusta Bay (Italy, Central Mediterranean) to evaluate if toxicant elements had an effect on the mineralogical structure of bones, although macroscopic deformations were not evident. In particular, an attempt was made to evaluate if bone mineral features, such as crystallinity, mineral maturity and carbonate/phosphate mineral content, determined by XR-Diffraction and FT-IR Spectroscopy, suffered negative effects due to trace element levels in fishbone, detected by ICP-OES. Results confirmed the reliability of the use of diffractometric and spectroscopic techniques to assess the degree of crystallinity and the mineral maturity in fishbone. In addition, in highly polluted areas, Hg and Cr contamination induced a process of premature aging of fishbone, altering its biochemical and mineral contents.

  20. The role of TRPV1 channel in aged human skin.

    PubMed

    Lee, Young Mee; Kang, So Min; Chung, Jin Ho

    2012-02-01

    Transient receptor potential vanilloid 1 (TRPV1) is a member of the nonselective cationic channel family. Activation of TRPV1 induces an influx of divalent and monovalent cations (i.e., Ca(2+), Na(+), and Mg(2+)) which are activated by capsaicin, heat, and acid. TRPV1 is known to be expressed in the epidermis, but little is known about the physiological significance and functional role of TRPV1 in skin. Recent studies suggested that heat- and ultraviolet (UV)-induced matrix metalloproteinases-1 (MMP-1) expression may be partly mediated by TRPV1 activation in human keratinocytes. Also, heat and UV increased expression of TRPV1 proteins in human skin in vivo. TRPV1 protein was expressed more in the sun-protected (upper-inner arm) skin of the elderly than in young subjects. In addition, the photoaged (forearm) skin of the elderly showed increased TRPV1 expression compared to sun-protected skin of the same individuals. The increased TRPV1 expression in the old skin implies that TRPV1 may be related to senile skin symptoms, such as senile pruritus and neurogenic inflammation. This review provides a summary of current researches on the role of TRPV1 channel in human skin, especially in aged skin. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Molecular-level insights into aging processes of skin elastin.

    PubMed

    Mora Huertas, Angela C; Schmelzer, Christian E H; Hoehenwarter, Wolfgang; Heyroth, Frank; Heinz, Andrea

    2016-01-01

    Skin aging is characterized by different features including wrinkling, atrophy of the dermis and loss of elasticity associated with damage to the extracellular matrix protein elastin. The aim of this study was to investigate the aging process of skin elastin at the molecular level by evaluating the influence of intrinsic (chronological aging) and extrinsic factors (sun exposure) on the morphology and susceptibility of elastin towards enzymatic degradation. Elastin was isolated from biopsies derived from sun-protected or sun-exposed skin of differently aged individuals. The morphology of the elastin fibers was characterized by scanning electron microscopy. Mass spectrometric analysis and label-free quantification allowed identifying differences in the cleavage patterns of the elastin samples after enzymatic digestion. Principal component analysis and hierarchical cluster analysis were used to visualize differences between the samples and to determine the contribution of extrinsic and intrinsic aging to the proteolytic susceptibility of elastin. Moreover, the release of potentially bioactive peptides was studied. Skin aging is associated with the decomposition of elastin fibers, which is more pronounced in sun-exposed tissue. Marker peptides were identified, which showed an age-related increase or decrease in their abundances and provide insights into the progression of the aging process of elastin fibers. Strong age-related cleavage occurs in hydrophobic tropoelastin domains 18, 20, 24 and 26. Photoaging makes the N-terminal and central parts of the tropoelastin molecules more susceptible towards enzymatic cleavage and, hence, accelerates the age-related degradation of elastin.

  2. The analysis of aging skin based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Li, Hui; Zhang, Xiaoman; Li, Zhifang; Xu, Shufei

    2010-11-01

    Aging is a very important issue not only in dermatology, but also in cosmetic science. Cutaneous aging involves both chronological and photoaging aging process. The chronological aging is induced with the passage of time. And the photoaging skin is the extrinsic aging caused by sun exposure. The aim of this study is to use multiphoton microscopy (MPM) in vivo to assess intrinsic-age-related and photo-age-related difference. The changes of dermal collagen are measured in quantitively. The algorithm that we used automatically produced the transversal dermal map from MPM. Others, the texture of dermis are analyzed by Fourier transform and Gray Level Co-occurrence Matrix. And the object extraction in textured images is proposed based on the method in object edge extraction, and the aim of it is to detect the object hidden in the skin texture in difference aging skin. The result demonstrates that the approach is effective in detecting the object in epidermis and dermis textured image in different aging skin. It could help to further understand the aging mechanism.

  3. Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity.

    PubMed

    Schmidt, Barbara; Anderson, Peter J; Doyle, Lex W; Dewey, Deborah; Grunau, Ruth E; Asztalos, Elizabeth V; Davis, Peter G; Tin, Win; Moddemann, Diane; Solimano, Alfonso; Ohlsson, Arne; Barrington, Keith J; Roberts, Robin S

    2012-01-18

    Very preterm infants are prone to apnea and have an increased risk of death or disability. Caffeine therapy for apnea of prematurity reduces the rates of cerebral palsy and cognitive delay at 18 months of age. To determine whether neonatal caffeine therapy has lasting benefits or newly apparent risks at early school age. Five-year follow-up from 2005 to 2011 in 31 of 35 academic hospitals in Canada, Australia, Europe, and Israel, where 1932 of 2006 participants (96.3%) had been enrolled in the randomized, placebo-controlled Caffeine for Apnea of Prematurity trial between 1999 and 2004. A total of 1640 children (84.9%) with birth weights of 500 to 1250 g had adequate data for the main outcome at 5 years. Combined outcome of death or survival to 5 years with 1 or more of motor impairment (defined as a Gross Motor Function Classification System level of 3 to 5), cognitive impairment (defined as a Full Scale IQ<70), behavior problems, poor general health, deafness, and blindness. The combined outcome of death or disability was not significantly different for the 833 children assigned to caffeine from that for the 807 children assigned to placebo (21.1% vs 24.8%; odds ratio adjusted for center, 0.82; 95% CI, 0.65-1.03; P = .09). The rates of death, motor impairment, behavior problems, poor general health, deafness, and blindness did not differ significantly between the 2 groups. The incidence of cognitive impairment was lower at 5 years than at 18 months and similar in the 2 groups (4.9% vs 5.1%; odds ratio adjusted for center, 0.97; 95% CI, 0.61-1.55; P = .89). Neonatal caffeine therapy was no longer associated with a significantly improved rate of survival without disability in children with very low birth weights who were assessed at 5 years.

  4. Skin aging: molecular pathology, dermal remodelling and the imaging revolution.

    PubMed

    Newton, V L; Mcconnell, J C; Hibbert, S A; Graham, H K; Watson, R E

    2015-12-01

    Skin is a multifunctional organ but, alongside every other organ system, is subject to both intrinsic (chronological) and extrinsic (environmental) aging, resulting in a loss of functional capacity. Cutaneous aging manifests as an observable change in the external appearance of the skin, the major accelerator of the aging process being our interactions with our environment, such as chronic exposure to solar irradiation (UV, IR or visible wavelengths of light). The aim of this contribution, therefore, was to provide a review of the pathological mechanisms which may play roles in the development of extrinsic, mainly photo-, aging and to review how these molecular changes impact on the structure of the organ as a whole, resulting in loss of function. Finally, we will describe the advances which are occurring in imaging techniques which may allow further characterisation of aged skin.

  5. Nuclear envelope defects cause stem cell dysfunction in premature-aging mice

    PubMed Central

    Espada, Jesús; Varela, Ignacio; Flores, Ignacio; Ugalde, Alejandro P.; Cadiñanos, Juan; Pendás, Alberto M.; Stewart, Colin L.; Tryggvason, Karl; Blasco, María A.; Freije, José M.P.; López-Otín, Carlos

    2008-01-01

    Nuclear lamina alterations occur in physiological aging and in premature aging syndromes. Because aging is also associated with abnormal stem cell homeostasis, we hypothesize that nuclear envelope alterations could have an important impact on stem cell compartments. To evaluate this hypothesis, we examined the number and functional competence of stem cells in Zmpste24-null progeroid mice, which exhibit nuclear lamina defects. We show that Zmpste24 deficiency causes an alteration in the number and proliferative capacity of epidermal stem cells. These changes are associated with an aberrant nuclear architecture of bulge cells and an increase in apoptosis of their supporting cells in the hair bulb region. These alterations are rescued in Zmpste24−/−Lmna+/− mutant mice, which do not manifest progeroid symptoms. We also report that molecular signaling pathways implicated in the regulation of stem cell behavior, such as Wnt and microphthalmia transcription factor, are altered in Zmpste24−/− mice. These findings establish a link between age-related nuclear envelope defects and stem cell dysfunction. PMID:18378773

  6. Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice.

    PubMed

    Ali, Amira A H; Schwarz-Herzke, Beryl; Stahr, Anna; Prozorovski, Timour; Aktas, Orhan; von Gall, Charlotte

    2015-06-01

    Hippocampal neurogenesis undergoes dramatic age-related changes. Mice with targeted deletion of the clock geneBmal1 (Bmal1(-/-)) show disrupted regulation of reactive oxygen species homeostasis, accelerated aging, neurodegeneration and cognitive deficits. As proliferation of neuronal progenitor/precursor cells (NPCs) is enhanced in young Bmal1(-/-) mice, we tested the hypothesis that this results in premature aging of hippocampal neurogenic niche in adult Bmal1(-/-) mice as compared to wildtype littermates. We found significantly reduced pool of hippocampal NPCs, scattered distribution, enhanced survival of NPCs and an increased differentiation of NPCs into the astroglial lineage at the expense of the neuronal lineage. Immunoreaction of the redox sensitive histone deacetylase Sirtuine 1, peroxisomal membrane protein at 70 kDa and expression of the cell cycle inhibitor p21(Waf1/CIP1) were increased in adult Bmal1(-/-) mice. In conclusion, genetic disruption of the molecular clockwork leads to accelerated age-dependent decline in adult neurogenesis presumably as a consequence of oxidative stress.

  7. Reduced dermis thickness and AGE accumulation in diabetic abdominal skin.

    PubMed

    Niu, Yiwen; Cao, Xiaozan; Song, Fei; Xie, Ting; Ji, Xiaoyun; Miao, Mingyuan; Dong, Jiaoyun; Tian, Ming; Lin, Yuan; Lu, Shuliang

    2012-09-01

    Dermatological problems in diabetes might play an important role in the spontaneous ulcers and impaired wound healing that are seen in diabetic patients. Investigation of the cause of diabetic skin disorders is critical for identifying effective treatment. The abdominal full-thickness skin tissues of 33 patients (14 nondiabetic and 19 diabetic) were analyzed. The cell viability and malondialdehyde (MDA) production of fibroblasts were measured after advanced glycosylation end product (AGE)-bovine serum albumin (BSA) exposure. Cutaneous histological observation showed reduced thickness of the diabetic abdominal dermis with morphological characteristics of obscured multilayer epithelium and shortened, thinned, and disorganized collagen fibrils with focal chronic inflammatory cell infiltration when compared with controls of the same age. Accumulation of AGEs in diabetic skin was prominent. Less hydroxyproline, higher myeloperoxidase activity, and increased MDA content were detected in diabetic skin. In vitro, the time- and dose-dependent inhibitory effects of AGE-BSA on fibroblast viability as well as the fact that AGE-BSA could promote MDA production of fibroblasts were shown. It is shown that the accumulation of AGEs in diabetic skin tissue induces an oxidative damage of fibroblasts and acts as an important contributor to the thinner diabetic abdominal dermis. The authors believe that diabetic cutaneous properties at baseline may increase the susceptibility to injury, and diabetic wounds possess atypical origin in the repair process.

  8. Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging

    PubMed Central

    Quan, Taihao; Fisher, Gary J

    2015-01-01

    Human skin is largely composed of a collagen-rich connective tissue, which provides structural and functional support. The collagen-rich connective tissue is produced, organized, and maintained by dermal fibroblasts. During aging, dermal collagen fibrils undergo progressive loss and fragmentation, leading to thin and structurally weakened skin. Age-related alterations of collagen fibrils impairs skin structure and function and creates a tissue microenvironment that promotes age-related skin diseases, such as delayed wound healing and skin cancer development. This review describes cellular mechanisms that give rise to self-perpetuating, collagen fibril fragmentation that creates an age-associated dermal microenvironment (AADM), which contributes to decline of human skin function. PMID:25660807

  9. Ultraviolet radiation exposure accelerates the accumulation of the aging-dependent T414G mitochondrial DNA mutation in human skin.

    PubMed

    Birket, Matthew J; Birch-Machin, Mark A

    2007-08-01

    The accumulation of mitochondrial DNA (mtDNA) mutations has been proposed as an underlying cause of the aging process. Such mutations are thought to be generated principally through mechanisms involving oxidative stress. Skin is frequently exposed to a potent mutagen in the form of ultraviolet (UV) radiation and mtDNA deletion mutations have previously been shown to accumulate with photoaging. Here we report that the age-related T414G point mutation originally identified in skin fibroblasts from donors over 65 years also accumulates with age in skin tissue. Moreover, there is a significantly greater incidence of this mutation in skin from sun-exposed sites (chi(2)= 6.8, P < 0.01). Identification and quantification of the T414G mutation in dermal skin tissue from 108 donors ranging from 8 to 97 years demonstrated both increased occurrence with photoaging as well as an increase in the proportion of molecules affected. In addition, we have discovered frequent genetic linkage between a common photoaging-associated mtDNA deletion and the T414G mutation. This linkage indicates that mtDNA mutations such as these are unlikely to be distributed equally across the mtDNA population within the skin tissue, increasing their likelihood of exerting focal effects at the cellular level. Taken together, these data significantly contribute to our understanding of the DNA damaging effects of UV exposure and how resultant mutations may ultimately contribute towards premature aging.

  10. Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; Mentink, Rosaline; Kok, Joke H.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2011-09-01

    Knowledge of the optical properties of neonatal skin is invaluable when developing new, or improving existing optical techniques for use at the neonatal intensive care. In this article, we present in vivo measurements of the absorption μa and reduced scattering coefficient μs' of neonatal skin between 450 and 600 nm and assess the influence of age and skin pigmentation on the optical properties. The optical properties were measured using a spatially resolved, steady state diffuse reflectance spectroscopy setup, combined with a modified spatially resolved diffusion model. The method was validated on phantoms with known values for the absorption and reduced scattering coefficient. Values of μa and μs' were obtained from the skin at four different body locations (forehead, sternum, hand, and foot) of 60 neonates with varying gestational age, postnatal age, and skin pigmentation. We found that μa ranged from 0.02 to 1.25 mm-1 and μs' was in the range of 1 to 2.8 mm-1 (5th to 95th percentile of the patient population), independent of body location. In contrast to previous studies, no to very weak correlation was observed between the optical properties and gestational maturity, but a strong dependency of the absorption coefficient on postnatal age was found for dark skinned patients.

  11. Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation.

    PubMed

    Bosschaart, Nienke; Mentink, Rosaline; Kok, Joke H; van Leeuwen, Ton G; Aalders, Maurice C G

    2011-09-01

    Knowledge of the optical properties of neonatal skin is invaluable when developing new, or improving existing optical techniques for use at the neonatal intensive care. In this article, we present in vivo measurements of the absorption μ(a) and reduced scattering coefficient μ(s) (') of neonatal skin between 450 and 600 nm and assess the influence of age and skin pigmentation on the optical properties. The optical properties were measured using a spatially resolved, steady state diffuse reflectance spectroscopy setup, combined with a modified spatially resolved diffusion model. The method was validated on phantoms with known values for the absorption and reduced scattering coefficient. Values of μ(a) and μ(s) (') were obtained from the skin at four different body locations (forehead, sternum, hand, and foot) of 60 neonates with varying gestational age, postnatal age, and skin pigmentation. We found that μ(a) ranged from 0.02 to 1.25 mm(-1) and μ(s) (') was in the range of 1 to 2.8 mm(-1) (5th to 95th percentile of the patient population), independent of body location. In contrast to previous studies, no to very weak correlation was observed between the optical properties and gestational maturity, but a strong dependency of the absorption coefficient on postnatal age was found for dark skinned patients.

  12. Transformation resistance in a premature aging disorder identifies a tumor-protective function of BRD4.

    PubMed

    Fernandez, Patricia; Scaffidi, Paola; Markert, Elke; Lee, Ji-Hyeon; Rane, Sushil; Misteli, Tom

    2014-10-09

    Advanced age and DNA damage accumulation are prominent risk factors for cancer. The premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS) provides a unique opportunity for studying the interplay between DNA damage and aging-associated tumor mechanisms, given that HGPS patients do not develop tumors despite elevated levels of DNA damage. Here, we have used HGPS patient cells to identify a protective mechanism to oncogenesis. We find that HGPS cells are resistant to neoplastic transformation. Resistance is mediated by the bromodomain protein BRD4, which exhibits altered genome-wide binding patterns in transformation-resistant cells, leading to inhibition of oncogenic dedifferentiation. BRD4 also inhibits, albeit to a lower extent, the tumorigenic potential of transformed cells from healthy individuals. BRD4-mediated tumor protection is clinically relevant given that a BRD4 gene signature predicts positive clinical outcome in breast and lung cancer. Our results demonstrate a protective function for BRD4 and suggest tissue-specific roles for BRD4 in tumorigenesis.

  13. NRMT1 knockout mice exhibit phenotypes associated with impaired DNA repair and premature aging

    PubMed Central

    Bonsignore, Lindsay A.; Tooley, John G.; Van Hoose, Patrick M.; Wang, Eugenia; Cheng, Alan; Cole, Marsha P.; Tooley, Christine E. Schaner

    2015-01-01

    Though defective genome maintenance and DNA repair have long been know to promote phenotypes of premature aging, the role protein methylation plays in these processes is only now emerging. We have recently identified the first N-terminal methyltransferase, NRMT1, which regulates protein-DNA interactions and is necessary for both accurate mitotic division and nucleotide excision repair. To demonstrate if complete loss of NRMT1 subsequently resulted in developmental or aging phenotypes, we constructed the first NRMT1 knockout (Nrmt1−/−) mouse. The majority of these mice die shortly after birth. However, the ones that survive exhibit decreased body size, female-specific infertility, kyphosis, decreased mitochondrial function, and early-onset liver degeneration; phenotypes characteristic of other mouse models deficient in DNA repair. The livers from Nrmt1−/− mice produce less reactive oxygen species (ROS) than wild type controls, and Nrmt1−/− mouse embryonic fibroblasts show a decreased capacity for handling oxidative damage. This indicates that decreased mitochondrial function may benefit Nrmt1−/− mice and protect them from excess internal ROS and subsequent DNA damage. These studies position the NRMT1 knockout mouse as a useful new system for studying the effects of genomic instability and defective DNA damage repair on organismal and tissue-specific aging. PMID:25843235

  14. NRMT1 knockout mice exhibit phenotypes associated with impaired DNA repair and premature aging.

    PubMed

    Bonsignore, Lindsay A; Tooley, John G; Van Hoose, Patrick M; Wang, Eugenia; Cheng, Alan; Cole, Marsha P; Schaner Tooley, Christine E

    2015-03-01

    Though defective genome maintenance and DNA repair have long been known to promote phenotypes of premature aging, the role protein methylation plays in these processes is only now emerging. We have recently identified the first N-terminal methyltransferase, NRMT1, which regulates protein-DNA interactions and is necessary for both accurate mitotic division and nucleotide excision repair. To demonstrate if complete loss of NRMT1 subsequently resulted in developmental or aging phenotypes, we constructed the first NRMT1 knockout (Nrmt1(-/-)) mouse. The majority of these mice die shortly after birth. However, the ones that survive, exhibit decreased body size, female-specific infertility, kyphosis, decreased mitochondrial function, and early-onset liver degeneration; phenotypes characteristic of other mouse models deficient in DNA repair. The livers from Nrmt1(-/-) mice produce less reactive oxygen species (ROS) than wild type controls, and Nrmt1(-/-) mouse embryonic fibroblasts show a decreased capacity for handling oxidative damage. This indicates that decreased mitochondrial function may benefit Nrmt1(-/-) mice and protect them from excess internal ROS and subsequent DNA damage. These studies position the NRMT1 knockout mouse as a useful new system for studying the effects of genomic instability and defective DNA damage repair on organismal and tissue-specific aging.

  15. Effects of age and diet on rat skin histology.

    PubMed

    Thomas, J Regan

    2005-03-01

    To document age-related histologic morphometric changes of rat skin and the effects of calorie restriction on such changes. Fischer 344 rats of three age groups (young, 4 mo; adult, 1 year; old, 24+ months) were procured from ad libitum (AL) diet and calorie-restricted (CR) colonies of the National Institute of Aging and were used for histologic study. Each study group consisted of six animals. Skin samples from the dorsum (DS) and footpad (FP) of these animals were excised and processed for histology with staining techniques for general morphology (hematoxylin-eosin-phloxine) and for differentiation of collagen bundles and elastic fibers (Verhoeff-van Gieson technique). Light microscopic morphometric and stereologic point counting procedures were applied manually to tissue sections to obtain quantitative data on the depth of the epidermis, dermis, and stratum corneum, epidermal nuclear number, and percentage fraction of collagen, elastic fibers, capillaries, and pilosebaceous units. Data were analyzed with two-way of analysis of variance (ANOVA) to determine significant effects of age, diet, and age-diet interaction on these parameters in AL rats and their age-matched cohorts. Significant effects of age, diet, or age-diet interaction were observed in respect of the thickness of epidermis, dermis, stratum corneum of FP, epidermal nuclear number, collagen percentage fraction, and area fraction of capillaries. DS epidermis showed increasing thickness in AL group, but this was reduced in CR rats. A similar trend in DS dermal depth was observed. Fewer capillaries were present in aging CR rats. The DS epidermal nuclear profiles and collagen area fraction also showed effects of diet and age-diet interaction. Aging changes, especially the effect of CR, was more evident in the measured parameters of dorsal skin. No alterations were observed in the distribution of pilosebaceous units and elastic fiber profiles of the skin. The Fischer 344 rat shows many age-related changes

  16. Identification of Biomarkers of Human Skin Ageing in Both Genders. Wnt Signalling - A Label of Skin Ageing?

    PubMed Central

    Zampeli, Vasiliki; Elewa, Rana Mohsen; Mlody, Barbara; Hossini, Amir M.; Hermes, Bjoern; Krause, Ulf; Knolle, Juergen; Abdallah, Marwa; Adjaye, James; Zouboulis, Christos C.

    2012-01-01

    The goal of our work has been to investigate the mechanisms of gender-independent human skin ageing and examine the hypothesis of skin being an adequate model of global ageing. For this purpose, whole genome gene profiling was employed in sun-protected skin obtained from European Caucasian young and elderly females (mean age 26.7±4 years [n1 = 7] and 70.75±3.3 years [n2 = 4], respectively) and males (mean age 25.8±5.2 years [n3 = 6] and 76±3.8 years [n4 = 7], respectively) using the Illumina array platform. Confirmation of gene regulation was performed by real-time RT-PCR and immunohistochemistry. 523 genes were significantly regulated in female skin and 401 genes in male skin for the chosen criteria. Of these, 183 genes exhibited increased and 340 decreased expression in females whereas 210 genes showed increased and 191 decreased expression in males with age. In total, 39 genes were common in the target lists of significant regulated genes in males and females. 35 of these genes showed increased (16) or decreased (19) expression independent of gender. Only 4 overlapping genes (OR52N2, F6FR1OP2, TUBAL3 and STK40) showed differential regulation with age. Interestingly, Wnt signalling pathway showed to be significantly downregulated in aged skin with decreased gene and protein expression for males and females, accordingly. In addition, several genes involved in central nervous system (CNS) ageing (f.i. APP, TAU) showed to be expressed in human skin and were significanlty regulated with age. In conclusion, our study provides biomarkers of endogenous human skin ageing in both genders and highlight the role of Wnt signalling in this process. Furthermore, our data give evidence that skin could be used as a good alternative to understand ageing of different tissues such as CNS. PMID:23226273

  17. Skin aging and oxidative stress: Equol's anti-aging effects via biochemical and molecular mechanisms.

    PubMed

    Lephart, Edwin D

    2016-11-01

    Oxygen in biology is essential for life. It comes at a cost during normal cellular function, where reactive oxygen species (ROS) are generated by oxidative metabolism. Human skin exposed to solar ultra-violet radiation (UVR) dramatically increases ROS production/oxidative stress. It is important to understand the characteristics of human skin and how chronological (intrinsic) aging and photo-aging (extrinsic aging) occur via the impact of ROS production by cascade signaling pathways. The goal is to oppose or neutralize ROS insults to maintain good dermal health. Botanicals, as active ingredients, represent one of the largest categories used in dermatology and cosmeceuticals to combat skin aging. An emerging botanical is equol, a polyphenolic/isoflavonoid molecule found in plants and food products and via gastrointestinal metabolism from precursor compounds. Introductory sections cover oxygen, free radicals (ROS), oxidative stress, antioxidants, human skin aging, cellular/molecular ROS events in skin, steroid enzymes/receptors/hormonal actions and genetic factors in aging skin. The main focus of this review covers the characteristics of equol (phytoestrogenic, antioxidant and enhancement of extracellular matrix properties) to reduce skin aging along with its anti-aging skin influences via reducing oxidative stress cascade events by a variety of biochemical/molecular actions and mechanisms to enhance human dermal health.

  18. ‘This is the country of premature old men’ Ageing and Aged Miners in the South Wales Coalfield, c.1880–1947

    PubMed Central

    Curtis, Ben; Thompson, Steven

    2015-01-01

    Abstract This article considers the effects of work in the south Wales coal industry either side of the turn of the twentieth century and, specifically, the ways in which work aged workers prematurely. It examines the consequences of working practices for miners’ bodies, the expedients utilized by miners to try and cope with the effects of premature ageing, and the consequences for their living standards, experiences and status. It situates these phenomena in the contexts of industrial relations and welfare provision. In so doing, the article engages with historiographies of the life-cycle, the aged, and pensions provision in modern Britain. PMID:27134572

  19. Neuropathology of Cockayne syndrome: Evidence for impaired development, premature aging, and neurodegeneration.

    PubMed

    Weidenheim, Karen M; Dickson, Dennis W; Rapin, Isabelle

    2009-09-01

    Global growth and development failure, premature, accelerated, pathologic aging, and neurodegeneration characterize Cockayne syndrome (CS) and the cerebro-oculo-facial-skeletal and xeroderma pigmentosum/CS syndromes which overlap CS partially in their genetic, somatic, and neuropathologic features. Mutations of CSA or CSB genes jeopardize transcription-coupled repair of damaged nuclear and mitochondrial DNA and resumption of replication and transcription. Resultant defective proteins or gene silencing eventuate in profound dwarfism and micrencephaly, cachexia, vasculopathy, and neurodegeneration. Cellular effects are highly selective. Purkinje cells may die by apoptosis and have grossly dystrophic dendrites. Neuronal death and axonal spheroids indexing neuronal pathology predominate in, but are not limited to, the cerebellum. Progressive loss of retinal, cochlear, and vestibular sensory receptors foster degeneration of ganglion cells and transneuronal brain degeneration. Some proliferating astrocytes are multinucleated and bizarre. Primary damage of oligodendrocytes and Schwann cells may - or may not - explain severe patchy myelin loss ("tigroid leukodystrophy") and segmental demyelinating peripheral neuropathy. Age-related changes are minor in the brain, although precocious severe athero- and arteriolosclerosis are responsible for occasional strokes. Vasculopathology may contribute to myelin loss and to dystrophic mineralization of neurons and vessels, especially in basal ganglia and cerebellum. Understanding the genetics, biochemical, and cellular pathophysiology of these disorders remains fragmentary.

  20. A High Fat Diet and NAD+ Rescue Premature Aging in Cockayne Syndrome

    PubMed Central

    Scheibye-Knudsen, Morten; Mitchell, Sarah J.; Fang, Evandro F.; Iyama, Teruaki; Ward, Theresa; Wang, James; Dunn, Christopher A.; Singh, Nagendra; Veith, Sebastian; Hasan, M. Mahdi; Mangerich, Aswin; Wilson, Mark A.; Mattson, Mark P.; Bergersen, Linda H.; Cogger, Victoria C.; Warren, Alessandra; Le Couteur, David G.; Moaddel, Ruin; Wilson, David M.; Croteau, Deborah L.; de Cabo, Rafael; Bohr, Vilhelm A.

    2014-01-01

    Summary Cockayne syndrome (CS) is an accelerated aging disorder characterized by progressive neurodegeneration caused by mutations in the genes encoding the DNA repair proteins CSA or CSB. Csbm/m mice were given a high fat, caloric restricted or resveratrol supplemented diet. The high fat diet rescued the phenotype of Csbm/m mice at the metabolic, transcriptomic and behavioral levels. Additional analysis suggests that the premature aging seen in CS mice, nematodes and human cells results from aberrant PARP activation due to deficient DNA repair leading to decreased SIRT1 activity and mitochondrial dysfunction. Notably, β-hydroxybutyrate levels are increased by the high fat diet; and β-hydroxybutyrate, PARP inhibition, or NAD+ supplementation can activate SIRT1 and rescue CS-associated phenotypes. Mechanistically, CSB is able to displace activated PARP1 from damaged DNA to limit its activity. This study connects two emerging longevity metabolites, β-hydroxybutyrate and NAD+, through the deacetylase SIRT1 and suggests possible interventions for CS. PMID:25440059

  1. Premature aging of the hippocampal neurogenic niche in adult Bmal1‐ deficient mice

    PubMed Central

    Ali, Amira A. H.; Schwarz‐Herzke, Beryl; Stahr, Anna; Prozorovski, Timour; Aktas, Orhan; von Gall, Charlotte

    2015-01-01

    Hippocampal neurogenesis undergoes dramatic age‐related changes. Mice with targeted deletion of the clock gene Bmal1 (Bmal1‐/‐) show disrupted regulation of reactive oxygen species homeostasis, accelerated aging, neurodegeneration and cognitive deficits. As proliferation of neuronal progenitor/precursor cells (NPCs) is enhanced in young Bmal1‐/‐ mice, we tested the hypothesis that this results in premature aging of hippocampal neurogenic niche in adult Bmal1‐/‐ mice as compared to wildtype littermates. We found significantly reduced pool of hippocampal NPCs, scattered distribution, enhanced survival of NPCs and an increased differentiation of NPCs into the astroglial lineage at the expense of the neuronal lineage. Immunoreaction of the redox sensitive histone deacetylase Sirtuine 1, peroxisomal membrane protein at 70kDa and expression of the cell cycle inhibitor p21 Waf1/CIP1 were increased in adult Bmal1‐/‐ mice. In conclusion, genetic disruption of the molecular clockwork leads to accelerated age‐dependent decline in adult neurogenesis presumably as a consequence of oxidative stress. PMID:26142744

  2. Characterization of Skin Aging-Associated Secreted Proteins (SAASP) Produced by Dermal Fibroblasts Isolated from Intrinsically Aged Human Skin.

    PubMed

    Waldera Lupa, Daniel M; Kalfalah, Faiza; Safferling, Kai; Boukamp, Petra; Poschmann, Gereon; Volpi, Elena; Götz-Rösch, Christine; Bernerd, Francoise; Haag, Laura; Huebenthal, Ulrike; Fritsche, Ellen; Boege, Fritz; Grabe, Niels; Tigges, Julia; Stühler, Kai; Krutmann, Jean

    2015-08-01

    Most molecular hallmarks of cellular senescence have been identified in studies of cells aged in vitro by driving them into replicative or stress-induced senescence. Comparatively, less is known about the characteristic features of cells that have aged in vivo. Here we provide a systematic molecular analysis of normal human dermal fibroblasts (NHDFs) that were isolated from intrinsically aged human skin of young versus middle aged versus old donors. Intrinsically aged NHDFs in culture exhibited more frequently nuclear foci positive for p53 binding protein 1 and promyelocytic leukemia protein reminiscent of 'DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS)'. Formation of such foci was neither accompanied by increased DNA double strand breaks, nor decreased cell viability, nor telomere shortening. However, it was associated with the development of a secretory phenotype, indicating incipient cell senescence. By quantitative analysis of the entire secretome present in conditioned cell culture supernatant, combined with a multiplex cytokine determination, we identified 998 proteins secreted by intrinsically aged NHDFs in culture. Seventy of these proteins exhibited an age-dependent secretion pattern and were accordingly denoted 'skin aging-associated secreted proteins (SAASP)'. Systematic comparison of SAASP with the classical senescence-associated secretory phenotype (SASP) revealed that matrix degradation as well as proinflammatory processes are common aspects of both conditions. However, secretion of 27 proteins involved in the biological processes of 'metabolism' and 'adherens junction interactions' was unique for NHDFs isolated from intrinsically aged skin. In conclusion, fibroblasts isolated from intrinsically aged skin exhibit some, but not all, molecular hallmarks of cellular senescence. Most importantly, they secrete a unique pattern of proteins that is distinct from the canonical SASP and might reflect specific processes of skin aging.

  3. Attenuation of Replication Stress–Induced Premature Cellular Senescence to Assess Anti-Aging Modalities

    PubMed Central

    Zhao, Hong; Darzynkiewicz, Zbigniew

    2014-01-01

    Described is an in vitro model of premature senescence in pulmonary adenocarcinoma A549 cells induced by persistent DNA replication stress in response to treatment with the DNA damaging drug mitoxantrone (Mxt). The degree of cellular senescence, based on characteristic changes in cell morphology, is measured by laser scanning cytometry. Specifically, the flattening of cells grown on slides (considered the hallmark of cellular senescence) is measured as the decline in local intensity of DNA-associated DAPI fluorescence (represented by maximal pixels). This change is paralleled by an increase in nuclear area. Thus, the ratio of mean intensity of maximal pixels to nuclear area provides a very sensitive morphometric biomarker for the degree of senescence. This analysis is combined with immunocytochemical detection of senescence markers, such as overexpression of cyclin kinase inhibitors (e.g., p21WAF1) and phosphorylation of ribosomal protein S6 (rpS6), a key marker associated with aging/senescence that is detected using a phospho-specific antibody. These biomarker indices are presented in quantitative terms defined as a senescence index (SI), which is the fraction of the marker in test cultures relative to the same marker in exponentially growing control cultures. This system can be used to evaluate the anti-aging potential of test agents by assessing attenuation of maximal senescence. As an example, the inclusion of berberine, a natural alkaloid with reported anti-aging properties and a long history of use in traditional Chinese medicine, is shown to markedly attenuate the Mxt-induced SI and phosphorylation of rpS6. The multivariate analysis of senescence markers by laser scanning cytometry offers a promising tool to explore the potential anti-aging properties of a variety agents. PMID:24984966

  4. Attenuation of replication stress-induced premature cellular senescence to assess anti-aging modalities.

    PubMed

    Zhao, Hong; Darzynkiewicz, Zbigniew

    2014-07-01

    Described is an in vitro model of premature senescence in pulmonary adenocarcinoma A549 cells induced by persistent DNA replication stress in response to treatment with the DNA damaging drug mitoxantrone (Mxt). The degree of cellular senescence, based on characteristic changes in cell morphology, is measured by laser scanning cytometry. Specifically, the flattening of cells grown on slides (considered the hallmark of cellular senescence) is measured as the decline in local intensity of DNA-associated DAPI fluorescence (represented by maximal pixels). This change is paralleled by an increase in nuclear area. Thus, the ratio of mean intensity of maximal pixels to nuclear area provides a very sensitive morphometric biomarker for the degree of senescence. This analysis is combined with immunocytochemical detection of senescence markers, such as overexpression of cyclin kinase inhibitors (e.g., p21(WAF1) ) and phosphorylation of ribosomal protein S6 (rpS6), a key marker associated with aging/senescence that is detected using a phospho-specific antibody. These biomarker indices are presented in quantitative terms defined as a senescence index (SI), which is the fraction of the marker in test cultures relative to the same marker in exponentially growing control cultures. This system can be used to evaluate the anti-aging potential of test agents by assessing attenuation of maximal senescence. As an example, the inclusion of berberine, a natural alkaloid with reported anti-aging properties and a long history of use in traditional Chinese medicine, is shown to markedly attenuate the Mxt-induced SI and phosphorylation of rpS6. The multivariate analysis of senescence markers by laser scanning cytometry offers a promising tool to explore the potential anti-aging properties of a variety agents. Copyright © 2014 John Wiley & Sons, Inc.

  5. Photoaging versus intrinsic aging: a morphologic assessment of facial skin.

    PubMed

    Bhawan, J; Andersen, W; Lee, J; Labadie, R; Solares, G

    1995-04-01

    Histologic studies have become increasingly important in recognizing morphologic differences in photoaged versus intrinsically aged skin. Earlier histologic studies have attempted to evaluate these changes by examining anatomical sites which are not comparable, such as face and buttocks. As part of a multicenter study, we have quantitatively examined a panel of 16 histologic features in baseline facial skin biopsies from 158 women with moderate to severe photodamage. When compared to the postauricular area (photo protected), biopsies of the crow's feet area (photo exposed) had a twofold increase in melanocytes and a statistically significant increase in melanocytic atypia (p < .0001) and epidermal melanin (p < .0001). Other epidermal changes included reduced epidermal thickness (p < .01), more compact stratum corneum (p < .0001) and increased granular layer thickness (p < .0001) in the crow's feet skin. There was increased solar elastosis (p < .0001), dermal elastic tissue (p < .0001), melanophages (p < .0001), perivascular inflammation (p < .05) and perifollicular fibrosis (p < .01) but no change in the number of mast cells or dermal mucin in the photo exposed skin. Our data document quantitative differences in photoaged versus intrinsically aged facial skin and provides the groundwork for future studies to evaluate the efficacy of new treatments for photoaged skin.

  6. Mitochondrial damage and ageing using skin as a model organ.

    PubMed

    Hudson, Laura; Bowman, Amy; Rashdan, Eyman; Birch-Machin, Mark A

    2016-11-01

    Ageing describes the progressive functional decline of an organism over time, leading to an increase in susceptibility to age-related diseases and eventually to death, and it is a phenomenon observed across a wide range of organisms. Despite a vast repertoire of ageing studies performed over the past century, the exact causes of ageing remain unknown. For over 50 years it has been speculated that mitochondria play a key role in the ageing process, due mainly to correlative data showing an increase in mitochondrial dysfunction, mitochondrial DNA (mtDNA) damage, and reactive oxygen species (ROS) with age. However, the exact role of the mitochondria in the ageing process remains unknown. The skin is often used to study human ageing, due to its easy accessibility, and the observation that the ageing process is able to be accelerated in this organ via environmental insults, such as ultra violet radiation (UVR). This provides a useful tool to investigate the mechanisms regulating ageing and, in particular, the role of the mitochondria. Observations from dermatological and photoageing studies can provide useful insights into chronological ageing of the skin and other organs such as the brain and liver. Moreover, a wide range of diseases are associated with ageing; therefore, understanding the cause of the ageing process as well as regulatory mechanisms involved could provide potentially advantageous therapeutic targets for the prevention or treatment of such diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. [The relationship between metabolic disorders and small for gestational age with idiopathic premature adrenarche].

    PubMed

    Mejorado Molano, Francisco Javier; Andrés Zallo, Laura; Fornos Rodríguez, Marta; Pérez Segura, Pilar; Gavela Pérez, Teresa; Sanz Calvo, María Luisa; Soriano Guillén, Leandro

    2016-11-09

    There is still controversy on the relationship between idiopathic premature adrenarche (IPA) and a history of small for gestational age, as well as the concomitant presence of obesity and other metabolic disturbances. An attempt is made to study these potential associations in a cohort of girls with IPA from our hospital. A descriptive cross-sectional study was conducted that included girls with a diagnosis of IPA from the Paediatric Department of the Fundación Jiménez Díaz (Madrid, Spain) between January 2007 and May 2015. A record was made of family and personal history with perinatal data, as well as anthropometric data and biochemical values at the time of diagnosis. Out of a total of 76 girls with IPA, 2.7% had a history of small for gestational age. When body mass index was analysed according to modified criteria of WHO 2007/Cole 2000, 11.8% were overweight, and 11.8% were obese at diagnosis. Using the criteria set by the Spanish Ministry of Health, 6.6% were overweight and 18.4% obese, with 21.2% of the girls being insulin resistance, and 13.95% having dyslipidaemia. None of them had hypertension. From a comparative analysis between normal and overweight and obesity IPA girls, the latter had significantly higher levels of triglycerides and insulin, a higher HOMA index, and lower levels of HDL cholesterol. IPA girls included in the study do not have a higher prevalence of small for gestational age compared to the general population. Prevalence of overweight and obesity in girls with IPA is not higher than the prevalence in the normal population. Copyright © 2016. Publicado por Elsevier España, S.L.U.

  8. Evaluating retinopathy of prematurity screening guidelines for 24- to 27-week gestational age infants.

    PubMed

    Kennedy, K A; Wrage, L A; Higgins, R D; Finer, N N; Carlo, W A; Walsh, M C; Laptook, A R; Faix, R G; Yoder, B A; Schibler, K; Gantz, M G; Das, A; Newman, N S; Phelps, D L

    2014-04-01

    To determine whether current retinopathy of prematurity (ROP) screening guidelines adequately identify treatable ROP in a contemporary cohort of extremely low gestation infants. Data from the Surfactant, Positive Pressure, and Pulse Oximetry Randomized Trial were used. Inborn infants of 24 (0)/7 to 27 (6)/7 weeks gestational age (GA) with consent before delivery were enrolled in 2005 to 2009. Severe ROP (type 1 ROP or treatment with laser, cryotherapy or bevacizumab) or death was the primary outcome for the randomized trial. Examinations followed the then current AAP (American Academy of Pediatrics) screening recommendations, beginning by 31 to 33 weeks postmenstrual age (PMA). One thousand three hundred and sixteen infants were enrolled in the trial. Nine hundred and ninety-seven of the 1121 who survived to first eye exam had final ROP outcome determined. One hundred and thirty-seven (14% of 997) met criteria for severe ROP and 128 (93%) of those had sufficient data (without missing or delayed exams) to determine age of onset of severe ROP. PMA at onset was 32.1 to 53.1 weeks. In this referral center cohort, 1.4% (14/997) developed severe ROP after discharge. Our contemporary data support the 2013 AAP screening guidelines for ROP for infants of 24 (0)/7 to 27 (6)/7 weeks GA. Some infants do not meet treatment criteria until after discharge home. Post-discharge follow-up of infants who are still at risk for severe ROP is crucial for timely detection and treatment.

  9. Cigarette smoke metabolically promotes cancer, via autophagy and premature aging in the host stromal microenvironment

    PubMed Central

    Salem, Ahmed F.; Al-Zoubi, Mazhar Salim; Whitaker-Menezes, Diana; Martinez-Outschoorn, Ubaldo E.; Lamb, Rebecca; Hulit, James; Howell, Anthony; Gandara, Ricardo; Sartini, Marina; Galbiati, Ferruccio; Bevilacqua, Generoso; Sotgia, Federica; Lisanti, Michael P.

    2013-01-01

    Cigarette smoke has been directly implicated in the disease pathogenesis of a plethora of different human cancer subtypes, including breast cancers. The prevailing view is that cigarette smoke acts as a mutagen and DNA damaging agent in normal epithelial cells, driving tumor initiation. However, its potential negative metabolic effects on the normal stromal microenvironment have been largely ignored. Here, we propose a new mechanism by which carcinogen-rich cigarette smoke may promote cancer growth, by metabolically “fertilizing” the host microenvironment. More specifically, we show that cigarette smoke exposure is indeed sufficient to drive the onset of the cancer-associated fibroblast phenotype via the induction of DNA damage, autophagy and mitophagy in the tumor stroma. In turn, cigarette smoke exposure induces premature aging and mitochondrial dysfunction in stromal fibroblasts, leading to the secretion of high-energy mitochondrial fuels, such as L-lactate and ketone bodies. Hence, cigarette smoke induces catabolism in the local microenvironment, directly fueling oxidative mitochondrial metabolism (OXPHOS) in neighboring epithelial cancer cells, actively promoting anabolic tumor growth. Remarkably, these autophagic-senescent fibroblasts increased breast cancer tumor growth in vivo by up to 4-fold. Importantly, we show that cigarette smoke-induced metabolic reprogramming of the fibroblastic stroma occurs independently of tumor neo-angiogenesis. We discuss the possible implications of our current findings for the prevention of aging-associated human diseases and, especially, common epithelial cancers, as we show that cigarette smoke can systemically accelerate aging in the host microenvironment. Finally, our current findings are consistent with the idea that cigarette smoke induces the “reverse Warburg effect,” thereby fueling “two-compartment tumor metabolism” and oxidative mitochondrial metabolism in epithelial cancer cells. PMID:23388463

  10. Aging with ING: a comparative study of different forms of stress induced premature senescence.

    PubMed

    Rajarajacholan, Uma Karthika; Riabowol, Karl

    2015-10-27

    Cell senescence contributes to organismal aging and is induced by telomere erosion and an ensuing DNA damage signal as cells reach the end of their replicative lifespan in vitro or in vivo. Stresses induced by oncogene or tumor suppressor hyperactivation, oxidative stress, ionizing radiation and other DNA damaging agents result in forms of stress induced premature senescence (SIPS) that show similarities to replicative senescence. Since replicative senescence and SIPS occur over many days and many population doublings of the mass cultures of primary cells used to study senescence, the sequence of events that occur downstream of senescence signaling can be challenging to define. Here we compare a new model of ING1a-induced senescence with several other forms of senescence. The ING1a epigenetic regulator synchronously induces senescence in mass cultures several-fold faster than all other agents, taking 24 and 36 hours to activate the Rb/ p16INK4a, but not the p53 tumor suppressor axis to efficiently induce senescence. ING1a induces expression of intersectin 2, a scaffold protein necessary for endocytosis, altering the stoichiometry of endocytosis proteins, subsequently blocking growth factor uptake leading to activation of Rb signaling to block cell growth. ING1a acts as a novel link in the activation of the Rb pathway that can impose senescence in the absence of activating p53-mediated DNA damage signaling, and should prove useful in defining the molecular events contributing to Rb-induced senescence.

  11. Oxidative stress in leukocytes from young prematurely aging mice is reversed by supplementation with biscuits rich in antioxidants.

    PubMed

    Alvarado, Carmen; Alvarez, Pedro; Jiménez, Liliana; De la Fuente, Mónica

    2006-01-01

    Aging is associated with a progressive dysregulation of immune responses as a result of increased oxidative stress. Therefore, we have assessed the oxidative stress status of peritoneal leukocytes from young prematurely aging mice (PAM) as compared with non-prematurely aging mice (NPAM), as well as the effects on this oxidative stress of a dietary supplementation with biscuits rich in antioxidants (vitamin C, vitamin E, beta-carotenes, zinc and selenium). We found that, in the peritoneal leukocytes, the levels of several parameters of oxidation such as extracellular superoxide anion (O(2)(-)), Prostaglandin E(2) (PGE(2)), nitric oxide, oxidized glutathione (GSSG) and lipid peroxidation (malondialdehyde, MDA) were higher in PAM as compared with NPAM, whereas the antioxidant defences such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) activities, as well as reduced glutathione (GSH) levels, were decreased. Consequently, young PAM showed an oxidative stress in their leukocytes, which is characteristic of mice of an older chronological age. Antioxidant diet supplementation was able to restore redox homeostasis, increasing the antioxidant and decreasing the oxidant levels. Accordingly, supplementation with adequate levels of antioxidants, from an early age, could be useful to preserve health, especially in prematurely aging populations.

  12. Epigenomic maintenance through dietary intervention can facilitate DNA repair process to slow down the progress of premature aging.

    PubMed

    Ghosh, Shampa; Sinha, Jitendra Kumar; Raghunath, Manchala

    2016-09-01

    DNA damage caused by various sources remains one of the most researched topics in the area of aging and neurodegeneration. Increased DNA damage causes premature aging. Aging is plastic and is characterised by the decline in the ability of a cell/organism to maintain genomic stability. Lifespan can be modulated by various interventions like calorie restriction, a balanced diet of macro and micronutrients or supplementation with nutrients/nutrient formulations such as Amalaki rasayana, docosahexaenoic acid, resveratrol, curcumin, etc. Increased levels of DNA damage in the form of double stranded and single stranded breaks are associated with decreased longevity in animal models like WNIN/Ob obese rats. Erroneous DNA repair can result in accumulation of DNA damage products, which in turn result in premature aging disorders such as Hutchinson-Gilford progeria syndrome. Epigenomic studies of the aging process have opened a completely new arena for research and development of drugs and therapeutic agents. We propose here that agents or interventions that can maintain epigenomic stability and facilitate the DNA repair process can slow down the progress of premature aging, if not completely prevent it. © 2016 IUBMB Life, 68(9):717-721, 2016.

  13. Non-ablative fractionated laser skin resurfacing for the treatment of aged neck skin.

    PubMed

    Bencini, Pier Luca; Tourlaki, Athanasia; Galimberti, Michela; Pellacani, Giovanni

    2015-06-01

    Aging of the neck skin includes poikiloderma of Civatte, skin laxity and wrinkles. While the vascular alterations of poikiloderma of Civatte can be effectively treated with lasers or intense pulsed light, a successful treatment of dyschromia, skin laxity and wrinkles is still difficult to achieve. To evaluate the safety and efficacy of non-ablative fractional 1540 erbium glass laser for the treatment of aged neck skin, also by means of in vivo reflectance confocal microscopy (RCM). A prospective study for neck resurfacing in 18 women with aged neck skin. Six laser treatments were performed in 4-week intervals with a 1540-nm erbium-glass fiber laser. By using a 6-point grading scale, the mean score (±SD; range) at baseline was 3.6 (±1.5; 1-6) for skin dyschromia, 2.9 (±1.4; 1-6) for laxity and 3.3 (±1.3; 1-5) for wrinkles. Three months after the last laser session, we found a significant clinical improvement of dyschromia (p = 0.0002; Wilcoxon test), and wrinkles (p = 0.0004; Wilcoxon test), with a mean (±SD) reduction of 2.5 (±1.0) and 1.9 (±1.1) points in the 6-point grading scale, respectively. No change was observed in laxity. These results were also supported by structural changes documented by RCM. Non-ablative fractional 1540 erbium glass laser was both safe and effective for the treatment of dyschromia and wrinkles, but not effective for the laxity of the neck skin.

  14. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing.

    PubMed

    Sharma, Rakesh

    2010-07-21

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  15. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    NASA Astrophysics Data System (ADS)

    Sharma, Rakesh

    2010-07-01

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  16. Skin aging: a role for telomerase and telomere dynamics?

    PubMed

    Boukamp, Petra

    2005-03-01

    Skin is a complex tissue composed of two very different compartments -- the continuously renewing epidermis made up mostly by keratinocytes and the underlying matrix-rich dermis with the resting fibroblasts as its major cellular components. Both compartments are tightly interconnected and a paracrine mutual interaction is essential for epidermal growth, differentiation, and tissue homeostasis. Skin aging is commonly viewed as wrinkle formation, hair greying, and impaired wound healing. Nevertheless, the epidermis as the outermost shield needs to remain intact in order to guarantee an inside-out and outside-in barrier function throughout life time of a human being. Furthermore, the epidermis is one of the few regenerative tissues that express telomerase, the ribonucleoprotein complex that can counteract telomere erosion, one of the presently mostly favoured potential mechanisms causing cellular aging. This raises the question whether in the epidermis telomerase is able to counteract telomere erosion and thereby to prevents a telomere-dependent aging process and consequently which part of the skin is responsible for the most obvious changes associated with skin aging.

  17. Niacinamide: A B vitamin that improves aging facial skin appearance.

    PubMed

    Bissett, Donald L; Oblong, John E; Berge, Cynthia A

    2005-07-01

    In multiple chronic clinical studies, topical niacinamide (vitamin B3) has been observed to be well tolerated by skin and to provide a broad array of improvements in the appearance of aging facial skin (eg, reduction in the appearance of hyperpigmentated spots and red blotchiness). To clinically determine the effect of topical niacinamide on additional skin appearance and property end points (wrinkles, yellowing, and elasticity). Female white subjects (N = 50) with clinical signs of facial photoaging (fine lines and wrinkles, poor texture, and hyperpigmented spots) applied 5% niacinamide to half of the face and its vehicle control to the other half twice daily for 12 weeks (double blind, left-right randomized). Facial images and instrumental measures were obtained at baseline and at 4-week intervals. Analyses of the data revealed a variety of significant skin appearance improvement effects for topical niacinamide: reductions in fine lines and wrinkles, hyperpigmented spots, red blotchiness, and skin sallowness (yellowing). In addition, elasticity (as measured via cutometry) was improved. Corresponding mechanistic information is presented. In addition to previously observed benefits for topical niacinamide, additional effects were identified (improved appearance of skin wrinkles and yellowing and improved elasticity).

  18. An overview about oxidation in clinical practice of skin aging*

    PubMed Central

    Silva, Silas Arandas Monteiro e; Michniak-Kohn, Bozena; Leonardi, Gislaine Ricci

    2017-01-01

    Free radicals are unstable chemical species, highly reactive, being formed by cellular entities of different tissues. Increased production of these species without proper effective action of endogenous and exogenous antioxidant systems, generates a condition of oxidative stress, potentially provider of skin disorders that extend from functional impairments (skin cancer, dermatitis, chronic and acute inflammatory processes) even aesthetic character, with the destruction of structural proteins and cellular changes with the appearance of stains, marks and lines of expressions and other signs inherent to the intrinsic and extrinsic skin aging process. The antioxidants are chemical substances commonly used in clinical practice for topical application and may contribute in the fight against the radical species responsible for many skin damage. This paper summarized the main evidence of the benefits brought by the topical application of antioxidants in the skin, considering the amplitude of the indicative performance of antioxidant activity by in vitro and ex-vivo tests as well as in vivo tests. It is recognized that a breadth of product performance tests should be explored to truly identify the effectiveness of antioxidant products for an anti-aging effect.

  19. Attenuated noradrenergic sensitivity during local cooling in aged human skin

    PubMed Central

    Thompson, Caitlin S; Holowatz, Lacy A; Kenney, W. Larry

    2005-01-01

    Reflex-mediated cutaneous vasoconstriction (VC) is impaired in older humans; however, it is unclear whether this blunted VC also occurs during local cooling, which mediates VC through different mechanisms. We tested the hypothesis that the sensitization of cutaneous vessels to noradrenaline (NA) during direct skin cooling seen in young skin is blunted in aged skin. In 11 young (18–30 years) and 11 older (62–76 years) men and women, skin blood flow was monitored at two forearm sites with laser Doppler (LD) flowmetry while local skin temperature was cooled and clamped at 24°C. Cutaneous vascular conductance (CVC; LD flux/mean arterial pressure) was expressed as percentage change from baseline (%ΔCVCbase). At one site, five doses of NA (10−10–10−2m) were sequentially infused via intradermal microdialysis during cooling while the other 24°C site served as control (Ringer solution + cooling). At control sites, VC due to cooling alone was similar in young versus older (−54 ± 5 versus −56 ± 3%ΔCVCbase, P= 0.46). In young, NA infusions induced additional dose-dependent VC (10−8, 10−6, 10−4 and 10−2m: −70 ± 2, −72 ± 3, −78 ± 3 and −79 ± 4%ΔCVCbase; P < 0.05 versus control). In older subjects, further VC did not occur until the highest infused dose of NA (10−2m: −70 ± 5%ΔCVCbase; P < 0.05 versus control). When cutaneous arterioles are sensitized to NA by direct cooling, young skin exhibits the capacity to further constrict to NA in a dose-dependent manner. However, older skin does not display enhanced VC capacity until treated with saturating doses of NA, possibly due to age-associated decrements in Ca2+ availability or α2C-adrenoceptor function. PMID:15705648

  20. Long-chain saturated and monounsaturated fatty acids associate with development of premature infants up to 18 months of age.

    PubMed

    Strandvik, Birgitta; Ntoumani, Eleni; Lundqvist-Persson, Cristina; Sabel, Karl-Göran

    2016-04-01

    Myelination is important perinatally and highly dependent on long-chain saturated and monounsaturated fatty acids. Long-chain polyunsaturated fatty acids, nowadays often supplemented, inhibit oleic acid synthesis. Using data from a premature cohort, we studied if nervonic, lignoceric and oleic acids correlated to growth and early development up to 18 months corrected age. Small for gestational age infants had lower concentrations than infants appropriate for gestational age. Only oleic acid was negatively correlated to long-chain polyunsaturated fatty acids. Oleic and lignoceric acids correlated to social interaction at one month, and nervonic acid to mental, psychomotor and behavioral development at 6, 10 and 18 months, also when adjusted for several confounders. Negative association between oleic acid and long-chain polyunsaturated fatty acids suggests inhibition of delta-9 desaturase, and nervonic acid´s divergent correlation to lignoceric and oleic acids suggests different metabolism in neonatal period. Our results may have implications for the supplementation of premature infants.

  1. A conserved splicing mechanism of the LMNA gene controls premature aging.

    PubMed

    Lopez-Mejia, Isabel C; Vautrot, Valentin; De Toledo, Marion; Behm-Ansmant, Isabelle; Bourgeois, Cyril F; Navarro, Claire L; Osorio, Fernando G; Freije, José M P; Stévenin, James; De Sandre-Giovannoli, Annachiara; Lopez-Otin, Carlos; Lévy, Nicolas; Branlant, Christiane; Tazi, Jamal

    2011-12-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder phenotypically characterized by many features of premature aging. Most cases of HGPS are due to a heterozygous silent mutation (c.1824C>T; p.Gly608Gly) that enhances the use of an internal 5' splice site (5'SS) in exon 11 of the LMNA pre-mRNA and leads to the production of a truncated protein (progerin) with a dominant negative effect. Here we show that HGPS mutation changes the accessibility of the 5'SS of LMNA exon 11 which is sequestered in a conserved RNA structure. Our results also reveal a regulatory role of a subset of serine-arginine (SR)-rich proteins, including serine-arginine rich splicing factor 1 (SRSF1) and SRSF6, on utilization of the 5'SS leading to lamin A or progerin production and a modulation of this regulation in the presence of the c.1824C>T mutation is shown directly on HGPS patient cells. Mutant mice carrying the equivalent mutation in the LMNA gene (c.1827C>T) also accumulate progerin and phenocopy the main cellular alterations and clinical defects of HGPS patients. RNAi-induced depletion of SRSF1 in the HGPS-like mouse embryonic fibroblasts (MEFs) allowed progerin reduction and dysmorphic nuclei phenotype correction, whereas SRSF6 depletion aggravated the HGPS-like MEF's phenotype. We demonstrate that changes in the splicing ratio between lamin A and progerin are key factors for lifespan since heterozygous mice harboring the mutation lived longer than homozygous littermates but less than the wild-type. Genetic and biochemical data together favor the view that physiological progerin production is under tight control of a conserved splicing mechanism to avoid precocious aging.

  2. Age at death and linear enamel hypoplasias: testing the effects of childhood stress and adult socioeconomic circumstances in premature mortality.

    PubMed

    Amoroso, Alexandra; Garcia, Susana J; Cardoso, Hugo F V

    2014-01-01

    The aim of this study was to test the association between linear enamel hypolasias and adult socioeconomic circumstances with age at death in a modern skeletal sample of known age. Specifically, this study wishes to test whether there is a relationship between early life stressors, environmental quality in adult life and premature mortality. The presence/absence of LEH and the number of LEH episodes were recorded in 113 adult males from the Lisbon identified skeletal collection. The association between LEH and age was quantified using linear regression and binary logistic regression models, calculating crude and adjusted linear regression coefficients and odds ratios. The models were adjusted for year of birth, socioeconomic and migration status, and cause of death. The presence and number of LEH were related to premature mortality. Individuals expressing at least one enamel defect survived 9.0 years less or were 2.5 times more likely to die before 53 years of age compared to individuals with no LEH. However, when controlling for the confounding factors considered, the association between LEH and age became nonsignificant. The results indicate that although early life stressors, identified as LEH, seem strongly associated with premature mortality, adulthood socioeconomic circumstances accounts for most of the decreased longevity. This suggests that either macroscopically identified LEH in the permanent canine do not measure stressors early in life, or that a cumulative adversity model is a more adequate explanation. Copyright © 2014 Wiley Periodicals, Inc.

  3. Skin findings in newborns

    MedlinePlus

    Newborn skin characteristics; Infant skin characteristics; Neonatal care - skin ... the first few weeks of the baby's life. Newborn skin will vary, depending on the length of the pregnancy. Premature infants have thin, transparent skin. The skin of a ...

  4. Demographic Characteristics and Association of Serum Vitamin B12, Ferritin and Thyroid Function with Premature Canities in Indian Patients from an Urban Skin Clinic of North India: A Retrospective Analysis of 71 Cases.

    PubMed

    Sonthalia, Sidharth; Priya, Adity; Tobin, Desmond J

    2017-01-01

    The incidence of self-reported premature hair graying (PHG) seems to be on the rise. PHG has a profound impact on the patient's quality of life. It remains an incompletely understood etiology with limited and modest treatment options. The evaluation of the demographic and clinical profile of patients with premature canities, and exploration of the association of this entity with certain systemic disorders suspected to be related to its etiology. Seventy-one cases of premature canities (onset noticed by patients before 25 years of age) presenting to an urban skin clinic in Gurugram, India, between September 2012 and September 2015 with this complaint were retrospectively analyzed. The patient records were retrieved that provided details of the onset, duration and pattern of involvement, history, and examination findings (scalp, cutis, and general physical). Since all these patients had been screened for anemia, thyroid disorder, fasting blood glucose, and Vitamin B12 levels at the time of presentation, these parameters were also available for analysis. The mean age at onset of graying was 10.2 ± 3.6 years (range: 5-19 years), with an almost equal gender distribution. The earliest age of onset recorded was 5 years. A positive family history of PHG (at least one of the biological parents or siblings) was obtained in 64 (90.1%) of the cases. The temporal regions of the scalp (35.2%) were most commonly involved followed by the frontal region (18.3%). Hypovitaminosis B12 and hypothyroidism showed significant association with the disorder, whereas anemia, serum ferritin, and fasting blood glucose did not. The age of onset of hair graying can be as low as 5 years. Temporal and frontal areas are the most commonly involved sites. A strong family history, Vitamin B12 deficiency, and hypothyroidism are strongly associated with PHG. Larger case-control studies are mandated for discerning the correlation of these and other risk factors with PHG.

  5. [EEG of the very premature infant born at 24 to 30 weeks gestational age. Definitions and normal area].

    PubMed

    Vecchierini, M-F; André, M; d'Allest, A-M

    2007-01-01

    This article aims at summarizing normal EEG criteria and their maturational pattern in premature infants of 24 to 30 weeks gestational age. Although very premature infants with a normal outcome are not numerous, their normal EEG patterns must be known, as EEG constitutes a basis for neurological prognosis. Background activity is first discontinuous. Discontinuity decreases thereafter with increasing age, so that some long periods of continuous activity may be observed in active sleep, around 30 weeks of age. Conversely, interburst intervals become shorter and the proportion of time without EEG activity is decreasing. Based on EEG activity and eye movements, a rough sleep-state differentiation was described as soon as 25 weeks of gestational age and is completely achieved at 30 weeks. The main EEG figures are high-voltage delta waves of higher amplitude and slower frequency in younger infants. Temporal delta waves occur in sequences, these are very characteristic of the very premature infant; thereafter, they become smaller, less numerous and eventually disappear around 27-28 weeks. In contrast, occipital delta waves remain numerous and of high voltage, are usually bilateral and superimposed with fast rhythms. The two types of frontal delta waves that are observed in 24-27 weeks prematures disappear with maturation. Bursts of synchronized delta waves are less numerous than localized delta waves and also disappear before 28 weeks of age. Finally, diffuse theta bursts are mainly recorded at 26-27 weeks GA and become more localized in temporal areas with maturation. At 30 weeks, they are observed on temporal areas, mainly during slow-wave sleep.

  6. Three-dimensional morphological characterization of the skin surface micro-topography using a skin replica and changes with age.

    PubMed

    Masuda, Y; Oguri, M; Morinaga, T; Hirao, T

    2014-08-01

    Skin surface micro-topography (SSMT), consisting of pores, ridges and furrows, reflects the skin condition and is an important factor determining the aesthetics of the skin. Most previous studies evaluating SSMT have employed two-dimensional image analysis of magnified pictures captured by a video microscope. To improve the accuracy of SSMT analysis, we established a three-dimensional (3D) analysis method for SSMT and developed various parameters including the skin ridge number, and applied the method to study the age-dependent change in skin. Confocal laser scanning microscopy was used for 3D measurement of the surface morphology of silicon replicas taken from the cheek. We then used these data to calculate the parameters that reflect the nature of SSTM including the skin ridge number using originally developed software. Employing a superscription technique, we investigated the variation in SSMT with age for replicas taken from the cheeks of 103 Japanese females (5-85 years old). The skin surface area and roughness, the area of pores, the area, length, depth and width of skin furrows and the number of skin ridges were examined. The surface roughness, the area of pores and the depth of skin furrows increased with age. The area and length of skin furrows and the number of skin ridges decreased with age. The method proposed to analyse SSMT three dimensionally is an effective tool with which to characterize the condition of the skin. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Sporadic Premature Aging in a Japanese Monkey: A Primate Model for Progeria

    PubMed Central

    Oishi, Takao; Imai, Hiroo; Go, Yasuhiro; Imamura, Masanori; Hirai, Hirohisa; Takada, Masahiko

    2014-01-01

    In our institute, we have recently found a child Japanese monkey who is characterized by deep wrinkles of the skin and cataract of bilateral eyes. Numbers of analyses were performed to identify symptoms representing different aspects of aging. In this monkey, the cell cycle of fibroblasts at early passage was significantly extended as compared to a normal control. Moreover, both the appearance of senescent cells and the deficiency in DNA repair were observed. Also, pathological examination showed that this monkey has poikiloderma with superficial telangiectasia, and biochemical assay confirmed that levels of HbA1c and urinary hyaluronan were higher than those of other (child, adult, and aged) monkey groups. Of particular interest was that our MRI analysis revealed expansion of the cerebral sulci and lateral ventricles probably due to shrinkage of the cerebral cortex and the hippocampus. In addition, the conduction velocity of a peripheral sensory but not motor nerve was lower than in adult and child monkeys, and as low as in aged monkeys. However, we could not detect any individual-unique mutations of known genes responsible for major progeroid syndromes. The present results indicate that the monkey suffers from a kind of progeria that is not necessarily typical to human progeroid syndromes. PMID:25365557

  8. Sporadic premature aging in a Japanese monkey: a primate model for progeria.

    PubMed

    Oishi, Takao; Imai, Hiroo; Go, Yasuhiro; Imamura, Masanori; Hirai, Hirohisa; Takada, Masahiko

    2014-01-01

    In our institute, we have recently found a child Japanese monkey who is characterized by deep wrinkles of the skin and cataract of bilateral eyes. Numbers of analyses were performed to identify symptoms representing different aspects of aging. In this monkey, the cell cycle of fibroblasts at early passage was significantly extended as compared to a normal control. Moreover, both the appearance of senescent cells and the deficiency in DNA repair were observed. Also, pathological examination showed that this monkey has poikiloderma with superficial telangiectasia, and biochemical assay confirmed that levels of HbA1c and urinary hyaluronan were higher than those of other (child, adult, and aged) monkey groups. Of particular interest was that our MRI analysis revealed expansion of the cerebral sulci and lateral ventricles probably due to shrinkage of the cerebral cortex and the hippocampus. In addition, the conduction velocity of a peripheral sensory but not motor nerve was lower than in adult and child monkeys, and as low as in aged monkeys. However, we could not detect any individual-unique mutations of known genes responsible for major progeroid syndromes. The present results indicate that the monkey suffers from a kind of progeria that is not necessarily typical to human progeroid syndromes.

  9. Long-Term Effects of Caffeine Therapy for Apnea of Prematurity on Sleep at School Age

    PubMed Central

    Meltzer, Lisa J.; Roberts, Robin S.; Traylor, Joel; Dix, Joanne; D’ilario, Judy; Asztalos, Elizabeth; Opie, Gillian; Doyle, Lex W.; Biggs, Sarah N.; Nixon, Gillian M.; Narang, Indra; Bhattacharjee, Rakesh; Davey, Margot; Horne, Rosemary S. C.; Cheshire, Maureen; Gibbons, Jeremy; Costantini, Lorrie; Bradford, Ruth; Schmidt, Barbara

    2014-01-01

    Rationale: Apnea of prematurity is a common condition that is usually treated with caffeine, an adenosine receptor blocker that has powerful influences on the central nervous system. However, little is known about the long-term effects of caffeine on sleep in the developing brain. Objectives: We hypothesized that neonatal caffeine use resulted in long-term abnormalities in sleep architecture and breathing during sleep. Methods: A total of 201 ex-preterm children aged 5–12 years who participated as neonates in a double-blind, randomized, controlled clinical trial of caffeine versus placebo underwent actigraphy, polysomnography, and parental sleep questionnaires. Coprimary outcomes were total sleep time on actigraphy and apnea–hypopnea index on polysomnography. Measurements and Main Results: There were no significant differences in primary outcomes between the caffeine group and the placebo (adjusted mean difference of −6.7 [95% confidence interval (CI) = −15.3 to 2.0 min]; P = 0.13 for actigraphic total sleep time; and adjusted rate ratio [caffeine/placebo] for apnea–hypopnea index of 0.89 [95% CI = 0.55–1.43]; P = 0.63). Polysomnographic total recording time and total sleep time were longer in the caffeine group, but there was no difference in sleep efficiency between groups. The percentage of children with obstructive sleep apnea (8.2% of caffeine group versus 11.0% of placebo; P = 0.22) or elevated periodic limb movements of sleep (17.5% in caffeine group versus 11% in placebo group) was high, but did not differ significantly between groups. Conclusions: Therapeutic neonatal caffeine administration has no long-term effects on sleep duration or sleep apnea during childhood. Ex-preterm infants, regardless of caffeine status, are at risk for obstructive sleep apnea and periodic limb movements in later childhood. PMID:25171195

  10. Long-term effects of caffeine therapy for apnea of prematurity on sleep at school age.

    PubMed

    Marcus, Carole L; Meltzer, Lisa J; Roberts, Robin S; Traylor, Joel; Dix, Joanne; D'ilario, Judy; Asztalos, Elizabeth; Opie, Gillian; Doyle, Lex W; Biggs, Sarah N; Nixon, Gillian M; Narang, Indra; Bhattacharjee, Rakesh; Davey, Margot; Horne, Rosemary S C; Cheshire, Maureen; Gibbons, Jeremy; Costantini, Lorrie; Bradford, Ruth; Schmidt, Barbara

    2014-10-01

    Apnea of prematurity is a common condition that is usually treated with caffeine, an adenosine receptor blocker that has powerful influences on the central nervous system. However, little is known about the long-term effects of caffeine on sleep in the developing brain. We hypothesized that neonatal caffeine use resulted in long-term abnormalities in sleep architecture and breathing during sleep. A total of 201 ex-preterm children aged 5-12 years who participated as neonates in a double-blind, randomized, controlled clinical trial of caffeine versus placebo underwent actigraphy, polysomnography, and parental sleep questionnaires. Coprimary outcomes were total sleep time on actigraphy and apnea-hypopnea index on polysomnography. There were no significant differences in primary outcomes between the caffeine group and the placebo (adjusted mean difference of -6.7 [95% confidence interval (CI) = -15.3 to 2.0 min]; P = 0.13 for actigraphic total sleep time; and adjusted rate ratio [caffeine/placebo] for apnea-hypopnea index of 0.89 [95% CI = 0.55-1.43]; P = 0.63). Polysomnographic total recording time and total sleep time were longer in the caffeine group, but there was no difference in sleep efficiency between groups. The percentage of children with obstructive sleep apnea (8.2% of caffeine group versus 11.0% of placebo; P = 0.22) or elevated periodic limb movements of sleep (17.5% in caffeine group versus 11% in placebo group) was high, but did not differ significantly between groups. Therapeutic neonatal caffeine administration has no long-term effects on sleep duration or sleep apnea during childhood. Ex-preterm infants, regardless of caffeine status, are at risk for obstructive sleep apnea and periodic limb movements in later childhood.

  11. Tumor-Protective Mechanism Identified from Premature Aging Disease | Center for Cancer Research

    Cancer.gov

    Hutchinson-Gilford Progeria Syndrome (HGPS) is an extraordinarily rare genetic disorder caused by a mutation in the LMNA gene, which encodes architectural proteins of the human cell nucleus. The mutation causes the production of a mutant protein called progerin. Patients with HGPS display signs of premature aging, such as hair loss, slowed growth, weakening of bone and joint integrity, and cardiovascular disease. Most die in their mid-teens of heart disease or stroke. Intriguingly, these patients do not develop another aging-related disease, cancer, despite having dramatically elevated levels of DNA damage. Tom Misteli, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues hypothesized that, rather than patients not living long enough to develop cancer, a resistance mechanism was operating in HGPS cells to prevent cancer formation. To begin testing this idea, the researchers transformed fibroblasts from HGPS patients or age-matched, healthy controls with telomerase, constitutively-activated HRAS, and SV40 large and small T antigens. Transformed HGPS cells displayed morphological changes and increased proliferation similar to transformed controls but formed fewer colonies in soft agar and fewer tumors when injected into mice. When the investigators examined global gene expression in the two populations of cells, they found that transformed HGPS cells failed to activate many of the genes that are induced in response to transformation in controls, including oncogenic and proliferation pathways. In addition the transformed HGPS cells were unable to undergo oncogenic de-differentiation. Importantly, the tumor resistance in HGPS cells was due to the presence of the progerin protein, which was both necessary and sufficient to protect cells from oncogenic transformation. Together these results suggested that HGPS cells resist cancer-inducing stimuli by not undergoing the genetic reprogramming necessary for tumor initiation. The scientists

  12. Elderly skin and its rejuvenation: products and procedures for the aging skin.

    PubMed

    Ramos-e-Silva, Marcia; da Silva Carneiro, Sueli Coelho

    2007-03-01

    In the last few decades, there has been a substantial increase in the population of people over 60 years of age. Most of them maintain a good general health and physical activity and fitness. For these individuals there is a good number of dermatologic procedures, medications, and cosmetics that can be prescribed to improve the aspect of skin aging, providing an improvement in their self-esteem and quality of life as a result of their better look. We will discuss the mechanisms of skin aging, and the procedures and substances used to minimize its deleterious effects, such as sunscreens, estrogens, chemical peels, toxin botulinum, fillers and surgical procedures, among others. The use of makeup and the adverse reactions to cosmetics will also be mentioned.

  13. MONTENEGRO SKIN TEST AND AGE OF SKIN LESION AS PREDICTORS OF TREATMENT FAILURE IN CUTANEOUS LEISHMANIASIS

    PubMed Central

    Antonio, Liliane de Fátima; Fagundes, Aline; Oliveira, Raquel Vasconcellos Carvalhaes; Pinto, Priscila Garcia; Bedoya-Pacheco, Sandro Javier; Vasconcellos, Érica de Camargo Ferreira e; Valete-Rosalino, Maria Cláudia; Lyra, Marcelo Rosandiski; Passos, Sônia Regina Lambert; Pimentel, Maria Inês Fernandes; Schubach, Armando de Oliveira

    2014-01-01

    A case-control study was conducted to examine the association among the Montenegro skin test (MST), age of skin lesion and therapeutic response in patients with cutaneous leishmaniasis (CL) treated at Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil. For each treatment failure (case), two controls showing skin lesion healing following treatment, paired by sex and age, were randomly selected. All patients were treated with 5 mg Sb5+/kg/day of intramuscular meglumine antimoniate (Sb5+) for 30 successive days. Patients with CL were approximately five times more likely to fail when lesions were less than two months old at the first appointment. Patients with treatment failure showed less intense MST reactions than patients progressing to clinical cure. For each 10 mm of increase in MST response, there was a 26% reduction in the chance of treatment failure. An early treatment - defined as a treatment applied for skin lesions, which starts when they are less than two months old at the first appointment -, as well as a poor cellular immune response, reflected by lower reactivity in MST, were associated with treatment failure in cutaneous leishmaniasis. PMID:25229216

  14. The effect of skin aging on the percutaneous penetration of chemicals through human skin

    SciTech Connect

    Roskos, K.V.

    1989-01-01

    Despite much research into the mechanisms of cutaneous aging and the identification of significant age-associated biological and biophysical changes within the skin, the question how does aging affect percutaneous absorption (PA) in vivo remains unanswered. The author has made in vivo measurements of PA in young (18-40 years) and old (> 65 years) subjects. Standard radiotracer methodology was employed and PA was quantified from the urinary excretion profiles of {sup 14}C radiolabel (corrected for incomplete renal elimination). Testosterone (TST), estradiol (EST), hydrocortisone (HC), benzoic acid (BA), acetylsalicylic acid (ASA) and caffeine (CAFF) have been studied. Penetration of HC, BA, ASA, and CAFF were significantly lower in aged subjects whereas TST and EST absorption were not distinguishable from the young controls. Thus it appears that aging can affect PA in vivo and that relatively hydrophilic compounds may be most sensitive. Work was done to elucidate whether the observations were related to documented skin aging changes. Cutaneous microcirculation efficiency suspected to decline with increasing age, could not be correlated with the observed penetration changes. However, in vivo infrared spectroscopic studies of aged stratum corneum (SC) reveal a decreased amount of epidermal lipid. The diminished lipid content implies a diminished dissolution medium for compounds administered to the skin surface. They hypothesize that the compounds most affected by a loss of SC lipids would be those compounds whose overall solubility is lowest (compounds with lower octanol-water partition coefficients, eg., HC, BA, ASA and CAFF). Conversely, a diminished lipid content may not affect dissolution into the SC of highly lipophilic compounds (e.g., TST and EST).

  15. Changes in the redox state and endogenous fluorescence of in vivo human skin due to intrinsic and photo-aging, measured by multiphoton tomography with fluorescence lifetime imaging.

    PubMed

    Sanchez, Washington Y; Obispo, Clara; Ryan, Elizabeth; Grice, Jeffrey E; Roberts, Michael S

    2013-06-01

    Ultraviolet radiation from solar exposure is a key extrinsic factor responsible for premature skin aging (i.e., photo-aging). Recent advances using in vivo multiphoton tomography (MPT) demonstrate the efficacy of this approach to assess intrinsic and extrinsic skin aging as an alternative to existing invasive techniques. In this study, we measured changes in epidermal autofluorescence, dermal collagen second harmonic generation (SHG), and the redox state of solar-exposed and solar-protected human skin by MPT with fluorescence lifetime imaging (MPT-FLIM). Twenty-four volunteers across four age categories (20 to 29, 30 to 39, 40 to 49, and 50 to 59 years old; six volunteers each) were recruited for MPT-FLIM imaging of the dorsal (solar-exposed; photo-damaged) and volar (solar-protected) forearm. We demonstrate a higher intensity of dermal collagen SHG within the volar forearm compared to dorsal solar-exposed skin. Redox imaging of each epidermal skin stratum by FLIM demonstrates an increase in fluorescence lifetime in the solar-exposed dorsal forearm that is more apparent in aged skin. The results of this study suggest the redox state of the viable epidermis is a key marker in assessing intrinsic and photo-damage skin aging, in combination with changes in autofluorescence and SHG.

  16. Changes in the redox state and endogenous fluorescence of in vivo human skin due to intrinsic and photo-aging, measured by multiphoton tomography with fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Sanchez, Washington Y.; Obispo, Clara; Ryan, Elizabeth; Grice, Jeffrey E.; Roberts, Michael S.

    2013-06-01

    Ultraviolet radiation from solar exposure is a key extrinsic factor responsible for premature skin aging (i.e., photo-aging). Recent advances using in vivo multiphoton tomography (MPT) demonstrate the efficacy of this approach to assess intrinsic and extrinsic skin aging as an alternative to existing invasive techniques. In this study, we measured changes in epidermal autofluorescence, dermal collagen second harmonic generation (SHG), and the redox state of solar-exposed and solar-protected human skin by MPT with fluorescence lifetime imaging (MPT-FLIM). Twenty-four volunteers across four age categories (20 to 29, 30 to 39, 40 to 49, and 50 to 59 years old; six volunteers each) were recruited for MPT-FLIM imaging of the dorsal (solar-exposed; photo-damaged) and volar (solar-protected) forearm. We demonstrate a higher intensity of dermal collagen SHG within the volar forearm compared to dorsal solar-exposed skin. Redox imaging of each epidermal skin stratum by FLIM demonstrates an increase in fluorescence lifetime in the solar-exposed dorsal forearm that is more apparent in aged skin. The results of this study suggest the redox state of the viable epidermis is a key marker in assessing intrinsic and photo-damage skin aging, in combination with changes in autofluorescence and SHG.

  17. Skin aging in patients with acquired immunodeficiency syndrome.

    PubMed

    de Aquino Favarato, Grace Kelly Naves; da Silva, Aline Cristina Souza; Oliveira, Lívia Ferreira; da Fonseca Ferraz, Mara Lúcia; de Paula Antunes Teixeira, Vicente; Cavellani, Camila Lourencini

    2016-10-01

    To evaluate the histomorphometric skin changes over aging patients with autopsied acquired immunodeficiency syndrome (AIDS). In 29 skin fragments of autopsied elderly (older than 50 years) and nonelderly patients with AIDS, epidermal thickness, the number of layers, the diameter of cells, the percentage of collagen and elastic fibers in the dermis, and the number and morphology of Langerhans cells were assessed. Statistical analysis was performed by SigmaStat 2.03 program. The thickness of the epidermis (92.55 × 158.94 μm), the number of layers (7 × 9 layers), and the diameter of the cells (13.27 × 17.6 μm) were statistically lower among the elderly. The quantity of collagen fibers (9.68 × 14.11%) and elastic fibers (11.89 × 15.31%) was also significantly lower in the elderly. There was a decrease in total (10.61 × 12.38 cel/mm(2)) and an increase in immature Langerhans cells (6.31 × 4.98 cel/mm(2)) in elderly patients with AIDS. The aging of the skin of patients with AIDS is amended in different histomorphometric aspects, the epidermis constituents suffer less pronounced changes in normal aging, and the dermis has more intense changes in elastic fibers and collagen.

  18. Astigmatism Progression in the Early Treatment for Retinopathy of Prematurity Study to 6 years of age

    PubMed Central

    Davitt, Bradley V.; Quinn, Graham E.; Wallace, David K.; Dobson, Velma; Hardy, Robert J.; Tung, Betty; Lai, Dejian; Good, William V.

    2011-01-01

    Purpose To examine the prevalence of astigmatism (≥1.00 diopter (D)) and high astigmatism (≥2.00 D) from 6 months post term due date to 6 years postnatal, in preterm children with birth weight ≤ 1251g who developed high-risk prethreshold retinopathy of prematurity (ROP) and participated in the Early Treatment for ROP (ETROP) Study. Design Observational Cohort Study Participants 401 infants who developed high-risk prethreshold ROP in one or both eyes and were randomized to early treatment (ET) versus conventional management (CM). Refractive error was measured by cycloplegic retinoscopy. Eyes were excluded if they received additional retinal, glaucoma, or cataract surgery. Intervention Eyes were randomized to receive laser photocoagulation at high-risk prethreshold ROP or to receive treatment only if threshold ROP developed. Main Outcome Measures Astigmatism and high astigmatism at each study visit. Results For both ET and CM eyes, there was a consistent increase in prevalence of astigmatism over time, increasing from 42% at 4 years to 52% by 6 years for the group of ET eyes and from 47% to 54% in the CM eyes. There was no statistically significant difference between the slopes (rate of change per month) of the ET and CM eyes for both astigmatism and high astigmatism. (P=0.75) Conclusions By 6 years of age, over 50% of eyes with high-risk prethreshold ROP developed astigmatism ≥ 1.00 D, and nearly 25% of such eyes had high astigmatism (≥ 2.00 D). Presence of astigmatism was not influenced by timing of treatment, zone of acute-phase ROP, or presence of plus disease. However, there was a trend toward higher prevalence of astigmatism and high astigmatism in eyes with ROP residua. Most astigmatism was with-the-rule (75º –105º). More eyes with Type 2 than Type 1 had astigmatism by 6 years. These findings reinforce the need for follow-up eye examinations through early grade school years in infants with high risk prethreshold ROP. PMID:21872933

  19. Homeostatic Imbalance between Apoptosis and Cell Renewal in the Liver of Premature Aging XpdTTD Mice

    PubMed Central

    Park, Jung Yoon; Cho, Mi-Ook; Leonard, Shanique; Calder, Brent; Mian, I. Saira; Kim, Woo Ho; Wijnhoven, Susan; van Steeg, Harry; Mitchell, James; van der Horst, Gijsbertus T. J.; Hoeijmakers, Jan; Cohen, Pinchas; Vijg, Jan; Suh, Yousin

    2008-01-01

    Unrepaired or misrepaired DNA damage has been implicated as a causal factor in cancer and aging. XpdTTD mice, harboring defects in nucleotide excision repair and transcription due to a mutation in the Xpd gene (R722W), display severe symptoms of premature aging but have a reduced incidence of cancer. To gain further insight into the molecular basis of the mutant-specific manifestation of age-related phenotypes, we used comparative microarray analysis of young and old female livers to discover gene expression signatures distinguishing XpdTTD mice from their age-matched wild type controls. We found a transcription signature of increased apoptosis in the XpdTTD mice, which was confirmed by in situ immunohistochemical analysis and found to be accompanied by increased proliferation. However, apoptosis rate exceeded the rate of proliferation, resulting in homeostatic imbalance. Interestingly, a metabolic response signature was observed involving decreased energy metabolism and reduced IGF-1 signaling, a major modulator of life span. We conclude that while the increased apoptotic response to endogenous DNA damage contributes to the accelerated aging phenotypes and the reduced cancer incidence observed in the XpdTTD mice, the signature of reduced energy metabolism is likely to reflect a compensatory adjustment to limit the increased genotoxic stress in these mutants. These results support a general model for premature aging in DNA repair deficient mice based on cellular responses to DNA damage that impair normal tissue homeostasis. PMID:18545656

  20. The relationship between skin maturation and electrical skin impedance.

    PubMed

    Emery, M M; Hebert, A A; Aguirre Vila-Coro, A; Prager, T C

    1991-09-01

    When performing electrophysiological testing, high electrical impedance values are sometimes found in neonates. Since excessive impedance can invalidate test results, a study was conducted to delineate the relationship between skin maturation and electrical skin impedance. This study investigated the skin impedance in 72 infants ranging from 196 to 640 days of age from conception. Regression analyses demonstrated a significant relationship between impedance and age, with the highest impedance centered around full-term gestation with values falling precipitously at time points on either side. Clinically, impedance values fall to normal levels at approximately four months following full-term gestation. Skin impedance values are low in premature infants, but rapidly increase as the age approaches that of full-term neonates. Low impedance values in premature infants are attributed to greater skin hydration which results from immature skin conditions such as 1) thinner epidermal layers particularly at the transitional and cornified layers; 2) more blood flow to the skin; and 3) higher percentage of water composition. These factors facilitate the diffusion of water vapor through the skin. As the physical barrier to skin water loss matures with gestational age, the skin impedance reaches a maximum value at full term neonatal age. After this peak, a statistically significant inverse relationship exists between electrical skin impedance and age in the first year of life. This drop in skin impedance is attributed to an increase in skin hydration as a result of the greater functional maturity of eccrine sweat glands.

  1. Specific Language and Reading Skills in School-Aged Children and Adolescents are Associated with Prematurity after Controlling for IQ

    PubMed Central

    Lee, Eliana S.; Yeatman, Jason D.; Luna, Beatriz; Feldman, Heidi M.

    2011-01-01

    Although studies of long-term outcomes of children born preterm consistently show low intelligence quotient (IQ) and visual-motor impairment, studies of their performance in language and reading have found inconsistent results. In this study, we examined which specific language and reading skills were associated with prematurity independent of the effects of gender, socioeconomic status (SES), and IQ. Participants from two study sites (N = 100) included 9–16 year old children born before 36 weeks gestation weighing less than 2500 grams (preterm group, n = 65) compared to children born at 37 weeks gestation or more (full-term group, n = 35). Children born preterm had significantly lower scores than full-term controls on Performance IQ, Verbal IQ, receptive and expressive language skills, syntactic comprehension, linguistic processing speed, verbal memory, decoding, and reading comprehension but not on receptive vocabulary. Using MANCOVA, we found that SES, IQ, and prematurity all contributed to the variance in scores on a set of six non-overlapping measures of language and reading. Simple regression analyses found that after controlling for SES and Performance IQ, the degree of prematurity as measured by gestational age group was a significant predictor of linguistic processing speed, β = −.27, p < .05, R2 = .07, verbal memory, β = .31, p < .05, R2 = .09, and reading comprehension, β = .28, p < .05, R2 = .08, but not of receptive vocabulary, syntactic comprehension, or decoding. The language and reading domains where prematurity had a direct effect can be classified as fluid as opposed to crystallized functions and should be monitored in school-age children and adolescents born preterm. PMID:21195100

  2. Specific language and reading skills in school-aged children and adolescents are associated with prematurity after controlling for IQ.

    PubMed

    Lee, Eliana S; Yeatman, Jason D; Luna, Beatriz; Feldman, Heidi M

    2011-04-01

    Although studies of long-term outcomes of children born preterm consistently show low intelligence quotient (IQ) and visual-motor impairment, studies of their performance in language and reading have found inconsistent results. In this study, we examined which specific language and reading skills were associated with prematurity independent of the effects of gender, socioeconomic status (SES), and IQ. Participants from two study sites (N=100) included 9-16-year old children born before 36 weeks gestation and weighing less than 2500 grams (preterm group, n=65) compared to children born at 37 weeks gestation or more (full-term group, n=35). Children born preterm had significantly lower scores than full-term controls on Performance IQ, Verbal IQ, receptive and expressive language skills, syntactic comprehension, linguistic processing speed, verbal memory, decoding, and reading comprehension but not on receptive vocabulary. Using MANCOVA, we found that SES, IQ, and prematurity all contributed to the variance in scores on a set of six non-overlapping measures of language and reading. Simple regression analyses found that after controlling for SES and Performance IQ, the degree of prematurity as measured by gestational age group was a significant predictor of linguistic processing speed, β=-.27, p<.05, R(2)=.07, verbal memory, β=.31, p<.05, R(2)=.09, and reading comprehension, β=.28, p<.05, R(2)=.08, but not of receptive vocabulary, syntactic comprehension, or decoding. The language and reading domains where prematurity had a direct effect can be classified as fluid as opposed to crystallized functions and should be monitored in school-aged children and adolescents born preterm.

  3. Newborn skin reflection: Proof of concept for a new approach for predicting gestational age at birth. A cross-sectional study.

    PubMed

    Reis, Zilma Silveira Nogueira; Vitral, Gabriela Luiza Nogueira; de Souza, Ingrid Michelle Fonseca; Rego, Maria Albertina Santiago; Guimaraes, Rodney Nascimento

    2017-01-01

    Current methods to assess the gestational age during prenatal care or at birth are a global challenge. Disadvantages, such as low accessibility, high costs, and imprecision of clinical tests and ultrasonography measurements, may compromise health decisions at birth, based on the gestational age. Newborns' organs and tissues can indirectly indicate their physical maturity, and we hypothesized that evolutionary changes in their skin, detected using an optoelectronic device meter, may aid in estimating the gestational age. This study analyzed the feasibility of using newborn skin reflectance to estimate the gestational age at birth noninvasively. A cross-sectional study evaluated the skin reflectance of selected infants, preferably premature, at birth. The first-trimester ultrasound was the reference for gestational age. A prototype of a new noninvasive optoelectronic device measured the backscattering of light from the skin, using a light emitting diode at wavelengths of 470 nm, 575 nm, and 630 nm. Univariate and multivariate regression analysis models were employed to predict gestational age, combining skin reflectance with clinical variables for gestational age estimation. The gestational age at birth of 115 newborns from 24.1 to 41.8 weeks of gestation correlated with the light at 630 nm wavelength reflectance 3.3 mm/6.5 mm ratio distant of the sensor, at the forearm and sole (Pearson's correlation = 0.505, P < 0.001 and 0.710, P < 0.001, respectively). The best-combined variables to predict the gold standard gestational age at birth was the skin reflectance at wavelengths of 630 nm and 470 nm in combination with birth weight, phototherapy, and adjusted to include incubator stay, and sex (R2 = 0.828, P < 0.001). The main limitation of the study is that it was very specific to the premature population we studied and needs to be studied in a broader spectrum of newborns. A novel automated skin reflectometer device, in combination with clinical variables, was able to

  4. In vivo multiphoton tomography in skin aging studies

    NASA Astrophysics Data System (ADS)

    König, Karsten; Bückle, Rainer; Weinigel, Martin; Köhler, Johannes; Elsner, Peter; Kaatz, Martin

    2009-02-01

    High-resolution clinical multiphoton tomography based on the femtosecond laser system DermaInspect has been performed on hundreds of patients and volunteers in Australia, Asia, and Europe. The system enables the in vivo detection of the elastin and the collagen network as well as the imaging of melanin clusters in aging spots. The epidermis-dermis junction can be detected with submicron resolution. One major applications of this novel HighTech imaging tool is the determination of the skin aging index SAAID as well as the study of the effects of anti-aging products. In particular, the stimulated biosynthesis of collagen can be investigated over long periods of time. The system with its sub-500 nm lateral resolution is able to image age-related modifications of the extracellular matrix on the level of a single elastin fiber.

  5. Evaluation of drug and sunscreen permeation via skin irradiated with UVA and UVB: comparisons of normal skin and chronologically aged skin.

    PubMed

    Hung, Chi-Feng; Fang, Chia-Lang; Al-Suwayeh, Saleh A; Yang, Shih-Yung; Fang, Jia-You

    2012-12-01

    Ultraviolet (UV) exposure is the predominant cause of skin aging. A systematic evaluation of drug skin permeation via photoaged skin is lacking. The aim of this work was to investigate whether UVA and UVB affect absorption by the skin of drugs and sunscreens, including tetracycline, quercetin, and oxybenzone. The dorsal skin of nude mice was subjected to UVA (24 and 39 J/cm(2)) or UVB (150, 200, and 250 mJ/cm(2)) irradiation. Levels of skin water loss, erythema, and sebum were evaluated, and histological examinations of COX-2 and claudin-1 expressions were carried out. Permeation of the permeants into and through the skin was determined in vitro using a Franz cell. In vivo skin uptake was also evaluated. Senescent skin (24 weeks old) was used for comparison. Wrinkling and scaling were significant signs of skin treated with UVA and UVB, respectively. The level of claudin-1, an indicator of tight junctions (TJs), was reduced by UVA and UVB irradiation. UVA enhanced tetracycline and quercetin skin deposition by 11- and 2-fold, respectively. A similar enhancement was shown for flux profiles. Surprisingly, a lower UVA dose revealed greater enhancement compared to the higher dose. The skin deposition and flux of tetracycline both decreased with UVB exposure. UVB also significantly reduced quercetin flux. The skin absorption behavior of chronologically aged skin approximated that of the UVA group, with photoaged skin showing higher enhancement. UV generally exhibited a negligible effect on modulating oxybenzone permeation. Skin disruption produced by UV does not necessarily result in enhanced skin absorption. It depends on the UV wavelength, irradiated energy, and physicochemical properties of the permeant. To the best of our knowledge, this is the first report establishing drug permeation profiles for UV-irradiated skin. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Influence of facial skin ageing characteristics on the perceived age in a Russian female population.

    PubMed

    Merinville, E; Grennan, G Z; Gillbro, J M; Mathieu, J; Mavon, A

    2015-10-01

    The desire for a youthful look remains a powerful motivator in the purchase of cosmetics by women globally. To develop an anti-ageing solution that targets the need of end consumers, it is critical to understand which signs of ageing really matter to them and which influence their age perception. To date, such research has not been performed in a Russian population. The aim of this work was to identify the signs of ageing that contribute the most to an 'older' or 'younger' look for Russian women aged 40 years old and above. The age of 203 Russian female volunteers was estimated from their standard photographs by a total of 629 female naïve assessors aged 20-65 years old. Perceived age data were related to 23 facial skin features previously measured using linear correlation coefficients. Differences in average severity of the correlating skin ageing features were evaluated between women perceived older and women perceived younger than their chronological age. Volunteers' responses to a ranking question on their key ageing skin concerns previously collected were analysed to provide an additional view on facial ageing from the consumer perspective. Nine facial skin ageing features were found to correlate the most with perceived age out of the 23 measured. Such results showed the importance of wrinkles in the upper part of the face (crow's feet, glabellar, under eye and forehead wrinkles), but also wrinkles in the lower half of the face associated with facial sagging (upper lip, nasolabial fold). Sagging was confirmed of key importance to female volunteers aged 41-65 years old who were mostly concerned by the sagging of their jawline, ahead of under eye and crow's feet wrinkle. The severity of hyperpigmented spots, red and brown, was also found to contribute to perceived age although to a weaker extent. By providing a clear view on the signs of ageing really matter to Russian women who are aged 40 years old and above, this research offers key information for the

  7. Baseline values of candidate urine acute kidney injury biomarkers vary by gestational age in premature infants.

    PubMed

    Askenazi, David J; Koralkar, Rajesh; Levitan, Emily B; Goldstein, Stuart L; Devarajan, Prasad; Khandrika, Srikrishna; Mehta, Ravindra L; Ambalavanan, Namasivayam

    2011-09-01

    Acute kidney injury (AKI) is common in premature infants and is associated with poor outcomes. Novel biomarkers can detect AKI promptly. Because premature infants are born with underdeveloped kidneys, baseline biomarker values may differ. We describe baseline values of urinary neutrophil gelatinase-associated lipocalin (NGAL), IL-18, kidney injury molecule-1 (KIM-1), osteopontin (OPN), beta-2 microglobulin (B2mG), and Cystatin-C (Cys-C). Next, we test the hypothesis that these biomarkers are inversely related to GA. Candidate markers were compared according to GA categories in 123 infants. Mixed linear regression models were performed to determine the independent association between demographics/interventions and baseline biomarker values. We found that urine NGAL, KIM-1, Cys-C, and B2mG decreased with increasing GA. With correction for urine creatinine (cr), these markers and OPN/cr decreased with increasing GA. IL-18 (with or without correction for urine creatinine) did not differ across GA categories. Controlling for other potential clinical and demographic confounders with regression analysis shows that NGAL/cr, OPN/cr, and B2mG/cr are independently associated with GA. We conclude that urine values of candidate AKI biomarkers are higher in the most premature infants. These findings should be considered when designing and analyzing biomarker studies in newborn with AKI.

  8. Molecular basis of retinol anti-ageing properties in naturally aged human skin in vivo.

    PubMed

    Shao, Y; He, T; Fisher, G J; Voorhees, J J; Quan, T

    2017-02-01

    Retinoic acid has been shown to improve the aged-appearing skin. However, less is known about the anti-ageing effects of retinol (ROL, vitamin A), a precursor of retinoic acid, in aged human skin in vivo. This study aimed to investigate the molecular basis of ROL anti-ageing properties in naturally aged human skin in vivo. Sun-protected buttock skin (76 ± 6 years old, n = 12) was topically treated with 0.4% ROL and its vehicle for 7 days. The effects of topical ROL on skin epidermis and dermis were evaluated by immunohistochemistry, in situ hybridization, Northern analysis, real-time RT-PCR and Western analysis. Collagen fibrils nanoscale structure and surface topology were analysed by atomic force microscopy. Topical ROL shows remarkable anti-ageing effects through three major types of skin cells: epidermal keratinocytes, dermal endothelial cells and fibroblasts. Topical ROL significantly increased epidermal thickness by stimulating keratinocytes proliferation and upregulation of c-Jun transcription factor. In addition to epidermal changes, topical ROL significantly improved dermal extracellular matrix (ECM) microenvironment; increasing dermal vascularity by stimulating endothelial cells proliferation and ECM production (type I collagen, fibronectin and elastin) by activating dermal fibroblasts. Topical ROL also stimulates TGF-β/CTGF pathway, the major regulator of ECM homeostasis, and thus enriched the deposition of ECM in aged human skin in vivo. 0.4% topical ROL achieved similar results as seen with topical retinoic acid, the biologically active form of ROL, without causing noticeable signs of retinoid side effects. 0.4% topical ROL shows remarkable anti-ageing effects through improvement of the homeostasis of epidermis and dermis by stimulating the proliferation of keratinocytes and endothelial cells, and activating dermal fibroblasts. These data provide evidence that 0.4% topical ROL is a promising and safe treatment to improve the naturally aged human skin

  9. Reactive molecule species and antioxidative mechanisms in normal skin and skin aging.

    PubMed

    Wölfle, Ute; Seelinger, Günter; Bauer, Georg; Meinke, Martina C; Lademann, Jürgen; Schempp, Christoph M

    2014-01-01

    Reactive oxygen and nitrogen species (ROS/RNS) which may exist as radicals or nonradicals, as well as reactive sulfur species and reactive carbon species, play a major role in aging processes and in carcinogenesis. These reactive molecule species (RMS), often referred to as 'free radicals' or oxidants, are partly by-products of the physiological metabolism. When RMS concentrations exceed a certain threshold, cell compartments and cells are injured and destroyed. Endogenous physiological mechanisms are able to neutralize RMS to some extent, thereby limiting damage. In the skin, however, pollutants and particularly UV irradiation are able to produce additional oxidants which overload the endogenous protection system and cause early aging, debilitation of immune functions, and skin cancer. The application of antioxidants from various sources in skin care products and food supplements is therefore widespread, with increasingly effective formulations being introduced. The harmful effects of RMS (aside from impaired structure and function of DNA, proteins, and lipids) are: interference with specific regulatory mechanisms and signaling pathways in cell metabolism, resulting in chronic inflammation, weakening of immune functions, and degradation of tissue. Important control mechanisms are: MAP-kinases, the aryl-hydrocarbon receptor (AhR), the antagonistic transcription factors nuclear factor-κB and Nrf2 (nuclear factor erythroid 2-related factor 2), and, especially important, the induction of matrix metalloproteinases which degrade dermal connective tissue. Recent research, however, has revealed that RMS and in particular ROS/RNS are apparently also produced by specific enzyme reactions in an evolutionarily adapted manner. They may fulfill important physiologic functions such as the activation of specific signaling chains in the cell metabolism, defense against infectious pathogens, and regulation of the immune system. Normal physiological conditions are characterized by

  10. Genomic deletion of GIT2 induces a premature age-related thymic dysfunction and systemic immune system disruption

    PubMed Central

    Siddiqui, Sana; Lustig, Ana; Carter, Arnell; Sankar, Mathavi; Daimon, Caitlin M.; Premont, Richard T.; Etienne, Harmonie; van Gastel, Jaana; Azmi, Abdelkrim; Janssens, Jonathan; Becker, Kevin G.; Zhang, Yongqing; Wood, William; Lehrmann, Elin; Martin, James G.; Martin, Bronwen; Taub, Dennis D.; Maudsley, Stuart

    2017-01-01

    Recent research has proposed that GIT2 (G protein-coupled receptor kinase interacting protein 2) acts as an integrator of the aging process through regulation of ‘neurometabolic’ integrity. One of the commonly accepted hallmarks of the aging process is thymic involution. At a relatively young age, 12 months old, GIT2−/− mice present a prematurely distorted thymic structure and dysfunction compared to age-matched 12 month-old wild-type control (C57BL/6) mice. Disruption of thymic structure in GIT2−/− (GIT2KO) mice was associated with a significant reduction in the expression of the cortical thymic marker, Troma-I (cytokeratin 8). Double positive (CD4+CD8+) and single positive CD4+ T cells were also markedly reduced in 12 month-old GIT2KO mice compared to age-matched control wild-type mice. Coincident with this premature thymic disruption in GIT2KO mice was the unique generation of a novel cervical ‘organ’, i.e. ‘parathymic lobes’. These novel organs did not exhibit classical peripheral lymph node-like characteristics but expressed high levels of T cell progenitors that were reflexively reduced in GIT2KO thymi. Using signaling pathway analysis of GIT2KO thymus and parathymic lobe transcriptomic data we found that the molecular signaling functions lost in the dysfunctional GIT2KO thymus were selectively reinstated in the novel parathymic lobe – suggestive of a compensatory effect for the premature thymic disruption. Broader inspection of high-dimensionality transcriptomic data from GIT2KO lymph nodes, spleen, thymus and parathymic lobes revealed a systemic alteration of multiple proteins (Dbp, Tef, Per1, Per2, Fbxl3, Ddit4, Sin3a) involved in the multidimensional control of cell cycle clock regulation, cell senescence, cellular metabolism and DNA damage. Altered cell clock regulation across both immune and non-immune tissues therefore may be responsible for the premature ‘aging’ phenotype of GIT2KO mice. PMID:28260693

  11. A model of premature aging in mice based on altered stress-related behavioral response and immunosenescence.

    PubMed

    Viveros, María-Paz; Arranz, Lorena; Hernanz, Angel; Miquel, Jaime; De la Fuente, Mónica

    2007-01-01

    The intensity of behavioral and neuroendocrine responses to stressful stimuli in rodent strains seems to be inversely related to their life span. We have previously shown that interindividual differences in members of outbred Swiss and inbred BALB/c mouse populations, both male and female, may be related to their behavior in a simple T-maze test. The animals that explore the maze slowly show impaired neuromuscular vigor and coordination, decreased locomotor activity, increased level of emotionality/anxiety, decreased levels of brain biogenic amines as well as immunosenescence and decreased life span, when compared to their control counterparts, which quickly explore the maze. These traits are similar to some of the alterations previously observed in aging animals and therefore we proposed that those 'slow mice' are biologically older than the fast animals and may be a model of prematurely aging mice (PAM). Although most of our work on this model has been performed on chronologically adult-mature animals, we have also shown that certain characteristics of PAM, such as increased anxiety and deficient immune response, are already present in chronologically young animals. Thus, it is tempting to hypothesize that chronic hyperreactivity to stress (trait anxiety) leading to immune dysfunction may have a causal relationship with impaired health and premature aging. In view of the link between oxidative stress and the aging process, the redox state of peritoneal leukocytes from PAM has been studied, showing an oxidative stress situation. In the present work we have determined the levels of a key antioxidant, reduced glutathione (GSH), and the oxidant malondialdehyde (MDA), a marker of lipid peroxidation, both in the spleen and brain of male and female PAM and non-PAM (NPAM). We found that GSH and MDA are decreased and increased, respectively, in PAM with respect to NPAM. Moreover, diet supplementation with antioxidants showed to be an effective strategy for protection

  12. Influence of premature birth on the health conditions, receipt of special education and sport participation of children aged 6-17 years in the USA.

    PubMed

    Kodjebacheva, Gergana D; Sabo, Tina

    2016-06-01

    To investigate the influence of premature birth on conditions among children aged 6-17 years. The National Survey of Children's Health in the USA added a question on premature birth for the first time in the 2011-12 wave. The influence of being born premature on different conditions while controlling for sociodemographic factors was assessed using logistic regression. A total of 6882 out of 62 078 (11.1%) of children aged 6-17 years were born premature. Compared with children who were not born premature, those who were born premature were more likely to have cerebral palsy [odds ratio (OR) = 9.6, confidence interval (CI): 7.4-12.4], vision problems (OR = 2.3, CI: 2.0-2.6), hearing problems (OR = 1.7, CI: 1.6-2.0) and a special healthcare need (OR = 1.7, CI: 1.6-1.8). Children who were born premature had an increased likelihood of not being on a sports team or not taking sports lessons after school or on weekends during the past 12 months than those who were not born premature (OR = 1.2, CI: 1.1-1.3). Prematurity may be associated with negative outcomes as infants transition into childhood and adolescence. Interventions within the life-course perspective are needed to alleviate the long-term consequences of prematurity. © The Author 2015. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. New look at the role of progerin in skin aging

    PubMed Central

    Budzisz, Elżbieta; Dana, Agnieszka; Rotsztejn, Helena

    2015-01-01

    Current literature data indicate that progerin, which is a mutant of lamin A, may be one of several previously known physiological biomarkers of the aging process which begins at the age of 30. Lamins belong to the family of intermediate filaments type V and are an important component of the nuclear envelope (NE). The physiological processes of an alternative splicing of LMNA (lamin A/C) gene and posttranslational processing result in the formation of different variants of this gene. Prelamin A is generated in cytosol and modified by respective enzymes. In the final step, 15-aa peptide is released at the C-terminus, resulting in mature lamin A. Point mutation of cytosine to thymine at position 1824 in exon 11 of LMNA gene causes a truncated form of lamin A, which is defined as progerin. In the course of time, progerin is mainly found in skin fibroblasts and reticular layers of terminally differentiated keratinocytes. Changes take place in the nucleus and they are similar to those observed in patients with Hutchinson-Gilford progeria syndrome and refer mainly to an increase in the amount of reactive oxygen species which reduce the level of antioxidant enzymes, DNA damage and histone modification. There are still pending studies on working out new anti-aging strategies and the skin is the main area of research. Biomimetic peptides (analogues of elafin) are used in cosmetics to reduce the formation of progerin. PMID:26327889

  14. Effect of Age on Tooth Shade, Skin Color and Skin-Tooth Color Interrelationship in Saudi Arabian Subpopulation

    PubMed Central

    Haralur, Satheesh B

    2015-01-01

    Background: Dental restoration or prosthesis in harmony with adjacent natural teeth color is indispensable part for the successful esthetic outcome. The studies indicate is existence of correlation between teeth and skin color. Teeth and skin color are changed over the aging process. The aim of the study was to explore the role of age on the tooth and skin color parameters, and to investigate the effect of ageing on teeth-skin color correlation. Materials and Methods: Total of 225 Saudi Arabian ethnic subjects was divided into three groups of 75 each. The groups were divided according to participant’s age. The participant’s age for Group I, Group II, and Group III was 18-29 years, 30-50 years, and above 50 years, respectively. The tooth color was identified by spectrophotometer in CIE Lab parameters. The skin color was registered with skin surface photography. The data were statistically analyzed with one-way ANOVA and correlation tests with SPSS 18 software. Results: The Group I had the highest ‘L’ value of 80.26, Group III recorded the least value of 76.66. The Group III had highest yellow value ‘b’ at 22.72, while Group I had 19.19. The skin ‘L’ value was highest in the young population; the elder population had the increased red value ‘a’ in comparison to younger subjects. The ‘L’ tooth color parameter had a strong positive linear correlation with skin color in young and adult subjects. While Group III teeth showed the strong positive correlation with ‘b’ parameter at malar region. Conclusion: The elder subjects had darker and yellow teeth in comparison with younger subjects. The reddening of the skin was observed as age-related skin color change. The age had a strong influence on the teeth-skin color correlation. PMID:26464536

  15. Interaction of skin color distribution and skin surface topography cues in the perception of female facial age and health.

    PubMed

    Samson, Nadine; Fink, Bernhard; Matts, Paul

    2011-03-01

    Skin color distribution and skin surface topography are the predominant drivers of the variation in visible skin condition, and this variation affects one's perception of age and health. Recent research, however, has shown that the strength of the impact of these features on perception differs such that skin surface topography is a stronger indicator of age, while skin color distribution is more strongly linked to health perception. To examine further the relative contribution and interaction effects of skin color distribution and surface topography cues on perception by considering small changes of these features. Two sets of images were created by gradually smoothing uneven skin color distribution and removing skin surface topography cues (both in 25% increments) in the digital image of the face of a 61-year-old British woman. Omnibus pairwise combinations of modified images were presented to a panel of 160 German men and women (aged 19-49 years). With each pair, they were asked to select the face they considered both younger-looking and healthier. Female facial age perception was more strongly affected by the removal of skin surface topography cues than by changes in skin color distribution, particularly so for topography removal of 50% and more. In contrast, the smoothing of uneven skin color distribution had a stronger effect on the perception of female facial health, particularly for changes of 25% and greater. These results support previous reports on the differential effects of visible skin color distribution and surface topography cues on the perception of female facial age and health and show that only relatively small changes are necessary to drive this differential perception. © 2011 Wiley Periodicals, Inc.

  16. Stem cells and aberrant signaling of molecular systems in skin aging.

    PubMed

    Peng, Yan; Xuan, Min; Leung, Victor Y L; Cheng, Biao

    2015-01-01

    The skin is the body's largest organ and it is able to self-repair throughout an individual's life. With advanced age, skin is prone to degenerate in response to damage. Although cosmetic surgery has been widely adopted to rejuvinate skin, we are far from a clear understanding of the mechanisms responsible for skin aging. Recently, adult skin-resident stem/progenitor cells, growth arrest, senescence or apoptotic death and dysfunction caused by alterations in key signaling genes, such as Ras/Raf/MEK/ERK, PI3K/Akt-kinases, Wnt, p21 and p53, have been shown to play a vital role in skin regeneration. Simultaneously, enhanced telomere attrition, hormone exhaustion, oxidative stress, genetic events and ultraviolet radiation exposure that result in severe DNA damage, genomic instability and epigenetic mutations also contribute to skin aging. Therefore, cell replacement and targeting of the molecular systems found in skin hold great promise for controlling or even curing skin aging.

  17. Evaluation and recognition of skin images with aging by support vector machine

    NASA Astrophysics Data System (ADS)

    Hu, Liangjun; Wu, Shulian; Li, Hui

    2016-10-01

    Aging is a very important issue not only in dermatology, but also cosmetic science. Cutaneous aging involves both chronological and photoaging aging process. The evaluation and classification of aging is an important issue with the medical cosmetology workers nowadays. The purpose of this study is to assess chronological-age-related and photo-age-related of human skin. The texture features of skin surface skin, such as coarseness, contrast were analyzed by Fourier transform and Tamura. And the aim of it is to detect the object hidden in the skin texture in difference aging skin. Then, Support vector machine was applied to train the texture feature. The different age's states were distinguished by the support vector machine (SVM) classifier. The results help us to further understand the mechanism of different aging skin from texture feature and help us to distinguish the different aging states.

  18. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema.

    PubMed

    Chilosi, Marco; Carloni, Angelo; Rossi, Andrea; Poletti, Venerino

    2013-09-01

    Different anatomic and physiological changes occur in the lung of aging people that can affect pulmonary functions, and different pulmonary diseases, including deadly diseases such as chronic obstructive pulmonary disease (COPD)/emphysema and idiopathic pulmonary fibrosis (IPF), can be related to an acceleration of the aging process. The individual genetic background, as well as exposure to a variety of toxic substances (cigarette smoke in primis) can contribute significantly to accelerating pulmonary senescence. Premature aging can impair lung function by different ways: by interfering specifically with tissue repair mechanisms after damage, thus perturbing the correct crosstalk between mesenchymal and epithelial components; by inducing systemic and/or local alteration of the immune system, thus impairing the complex mechanisms of lung defense against infections; and by stimulating a local and/or systemic inflammatory condition (inflammaging). According to recently proposed pathogenic models in COPD and IPF, premature cellular senescence likely affects distinct progenitors cells (mesenchymal stem cells in COPD, alveolar epithelial precursors in IPF), leading to stem cell exhaustion. In this review, the large amount of data supporting this pathogenic view are discussed, with emphasis on the possible molecular and cellular mechanisms leading to the severe parenchymal remodeling that characterizes, in different ways, these deadly diseases. Copyright © 2013 Mosby, Inc. All rights reserved.

  19. Fractional laser therapy - the next step in alleviating the symptoms of skin aging (own observations).

    PubMed

    Halbina, Adam; Trznadel-Grodzka, Ewa; Rotsztejn, Helena

    2014-05-01

    Skin aging is a natural process of the skin, which accelerates in menopause and is additionally intensified by accumulating effects of repeated exposure to solar UV radiation and other external factors. Anti-aging skin treatment and constant improvement of its methods have become an important area of current research. The need to apply effective skin anti-aging methods that minimize traumatization resulted in the development of fractional laser technology delivering a laser beam to microscopic column skin zones in order to achieve skin photo-remodeling.

  20. Fractional laser therapy – the next step in alleviating the symptoms of skin aging (own observations)

    PubMed Central

    Halbina, Adam; Trznadel-Grodzka, Ewa

    2014-01-01

    Skin aging is a natural process of the skin, which accelerates in menopause and is additionally intensified by accumulating effects of repeated exposure to solar UV radiation and other external factors. Anti-aging skin treatment and constant improvement of its methods have become an important area of current research. The need to apply effective skin anti-aging methods that minimize traumatization resulted in the development of fractional laser technology delivering a laser beam to microscopic column skin zones in order to achieve skin photo-remodeling. PMID:26327843

  1. Mitochondrial protein Fus1/Tusc2 in premature aging and age-related pathologies: critical roles of calcium and energy homeostasis.

    PubMed

    Uzhachenko, Roman; Boyd, Kelli; Olivares-Villagomez, Danyvid; Zhu, Yueming; Goodwin, J Shawn; Rana, Tanu; Shanker, Anil; Tan, Winston J T; Bondar, Tanya; Medzhitov, Ruslan; Ivanova, Alla V

    2017-03-26

    Decreased energy production and increased oxidative stress are considered to be major contributors to aging and aging-associated pathologies. The role of mitochondrial calcium homeostasis has also been highlighted as an important factor affecting different pathological conditions. Here, we present evidence that loss of a small mitochondrial protein Fus1 that maintains mitochondrial homeostasis results in premature aging, aging-associated pathologies, and decreased survival. We showed that Fus1KO mice develop multiple early aging signs including lordokyphosis, lack of vigor, inability to accumulate fat, reduced ability to tolerate stress, and premature death. Other prominent pathological changes included low sperm counts, compromised ability of adult stem cells to repopulate tissues, and chronic inflammation. At the molecular level, we demonstrated that mitochondria of Fus1 KO cells have low reserve respiratory capacity (the ability to produce extra energy during sudden energy demanding situations), and show significantly altered dynamics of cellular calcium response.Our recent studies on early hearing and memory loss in Fus1 KO mice combined with the new data presented here suggest that calcium and energy homeostasis controlled by Fus1 may be at the core of its aging-regulating activities. Thus, Fus1 protein and Fus1-dependent pathways and processes may represent new tools and targets for anti-aging strategies.

  2. Mitochondrial protein Fus1/Tusc2 in premature aging and age-related pathologies: critical roles of calcium and energy homeostasis

    PubMed Central

    Uzhachenko, Roman; Boyd, Kelli; Olivares-Villagomez, Danyvid; Zhu, Yueming; Goodwin, J. Shawn; Rana, Tanu; Shanker, Anil; Tan, Winston J.T.; Bondar, Tanya; Medzhitov, Ruslan; Ivanova, Alla V.

    2017-01-01

    Decreased energy production and increased oxidative stress are considered to be major contributors to aging and aging-associated pathologies. The role of mitochondrial calcium homeostasis has also been highlighted as an important factor affecting different pathological conditions. Here, we present evidence that loss of a small mitochondrial protein Fus1 that maintains mitochondrial homeostasis results in premature aging, aging-associated pathologies, and decreased survival. We showed that Fus1KO mice develop multiple early aging signs including lordokyphosis, lack of vigor, inability to accumulate fat, reduced ability to tolerate stress, and premature death. Other prominent pathological changes included low sperm counts, compromised ability of adult stem cells to repopulate tissues, and chronic inflammation. At the molecular level, we demonstrated that mitochondria of Fus1 KO cells have low reserve respiratory capacity (the ability to produce extra energy during sudden energy demanding situations), and show significantly altered dynamics of cellular calcium response. Our recent studies on early hearing and memory loss in Fus1 KO mice combined with the new data presented here suggest that calcium and energy homeostasis controlled by Fus1 may be at the core of its aging-regulating activities. Thus, Fus1 protein and Fus1-dependent pathways and processes may represent new tools and targets for anti-aging strategies. PMID:28351997

  3. Patch-based Augmentation of Expectation-Maximization for Brain MRI Tissue Segmentation at Arbitrary Age after Premature Birth

    PubMed Central

    Liu, Mengyuan; Kitsch, Averi; Miller, Steven; Chau, Vann; Poskitt, Kenneth; Rousseau, Francois; Shaw, Dennis; Studholme, Colin

    2015-01-01

    Accurate automated tissue segmentation of premature neonatal magnetic resonance images is a crucial task for quantification of brain injury and its impact on early postnatal growth and later cognitive development. In such studies it is common for scans to be acquired shortly after birth or later during the hospital stay and therefore occur at arbitrary gestational ages during a period of rapid developmental change. It is important to be able to segment any of these scans with comparable accuracy. Previous work on brain tissue segmentation in premature neonates has focused on segmentation at specific ages. Here we look at solving the more general problem using adaptations of age specific atlas based methods and evaluate this using a unique manually traced database of high resolution images spanning 20 gestational weeks of development. We examine the complimentary strengths of age specific atlas-based Expectation-Maximization approaches and patch-based methods for this problem and explore the development of two new hybrid techniques, patch-based augmentation of Expectation-Maximization with weighted fusion and a spatial variability constrained patch search. The former approach seeks to combine the advantages of both atlas- and patch-based methods by learning from the performance of the two techniques across the brain anatomy at different developmental ages, while the latter technique aims to use anatomical variability maps learnt from atlas training data to locally constrain the patch-based search range. The proposed approaches were evaluated using leave-one-out cross-validation. Compared with the conventional age specific atlas-based segmentation and direct patch based segmentation, both new approaches demonstrate improved accuracy in the automated labeling of cortical gray matter, white matter, ventricles and sulcal cortical-spinal fluid regions, while maintaining comparable results in deep gray matter. PMID:26702777

  4. Patch-based augmentation of Expectation-Maximization for brain MRI tissue segmentation at arbitrary age after premature birth.

    PubMed

    Liu, Mengyuan; Kitsch, Averi; Miller, Steven; Chau, Vann; Poskitt, Kenneth; Rousseau, Francois; Shaw, Dennis; Studholme, Colin

    2016-02-15

    Accurate automated tissue segmentation of premature neonatal magnetic resonance images is a crucial task for quantification of brain injury and its impact on early postnatal growth and later cognitive development. In such studies it is common for scans to be acquired shortly after birth or later during the hospital stay and therefore occur at arbitrary gestational ages during a period of rapid developmental change. It is important to be able to segment any of these scans with comparable accuracy. Previous work on brain tissue segmentation in premature neonates has focused on segmentation at specific ages. Here we look at solving the more general problem using adaptations of age specific atlas based methods and evaluate this using a unique manually traced database of high resolution images spanning 20 gestational weeks of development. We examine the complimentary strengths of age specific atlas-based Expectation-Maximization approaches and patch-based methods for this problem and explore the development of two new hybrid techniques, patch-based augmentation of Expectation-Maximization with weighted fusion and a spatial variability constrained patch search. The former approach seeks to combine the advantages of both atlas- and patch-based methods by learning from the performance of the two techniques across the brain anatomy at different developmental ages, while the latter technique aims to use anatomical variability maps learnt from atlas training data to locally constrain the patch-based search range. The proposed approaches were evaluated using leave-one-out cross-validation. Compared with the conventional age specific atlas-based segmentation and direct patch based segmentation, both new approaches demonstrate improved accuracy in the automated labeling of cortical gray matter, white matter, ventricles and sulcal cortical-spinal fluid regions, while maintaining comparable results in deep gray matter. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Aging-like skin changes induced by ultraviolet irradiation in an animal model of metabolic syndrome.

    PubMed

    Akase, Tomoko; Nagase, Takashi; Huang, Lijuan; Ibuki, Ai; Minematsu, Takeo; Nakagami, Gojiro; Ohta, Yasunori; Shimada, Tsutomu; Aburada, Masaki; Sugama, Junko; Sanada, Hiromi

    2012-04-01

    Both physiological skin aging and pathologic photo-aging caused by ultraviolet (UV) irradiation are mediated by latent inflammation and oxidative stress. Although numerous animal skin-aging models have used UV irradiation, most require massive doses or long-term irradiation. To establish a more refined skin-aging model, we focused on an animal model of metabolic syndrome (MS) because MS involves damage to various organs via oxidative stress or inflammation, similar to the changes associated with aging. We hypothesized that MS skin might exhibit more aging-like changes after milder, shorter-term UV irradiation than would normal animal skin under similar conditions, thus providing a useful model for skin aging. The authors therefore examined the skin from Tsumura Suzuki obese diabetic (TSOD) mice (MS model) and control Tsumura Suzuki non-obese (TSNO) mice before and after UV irradiation. Skin from TSOD mice had a thinner epidermis and dermis, a thicker fatty layer, reduced density and convolution of the fragmented collagen fibers, and upregulated expression of tumor necrosis factor (TNF)-α, a dual marker for inflammation and aging, compared to the skin from TSNO mice. UV irradiation affected TSOD skin more severely than TSNO skin, resulting in various changes resembling those in aged human skin, including damage to the dermis and subcutaneous fatty tissue, infiltration of inflammatory cells, and further upregulation of TNF-α expression. These results suggest that UV-irradiated TSOD mice may provide a new model of skin aging and imply that skin from humans with MS is more susceptible to UV- or aging-related damage than normal human skin.

  6. Vigna angularis water extracts protect against ultraviolet b-exposed skin aging in vitro and in vivo.

    PubMed

    Hwang, Eunson; Park, Sang-Yong; Lee, Hyun Ji; Sun, Zheng-wang; Lee, Tae Youp; Song, Hyun Geun; Shin, Heon-Sub; Yi, Tae Hoo

    2014-12-01

    Exposure to ultraviolet (UV) radiation induces various pathological changes, such as thickened skin and wrinkle formation. In particular, UVB irradiation increases matrix metalloproteinase (MMP)-1 production and collagen degradation, leading to premature aging, termed photoaging. The azuki bean (Vigna angularis; VA) has been widely used as a food product as well as a traditional medicine. However, its activity needs additional study to confirm its functional application in foods and cosmetics for protecting skin. In this study, hot-water extract from VA (VAE) and its active component, rutin, were investigated to determine their antiphotoaging effects. VAE was found to have antioxidant activity. In UVB-exposed normal human dermal fibroblasts cells with VAE and rutin treatments, MMP-1 production was significantly suppressed (90% and 47%, respectively). The effects of both topical and oral administration of VAE were tested in UVB-irradiated hairless mice. VAE suppressed wrinkle formation and skin thickness by promoting elastin, procollagen type I, and TGF-β1 expression (118%, 156%, and 136%, respectively) and by diminishing MMP-1 production. These results suggest that VAE may be effective for preventing skin photoaging accelerated by UVB radiation.

  7. Aging of intrauterine tissues in spontaneous preterm birth and preterm premature rupture of the membranes: A systematic review of the literature.

    PubMed

    Polettini, J; Dutta, E H; Behnia, F; Saade, G R; Torloni, M R; Menon, R

    2015-09-01

    Many adverse pregnancy outcomes (APOs), including spontaneous preterm birth (PTB), are associated with placental dysfunction. Recent clinical and experimental evidences suggest that premature aging of the placenta may be involved in these events. Although placental aging is a well-known concept, the mechanisms of aging during normal pregnancy and premature aging in APOs are still unclear. This review was conducted to assess the knowledge on placental aging related biochemical changes leading to placental dysfunction in PTB and/or preterm premature rupture of membranes (pPROM). We performed a systematic review of studies published over the last 50 years in two electronic databases (Pubmed and Embase) on placental aging and PTB or pPROM. The search yielded 554 citations, 30 relevant studies were selected for full-text review and three were included in the review. Only one study reported oxidative stress-related aging and degenerative changes in human placental membranes and telomere length reduction in fetal cells as part of PTB and/or pPROM mechanisms. Similarly, two animal studies reported findings of decidual senescence and referred to PTB mechanisms. Placental and fetal membrane oxidative damage and telomere reduction are linked to premature aging in PTB and pPROM but the risk factors and biomolecular pathways causing this phenomenon are not established in the literature. However, no biomarkers or clinical indicators of premature aging as a pathology of PTB and pPROM have been reported. We document major knowledge gaps and propose several areas for future research to improve our understanding of premature aging linked to placental dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Pachydermoperiostosis: aesthetic treatment of prematurely aging face with facelift and botulinum toxin a.

    PubMed

    Bingol, Ugur Anil; Cinar, Can

    2014-11-01

    Pachydermoperiostosis is a rare syndrome that hinders patients' quality of life thru its aesthetics manifestations and functional obstacles. Many techniques for addressing and correcting aesthetic defects associated with pachydermoperiostosis have been introduced, including facelift surgery. This case presentation includes treatment of facial pachydermoperiostosis and restoration of facial aesthetics via treatment with facelift, skin muscle excision, and botulinum toxin A.

  9. Skin wound healing in different aged Xenopus laevis.

    PubMed

    Bertolotti, Evelina; Malagoli, Davide; Franchini, Antonella

    2013-08-01

    Xenopus froglets can perfectly heal skin wounds without scarring. To explore whether this capacity is maintained as development proceeds, we examined the cellular responses during the repair of skin injury in 8- and 15-month-old Xenopus laevis. The morphology and sequence of healing phases (i.e., inflammation, new tissue formation, and remodeling) were independent of age, while the timing was delayed in older frogs. At the beginning of postinjury, wound re-epithelialization occurred in form of a thin epithelium followed by a multilayered epidermis containing cells with apoptotic patterns and keratinocytes stained by anti-inducible nitric oxide synthase (iNOS) antibody. The inflammatory response, early activated by recruitment of blood cells immunoreactive to anti-tumor necrosis factor (TNF)-α, iNOS, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)-9, persisted over time. The dermis repaired by a granulation tissue with extensive angiogenesis, inflammatory cells, fibroblasts, and anti-α-SMA positive myofibroblasts. As the healing progressed, wounded areas displayed vascular regression, decrease in cellularity, and rearrangement of provisional matrix. The epidermis restored to a prewound morphology while granulation tissue was replaced by a fibrous tissue in a scar-like pattern. The quantitative PCR analysis demonstrated an up-regulated expression of Xenopus suppressor of cytokine signaling 3 (XSOCS-3) and Xenopus transforming growth factor-β2 (XTGF-β2) soon after wounding and peak levels were detected when granulation tissue was well developed with a large number of inflammatory cells. The findings indicate that X. laevis skin wound healing occurred by a combination of regeneration (in epidermis) and repair (in dermis) and, in contrast to froglet scarless wound healing, the growth to a more mature adult stage is associated with a decrease in regenerative capacity with scar-like tissue formation. Copyright © 2013 Wiley Periodicals, Inc.

  10. Relationship of age and body mass index to skin temperature and skin perfusion in primary Raynaud's phenomenon.

    PubMed

    Giurgea, Georgiana-Aura; Mlekusch, Wolfgang; Charwat-Resl, Silvia; Mueller, Markus; Hammer, Alexandra; Gschwandtner, Michael E; Koppensteiner, Renate; Schlager, Oliver

    2015-01-01

    To assess the relationship of age and body mass index (BMI) to skin temperature and perfusion in patients with primary Raynaud's phenomenon (RP) compared with controls. Patients with RP as well as age- and sex-matched controls underwent external cold provocation by exposure to 20 °C water for 1 minute. Before and after cold provocation, skin temperature and skin perfusion were measured. Twenty-six patients with RP (20 women and 6 men; median age 41.9 years) and 22 controls (17 women and 5 men; median age 42.9 years) were studied. In RP patients, cold exposure led to a median change in skin temperature of -7% (interquartile range [IQR] -13.1, -4.1) and to a median change in skin perfusion of -26.4% (IQR -36.2, 2.9). In controls, skin temperature changed by -15.7% (IQR -18.3, -11.6) and skin perfusion by -33% (IQR -53.3, -1.1) upon cold exposure. In patients with RP, age and BMI were related to skin temperature (for age, r = 0.683, P < 0.0001; for BMI r = 0.657, P < 0.0001) and skin perfusion (for age, r = 0.595, P = 0.002; for BMI, r = 0.653, P < 0.0001), while no association was found in controls. The cold-induced decrease in skin temperature was inversely related to age (r = -0.518, P = 0.003) and BMI (r = -0.662, P < 0.0001) in patients with RP; correlations were not observed in controls. The cold-induced change in skin perfusion was not related to age or BMI in either group. The cold-induced decrease in skin temperature is related to age and BMI in patients with RP but not in controls. Further studies are needed to clarify the pathophysiology of digital ischemia in primary RP. Copyright © 2015 by the American College of Rheumatology.

  11. Aging of human skin: review of a mechanistic model and first experimental data.

    PubMed

    Giacomoni, P U; Declercq, L; Hellemans, L; Maes, D

    2000-04-01

    The physical, chemical, and biochemical factors that accelerate skin aging have been proposed to activate a self-maintained microinflammatory process, one of the expected end results of which is an imbalance in the turnover of macromolecules in the dermis. Surface peroxides are recognized as controllable factors of skin aging, and their accumulation is attributed to environmentally induced impairment of defense enzymes. Topical application of antioxidants decreases the rate at which skin elasticity and skin thickness are modified.

  12. Basal level of autophagy is increased in aging human skin fibroblasts in vitro, but not in old skin.

    PubMed

    Demirovic, Dino; Nizard, Carine; Rattan, Suresh I S

    2015-01-01

    Intracellular autophagy (AP) is a stress response that is enhanced under conditions of limitation of amino acids, growth factors and other nutrients, and also when macromolecules become damaged, aggregated and fibrillated. Aging is generally accompanied by an increase in intracellular stress due to all the above factors. Therefore, we have compared the basal levels of AP in serially passaged human facial skin fibroblasts undergoing aging and replicative senescence in vitro, and ex vivo in the skin biopsies from the photo-protected and photo-exposed area of the arms of 20 healthy persons of young and old ages. Immunofluorescence microscopy, employing antibodies against a specific intracellular microtubule-associated protein-1 light chain-3 (LC3) as a well established marker of AP, showed a 5-fold increase in the basal level of LC3 in near senescent human skin fibroblasts. However, no such age-related increase in LC3 fluorescence and AP could be detected in full thickness skin sections from the biopsies obtained from 10 healthy young (age 25 to 30 yr) and 10 old (age 60 to 65 yr) donors. Furthermore, there was no difference in the basal level of LC3 in the skin sections from photo-protected and photo-exposed areas of the arm. Thus, in normal conditions, the aging phenotype of the skin cells in culture and in the body appears to be different in the case of AP.

  13. A proteomic study of Hutchinson-Gilford progeria syndrome: Application of 2D-chromotography in a premature aging disease.

    PubMed

    Wang, Li; Yang, Wu; Ju, Weina; Wang, Peirong; Zhao, Xinliang; Jenkins, Edmund C; Brown, W Ted; Zhong, Nanbert

    2012-01-27

    The Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease characterized by segmental premature aging. Applying a two-dimensional chromatographic proteomic approach, the 2D Protein Fractionation System (PF2D), we identified 30 differentially expressed proteins in cultured HGPS fibroblasts. We categorized them into five groups: methylation, calcium ion binding, cytoskeleton, duplication, and regulation of apoptosis. Among these 30 proteins, 23 were down-regulated, while seven were up-regulated in HGPS fibroblasts as compared to normal fibroblasts. Three differentially expressed cytoskeleton proteins, vimentin, actin, and tubulin, were validated via Western blotting and characterized by immunostaining that revealed densely thickened bundles and irregular structures. Furthermore in the HGPS cells, the cell cycle G1 phase was elongated and the concentration of free cytosolic calcium was increased, suggesting intracellular retention of calcium. The results that we obtained have implications for understanding the aging process.

  14. Premature Birth and Large for Gestational Age Are Associated with Risk of Barrett’s Esophagus in Adults

    PubMed Central

    Shiota, Seiji; El-Serag, Hashem B.; Thrift, Aaron P.

    2015-01-01

    Background Birth characteristics, including weight and gestational age, may be associated with risk of Barrett’s esophagus (BE), the only known precursor for esophageal adenocarcinoma; however, data are limited. Aims To examine associations between various birth characteristics and BE, and whether these associations are mediated by known risk factors for BE. Methods Data were obtained from a cross-sectional study among eligible Veterans Affairs patients scheduled for an upper endoscopy, and a sample identified from primary care clinics. Participants underwent an esophagogastroduodenoscopy and completed a survey that captured information on sociodemographic and clinical factors, as well as birth information. We compared 263 patients with histologically confirmed BE to 1,416 controls without BE on endoscopy. Odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated using multivariate logistic regression. Results Premature birth was independently associated with risk of BE after adjusted by age, sex, race, and other birth characteristics (OR 3.28, 95% CI 1.22–8.79). On the other hand, large for gestational age was inversely associated with risk of BE (OR 0.46, 95% CI 0.21–0.98). These effects were stronger for patients with long-segment BE than short-segment BE. The associations were not mediated by gastroesophageal reflux disease symptoms, use of proton pump inhibitors, Helicobacter Pylori infection, waist-hip-ratio, height or presence of hiatus hernia. Conclusions Premature birth and large for gestational age may be associated with risk of BE in adults. These associations do not appear to be mediated through known risk factors for BE; however, additional studies are required to confirm our findings. PMID:26611860

  15. Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Li, Hui; Yang, Hongqin; Zhang, Xiaoman; Li, Zhifang; Xu, Shufei

    2011-04-01

    Multiphoton microscopy was employed for monitoring the structure changes of mouse dermis collagen in the intrinsic- or the extrinsic-age-related processes in vivo. The characteristics of textures in different aging skins were uncovered by fast Fourier transform in which the orientation index and bundle packing of collagen were quantitatively analyzed. Some significant differences in collagen-related changes are found in different aging skins, which can be good indicators for the statuses of aging skins. The results are valuable to the study of aging skin and also of interest to biomedical photonics.

  16. Fatty acid proportions in cholesterol esters and risk of premature death from cancer in middle aged French men.

    PubMed Central

    Zureik, M.; Ducimetière, P.; Warnet, J. M.; Orssaud, G.

    1995-01-01

    OBJECTIVE--To assess the association of proportions of fatty acids in cholesterol esters with the risk of premature death from cancer in middle aged men. DESIGN--Prospective cohort study. SETTING--Paris, France. SUBJECTS--3277 working men aged 36-52 in 1981-5. MAIN OUTCOME MEASURES--Cancer mortality during an average of 9.3 years of follow up. RESULTS--59 men died of cancer during follow up. The age adjusted relative risks for men in the highest thirds of the distribution of the proportions of linoleic, palmitoleic, and oleic acid in cholesterol esters as compared with those in the corresponding lowest thirds were 0.16 (95% confidence interval 0.05 to 0.51), 3.39 (1.63 to 7.05), and 4.22 (1.95 to 9.12), respectively. Adjustment for and stratification by smoking, alcohol consumption, serum cholesterol concentration, and body mass index did not alter the results. At the time of examination subjects with cancer had a lower intake of polyunsaturated fats, assessed by 24 hour recall, than those without cancer (13.2 v 17.4 g/day, P < 0.01). CONCLUSIONS--Monounsaturated and polyunsaturated fatty acids of cholesterol esters are strong biological markers that predict premature death from cancer in French men. Consistently, intake of polyunsaturated fats did not seem to increase the risk of death from cancer. The association of biological markers of dietary fat intake with incidence of and mortality from cancer should be investigated prospectively in other populations. PMID:7496232

  17. Antenatal betamethasone and fetal growth in prematurely born children: implications for temperament traits at the age of 2 years.

    PubMed

    Pesonen, Anu-Katriina; Räikkönen, Katri; Lano, Aulikki; Peltoniemi, Outi; Hallman, Mikko; Kari, M Anneli

    2009-01-01

    We explored whether repeated dose of antenatal betamethasone and variation in intrauterine growth of prematurely born children predict temperament characteristics at the age of 2 years. The patients (n = 142) were prematurely born children (mean gestational age: 31.0 weeks; range: 24.6-35.0 weeks) who participated in a randomized and blinded trial testing the effects of a repeated dose of antenatal betamethasone in imminent preterm birth. Fetal growth was estimated as weight, length, and head circumference in SDs according to Finnish growth charts. Parents assessed their toddlers' temperament with 201 items of the Early Childhood Temperament Questionnaire (mean child corrected age: 2.1 years). No significant main effects of repeated betamethasone on toddler temperament existed. However, a significant interaction between study group and duration of exposure to betamethasone emerged; those exposed to a repeated dose for >24 hours before delivery were more impulsive. One-SD increases in weight, length, and head circumference at birth were associated with 0.14- to 0.19-SD lower levels of negative affectivity (fearfulness, anger proneness, and sadness); 1-SD increases in length, weight, and head circumference at birth were associated with 0.14- to 0.18-SD higher levels of effortful control (self-regulation). Repeated antenatal betamethasone did not induce alterations in toddler temperament. The results, however, suggest that a longer duration of exposure is associated with higher impulsivity scores. Regardless of betamethasone exposure, slower fetal growth exerted influences on temperament. Our findings indicate prenatal programming of psychological development and imply that more attention is needed to support the development of infants born at the lower end of the fetal growth distribution.

  18. Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging: A Mini-Review.

    PubMed

    Quan, Taihao; Fisher, Gary J

    2015-01-01

    Human skin is largely composed of a collagen-rich connective tissue, which provides structural and functional support. The collagen-rich connective tissue is produced, organized, and maintained by dermal fibroblasts. During aging, dermal collagen fibrils undergo progressive loss and fragmentation, leading to thin and structurally weakened skin. Age-related alterations of collagen fibrils impairs skin structure and function and creates a tissue microenvironment that promotes age-related skin diseases, such as delayed wound healing and skin cancer development. This mini-review describes cellular mechanisms that give rise to self-perpetuating, collagen fibril fragmentation that creates an age-associated dermal microenvironment, which contributes to decline of human skin function.

  19. Effect of aging on breast skin thickness and elasticity: implications for breast support.

    PubMed

    Coltman, C E; Steele, J R; McGhee, D E

    2017-08-01

    The skin overlying a woman's breast acts as an anatomical support structure to the breast. Although aging is known to affect the thickness and elasticity of human skin, limited research has examined age-related changes to skin covering the breast or related these changes to breast support requirements. The purpose of this study was to determine the effect of age on female breast skin thickness and elasticity. The left breast of 339 women (18-84 years), classified into four age groups (18-24 years, 25-44 years, 45-64 years, and 65 + years), was divided into four quadrants. Skin thickness (dermal layer; 20 MHz ultrasound probe) and skin elasticity (Cutometer(®) MPA 580) were measured for each breast quadrant and then compared to determine whether there was any significant (P < 0.05) effect of aging on breast skin. Breast skin thickness significantly decreased from 45 years of age onwards. A significant decline in breast skin elasticity was evident from the mid 20's. Aging is associated with a significant decline in breast skin thickness and elasticity, which is likely to reduce anatomical breast support. Women might therefore benefit from increased external breast support (i.e. a more supportive bra) with increasing age. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Resveratrol-Enriched Rice Attenuates UVB-ROS-Induced Skin Aging via Downregulation of Inflammatory Cascades

    PubMed Central

    Lee, Taek Hwan; Wahedi, Hussain Mustatab; Baek, So-Hyeon

    2017-01-01

    The skin is the outermost protective barrier between the internal and external environments in humans. Chronic exposure to ultraviolet (UV) radiation is a major cause of skin aging. UVB radiation penetrates the skin and induces ROS production that activates three major skin aging cascades: matrix metalloproteinase- (MMP-) 1-mediated aging; MAPK-AP-1/NF-κB-TNF-α/IL-6, iNOS, and COX-2-mediated inflammation-induced aging; and p53-Bax-cleaved caspase-3-cytochrome C-mediated apoptosis-induced aging. These mechanisms are collectively responsible for the wrinkling and photoaging characteristic of UVB-induced skin aging. There is an urgent requirement for a treatment that not only controls these pathways to prevent skin aging but also avoids the adverse effects often encountered when applying bioactive compounds in concentrated doses. In this study, we investigated the efficacy of genetically modified normal edible rice (NR) that produces the antiaging compound resveratrol (R) as a treatment for skin aging. This resveratrol-enriched rice (RR) overcomes the drawbacks of R and enhances its antiaging potential by controlling the abovementioned three major pathways of skin aging. RR does not exhibit the toxicity of R alone and promisingly downregulates the pathways underlying UVB-ROS-induced skin aging. These findings advocate the use of RR as a nutraceutical for antiaging purposes. PMID:28900534

  1. Correlation of serum KL-6 and CC16 levels with neurodevelopmental outcome in premature infants at 12 months corrected age

    PubMed Central

    Zhang, Zhiqun; Lu, Hui; Zhu, Yunxia; Xiang, Junhua; Huang, Xianmei

    2015-01-01

    The aim of this study was to evaluate KL-6 and CC16 levels and their correlation with neurodevelopmental outcome among very low birth weight pre-term infants at 12 months corrected age. This prospective cohort study was performed from 2011 to 2013 by enrolling pre-term neonates of gestational age ≤ 32 weeks and birth weight ≤ 1500 g. Serum KL-6 and CC16 levels were determined 7 days after birth and their correlation with neurodevelopment was evaluated using Gesell Mental Developmental Scales. Of the 86 eligible pre-term infants, 63 completed follow-up, of which 15 had bronchopulmonary dysplasia. At 12 months corrected age, 49 infants had favorable outcomes and 14 infants had poor neurodevelopmental outcome. KL-6 levels were higher and CC16 levels were lower in infants with poor neurodevelopmental outcome compared with those infants who had favourable neurodevelopmental outcome. Serum KL-6 levels less than 90.0 ng/ml and CC16 levels greater than 320.0 pg/ml at 7 days of life were found to be predictive of a favourable outcome at 12 months corrected age. These biological markers could predict neurodevelopmental outcome at 12 months corrected age in very low birth weight premature infants, and help the clinician plan early therapeutic interventions to minimize or avoid poor neurodevelopmental outcome. PMID:25631862

  2. Visible skin colouration predicts perception of male facial age, health and attractiveness.

    PubMed

    Fink, B; Bunse, L; Matts, P J; D'Emiliano, D

    2012-08-01

    Although there is evidence that perception of facial age, health and attractiveness is informed by shape characteristics as well as by visible skin condition, studies on the latter have focused almost exclusively on female skin. Recent research, however, suggests that a decrease in skin colour homogeneity leads to older, less healthy and less attractive ratings of facial skin in both women and men. Here, we elaborate on the significance of the homogeneity of visible skin colouration in men by testing the hypothesis that perception of age, health and attractiveness of (non-contextual) digitally isolated fields of cheek skin only can predict that of whole facial images. Facial digital images of 160 British men (all Caucasian) aged between 10 and 70 were blind-rated for age, health and attractiveness by a total of 147 men and 154 women (mean age = 22.95, SD = 4.26), and these ratings were related to those of corresponding images of cheek skin reported by Fink et al. (J. Eur. Acad. Dermatol. Venereol. in press). Linear regression analysis showed that age, health and attractiveness perception of men's faces could be predicted by the ratings of cheek skin only, such that older men were viewed as older, less healthy and less attractive. This result underlines once again the potent signalling role of skin in its own right, independent of shape or other factors and suggests strongly that visible skin condition, and skin colour homogeneity in particular, plays a significant role in the perception of men's faces.

  3. [The usefulness of protective creams on fragile and aged skin].

    PubMed

    Rueda López, Justo; Guerrero Palmero, Alberto; Muñoz Bueno, Ana Maria; Esquius i Carbonell, Jacint; Rosell Moreno, Carmen

    2005-06-01

    The ADDERMIS protective cream has these properties: it prevents skin maceration, exercises a regenerative effect, has bacteriostatic and bactericide activity, possesses a noted anti-inflammatory effect and reduces the risk of mycotic infections. Its application is indicated for use in cases of: skin lesions, such as bed sores or leg ulcers, which require the use of a barrier product; dermatitis lesions in zones of skin folds or due to diaper use; to prevent friction zones; fragile skin; peeling, zones where cracks in the skin appear...and to use for cases of incontinence when diapers are required.

  4. An Analysis of Human Dorsal Hand Skin Texture Using Hyperspectral Imaging Technique for Assessing the Skin Aging Process.

    PubMed

    Calin, Mihaela Antonina; Parasca, Sorin Viorel; Calin, Marian Romeo; Petrescu, Emil

    2016-11-21

    Skin texture has become an important issue in recent research with applications in the cosmetic industry and medicine. In this paper, we analyzed the dependence of skin texture features on wavelength as well as on different parameters (age and gender) of human participants using grey-level co-occurrence matrix and hyperspectral imaging technique for a more accurate quantitative assessment of the aging process. A total of 42 healthy participants (men and women; age range, 20-70 years) was enrolled in this study. A region of interest was selected from the hyperspectral images. The results were analyzed in terms of texture using the gray-level co-occurrence matrix which generated four features (homogeneity, contrast, entropy, and correlation). The results showed that most of these features displayed variations with wavelength (the exception was entropy), with higher variations in women. Only correlation in both sexes and contrast in men proved to vary statistically significant with age, making them the targeted variables in future attempts to characterize aging skin using the complex method of hyperspectral imaging. In conclusion, by using hyperspectral imaging some measure of the degree of damage or the aging process of the hand skin can be obtained, mainly in terms of correlation values. At the present time, reasonable explanations that can link the process of skin aging and the above mentioned features could not be found, but deeper investigations are on the way.

  5. Low birthweight and premature birth are both associated with type 2 diabetes in a random sample of middle-aged Danes.

    PubMed

    Pilgaard, K; Færch, K; Carstensen, B; Poulsen, P; Pisinger, C; Pedersen, O; Witte, D R; Hansen, T; Jørgensen, T; Vaag, A

    2010-12-01

    We studied the associations of size at birth and prematurity with type 2 diabetes, insulin sensitivity and beta cell function in the Danish population-based Inter99 study (ClinicalTrials.gov NCT00289237). Information about size at birth and prematurity was identified from original midwife records in 4,744 middle-aged Danes. Type 2 diabetes status, insulin sensitivity (Matsuda index) and beta cell function (disposition index) were assessed using a 75 g oral glucose tolerance test. Participants born prematurely were compared with a group of at-term participants born small for gestational age. An increase in birthweight of 1 kg was associated with a 51% (OR 0.49, 95% CI 0.35-0.69) reduced risk of type 2 diabetes. Ponderal index, reflecting thinness at birth, was associated with type 2 diabetes to the same extent as birthweight. The prevalence of type 2 diabetes was increased to a similar degree in participants born prematurely and participants born small for gestational age, although the former had a higher ponderal index at birth. In addition, birthweight z-scores, reflecting fetal growth rate, were unrelated to the risk of type 2 diabetes and to other measures of glucose regulation in participants born prematurely. While low birthweight was inversely associated with insulin sensitivity and beta cell function, prematurity was associated solely with decreased insulin sensitivity. While the association between birthweight and risk of type 2 diabetes is mediated via combined effects on beta cell function and insulin sensitivity, prematurity seems to influence risk of type 2 diabetes via attenuated insulin sensitivity only and independently of fetal growth rates.

  6. Characterizing facial skin ageing in humans: disentangling extrinsic from intrinsic biological phenomena.

    PubMed

    Trojahn, Carina; Dobos, Gabor; Lichterfeld, Andrea; Blume-Peytavi, Ulrike; Kottner, Jan

    2015-01-01

    Facial skin ageing is caused by intrinsic and extrinsic mechanisms. Intrinsic ageing is highly related to chronological age. Age related skin changes can be measured using clinical and biophysical methods. The aim of this study was to evaluate whether and how clinical characteristics and biophysical parameters are associated with each other with and without adjustment for chronological age. Twenty-four female subjects of three age groups were enrolled. Clinical assessments (global facial skin ageing, wrinkling, and sagging), and biophysical measurements (roughness, colour, skin elasticity, and barrier function) were conducted at both upper cheeks. Pearson's correlations and linear regression models adjusted for age were calculated. Most of the measured parameters were correlated with chronological age (e.g., association with wrinkle score, r = 0.901) and with each other (e.g., residual skin deformation and wrinkle score, r = 0.606). After statistical adjustment for age, only few associations remained (e.g., mean roughness (R z ) and luminance (L (*)),  β = -0.507, R (2) = 0.377). Chronological age as surrogate marker for intrinsic ageing has the most important influence on most facial skin ageing signs. Changes in skin elasticity, wrinkling, sagging, and yellowness seem to be caused by additional extrinsic ageing.

  7. Characterizing Facial Skin Ageing in Humans: Disentangling Extrinsic from Intrinsic Biological Phenomena

    PubMed Central

    Trojahn, Carina; Dobos, Gabor; Lichterfeld, Andrea; Blume-Peytavi, Ulrike; Kottner, Jan

    2015-01-01

    Facial skin ageing is caused by intrinsic and extrinsic mechanisms. Intrinsic ageing is highly related to chronological age. Age related skin changes can be measured using clinical and biophysical methods. The aim of this study was to evaluate whether and how clinical characteristics and biophysical parameters are associated with each other with and without adjustment for chronological age. Twenty-four female subjects of three age groups were enrolled. Clinical assessments (global facial skin ageing, wrinkling, and sagging), and biophysical measurements (roughness, colour, skin elasticity, and barrier function) were conducted at both upper cheeks. Pearson's correlations and linear regression models adjusted for age were calculated. Most of the measured parameters were correlated with chronological age (e.g., association with wrinkle score, r = 0.901) and with each other (e.g., residual skin deformation and wrinkle score, r = 0.606). After statistical adjustment for age, only few associations remained (e.g., mean roughness (R z) and luminance (L *),  β = −0.507, R 2 = 0.377). Chronological age as surrogate marker for intrinsic ageing has the most important influence on most facial skin ageing signs. Changes in skin elasticity, wrinkling, sagging, and yellowness seem to be caused by additional extrinsic ageing. PMID:25767806

  8. Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence.

    PubMed

    Kural, Kamil C; Tandon, Neetu; Skoblov, Mikhail; Kel-Margoulis, Olga V; Baranova, Ancha V

    2016-12-28

    In culturing normal diploid cells, senescence may either happen naturally, in the form of replicative senescence, or it may be a consequence of external challenges such as oxidative stress. Here we present a comparative analysis aimed at reconstruction of molecular cascades specific for replicative (RS) and stressinduced senescence (SIPS) in human fibroblasts. An involvement of caspase-3/keratin-18 pathway and serine/threonine kinase Aurora A/ MDM2 pathway was shared between RS and SIPS. Moreover, stromelysin/MMP3 and N-acetylglucosaminyltransferase enzyme MGAT1, which initiates the synthesis of hybrid and complex Nglycans, were identified as key orchestrating components in RS and SIPS, respectively. In RS only, Aurora-B driven cell cycle signaling was deregulated in concert with the suppression of anabolic branches of the fatty acids and estrogen metabolism. In SIPS, Aurora-B signaling is deprioritized, and the synthetic branches of cholesterol metabolism are upregulated, rather than downregulated. Moreover, in SIPS, proteasome/ubiquitin ligase pathways of protein degradation dominate the regulatory landscape. This picture indicates that SIPS proceeds in cells that are actively fighting stress which facilitates premature senescence while failing to completely activate the orderly program of RS. The promoters of genes differentially expressed in either RS or SIPS are unusually enriched by the binding sites for homeobox family proteins, with particular emphasis on HMX1, IRX2, HDX and HOXC13. Additionally, we identified Iroquois Homeobox 2 (IRX2) as a master regulator for the secretion of SPP1-encoded osteopontin, a stromal driver for tumor growth that is overexpressed by both RS and SIPS fibroblasts. The latter supports the hypothesis that senescence-specific de-repression of SPP1 aids in SIPS-dependent stromal activation. Reanalysis of previously published experimental data is cost-effective approach for extraction of additional insignts into the functioning of

  9. Molecular Clues to Physiological and Premature Ageing Revealed | Center for Cancer Research

    Cancer.gov

    There are many theories about the molecular basis of ageing. One of the most popular ones postulates that organisms age by accumulating damage to their tissues, cells, and molecules. On the cellular level, ageing is associated with progressive changes in chromatin (a combination of DNA and proteins that makes up chromosomes). These changes include loss of chromatin structure, loss and/or modification of essential proteins, and accumulation of DNA damage.

  10. 'Skin Trade': Genealogy of Anti-ageing 'Whiteness Therapy' in Colonial Medicine.

    PubMed

    Mire, Amina

    2014-01-01

    This article investigates the extent to which the emerging trend of do-it-yourself anti-ageing skin-whitening products represents a re-articulation of Western colonial concerns with environmental pollution and racial degeneracy into concern with gendered vulnerability. This emerging market is a multibillion dollar industry anchored in the USA, but expanding globally. Do-it-yourself anti-ageing skin-whitening products purport to address the needs of those looking to fight the visible signs of ageing, often promising to remove hyper-pigmented age spots from women's skin, and replace it with ageless skin, free from pigmentation. In order to contextualize the investigation of do-it-yourself anti-ageing skin-whitening practice and discourse, this article draws from the literature in colonial commodity culture, colonial tropical medicine, the contemporary anti-ageing discourse, and advertisements for anti-ageing skin-whitening products. First, it argues that the framing of the biomedicalization of ageing as a pigmentation problem caused by deteriorating environmental conditions and unhealthy lifestyle draws tacitly from European colonial concerns with the European body's susceptibility to tropical diseases, pigmentation disorders, and racial degeneration. Second, the article argues that the rise of do-it-yourself anti-ageing skin-whitening commodities that promise to whiten, brighten, and purify the ageing skin of women and frames the visible signs of ageing in terms of pigmentation pathology.

  11. Phenotype-Dependent Coexpression Gene Clusters: Application to Normal and Premature Ageing.

    PubMed

    Wang, Kun; Das, Avinash; Xiong, Zheng-Mei; Cao, Kan; Hannenhalli, Sridhar

    2015-01-01

    Hutchinson Gilford progeria syndrome (HGPS) is a rare genetic disease with symptoms of aging at a very early age. Its molecular basis is not entirely clear, although profound gene expression changes have been reported, and there are some known and other presumed overlaps with normal aging process. Identification of genes with agingor HGPS-associated expression changes is thus an important problem. However, standard regression approaches are currently unsuitable for this task due to limited sample sizes, thus motivating development of alternative approaches. Here, we report a novel iterative multiple regression approach that leverages co-expressed gene clusters to identify gene clusters whose expression co-varies with age and/or HGPS. We have applied our approach to novel RNA-seq profiles in fibroblast cell cultures at three different cellular ages, both from HGPS patients and normal samples. After establishing the robustness of our approach, we perform a comparative investigation of biological processes underlying normal aging and HGPS. Our results recapitulate previously known processes underlying aging as well as suggest numerous unique processes underlying aging and HGPS. The approach could also be useful in detecting phenotype-dependent co-expression gene clusters in other contexts with limited sample sizes.

  12. The sympathetic skin response located in the penis as a predictor of the response to sertraline treatment in patients with primary premature ejaculation.

    PubMed

    Xia, Jiadong; Chen, Taowei; Chen, Jie; Han, Youfeng; Xu, Zhipeng; Zhou, Liuhua; Chen, Yun; Dai, Yutian

    2014-11-01

    The pathologic mechanisms of primary premature ejaculation (PPE) are complex and multifactorial, and hyperactivity of the sympathetic nervous system is one of the mechanisms. To examine the effects of sertraline on sympathetic nervous system activity and assess the predictive value of the sympathetic skin response located in the penis (PSSR) on the response to sertraline treatment in PPE patients. Sixty-one patients with PPE were recruited. Each received 50 mg sertraline daily for 8 weeks. Before and after the experiment, the patients were evaluated for PSSR tests and sexual performance parameters. Additionally, based on the latency of PSSR, we divided the patients into a normal PSSR group and an abnormal PSSR group, and compared the sertraline treatment efficacy between the two groups. Changes in intravaginal ejaculation latency time (IELT) and the Chinese premature ejaculation index-5 (CIPE-5), and the latencies and amplitudes of PSSR after sertraline treatment. Overall, 58 (95.1%) patients completed the entire study and were analyzed. After the 8-week sertraline treatment, compared with those of pretreatment, IELT and CIPE-5 scores were significantly increased (both P < 0.001), and the amplitudes and latencies of PSSR in the PPE patients were remarkably decreased and prolonged, respectively (both P < 0.001). In addition, the changes of the latencies of PSSR were positively correlated with the increment of IELT (r = 0.375, P = 0.004). The treatment outcome was better in patients with a baseline abnormal PSSR than in those with a baseline normal PSSR (P = 0.021). These results suggest that clinical improvement in response to sertraline in the PPE patients, at least in part, is mediated through reducing sympathetic nervous system activity indexed by PSSR. Measurement of the PSSR appears to provide useful information for predicting treatment responses in the PPE patients. © 2014 International Society for Sexual Medicine.

  13. Longitudinal age-related changes in 24-hour total heart beats and premature beats and their relationship in healthy elderly subjects.

    PubMed

    Tasaki, Hirofumi; Serita, Takumi; Ueyama, Chiaki; Kitano, Kouei; Seto, Shinji; Yano, Katsusuke; Camm, A John

    2006-07-01

    The aim of this study was to conduct a longitudinal follow-up on age-related changes in 24-hour total heart beats (THBs) and total premature beats and their correlations in healthy elderly subjects. In 15 healthy elderly subjects (mean age, 70.0 +/- 4.1, age range at 1st recording, 64 to 80 years, 10 females, 5 males), we conducted Holter monitoring twice at an interval of 15 years and analysed age-related changes in THBs, atrial premature beats (APBs), and ventricular premature beats (VPBs), as well as their correlations. The results indicated that THBs, APBs, and VPBs all significantly increased with age in the healthy elderly subjects at a mean age of 70.0 +/- 4.1 (THB: 91074.1 +/- 11515.3 versus 99457.5 +/- 12131.0; P = 0.0004, APB:119.2 +/- 97.8 versus 884.4 +/- 1193.8; P = 0.0008, VPB: 15.2 +/- 53.6 versus 140.7 +/- 228.9; P = 0.0328). Moreover, we divided the subjects into increase and nonincrease groups based on the age-related changes in APB and VPB for 15 years ([n]; Inc-APB: Noninc-APB = 6 : 9, Inc-VPB: Noninc-VPB = 5 : 10). In the increase groups, premature beats tended to increase in proportion to changes in THBs with age (APB: Y = 207.488 + 0.136 X, r = 0.848, P = 0.0303; VPB: Y = -27.594 + 0.028 X, r = 0.727, P = 0.1921). In conclusion, this 15-year follow-up of Holter recordings in healthy elderly subjects revealed that THBs, APBs, and VPBs increased with age, and that the increases in premature beats, especially APBs, were in proportion to those in THBs.

  14. Enhanced expression of cylooxygenase-2 by UV in aged human skin in vivo.

    PubMed

    Seo, Jin Young; Kim, Eun Kyung; Lee, Soo Hwan; Park, Kyung Chan; Kim, Kyu Han; Eun, Hee Chul; Chung, Jin Ho

    2003-01-01

    Prostaglandins (PGs) induced by UV may play important roles in UV-induced inflammation, photocarcinogenesis, and photoaging processes in human skin. The age-related PGE2 production and cyclooxygenase-2 (COX-2) expression in the human skin in vivo remain unclear. The purpose of this study was to examine the influence of aging on UV-induced PGE2 production and COX-2 expression in human skin in vivo. We found that aged human skin produces higher amounts of PGE2 than young skin, when exposed to UV. The inductions of COX-2 mRNA and protein by UV in aged skin were higher than those in the young skin, whereas COX-1 mRNA expression remained unchanged. Aged human macrophage expressed higher amounts of PGE2 and COX-2 protein constitutively, and also induced these species after LPS treatment more so than young cells. Our data suggest that skin aging may increase susceptibility to the development of skin cancer and photoaging, by enhanced PGE2 and COX-2 expression due to UV in human skin in vivo.

  15. Middle-Aged Adults Facing Skin Cancer Information: Fixation, Mood and Behavior

    PubMed Central

    Isaacowitz, Derek M.; Harris, Julia

    2015-01-01

    Older adults fixate less on negative parts of skin cancer videos than younger adults, leading them to feel better (Isaacowitz & Choi, 2012). We extended this paradigm to middle-aged adults (ages 35–59, n=63), whose fixation patterns were measured as they viewed skin cancer videos; mood and behavior were also assessed. Middle-aged adults looked even less at the videos than the other age groups, especially at the negative clips. They also reported the best moods, but relatively low levels of learning and positive skin cancer behavior. In some cases, middle-aged adults may show larger “age-related positivity effects” than older adults. PMID:24956002

  16. The Ontogeny of Skin

    PubMed Central

    Visscher, Marty; Narendran, Vivek

    2014-01-01

    Significance: During gestation, fetal skin progresses from a single layer derived from ectoderm to a complex, multi-layer tissue with the stratum corneum (SC) as the outermost layer. Innate immunity is a conferred complex process involving a balance of pro- and anti-inflammatory cytokines, structural proteins, and specific antigen-presenting cells. The SC is a part of the innate immune system as an impermeable physical barrier containing anti-microbial lipids and host defense proteins. Postnatally, the epidermis continually replenishes itself, provides a protective barrier, and repairs injuries. Recent Advances: Vernix caseosa protects the fetus during gestation and facilitates development of the SC in the aqueous uterine environment. The anti-infective, hydrating, acidification, and wound-healing properties post birth provide insights for the development of strategies that facilitate SC maturation and repair in the premature infant. Critical Issues: Reduction of infant mortality is a global health priority. Premature infants have an incompetent skin barrier putting them at risk for irritant exposure, skin compromise and life-threatening infections. Effective interventions to accelerate skin barrier maturation are compelling. Future Directions: Investigations to determine the ontogeny of barrier maturation, that is, SC structure, composition, cohesiveness, permeability, susceptibility to injury, and microflora, as a function of gestational age are essential. Clinicians need to know when the premature skin barrier becomes fully competent and comparable to healthy newborn skin. This will guide the development of innovative strategies for optimizing skin barrier development. PMID:24761361

  17. SU5416 induces premature senescence in endothelial progenitor cells from patients with age-related macular degeneration

    PubMed Central

    Berna, Marc J.; Kunst, Frank; Wege, Henning; Strunnikova, Natalya V.; Gordiyenko, Natalya; Grierson, Rebecca; Richard, Gisbert; Csaky, Karl G.

    2011-01-01

    Purpose We recently demonstrated increased frequency and growth potential of late outgrowth endothelial progenitor cells (OECs) in patients with neovascular age-related macular degeneration (nvAMD). This study investigated the effects of short- and long-term in vitro inhibition of vascular endothelial growth factor (VEGF) Receptor-2 (VEGFR-2) signaling by SU5416 and other inhibitors of the VEGF signaling pathway in OECs. Methods OECs, from the peripheral blood of patients with nvAMD, and human umbilical vein endothelial cells were grown in the presence of SU5416, other VEGFR-2 tyrosine kinase inhibitors (TKIs), and inhibitors of phosphatidylinositol 3′-Kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) in complete angiogenic medium. Apotosis was assessed after 48 h using the fluorescein isothiocyanate Annexin V method. Cell counts were performed for 10 days, and features of senescence were analyzed using senescence-associated β-galactosidase staining, the telomeric repeat amplification protocol for telomerase activity, Southern blot analysis for mean telomere length, flow cytometric analysis for cell-cycle arrest, and western blot for p53 and p21. Control OECs, cells treated for 7 days with inhibitors, as well as naturally senescent OECs were analyzed for expression of different endothelial antigens, including VEGFR-2 and the receptor for stromal cell-derived factor 1, chemokine receptor 4 (CXCR-4). Migration in vitro to VEGF and stromal cell-derived factor 1 of OECs was assessed. Results SU5416, other VEGFR-2 TKIs, and inhibitors of PI3K, Akt, and PKC induced apoptosis, inhibited long-term proliferation, reduced telomerase activity, and induced premature senescence and cell-cycle arrest in OECs as well as in human umbilical vein endothelial cells. Naturally senescent cells and cells rendered senescent by VEGFR-2 TKIs had reduced VEGFR-2 and CXCR-4 expression and demonstrated reduced migratory ability to VEGF. Conclusions This study demonstrates

  18. Development of the Corticospinal and Callosal Tracts from Extremely Premature Birth up to 2 Years of Age.

    PubMed

    Braga, Rodrigo M; Roze, Elise; Ball, Gareth; Merchant, Nazakat; Tusor, Nora; Arichi, Tomoki; Edwards, David; Rueckert, Daniel; Counsell, Serena J

    2015-01-01

    White matter tracts mature asymmetrically during development, and this development can be studied using diffusion magnetic resonance imaging. The aims of this study were i. to generate dynamic population-averaged white matter registration templates covering in detail the period from 25 weeks gestational age to term, and extending to 2 years of age based on DTI and fractional anisotropy, ii. to produce tract-specific probability maps of the corticospinal tracts, forceps major and forceps minor using probabilistic tractography, and iii. to assess the development of these tracts throughout this critical period of neurodevelopment. We found evidence for asymmetric development across the fiber bundles studied, with the corticospinal tracts showing earlier maturation (as measured by fractional anisotropy) but slower volumetric growth compared to the callosal fibers. We also found evidence for an anterior to posterior gradient in white matter microstructure development (as measured by mean diffusivity) in the callosal fibers, with the posterior forceps major developing at a faster rate than the anterior forceps minor in this age range. Finally, we report a protocol for delineating callosal and corticospinal fibers in extremely premature cohorts, and make available population-averaged registration templates and a probabilistic tract atlas which we hope will be useful for future neonatal and infant white-matter imaging studies.

  19. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function

    PubMed Central

    Issa, Abdul-Raouf; Seugnet, Laurent; Klarsfeld, André

    2017-01-01

    Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila. PMID:28072817

  20. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function.

    PubMed

    Vaccaro, Alexandra; Issa, Abdul-Raouf; Seugnet, Laurent; Birman, Serge; Klarsfeld, André

    2017-01-01

    Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila.

  1. [Development deficit risks in the late premature newborn: Evaluation at 48 months using the Ages & Stages Questionnaires®].

    PubMed

    Demestre, X; Schonhaut, L; Morillas, J; Martínez-Nadal, S; Vila, C; Raspall, F; Sala, P

    2016-01-01

    Lack of specific monitoring protocols hinders the knowledge of the impact of late prematurity on delayed psychomotor development. The objective of this study is to evaluate this at 48 months and compare it with those born at term. A retrospective cohort study was conducted on 90 late preterm (PT) and 89 term (AT) healthy children at 48 months, assessed by the Ages & Stages Questionnaires® (ASQ-3). Continuous variables described using mean and standard deviation compared with the t Student t test for independent samples. The categorical variables were described as frequencies and proportions, compared with the Chi-square test of independence. A cut-off was determined for the total score of ASQ-3 able to discriminate the risk of developmental deficit by a ROC analysis. A step-wise logistic regression model identified the associated risk factors. The mean scores for each domain and overall ASQ-3 score showed no differences between groups. However, when analyzing the probability density for the ASQ-3 total score of ≤251 points, 15 PT (16.6%) and 4 AT (4.5%) showed risk of psychomotor deficits, and late prematurity and lack of breastfeeding were significantly associated factors. There is an increased prevalence of risk of development deficit in the PT, which justifies considering this population at risk and establishing effective monitoring programs. It should be further investigated whether this risk corresponds to the entire population, or if there are biological factors or perinatal history that makes them more vulnerable. Copyright © 2015 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  2. Premature aging-related peripheral neuropathy in a mouse model of progeria.

    PubMed

    Goss, James R; Stolz, Donna Beer; Robinson, Andria Rasile; Zhang, Mingdi; Arbujas, Norma; Robbins, Paul D; Glorioso, Joseph C; Niedernhofer, Laura J

    2011-08-01

    Peripheral neuropathy is a common aging-related degenerative disorder that interferes with daily activities and leads to increased risk of falls and injury in the elderly. The etiology of most aging-related peripheral neuropathy is unknown. Inherited defects in several genome maintenance mechanisms cause tissue-specific accelerated aging, including neurodegeneration. We tested the hypothesis that a murine model of XFE progeroid syndrome, caused by reduced expression of ERCC1-XPF DNA repair endonuclease, develops peripheral neuropathy. Nerve conduction studies revealed normal nerve function in young adult (8 week) Ercc1(-/Δ) mice, but significant abnormalities in 20 week-old animals. Morphologic and ultrastructural analysis of the sciatic nerve from mutant mice revealed significant alterations at 20 but not 8 weeks of age. We conclude that Ercc1(-/Δ) mice have accelerated spontaneous peripheral neurodegeneration that mimics aging-related disease. This provides strong evidence that DNA damage can drive peripheral neuropathy and offers a rapid and novel model to test therapies.

  3. The effect of mother-infant skin-to-skin contact on infants' response to the Still Face Task from newborn to three months of age.

    PubMed

    Bigelow, Ann E; Power, Michelle

    2012-04-01

    The effect of mother-infant skin-to-skin contact on infants' developing social expectations for maternal behavior was investigated longitudinally over infants' first 3 months. Infants with and without skin-to-skin contact engaged with their mothers in the Still Face Task at ages 1 week, 1 month, 2 months, and 3 months. Infants with skin-to-skin contact began responding to changes in their mothers' behavior with their affect at 1 month; infants without skin-to-skin contact did so at 2 months. At 3 months, infants with skin-to-skin contact increased their non-distress vocalizations during the still face phase, suggesting social bidding to their mothers. Skin-to-skin contact accelerated infants' social expectations for their mothers' behavior and enhanced infants' awareness of themselves as active agents in social interactions.

  4. Retinoids suppress cysteine-rich protein 61 (CCN1), a negative regulator of collagen homeostasis, in skin equivalent cultures and aged human skin in vivo.

    PubMed

    Quan, Taihao; Qin, Zhaoping; Shao, Yuan; Xu, Yiru; Voorhees, John J; Fisher, Gary J

    2011-07-01

    Alterations in connective tissue collagen are prominent features of both chronologically aged and photoaged (ageing because of sun exposure) human skin. These age-related abnormalities are mediated in part by cysteine-rich protein 61 (CCN1). CCN1 is elevated in the dermis of both chronologically aged and photoaged human skin in vivo and promotes aberrant collagen homeostasis by down-regulating type I collagen, the major structural protein in skin, and promoting collagen degradation. Vitamin A and its metabolites have been shown to improve chronologically aged and photoaged skin by promoting deposition of new collagen and preventing its degradation. Here, we investigated regulation of CCN1 expression by retinoids in skin equivalent cultures and chronologically aged and photoaged human skin in vivo. In skin equivalent cultures, all-trans retinoic acid (RA), the major bioactive form of vitamin A in skin, significantly increased type I procollagen and reduced collagenase (matrix metalloproteinases-1, MMP-1). Addition of recombinant human CCN1 to skin equivalent cultures significantly reduced type I procollagen and increased MMP-1. Importantly, RA significantly reduced CCN1 expression in skin equivalent cultures. Topical treatment with retinol (vitamin A, 0.4%) for 7days significantly reduced CCN1 mRNA and protein expression in both chronologically aged (80+years) and photoaged human skin in vivo, compared to vehicle-treated skin. These data indicate that the mechanism by which retinoids improve aged skin, through increased collagen production, involves down-regulation of CCN1.

  5. Aging-like skin changes in metabolic syndrome model mice are mediated by mineralocorticoid receptor signaling.

    PubMed

    Nagase, Takashi; Akase, Tomoko; Sanada, Hiromi; Minematsu, Takeo; Ibuki, Ai; Huang, Lijuan; Asada, Mayumi; Yoshimura, Kotaro; Nagase, Miki; Shimada, Tsutomu; Aburada, Masaki; Nakagami, Gojiro; Sugama, Junko

    2013-02-01

    Aging is accelerated, at least in part, by pathological condition such as metabolic syndrome (MetS), and various molecular pathways such as oxidative stress are common mediators of aging and MetS. We previously developed the aging-like skin model by single ultraviolet (UV) irradiation on the MetS model mice. Recent studies revealed that mineralocorticoid receptor (MR) signaling plays a pivotal role for various tissue inflammation and damages in MetS. Although previous studies reported that MR is expressed in the skin and that overexpression of MR in the skin resulted in the skin atrophy, the physiological or pathological functions of MR in the skin are not fully elucidated. Here, we show the involvement of MR signaling in the aging-like skin changes in our own model. Elevations of oxidative stress and inflammation markers were observed in the MetS mice, and the UV-evoked aging-like skin damages were attenuated by topical antioxidant. MR expression was higher in the MetS mouse skin, and notably, expression of its effecter gene Sgk1 was significantly upregulated in the aging-like skin in the UV-irradiated MetS mice. Furthermore, topical application of MR antagonist spironolactone suppressed Sgk1 expression, oxidative stress, inflammation, and the aging-like changes in the skin. The 2-week UV onto the non-MetS mice, the more usual photoaging model, resulted in the skin damages mostly equivalent to the MetS mice with single UV, but they were not associated with upregulation of MR signaling. Our studies suggested an unexpected role of MR signaling in the skin aging in MetS status.

  6. Premature age-related comorbidities among HIV-infected persons compared with the general population.

    PubMed

    Guaraldi, Giovanni; Orlando, Gabriella; Zona, Stefano; Menozzi, Marianna; Carli, Federica; Garlassi, Elisa; Berti, Alessandra; Rossi, Elisa; Roverato, Alberto; Palella, Frank

    2011-12-01

    Human immunodeficiency virus (HIV)-infected patients may have a greater risk of noninfectious comorbidities (NICMs) compared with the general population. We assessed the prevalence and risk factors for NICMs in a large cohort of HIV-infected adults and compared these findings with data from matched control subjects. We performed a case-control study involving antiretroviral therapy (ART)-experienced HIV-infected patients treated at Modena University, Italy, from 2002 through 2009. These patients were compared with age-, sex-, and race-matched adults (control subjects) from the general population included in the CINECA ARNO database. NICMs included cardiovascular disease, hypertension, diabetes mellitus, bone fractures, and renal failure. Polypathology (Pp) was defined as the concurrent presence of ≥2 NICMs. Logistic regression models were constructed to evaluate associated predictors of NICMs and Pp. There were 2854 patients and 8562 control subjects. The mean age was 46 years, and 37% were women. Individual NICM and Pp prevalences in each age stratum were higher among patients than among controls (all P <.001). Pp prevalence among patients aged 41-50 years was similar to that among controls aged 51-60 years (P value was not statistically significant); diabetes mellitus, cardiovascular disease, bone fractures, and renal failure were statistically independent after adjustment for sex, age, and hypertension. Logistic regression models showed that independent predictors of Pp in the overall cohort were (all P < .001) age (odds ratio [OR], 1.11), male sex (OR, 1.77), nadir CD4 cell count <200 cells/μL (OR, 4.46), and ART exposure (OR, 1.01). Specific age-related NICMs and Pp were more common among HIV-infected patients than in the general population. The prevalence of Pp in HIV-infected persons anticipated Pp prevalence observed in the general population among persons who were 10 years older, and HIV-specific cofactors (lower nadir CD4 cell count and more prolonged

  7. Polysaccharide Extracted from Laminaria japonica Delays Intrinsic Skin Aging in Mice

    PubMed Central

    Hu, Longyuan; Tan, Jia; Yang, Xiaomei; Tan, Haitao; Xu, Xiaozhen; You, Manhang; Qin, Wu; Huang, Liangzhao; Li, Siqi; Mo, Manqiu; Wei, Huifen; Li, Jing; Tan, Jiyong

    2016-01-01

    This study aimed to determine the effect of topically applied Laminaria polysaccharide (LP) on skin aging. We applied ointment containing LP (10, 25, and 50 μg/g) or vitamin E (10 μg/g) to the dorsal skin of aging mice for 12 months and young control mice for 4 weeks. Electron microscopy analysis of skin samples revealed that LP increased dermal thickness and skin collagen content. Tissue inhibitor of metalloprotease- (TIMP-) 1 expression was upregulated while that of matrix metalloproteinase- (MMP-) 1 was downregulated in skin tissue of LP-treated as compared to untreated aging mice. Additionally, phosphorylation of c-Jun N-terminal kinase (JNK) and p38 was higher in aging skin than in young skin, while LP treatment suppressed phospho-JNK expression. LP application also enhanced the expression of antioxidative enzymes in skin tissue, causing a decrease in malondialdehyde levels and increases in superoxide dismutase, catalase, and glutathione peroxidase levels relative to those in untreated aging mice. These results indicate that LP inhibits MMP-1 expression by preventing oxidative stress and JNK phosphorylation, thereby delaying skin collagen breakdown during aging. PMID:27143987

  8. Rejuvenation of Gene Expression Pattern of Aged Human Skin by Broadband Light Treatment: A Pilot Study

    PubMed Central

    Chang, Anne Lynn S; Bitter, Patrick H; Qu, Kun; Lin, Meihong; Rapicavoli, Nicole A; Chang, Howard Y

    2013-01-01

    Studies in model organisms suggest that aged cells can be functionally rejuvenated, but whether this concept applies to human skin is unclear. Here we apply 3′-end sequencing for expression quantification (“3-seq”) to discover the gene expression program associated with human photoaging and intrinsic skin aging (collectively termed “skin aging”), and the impact of broadband light (BBL) treatment. We find that skin aging was associated with a significantly altered expression level of 2,265 coding and noncoding RNAs, of which 1,293 became “rejuvenated” after BBL treatment; i.e., they became more similar to their expression level in youthful skin. Rejuvenated genes (RGs) included several known key regulators of organismal longevity and their proximal long noncoding RNAs. Skin aging is not associated with systematic changes in 3′-end mRNA processing. Hence, BBL treatment can restore gene expression pattern of photoaged and intrinsically aged human skin to resemble young skin. In addition, our data reveal, to our knowledge, a previously unreported set of targets that may lead to new insights into the human skin aging process. PMID:22931923

  9. Inflammation and Oxidative Stress as Biomarkers of Premature Aging in Persons with Intellectual Disability

    ERIC Educational Resources Information Center

    Carmeli, Eli; Imam, Bita; Bachar, Asad; Merrick, Joav

    2012-01-01

    The decline in cognitive ability and physical performance in older adults with intellectual disabilities (ID) is accompanied by less participation in social activities and a sedentary lifestyle; however the pathogenesis is not clear yet. It was recently suggested that chronic disease, adverse drug reactions, and aging create a cascade of events…

  10. Inflammation and Oxidative Stress as Biomarkers of Premature Aging in Persons with Intellectual Disability

    ERIC Educational Resources Information Center

    Carmeli, Eli; Imam, Bita; Bachar, Asad; Merrick, Joav

    2012-01-01

    The decline in cognitive ability and physical performance in older adults with intellectual disabilities (ID) is accompanied by less participation in social activities and a sedentary lifestyle; however the pathogenesis is not clear yet. It was recently suggested that chronic disease, adverse drug reactions, and aging create a cascade of events…

  11. Skin Delivery of Kojic Acid-Loaded Nanotechnology-Based Drug Delivery Systems for the Treatment of Skin Aging

    PubMed Central

    Gonçalez, M. L.; Corrêa, M. A.; Chorilli, M.

    2013-01-01

    The aging process causes a number of changes in the skin, including oxidative stress and dyschromia. The kojic acid (KA) is iron chelator employed in treatment of skin aging, and inhibits tyrosinase, promotes depigmentation. Nanotechnology-based drug delivery systems, such as liquid crystalline systems (LCSs), can modulate drug permeation through the skin and improve the drug activity. This study is aimed at structurally developing and characterizing a kojic acid-loaded LCS, consists of water (W), cetostearyl isononanoate (oil—O) and PPG-5-CETETH-20 (surfactant-S) and evaluating its in vitro skin permeation and retention. Three regions of the diagram were selected for characterization: A (35% O, 50% S, 15% W), B (30% O, 50% S, 20% W) and C (20% O, 50% S, 30% W), to which 2% KA was added. The formulations were subjected to polarized light microscopy, which indicated the presence of a hexagonal mesophase. Texture and bioadhesion assay showed that formulation B is suitable for topical application. According to the results from the in vitro permeation and retention of KA, the formulations developed can modulate the permeation of KA in the skin. The in vitro cytotoxic assays showed that KA-unloaded LCS and KA-loaded LCS didn't present cytotoxicity. PPG-5-CETETH-20-based systems may be a promising platform for KA skin delivery. PMID:24369010

  12. Metabolic Damage and Premature Thymus Aging Caused by Stromal Catalase Deficiency.

    PubMed

    Griffith, Ann V; Venables, Thomas; Shi, Jianjun; Farr, Andrew; van Remmen, Holly; Szweda, Luke; Fallahi, Mohammad; Rabinovitch, Peter; Petrie, Howard T

    2015-08-18

    T lymphocytes are essential mediators of immunity that are produced by the thymus in proportion to its size. The thymus atrophies rapidly with age, resulting in progressive diminution of new T cell production. This decreased output is compensated by duplication of existing T cells, but it results in gradual dominance by memory T cells and decreased ability to respond to new pathogens or vaccines. Here, we show that accelerated and irreversible thymic atrophy results from stromal deficiency in the reducing enzyme catalase, leading to increased damage by hydrogen peroxide generated by aerobic metabolism. Genetic complementation of catalase in stromal cells diminished atrophy, as did chemical antioxidants, thus providing a mechanistic link between antioxidants, metabolism, and normal immune function. We propose that irreversible thymic atrophy represents a conventional aging process that is accelerated by stromal catalase deficiency in the context of an intensely anabolic (lymphoid) environment.

  13. Loss of p53-mediated cell-cycle arrest, senescence and apoptosis promotes genomic instability and premature aging.

    PubMed

    Li, Tongyuan; Liu, Xiangyu; Jiang, Le; Manfredi, James; Zha, Shan; Gu, Wei

    2016-03-15

    Although p53-mediated cell cycle arrest, senescence and apoptosis are well accepted as major tumor suppression mechanisms, the loss of these functions does not directly lead to tumorigenesis, suggesting that the precise roles of these canonical activities of p53 need to be redefined. Here, we report that the cells derived from the mutant mice expressing p533KR, an acetylation-defective mutant that fails to induce cell-cycle arrest, senescence and apoptosis, exhibit high levels of aneuploidy upon DNA damage. Moreover, the embryonic lethality caused by the deficiency of XRCC4, a key DNA double strand break repair factor, can be fully rescued in the p533KR/3KR background. Notably, despite high levels of genomic instability, p533KR/3KRXRCC4-/- mice, unlike p53-/- XRCC4-/- mice, are not succumbed to pro-B-cell lymphomas. Nevertheless, p533KR/3KR XRCC4-/- mice display aging-like phenotypes including testicular atrophy, kyphosis, and premature death. Further analyses demonstrate that SLC7A11 is downregulated and that p53-mediated ferroptosis is significantly induced in spleens and testis of p533KR/3KRXRCC4-/- mice. These results demonstrate that the direct role of p53-mediated cell cycle arrest, senescence and apoptosis is to control genomic stability in vivo. Our study not only validates the importance of ferroptosis in p53-mediated tumor suppression in vivo but also reveals that the combination of genomic instability and activation of ferroptosis may promote aging-associated phenotypes.

  14. Hypermethylation of FOXP3 Promoter and Premature Aging of the Immune System in Female Patients with Panic Disorder?

    PubMed

    Prelog, Martina; Hilligardt, Deborah; Schmidt, Christian A; Przybylski, Grzegorz K; Leierer, Johannes; Almanzar, Giovanni; El Hajj, Nady; Lesch, Klaus-Peter; Arolt, Volker; Zwanzger, Peter; Haaf, Thomas; Domschke, Katharina

    2016-01-01

    Immunological abnormalities associated with pathological conditions, such as higher infection rates, inflammatory diseases, cancer or cardiovascular events are common in patients with panic disorder. In the present study, T cell receptor excision circles (TRECs), Forkhead-Box-Protein P3 gene (FOXP3) methylation of regulatory T cells (Tregs) and relative telomere lengths (RTLs) were investigated in a total and subsamples of 131 patients with panic disorder as compared to 131 age- and sex-matched healthy controls in order to test for a potential dysfunction and premature aging of the immune system in anxiety disorders. Significantly lower TRECs (p = 0.004) as well as significant hypermethylation of the FOXP3 promoter region (p = 0.005) were observed in female (but not in male) patients with panic disorder as compared to healthy controls. No difference in relative telomere length was discerned between patients and controls, but significantly shorter telomeres in females, smokers and older persons within the patient group. The presently observed reduced TRECs in panic disorder patients and FOXP3 hypermethylation in female patients with panic disorder potentially reflect impaired thymus and immunosuppressive Treg function, which might partly account for the known increased morbidity and mortality of anxiety disorders conferred by e.g. cancer and cardiovascular disorders.

  15. Hypermethylation of FOXP3 Promoter and Premature Aging of the Immune System in Female Patients with Panic Disorder?

    PubMed Central

    Prelog, Martina; Hilligardt, Deborah; Schmidt, Christian A.; Przybylski, Grzegorz K.; Leierer, Johannes; Almanzar, Giovanni; El Hajj, Nady; Lesch, Klaus-Peter; Arolt, Volker; Zwanzger, Peter; Haaf, Thomas; Domschke, Katharina

    2016-01-01

    Immunological abnormalities associated with pathological conditions, such as higher infection rates, inflammatory diseases, cancer or cardiovascular events are common in patients with panic disorder. In the present study, T cell receptor excision circles (TRECs), Forkhead-Box-Protein P3 gene (FOXP3) methylation of regulatory T cells (Tregs) and relative telomere lengths (RTLs) were investigated in a total and subsamples of 131 patients with panic disorder as compared to 131 age- and sex-matched healthy controls in order to test for a potential dysfunction and premature aging of the immune system in anxiety disorders. Significantly lower TRECs (p = 0.004) as well as significant hypermethylation of the FOXP3 promoter region (p = 0.005) were observed in female (but not in male) patients with panic disorder as compared to healthy controls. No difference in relative telomere length was discerned between patients and controls, but significantly shorter telomeres in females, smokers and older persons within the patient group. The presently observed reduced TRECs in panic disorder patients and FOXP3 hypermethylation in female patients with panic disorder potentially reflect impaired thymus and immunosuppressive Treg function, which might partly account for the known increased morbidity and mortality of anxiety disorders conferred by e.g. cancer and cardiovascular disorders. PMID:27362416

  16. Premature Ejaculation

    MedlinePlus

    ... may help men who have premature ejaculation. Some antidepressants seem to help delay ejaculation, including antidepressants called selective serotonin reuptake inhibitors (SSRIs). These antidepressants ...

  17. Influence of skin ageing features on Chinese women's perception of facial age and attractiveness

    PubMed Central

    Porcheron, A; Latreille, J; Jdid, R; Tschachler, E; Morizot, F

    2014-01-01

    Objectives Ageing leads to characteristic changes in the appearance of facial skin. Among these changes, we can distinguish the skin topographic cues (skin sagging and wrinkles), the dark spots and the dark circles around the eyes. Although skin changes are similar in Caucasian and Chinese faces, the age of occurrence and the severity of age-related features differ between the two populations. Little is known about how the ageing of skin influences the perception of female faces in Chinese women. The aim of this study is to evaluate the contribution of the different age-related skin features to the perception of age and attractiveness in Chinese women. Methods Facial images of Caucasian women and Chinese women in their 60s were manipulated separately to reduce the following skin features: (i) skin sagging and wrinkles, (ii) dark spots and (iii) dark circles. Finally, all signs were reduced simultaneously (iv). Female Chinese participants were asked to estimate the age difference between the modified and original images and evaluate the attractiveness of modified and original faces. Results Chinese women perceived the Chinese faces as younger after the manipulation of dark spots than after the reduction in wrinkles/sagging, whereas they perceived the Caucasian faces as the youngest after the manipulation of wrinkles/sagging. Interestingly, Chinese women evaluated faces with reduced dark spots as being the most attractive whatever the origin of the face. The manipulation of dark circles contributed to making Caucasian and Chinese faces being perceived younger and more attractive than the original faces, although the effect was less pronounced than for the two other types of manipulation. Conclusion This is the first study to have examined the influence of various age-related skin features on the facial age and attractiveness perception of Chinese women. The results highlight different contributions of dark spots, sagging/wrinkles and dark circles to their perception

  18. Reversible cell cycle inhibition and premature aging features imposed by conditional expression of p16Ink4a

    PubMed Central

    Boquoi, Amelie; Arora, Sanjeevani; Chen, Tina; Litwin, Sam; Koh, James; Enders, Greg H

    2015-01-01

    The cyclin-dependent kinase (Cdk) inhibitor p16Ink4a (p16) is a canonical mediator of cellular senescence and accumulates in aging tissues, where it constrains proliferation of some progenitor cells. However, whether p16 induction in tissues is sufficient to inhibit cell proliferation, mediate senescence, and/or impose aging features has remained unclear. To address these issues, we generated transgenic mice that permit conditional p16 expression. Broad induction at weaning inhibited proliferation of intestinal transit-amplifying and Lgr5+ stem cells and rapidly imposed features of aging, including hair loss, skin wrinkling, reduced body weight and subcutaneous fat, an increased myeloid fraction in peripheral blood, poor dentition, and cataracts. Aging features were observed with multiple combinations of p16 transgenes and transactivators and were largely abrogated by a germline Cdk4 R24C mutation, confirming that they reflect Cdk inhibition. Senescence markers were not found, and de-induction of p16, even after weeks of sustained expression, allowed rapid recovery of intestinal cell proliferation and reversal of aging features in most mice. These results suggest that p16-mediated inhibition of Cdk activity is sufficient to inhibit cell proliferation and impose aging features in somatic tissues of mammals and that at least some of these aging features are reversible. PMID:25481981

  19. Genetic variants associated with skin aging in the Chinese Han population.

    PubMed

    Gao, Wenshan; Tan, Jingze; Hüls, Anke; Ding, Anan; Liu, Yu; Matsui, Mary S; Vierkötter, Andrea; Krutmann, Jean; Schikowski, Tamara; Jin, Li; Wang, Sijia

    2017-04-01

    The progression and manifestation of human skin aging has a strong genetic basis; however, most of the supporting evidence has been gathered in Caucasian populations. The genetic contribution to the variation in skin aging in non-Caucasian populations is poorly understood. To investigate the genetic risk factors of relevance for skin aging in East Asians, we conducted the first candidate gene study for signs of skin aging in Han Chinese. We collected skin aging and genotype data in 502 female Han Chinese from the Taizhou cohort. We evaluated skin aging by the validated skin aging score SCINEXA™. Confounding factors were assessed through a questionnaire. We obtained the genotype data for 21 candidate SNPs and for a further 509 SNPs from 16 related candidate genes. Associations were tested by linear and logistic regression analyses and adjusted for potential confounders. Our candidate study found a significant association between SNP rs2066853 in exon 10 of the aryl hydrocarbon receptor gene AHR and crow's feet. In addition, we found a significant association between SNP rs10733310 in intron 5 of BNC2 and pigment spots on the arms, and between SNP rs11979919, 3kb downstream of COL1A2, and laxity of eyelids. Our results identified genetic risk factors for signs of skin aging (pigmentation, wrinkles or laxity) in Han Chinese. We also found that the manifestation of skin aging is further modified by anatomical site. Together with previous work, our results also suggest that different genetic variants could be responsible for distinct skin aging signs characteristic of Caucasians compared to East Asians. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Exercise-stimulated interleukin-15 is controlled by AMPK and regulates skin metabolism and aging

    PubMed Central

    Crane, Justin D; MacNeil, Lauren G; Lally, James S; Ford, Rebecca J; Bujak, Adam L; Brar, Ikdip K; Kemp, Bruce E; Raha, Sandeep; Steinberg, Gregory R; Tarnopolsky, Mark A

    2015-01-01

    Aging is commonly associated with a structural deterioration of skin that compromises its barrier function, healing, and susceptibility to disease. Several lines of evidence show that these changes are driven largely by impaired tissue mitochondrial metabolism. While exercise is associated with numerous health benefits, there is no evidence that it affects skin tissue or that endocrine muscle-to-skin signaling occurs. We demonstrate that endurance exercise attenuates age-associated changes to skin in humans and mice and identify exercise-induced IL-15 as a novel regulator of mitochondrial function in aging skin. We show that exercise controls IL-15 expression in part through skeletal muscle AMP-activated protein kinase (AMPK), a central regulator of metabolism, and that the elimination of muscle AMPK causes a deterioration of skin structure. Finally, we establish that daily IL-15 therapy mimics some of the anti-aging effects of exercise on muscle and skin in mice. Thus, we elucidate a mechanism by which exercise confers health benefits to skin and suggest that low-dose IL-15 therapy may prove to be a beneficial strategy to attenuate skin aging. PMID:25902870

  1. Exercise-stimulated interleukin-15 is controlled by AMPK and regulates skin metabolism and aging.

    PubMed

    Crane, Justin D; MacNeil, Lauren G; Lally, James S; Ford, Rebecca J; Bujak, Adam L; Brar, Ikdip K; Kemp, Bruce E; Raha, Sandeep; Steinberg, Gregory R; Tarnopolsky, Mark A

    2015-08-01

    Aging is commonly associated with a structural deterioration of skin that compromises its barrier function, healing, and susceptibility to disease. Several lines of evidence show that these changes are driven largely by impaired tissue mitochondrial metabolism. While exercise is associated with numerous health benefits, there is no evidence that it affects skin tissue or that endocrine muscle-to-skin signaling occurs. We demonstrate that endurance exercise attenuates age-associated changes to skin in humans and mice and identify exercise-induced IL-15 as a novel regulator of mitochondrial function in aging skin. We show that exercise controls IL-15 expression in part through skeletal muscle AMP-activated protein kinase (AMPK), a central regulator of metabolism, and that the elimination of muscle AMPK causes a deterioration of skin structure. Finally, we establish that daily IL-15 therapy mimics some of the anti-aging effects of exercise on muscle and skin in mice. Thus, we elucidate a mechanism by which exercise confers health benefits to skin and suggest that low-dose IL-15 therapy may prove to be a beneficial strategy to attenuate skin aging.

  2. Effects of aging and postmenopausal hypoestrogenism on skin elasticity and bone mineral density in Japanese women.

    PubMed

    Sumino, Hiroyuki; Ichikawa, Shuichi; Abe, Masatoshi; Endo, Yukie; Nakajima, Yoshikazu; Minegishi, Takashi; Ishikawa, Osamu; Kurabayashi, Masahiko

    2004-04-01

    Skin collagen content and bone mass decrease with aging. Loss of collagen from the skin might decrease its elasticity. We investigated associations between skin elasticity, bone mineral density (BMD), age, and menopausal hypoestrogenism. Thirty-eight healthy Japanese postmenopausal women were studied (mean age, 55.7 +/- 5.9 yr; range, 48 to 71). Skin elasticity was measured using a suction device applied to the dorsal right forearm. BMD values of L2 to 4 vertebral bodies were measured by dual-energy X-ray absorptiometry. Age showed significant negative correlations with both skin elasticity and BMD (r = -0.57, p<0.001 and r = -0.40, p<0.05, respectively). Years since menopause also showed significant negative correlations with both skin elasticity and BMD (r = -0.51, p<0.01 and r = -0.41, p<0.05, respectively). We also found a positive correlation between skin elasticity and BMD in these postmenopausal women (r = 0.44, p<0.01). In conclusion, we demonstrated declining skin elasticity and bone mass in postmenopausal women to possibly be age- and estrogen-related. Additionally, decreased skin elasticity might serve as a predictor of bone loss in postmenopausal women.

  3. Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective.

    PubMed

    Cau, Pierre; Navarro, Claire; Harhouri, Karim; Roll, Patrice; Sigaudy, Sabine; Kaspi, Elise; Perrin, Sophie; De Sandre-Giovannoli, Annachiara; Lévy, Nicolas

    2014-05-01

    Lamin A-related progeroid syndromes are genetically determined, extremely rare and severe. In the past ten years, our knowledge and perspectives for these diseases has widely progressed, through the progressive dissection of their pathophysiological mechanisms leading to precocious and accelerated aging, from the genes mutations discovery until therapeutic trials in affected children. A-type lamins are major actors in several structural and functional activities at the nuclear periphery, as they are major components of the nuclear lamina. However, while this is usually poorly considered, they also play a key role within the rest of the nucleoplasm, whose defects are related to cell senescence. Although nuclear shape and nuclear envelope deformities are obvious and visible events, nuclear matrix disorganization and abnormal composition certainly represent the most important causes of cell defects with dramatic pathological consequences. Therefore, lamin-associated diseases should be better referred as laminopathies instead of envelopathies, this later being too restrictive, considering neither the key structural and functional roles of soluble lamins in the entire nucleoplasm, nor the nuclear matrix contribution to the pathophysiology of lamin-associated disorders and in particular in defective lamin A processing-associated aging diseases. Based on both our understanding of pathophysiological mechanisms and the biological and clinical consequences of progeria and related diseases, therapeutic trials have been conducted in patients and were terminated less than 10 years after the gene discovery, a quite fast issue for a genetic disease. Pharmacological drugs have been repurposed and used to decrease the toxicity of the accumulated, unprocessed and truncated prelaminA in progeria. To date, none of them may be considered as a cure for progeria and these clinical strategies were essentially designed toward reducing a subset of the most dramatic and morbid features

  4. The interrealtionship between locally applied heat, ageing and skin blood flow on heat transfer into and from the skin.

    PubMed

    Petrofsky, Jerrold; Alshahmmari, Faris; Yim, Jong Eun; Hamdan, Adel; Lee, Haneul; Neupane, Sushma; Shetye, Gauri; Moniz, Harold; Chen, Wei-Ti; Cho, Sungkwan; Pathak, Kunal; Malthane, Swapnil; Shenoy, Samruddha; Somanaboina, Karunakar; Alshaharani, Mastour; Nevgi, Bhakti; Dave, Bhargav; Desai, Rajavi

    2011-07-01

    In response to a thermal stress, skin blood flow (BF) increases to protect the skin from damage. When a very warm, noxious, heat source (44 °C) is applied to the skin, the BF increases disproportionately faster than the heat stress that was applied, creating a safety mechanism for protecting the skin. In the present investigation, the rate of rise of BF in response to applied heat at temperatures between 32 °C and 40 °C was examined as well as the thermal transfer to and from the skin with and without BF in younger and older subjects to see how the skin responds to a non-noxious heat source. Twenty male and female subjects (10 - 20-35 years, 10 - 40-70 years) were examined. The arms of the subjects were passively heated for 6 min with and without vascular occlusion by a thermode at temperatures of 32, 36, 38 or 40 °C. When occlusion was not used during the 6 min exposure to heat, there was an exponential rise in skin temperature and BF in both groups of subjects over the 6-min period. However, the older subjects achieved similar skin temperatures but with the expenditure of fewer calories from the thermode than was seen for the younger subjects (p<0.05). BF was significantly less in the older group than the younger group at rest and after exposure to each of the three warmest thermode temperatures (p<0.05). As was seen for noxious temperatures, after a delay, the rate of rise of BF at the three warmest thermode temperatures was faster than the rise in skin temperature in the younger group but less in the older group of subjects. Thus, a consequence of ageing is reduced excess BF in response to thermal stress increasing susceptibility to thermal damage. This must be considered in modelling of BF.

  5. Premature ovarian failure.

    PubMed

    Kalantaridou, S N; Davis, S R; Nelson, L M

    1998-12-01

    In 1% of women, premature ovarian failure develops by 40 years of age, a condition causing amenorrhea, infertility, sex steroid deficiency, and elevated gonadotropins. Early loss of ovarian function has significant psychosocial sequelae and major health implications. These young women have a nearly two-fold age-specific increase in mortality rate. Among women with spontaneous premature ovarian failure who have a normal karyotype, half have ovarian follicles remaining in the ovary that function intermittently. Indeed, pregnancies have occurred after the diagnosis of premature ovarian failure. Thus, premature ovarian failure should not be considered as a premature menopause. Young women with this disorder have a 5% to 10% chance for spontaneous pregnancy. Attempts at ovulation induction using various regimens fail to induce ovulation rates greater than those seen in untreated patients; however, oocyte donation for women desiring fertility is an option. Young women with premature ovarian failure need a thorough assessment, sex steroid replacement, and long-term surveillance to monitor therapy. Estrogen-progestin replacement therapy should be instituted as soon as the diagnosis is made. Androgen replacement should also be considered for women with low libido, persistent fatigue, and poor well-being despite taking adequate estrogen replacement. Women with premature ovarian failure should be followed up for the presence of associated autoimmune endocrine disorders such as hypothyroidism, adrenal insufficiency, and diabetes mellitus.

  6. Melanin precursors prevent premature age-related and noise-induced hearing loss in albino mice.

    PubMed

    Murillo-Cuesta, Silvia; Contreras, Julio; Zurita, Esther; Cediel, Rafael; Cantero, Marta; Varela-Nieto, Isabel; Montoliu, Lluís

    2010-02-01

    Strial melanocytes are required for normal development and correct functioning of the cochlea. Hearing deficits have been reported in albino individuals from different species, although melanin appears to be not essential for normal auditory function. We have analyzed the auditory brainstem responses (ABR) of two transgenic mice: YRT2, carrying the entire mouse tyrosinase (Tyr) gene expression-domain and undistinguishable from wild-type pigmented animals; and TyrTH, non-pigmented but ectopically expressing tyrosine hydroxylase (Th) in melanocytes, which generate the precursor metabolite, L-DOPA, but not melanin. We show that young albino mice present a higher prevalence of profound sensorineural deafness and a poorer recovery of auditory thresholds after noise-exposure than transgenic mice. Hearing loss was associated with absence of cochlear melanin or its precursor metabolites and latencies of the central auditory pathway were unaltered. In summary, albino mice show impaired hearing responses during ageing and after noise damage when compared to YRT2 and TyrTH transgenic mice, which do not show the albino-associated ABR alterations. These results demonstrate that melanin precursors, such as L-DOPA, have a protective role in the mammalian cochlea in age-related and noise-induced hearing loss.

  7. Micafungin in Premature and Non-premature Infants

    PubMed Central

    Wu, Chunzhang; Tweddle, Lorraine; Roilides, Emmanuel

    2014-01-01

    Background: Invasive fungal infections cause excessive morbidity and mortality in premature neonates and severely ill infants. Methods: Safety and efficacy outcomes of micafungin were compared between prematurely and non-prematurely born infants <2 years of age. Data were obtained from all completed phase I–III clinical trials with micafungin that had enrolled infants (<2 years of age) that were listed in the Astellas Clinical Study Database. Demographics, adverse events, hepatic function tests and treatment success data were extracted and validated by the Astellas biostatistical group for all micafungin-treated patients, <2 years of age, using the unique patient identifier. Results: One-hundred and sixteen patients included in 9 clinical trials, 48% premature [birth weight (BW) <2500 g and/or gestational age <37 weeks], 52% non-premature, received ≥1 dose of micafungin. Among premature patients, 14.5% were low BW (1500–2499 g), 36.4% very low BW (1000–1499 g) and 49.1% extremely low BW (<1000 g). Ninety patients (78%) completed the studies; 13 [11% (4 premature)] died. Significantly more non-premature than premature patients discontinued treatment (P = 0.003). Treatment-related adverse events were recorded in 23% of patients with no difference between groups. More extremely low BW (n = 4, 15%) and very low BW (n = 8, 40%) infants experienced treatment-related adverse events than low BW (n = 0) and there was no relation to micafungin dose or duration. For a subgroup of 30 patients with invasive candidiasis, treatment success was achieved in 73% in both premature and non-premature groups. Prophylaxis was successful in 4/5 non-premature hematopoietic stem cell transplant patients. Conclusion: Micafungin has a safe profile in premature and non-premature infants with substantial efficacy. PMID:24892849

  8. The effect of age on skin color and color heterogeneity in four ethnic groups.

    PubMed

    de Rigal, Jean; Des Mazis, Isabelle; Diridollou, Stephane; Querleux, Bernard; Yang, Grace; Leroy, Frederce; Barbosa, Vietoria Holloway

    2010-05-01

    Few comparative data are available on age-related changes in skin color among different ethnic groups. The aim of the study was to measure and analyze the skin color and color heterogeneity in four different ethnic groups living in the same local environment and to determine the effects of age on these skin color characteristics. Female volunteers (385) from four ethnic populations (African-American, Caucasian, Chinese and Mexicans) living in the same city were enrolled after informed consent. Skin color was measured on two facial areas, forehead and cheek. The subjects were further divided into six age ranges: 19-30, 31-40, 41-50, 51-60, 61-70 and 71-87 years to determine any age-related effects on the skin color and color heterogeneity in both areas. According to the L(*)a(*)b(*) CIE system, clarity (fairness/lightness) was found to be lower in the African-American group whereas the hue was lower in Caucasians, which means more red skin. A clear, statistically significant darkening of the skin with age was observed in all ethnic groups, while evidence of yellowing of the skin was shown in the Chinese volunteers. Overall, the skin color of the face of African-Americans was more heterogeneous than in the other ethnic groups, but showed the least increase with age. Our study revealed interesting differences in skin color and color heterogeneity with respect to ethnicity and age-related alterations. Data obtained are very useful in improving our knowledge about the skin of people of different origins and helps in the development of specific cosmetic products that are well adapted to all these populations.

  9. Age-dependent changes in skin surface assessed by a novel two-dimensional image analysis.

    PubMed

    Zou, Yaobin; Song, Enmin; Jin, Renchao

    2009-11-01

    Skin microrelief has been studied using various methods and devices. However, the long duration of time needed to process one sample or the expensive equipment hampered the use of those systems for routine diagnosis. Today, the emergence of new software and hardware technologies may allow this issue to be resolved. To characterize objectively the skin surface, we introduced a new parameter SPm, namely, the area mean of superficial skin texture block formed by primary and secondary lines crossing each other. Based on the skin detector produced by the Boseview Technology Company, we developed a software for acquiring automatically skin images and calculating SPm. The relationship between SPm and age was studied on the dorsal and ventral midway of the forearm (sun-exposed and sun-protected areas) of 94 healthy volunteers without a history of smoking. The skin surface topography can be conveniently quantified with the new parameter SPm. The value of SPm of both sites increases with age, independent of sex, with the site more exposed to light being more affected. With the software developed, the details of the skin surface can be observed. SPm appears to be a new valid parameter for characterizing the property of the skin surface. Our method, alone or in combination with other technologies of skin topography analysis may be applied in routine diagnosis for a quantified evaluation of skin aging.

  10. Objective assessment of facial skin aging and the associated environmental factors in Japanese monozygotic twins

    PubMed Central

    Ichibori, Ryoko; Fujiwara, Takashi; Tanigawa, Tomoko; Kanazawa, Shigeyuki; Shingaki, Kenta; Torii, Kosuke; Tomita, Koichi; Yano, Kenji; Sakai, Yasuo; Hosokawa, Ko

    2014-01-01

    Twin studies, especially those involving monozygotic (MZ) twins, facilitate the analysis of factors affecting skin aging while controlling for age, gender, and genetic susceptibility. The purpose of this study was to objectively assess various features of facial skin and analyze the effects of environmental factors on these features in MZ twins. At the Osaka Twin Research Center, 67 pairs of MZ twins underwent medical interviews and photographic assessments, using the VISIA® Complexion Analysis System. First, the average scores of the right and left cheek skin spots, wrinkles, pores, texture, and erythema were calculated; the differences between the scores were then compared in each pair of twins. Next, using the results of medical interviews and VISIA data, we investigated the effects of environmental factors on skin aging. The data were analyzed using Pearson's correlation coefficient test and the Wilcoxon signed-rank test. The intrapair differences in facial texture scores significantly increased as the age of the twins increased (P = 0.03). Among the twin pairs who provided answers to the questions regarding history differences in medical interviews, the twins who smoked or did not use skin protection showed significantly higher facial texture or wrinkle scores compared with the twins not exposed to cigarettes or protectants (P = 0.04 and 0.03, respectively). The study demonstrated that skin aging among Japanese MZ twins, especially in terms of facial texture, was significantly influenced by environmental factors. In addition, smoking and skin protectant use were important environmental factors influencing skin aging. PMID:24910280

  11. Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: Molecules to patients

    PubMed Central

    Niedernhofer, Laura J.; Bohr, Vilhelm A.; Sander, Miriam; Kraemer, Kenneth H.

    2012-01-01

    A workshop1 to share, consider and discuss the latest developments in understanding xeroderma pigmentosum and other human diseases caused by defects in nucleotide excision repair (NER) of DNA damage was held on September 21–24, 2010 in Virginia. It was attended by approximately 100 researchers and clinicians, as well as several patients and representatives of patient support groups. This was the third in a series of workshops with similar design and goals: to emphasize discussion and interaction among participants as well as open exchange of information and ideas. The participation of patients, their parents and physicians was an important feature of this and the preceding two workshops. Topics discussed included the natural history and clinical features of the diseases, clinical and laboratory diagnosis of these rare diseases, therapeutic strategies, mouse models of neurodegeneration, molecular analysis of accelerated aging, impact of transcriptional defects and mitochondrial dysfunction on neurodegeneration, and biochemical insights into mechanisms of NER and base excision repair. PMID:21708183

  12. Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: molecules to patients.

    PubMed

    Niedernhofer, Laura J; Bohr, Vilhelm A; Sander, Miriam; Kraemer, Kenneth H

    2011-01-01

    A workshop(1) to share, consider and discuss the latest developments in understanding xeroderma pigmentosum and other human diseases caused by defects in nucleotide excision repair (NER) of DNA damage was held on September 21-24, 2010 in Virginia. It was attended by approximately 100 researchers and clinicians, as well as several patients and representatives of patient support groups. This was the third in a series of workshops with similar design and goals: to emphasize discussion and interaction among participants as well as open exchange of information and ideas. The participation of patients, their parents and physicians was an important feature of this and the preceding two workshops. Topics discussed included the natural history and clinical features of the diseases, clinical and laboratory diagnosis of these rare diseases, therapeutic strategies, mouse models of neurodegeneration, molecular analysis of accelerated aging, impact of transcriptional defects and mitochondrial dysfunction on neurodegeneration, and biochemical insights into mechanisms of NER and base excision repair.

  13. Influence of gestational age on death and neurodevelopmental outcome in premature infants with severe intracranial hemorrhage.

    PubMed

    Goldstein, R F; Cotten, C M; Shankaran, S; Gantz, M G; Poole, W K

    2013-01-01

    To determine whether death and/or neurodevelopmental impairment (NDI) after severe intracranial hemorrhage (ICH; grade 3 or 4) differs by gestational age (GA) at birth in extremely low birth weight (ELBW) infants. Demographic, perinatal and neonatal factors potentially contributing to NDI for ELBW infants (23 to 28 weeks gestation) were obtained retrospectively; outcome data came from the ELBW Follow-up Study. NDI was defined at 18 to 22 months corrected age as moderate/severe cerebral palsy, Bayley Scales of Infant Development II cognitive or motor score <70, and/or blindness or deafness. Characteristics of younger versus older infants with no versus severe ICH associated with death or NDI were compared. Generalized linear mixed models predicted death or NDI in each GA cohort. Of the 6638 infants, 61.8% had no ICH and 13.6% had severe ICH; 39% of survivors had NDI. Risk-adjusted odds of death or NDI and death were higher in the lower GA group. Lower GA increased the odds of death before 30 days for infants with severe ICH. Necrotizing enterocolitis (particularly surgical NEC), late onset infection, cystic periventricular leukomalacia and post-natal steroids contributed to mortality risk. NDI differed by GA in infants without ICH and grade 3, but not grade 4 ICH. Contributors to NDI in infants with severe ICH included male gender, surgical NEC and post-hemorrhagic hydrocephalus requiring a shunt. GA contributes to the risk of death in ELBW infants, but not NDI among survivors with severe ICH. Male gender, surgical NEC and need for a shunt add additional risk for NDI.

  14. Measuring skin aging using optical coherence tomography in vivo: a validation study

    NASA Astrophysics Data System (ADS)

    Trojahn, Carina; Dobos, Gabor; Richter, Claudia; Blume-Peytavi, Ulrike; Kottner, Jan

    2015-04-01

    Dermal and epidermal structures in human skin change during intrinsic and extrinsic aging. Epidermal thickness is one of the most often reported parameters for the assessment of skin aging in cross-sectional images captured by optical coherence tomography (OCT). We aimed to identify further parameters for the noninvasive measurement of skin aging of sun-exposed and sun-protected areas utilizing OCT. Based on a literature review, seven parameters were inductively developed. Three independent raters assessed these parameters using four-point scales on images of female subjects of two age groups. All items could be detected and quantified in our sample. Interrater agreement ranged between 25.0% and 83.3%. The item scores "stratum corneum reflectivity," "upper dermal reflectivity," and "dermoepidermal contrast" showed significant differences between age groups on the volar and dorsal forearm indicating that they were best able to measure changes during skin aging. "Surface unevenness" was associated with the skin roughness parameters, Rz and Rmax, on the inner upper arm and volar forearm supporting the criterion validity of this parameter on sun-protected skin areas. Based on the interrater agreement and the ability to differentiate between age groups, these four parameters are being considered as the best candidates for measuring skin aging in OCT images.

  15. Measuring skin aging using optical coherence tomography in vivo: a validation study.

    PubMed

    Trojahn, Carina; Dobos, Gabor; Richter, Claudia; Blume-Peytavi, Ulrike; Kottner, Jan

    2015-04-01

    Dermal and epidermal structures in human skin change during intrinsic and extrinsic aging. Epidermal thickness is one of the most often reported parameters for the assessment of skin aging in cross-sectional images captured by optical coherence tomography (OCT). We aimed to identify further parameters for the noninvasive measurement of skin aging of sun-exposed and sun-protected areas utilizing OCT. Based on a literature review, seven parameters were inductively developed. Three independent raters assessed these parameters using four-point scales on images of female subjects of two age groups. All items could be detected and quantified in our sample. Interrater agreement ranged between 25.0% and 83.3%. The item scores “stratum corneum reflectivity,” “upper dermal reflectivity,” and “dermoepidermal contrast” showed significant differences between age groups on the volar and dorsal forearm indicating that they were best able to measure changes during skin aging. “Surface unevenness” was associated with the skin roughness parameters, Rz and Rmax, on the inner upper arm and volar forearm supporting the criterion validity of this parameter on sun-protected skin areas. Based on the interrater agreement and the ability to differentiate between age groups, these four parameters are being considered as the best candidates for measuring skin aging in OCT images.

  16. Opinions regarding skin ageing in the elderly inhabitants of Bialystok, Poland.

    PubMed

    Cybulski, Mateusz; Krajewska-Kulak, Elzbieta

    2016-01-01

    Skin diseases constitute an essential health and aesthetic problem in the elderly. The aim of the study was to evaluate the knowledge of the elderly residents of public nursing homes and participants of the University of the Third Age in Bialystok, Poland surrounding the factors influencing skin ageing, the awareness of skin conditions in agening skin, and the impact of skin ageing on the volunteers. The study was performed from April to June 2015 in Bialystok, in two groups: among 100 public nursing home residents (PNH) and 100 members of University of the Third Age (U3A), (all over 60 years old). The study made use of a diagnostic survey conducted via a questionnaire prepared by the authors. Nearly half of those surveyed (42.5%; n = 85) sunbathed in the past, while 28.0% (n = 56) of those surveyed now take part in this type of leisure activity. More than half of respondents (53.0%; n = 106) protected their skin using special protective preparations. A majority of Bialystok inhabitants surveyed (80.5%; n = 161) noticed the features of skin ageing. They reported birthmarks, fungal infections and bedsores as the main skin problems of the old age. Nearly half (40%) of respondents assessed their knowledge as average and 26.0% as poor. The study showed some statistical differences in the knowledge and awareness between the residents of public nursing homes and the students of the University of the Third Age, e.g., the use of the Internet by the U3A group for finding out information. There is a desire to receive education in the field of the agening skin conditions/diseases among the elderly because their level of knowledge is relatively poor. Education of seniors in this area can increase their awareness of the basic principles of skin care and prevention marking of skin ageing. The benefits of greater knowledge of seniors about the conditions of agening skin can help reduce the medical burden and reduce the incidence on certain skin diseases. Furthermore, there is a

  17. Opinions regarding skin ageing in the elderly inhabitants of Bialystok, Poland

    PubMed Central

    Krajewska-Kulak, Elzbieta

    2016-01-01

    Skin diseases constitute an essential health and aesthetic problem in the elderly. The aim of the study was to evaluate the knowledge of the elderly residents of public nursing homes and participants of the University of the Third Age in Bialystok, Poland surrounding the factors influencing skin ageing, the awareness of skin conditions in agening skin, and the impact of skin ageing on the volunteers. The study was performed from April to June 2015 in Bialystok, in two groups: among 100 public nursing home residents (PNH) and 100 members of University of the Third Age (U3A), (all over 60 years old). The study made use of a diagnostic survey conducted via a questionnaire prepared by the authors. Nearly half of those surveyed (42.5%; n = 85) sunbathed in the past, while 28.0% (n = 56) of those surveyed now take part in this type of leisure activity. More than half of respondents (53.0%; n = 106) protected their skin using special protective preparations. A majority of Bialystok inhabitants surveyed (80.5%; n = 161) noticed the features of skin ageing. They reported birthmarks, fungal infections and bedsores as the main skin problems of the old age. Nearly half (40%) of respondents assessed their knowledge as average and 26.0% as poor. The study showed some statistical differences in the knowledge and awareness between the residents of public nursing homes and the students of the University of the Third Age, e.g., the use of the Internet by the U3A group for finding out information. There is a desire to receive education in the field of the agening skin conditions/diseases among the elderly because their level of knowledge is relatively poor. Education of seniors in this area can increase their awareness of the basic principles of skin care and prevention marking of skin ageing. The benefits of greater knowledge of seniors about the conditions of agening skin can help reduce the medical burden and reduce the incidence on certain skin diseases. Furthermore, there is a

  18. [The senescence-accelerated oxys rats--a genetic model of premature aging and age-dependent degenerative diseases].

    PubMed

    Kolosova, N G; Stefanova, N A; Korbolina, E E; Fursova, A Zh; Kozhevnikova, O S

    2014-01-01

    The genetic model of accelerated senescence and the associated diseases--the OXYS strain of rats--was created using selection and inbreeding of Wistar rats sensitive to cataractogenic effects of galactose. In the first 5 generations, the development of cataract was induced by galactose overconsumption, and after that, the rats were selected for early spontaneous cataract. Genetically linked with the latter was a set of features of accelerated senescence, which were inherited by the subsequent generations of the animals. At present, we have a 103rd generation of OXYS rats, who at young age develop retinopathy (similar to age-related macular degeneration in humans), osteoporosis, arterial hypertension, accelerated thymus involution, sarcopenia, and neurodegenerative changes in the brain (with the features characteristic of Alzheimer's disease), besides the cataract. This review discusses possible mechanisms of the accelerated senescence: the results of comparison of retinal transcriptomes between OXYS and Wistar(control) rats at different ages, studies of the markers of Alzheimer's disease in the retina and in certain brain regions, and the outcome of the efforts to develop congenic strains of animals via a transfer of several quantitative trait loci (QTLs) of chromosome 1 from OXYS to WAG rats that are associated with the signs of accelerated senescence. The uniqueness of OXYS rats lies in the complex composition of manifestations of the traits; accordingly, this rat model can be used not only for studies of the mechanisms of aging and pathogenesis of the age-related diseases but also for objective evaluation of new methods of treatment and prevention.

  19. Astigmatism and biometric optic components of diode laser-treated threshold retinopathy of prematurity at 9 years of age

    PubMed Central

    Yang, C-S; Wang, A-G; Shih, Y-F; Hsu, W-M

    2013-01-01

    Purpose To assess the prevalence of astigmatism and its relationship with biometric optic components in preterm school children with diode laser-treated threshold retinopathy of prematurity (ROP). Methods A prospective, cross-sectional study in which cycloplegic keratometry, refraction, and ultrasound biometric measurement of optic components were performed on 24 consecutive preterm children with diode laser-treated threshold ROP at the age of 9 years. The study results were compared with data on 1021 age-matched full-term control children from a national survey. Results The laser-treated eyes had a mean astigmatism of 3.47 D, with a mean spherical equivalent of −4.49 D. Of the 46 eyes studied, 98% of eyes showed astigmatism ≥0.5 D and 50% had high astigmatism (>3.0 D). Most astigmatic eyes (97.7%) showed with-the-rule astigmatism, with the mean plus cylinder axis at 89.30o. Further correlation analysis showed the astigmatism in refraction was highly correlated with the corneal astigmatism (r=0.921, P<0.001) and the vertical corneal curvature (r=0.405, P=0.005). There was significantly steeper vertical corneal curvature (P=0.003) and flatter horizontal corneal curvature (P=0.031) in eyes with laser-treated ROP when compared with age-matched full-term controls. The eyes with laser-treated ROP also show significantly thicker lens (3.93 mm) and shallower anterior chamber depth (ACD; 2.92 mm) than full-term controls (P<0.001). Conclusions There is significantly higher prevalence and greater magnitude of astigmatism in eyes with laser-treated threshold ROP compared with full-term controls. The steeper vertical corneal curvature component contributes to the increased astigmatism in eyes with laser-treated ROP. PMID:23222565

  20. Vanishing honey bees: Is the dying of adult worker bees a consequence of short telomeres and premature aging?

    PubMed

    Stindl, Reinhard; Stindl, Wolfgang

    2010-10-01

    Einstein is often quoted to have said that without the bee, mankind would have but 4years to live. It is highly unlikely that he made this comment, which was even mentioned in a Lancet article on honey bees. However, the current vanishing of the bees can have serious consequences for human health, because 35% of the human diet is thought to benefit from pollination. Colony collapse disorder (CCD) in honey bees is characterized by the rapid decline of the adult bee population, leaving the brood and the queen poorly or completely unattended, with no dead bodies in or around the hive. A large study found no evidence that the presence or amount of any individual pesticide or infectious agent occurred more frequently or abundantly in CCD-affected colonies. The growing consensus is that honey bees are suffering from comprised immune systems, which allow various infectious pathogens to invade. The question remains, what causes immunosuppression in many colonies of Apis mellifera in North America and Europe? Telomeres are protective DNA structures located at eukaryotic chromosome tips that shorten in the somatic tissues of animals with age. Lifelong tissue regeneration takes place in Apis mellifera, and worker bees have been shown to senesce. In humans, a vast amount of literature has accumulated on exhausted telomere reserves causing impaired tissue regeneration and age-associated diseases, specifically cancer and immunosuppression. Therefore, we propose a new causative mechanism for the vanishing of the bees: critically short telomeres in long-lived winter bees. We term this the telomere premature aging syndrome. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Fibroblast-mediated contraction in actinically exposed and actinically protected aging skin

    SciTech Connect

    Marks, M.W.; Morykwas, M.J.; Wheatley, M.J. )

    1990-08-01

    The changes in skin morphology over time are a consequence of both chronologic aging and the accumulation of environmental exposure. Through observation, we know that actinic radiation intensifies the apparent aging of skin. We have investigated the effects of aging and actinic radiation on the ability of fibroblasts to contract collagen-fibroblast lattices. Preauricular and postauricular skin samples were obtained from eight patients aged 49 to 74 undergoing rhytidectomy. The samples were kept separate, and the fibroblasts were grown in culture. Lattices constructed with preauricular fibroblasts consistently contracted more than lattices containing postauricular fibroblasts. The difference in amount of contraction in 7 days between sites was greatest for the younger patients and decreased linearly as donor age increased (r = -0.96). This difference may be due to preauricular fibroblasts losing their ability to contract a lattice as aging skin is exposed to more actinic radiation.

  2. Colour homogeneity and visual perception of age, health and attractiveness of male facial skin.

    PubMed

    Fink, B; Matts, P J; D'Emiliano, D; Bunse, L; Weege, B; Röder, S

    2012-12-01

    Visible facial skin condition in females is known to affect perception of age, health and attractiveness. Skin colour distribution in shape- and topography-standardized female faces, driven by localized melanin and haemoglobin, can account for up to twenty years of apparent age perception. Although this is corroborated by an ability to discern female age even in isolated, non-contextual skin images, a similar effect in the perception of male skin is yet to be demonstrated. To investigate the effect of skin colour homogeneity and chromophore distribution on the visual perception of age, health and attractiveness of male facial skin. Cropped images from the cheeks of facial images of 160 Caucasian British men aged 10-70 years were blind-rated for age, health and attractiveness by a total of 308 participants. In addition, the homogeneity of skin images and corresponding eumelanin/oxyhaemoglobin concentration maps were analysed objectively using Haralick's image segmentation algorithm. Isolated skin images taken from the cheeks of younger males were judged as healthier and more attractive. Perception of age, health and attractiveness was strongly related to melanin and haemoglobin distribution, whereby more even distributions led to perception of younger age and greater health and attractiveness. The evenness of melanized features was a stronger cue for age perception, whereas haemoglobin distribution was associated more strongly with health and attractiveness perception. Male skin colour homogeneity, driven by melanin and haemoglobin distribution, influences perception of age, health and attractiveness. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  3. Impact of Oxidative Stress in Premature Aging and Iron Overload in Hemodialysis Patients.

    PubMed

    Murillo-Ortiz, Blanca; Ramírez Emiliano, Joel; Hernández Vázquez, Wendy Ivett; Martínez-Garza, Sandra; Solorio-Meza, Sergio; Albarrán-Tamayo, Froylán; Ramos-Rodríguez, Edna; Benítez-Bribiesca, Luis

    2016-01-01

    Background. Increased oxidative stress is a well described feature of patients in hemodialysis. Their need for multiple blood transfusions and supplemental iron causes a significant iron overload that has recently been associated with increased oxidation of polyunsaturated lipids and accelerated aging due to DNA damage caused by telomere shortening. Methods. A total of 70 patients were evaluated concomitantly, 35 volunteers with ferritin levels below 500 ng/mL (Group A) and 35 volunteers with ferritin levels higher than 500 ng/mL (Group B). A sample of venous blood was taken to extract DNA from leukocytes and to measure relative telomere length by real-time PCR. Results. Patients in Group B had significantly higher plasma TBARS (p = 0.008), carbonyls (p = 0.0004), and urea (p = 0.02) compared with those in Group A. Telomeres were significantly shorter in Group B, 0.66 (SD, 0.051), compared with 0.75 (SD, 0.155) in Group A (p = 0.0017). We observed a statistically significant association between relative telomere length and ferritin levels (r = -0.37, p = 0.001). Relative telomere length was inversely related to time on hemodialysis (r = -0.27, p = 0.02). Conclusions. Our findings demonstrate that iron overload was associated with increased levels of oxidative stress and shorter relative telomere length.

  4. Impact of Oxidative Stress in Premature Aging and Iron Overload in Hemodialysis Patients

    PubMed Central

    Hernández Vázquez, Wendy Ivett; Solorio-Meza, Sergio; Albarrán-Tamayo, Froylán; Ramos-Rodríguez, Edna; Benítez- Bribiesca, Luis

    2016-01-01

    Background. Increased oxidative stress is a well described feature of patients in hemodialysis. Their need for multiple blood transfusions and supplemental iron causes a significant iron overload that has recently been associated with increased oxidation of polyunsaturated lipids and accelerated aging due to DNA damage caused by telomere shortening. Methods. A total of 70 patients were evaluated concomitantly, 35 volunteers with ferritin levels below 500 ng/mL (Group A) and 35 volunteers with ferritin levels higher than 500 ng/mL (Group B). A sample of venous blood was taken to extract DNA from leukocytes and to measure relative telomere length by real-time PCR. Results. Patients in Group B had significantly higher plasma TBARS (p = 0.008), carbonyls (p = 0.0004), and urea (p = 0.02) compared with those in Group A. Telomeres were significantly shorter in Group B, 0.66 (SD, 0.051), compared with 0.75 (SD, 0.155) in Group A (p = 0.0017). We observed a statistically significant association between relative telomere length and ferritin levels (r = −0.37, p = 0.001). Relative telomere length was inversely related to time on hemodialysis (r = −0.27, p = 0.02). Conclusions. Our findings demonstrate that iron overload was associated with increased levels of oxidative stress and shorter relative telomere length. PMID:27800120

  5. Prematurely Delivered Rats Show Improved Motor Coordination During Sensory-evoked Motor Responses Compared to Age-matched Controls

    PubMed Central

    Roberto, Megan E.; Brumley, Michele R.

    2014-01-01

    The amount of postnatal experience for perinatal rats was manipulated by delivering pups one day early (postconception day 21; PC21) by cesarean delivery and comparing their motor behavior to age-matched controls on PC22 (the typical day of birth). On PC22, pups were tested on multiple measures of motor coordination: leg extension response (LER), facial wiping, contact righting, and fore- and hindlimb stepping. The LER and facial wiping provided measures of synchronous hind- and forelimb coordination, respectively, and were sensory-evoked. Contact righting also was sensory-evoked and provided a measure of axial coordination. Stepping provided a measure of alternated forelimb and hindlimb coordination and was induced with the serotonin receptor agonist quipazine. Pups that were delivered prematurely and spent an additional day in the postnatal environment showed more bilateral limb coordination during expression of the LER and facial wiping, as well as a more mature righting strategy, compared to controls. These findings suggest that experience around the time of birth shapes motor coordination and the expression of species-typical behavior in the developing rat. PMID:24680729

  6. Prematurely delivered rats show improved motor coordination during sensory-evoked motor responses compared to age-matched controls.

    PubMed

    Roberto, Megan E; Brumley, Michele R

    2014-05-10

    The amount of postnatal experience for perinatal rats was manipulated by delivering pups one day early (postconception day 21; PC21) by cesarean delivery and comparing their motor behavior to age-matched controls on PC22 (the typical day of birth). On PC22, pups were tested on multiple measures of motor coordination: leg extension response (LER), facial wiping, contact righting, and fore- and hindlimb stepping. The LER and facial wiping provided measures of synchronous hind- and forelimb coordination, respectively, and were sensory-evoked. Contact righting also was sensory-evoked and provided a measure of axial coordination. Stepping provided a measure of alternated forelimb and hindlimb coordination and was induced with the serotonin receptor agonist quipazine. Pups that were delivered prematurely and spent an additional day in the postnatal environment showed more bilateral limb coordination during expression of the LER and facial wiping, as well as a more mature righting strategy, compared to controls. These findings suggest that experience around the time of birth shapes motor coordination and the expression of species-typical behavior in the developing rat.

  7. High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study.

    PubMed

    Boone, M A L M; Suppa, M; Marneffe, A; Miyamoto, M; Jemec, G B E; Del Marmol, V

    2015-10-01

    Several non-invasive two-dimensional techniques with different lateral resolution and measurable depth range have proved to be useful in assessing and quantifying morphological changes in skin ageing. Among these, only in vivo microscopy techniques permit histometric measurements in vivo. Qualitative and quantitative assessment of chronological (intrinsic) age-related (IAR) morphological changes of epidermis, dermo-epidermal junction (DEJ), papillary dermis (PD), papillary-reticular dermis junction and reticular dermis (RD) have been performed by high-definition optical coherence tomography in real time 3-D. HD-OCT images were taken at the internal site of the right upper arm. Qualitative HD-OCT IAR descriptors were reported at skin surface, at epidermal layer, DEJ, PD and upper RD. Quantitative evaluation of age-related compaction and backscattered intensity or brightness of different skin layers was performed by using the plugin plot z-axis profile of ImageJ(®) software permitting intensity assessment of HD-OCT (DICOM) images (3-D images). Analysis was in blind from all clinical information. Sixty, fair-skinned (Fitzpatrick types I-III) healthy females were analysed retrospectively in this study. The subjects belonged to three age groups: twenty in group I aged 20-39, twenty in group II aged 40-59 and twenty in group III aged 60-79. Only intrinsic ageing in women has been studied. Significant age-related qualitative and quantitative differences could be noticed. IAR changes in dermal matrix fibers morphology/organisation and in microvasculature were observed. The brightness and compaction of the different skin layers increased significantly with intrinsic skin ageing. The depth of visibility of fibers in RD increased significantly in the older age group. In conclusion, HD-OCT allows 3-D in vivo and real time qualitative and quantitative assessment of chronological (intrinsic) age-related morphological skin changes at high resolution from skin surface to a depth

  8. Helicobacter pylori colonization and pregnancies complicated by preeclampsia, spontaneous prematurity, and small for gestational age birth.

    PubMed

    den Hollander, Wouter J; Schalekamp-Timmermans, Sarah; Holster, I Lisanne; Jaddoe, Vincent W; Hofman, Albert; Moll, Henriëtte A; Perez-Perez, Guillermo I; Blaser, Martin J; Steegers, Eric A P; Kuipers, Ernst J

    2017-04-01

    Preeclampsia (PE), small for gestational age (SGA), and spontaneous preterm birth (PTB) each may be complications of impaired placental function in pregnancy. Although their exact pathogenesis is still unknown, certain infectious agents seem to play a role. Helicobacter pylori (H. pylori) colonization has been associated with increased risk for PE. Our aim was to assess the association between H. pylori colonization and PE, SGA, and PTB. We measured IgG anti-H. pylori and CagA antibodies in serum of pregnant women (median 20.5 weeks, range 16.5-29.4) who participated in a population-based prospective cohort study. Delivery and medical records were assessed. Information on demographics, education, and maternal risk factors was collected by questionnaire. We used multivariate logistic regression analyses to assess associations between H. pylori colonization and PE, SGA, and PTB. In total, 6348 pregnant women were assessed. H. pylori positivity was found in 2915 (46%) women, of whom 1023 (35%) also were CagA-positive. Pregnancy was complicated by PE, SGA, or PTB in 927 (15%) women. H. pylori colonization was associated with PE (aOR 1.51; 95%CI 1.03-2.25). Differentiation according to CagA status revealed the same risk. H. pylori was positively related with SGA, mainly explained by CagA-positive strains (aOR 1.34; 1.04-1.71). No association was observed between H. pylori and PTB. Our data suggest that H. pylori colonization may be a risk factor for PE and SGA. If these associations are confirmed by future studies and shown to be causal, H. pylori eradication may reduce related perinatal morbidity and mortality. © 2016 John Wiley & Sons Ltd.

  9. Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics.

    PubMed

    Ding, Chenyue; Li, Hong; Wang, Yun; Wang, Fuxin; Wu, Huihua; Chen, Rulei; Lv, Jinghuan; Wang, Wei; Huang, Boxian

    2017-07-27

    Many reports have shown that various kinds of stem cells have the ability to recover premature ovarian aging (POA) function. Transplantation of human amniotic epithelial cells (hAECs) improves ovarian function damaged by chemotherapy in a mice model. Understanding of how to evaluate the distinct effects of adult stem cells in curing POA and how to choose stem cells in clinical application is lacking. To build a different degrees of POA model, mice were administered different doses of cyclophosphamide: light dose (70 mg/kg, 2 weeks), medium dose (70 mg/kg, 1 week; 120 mg/kg, 1 week), and high dose (120 mg/kg, 2 weeks). Enzyme-linked immunosorbent assay detected serum levels of sex hormones, and hematoxylin and eosin staining allowed follicle counting and showed the ovarian tissue structure. DiIC18(5)-DS was employed to label human amniotic mesenchymal stem cells (hAMSCs) and hAECs for detecting the cellular retention time in ovaries by a live imaging system. Proliferation of human ovarian granule cells (ki67, AMH, FSHR, FOXL2, and CYP19A1) and immunological rejection of human peripheral blood mononuclear cells (CD4, CD11b, CD19, and CD56) were measured by flow cytometry (fluorescence-activated cell sorting (FACS)). Distinction of cellular biological characteristics between hAECs and hAMSCs was evaluated, such as collagen secretory level (collagen I, II, III, IV, and VI), telomerase activity, pluripotent markers tested by western blot, expression level of immune molecules (HLA-ABC and HLA-DR) analyzed by FACS, and cytokines (growth factors, chemotactic factors, apoptosis factors, and inflammatory factors) measured by a protein antibody array methodology. After hAMSCs and hAECs were transplanted into a different degrees of POA model, hAMSCs exerted better therapeutic activity on mouse ovarian function in the high-dose administration group, promoting the proliferation rate of ovarian granular cells from premature ovarian failure patients, but also provoking immune

  10. Damage from periorbital ageing to the multilayered structures and resilience of the skin in Chinese population

    PubMed Central

    Liao, Chuh-Kai; Tsai, Feng-Chou; Fong, Tsorng-Harn; Hu, Chien-Ming; Wei, Po-Li; Su, Ching-Hua

    2013-01-01

    Ageing dynamically disrupts the multilayered supporting components of the skin that are held together by cell adhesion molecules (CAMs). Skin specimens from 33 female Chinese patients undergoing lower blepharoplasty were divided into three age groups and examined by haematoxylin and eosin (H&E) staining, immunohistochemistry (IHC) and Elastica-van Gieson (EVG) stains, western blotting, surface electron microscopy (SEM) and biomechanical tension analysis. The SEM density (skin surface topology) showed a negative linear relationship with age. The triangular pattern of the skin surface in the younger group gradually broke down into quadrangular and irregular patterns in the older group. Collagens and elastic fibres in the dermis showed anisotropy and decreased density in the older groups compared with the younger group, especially in the papillary dermis. Anisotropy means that physical properties differ according to the direction of measurement. E-cadherin and integrin αv (whose functions are to bind epidermal and dermal elements respectively) increased and decreased, respectively, in the oldest group. Skin resilience decreased significantly in this group under repetitive stress. In conclusion, a loss of skin surface textures, integrin αv expressions, epidermal-dermal connections and dermal compactness led to the multilayered structure of the skin becoming separated. This in turn decreased resilience during ageing. These findings may therefore explain why aged skins cannot tolerate repetitive facial expressions, and why this action produces further dynamic wrinkles. PMID:23441675

  11. Damage from periorbital ageing to the multilayered structures and resilience of the skin in Chinese population.

    PubMed

    Liao, Chuh-Kai; Tsai, Feng-Chou; Fong, Tsorng-Harn; Hu, Chien-Ming; Wei, Po-Li; Su, Ching-Hua

    2013-06-01

    Ageing dynamically disrupts the multilayered supporting components of the skin that are held together by cell adhesion molecules (CAMs). Skin specimens from 33 female Chinese patients undergoing lower blepharoplasty were divided into three age groups and examined by haematoxylin and eosin (H&E) staining, immunohistochemistry (IHC) and Elastica-van Gieson (EVG) stains, western blotting, surface electron microscopy (SEM) and biomechanical tension analysis. The SEM density (skin surface topology) showed a negative linear relationship with age. The triangular pattern of the skin surface in the younger group gradually broke down into quadrangular and irregular patterns in the older group. Collagens and elastic fibres in the dermis showed anisotropy and decreased density in the older groups compared with the younger group, especially in the papillary dermis. Anisotropy means that physical properties differ according to the direction of measurement. E-cadherin and integrin αv (whose functions are to bind epidermal and dermal elements respectively) increased and decreased, respectively, in the oldest group. Skin resilience decreased significantly in this group under repetitive stress. In conclusion, a loss of skin surface textures, integrin αv expressions, epidermal-dermal connections and dermal compactness led to the multilayered structure of the skin becoming separated. This in turn decreased resilience during ageing. These findings may therefore explain why aged skins cannot tolerate repetitive facial expressions, and why this action produces further dynamic wrinkles. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.

  12. Influence of age and sun exposure on the biophysical properties of the human skin: an in vivo study.

    PubMed

    Adhoute, H; de Rigal, J; Marchand, J P; Privat, Y; Leveque, J L

    1992-06-01

    The physical properties of the skin were measured by using noninvasive methods on 72 people displaying various levels of solar elastosis on the neck. The physical parameters measured were the skin extensibility, the elastic recovery, the skin colour, the skin thickness and the electrical conductance. The correlation between the above parameters, the clinical grades of elastosis and the chronological age of each subject were studied using two different statistical approaches. They both showed that elastotic skin is less elastic, dryer, darker, more erythematous and less yellowish than the nonexposed skin. The similarities and differences between the properties of elastotic skin and purely chronologically aged skin are discussed.

  13. Early life exposure to endocrine-disrupting chemicals causes lifelong molecular reprogramming of the hypothalamus and premature reproductive aging.

    PubMed

    Gore, Andrea C; Walker, Deena M; Zama, Aparna M; Armenti, AnnMarie E; Uzumcu, Mehmet

    2011-12-01

    Gestational exposure to the estrogenic endocrine disruptor methoxychlor (MXC) disrupts the female reproductive system at the molecular, physiological, and behavioral levels in adulthood. The current study addressed whether perinatal exposure to endocrine disruptors re-programs expression of a suite of genes expressed in the hypothalamus that control reproductive function and related these molecular changes to premature reproductive aging. Fischer rats were exposed daily for 12 consecutive days to vehicle (dimethylsulfoxide), estradiol benzoate (EB) (1 mg/kg), and MXC (low dose, 20 μg/kg or high dose, 100 mg/kg), beginning on embryonic d 19 through postnatal d 7. The perinatally exposed females were aged to 16-17 months and monitored for reproductive senescence. After euthanasia, hypothalamic regions [preoptic area (POA) and medial basal hypothalamus] were dissected for real-time PCR of gene expression or pyrosequencing to assess DNA methylation of the Esr1 gene. Using a 48-gene PCR platform, two genes (Kiss1 and Esr1) were significantly different in the POA of endocrine-disrupting chemical-exposed rats compared with vehicle-exposed rats after Bonferroni correction. Fifteen POA genes were up-regulated by at least 50% in EB or high-dose MXC compared with vehicle. To understand the epigenetic basis of the increased Esr1 gene expression, we performed bisulfite conversion and pyrosequencing of the Esr1 promoter. EB-treated rats had significantly higher percentage of methylation at three CpG sites in the Esr1 promoter compared with control rats. Together with these molecular effects, perinatal MXC and EB altered estrous cyclicity and advanced reproductive senescence. Thus, early life exposure to endocrine disruptors has lifelong effects on neuroendocrine gene expression and DNA methylation, together with causing the advancement of reproductive senescence.

  14. Changes in nerve-mediated contractility of the lower urinary tract in a mouse model of premature ageing

    PubMed Central

    Triguero, D; Lafuente-Sanchis, A; Garcia-Pascual, A

    2014-01-01

    Background and Purpose A high incidence of lower urinary tract disorders is associated with ageing. In the senescent-accelerated prone (SAMP8) mouse strain and the senescent-accelerated resistant (SAMR1) strain, we compared smooth muscle contractility in responses to intrinsic neurotransmitters, both in the bladder and urethra. Experimental Approach We analysed micturition frequency, the changes in muscle tension induced by electrical field stimulation or agonist administration, the density of nerves (adrenergic, cholinergic and nitrergic) and interstitial cells (ICs), as well as cGMP accumulation in bladder and urethral preparations. Key Results Senescent mice of the SAMP8 strain displayed increased micturition frequency and excitatory contractility of neurogenic origin in the bladder. While cholinergic nerve density remained unchanged, there was a mild sensitization to ACh in male mice. Potentiation in the detrusor may be also provoked by the stronger contribution of ATP, together with reduced adrenergic innervation in males and COX-derived prostanoid production in females. The greater excitatory contractility in the urethra was probably due to the sensitization to noradrenaline, in conjunction with attenuated nitrergic relaxation. There were also fewer neuronal NOS immunoreactive (ir) nerves and vimentin-positive ICs, although the sildenafil-and diethylamine-NONOate-induced relaxations and cGMP-ir remained unchanged. Conclusions and Implications Premature senescent mice exhibit bladder and urethral hyperexcitability, coupled with reduced urethral relaxation of neurogenic origin, which could model the impaired urinary function in elderly humans. We propose that senescence-accelerated mice provide a useful tool to analyse the basic mechanisms of age-related changes in bladder and urethral function. PMID:24372152

  15. Effects of intrinsic aging and photodamage on skin dyspigmentation: an explorative study

    NASA Astrophysics Data System (ADS)

    Dobos, Gabor; Trojahn, Carina; D'Alessandro, Brian; Patwardhan, Sachin; Canfield, Douglas; Blume-Peytavi, Ulrike; Kottner, Jan

    2016-06-01

    Photoaging is associated with increasing pigmentary heterogeneity and darkening of skin color. However, little is known about age-related changes in skin pigmentation on sun-protected areas. The aim of this explorative study was to measure skin color and dyspigmentation using image processing and to evaluate the reliability of these parameters. Twenty-four volunteers of three age-groups were included in this explorative study. Measurements were conducted at sun-exposed and sun-protected areas. Overall skin-color estimates were similar among age groups. The hyper- and hypopigmentation indices differed significantly by age groups and their correlations with age ranged between 0.61 and 0.74. Dorsal forearm skin differed from the other investigational areas (p<0.001). We observed an increase in dyspigmentation at all skin areas, including sun-protected skin areas, already in young adulthood. Associations between age and dyspigmentation estimates were higher compared to color parameters. All color and dyspigmentation estimates showed high reliability. Dyspigmentation parameters seem to be better biomarkers for UV damage than the overall color measurements.

  16. Neonatal intensive care practices and the influence on skin condition.

    PubMed

    Visscher, M O; Taylor, T; Narendran, V

    2013-04-01

    Premature skin has a thinner epidermis with a poorly formed stratum corneum (SC) barrier compared to full term skin. Poor skin integrity increases the risk of exposure to irritants and infectious agents. Interventions that facilitate skin maturation are essential. The objective was to examine the effects of prematurity and time from birth on SC maturation and to identify factors that impact skin condition. A retrospective review was conducted among 130 NICU patients. Skin regions were evaluated for erythema, rash, integrity and function. The effects of gestational age, time from birth, stool exposure, nutrition and diagnosis were examined. Three groups emerged: (i) premature and <38 weeks adjusted age; (ii) premature and >38 weeks adjusted age; and (iii) full term. Surprisingly, the premature infants exhibited lower perineal irritation and greater SC integrity (lower transepidermal water loss) than full terms (P < 0.05). Group 2 had a longer time before the first skin-stool contact. Chest skin pH showed maturational changes for Group 1 (P < 0.05) but did not change for premature Group 2 who was older at enrollment. Erythema was lower for infants using elemental formulas or total parenteral nutrition. Premature infants with early stool contact and high exposure, full term infants, and patients with congenital diaphragmatic hernia or trisomy 21 are at high risk for skin compromise and may benefit from prophylactic interventions to minimize compromise. Low stool exposure and greater time before the first stool contact appear to be protective against skin compromise. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  17. Ontogeny and aging of the distal skin temperature rhythm in humans.

    PubMed

    Batinga, H; Martinez-Nicolas, A; Zornoza-Moreno, M; Sánchez-Solis, M; Larqué, E; Mondéjar, M T; Moreno-Casbas, M; García, F J; Campos, M; Rol, M A; Madrid, J A

    2015-01-01

    In circadian terms, human ontogeny is characterized by the emergence of a daily pattern, from a previous ultradian pattern, for most variables during the first 6 months of life. Circadian aging in humans is characterized by a phase advance, accompanied by rhythm fragmentation and flattening. Despite an expanding body of literature focused on distal skin temperature, little information is available about the ontogeny and practically nothing about age-related changes in this rhythm. Thus, the aim was to evaluate the degree of maturation and aging of the circadian pattern of distal skin temperature to identify those parameters that are modified throughout life and could be used to differentiate subjects according to their age. For this, distal skin temperature was measured in 197 volunteers (55 % women), including babies aged 15 days (30 subjects), 1 month (28 subjects), 3 months (31 subjects), and 6 months (10 subjects); young adults aged 19 years (37 subjects); middle-aged persons aged 46 years (27 subjects); older people aged 72 (34 subjects). Circadian system maturation was associated with an increase in amplitude and a reduction in skin temperature during sleep. During adulthood, women showed a more robust pattern (lower fragmentation, and higher night-time temperature, amplitude, circadian function index, and first harmonic relative power); however, these differences were lost with aging, a period of life that was consistently associated with a phase advance of the rhythm. In summary, distal skin temperature pattern can be used as a robust variable to discern between different ages throughout the life.

  18. [Molecular Mechanisms of Functional Activity Decreasing of the Skin Cells With Its Aging].

    PubMed

    Khavinson, V Kh; Linkova, N S; Kukanova, E O; Orlova, O A

    2016-01-01

    The article discusses the pool of signaling molecules that regulate the functional activity of the skin cells. Molecules of apoptosis and cells skin aging are p53, p21, p15, Cdk 4/6 and Bcl-2. Inflammation in skin fibroblasts are realized through the cytokines TNF-α, TGF-β, IL-1, ICAM-1, matrix metalloproteinase MMP-1,2,3,9, transcription factor NF-κB and activator protein AP-1. An important role in the aging of skin cells play neuroimmunoendocrine signaling molecules--melatonin, serotonin, skin fibroblast proliferation marker chromogranin A and CD98hc. Age-related changes in the activity of immune cells of the skin is associated with impaired expression of cluster of differentiation of T-lymphocytes (CD3, CD4, CD5, CD8, CD11) and dendritic cells (CD83⁺). These signaling molecules produced by the fibroblasts of the skin, regulate the activity of immune cells involved in the cascade of reactions associated with inflammatory responses, proliferation, apoptosis and cell regeneration. Based on these data nowadays new highly selective approaches to the diagnosis of the skin and the creation of cosmetic agents for the prevention of aging are developed.

  19. Collagen Fragmentation Promotes Oxidative Stress and Elevates Matrix Metalloproteinase-1 in Fibroblasts in Aged Human Skin

    PubMed Central

    Fisher, Gary J.; Quan, Taihao; Purohit, Trupta; Shao, Yuan; Cho, Moon Kyun; He, Tianyuan; Varani, James; Kang, Sewon; Voorhees, John J.

    2009-01-01

    Aged human skin is fragile because of fragmentation and loss of type I collagen fibrils, which confer strength and resiliency. We report here that dermal fibroblasts express increased levels of collagen-degrading matrix metalloproteinases-1 (MMP-1) in aged (>80 years old) compared with young (21 to 30 years old) human skin in vivo. Transcription factor AP-1 and α2β1 integrin, which are key regulators of MMP-1 expression, are also elevated in fibroblasts in aged human skin in vivo. MMP-1 treatment of young skin in organ culture causes fragmentation of collagen fibrils and reduces fibroblast stretch, consistent with reduced mechanical tension, as observed in aged human skin. Limited fragmentation of three-dimensional collagen lattices with exogenous MMP-1 also reduces fibroblast stretch and mechanical tension. Furthermore, fibroblasts cultured in fragmented collagen lattices express elevated levels of MMP-1, AP-1, and α2β1 integrin. Importantly, culture in fragmented collagen raises intracellular oxidant levels and treatment with antioxidant MitoQ10 significantly reduces MMP-1 expression. These data identify positive feedback regulation that couples age-dependent MMP-1-catalyzed collagen fragmentation and oxidative stress. We propose that this self perpetuating cycle promotes human skin aging. These data extend the current understanding of the oxidative theory of aging beyond a cellular-centric view to include extracellular matrix and the critical role that connective tissue microenvironment plays in the biology of aging. PMID:19116368

  20. The degree of premature hair graying as an independent risk marker for coronary artery disease: a predictor of biological age rather than chronological age.

    PubMed

    Kocaman, Sinan Altan; Çetin, Mustafa; Durakoğlugil, Murtaza Emre; Erdoğan, Turan; Çanga, Aytun; Çiçek, Yüksel; Doğan, Sıtkı; Şahin, Ismail; Şatıroğlu, Omer; Bostan, Mehmet

    2012-09-01

    Age is the most important and uncorrectable coronary risk factor at the moment. The concept of measuring aging biologically rather than only chronologically may be of importance in clinical practice. Hair graying is the most apparent sign of biological aging in humans, yet its mechanism is largely unknown. Today, it is known that cardiovascular risk factors (CVRFs), especially in combination, cause premature atherosclerosis. In our opinion, premature hair graying or whitening may represent early atherosclerotic changes as a surrogate of host response to the CVRFs. In this study, we planned to investigate the relationship of hair graying with CVRFs and coronary atherosclerotic burden in order to determine whether it is an independent marker for coronary artery disease (CAD). The current study has a cross-sectional observational design. Two hundred and thirteen men who underwent coronary angiography with a suspicion of CAD were enrolled in the study. The patients were evaluated in terms of age, demographical properties and the CVRFs. Hair whitening score (HWS) was defined according to extent of gray/white hairs (1: pure black; 2: black>white; 3: black=white; 4: white>black; 5: pure white). Coronary atherosclerotic burden was assessed by the Gensini score. Analyses were performed in age-matched normal coronary arteries (NCA) and CAD groups. Linear and logistic regression analyses were used for the multivariate analyses of independent variables associated with hair greying. The CVRFs were higher in CAD group. Hair whitening score (2.7 ± 1.3 vs. 3.3 ± 1.2, p=0.002), hair losing score (1.2 ± 0.9 vs. 1.5 ± 1.0, p=0.038) and xanthelasma rate (24% vs. 45%, p=0.013) were also significantly different between NCA and CAD groups. Age (p<0001), Gensini score (p<0.001) and coronary severity score (p=0.001) were higher in the categories of increased HWS. In multiple logistic regression analysis, only diabetes mellitus (OR: 3.240, 95% CI: [1.017-10.319], p=0.047), low

  1. Age-associated skin changes in innate immunity markers reflect a complex interaction between aging mechanisms in the sebaceous gland.

    PubMed

    Elewa, Rana M; Abdallah, Marwa A; Zouboulis, Christos C

    2015-05-01

    Skin aging is the most apparent form of senescence and could reflect the aging of inner organs. Molecular changes involved in innate immunity signaling, tumorigenesis, and inflammation were studied. Protein levels were evaluated based on the immunohistochemistry of the skin of 42 young and old individuals. The investigated molecules (peroxisome proliferator-activated receptors-α and -γ, Toll-like receptor 4, and interleukin-6 and 8) were expressed in almost all skin compartments and exhibited significant aging-associated downregulation in epithelial tissues, mostly in the sebaceous glands, the sweat glands, and the epidermis. With the exception of interleukin-6 in the dermal tissue, no upregulation was detected in the aged group. The results obtained indicate an interesting interaction between different pathways of aging, namely defective stress responses, downregulated innate immunity responses, and activation of the tumorigenesis pathway, which was especially apparent in the sebaceous glands.

  2. Premature infant

    MedlinePlus

    ... infant is a baby born before 37 completed weeks of gestation (more than 3 weeks before the due date). ... one of the following: Premature (less than 37 weeks gestation) Full term (37 to 42 weeks gestation) ...

  3. Premature Babies

    MedlinePlus

    ... or preemies. A premature birth is when a baby is born before 37 completed weeks of pregnancy. ... early, preemies weigh much less than full-term babies. They may have health problems because their organs ...

  4. The risk of prematurity and small-for-gestational-age birth in Mexico City: the effects of working conditions and antenatal leave.

    PubMed Central

    Cerón-Mireles, P; Harlow, S D; Sánchez-Carrillo, C I

    1996-01-01

    OBJECTIVES: This study examined the effect of working conditions, occupational stress, and antenatal leave on risk of small-for-gestational age and premature births in Mexico City. METHODS: Over a 3-month period, 2663 (96.2%) of 2767 women who gave birth at three major hospitals and worked at least 3 months during pregnancy were interviewed shortly after delivery. After the exclusion of multiple gestations and birth defects, 261 (10.0%) small-for-gestational-age and 288 (11.0%) preterm births were identified. RESULTS: For small-for-gestational-age births, working more than 50 hours a week (odds ratio [OR] = 1.59), standing more than 7 hours a day (OR = 1.40), and no antenatal leave (OR = 1.55) were associated with an increased risk. Women with no antenatal leave were also much more likely to give birth prematurely (OR = 3.04). CONCLUSIONS: In this study, arduous working conditions and lack of antenatal leave benefits were found to increase the risk of poor birth outcome in Mexican women. Enforcement of existing antenatal leave laws and provision of comparable benefits for the uninsured may reduce the incidence of small-for-gestational-age births and prematurity. PMID:8659657

  5. AGE-RELATED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS INDUCED BY MMS

    EPA Science Inventory

    Age-Related Gene Expression Changes In Human Skin Fibroblasts Induced By methyl methanesulfonate. Geremy W. Knapp, Alan H. Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Prote...

  6. p53 Induces skin aging by depleting Blimp1+ sebaceous gland cells.

    PubMed

    Kim, J; Nakasaki, M; Todorova, D; Lake, B; Yuan, C-Y; Jamora, C; Xu, Y

    2014-03-27

    p53 is an important inducer of organismal aging. However, its roles in the aging of skin remain unclear. Here we show that mice with chronic activation of p53 develop an aging phenotype in the skin associated with a reduction of subcutaneous fat and loss of sebaceous gland (SG). The reduction in the fat layer may result from the decrease of mammalian TOR complex 1 (mTORC1) activity accompanied by elevated expression of energy expenditure genes, and possibly as compensatory effects, leading to the elevation of peroxisome proliferator-activated receptor (PPAR)γ, an inducer of sebocyte differentiation. In addition, Blimp1(+) sebocytes become depleted concomitantly with an increase in cellular senescence, which can be reversed by PPARγ antagonist (BADGE) treatment. Therefore, our results indicate that p53-mediated aging of the skin involves not only thinning through the loss of subdermal fat, but also xerosis or drying of the skin through declining sebaceous gland activity.

  7. AGE-RELATED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS INDUCED BY MMS

    EPA Science Inventory

    Age-Related Gene Expression Changes In Human Skin Fibroblasts Induced By methyl methanesulfonate. Geremy W. Knapp, Alan H. Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Prote...

  8. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor.

    PubMed

    Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei

    2017-07-01

    Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.

  9. The relationship of metabolic syndrome and body composition in children with premature adrenarche: is it age related?

    PubMed Central

    Williams, Kristen M; Oberfield, Sharon E; Zhang, Chengchen; McMahon, Donald J; Sopher, Aviva B

    2015-01-01

    Background Studies that evaluate both body composition and metabolic syndrome (MeS) risk in prepubertal children with premature adrenarche (PA) are limited. Methods Fifty-eight prepubertal children (5-9 years, 33F and 25M), with PA(n=30) and controls (n=28) were evaluated for the presence of MeS as defined by age-modified NCEP ATP III criteria. A subset had dual-energy x-ray absorptiometry and bone markers (n=23/58) to evaluate the effect of hyperandrogenism on metabolic abnormalities and body composition. Results There was no difference in prevalence of MeS between PA and controls(p=0.138). Children with MeS were obese with increased WC and decreased HDL levels. Androgens were not associated with having more than one criteria for MeS (p=0.08), but were associated with triglycerides and WC (p=0.029, p=0.041). Lean mass was greater in PA (p=0.039) and androgens correlated with BMD(p=0.029) and total body fat(p=0.008). Subjects with higher percent body fat were more likely to have more than one MeS risk factor(p=0.005). Conclusions MeS was seen only in obese subjects whether or not they had PA. Thus, it appears that obesity drives metabolic risk in the prepubertal population, rather than PA. Our findings are important in determining how the prepubertal patient with PA should be evaluated for metabolic risk. PMID:26513727

  10. An Influence of Birth Weight, Gestational Age, and Apgar Score on Pattern Visual Evoked Potentials in Children with History of Prematurity

    PubMed Central

    Chrzanowska-Grenda, Beata; Oziębło-Kupczyk, Monika; Bakunowicz-Łazarczyk, Alina

    2015-01-01

    Purpose. The objective of our study was to examine a possible influence of gestational age, birth weight, and Apgar score on amplitudes and latencies of P100 wave in preterm born school-age children. Materials and Methods. We examined the following group of school-age children: 28 with history of prematurity (mean age 10.56 ± 1.66 years) and 25 born at term (mean age 11.2 ± 1.94 years). The monocular PVEP was performed in all children. Results. The P100 wave amplitudes and latencies significantly differ between preterm born school-age children and those born at term. There was an essential positive linear correlation of the P100 wave amplitudes with birth weight, gestational age, and Apgar score. There were the negative linear correlations of P100 latencies in 15-minute stimulation from O1 and Oz electrode with Apgar score and O1 and O2 electrode with gestational age. Conclusions. PVEP responses vary in preterm born children in comparison to term. Low birth weight, early gestational age, and poor baseline output seem to be the predicting factors for the developmental rate of a brain function in children with history of prematurity. Further investigations are necessary to determine perinatal factors that can affect the modified visual system function in preterm born children. PMID:26417461

  11. Parental perception of premature infant growth and feeding behaviors: use of gestation-adjusted age and assessing for developmental readiness during solid food introduction.

    PubMed

    Chung, Jaeah; Lee, Janet; Spinazzola, Regina; Rosen, Lisa; Milanaik, Ruth

    2014-11-01

    The extent to which pediatricians inform parents about gestation-adjusted age growth plotting is unclear. Uninformed parents may have decreased satisfaction of infant growth. Subsequent early introduction of solid foods may lead to avoidant feeding behaviors and poor parental perception of infant feeding patterns. Questionnaires regarding infant growth and feeding behaviors were given to parents (n = 76) of premature infants. The Wilcoxon rank-sum and χ(2)/Fisher's exact tests were used. Uninformed parents were less satisfied with their infant's growth (P < .002). Uninformed parents had more developmentally unready infants at the time of solid food introduction compared with informed parents (P = .03). Significant differences were found in avoidant feeding behaviors and parental perception of infant feeding patterns between developmentally ready and unready infants. Pediatricians should adjust for gestational age when plotting growth and assess for developmental readiness for premature infants when recommending solid foods. © The Author(s) 2014.

  12. In vivo assessment of aged human skin with a unilateral NMR scanner.

    PubMed

    Bergman, Elad; Sarda, Yifat; Ritz, Noa; Sabo, Edmond; Navon, Gil; Bergman, Reuven; Nevo, Uri

    2015-06-01

    Human skin undergoes morphological and biochemical changes as a result of chronological aging and exposure to solar ultraviolet irradiation (photoaging). Noninvasive detection of these changes may aid in the prevention and treatment of both types of aging. This article presents a noninvasive method for the evaluation of aging skin with a unilateral stray field NMR scanner. These portable and inexpensive scanners may be suitable for in-depth skin characterization. In vivo profiles of sun-protected and sun-exposed skin from the forearms of female subjects of different ages (n = 9) were measured. Skin biopsies for histopathological examination were used as reference. T2 analysis with a bi-exponential decay model was applied and the extracted parameters were examined as markers for dermal aging. In the upper reticular dermis, a significant increase in the fraction of the slow T2 component and in the T2 value itself was found to correlate with chronological aging. For most subjects, there was an additional increase in the values of the slow T2 component and the T2 values from the sun-exposed forearm, superimposed on that measured for the sun-protected forearm. These results are in agreement with the decline in collagen content and the increase in free water content with aging. The results suggest that such a technique can be used as a tool for the assessment of aging, and that bi-exponential fitting can produce sensitive fingerprint parameters for the dermal alterations that occur during aging.

  13. Ultrastructural age-related changes in the sensory corpuscles of the human genital skin.

    PubMed

    Tammaro, A; Parisella, F R; Cavallotti, C; Persechino, S; Cavallotti, C

    2013-01-01

    In human genital skin the majority of superficial sensory corpuscles is represented by glomerular corpuscles. These corpuscles show an own morphology. Our aim is to compare the ultra-structure of superficial sensory corpuscles in the penis skin of younger and older subjects. In this report the ultra-structure of the sensitive corpuscle in the penis skin of the younger and older subjects was compared, showing that the genital skin of the older humans contains more simple complexes than the younger ones. Our findings support the view that the age-related changes that can be observed in human glomerular genital corpuscles are consistent with an increase of the simple complexes and a strong decrease of the poly-lamellar one in the older people. These findings demonstrate that human genital corpuscles underwent age-related changes. Moreover our morphological findings can be correlated in relation to the clinical evolution of the sensitivity in the genital skin.

  14. The ageing of the blood supply and the lymphatic drainage of the skin.

    PubMed

    Ryan, Terence

    2004-01-01

    The anatomy and functions of the blood and lymph vessels of human skin are described. Variation in these due to site, ageing and events during life consequent to exposure to a threatening environment are emphasised. Gradual atrophy and greater heterogeneity are features of ageing. Responses to injury and repair are complex and the interaction of mechanical signals distorting skin cells with numerous chemical signals are referred to. The lymphatics are part of an immunosurveillance system to monitor skin barrier penetration. The review attempts to draw attention to key recent advances in our understanding of the cytokine and growth factor production of the skin in the context of previous mainly physiological reviews especially influenced by 50 years of clinical practice as a dermatologist with an eye on both the skin and the fields of microcirculation and lymphology.

  15. Reading, Mathematics and Fine Motor Skills at 5 Years of Age in US Children who were Extremely Premature at Birth.

    PubMed

    Lee, Miryoung; Pascoe, John M; McNicholas, Caroline I

    2017-01-01

    Objectives The prevalence of extreme prematurity at birth has increased, but little research has examined its impact on developmental outcomes in large representative samples within the United States. This study examined the association of extreme prematurity with kindergarteners' reading skills, mathematics skills and fine motor skills. Methods The early childhood longitudinal study-birth cohort, a representative sample of the US children born in 2001 was analyzed for this study. Early reading and mathematics skills and fine motor skills were compared among 200 extremely premature children (EPC) (gestational age <28 wks or birthweight <1000 g), 500 premature children (PC), and 4300 term children (TC) (≥37wks or ≥2500 g). Generalized linear regression analyses included sampling weights, children's age, race, sex, and general health status, and parental marital status and education among singleton children. Results At age 5 years, EPC were 2.6(95 % CI 1.7-3.8) times more likely to fail build a gate and were 3.1(95 % CI 1.6-5.8) times more likely to fail all four drawing tasks compared to TC (p values <0.001). Fine motor performance of PC (failed to build a gate, 1.3[95 % CI 1.0-1.7]; failed to draw all four shapes, 1.1[95 % CI 0.8-1.6]) was not significantly different from TC. Mean early reading scale score (36.8[SE:1.3]) of EPC was 4.0 points lower than TC (p value < 0.0001) while mean reading score (39.9[SE:1.4]) of PC was not significantly different from TC (40.8[SE:1.1]). Mean mathematics scale score were significantly lower for both EPC (35.5[SE:1.0], p value < 0.001) and PC (39.8[SE:0.8], p value = 0.023) compared to TC (41.0[SE:0.6]). Conclusions for Practice Extreme prematurity at birth was associated with cognitive and fine motor delays at age 5 years. This suggests that based on a nationally representative sample of infants, the biological risk of extreme prematurity persists after adjusting for other factors related to development.

  16. Detection of advanced glycation end products (AGEs) on human skin by in vivo confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, A. A.; Pereira, L.; Ali, S. M.; Pizzol, C. D.; Tellez, C. A.; Favero, P. P.; Santos, L.; da Silva, V. V.; Praes, C. E. O.

    2016-03-01

    The aging process involves the reduction in the production of the major components of skin tissue. During intrinsic aging and photoaging processes, in dermis of human skin, fibroblasts become senescent and have decreased activity, which produce low levels of collagen. Moreover, there is accumulation of advanced glycation end products (AGEs). AGEs have incidence in the progression of age-related diseases, principally in diabetes mellitus and in Alzheimer's diseases. AGEs causes intracellular damage and/or apoptosis leading to an increase of the free radicals, generating a crosslink with skin proteins and oxidative stress. The aim of this study is to detect AGEs markers on human skin by in vivo Confocal Raman spectroscopy. Spectra were obtained by using a Rivers Diagnostic System, 785 nm laser excitation and a CCD detector from the skin surface down to 120 μm depth. We analyzed the confocal Raman spectra of the skin dermis of 30 women volunteers divided into 3 groups: 10 volunteers with diabetes mellitus type II, 65-80 years old (DEW); 10 young healthy women, 20-33 years old (HYW); and 10 elderly healthy women, 65-80 years old (HEW). Pentosidine and glucosepane were the principally identified AGEs in the hydroxyproline and proline Raman spectral region (1000-800 cm-1), in the 1.260-1.320 cm-1 region assignable to alpha-helical amide III modes, and in the Amide I region. Pentosidine and glucosepane calculated vibrational spectra were performed through Density Functional Theory using the B3LYP functional with 3-21G basis set. Difference between the Raman spectra of diabetic elderly women and healthy young women, and between healthy elderly women and healthy young women were also obtained with the purpose of identifying AGEs Raman bands markers. AGEs peaks and collagen changes have been identified and used to quantify the glycation process in human skin.

  17. Alteration of the TGF-beta/SMAD pathway in intrinsically and UV-induced skin aging.

    PubMed

    Han, Kwang-Ho; Choi, Hye-Ryung; Won, Chong-Hyun; Chung, Jin-Ho; Cho, Kwang-Hyun; Eun, Hee-Chul; Kim, Kyu-Han

    2005-05-01

    In an effort to characterize transforming growth factor (TGF-beta) signaling and to determine its association with the aging and photoaging processes, we directly compared the expressions of TGF-beta/SMAD in intrinsically aged and photoaged human skin in vivo. By using an RNase protection assay and by immunohistochemistry, we found that the expression levels of TbetaRII mRNA and protein in the epidermis of the forearm (sun-exposed) of the elderly were significantly lower than that of the upper-inner arm (sun-protected) skin of the same individual. In the epidermis, the expressions of Smad7 mRNA in both the intrinsically aged and photoaged skin of the elderly were higher than in the sun-protected skin of the young, and this was elevated in the photoaged epidermis. Decreased pSmad2 immunoreactivity was observed in the epidermis of photoaged forearm skin versus matched intrinsically aged skin. This decrease was also found in the epidermis of upper-inner arm skin of the elderly versus the young. These results suggest that the UV-induced down-regulation of TbetaRII and the concerted over-expression of Smad7 may trigger the inhibition of the TGF-beta-induced phosphorylation of Smad2.

  18. Transcriptome and ultrastructural changes in dystrophic Epidermolysis bullosa resemble skin aging.

    PubMed

    Breitenbach, Jenny S; Rinnerthaler, Mark; Trost, Andrea; Weber, Manuela; Klausegger, Alfred; Gruber, Christina; Bruckner, Daniela; Reitsamer, Herbert A; Bauer, Johann W; Breitenbach, Michael

    2015-06-01

    The aging process of skin has been investigated recently with respect to mitochondrial function and oxidative stress. We have here observed striking phenotypic and clinical similarity between skin aging and recessive dystrophic Epidermolysis bullosa (RDEB), which is caused by recessive mutations in the gene coding for collagen VII,COL7A1. Ultrastructural changes, defects in wound healing, and inflammation markers are in part shared with aged skin. We have here compared the skin transcriptomes of young adults suffering from RDEB with that of sex- and age-matched healthy probands. In parallel we have compared the skin transcriptome of healthy young adults with that of elderly healthy donors. Quite surprisingly, there was a large overlap of the two gene lists that concerned a limited number of functional protein families. Most prominent among the proteins found are a number of proteins of the cornified envelope or proteins mechanistically involved in cornification and other skin proteins. Further, the overlap list contains a large number of genes with a known role in inflammation. We are documenting some of the most prominent ultrastructural and protein changes by immunofluorescence analysis of skin sections from patients, old individuals, and healthy controls.

  19. Decline of lymphatic vessel density and function in murine skin during aging.

    PubMed

    Karaman, Sinem; Buschle, Dorina; Luciani, Paola; Leroux, Jean-Christophe; Detmar, Michael; Proulx, Steven T

    2015-10-01

    Lymphatic vessels play important roles in the pathogenesis of many conditions that have an increased prevalence in the elderly population. However, the effects of the aging process on the lymphatic system are still relatively unknown. We have applied non-invasive imaging and whole-mount staining techniques to assess the lymphatic vessel function and morphology in three different age groups of mice: 2 months (young), 7 months (middle-aged), and 18 months (aged). We first developed and validated a new method to quantify lymphatic clearance from mouse ear skin, using a lymphatic-specific near-infrared tracer. Using this method, we found that there is a prominent decrease in lymphatic vessel function during aging since the lymphatic clearance was significantly delayed in aged mice. This loss of function correlated with a decreased lymphatic vessel density and a reduced lymphatic network complexity in the skin of aged mice as compared to younger controls. The blood vascular leakage in the skin was slightly increased in the aged mice, indicating that the decreased lymphatic function was not caused by a reduced capillary filtration in aged skin. The decreased function of lymphatic vessels with aging might have implications for the pathogenesis of a number of aging-related diseases.

  20. The influence of gestational age on the dynamic behavior of other risk factors associated with retinopathy of prematurity (ROP)

    PubMed Central

    Eckert, Gabriela Unchalo; Valiatti, Fabiana Borba; dos Santos, Paula Gabriela Batista; da Costa, Marlene Coelho; Procianoy, Renato Soibelmann

    2009-01-01

    Background Improved survival of preterm neonates has increased the incidence of retinopathy of prematurity (ROP) in many middle-income countries. Aim This study aimed to verify the main risk factors for the development of ROP according to different gestational age (GA) groups. Methods A prospective cohort study including infants weighing ≤1,500 g or GA ≤32 weeks at birth was conducted. The main clinical outcomes were the occurrence of any stage of ROP and severe ROP. The perinatal variables considered for the study were: birth weight; GA; gender; to be small for GA (SGA); weight gain from birth to the sixth week of life; use of oxygen in mechanical ventilation or nasal CPAP; multiple gestations; therapeutic use of surfactant, indomethacin, and erythropoietin; occurrence of sepsis, meningitis, intraventricular hemorrhage, and patent ductus arteriosus; need for and volume of blood transfusion; and 10-min Apgar score. The patients were divided into three groups according to GA: (group 1) infants of GA ≤28 weeks at birth (n = 100); (group 2) infants of GA = 29–31 weeks at birth (n = 215); and (group 3) infants of GA ≥32 weeks at birth (n = 152). Results A total of 467 newborn infants were included. Mean BW and GA in the total cohort were 1,216.5 g (±278.3) and 30.3 weeks (±2.2), respectively. Gestational age groups were not matched for BW and SGA. Any stage of ROP occurred in 111 patients (23.8%) and 24 (5.1%) patients developed severe ROP. Only BW and volume of blood transfusion were significant factors for the occurrence of any stage of ROP in all groups. In group 1, GA, the twin situation, and use of erythropoietin were statistically significant factors. In group 2, only GA and need for blood transfusion were significant. In group 3, use of oxygen in mechanical ventilation, sepsis, and need for blood transfusion were significant for ROP onset. The logistic regression determined that patients in groups 2 and 3 were less likely to

  1. Skin care in the aging female: myths and truths

    PubMed Central

    Neill, Ushma S.

    2012-01-01

    I recently had the opportunity to visit a very relaxing and beautiful day spa during the middle-of-the-day break from the sessions at a Keystone meeting. I was having a very tranquil and restorative day, when I went in for my final treatment — a facial. The very chipper and cheerful esthetician began examining my skin and applying various creams, when I then heard her say something that nearly ruined my experience: she claimed that the topical treatment she was about to apply would, in her words, “cleanse my liver.” PMID:22293186

  2. Is lack of sleep capable of inducing DNA damage in aged skin?

    PubMed

    Kahan, V; Ribeiro, D A; Egydio, F; Barros, L A; Tomimori, J; Tufik, S; Andersen, M L

    2014-01-01

    Skin naturally changes with age, becoming more fragile. Various stimuli can alter skin integrity. The aim of this study was to evaluate whether sleep deprivation affects the integrity of DNA in skin and exacerbates the effects of aging. Fifteen-month old female Hairless mice underwent 72 h of paradoxical sleep deprivation or 15 days of chronic sleep restriction. Punch biopsies of the skin were taken to evaluate DNA damage by single cell gel (comet) assay. Neither paradoxical sleep deprivation nor sleep restriction increased genetic damage, measured by tail movement and tail intensity values. Taken together, the findings are consistent with the notion that aging overrides the effect of sleep loss on the genetic damage in elderly mice. © 2014 S. Karger AG, Basel.

  3. Differences in tooth shade value according to age, gender and skin color: A pilot study

    PubMed Central

    Veeraganta, Sumanth K.; Savadi, Ravindra C.; Baroudi, Kusai; Nassani, Mohammad Z.

    2015-01-01

    Purpose of the Study: The purpose was to investigate the differences in tooth shade value according to age, gender and skin color among a sample of the local population in Bengaluru, India. Methodology: The study comprised 100 subjects belonging to both gender between the age groups of 16 years to 55 years. Tooth shade values of permanent maxillary left or right central incisors were recorded using the Vitapan 3D-Master shade guide. Skin color was matched using the Radiance compact makeup shades as a guide. Results: Chi-square statistical test demonstrated that younger subjects have lighter tooth shade values. No statistically significant differences were recorded in tooth shade value according to gender or skin color. Conclusion: Within the limitations of the current study, it can be concluded that tooth shade value is significantly influenced by age. Gender and skin color appear not to have a significant relation to tooth shade value. PMID:26929500

  4. In-vivo differentiation of photo-aged epidermis skin by texture-based classification

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoman; Weng, Cuncheng; Yu, Biying; Li, Hui

    2014-11-01

    Two sets of in vivo female cheek skin epidermis images were analyzed through gray level co-occurrence matrix (GLCM) and fast fourier transform (FFT). One set was derived from women in their 20s and the other from women more than 60 years of age. GLCM was used to evaluate the texture features of the regions of interest within the cheek epidermis, and texture classification was subsequently performed. During texture classification, 25 images (320×240 pixels) in each age set were randomly selected. Three texture features, i.e., energy, contrast, and correlation, were obtained from the skin images and analyzed at four orientations (0°, 45°,90°, and 135°), accompanied by different distances between two pixels. The textures of the different aging skins were characterized by FFT, which provides the dermatoglyph orientation index. The differences in the textures between the young and old skin samples can be well described by the FFT dermatoglyph orientation index. The texture features varied among the different aging skins, which provide a versatile platform for differentiating the statuses of aging skins.

  5. Health Issues of Premature Babies

    MedlinePlus

    ... Breastfeeding Crying & Colic Diapers & Clothing Feeding & Nutrition Preemie Sleep Teething & Tooth Care Toddler Preschool Gradeschool Teen Young Adult Healthy Children > Ages & Stages > Baby > Preemie > Health Issues of Premature Babies Ages & ...

  6. Skin rash during cetuximab treatment in advanced colorectal cancer: is age a clinical predictor?

    PubMed

    Giuliani, Jacopo; Marzola, Marina

    2013-06-01

    The aim of this study is to evaluate the intensity and the duration of skin rash in young and elderly patients treated with cetuximab for advanced colorectal cancer, in order to define a possible relationship between age and skin toxicity. We retrospectively analyzed all consecutive patients with advanced colorectal cancer who developed skin rash during cetuximab treatment at the Clinical Oncology Unit from June 2006 to May 2011. We divided the general case study into two subgroups: young and elderly patients (≥ 65 years old), and we compared clinical, pathological, and therapeutical characteristics of both subgroups. Among the 31 patients affected by advanced colorectal cancer (64.5 % with colon cancer and 35.5 % with rectal cancer) treated with cetuximab, 19 patients (61.3 %) developed skin toxicities: seven patients (36.8 %) had grade 1 skin rash, nine patients (47.4 %) had grade 2, three patients (15.8 %) had grade 3, and no grade 4 was found. Ten (52.6 %) out of 19 patients were elderly (>65 years). Concerning skin rash, grading was substantially comparable between the two subgroups, but median duration of skin rash was higher in the first subgroup for all grades. The univariate analysis showed no statistical significant difference in overall survival between young and elderly patients (p = 0.171), such as age that does not seem to statistically influence the appearance (p = 0.386), duration (p = 0.455), and grade of skin rash (p = 0.765). Age is an insufficient predictor of skin toxicity during cetuximab treatment in advanced colorectal cancer and does not seem to statistically influence the appearance, duration, and grade of skin rash.

  7. Pentacyclic triterpenes from Terminalia arjuna show multiple benefits on aged and dry skin.

    PubMed

    Farwick, M; Köhler, T; Schild, J; Mentel, M; Maczkiewitz, U; Pagani, V; Bonfigli, A; Rigano, L; Bureik, D; Gauglitz, G G

    2014-01-01

    Pentacyclic triterpenoids improve epidermal barrier function and induce collagen production. Here, their effects on cutaneous aging by means of objective instrumental measurements were elucidated. Reconstituted human epidermis, cultivated keratinocytes and fibroblasts were incubated with Terminalia arjuna triterpenes (T. arjuna bark extract), and mRNA and protein expression of various genes was determined using microarray analysis, qRT-PCR and ELISA techniques. Clinical efficacy of T. arjuna bark extract versus vehicle control cream was elucidated in 30 patients and transepidermal water loss (TEWL), skin hydration and elasticity were measured. Another 30 female patients in their postmenopausal phase were treated with a similar regime, and skin sebum content, cutaneous blood microcirculation and skin density/echogenicity were assessed. Incubation with T. arjuna triterpenes increased FGF-2, TSP-1, TGF-β and CTGF expression, and VEGF secretion in vitro. Elevated lactate dehydrogenase release upon sodium dodecyl sulphate challenge was reversed by the application of T. arjuna bark extract. T. arjuna bark extract decreased TEWL, improved skin moisturization, reduced scaliness and led to significantly improved skin elasticity. Also, increases in blood microflow and skin sebum content as well as improved skin thickness/echogenicity were noted on postmenopausal skin, resulting in visible reduction of sagging skin on the jowls as demonstrated by digital photography. T. arjuna bark extract appears as an innovative active ingredient that exerts versatile antiaging properties in vitro and in vivo.

  8. Objective assessment of facial skin aging and the associated environmental factors in Japanese monozygotic twins.

    PubMed

    Ichibori, Ryoko; Fujiwara, Takashi; Tanigawa, Tomoko; Kanazawa, Shigeyuki; Shingaki, Kenta; Torii, Kosuke; Tomita, Koichi; Yano, Kenji; Sakai, Yasuo; Hosokawa, Ko

    2014-06-01

    Twin studies, especially those involving monozygotic (MZ) twins, facilitate the analysis of factors affecting skin aging while controlling for age, gender, and genetic susceptibility. The purpose of this study was to objectively assess various features of facial skin and analyze the effects of environmental factors on these features in MZ twins. At the Osaka Twin Research Center, 67 pairs of MZ twins underwent medical interviews and photographic assessments, using the VISIA(®) Complexion Analysis System. First, the average scores of the right and left cheek skin spots, wrinkles, pores, texture, and erythema were calculated; the differences between the scores were then compared in each pair of twins. Next, using the results of medical interviews and VISIA data, we investigated the effects of environmental factors on skin aging. The data were analyzed using Pearson's correlation coefficient test and the Wilcoxon signed-rank test. The intrapair differences in facial texture scores significantly increased as the age of the twins increased (P = 0.03). Among the twin pairs who provided answers to the questions regarding history differences in medical interviews, the twins who smoked or did not use skin protection showed significantly higher facial texture or wrinkle scores compared with the twins not exposed to cigarettes or protectants (P = 0.04 and 0.03, respectively). The study demonstrated that skin aging among Japanese MZ twins, especially in terms of facial texture, was significantly influenced by environmental factors. In addition, smoking and skin protectant use were important environmental factors influencing skin aging.

  9. Lifestyle Factors and Visible Skin Aging in a Population of Japanese Elders

    PubMed Central

    Asakura, Keiko; Nishiwaki, Yuji; Milojevic, Ai; Michikawa, Takehiro; Kikuchi, Yuriko; Nakano, Makiko; Iwasawa, Satoko; Hillebrand, Greg; Miyamoto, Kukizo; Ono, Masaji; Kinjo, Yoshihide; Akiba, Suminori; Takebayashi, Toru

    2009-01-01

    Background The number of studies that use objective and quantitative methods to evaluate facial skin aging in elderly people is extremely limited, especially in Japan. Therefore, in this cross-sectional study we attempted to characterize the condition of facial skin (hyperpigmentation, pores, texture, and wrinkling) in Japanese adults aged 65 years or older by using objective and quantitative imaging methods. In addition, we aimed to identify lifestyle factors significantly associated with these visible signs of aging. Methods The study subjects were 802 community-dwelling Japanese men and women aged at least 65 years and living in the town of Kurabuchi (Takasaki City, Gunma Prefecture, Japan), a mountain community with a population of approximately 4800. The facial skin condition of subjects was assessed quantitatively using a standardized facial imaging system and subsequent computer image analysis. Lifestyle information was collected using a structured questionnaire. The association between skin condition and lifestyle factors was examined using multivariable regression analysis. Results Among women, the mean values for facial texture, hyperpigmentation, and pores were generally lower than those among age-matched men. There was no significant difference between sexes in the severity of facial wrinkling. Older age was associated with worse skin condition among women only. After adjusting for age, smoking status and topical sun protection were significantly associated with skin condition among both men and women. Conclusions Our study revealed significant differences between sexes in the severity of hyperpigmentation, texture, and pores, but not wrinkling. Smoking status and topical sun protection were significantly associated with signs of visible skin aging in this study population. PMID:19700917

  10. Using FLIM in the study of permeability barrier function of aged and young skin

    NASA Astrophysics Data System (ADS)

    Xu, P.; Choi, E. H.; Man, M. Q.; Crumrine, D.; Mauro, T.; Elias, P.

    2006-02-01

    Aged skin commonly is afflicted by inflammatory skin diseases or xerosis/eczema that can be triggered or exacerbated by impaired epidermal permeability barrier homeostasis. It has been previously described a permeability barrier defect in humans of advanced age (> 75 years), which in a murine analog >18 mos, could be attributed to reduced lipid synthesis synthesis. However, the functional abnormality in moderately aged mice is due not to decreased lipid synthesis, but rather to a specific defect in stratum corneum (SC) acidification causing impaired lipid processing processing. Endogenous Na +/H + antiporter (NHE1) level was found declined in moderately aged mouse epidermis. This acidification defect leads to perturbed permeability barrier homeostasis through more than one pathways, we addressed suboptimal activation of the essential, lipid-processing enzyme, β-glucocerebrosidase (BGC) is linked to elevated SC pH. Finally, the importance of the epidermis acidity is shown by the normalization of barrier function after exogenous acidification of moderately aged skin.

  11. Transcriptome and ultrastructural changes in dystrophic Epidermolysis bullosa resemble skin aging

    PubMed Central

    Trost, Andrea; Weber, Manuela; Klausegger, Alfred; Gruber, Christina; Bruckner, Daniela; Reitsamer, Herbert A.; Bauer, Johann W.; Breitenbach, Michael

    2015-01-01

    The aging process of skin has been investigated recently with respect to mitochondrial function and oxidative stress. We have here observed striking phenotypic and clinical similarity between skin aging and recessive dystrophic Epidermolysis bullosa (RDEB), which is caused by recessive mutations in the gene coding for collagen VII, COL7A1. Ultrastructural changes, defects in wound healing, and inflammation markers are in part shared with aged skin. We have here compared the skin transcriptomes of young adults suffering from RDEB with that of sex‐ and age‐matched healthy probands. In parallel we have compared the skin transcriptome of healthy young adults with that of elderly healthy donors. Quite surprisingly, there was a large overlap of the two gene lists that concerned a limited number of functional protein families. Most prominent among the proteins found are a number of proteins of the cornified envelope or proteins mechanistically involved in cornification and other skin proteins. Further, the overlap list contains a large number of genes with a known role in inflammation. We are documenting some of the most prominent ultrastructural and protein changes by immunofluorescence analysis of skin sections from patients, old individuals, and healthy controls. PMID:26143532

  12. In vitro model adapted to the study of skin ageing induced by air pollution.

    PubMed

    Lecas, Sarah; Boursier, Elsa; Fitoussi, Richard; Vié, Katell; Momas, Isabelle; Seta, Nathalie; Achard, Sophie

    2016-09-30

    More than a barrier against environmental agents, skin reflects individual health and is a visible sign of ageing with the progressive loss of skin integrity. In order to evaluate the consequences of an environmental complex mixture, with tobacco smoke (TS) as model, on cellular and morphological changes, a 3D skin model was used. Morphologically, tissue integrity was intact after one TS-exposure while the superficial layers were drastically reduced after two TS-exposures. However, TS modified epidermal organisation at the molecular level after just one exposure. A decrease in loricrin protein staining was showed in the epidermis, while production of inflammatory cytokines (IL-8, IL-1α, IL-18) and metalloproteinase (MMP-1, MMP-3) were stimulated. Oxidative stress was also illustrated with an increase in 4-HNE protein staining. Moreover, terminal differentiation, cell-cell junction and anchorage gene expression was down-regulated in our model after one TS-exposure. In conclusion, tobacco smoke impacted the fundamental functions of skin, namely tissue anchorage, cornification and skin desquamation. Oxidative stress resulted in skin ageing. The tissue was even reactive with the inflammatory pathways, after one TS-exposure. The 3D-RHE model is appropriate for evaluating the impact of environmental pollutants on skin ageing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Skin aging modulates percutaneous drug absorption: the impact of ultraviolet irradiation and ovariectomy.

    PubMed

    Hung, Chi-Feng; Chen, Wei-Yu; Aljuffali, Ibrahim A; Lin, Yin-Ku; Shih, Hui-Chi; Fang, Jia-You

    2015-01-01

    Ultraviolet (UV) exposure and menopause are known as the inducers of damage to the skin structure. The combination of these two factors accelerates the skin aging process. In this study, we aimed to evaluate the influence of UV and ovariectomy (OVX) on the permeation of drugs through the skin. The role of tight junctions (TJs) and adherens junctions (AJs) in the cutaneous absorption of extremely lipophilic permeants and macromolecules was explored. The OVX nude mouse underwent bilateral ovary removal. Both UVA and UVB were employed to irradiate the skin. The physiological and biochemical changes of the skin structure were examined with focus on transepidermal water loss (TEWL), skin color, immunohistochemistry, and mRNA levels of proteins. UVB and OVX increased TEWL, resulting in stratum corneum (SC) integrity disruption and dehydration. A hyperproliferative epidermis was produced by UVB. UVA caused a pale skin color tone due to keratinocyte apoptosis in the epidermis. E-cadherin and β-catenin showed a significant loss by both UVA and UVB. OVX downregulated the expression of filaggrin and involucrin. A further reduction was observed when UV and OVX were combined. The in vitro cutaneous absorption demonstrated that UV increased the skin permeation of tretinoin by about twofold. However, skin accumulation and flux of estradiol were not modified by photoaging. OVX basically revealed a negligible effect on altering the permeation of small permeants. OVX increased tretinoin uptake by the appendages from 1.36 to 3.52 μg/cm(2). A synergistic effect on tretinoin follicular uptake enhancement was observed for combined UV and OVX. However, the intervention of OVX to photoaged skin resulted in less macromolecule (dextran, molecular weight = 4 kDa) accumulation in the skin reservoir because of retarded partitioning into dry skin. The in vivo percutaneous absorption of lipophilic dye examined by confocal microscopy had indicated that the SC was still important to

  14. Specific Language and Reading Skills in School-Aged Children and Adolescents Are Associated with Prematurity after Controlling for IQ

    ERIC Educational Resources Information Center

    Lee, Eliana S.; Yeatman, Jason D.; Luna, Beatriz; Feldman, Heidi M.

    2011-01-01

    Although studies of long-term outcomes of children born preterm consistently show low intelligence quotient (IQ) and visual-motor impairment, studies of their performance in language and reading have found inconsistent results. In this study, we examined which specific language and reading skills were associated with prematurity independent of the…

  15. Specific Language and Reading Skills in School-Aged Children and Adolescents Are Associated with Prematurity after Controlling for IQ

    ERIC Educational Resources Information Center

    Lee, Eliana S.; Yeatman, Jason D.; Luna, Beatriz; Feldman, Heidi M.

    2011-01-01

    Although studies of long-term outcomes of children born preterm consistently show low intelligence quotient (IQ) and visual-motor impairment, studies of their performance in language and reading have found inconsistent results. In this study, we examined which specific language and reading skills were associated with prematurity independent of the…

  16. In vivo quantification of human dermal skin aging using SHG and autofluorescence

    NASA Astrophysics Data System (ADS)

    Puschmann, Stefan; Rahn, Christian-Dennis; Wenck, Horst; Gallinat, Stefan; Fischer, Frank

    2012-03-01

    There are visible changes during skin aging. In the extracellular matrix these changes referred to as intrinsic aging (skin areas not exposed to sunlight) and extrinsic aging can be measured using various methods, such as subjective clinical evaluation, histology and molecular analysis. In this study we developed a new parameter for the non-invasive quantitative determination of dermal skin aging utilizing a five-dimensional intravital tomography (5D-IVT). This device, also known as 5D - multi-photon laser scanning microscopy, is a powerful tool to investigate (photo)aging-associated alterations in vivo. Structural alterations in the dermis of extrinsically aged (chronically sun-exposed) and intrinsically aged (sun-protected) human skin were recorded utilizing the collagen-specific second harmonic generation (SHG) signal and the elastin-specific autofluorescence (AF) signal. Recording took place in young and elderly volunteers. The resulting images were processed in order to gain the elastin percentage and the collagen percentage per image. Then, the elastin - to - collagen ratio (ELCOR) was calculated. With respect to volar forearm skin, the ELCOR significantly increased with age. In elderly volunteers, the ELCOR value calculated for the chronically sun-exposed temple area was significantly augmented compared with the sun-protected upper arm area. Based on 5D-IVT we introduce the ELCOR as a new means to quantify age-associated alterations in the extracellular matrix of in vivo human skin. This novel parameter is compared to the currently used "SHG to AF aging index" of the dermis (SAAID).

  17. Differences in visual perception of age and attractiveness of female facial and body skin.

    PubMed

    Fink, B; Matts, P J; Röder, S; Johnson, R; Burquest, M

    2011-04-01

    Perception of age and health is critical in the judgement of attractiveness. The few studies conducted on the significance of apparent skin condition on human physical appearance have studied faces alone or isolated fields of images facial skin. Little is known about whether perception of the face matches that of other body parts or if body skin affects overall age and attractiveness perception when presented in combination with facial skin. We hypothesized that independent presentation of female faces, chests and arms (including hands) - cropped from a full face and upper body image - would result in significant differences in perception of age and attractiveness compared to the corresponding composite. Furthermore, we sought to investigate whether relatively young and attractive looking skin on selected, individual parts of the body affects overall perception. Digital photographs of 52 women aged 45-65 years were collected and processed to yield four derivative sets of images: One set showed the composite of all features, i.e. the face, the chest and the arms, whereas the other three were cropped carefully to show each part of the upper body described above independently. A total of 240 participants judged these faces for perceived age and attractiveness. Our results showed significant differences in perception with the chest and the arms being judged significantly younger than the face or composite image of the same women. Moreover, arms and chest images were perceived as more attractive than face and composite images. Finally, regression analysis indicated that differences between the perceived and chronological values of overall age perception could be predicted by age perception of the face and arms. These results continue to support the significance of facial age perception in assessment of a woman's age, but highlight that body skin also plays a role in overall age impression.

  18. Gene expression changes with age in skin, adipose tissue, blood and brain.

    PubMed

    Glass, Daniel; Viñuela, Ana; Davies, Matthew N; Ramasamy, Adaikalavan; Parts, Leopold; Knowles, David; Brown, Andrew A; Hedman, Asa K; Small, Kerrin S; Buil, Alfonso; Grundberg, Elin; Nica, Alexandra C; Di Meglio, Paola; Nestle, Frank O; Ryten, Mina; Durbin, Richard; McCarthy, Mark I; Deloukas, Panagiotis; Dermitzakis, Emmanouil T; Weale, Michael E; Bataille, Veronique; Spector, Tim D

    2013-07-26

    Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age. Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues. Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.

  19. Gene expression changes with age in skin, adipose tissue, blood and brain

    PubMed Central

    2013-01-01

    Background Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age. Results Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues. Conclusions Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases. PMID:23889843

  20. Middle age has a significant impact on gene expression during skin wound healing in male mice.

    PubMed

    Yanai, Hagai; Lumenta, David Benjamin; Vierlinger, Klemens; Hofner, Manuela; Kitzinger, Hugo-Benito; Kamolz, Lars-Peter; Nöhammer, Christa; Chilosi, Marco; Fraifeld, Vadim E

    2016-08-01

    The vast majority of research on the impact of age on skin wound healing (WH) compares old animals to young ones. The middle age is often ignored in biogerontological research despite the fact that many functions that decline in an age-dependent manner have starting points in mid-life. With this in mind, we examined gene expression patterns during skin WH in late middle-aged versus young adult male mice, using the head and back punch models. The rationale behind this study was that the impact of age would first be detectable at the transcriptional level. We pinpointed several pathways which were over-activated in the middle-aged mice, both in the intact skin and during WH. Among them were various metabolic, immune-inflammatory and growth-promoting pathways. These transcriptional changes were much more pronounced in the head than in the back. In summary, the middle age has a significant impact on gene expression in intact and healing skin. It seems that the head punch model is more sensitive to the effect of age than the back model, and we suggest that it should be more widely applied in aging research on wound healing.

  1. Skin Diseases: Skin Health and Skin Diseases

    MedlinePlus

    ... and dryness. Sunlight is a major cause of skin aging. ( See "Skin and Sun—Not a Good Mix") . ... person has smoked. Many products claim to revitalize aging skin or reduce wrinkles, but the Food and Drug ...

  2. Variation of Biophysical Parameters of the Skin with Age, Gender, and Body Region

    PubMed Central

    Firooz, Alireza; Sadr, Bardia; Babakoohi, Shahab; Sarraf-Yazdy, Maryam; Fanian, Ferial; Kazerouni-Timsar, Ali; Nassiri-Kashani, Mansour; Naghizadeh, Mohammad Mehdi; Dowlati, Yahya

    2012-01-01

    Background. Understanding the physiological, chemical, and biophysical characteristics of the skin helps us to arrange a proper approach to the management of skin diseases. Objective. The aim of this study was to measure 6 biophysical characteristics of normal skin (sebum content, hydration, transepidermal water loss (TEWL), erythema index, melanin index, and elasticity) in a normal population and assess the effect of sex, age, and body location on them. Methods. Fifty healthy volunteers in 5 age groups (5 males and females in each) were enrolled in this study. A multifunctional skin physiology monitor (Courage & Khazaka electronic GmbH, Germany) was used to measure skin sebum content, hydration, TEWL, erythema index, melanin index, and elasticity in 8 different locations of the body. Results. There were significant differences between the hydration, melanin index, and elasticity of different age groups. Regarding the locations, forehead had the highest melanin index, where as palm had the lowest value. The mean values of erythema index and melanin index and TEWL were significantly higher in males and anatomic location was a significant independent factor for all of 6 measured parameters. Conclusion. Several biophysical properties of the skin vary among different gender, age groups, and body locations. PMID:22536139

  3. The Characterization of Varicella Zoster Virus-Specific T Cells in Skin and Blood during Aging.

    PubMed

    Vukmanovic-Stejic, Milica; Sandhu, Daisy; Seidel, Judith A; Patel, Neil; Sobande, Toni O; Agius, Elaine; Jackson, Sarah E; Fuentes-Duculan, Judilyn; Suárez-Fariñas, Mayte; Mabbott, Neil A; Lacy, Katie E; Ogg, Graham; Nestle, Frank O; Krueger, James G; Rustin, Malcolm H A; Akbar, Arne N

    2015-07-01

    Reactivation of the varicella zoster virus (VZV) increases during aging. Although the effects of VZV reactivation are observed in the skin (shingles), the number and functional capacity of cutaneous VZV-specific T cells have not been investigated. The numbers of circulating IFN-γ-secreting VZV-specific CD4(+) T cells are significantly decreased in old subjects. However, other measures of VZV-specific CD4(+) T cells, including proliferative capacity to VZV antigen stimulation and identification of VZV-specific CD4(+) T cells with an major histocompatibility complex class II tetramer (epitope of IE-63 protein), were similar in both age groups. The majority of T cells in the skin of both age groups expressed CD69, a characteristic of skin-resident T cells. VZV-specific CD4(+) T cells were significantly increased in the skin compared with the blood in young and old subjects, and their function was similar in both age groups. In contrast, the number of Foxp3(+) regulatory T cells and expression of the inhibitory receptor programmed cell death -1 PD-1 on CD4(+) T cells were significantly increased in the skin of older humans. Therefore, VZV-specific CD4(+) T cells in the skin of older individuals are functionally competent. However, their activity may be restricted by multiple inhibitory influences in situ.

  4. Modeling signaling pathways leading to wrinkle formation: identification of the skin aging target.

    PubMed

    Chauhan, Pallavi; Shakya, Madhvi

    2009-01-01

    In the present scenario, wrinkle formation, prominent sign of skin ageing, is one of the most demanding areas of research. This burgeoning research demand to reduce, delay and restore the effects of skin ageing has led to the study of various signaling pathways leading to wrinkle formation. Wrinkles appear on skin due to influence of intrinsic and extrinsic factors on mitogenic reactions and signal transduction pathways. The aim of the present study is to analyze each protein involved in the signaling pathway leading to dilapidation of collagen and an attempt has been made to compare different signal transduction pathways to identify a common target for skin ageing. In the present work, bioinformatics tools have been used to extract information from already existing experimental data. The statistical techniques are used for further analysis and make useful predictions for skin ageing. Stressors like UV irradiation, osmotic stress and heat shock have been reported to activate epidermal growth factor receptor, interleukin 1 receptor, tumor necrosis factor receptor, platelet-derived growth factor receptor and platelet activation factor receptor signaling pathways, which lead to the production of matrix metalloproteinases, collagen degradation and, consequently, wrinkle formation. When all the five signaling pathways were modeled, the c-jun part of the AP-1 transcription factor was found to be a common intermediate protein involved in all the signaling cascades. Moreover, it shows differential expression in the skin on response to stressors. We proposed c-jun to be the most potent target for drug designing against wrinkle formation.

  5. The Characterization of Varicella Zoster Virus Specific T Cells In Skin and Blood During Ageing

    PubMed Central

    Vukmanovic-Stejic, Milica; Sandhu, Daisy; Seidel, Judith A.; Patel, Neil; Sobande, Toni O.; Agius, Elaine; Jackson, Sarah E.; Fuentes-Duculan, Judilyn; Suarez-Farinas, Mayte; Mabbott, Neil A.; Lacy, Katie E.; Ogg, Graham; Nestle, Frank O; Krueger, James G.; Rustin, Malcolm H.A.; Akbar, Arne N.

    2015-01-01

    The varicella-zoster virus (VZV) re-activation increases during ageing. Although the effects of VZV re-activation are observed in the skin (shingles) the number or functional capacity of cutaneous VZV specific T cells have not been investigated. The numbers of circulating IFN-γ secreting VZV specific CD4+ T cells are significantly decreased in old subjects however other measures of VZV-specific CD4+ T cells, including proliferative capacity to VZV antigen stimulation and identification of VZV-specific CD4+ T cells with a MHC class II tetramer (epitope of IE-63 protein), were similar in both age groups. The majority of T cells in the skin of both age groups expressed CD69, a characteristic of skin resident T cells. VZV-specific CD4+ T cells were significantly increased in the skin compared to the blood in young and old subjects and their function was similar in both age groups. In contrast the number of Foxp3+ regulatory T cells (Tregs) and expression of the inhibitory receptor PD-1 on CD4+ T cells were significantly increased in the skin of older humans. Therefore VZV-specific CD4+ T cells in the skin of older individuals are functionally competent. However their activity may be restricted by multiple inhibitory influences in situ. PMID:25734814

  6. Agreement between grating acuity at age 1 year and Snellen acuity at age 5.5 years in the preterm child. Cryotherapy for Retinopathy of Prematurity Cooperative Group.

    PubMed

    Dobson, V; Quinn, G E; Siatkowski, R M; Baker, J D; Hardy, R J; Reynolds, J D; Trese, M T; Tung, B

    1999-02-01

    To examine the relation between grating acuity at age 1 year and Snellen acuity and grating acuity at 5.5 years, in preterm children with birth weights less than 1251 g. Subjects were participants in the multicenter study of Cryotherapy for Retinopathy of Prematurity. The Teller acuity card (TAC; Vistech Consultants, Dayton, OH) procedure was used to measure monocular grating acuity in children at ages 1 and 5.5 years. Early-treatment diabetic retinopathy study (ETDRS) charts were used to measure the childrens' monocular recognition (Snellen) acuity at age 5.5 years. Data are presented for 575 eyes with measurable TAC grating acuity at 1 year and 111 eyes that had no measurable acuity at 1 year. Among eyes with normal acuity at 1 year, 86.8% showed normal Snellen acuity, and 94.3% showed normal grating acuity at 5.5 years. Among eyes that were blind (i.e., had no measurable TAC grating acuity) at 1 year, 96.8% showed no quantifiable Snellen acuity, and 89.2% showed no quantifiable grating acuity at 5.5 years. Only 2.4% of eyes had acuity in the range between normal and blind at 1 year (i.e., measurable grating acuity <1.6 cyc/deg); thus, the predictive value of acuity scores in this range could not be determined. Correlation analysis indicated that the relative position within the normal range of an eye's grating acuity score at 1 year was not predictive of the relative position within the normal range of that eye's acuity score at 5.5 years. Among a large population of low-birth-weight infants, eyes with normal grating acuity at age 1 year generally showed normal Snellen and grating acuity at age 5.5 years, and eyes that had no quantifiable acuity at 1 year remained blind at 5.5 years. Relative position of an eye's acuity score within the normal range was not predictive of the relative position of that eye's later acuity score.

  7. Ichthyosis prematurity syndrome with separation of fetal membranes and neonatal asphyxia.

    PubMed

    Dereksson, Kristjan; Kjartansson, Sveinn; Hjartardóttir, Hulda; Arngrimsson, Reynir

    2012-08-27

    Ichthyosis prematurity syndrome (IPS) is a rare inherited skin disorder. Children are born prematurely with thick skin and have been found to develop neonatal asphyxia due to occlusions in the bronchial tree from debris in the amniotic fluid. At 31 weeks of gestation, separation of amniotic and chorionic membranes was identified as well as polyhydramnion. The child was born 2 weeks later, with thickened skin with a granular appearance and required immediate ventilation and intensive care. At 2 years of age, the patient has developed an atopic skin condition with severe itching, recurrent skin infections, food intolerance and periods of wheezing. Prenatal observation of separation of foetal membranes or dense amniotic fluid may be signs of IPS and severe complication immediately after birth.

  8. Role of topical peptides in preventing or treating aged skin.

    PubMed

    Gorouhi, F; Maibach, H I

    2009-10-01

    Ageing, a basic biological process seen in all living creatures, is not preventable. Surgical and topical modalities have been invented and substances were applied topically to alter the ageing process. Peptides and proteins, frequently used for this purpose, were categorized into four groups: signal peptides, enzyme-inhibitor peptides, neurotransmitter-inhibitor peptides and carrier peptides. We comprehensively review eligible studies -including controlled ex vivo or in vivo efficacy studies on any topical peptide or protein that has been administered to treat signs and symptoms of ageing.

  9. Triple nanoemulsion potentiates the effects of topical treatments with microencapsulated retinol and modulates biological processes related to skin aging.

    PubMed

    Afornali, Alessandro; Vecchi, Rodrigo de; Stuart, Rodrigo Makowiecky; Dieamant, Gustavo; Oliveira, Luciana Lima de; Brohem, Carla Abdo; Feferman, Israel Henrique Stokfisz; Fabrício, Lincoln Helder Zambaldi; Lorencini, Márcio

    2013-01-01

    The sum of environmental and genetic factors affects the appearance and function of the skin as it ages. The identification of molecular changes that take place during skin aging provides biomarkers and possible targets for therapeutic intervention. Retinoic acid in different formulations has emerged as an alternative to prevent and repair age-related skin damage. To understand the effects of different retinoid formulations on the expression of genes associated with biological processes that undergo changes during skin aging. Ex-vivo skin samples were treated topically with different retinoid formulations. The modulation of biological processes associated with skin aging was measured by Reverse Transcription quantitative PCR (RT-qPCR). A formulation containing microencapsulated retinol and a blend of active ingredients prepared as a triple nanoemulsion provided the best results for the modulation of biological, process-related genes that are usually affected during skin aging. This association proved to be therapeutically more effective than tretinoin or microencapsulated retinol used singly.

  10. Peripheral mechanisms of thermoregulatory control of skin blood flow in aged humans

    PubMed Central

    Kenney, W. Larry

    2010-01-01

    Human skin blood flow is controlled via dual innervation from the sympathetic nervous system. Reflex cutaneous vasoconstriction and vasodilation are both impaired with primary aging, rendering the aged more vulnerable to hypothermia and cardiovascular complications from heat-related illness. Age-related alterations in the thermoregulatory control of skin blood flow occur at multiple points along the efferent arm of the reflex, including 1) diminished sympathetic outflow, 2) altered presynaptic neurotransmitter synthesis, 3) reduced vascular responsiveness, and 4) impairments in downstream (endothelial and vascular smooth muscle) second-messenger signaling. This mechanistic review highlights some of the recent findings in the area of aging and the thermoregulatory control of skin blood flow. PMID:20413421

  11. Optical Coherence Tomography Imaging of Normal, Chronologically Aged, Photoaged and Photodamaged Skin: A Systematic Review

    PubMed Central

    Mamalis, Andrew; Ho, Derek; Jagdeo, Jared

    2016-01-01

    BACKGROUND Optical coherence tomography (OCT) is capable of providing a non-invasive real-time cross-sectional image of the skin through the use of light-based interferometry– a method sometimes described as a “light-based ultrasound.” One key application of OCT in dermatology is the visualization of dermal collagen during processes such as chronological aging, photoaging, or photodamage. These skin conditions are typically managed by the practitioner’s subjective assessment of severity and response to therapy. METHODS & MATERIALS We searched Medline, PubMed, EMBASE, Web of Science, Google Scholar, and Cochrane databases for published literature on the imaging of skin collagen by OCT using the following search terms: “optical coherence tomography,” “OCT,” “skin,” “collagen,” “photoaging,” “wrinkles,” and “photodamage.” RESULTS Our search resulted in 23 articles investigating OCT skin collagen imaging meeting our search criteria. CONCLUSION We anticipate tremendous growth in the field of OCT skin imaging that will parallel the development ultrasound technology has experienced over the past 30 years. We foresee that OCT imaging to evaluate skin aging will not only help identify pathological changes earlier, but will also assist evaluation of response-to-therapy longitudinally without biopsy. PMID:26322560

  12. Nested PCR-denaturing gradient gel electrophoresis analysis of human skin microbial diversity with age.

    PubMed

    Li, Wei; Han, Lei; Yu, Pengbo; Ma, Chaofeng; Wu, Xiaokang; Xu, Jiru

    2014-01-01

    To determine whether the composition and structure of skin microbiota differ with age, cutaneous bacteria were isolated from the axillary fossa of 37 healthy human adults in two age groups (old people and young adults). Bacterial genomic DNA was extracted and characterized by nested PCR-denaturing gradient gel electrophoresis (PCR-DGGE) with primers specifically targeting V3 region of the 16S rRNA gene. The excised gel bands were sequenced to identify bacterial categories. The total bacteria, Staphylococcus spp., Staphylococcus epidermidis and Corynebacterium spp. were further enumerated by quantitative PCR. There were no significant differences in the species diversity profiles between age groups. The similarity index was lower across age groups than that it was intra-group. This indicates that the composition of skin flora is more similar to others of the same age than across age groups. While Staphylococcus spp. and Corynebacterium spp. were the dominant bacteria in both groups, sequencing and quantitative PCR revealed that skin bacterial composition differed by age. The copy number of total bacteria and Corynebacterium spp. were significantly lower in younger subjects, whereas there were no statistical differences in the quantity of Staphylococcus spp. and Staphylococcus epidermidis. These results suggest that the skin flora undergo both quantitative and qualitative changes related to aging.

  13. Differential expression of cathepsins K, S and V between young and aged Caucasian women skin epidermis.

    PubMed

    Sage, Juliette; De Quéral, Delphine; Leblanc-Noblesse, Emmanuelle; Kurfurst, Robin; Schnebert, Sylvianne; Perrier, Eric; Nizard, Carine; Lalmanach, Gilles; Lecaille, Fabien

    2014-01-01

    Cutaneous aging translates drastic structural and functional alterations in the extracellular matrix (ECM). Multiple mechanisms are involved, including changes in protease levels. We investigated the age-related protein expression and activity of cysteine cathepsins and the expression of two endogenous protein inhibitors in young and aged Caucasian women skin epidermis. Immunofluorescence studies indicate that the expression of cathepsins K, S and V, as well as cystatins A and M/E within keratinocytes is reduced in photoprotected skin of aged women. Furthermore, the overall endopeptidase activity of cysteine cathepsins in epidermis lysates decreased with age. Albeit dermal elastic fiber and laminin expression is reduced in aged skin, staining of nidogen-1, a key protein in BM assembly that is sensitive to proteolysis by cysteine, metallo- and serine proteases, has a similar pattern in both young and aged skin. Since cathepsins contribute to the hydrolysis and turnover of ECM/basement membrane components, the abnormal protein degradation and deposition during aging process may be related in part to a decline of lysosomal/endosomal cathepsin K, S and V activity.

  14. Prediction of Drug Clearance in Premature and Mature Neonates, Infants, and Children ≤2 Years of Age: A Comparison of the Predictive Performance of 4 Allometric Models.

    PubMed

    Mahmood, Iftekhar

    2016-06-01

    The objective of this study was to evaluate the predictive performance of 4 allometric models to predict clearance in pediatric ages ranging from premature neonates to children ≤2 years of age. Four allometric models were used to predict clearances of 28 drugs in children from preterm neonates to 2 years of age (n = 564). The 4 models are (1) basal metabolic rate-dependent model; (2) age-dependent exponent model; (3) an allometric model based on kidney and liver weights as well as kidney and liver blood flow; and (4) an allometric model based on a fixed exponent of 0.75. The predictive performance of these models was evaluated by comparing the predicted clearance of the studied drugs with the observed clearance in an individual child. The results of the study indicated that the 3 new proposed models predicted the mean clearance of the drugs with reasonable accuracy (≤50% prediction error). On the other hand, the exponent of 0.75 produced substantial prediction error. Predicted individual clearance values were ≥50% in approximately 30% of the children by the proposed 3 methods and 73% by exponent 0.75. The 3 new proposed allometric models can predict mean clearances of drugs in children from premature neonates to ≤2 years of age with reasonable accuracy and are of practical value during pediatric drug development. © 2015, The American College of Clinical Pharmacology.

  15. Ameliorating Effect of Akebia quinata Fruit Extracts on Skin Aging Induced by Advanced Glycation End Products.

    PubMed

    Shin, Seoungwoo; Son, Dahee; Kim, Minkyung; Lee, Seungjun; Roh, Kyung-Baeg; Ryu, Dehun; Lee, Jongsung; Jung, Eunsun; Park, Deokhoon

    2015-11-12

    The accumulation of free radicals and advanced glycation end products (AGEs) in the skin plays a very important role in skin aging. Both are known to interact with each other. Therefore, natural compounds or extracts that possess both antioxidant and antiglycation activities might have great antiageing potential. Akebia quinata fruit extract (AQFE) has been used to treat urinary tract inflammatory disease in traditional Korean and Chinese medicines. In the present study, AQFE was demonstrated to possess antioxidant and antiglycation activity. AQFE protects human dermal fibroblasts (HDFs) from oxidative stress and inhibits cellular senescence induced by oxidative stress. We also found that AQFE inhibits glycation reaction between BSA and glucose. The antiglycation activity of AQFE was dose-dependent. In addition, the antiglycation activity of AQFE was confirmed in a human skin explant model. AQFE reduced CML expression and stimulated fibrillin-1 expression in comparison to the methyglyoxal treatment. In addition, the possibility of the extract as an anti-skin aging agent has also been clinically validated. Our analysis of the crow's feet wrinkle showed that there was a decrease in the depth of deep furrows in RI treated with AQFE cream over an eight-week period. The overall results suggest that AQFE may work as an anti-skin aging agent by preventing oxidative stress and other complications associated with AGEs formation.

  16. Ameliorating Effect of Akebia quinata Fruit Extracts on Skin Aging Induced by Advanced Glycation End Products

    PubMed Central

    Shin, Seoungwoo; Son, Dahee; Kim, Minkyung; Lee, Seungjun; Roh, Kyung-Baeg; Ryu, Dehun; Lee, Jongsung; Jung, Eunsun; Park, Deokhoon

    2015-01-01

    The accumulation of free radicals and advanced glycation end products (AGEs) in the skin plays a very important role in skin aging. Both are known to interact with each other. Therefore, natural compounds or extracts that possess both antioxidant and antiglycation activities might have great antiageing potential. Akebia quinata fruit extract (AQFE) has been used to treat urinary tract inflammatory disease in traditional Korean and Chinese medicines. In the present study, AQFE was demonstrated to possess antioxidant and antiglycation activity. AQFE protects human dermal fibroblasts (HDFs) from oxidative stress and inhibits cellular senescence induced by oxidative stress. We also found that AQFE inhibits glycation reaction between BSA and glucose. The antiglycation activity of AQFE was dose-dependent. In addition, the antiglycation activity of AQFE was confirmed in a human skin explant model. AQFE reduced CML expression and stimulated fibrillin-1 expression in comparison to the methyglyoxal treatment. In addition, the possibility of the extract as an anti-skin aging agent has also been clinically validated. Our analysis of the crow’s feet wrinkle showed that there was a decrease in the depth of deep furrows in RI treated with AQFE cream over an eight-week period. The overall results suggest that AQFE may work as an anti-skin aging agent by preventing oxidative stress and other complications associated with AGEs formation. PMID:26569300

  17. Could tight junctions regulate the barrier function of the aged skin?

    PubMed

    Svoboda, Marek; Bílková, Zuzana; Muthný, Tomáš

    2016-03-01

    The skin is known to be the largest organ in human organism creating interface with outer environment. The skin provides protective barrier against pathogens, physical and chemical insults, and against uncontrolled loss of water. The barrier function was primarily attributed to the stratum corneum (SC) but recent studies confirmed that epidermal tight junctions (TJs) also play important role in maintaining barrier properties of the skin. Independent observations indicate that barrier function and its recovery is impaired in aged skin. However, trans-epidermal water loss (TEWL) values remains rather unchanged in elderly population. UV radiation as major factor of photoageing impairs TJ proteins, but TJs have great self-regenerative potential. Since it may be possible that TJs can compensate TEWL in elderly due to its regenerative and compensatory capabilities, important question remains to be answered: how are TJs regulated during skin ageing? This review provides an insight into TJs functioning as epidermal barrier and summarizes current knowledge about the impact of ageing on the barrier function of the skin and epidermal TJs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Using neonatal skin to study the developmental programming of aging.

    PubMed

    Reynolds, Leryn J; Dickens, Brett J; Green, Benjamin B; Marsit, Carmen J; Pearson, Kevin J

    2017-08-01

    Numerous studies have examined how both negative and positive maternal exposures (environmental contaminants, nutrition, exercise, etc.) impact offspring risk for age-associated diseases such as obesity, type 2 diabetes, hypertension, and others. The purpose of this study was to introduce the foreskin as a novel model to examine developmental programming in human neonates, particularly in regard to adipogenesis and insulin receptor signaling, major contributors to age-associated diseases such as obesity and diabetes. Neonatal foreskin was collected following circumcision and primary dermal fibroblasts were isolated to perform adipocyte differentiation and insulin stimulation experiments. Human neonatal foreskin primary fibroblasts take up lipid when stimulated with a differentiation cocktail and demonstrate insulin signaling when stimulated with insulin. Thus, we propose that foreskin tissue can be used to study developmental exposures and programming that occur in the neonate as it relates to age-associated diseases such as obesity and diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Learning in Premature Infants.

    ERIC Educational Resources Information Center

    Thoman, Evelyn B.; Ingersoll, Evan W.

    1993-01-01

    Examined instrumental learning in premature infants by providing 45 infants at 33 weeks conceptual age with either a teddy bear that "breathed" quietly at the infant's respiration rate (BB) or a nonbreathing bear (NBB). Over a two-week period, infants provided with the BB decreased their latency to contact the bear; infants exposed to the NBB…

  20. [Protein oxidation in the aging of skin fibroblasts].

    PubMed

    Grune, T

    2003-09-01

    The ageing process is accompanied by enhanced oxidative damage. All cellular components including proteins are affected by oxidation. Within the cell, the proteasome is responsible for the degradation of these oxidised proteins. During the ageing process this function of the proteasome is increasingly diminished, therefore oxidised proteins accumulate. Furthermore lipofuscin, a highly cross-linked and modified protein aggregate, is formed. This aggregate accumulates within cells and is able to inhibit the proteasome. The nucleus of the cells is less affected by these changes due to the lack of intranuclear lipofuscin accumulation.

  1. The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity

    PubMed Central

    Plikus, Maksim V.; Van Spyk, Elyse Noelani; Pham, Kim; Geyfman, Mikhail; Kumar, Vivek; Takahashi, Joseph S.; Andersen, Bogi

    2015-01-01

    Historically work on peripheral circadian clocks has been focused on organs and tissues that have prominent metabolic functions, such as liver, fat and muscle. In recent years, skin is emerging as a model for studying circadian clock regulation of cell proliferation, stem cell functions, tissue regeneration, aging and carcinogenesis. Morphologically skin is complex, containing multiple cell types and structures, and there is evidence for a functional circadian clock in most, if not all, of its cell types. Despite the complexity, skin stem cell populations are well defined, experimentally tractable and exhibit prominent daily cell proliferation cycles. Hair follicle stem cells also participate in recurrent, long-lasting cycles of regeneration -- the hair growth cycles. Among other advantages of skin is a broad repertoire of available genetic tools enabling the creation of cell-type specific circadian mutants. Also, due to the accessibility of the skin, in vivo imaging techniques can be readily applied to study the circadian clock and its outputs in real time, even at the single-cell level. Skin provides the first line of defense against many environmental and stress factors that exhibit dramatic diurnal variations such as solar UV radiation and temperature. Studies have already linked the circadian clock to the control of UVB-induced DNA damage and skin cancers. Due to the important role that skin plays in the defense against microorganisms, it represents a promising model system to further explore the role of the clock in the regulation of the body's immune functions. To that end, recent studies have already linked the circadian clock to psoriasis, one of the most common immune-mediated skin disorders. The skin also provides opportunities to interrogate clock regulation of tissue metabolism in the context of stem cells and regeneration. Furthermore, many animal species feature prominent seasonal hair molt cycles, offering an attractive model for investigating the

  2. The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity.

    PubMed

    Plikus, Maksim V; Van Spyk, Elyse N; Pham, Kim; Geyfman, Mikhail; Kumar, Vivek; Takahashi, Joseph S; Andersen, Bogi

    2015-06-01

    Historically, work on peripheral circadian clocks has been focused on organs and tissues that have prominent metabolic func